Posted in TAMWAVE

## TAMWAVE 7: Analysis for a Cohesive Soil

With the analysis of the concrete pile in cohesionless soils complete, we turn to an example in cohesive soils.

The analysis procedure is exactly the same.  We will first discuss the differences between the two, then consider an example.

### Differences with Piles in Cohesive Soils

• The unit weight is in put as a saturated unit weight, and the specific gravity of the soil particles is different (but not by much.)
• Once the simulated CPT data was abandoned, the “traditional” Tomlinson formula for the unit toe resistance, namely $q_t = N_c c$, where $N_c = 9$, was chosen.
• The ultimate resistance along the shaft is done using the formula of Kolk and van der Velde (1996).  This was used as a beta method, for compatibility with the method used for cohesionless soils.  Unless the ratio of the cohesion to the effective stress is constant, the whole concept of a constant lateral pressure due to cohesion needs to be discarded.
• For saturated cohesive soils, an estimate of pile set-up is done using cavity expansion methods.  Excess pore pressure due to cavity expansion during driving is estimated using the method described by Randolph (2003).  This excess pore pressure is then added to the existing pore pressure and a new effective stress is computed at each point for the Kolk and van der Velde method, preventing negative values when the total elevated pore water pressure exceeds the total pressure of the soil.  The results are within reasonable ranges.

### Test Case

This slideshow requires JavaScript.

The only change in basic parameters from the other case was the change to a CH soil.  We opted not to perform a lateral load test this time, although the program is certainly capable of using the CLM 2 method with cohesive soils.

 Pile Data Pile Designation 12 In. Square Pile Material Concrete Penetration of Pile into the Soil, ft. 100 Basic “diameter” or size of the pile, ft. 1 Cross-sectional Area of the Pile, ft2 1.000 Pile Toe Area, ft2 1.000 Perimeter of the Pile, ft. 4.000 Soil Data Type of Soil CH Specific Gravity of Solids 2.7 Void Ratio 0.84 Dry Unit Weight, pcf 91.5 Saturated Unit Weight, pcf 120.0 Soil Internal Friction Angle phi, degrees Cohesion c, psf 750 SPT N60, blows/foot 6 CPT qc, psf 12,696 Distance of Water Table from Soil Surface, ft. 50 Penetration of Pile into Water Table, ft. 50 Pile Toe Results Effective Stress at Pile Toe, ksf 7.454 SPT (N1)60 at pile toe, blows/foot 3 Unit Toe Resistance qp, ksf 6.8 Shear Modulus at Pile Toe, ksf 474.8 Toe Spring Constant Depth Factor 1.366 Toe Spring Constant, kips/ft 2,358.0 Pile Toe Quake, in. 0.034 Poisson’s Ratio at Pile Toe 0.500 Toe Damping, kips-sec/ft 14.0 Toe Smith-Type Damping Constant, sec/ft 2.069 Total Static Toe Resistance Qp, kips 6.75 Pile Toe Plugged? Yes Final Results Total Shaft Friction Qs, kips 219.92 Ultimate Axial Capacity of Pile, kips 226.67 Pile Setup Factor 2.0 Total Pile Soil Resistance to Driving (SRD), kips 115.44

 Depth at Centre of Layer, feet Soil Shear Modulus, ksf Beta Quake,inches Maximum Load Transfer, ksf Spring Constant for Wall Shear, ksf/in Smith-Type Damping Constant, sec/ft Maximum Load Transfer During Driving (SRD), ksf 0.50 34.9 2.541 0.0400 0.116 2.91 2.709 0.116 1.50 60.4 1.180 0.0322 0.162 5.03 2.559 0.162 2.50 78.0 0.827 0.0291 0.189 6.50 2.489 0.189 3.50 92.2 0.655 0.0273 0.210 7.69 2.443 0.210 4.50 104.6 0.550 0.0260 0.227 8.72 2.407 0.227 5.50 115.6 0.479 0.0250 0.241 9.64 2.378 0.241 6.50 125.7 0.427 0.0243 0.254 10.48 2.353 0.254 7.50 135.0 0.387 0.0236 0.266 11.25 2.332 0.266 8.50 143.8 0.356 0.0231 0.277 11.98 2.312 0.277 9.50 152.0 0.330 0.0226 0.287 12.66 2.294 0.287 10.50 159.8 0.308 0.0222 0.296 13.31 2.278 0.296 11.50 167.2 0.290 0.0219 0.305 13.93 2.262 0.305 12.50 174.3 0.274 0.0216 0.313 14.53 2.248 0.313 13.50 181.2 0.260 0.0213 0.321 15.10 2.234 0.321 14.50 187.8 0.248 0.0210 0.329 15.65 2.221 0.329 15.50 194.1 0.237 0.0208 0.336 16.18 2.208 0.336 16.50 200.3 0.228 0.0206 0.344 16.69 2.196 0.344 17.50 206.3 0.219 0.0204 0.351 17.19 2.184 0.351 18.50 212.1 0.211 0.0202 0.357 17.67 2.173 0.357 19.50 217.7 0.204 0.0201 0.364 18.14 2.162 0.364 20.50 223.2 0.197 0.0199 0.370 18.60 2.151 0.370 21.50 228.6 0.191 0.0198 0.377 19.05 2.141 0.377 22.50 233.9 0.186 0.0196 0.383 19.49 2.130 0.383 23.50 239.0 0.181 0.0195 0.389 19.92 2.120 0.389 24.50 244.1 0.176 0.0194 0.395 20.34 2.110 0.395 25.50 249.0 0.172 0.0193 0.401 20.75 2.100 0.401 26.50 253.8 0.168 0.0192 0.406 21.15 2.091 0.406 27.50 258.6 0.164 0.0191 0.412 21.55 2.081 0.412 28.50 263.2 0.160 0.0190 0.418 21.94 2.072 0.418 29.50 267.8 0.157 0.0190 0.423 22.32 2.062 0.423 30.50 272.3 0.154 0.0189 0.429 22.69 2.053 0.429 31.50 276.7 0.151 0.0188 0.434 23.06 2.044 0.434 32.50 281.1 0.148 0.0188 0.439 23.42 2.034 0.439 33.50 285.4 0.145 0.0187 0.445 23.78 2.025 0.445 34.50 289.6 0.143 0.0186 0.450 24.13 2.016 0.450 35.50 293.8 0.140 0.0186 0.455 24.48 2.007 0.455 36.50 297.9 0.138 0.0186 0.461 24.82 1.998 0.461 37.50 301.9 0.136 0.0185 0.466 25.16 1.989 0.466 38.50 305.9 0.134 0.0185 0.471 25.49 1.980 0.471 39.50 309.9 0.132 0.0184 0.476 25.82 1.971 0.476 40.50 313.8 0.130 0.0184 0.481 26.15 1.962 0.481 41.50 317.6 0.128 0.0184 0.487 26.47 1.953 0.487 42.50 321.4 0.126 0.0184 0.492 26.79 1.944 0.492 43.50 325.2 0.125 0.0183 0.497 27.10 1.935 0.497 44.50 328.9 0.123 0.0183 0.502 27.41 1.926 0.502 45.50 332.6 0.122 0.0183 0.507 27.72 1.917 0.507 46.50 336.2 0.120 0.0183 0.513 28.02 1.908 0.513 47.50 339.8 0.119 0.0183 0.518 28.32 1.898 0.518 48.50 343.4 0.118 0.0183 0.523 28.61 1.889 0.523 49.50 346.9 0.117 0.0183 0.528 28.91 1.880 0.528 50.50 349.7 0.116 0.0183 0.533 29.15 1.871 0.000 51.50 351.9 0.115 0.0183 0.537 29.33 1.862 0.005 52.50 354.1 0.115 0.0184 0.541 29.51 1.853 0.011 53.50 356.2 0.114 0.0184 0.546 29.69 1.844 0.018 54.50 358.4 0.114 0.0184 0.550 29.87 1.835 0.023 55.50 360.5 0.113 0.0185 0.555 30.04 1.826 0.029 56.50 362.6 0.113 0.0185 0.559 30.22 1.816 0.035 57.50 364.7 0.113 0.0185 0.564 30.39 1.807 0.041 58.50 366.8 0.112 0.0186 0.568 30.57 1.797 0.047 59.50 368.9 0.112 0.0186 0.573 30.74 1.788 0.053 60.50 371.0 0.112 0.0187 0.578 30.92 1.778 0.059 61.50 373.0 0.111 0.0187 0.583 31.09 1.768 0.064 62.50 375.1 0.111 0.0188 0.588 31.26 1.757 0.070 63.50 377.1 0.111 0.0189 0.593 31.43 1.747 0.076 64.50 379.1 0.111 0.0189 0.598 31.60 1.736 0.082 65.50 381.2 0.110 0.0190 0.603 31.76 1.726 0.088 66.50 383.2 0.110 0.0191 0.609 31.93 1.715 0.093 67.50 385.2 0.110 0.0191 0.614 32.10 1.703 0.099 68.50 387.1 0.110 0.0192 0.620 32.26 1.692 0.105 69.50 389.1 0.110 0.0193 0.626 32.43 1.680 0.111 70.50 391.1 0.110 0.0194 0.632 32.59 1.668 0.117 71.50 393.0 0.110 0.0195 0.638 32.75 1.656 0.123 72.50 395.0 0.110 0.0196 0.645 32.91 1.643 0.129 73.50 396.9 0.110 0.0197 0.652 33.07 1.630 0.135 74.50 398.8 0.110 0.0198 0.659 33.23 1.617 0.141 75.50 400.7 0.110 0.0199 0.666 33.39 1.603 0.147 76.50 402.6 0.110 0.0201 0.673 33.55 1.589 0.153 77.50 404.5 0.111 0.0202 0.681 33.71 1.575 0.159 78.50 406.4 0.111 0.0203 0.689 33.87 1.560 0.166 79.50 408.3 0.111 0.0205 0.698 34.03 1.544 0.172 80.50 410.2 0.112 0.0207 0.707 34.18 1.528 0.179 81.50 412.0 0.112 0.0209 0.716 34.34 1.512 0.186 82.50 413.9 0.113 0.0211 0.726 34.49 1.494 0.193 83.50 415.7 0.113 0.0213 0.737 34.64 1.476 0.200 84.50 417.6 0.114 0.0215 0.748 34.80 1.457 0.207 85.50 419.4 0.115 0.0217 0.760 34.95 1.437 0.215 86.50 421.2 0.116 0.0220 0.773 35.10 1.416 0.223 87.50 423.0 0.117 0.0223 0.787 35.25 1.394 0.232 88.50 424.8 0.118 0.0227 0.802 35.40 1.370 0.241 89.50 426.6 0.120 0.0230 0.819 35.55 1.345 0.250 90.50 428.4 0.121 0.0235 0.838 35.70 1.318 0.260 91.50 430.2 0.123 0.0239 0.859 35.85 1.288 0.271 92.50 432.0 0.126 0.0245 0.882 36.00 1.256 0.283 93.50 433.8 0.129 0.0252 0.910 36.15 1.220 0.297 94.50 435.5 0.132 0.0260 0.944 36.29 1.179 0.313 95.50 437.3 0.137 0.0270 0.985 36.44 1.133 0.331 96.50 439.0 0.143 0.0284 1.038 36.58 1.077 0.354 97.50 440.8 0.152 0.0303 1.113 36.73 1.006 0.385 98.50 442.5 0.168 0.0335 1.235 36.87 0.908 0.433 99.50 444.2 0.181 0.0363 1.343 37.02 0.837 0.477

 Length of the pile, in. 1,200.0 Axial stiffness EA. lbs. 720,000,000 Circumference, in. 48.000 Point resistance, lbs. 6,750 Quake of the point, in. 0.034 Number of pile elements 100 Number of loading steps 20 Maximum pile load, lbs. 226,672.5 Load Increment, lbs. 22,667.3 Failure Load, lbs. 226,672.5
 Load Step Force at Pile Head, kips Pile Head Deflection, in. Number of Plastic Shaft Springs 0 0.0 0.000 0 1 22.7 0.012 0 2 45.3 0.025 0 3 68.0 0.039 18 4 90.7 0.058 33 5 113.3 0.082 44 6 136.0 0.109 55 7 158.7 0.140 64 8 181.3 0.175 74 9 204.0 0.214 84 10 226.7 0.271 100 11 204.0 0.259 0 12 181.3 0.246 0 13 158.7 0.234 0 14 136.0 0.221 0 15 113.3 0.209 7 16 90.7 0.193 18 17 68.0 0.175 27 18 45.3 0.154 33 19 22.7 0.132 39 20 -0.0 0.108 44

Although the cohesive soils yield very different results from the cohesionless ones, the presentation is the same.  Note the significant difference between the element/segment SRD for the static resistance and with the pore pressure increase included.  The pile set-up factor is about 2, which is within an acceptable range.  This does not apply to the toe.

The input for the wave equation is identical, except for the hammer selected, which is much smaller than for the cohesionless soils.  This is not due to set-up but to the lower capacity of the pile; the hammer selection does not account for set-up.  The user will have to select a smaller hammer size to take full advantage of this, depending upon the results.

 Time Step, msec 0.04024 Pile Weight, lbs. 15,000 Pile Stiffness, lb/ft 600,000 Pile Impedance, lb-sec/ft 57,937.5 L/c, msec 8.04688 Pile Toe Element Number 102 Length of Pile Segments, ft. 1 Hammer Manufacturer and Size VULCAN 65C Hammer Rated Striking Energy, ft-lbs 19175 Hammer Efficiency, percent 50 Length of Hammer Cushion Stack, in. 18.5 Soil Resistance to Driving (SRD) for detailed results only, kips 115.4 Percent at Toe 5.85 Toe Quake, in. 0.009 Toe Damping, sec/ft 2.07

 Element Element Weight, lbs. Element Stiffness, kips/in Element Cross-Sectional Area, in2 Element Soil Resistance, kips Element Coefficient of Restitution Element Initial Velocity, ft/sec Element Soil Shaft Stiffness, kips/in Element Quake, in. Element Damping, sec/ft Ram 6,500.0 1,880.5 99.40 0.0 0.80 9.74 0.0 1,000.000 0.00 Driving Accessory 1,100.0 711.5 144.00 0.0 0.51 0.00 0.0 1,000.000 0.00 Pile Head 150.0 60,000.0 144.00 0.5 1.00 0.00 11.6 0.040 2.71 4 150.0 60,000.0 144.00 0.6 1.00 0.00 20.1 0.032 2.56 5 150.0 60,000.0 144.00 0.8 1.00 0.00 26.0 0.029 2.49 6 150.0 60,000.0 144.00 0.8 1.00 0.00 30.7 0.027 2.44 7 150.0 60,000.0 144.00 0.9 1.00 0.00 34.9 0.026 2.41 8 150.0 60,000.0 144.00 1.0 1.00 0.00 38.5 0.025 2.38 9 150.0 60,000.0 144.00 1.0 1.00 0.00 41.9 0.024 2.35 10 150.0 60,000.0 144.00 1.1 1.00 0.00 45.0 0.024 2.33 11 150.0 60,000.0 144.00 1.1 1.00 0.00 47.9 0.023 2.31 12 150.0 60,000.0 144.00 1.1 1.00 0.00 50.7 0.023 2.29 13 150.0 60,000.0 144.00 1.2 1.00 0.00 53.3 0.022 2.28 14 150.0 60,000.0 144.00 1.2 1.00 0.00 55.7 0.022 2.26 15 150.0 60,000.0 144.00 1.3 1.00 0.00 58.1 0.022 2.25 16 150.0 60,000.0 144.00 1.3 1.00 0.00 60.4 0.021 2.23 17 150.0 60,000.0 144.00 1.3 1.00 0.00 62.6 0.021 2.22 18 150.0 60,000.0 144.00 1.3 1.00 0.00 64.7 0.021 2.21 19 150.0 60,000.0 144.00 1.4 1.00 0.00 66.8 0.021 2.20 20 150.0 60,000.0 144.00 1.4 1.00 0.00 68.8 0.020 2.18 21 150.0 60,000.0 144.00 1.4 1.00 0.00 70.7 0.020 2.17 22 150.0 60,000.0 144.00 1.5 1.00 0.00 72.6 0.020 2.16 23 150.0 60,000.0 144.00 1.5 1.00 0.00 74.4 0.020 2.15 24 150.0 60,000.0 144.00 1.5 1.00 0.00 76.2 0.020 2.14 25 150.0 60,000.0 144.00 1.5 1.00 0.00 78.0 0.020 2.13 26 150.0 60,000.0 144.00 1.6 1.00 0.00 79.7 0.020 2.12 27 150.0 60,000.0 144.00 1.6 1.00 0.00 81.4 0.019 2.11 28 150.0 60,000.0 144.00 1.6 1.00 0.00 83.0 0.019 2.10 29 150.0 60,000.0 144.00 1.6 1.00 0.00 84.6 0.019 2.09 30 150.0 60,000.0 144.00 1.6 1.00 0.00 86.2 0.019 2.08 31 150.0 60,000.0 144.00 1.7 1.00 0.00 87.7 0.019 2.07 32 150.0 60,000.0 144.00 1.7 1.00 0.00 89.3 0.019 2.06 33 150.0 60,000.0 144.00 1.7 1.00 0.00 90.8 0.019 2.05 34 150.0 60,000.0 144.00 1.7 1.00 0.00 92.2 0.019 2.04 35 150.0 60,000.0 144.00 1.8 1.00 0.00 93.7 0.019 2.03 36 150.0 60,000.0 144.00 1.8 1.00 0.00 95.1 0.019 2.03 37 150.0 60,000.0 144.00 1.8 1.00 0.00 96.5 0.019 2.02 38 150.0 60,000.0 144.00 1.8 1.00 0.00 97.9 0.019 2.01 39 150.0 60,000.0 144.00 1.8 1.00 0.00 99.3 0.019 2.00 40 150.0 60,000.0 144.00 1.9 1.00 0.00 100.6 0.019 1.99 41 150.0 60,000.0 144.00 1.9 1.00 0.00 102.0 0.018 1.98 42 150.0 60,000.0 144.00 1.9 1.00 0.00 103.3 0.018 1.97 43 150.0 60,000.0 144.00 1.9 1.00 0.00 104.6 0.018 1.96 44 150.0 60,000.0 144.00 1.9 1.00 0.00 105.9 0.018 1.95 45 150.0 60,000.0 144.00 2.0 1.00 0.00 107.1 0.018 1.94 46 150.0 60,000.0 144.00 2.0 1.00 0.00 108.4 0.018 1.93 47 150.0 60,000.0 144.00 2.0 1.00 0.00 109.6 0.018 1.93 48 150.0 60,000.0 144.00 2.0 1.00 0.00 110.9 0.018 1.92 49 150.0 60,000.0 144.00 2.1 1.00 0.00 112.1 0.018 1.91 50 150.0 60,000.0 144.00 2.1 1.00 0.00 113.3 0.018 1.90 51 150.0 60,000.0 144.00 2.1 1.00 0.00 114.5 0.018 1.89 52 150.0 60,000.0 144.00 2.1 1.00 0.00 115.6 0.018 1.88 53 150.0 60,000.0 144.00 0.0 1.00 0.00 0.0 0.018 1.87 54 150.0 60,000.0 144.00 0.0 1.00 0.00 1.2 0.018 1.86 55 150.0 60,000.0 144.00 0.0 1.00 0.00 2.5 0.018 1.85 56 150.0 60,000.0 144.00 0.1 1.00 0.00 3.8 0.018 1.84 57 150.0 60,000.0 144.00 0.1 1.00 0.00 5.1 0.018 1.84 58 150.0 60,000.0 144.00 0.1 1.00 0.00 6.4 0.018 1.83 59 150.0 60,000.0 144.00 0.1 1.00 0.00 7.6 0.018 1.82 60 150.0 60,000.0 144.00 0.2 1.00 0.00 8.9 0.019 1.81 61 150.0 60,000.0 144.00 0.2 1.00 0.00 10.1 0.019 1.80 62 150.0 60,000.0 144.00 0.2 1.00 0.00 11.3 0.019 1.79 63 150.0 60,000.0 144.00 0.2 1.00 0.00 12.6 0.019 1.78 64 150.0 60,000.0 144.00 0.3 1.00 0.00 13.8 0.019 1.77 65 150.0 60,000.0 144.00 0.3 1.00 0.00 14.9 0.019 1.76 66 150.0 60,000.0 144.00 0.3 1.00 0.00 16.1 0.019 1.75 67 150.0 60,000.0 144.00 0.3 1.00 0.00 17.3 0.019 1.74 68 150.0 60,000.0 144.00 0.4 1.00 0.00 18.4 0.019 1.73 69 150.0 60,000.0 144.00 0.4 1.00 0.00 19.6 0.019 1.71 70 150.0 60,000.0 144.00 0.4 1.00 0.00 20.7 0.019 1.70 71 150.0 60,000.0 144.00 0.4 1.00 0.00 21.8 0.019 1.69 72 150.0 60,000.0 144.00 0.4 1.00 0.00 23.0 0.019 1.68 73 150.0 60,000.0 144.00 0.5 1.00 0.00 24.1 0.019 1.67 74 150.0 60,000.0 144.00 0.5 1.00 0.00 25.2 0.019 1.66 75 150.0 60,000.0 144.00 0.5 1.00 0.00 26.2 0.020 1.64 76 150.0 60,000.0 144.00 0.5 1.00 0.00 27.3 0.020 1.63 77 150.0 60,000.0 144.00 0.6 1.00 0.00 28.4 0.020 1.62 78 150.0 60,000.0 144.00 0.6 1.00 0.00 29.4 0.020 1.60 79 150.0 60,000.0 144.00 0.6 1.00 0.00 30.5 0.020 1.59 80 150.0 60,000.0 144.00 0.6 1.00 0.00 31.5 0.020 1.57 81 150.0 60,000.0 144.00 0.7 1.00 0.00 32.6 0.020 1.56 82 150.0 60,000.0 144.00 0.7 1.00 0.00 33.6 0.021 1.54 83 150.0 60,000.0 144.00 0.7 1.00 0.00 34.6 0.021 1.53 84 150.0 60,000.0 144.00 0.7 1.00 0.00 35.6 0.021 1.51 85 150.0 60,000.0 144.00 0.8 1.00 0.00 36.6 0.021 1.49 86 150.0 60,000.0 144.00 0.8 1.00 0.00 37.6 0.021 1.48 87 150.0 60,000.0 144.00 0.8 1.00 0.00 38.6 0.021 1.46 88 150.0 60,000.0 144.00 0.9 1.00 0.00 39.6 0.022 1.44 89 150.0 60,000.0 144.00 0.9 1.00 0.00 40.6 0.022 1.42 90 150.0 60,000.0 144.00 0.9 1.00 0.00 41.5 0.022 1.39 91 150.0 60,000.0 144.00 1.0 1.00 0.00 42.5 0.023 1.37 92 150.0 60,000.0 144.00 1.0 1.00 0.00 43.4 0.023 1.34 93 150.0 60,000.0 144.00 1.0 1.00 0.00 44.4 0.023 1.32 94 150.0 60,000.0 144.00 1.1 1.00 0.00 45.3 0.024 1.29 95 150.0 60,000.0 144.00 1.1 1.00 0.00 46.2 0.025 1.26 96 150.0 60,000.0 144.00 1.2 1.00 0.00 47.2 0.025 1.22 97 150.0 60,000.0 144.00 1.3 1.00 0.00 48.1 0.026 1.18 98 150.0 60,000.0 144.00 1.3 1.00 0.00 49.0 0.027 1.13 99 150.0 60,000.0 144.00 1.4 1.00 0.00 49.9 0.028 1.08 100 150.0 60,000.0 144.00 1.5 1.00 0.00 50.8 0.030 1.01 101 150.0 60,000.0 144.00 1.7 1.00 0.00 51.7 0.034 0.91 102 150.0 786.0 144.00 1.9 1.00 0.00 52.6 0.036 0.84 Pile Toe 0.0 786.0 144.00 6.8 0.00 0.00 0.0 0.009 2.07

 Element Time Step for Maximum Compressive Stress Maximum Compressive Stress, ksi Time Step for Maximum Tensile Stress Maximum Tensile Stress, ksi Maximum Deflection, in. Final Deflection, in. Final Velocity, ft/sec 1 183 2.90 592 0.00 0.818 0.277 -9.74 2 119 1.55 538 0.00 0.696 0.681 0.12 3 121 1.56 2 0.00 0.270 0.265 -0.02 4 123 1.56 3 0.00 0.270 0.265 -0.03 5 125 1.55 465 0.01 0.270 0.265 -0.02 6 127 1.55 467 0.05 0.270 0.265 -0.02 7 128 1.55 469 0.10 0.269 0.265 -0.02 8 130 1.55 471 0.14 0.269 0.265 -0.02 9 132 1.55 471 0.18 0.268 0.265 -0.01 10 134 1.55 473 0.22 0.268 0.265 -0.00 11 136 1.54 475 0.26 0.268 0.265 0.00 12 138 1.54 477 0.30 0.267 0.265 0.01 13 140 1.54 476 0.34 0.267 0.265 0.02 14 142 1.54 477 0.37 0.267 0.266 0.03 15 144 1.53 478 0.40 0.267 0.266 0.05 16 146 1.53 477 0.43 0.267 0.266 0.08 17 148 1.53 477 0.46 0.267 0.267 0.11 18 150 1.52 476 0.48 0.267 0.267 0.14 19 152 1.52 477 0.50 0.268 0.268 0.17 20 154 1.52 478 0.51 0.269 0.269 0.20 21 156 1.51 476 0.53 0.269 0.269 0.23 22 158 1.51 476 0.54 0.270 0.270 0.26 23 160 1.50 475 0.55 0.271 0.271 0.30 24 162 1.50 476 0.55 0.271 0.271 0.34 25 164 1.49 476 0.55 0.272 0.272 0.37 26 166 1.49 476 0.54 0.273 0.273 0.41 27 168 1.48 475 0.53 0.274 0.274 0.45 28 170 1.48 475 0.51 0.274 0.274 0.48 29 172 1.47 476 0.48 0.275 0.275 0.53 30 174 1.47 475 0.45 0.276 0.276 0.58 31 176 1.46 474 0.41 0.276 0.276 0.63 32 178 1.46 472 0.37 0.277 0.277 0.68 33 180 1.45 471 0.32 0.278 0.278 0.71 34 182 1.44 472 0.28 0.278 0.278 0.72 35 184 1.43 466 0.23 0.278 0.278 0.72 36 185 1.42 516 0.24 0.279 0.279 0.70 37 186 1.41 524 0.26 0.279 0.279 0.65 38 188 1.40 529 0.28 0.279 0.279 0.58 39 190 1.38 532 0.31 0.279 0.279 0.51 40 192 1.37 533 0.34 0.279 0.279 0.44 41 194 1.36 542 0.38 0.279 0.279 0.38 42 196 1.35 541 0.42 0.279 0.279 0.33 43 198 1.33 544 0.45 0.279 0.279 0.28 44 200 1.32 543 0.49 0.279 0.279 0.23 45 203 1.31 542 0.52 0.279 0.279 0.18 46 205 1.30 545 0.55 0.278 0.278 0.12 47 207 1.28 544 0.58 0.278 0.278 0.08 48 209 1.27 542 0.60 0.277 0.277 0.03 49 211 1.26 544 0.63 0.277 0.277 -0.01 50 213 1.24 543 0.65 0.277 0.277 -0.05 51 216 1.23 542 0.67 0.276 0.276 -0.10 52 217 1.22 540 0.69 0.276 0.276 -0.14 53 218 1.22 539 0.69 0.277 0.275 -0.18 54 220 1.22 540 0.69 0.278 0.275 -0.22 55 222 1.22 539 0.69 0.279 0.274 -0.25 56 224 1.22 538 0.69 0.281 0.274 -0.28 57 226 1.22 538 0.68 0.282 0.274 -0.32 58 228 1.22 538 0.66 0.283 0.273 -0.36 59 230 1.22 537 0.65 0.285 0.273 -0.41 60 232 1.23 536 0.63 0.286 0.273 -0.46 61 235 1.23 534 0.60 0.287 0.273 -0.52 62 237 1.23 535 0.57 0.288 0.273 -0.56 63 239 1.23 533 0.54 0.290 0.273 -0.61 64 241 1.23 532 0.50 0.291 0.273 -0.63 65 244 1.23 530 0.46 0.292 0.273 -0.66 66 246 1.23 531 0.41 0.293 0.273 -0.69 67 248 1.23 531 0.35 0.294 0.273 -0.72 68 250 1.23 530 0.29 0.294 0.274 -0.74 69 253 1.23 532 0.23 0.295 0.274 -0.75 70 255 1.23 470 0.18 0.296 0.274 -0.75 71 253 1.23 474 0.21 0.296 0.275 -0.75 72 255 1.23 473 0.24 0.296 0.275 -0.75 73 257 1.23 476 0.27 0.296 0.276 -0.74 74 260 1.23 476 0.30 0.296 0.276 -0.74 75 262 1.23 478 0.33 0.296 0.277 -0.72 76 264 1.23 478 0.35 0.295 0.277 -0.71 77 266 1.23 480 0.38 0.295 0.278 -0.70 78 268 1.22 479 0.39 0.294 0.278 -0.68 79 271 1.22 478 0.41 0.294 0.279 -0.66 80 273 1.22 480 0.43 0.293 0.279 -0.65 81 275 1.21 478 0.44 0.292 0.280 -0.64 82 277 1.21 477 0.46 0.292 0.280 -0.62 83 279 1.20 479 0.47 0.291 0.281 -0.60 84 280 1.19 477 0.48 0.290 0.282 -0.58 85 279 1.18 474 0.49 0.290 0.282 -0.55 86 280 1.17 474 0.50 0.289 0.283 -0.53 87 281 1.15 476 0.50 0.289 0.284 -0.51 88 281 1.12 469 0.51 0.288 0.284 -0.48 89 280 1.10 471 0.51 0.288 0.285 -0.45 90 281 1.06 471 0.51 0.288 0.285 -0.42 91 281 1.02 472 0.50 0.288 0.286 -0.40 92 280 0.97 473 0.49 0.288 0.287 -0.37 93 281 0.92 474 0.46 0.288 0.287 -0.34 94 282 0.87 474 0.42 0.288 0.288 -0.30 95 283 0.81 475 0.37 0.289 0.288 -0.27 96 282 0.75 476 0.31 0.289 0.289 -0.25 97 283 0.68 478 0.25 0.289 0.289 -0.23 98 289 0.62 480 0.19 0.289 0.289 -0.21 99 294 0.56 482 0.12 0.290 0.290 -0.19 100 302 0.51 485 0.07 0.290 0.290 -0.17 101 307 0.47 489 0.02 0.290 0.290 -0.15 102 316 0.46 532 0.00 0.290 0.290 -0.12
 Soil Resistance, kips Permanent Set of Pile Toe, inches Blows per Foot of Penetration Maximum Compressive Stress, ksi Element of Maximum Compressive Stress Maximum Tensile Stress, ksi Element of Maximum Tensile Stress Number of Iterations 23.1 (45.3) 1.541 7.8 1.53 4 1.21 24 2000 46.2 (90.7) 0.744 16.1 1.54 4 1.05 54 1149 69.3 (136.0) 0.494 24.3 1.54 4 0.97 54 872 92.3 (181.3) 0.349 34.4 1.55 4 0.86 54 740 115.4 (226.7) 0.281 42.7 1.56 4 0.69 54 592 138.5 (272.0) 0.228 52.6 1.58 3 0.52 56 588 161.6 (317.3) 0.184 65.2 1.61 3 0.30 92 480 184.7 (362.7) 0.144 83.3 1.64 3 0.20 94 477 207.8 (408.0) 0.108 111.1 1.67 4 0.11 95 474 230.9 (453.3) 0.077 155.4 1.70 4 0.07 92 471

The bearing graph data is complete.  The only difference with the cohesionless soils is the way the soil resistance is reported; the values in parentheses are ultimate resistance without set-up and those outside are the SRD with set-up.  The blow count indicates that a smaller hammer may be in order.

Posted in TAMWAVE

## TAMWAVE 6: Results of Wave Equation Analysis

With the data entered for the wave equation analysis, we can now see the results.  There’s a lot of tabular data here but you need to read the notes between it to understand what the program is putting out.  If you are not familiar at all with the wave equation for piles, you need to review this as well.

 Time Step, msec 0.04024 Pile Weight, lbs. 15,000 Pile Stiffness, lb/ft 600,000 Pile Impedance, lb-sec/ft 57,937.5 L/c, msec 8.04688 Pile Toe Element Number 102 Length of Pile Segments, ft. 1 Hammer Manufacturer and Size VULCAN O16 Hammer Rated Striking Energy, ft-lbs 48750 Hammer Efficiency, percent 67 Length of Hammer Cushion Stack, in. 16.5 Soil Resistance to Driving (SRD) for detailed results only, kips 572.7 Percent at Toe 35.39 Toe Quake, in. 0.220 Toe Damping, sec/ft 0.07

For those familiar with the wave equation, there are few surprises.  Some explanation of the parameters can be found with the documentation for the TTI program.

 Element Element Weight, lbs. Element Stiffness, kips/in Element Cross-Sectional Area, in2 Element Soil Resistance, kips Element Coefficient of Restitution Element Initial Velocity, ft/sec Element Soil Shaft Stiffness, kips/in Element Quake, in. Element Damping, sec/ft Ram 16,250.0 4,957.5 233.71 0.0 0.80 11.37 0.0 1,000.000 0.00 Driving Accessory 3,800.0 711.5 144.00 0.0 0.51 0.00 0.0 1,000.000 0.00 Pile Head 150.0 60,000.0 144.00 0.0 1.00 0.00 16.1 0.002 45.39 4 150.0 60,000.0 144.00 0.1 1.00 0.00 28.0 0.004 19.91 5 150.0 60,000.0 144.00 0.2 1.00 0.00 36.1 0.005 13.57 6 150.0 60,000.0 144.00 0.3 1.00 0.00 42.7 0.006 10.54 7 150.0 60,000.0 144.00 0.3 1.00 0.00 48.4 0.007 8.73 8 150.0 60,000.0 144.00 0.4 1.00 0.00 53.5 0.007 7.51 9 150.0 60,000.0 144.00 0.5 1.00 0.00 58.2 0.008 6.62 10 150.0 60,000.0 144.00 0.5 1.00 0.00 62.5 0.009 5.95 11 150.0 60,000.0 144.00 0.6 1.00 0.00 66.6 0.009 5.41 12 150.0 60,000.0 144.00 0.7 1.00 0.00 70.4 0.010 4.98 13 150.0 60,000.0 144.00 0.8 1.00 0.00 74.0 0.010 4.62 14 150.0 60,000.0 144.00 0.8 1.00 0.00 77.4 0.011 4.31 15 150.0 60,000.0 144.00 0.9 1.00 0.00 80.7 0.011 4.05 16 150.0 60,000.0 144.00 1.0 1.00 0.00 83.9 0.012 3.82 17 150.0 60,000.0 144.00 1.0 1.00 0.00 87.0 0.012 3.62 18 150.0 60,000.0 144.00 1.1 1.00 0.00 89.9 0.012 3.44 19 150.0 60,000.0 144.00 1.2 1.00 0.00 92.8 0.013 3.28 20 150.0 60,000.0 144.00 1.3 1.00 0.00 95.6 0.013 3.14 21 150.0 60,000.0 144.00 1.3 1.00 0.00 98.3 0.014 3.01 22 150.0 60,000.0 144.00 1.4 1.00 0.00 100.9 0.014 2.89 23 150.0 60,000.0 144.00 1.5 1.00 0.00 103.5 0.014 2.79 24 150.0 60,000.0 144.00 1.5 1.00 0.00 106.0 0.015 2.69 25 150.0 60,000.0 144.00 1.6 1.00 0.00 108.4 0.015 2.60 26 150.0 60,000.0 144.00 1.7 1.00 0.00 110.8 0.015 2.51 27 150.0 60,000.0 144.00 1.8 1.00 0.00 113.1 0.016 2.43 28 150.0 60,000.0 144.00 1.8 1.00 0.00 115.4 0.016 2.36 29 150.0 60,000.0 144.00 1.9 1.00 0.00 117.7 0.016 2.29 30 150.0 60,000.0 144.00 2.0 1.00 0.00 119.9 0.017 2.23 31 150.0 60,000.0 144.00 2.1 1.00 0.00 122.1 0.017 2.17 32 150.0 60,000.0 144.00 2.1 1.00 0.00 124.2 0.017 2.11 33 150.0 60,000.0 144.00 2.2 1.00 0.00 126.3 0.017 2.06 34 150.0 60,000.0 144.00 2.3 1.00 0.00 128.4 0.018 2.01 35 150.0 60,000.0 144.00 2.4 1.00 0.00 130.4 0.018 1.96 36 150.0 60,000.0 144.00 2.4 1.00 0.00 132.5 0.018 1.91 37 150.0 60,000.0 144.00 2.5 1.00 0.00 134.4 0.019 1.87 38 150.0 60,000.0 144.00 2.6 1.00 0.00 136.4 0.019 1.83 39 150.0 60,000.0 144.00 2.7 1.00 0.00 138.3 0.019 1.79 40 150.0 60,000.0 144.00 2.7 1.00 0.00 140.2 0.019 1.75 41 150.0 60,000.0 144.00 2.8 1.00 0.00 142.1 0.020 1.72 42 150.0 60,000.0 144.00 2.9 1.00 0.00 144.0 0.020 1.68 43 150.0 60,000.0 144.00 3.0 1.00 0.00 145.8 0.020 1.65 44 150.0 60,000.0 144.00 3.0 1.00 0.00 147.7 0.021 1.62 45 150.0 60,000.0 144.00 3.1 1.00 0.00 149.5 0.021 1.59 46 150.0 60,000.0 144.00 3.2 1.00 0.00 151.3 0.021 1.56 47 150.0 60,000.0 144.00 3.3 1.00 0.00 153.0 0.021 1.53 48 150.0 60,000.0 144.00 3.3 1.00 0.00 154.8 0.022 1.50 49 150.0 60,000.0 144.00 3.4 1.00 0.00 156.5 0.022 1.48 50 150.0 60,000.0 144.00 3.5 1.00 0.00 158.3 0.022 1.45 51 150.0 60,000.0 144.00 3.6 1.00 0.00 160.0 0.022 1.43 52 150.0 60,000.0 144.00 3.7 1.00 0.00 161.7 0.023 1.40 53 150.0 60,000.0 144.00 3.7 1.00 0.00 163.0 0.023 1.38 54 150.0 60,000.0 144.00 3.8 1.00 0.00 164.1 0.023 1.37 55 150.0 60,000.0 144.00 3.8 1.00 0.00 165.2 0.023 1.35 56 150.0 60,000.0 144.00 3.9 1.00 0.00 166.2 0.023 1.34 57 150.0 60,000.0 144.00 4.0 1.00 0.00 167.3 0.024 1.32 58 150.0 60,000.0 144.00 4.0 1.00 0.00 168.4 0.024 1.31 59 150.0 60,000.0 144.00 4.1 1.00 0.00 169.4 0.024 1.29 60 150.0 60,000.0 144.00 4.1 1.00 0.00 170.5 0.024 1.28 61 150.0 60,000.0 144.00 4.2 1.00 0.00 171.6 0.024 1.27 62 150.0 60,000.0 144.00 4.2 1.00 0.00 172.6 0.025 1.25 63 150.0 60,000.0 144.00 4.3 1.00 0.00 173.7 0.025 1.24 64 150.0 60,000.0 144.00 4.4 1.00 0.00 174.8 0.025 1.22 65 150.0 60,000.0 144.00 4.4 1.00 0.00 175.8 0.025 1.21 66 150.0 60,000.0 144.00 4.5 1.00 0.00 176.9 0.025 1.20 67 150.0 60,000.0 144.00 4.6 1.00 0.00 178.0 0.026 1.18 68 150.0 60,000.0 144.00 4.6 1.00 0.00 179.0 0.026 1.17 69 150.0 60,000.0 144.00 4.7 1.00 0.00 180.1 0.026 1.16 70 150.0 60,000.0 144.00 4.8 1.00 0.00 181.2 0.026 1.14 71 150.0 60,000.0 144.00 4.8 1.00 0.00 182.3 0.026 1.13 72 150.0 60,000.0 144.00 4.9 1.00 0.00 183.4 0.027 1.12 73 150.0 60,000.0 144.00 5.0 1.00 0.00 184.5 0.027 1.10 74 150.0 60,000.0 144.00 5.0 1.00 0.00 185.6 0.027 1.09 75 150.0 60,000.0 144.00 5.1 1.00 0.00 186.7 0.027 1.08 76 150.0 60,000.0 144.00 5.2 1.00 0.00 187.8 0.028 1.06 77 150.0 60,000.0 144.00 5.3 1.00 0.00 189.0 0.028 1.05 78 150.0 60,000.0 144.00 5.4 1.00 0.00 190.1 0.028 1.04 79 150.0 60,000.0 144.00 5.5 1.00 0.00 191.2 0.029 1.03 80 150.0 60,000.0 144.00 5.5 1.00 0.00 192.4 0.029 1.01 81 150.0 60,000.0 144.00 5.6 1.00 0.00 193.6 0.029 1.00 82 150.0 60,000.0 144.00 5.7 1.00 0.00 194.8 0.029 0.99 83 150.0 60,000.0 144.00 5.8 1.00 0.00 196.0 0.030 0.97 84 150.0 60,000.0 144.00 5.9 1.00 0.00 197.2 0.030 0.96 85 150.0 60,000.0 144.00 6.0 1.00 0.00 198.4 0.030 0.95 86 150.0 60,000.0 144.00 6.1 1.00 0.00 199.6 0.031 0.93 87 150.0 60,000.0 144.00 6.2 1.00 0.00 200.9 0.031 0.92 88 150.0 60,000.0 144.00 6.3 1.00 0.00 202.2 0.031 0.90 89 150.0 60,000.0 144.00 6.5 1.00 0.00 203.5 0.032 0.89 90 150.0 60,000.0 144.00 6.6 1.00 0.00 204.8 0.032 0.88 91 150.0 60,000.0 144.00 6.7 1.00 0.00 206.1 0.033 0.86 92 150.0 60,000.0 144.00 6.8 1.00 0.00 207.5 0.033 0.85 93 150.0 60,000.0 144.00 7.0 1.00 0.00 208.9 0.033 0.84 94 150.0 60,000.0 144.00 7.1 1.00 0.00 210.3 0.034 0.82 95 150.0 60,000.0 144.00 7.3 1.00 0.00 211.7 0.034 0.81 96 150.0 60,000.0 144.00 7.4 1.00 0.00 213.2 0.035 0.79 97 150.0 60,000.0 144.00 7.6 1.00 0.00 214.7 0.035 0.78 98 150.0 60,000.0 144.00 7.7 1.00 0.00 216.3 0.036 0.77 99 150.0 60,000.0 144.00 7.9 1.00 0.00 217.8 0.036 0.75 100 150.0 60,000.0 144.00 8.1 1.00 0.00 219.4 0.037 0.74 101 150.0 60,000.0 144.00 8.3 1.00 0.00 221.1 0.038 0.72 102 150.0 922.6 144.00 8.5 1.00 0.00 222.8 0.038 0.71 Pile Toe 0.0 922.6 144.00 202.7 0.00 0.00 0.0 0.220 0.07

A detailed output of the parameters for each segment/element.  TAMWAVE no longer uses the simplifications used in the past for resistance distribution along the shaft, i.e., uniform, triangular, etc., but constructs one based on the soil properties.  Much of this data is repeated from the static analysis.

 Element Time Step for Maximum Compressive Stress Maximum Compressive Stress, ksi Time Step for Maximum Tensile Stress Maximum Tensile Stress, ksi Maximum Deflection, in. Final Deflection, in. Final Velocity, ft/sec 1 50 3.70 164 0.00 1.299 1.299 -0.11 2 176 2.64 1 0.00 1.300 1.261 -2.56 3 178 2.64 2 0.00 0.650 0.646 -1.01 4 180 2.65 3 0.00 0.646 0.643 -0.93 5 182 2.66 4 0.00 0.641 0.639 -0.85 6 184 2.66 5 0.00 0.637 0.635 -0.78 7 186 2.67 6 0.00 0.632 0.631 -0.70 8 187 2.67 7 0.00 0.628 0.627 -0.62 9 190 2.68 8 0.00 0.623 0.622 -0.53 10 192 2.69 9 0.00 0.619 0.618 -0.45 11 194 2.69 10 0.00 0.614 0.613 -0.37 12 196 2.69 11 0.00 0.609 0.609 -0.30 13 198 2.70 12 0.00 0.604 0.604 -0.22 14 359 2.71 13 0.00 0.599 0.599 -0.14 15 361 2.72 14 0.00 0.594 0.594 -0.06 16 363 2.73 15 0.00 0.588 0.588 0.01 17 365 2.74 16 0.00 0.583 0.583 0.07 18 367 2.75 17 0.00 0.578 0.578 0.13 19 369 2.75 18 0.00 0.572 0.572 0.19 20 372 2.76 19 0.00 0.567 0.567 0.24 21 374 2.77 20 0.00 0.561 0.561 0.27 22 376 2.78 21 0.00 0.556 0.556 0.29 23 378 2.79 22 0.00 0.550 0.550 0.30 24 379 2.80 23 0.00 0.544 0.544 0.29 25 381 2.80 24 0.00 0.539 0.539 0.28 26 384 2.81 25 0.00 0.533 0.533 0.26 27 386 2.82 26 0.00 0.527 0.527 0.23 28 388 2.82 27 0.00 0.522 0.522 0.19 29 390 2.83 28 0.00 0.516 0.516 0.15 30 392 2.83 29 0.00 0.511 0.511 0.11 31 393 2.84 30 0.00 0.505 0.505 0.07 32 395 2.84 31 0.00 0.500 0.500 0.03 33 397 2.84 32 0.00 0.496 0.494 -0.01 34 399 2.84 33 0.00 0.491 0.489 -0.05 35 399 2.84 34 0.00 0.487 0.483 -0.08 36 400 2.84 35 0.00 0.483 0.478 -0.11 37 401 2.83 36 0.00 0.479 0.473 -0.14 38 400 2.82 37 0.00 0.474 0.468 -0.17 39 401 2.81 38 0.00 0.470 0.463 -0.19 40 400 2.80 39 0.00 0.466 0.457 -0.21 41 401 2.78 40 0.00 0.462 0.452 -0.24 42 399 2.76 41 0.00 0.458 0.447 -0.26 43 400 2.74 42 0.00 0.454 0.442 -0.27 44 399 2.71 43 0.00 0.449 0.437 -0.29 45 398 2.68 44 0.00 0.445 0.432 -0.30 46 397 2.65 45 0.00 0.441 0.427 -0.31 47 267 2.64 46 0.00 0.437 0.422 -0.32 48 270 2.64 47 0.00 0.433 0.417 -0.33 49 272 2.63 48 0.00 0.429 0.412 -0.33 50 275 2.62 49 0.00 0.425 0.407 -0.34 51 277 2.61 50 0.00 0.420 0.402 -0.34 52 279 2.60 51 0.00 0.416 0.397 -0.35 53 282 2.59 52 0.00 0.412 0.393 -0.35 54 284 2.58 53 0.00 0.407 0.388 -0.36 55 283 2.57 54 0.00 0.403 0.383 -0.36 56 286 2.56 55 0.00 0.398 0.378 -0.36 57 288 2.55 56 0.00 0.393 0.373 -0.36 58 290 2.54 57 0.00 0.389 0.368 -0.36 59 293 2.53 58 0.00 0.384 0.363 -0.36 60 295 2.52 59 0.00 0.379 0.358 -0.35 61 298 2.51 60 0.00 0.374 0.353 -0.35 62 300 2.50 61 0.00 0.368 0.349 -0.35 63 303 2.49 62 0.00 0.363 0.344 -0.35 64 301 2.47 63 0.00 0.358 0.339 -0.34 65 304 2.46 64 0.00 0.352 0.334 -0.34 66 306 2.45 65 0.00 0.347 0.329 -0.33 67 309 2.44 66 0.00 0.341 0.324 -0.32 68 311 2.43 67 0.00 0.336 0.319 -0.32 69 478 2.42 68 0.00 0.330 0.315 -0.31 70 480 2.43 69 0.00 0.324 0.310 -0.31 71 479 2.44 70 0.00 0.319 0.305 -0.30 72 481 2.44 71 0.00 0.313 0.300 -0.29 73 482 2.44 72 0.00 0.307 0.296 -0.29 74 481 2.43 73 0.00 0.302 0.291 -0.28 75 482 2.42 74 0.00 0.296 0.286 -0.28 76 480 2.40 75 0.00 0.290 0.282 -0.27 77 482 2.38 76 0.00 0.285 0.277 -0.26 78 479 2.35 77 0.00 0.280 0.273 -0.26 79 482 2.32 78 0.00 0.274 0.269 -0.25 80 483 2.28 79 0.00 0.269 0.264 -0.25 81 481 2.25 80 0.00 0.264 0.260 -0.24 82 483 2.21 81 0.00 0.259 0.256 -0.24 83 485 2.17 82 0.00 0.255 0.252 -0.23 84 483 2.13 83 0.00 0.250 0.248 -0.22 85 485 2.09 84 0.00 0.246 0.244 -0.21 86 487 2.05 85 0.00 0.241 0.240 -0.20 87 490 2.00 86 0.00 0.237 0.236 -0.19 88 487 1.95 87 0.00 0.233 0.232 -0.18 89 489 1.91 88 0.00 0.229 0.229 -0.18 90 492 1.86 89 0.00 0.226 0.225 -0.17 91 489 1.80 90 0.00 0.222 0.221 -0.16 92 492 1.75 91 0.00 0.218 0.218 -0.15 93 495 1.69 92 0.00 0.215 0.215 -0.15 94 497 1.63 93 0.00 0.212 0.211 -0.14 95 494 1.57 94 0.00 0.208 0.208 -0.15 96 497 1.51 95 0.00 0.205 0.205 -0.14 97 506 1.45 96 0.00 0.202 0.202 -0.15 98 508 1.39 97 0.00 0.199 0.199 -0.13 99 517 1.33 98 0.00 0.196 0.196 -0.16 100 521 1.28 99 0.00 0.193 0.193 -0.14 101 529 1.23 100 0.00 0.190 0.190 -0.15 102 532 1.24 101 0.00 0.188 0.187 -0.12

This table shows the end results of the run for the “target” SRD of the pile.  “SRD” is “soil resistance to driving,” and in TAMWAVE for cohesionless soils, SRD and the ultimate capacity are the same.  That’s not the case with cohesive soils, as we will see.  In any case TAMWAVE always does a “bearing graph” analysis, which proportionally varies the SRD and obtains different results for the blow count, maximum tensile and compressive stresses.  The bearing graph method isn’t perfect but it’s probably the best way we have to account for varying site conditions and to make judgments about the effect of those on our hammer selection.

The adoption of “Smith-type” damping was originally done for comparison purposes but for bearing graph analysis has one important advantages: it varies the soil radiation damping with the SRD, which is more realistic than just assuming fixed damping.

The table above only appears if the target SRD is actually achieved during bearing graph analysis.  If it doesn’t come up, the bearing graph analysis could not achieve net pile penetration at the target SRD, which means you need to revisit your hammer selection.

Here we see the second graphical output: the force-time history at the target SRD.  There are actually two histories: the actual pile head force (blue) and the pile head velocity multiplied by the impedance (red.)  For semi-infinite piles, the two should be the same; they will differ for actual finite piles, as is easily seen.  Although a “semi-infinite pile” may seem a very theoretical concept, the relationship of the two plots is very important in the field application of pile dynamics.

 Soil Resistance, kips Permanent Set of Pile Toe, inches Blows per Foot of Penetration Maximum Compressive Stress, ksi Element of Maximum Compressive Stress Maximum Tensile Stress, ksi Element of Maximum Tensile Stress Number of Iterations 114.5 1.707 7.0 2.61 30 0.67 43 1590 229.1 0.754 15.9 2.64 29 0.20 25 1124 343.6 0.355 33.8 2.67 28 0.00 102 719 458.1 0.111 108.2 2.71 32 0.00 102 567 572.7 0.000 0.0 2.84 34 0.00 102 549

The final results are shown here.  In this case, at the target SRD, no permanent set of the pile is recorded.  It will be necessary to vary the size of the hammer, being mindful of the stresses (whose allowable values are described here.)

At this point the analysis of this pile is complete.  The program gives you the choice of simply trying another hammer or starting over.  The latter is what we will do next with a sample case for cohesive soils.

Posted in TAMWAVE

## TAMWAVE 5: Wave Equation Analysis, Overview and Initial Entry

With the static analysis complete, we turn to the wave equation analysis.  TAMWAVE (as with the previous version) was based indirectly on the TTI wave equation program.  Although the numerical method was not changed, many other aspects of the program were, and so we need to consider these.

### Shaft and Toe Resistance

Most wave equation programs in commercial use still use the Smith model for shaft and toe resistance during impact.  Referencing specifically their use in inverse methods, Randolph (2003) makes the following comment:

Dynamic pile tests are arguably the most cost-effective of all pile-testing methods, although they rely on relatively sophisticated numerical modelling for back-analysis. Theoretical advances in modelling the dynamic pile-soil interaction have been available since the mid-1980s, but have been slow to be implemented by commercial codes, most of which still use the empirical parameters of the Smith (1960) model. In order to allow an appropriate level of confidence in the interpretation of dynamic pile tests, and estimation of the static response, it is high time that appropriate scientific models were used for pile-soil interaction, including explicit modelling of the soil plug for open-ended piles.

And that was in 2003…and the use of the Smith model in inverse methods was proceeded by its use in forward methods such as this one.  The model he is referring to from the mid-1980’s is, of course, the Randolph and Simons (1986) model, which was used in the ZWAVE program in the late 1980’s.  The details of this model were discussed in Warrington (1997).

The Randolph and Simons model is the one which is being used for the wave equation portion of this routine, as the static component was used for the ALP static axial pile analysis.  In converting the code from the Smith model to this one, there are some things that need to be understood.  We have discussed some of these earlier but others are as follows:

• Randolph and Simons (1985) used a visco-elastic-plastic model for both shaft and toe, the major difference being the location of the plastic slider for the shaft resistance (as is evident in the ZWAVE poster.)  Some contemporary “experimental” codes (such as Salgado, Loukidis, Abou-Jaoude and Zhang (2015)) add a series of springs and masses to replicate the soil mass that surrounds the piles.  While these doubtless enhance the performance of the models, we stuck with the simple visco-elastic-plastic model in TAMWAVE because these are better replicated in true 3D continuum models like STADYN.  1D code is good because of its simplicity, especially with an online routine like TAMWAVE.
• The 1′ segment/element lengths are carried over to the wave equation.  This is shorter than is customarily used even in commercial work but it saves interpolation of the properties along the shaft.
• The “Smith-type” damping constants are simply the damping of the element computed divided by its ultimate/plastic resistance.  Unlike the Smith model, however, the damping force does not vary with the instantaneous static resistance, but is simply the velocity multiplied by the damping constant and the ultimate resistance of that element, be it shaft or toe.  Thus different Smith type constants should be expected from the model being used.  Additionally, with the shaft resistance, the resistance of a shaft segment is limited to its ultimate static resistance.  This means that all additional damping forces must take place during elastic shearing of the soil surface.  Implicit in the Randolph and Simons model is that, once plasticity is achieved, the soil closest to the pile is effectively decoupled from the soil mass, and thus the pile movement can no longer radiate additional energy into the soil.  The result of this is that, as seen here, the Smith-type damping constants are much higher than one would normally assign.  Corte and Lepert (1985), in a direct comparison of the two models, note that the two give nearly the same result if the original Smith damping constants are multiplied by 7.5 for the new model.  Dividing the new result by this brings the damping constants much closer, especially in the lower reaches of the pile where most of the shaft resistance is found, although the ratio of 7.5 should be regarded as study-specific.  Bringing some rationality to the issue of damping constants would go a long way to improve the results of pile dynamics, forward and inverse, since variations of these have a significant impact on the results.
• We mentioned earlier that the toe quakes that resulted seemed high for this size of pile.  This may be due to the fact that “significant residual pressures are locked in at the pile base during installation (equilibriated by negative shear stresses along the pile shaft, as if the pile were loaded in tension.)  This will lead to a stiffer overall pile response in compression, and significantly higher end-bearing stresses mobilised at small displacements.”  (Randolph, 2003)  He goes on to state that “(f)or driven closed ended-piles the residual stress will be lower, but may still be as high as 75% of the base capacity…”  There are two ways to deal with this.  The first is to run the ALP program first and preload the base and shaft before using the resulting prestressed deflections to run the wave equation analysis.  This would be in effect a residual stress analysis (RSA,) which has been used in this field for many years.  The second is to use a “quick and dirty” method, i.e., to reduce the toe quake and thus simulate the higher toe stiffness and lower quake.  The latter was adopted in TAMWAVE, although one motivation from switching from P4XC3 to ALP was to make an RSA easier.  This is a possible point of future modification of the code.
• A change not related to the pile-soil interaction is the elimination of slack computation, as the pile is uniform and continuous (the hammer-cap and cap-pile interface is obviously inextensible.

### Initial Wave Equation Input

For our example the initial input of the wave equation is shown below.

Most of the data required has been carried over from the static analysis.  The hammer database was added in 2010; however, it was reordered in ascending rated striking energy order and a hammer was suggested using the “initial guess” criterion in the Soils and Foundations Handbook, which essentially suggests to set the initial hammer energy in ft-lbs at 8% of the ultimate capacity in pounds.  This is a “rule of thumb” designed to help students who, faced with a wave equation program for the first time, will have some idea of where to start, although there is no guarantee that the hammer will be either too large or small.  Since the energies are sorted, the user can move up or down the list to try another hammer.

The cushion material properties of the hammer, and the coefficient of restitution used to model cushion plasticity, are discussed (with sample properties) in the WEAP87 documentation.  No attempt was done to either convert coefficients of restitution to viscous damping or alter the rebound curve as was done in ZWAVE.  Pile cushion thickness is only input for concrete piles; the input is not shown for others.

### References

Corte, J.-F., and Lepert, P. (1986) “Lateral resistance during driving and dynamic pile testing.”  Proceedings of the Third International Conference on Numerical Methods in Offshore Piling, Nantes, France, 21-22 May.  Paris: Éditions Technip, pp. 19-34.

Posted in TAMWAVE

## TAMWAVE 4: Shaft Resistance Profile, ALP and CLM2

With the basic parameters established, we can turn to the static analysis of the pile, both axial and lateral.

### Shaft Resistance Profile

 Depth at Centre of Layer, feet Soil Shear Modulus, ksf Beta Quake,inches Maximum Load Transfer, ksf Spring Constant for Wall Shear, ksf/in Smith-Type Damping Constant, sec/ft Maximum Load Transfer During Driving (SRD), ksf 0.50 48.4 0.163 0.0022 0.009 4.03 45.394 0.009 1.50 83.9 0.163 0.0038 0.027 6.99 19.911 0.027 2.50 108.3 0.163 0.0050 0.045 9.02 13.572 0.045 3.50 128.1 0.163 0.0059 0.063 10.68 10.543 0.063 4.50 145.3 0.163 0.0067 0.081 12.11 8.730 0.081 5.50 160.6 0.164 0.0074 0.098 13.38 7.509 0.098 6.50 174.6 0.164 0.0080 0.116 14.55 6.623 0.116 7.50 187.6 0.164 0.0086 0.134 15.63 5.948 0.134 8.50 199.7 0.164 0.0091 0.152 16.64 5.414 0.152 9.50 211.1 0.164 0.0097 0.170 17.59 4.980 0.170 10.50 222.0 0.164 0.0102 0.188 18.50 4.618 0.188 11.50 232.3 0.164 0.0106 0.206 19.36 4.313 0.206 12.50 242.2 0.164 0.0111 0.224 20.18 4.050 0.224 13.50 251.7 0.164 0.0115 0.242 20.98 3.822 0.242 14.50 260.9 0.164 0.0120 0.260 21.74 3.621 0.260 15.50 269.8 0.164 0.0124 0.278 22.48 3.444 0.278 16.50 278.4 0.164 0.0128 0.296 23.20 3.285 0.296 17.50 286.7 0.164 0.0132 0.314 23.89 3.142 0.314 18.50 294.8 0.164 0.0135 0.332 24.57 3.013 0.332 19.50 302.7 0.164 0.0139 0.351 25.22 2.895 0.351 20.50 310.4 0.164 0.0143 0.369 25.86 2.787 0.369 21.50 317.9 0.164 0.0146 0.387 26.49 2.688 0.387 22.50 325.2 0.164 0.0149 0.405 27.10 2.597 0.405 23.50 332.4 0.165 0.0153 0.423 27.70 2.512 0.423 24.50 339.4 0.165 0.0156 0.441 28.29 2.434 0.441 25.50 346.3 0.165 0.0159 0.460 28.86 2.361 0.460 26.50 353.1 0.165 0.0162 0.478 29.42 2.292 0.478 27.50 359.7 0.165 0.0166 0.496 29.98 2.228 0.496 28.50 366.3 0.165 0.0169 0.515 30.52 2.168 0.515 29.50 372.7 0.165 0.0172 0.533 31.06 2.112 0.533 30.50 379.0 0.165 0.0175 0.552 31.58 2.058 0.552 31.50 385.2 0.165 0.0178 0.570 32.10 2.007 0.570 32.50 391.3 0.166 0.0181 0.589 32.61 1.960 0.589 33.50 397.4 0.166 0.0183 0.607 33.11 1.914 0.607 34.50 403.3 0.166 0.0186 0.626 33.61 1.871 0.626 35.50 409.2 0.166 0.0189 0.645 34.10 1.830 0.645 36.50 415.0 0.166 0.0192 0.664 34.58 1.790 0.664 37.50 420.7 0.166 0.0195 0.683 35.06 1.753 0.683 38.50 426.4 0.166 0.0197 0.702 35.53 1.717 0.702 39.50 432.0 0.167 0.0200 0.721 36.00 1.682 0.721 40.50 437.5 0.167 0.0203 0.740 36.46 1.649 0.740 41.50 443.0 0.167 0.0206 0.759 36.92 1.618 0.759 42.50 448.4 0.167 0.0208 0.778 37.37 1.587 0.778 43.50 453.8 0.168 0.0211 0.798 37.82 1.558 0.798 44.50 459.1 0.168 0.0214 0.817 38.26 1.530 0.817 45.50 464.4 0.168 0.0216 0.837 38.70 1.502 0.837 46.50 469.6 0.168 0.0219 0.856 39.13 1.476 0.856 47.50 474.8 0.169 0.0221 0.876 39.56 1.450 0.876 48.50 479.9 0.169 0.0224 0.896 39.99 1.426 0.896 49.50 485.0 0.169 0.0227 0.916 40.42 1.402 0.916 50.50 489.1 0.169 0.0229 0.933 40.76 1.382 0.933 51.50 492.3 0.170 0.0231 0.947 41.03 1.367 0.947 52.50 495.5 0.170 0.0233 0.960 41.30 1.352 0.960 53.50 498.7 0.171 0.0234 0.974 41.56 1.337 0.974 54.50 501.9 0.171 0.0236 0.988 41.83 1.323 0.988 55.50 505.1 0.171 0.0238 1.002 42.09 1.308 1.002 56.50 508.3 0.172 0.0240 1.016 42.36 1.294 1.016 57.50 511.5 0.172 0.0242 1.031 42.63 1.280 1.031 58.50 514.7 0.173 0.0244 1.045 42.89 1.266 1.045 59.50 517.9 0.173 0.0246 1.060 43.16 1.252 1.060 60.50 521.1 0.174 0.0248 1.075 43.42 1.238 1.075 61.50 524.3 0.174 0.0250 1.091 43.69 1.224 1.091 62.50 527.5 0.175 0.0252 1.106 43.96 1.211 1.106 63.50 530.7 0.176 0.0254 1.122 44.22 1.197 1.122 64.50 533.9 0.176 0.0256 1.139 44.49 1.184 1.139 65.50 537.1 0.177 0.0258 1.155 44.76 1.170 1.155 66.50 540.4 0.178 0.0260 1.172 45.03 1.157 1.172 67.50 543.6 0.178 0.0262 1.189 45.30 1.144 1.189 68.50 546.9 0.179 0.0265 1.207 45.57 1.130 1.207 69.50 550.2 0.180 0.0267 1.224 45.85 1.117 1.224 70.50 553.5 0.181 0.0269 1.243 46.12 1.104 1.243 71.50 556.8 0.182 0.0272 1.262 46.40 1.091 1.262 72.50 560.1 0.183 0.0274 1.281 46.68 1.078 1.281 73.50 563.5 0.184 0.0277 1.300 46.96 1.065 1.300 74.50 566.9 0.185 0.0280 1.321 47.24 1.051 1.321 75.50 570.3 0.186 0.0282 1.341 47.52 1.038 1.341 76.50 573.7 0.187 0.0285 1.363 47.81 1.025 1.363 77.50 577.2 0.188 0.0288 1.385 48.10 1.012 1.385 78.50 580.7 0.190 0.0291 1.407 48.39 0.999 1.407 79.50 584.3 0.191 0.0294 1.431 48.69 0.985 1.431 80.50 587.9 0.193 0.0297 1.455 48.99 0.972 1.455 81.50 591.5 0.194 0.0300 1.479 49.29 0.959 1.479 82.50 595.2 0.196 0.0303 1.505 49.60 0.945 1.505 83.50 598.9 0.197 0.0307 1.532 49.91 0.932 1.532 84.50 602.7 0.199 0.0310 1.559 50.22 0.919 1.559 85.50 606.5 0.201 0.0314 1.587 50.54 0.905 1.587 86.50 610.4 0.203 0.0318 1.617 50.87 0.891 1.617 87.50 614.4 0.205 0.0322 1.647 51.20 0.878 1.647 88.50 618.4 0.207 0.0326 1.678 51.53 0.864 1.678 89.50 622.5 0.210 0.0330 1.711 51.87 0.850 1.711 90.50 626.7 0.212 0.0334 1.745 52.22 0.837 1.745 91.50 630.9 0.215 0.0339 1.781 52.58 0.823 1.781 92.50 635.2 0.217 0.0343 1.817 52.94 0.809 1.817 93.50 639.7 0.220 0.0348 1.856 53.30 0.795 1.856 94.50 644.2 0.223 0.0353 1.896 53.68 0.781 1.896 95.50 648.8 0.226 0.0358 1.937 54.07 0.767 1.937 96.50 653.5 0.229 0.0364 1.981 54.46 0.753 1.981 97.50 658.3 0.233 0.0369 2.026 54.86 0.739 2.026 98.50 663.3 0.236 0.0375 2.073 55.27 0.725 2.073 99.50 668.3 0.240 0.0381 2.122 55.69 0.710 2.122

The results should be self explanatory; however, some observations are in order.

• A 1′ increment was used for the analysis.  This will be carried over to both the static and dynamic axial analyses.  For this routine it’s probably overkill, but for a real system with multiple soil layers this eliminates a great deal of interpolation and adjustment.
• Both the shear modulus and the maximum shear stress on the shaft surface vary with effective stress.  This tends to homogenise the quake to some degree.  The increase of shear modulus with depth also increases the shaft element stiffness as well.
• Beta values are about 50% higher at the pile toe than at the pile head.  This is mostly due to the depth effect of the $K$ value computed by the method used.
• The resulting quakes are lower than the “traditional values.”  This varies from run to run.
• The Smith-type damping constants are considerably higher than is usually expected.  This will be discussed with the wave equation analysis itself.
• There is no difference between ultimate capacity and SRD with this run because of the cohesionless soils.  This will change with cohesive ones.

### ALP Program

The original routine used the PX4C3 routine to construct the axial load-deflection curve.  For this routine it was replaced by the ALP program, which is described in Verruijt.  The Turbo Pascal code in the text was converted to php and modified for the online application.  The ALP99 program, which allows for layered soils, has been used in a classroom setting, is a good program but has three serious weaknesses:

1. There is no guidance on what values of quake to use for either shaft or toe, and for beginners this is very confusing.
2. The guidance on entering shaft resistance properties is primitive, to say the least.
3. The program simply crashes if a resistance in excess of the ultimate resistance is entered, even though the latter is easily computed.

This online version of ALP addresses all of these by limiting the highest resistance during the “load test” and furnishing quake and resistance values all along the shaft and toe.

The basic parameters of ALP returned by TAMWAVE are shown below.

 Length of the pile, in. 1,200.0 Axial stiffness EA. lbs. 720,000,000 Circumference, in. 48.000 Point resistance, lbs. 202,673 Quake of the point, in. 0.879 Number of pile elements 100 Number of loading steps 20 Maximum pile load, lbs. 572,676.9 Load Increment, lbs. 57,267.7 Failure Load, lbs. 572,676.9

Some of these are repetitious from earlier data output.  The results of the actual “load test” are shown below.

 Load Step Force at Pile Head, kips Pile Head Deflection, in. Number of Plastic Shaft Springs 0 0.0 0.000 0 1 57.3 0.033 22 2 114.5 0.082 39 3 171.8 0.144 52 4 229.1 0.216 64 5 286.3 0.300 74 6 343.6 0.395 85 7 400.9 0.601 100 8 343.6 0.571 10 9 286.3 0.534 22 10 229.1 0.489 31 11 171.8 0.437 39 12 114.5 0.378 45 13 57.3 0.314 52 14 0.0 0.244 58

The program ceases to load the pile and begins to unload when all of the shaft friction is mobilised or the ultimate load is achieved, whichever comes first.  This is intended to prevent the routine from going unstable with the applied load too near the maximum capacity of the pile, thus violating static equilibrium.

ALP solves the system by constructing a tridiagonal matrix and then solving the non-linear problem.  In some cases it will achieve a result before coming to actual convergence according to the convergence criterion.  In such cases ALP will report that no convergence was achieved.

One new feature with the current version of TAMWAVE is the inclusion of two basic graphs of the results.  This is one of them.  Contrary to American practice, the deflection (y) axis is upward even though the actual deflection is downward.  For serious plotting purposes it is probably best for the student to copy and paste the results into a spreadsheet or other plotting program and then make the results look more presentable.

### CLM 2 Routine for Lateral Loads

• The analyser is for single piles only, no group or bent analysis.
• The following cases can be considered:
• Free (Pinned) Head, Lateral Force Only
• Free Head, Combined Force and Moment
• Fixed Head, Lateral Force Only
• Any lateral load or pile head moment is entered when the soil properties are confirmed. If zero load or moment is entered, the results are expanded or truncated accordingly.

For this example the results of the CLM 2 analysis are here.

 Nominal Soil Unit Weight, lb/in3 0.06944 Pile Moment of Inertia, in4 1,728.00 Pile Section Modulus, in3 288.00 Pile Solid Circle Moment of Inertia, in4 1,017.88 Moment of Inertia Ratio Ri 1.698 Pile Moment of Inertia Ratio Product, ksi 8,488.3 Pile-Soil Interaction Variable 97,803 Pile L/D Ratio 100.0 Characteristic Load, lbs. 2,745,232.8 Characteristic Moment, in-lbs. 196,821,533.6 Pile Head Fixity Free Pile Head Lateral Load, lbs. 5,000.0 Pt/Pc 0.00182 Yt/D 0.00800 Pile Head Deflection due to Load, inches 0.096 Maximum Moment Due to Pile Head Lateral Load, in-lbs 136,112.3 Maximum Bending Stress Due to Pile Head Lateral Load, in-lbs 472.6

The results are explained in the CLM 2 documentation.  The bending stresses are not really meaningful in concrete piles, as flexure is generally transmitted through the reinforcement.  Parametric studies must be run manually, i.e., one load at a time.

CLM 2 is a quick way to obtain estimates of lateral loads, shears and moments for groundline piles and simple soil profiles, and both of these are present in TAMWAVE.  Since all of the soil input is already done, this source of error is eliminated.

Once these results are complete, the user can proceed to run a wave equation analysis.

Posted in TAMWAVE

## TAMWAVE 3: Basic Results of Pile Capacity Analysis

With the soil properties and lateral loads finalised, we can proceed to look at the program’s static results.  These are shown below.  We will concentrate on cohesionless soils in this post; a sample case with cohesive results will come later.

 Pile Data Pile Designation 12 In. Square Pile Material Concrete Penetration of Pile into the Soil, ft. 100 Basic “diameter” or size of the pile, ft. 1 Cross-sectional Area of the Pile, ft2 1.000 Pile Toe Area, ft2 1.000 Perimeter of the Pile, ft. 4.000 Soil Data Type of Soil SW Specific Gravity of Solids 2.65 Void Ratio 0.51 Dry Unit Weight, pcf 109.5 Saturated Unit Weight, pcf 130.5 Soil Internal Friction Angle phi, degrees 32 Cohesion c, psf 0 SPT N60, blows/foot 20 CPT qc, psf 211,600 Distance of Water Table from Soil Surface, ft. 50 Penetration of Pile into Water Table, ft. 50 Active Earth Pressure Coefficient (Kmin) 0.453 Frictional Angle Between Pile and Soil delta, degrees 27.9 Minimum Value for Beta 0.240 Pile Toe Results Effective Stress at Pile Toe, ksf 8.880 Nq 22.8 Relative Density at Pile Toe, Percent 40 SPT (N1)60 at pile toe, blows/foot 10 Unit Toe Resistance qp, ksf 202.7 Shear Modulus at Pile Toe, ksf 675.7 Toe Spring Constant Depth Factor 1.410 Toe Spring Constant, kips/ft 2,767.9 Pile Toe Quake, in. 0.879 Poisson’s Ratio at Pile Toe 0.310 Toe Damping, kips-sec/ft 13.2 Toe Smith-Type Damping Constant, sec/ft 0.065 Total Static Toe Resistance Qp, kips 202.67 Pile Toe Plugged? No Final Results Total Shaft Friction Qs, kips 370.00 Ultimate Axial Capacity of Pile, kips 572.68 Pile Setup Factor 1.0 Total Pile Soil Resistance to Driving (SRD), kips 572.68

### Pile Data

The pile data is pretty straightforward.  Reproducing it here is an opportunity for you to confirm you’ve selected the correct pile.

### Soil Data

Soil data affords the same opportunity for verification; however, it also shows the way the soil data is interpreted to generate the necessary parameters for shaft and toe resistance to load, both static and dynamic.

The first thing that is shown is assumed specific gravity and void ratio.  TAMWAVE assumes cohesionless soils have a particle specific gravity of 2.65 and for cohesive soils 2.7.  The void ratio is then computed using basic soil mechanics formulae.  To do this it is necessary to know the unit weight.  The typical properties tables show this in two ways.  For cohesionless soils, the “moist” unit weight is shown, and for cohesive soils the saturated unit weight is shown.  In both cases this is reduced to dry and saturated unit weights by assuming that S=50% for the cohesionless soils and S=100% for the cohesive ones.  Thus, for cohesionless soils neither value will be the same as given in the typical properties.

The internal friction angle, cohesion and $N_{60}$ values are taken from the typical properties as modified (or not) by the user.  The equivalent $q_c$ is also reported here, based on the Robertson and Campanella research as reported by FelleniusAs noted earlier, neither the $N_{60}$ values nor the $q_c$ values are actually used in the analysis.

Finally we get to the data necessary to compute the shaft friction.  The methods used in TAMWAVE for ultimate shaft resistance are as follows:

For cohesionless soils, it is necessary to compute the minimum/active earth pressure coefficient, which of course is strictly a function of $\phi$.  Discussion of $K_{act}$ brings us to the issue of computing $\beta$In this post $\beta$ was initially computed using the following formula

$\beta = K tan \phi$

However, as pointed out in the same place, both retaining wall practice and empirical pile capacity formulae show that the friction angle between the wall/pile shaft and the soil is not equal to the internal friction angle of the soil, and so this formula should really be written as

$\beta = K tan \delta$

This actually has a theoretical basis, and in fact is one of the knottiest problems in theoretical soil mechanics.  We can consider this by considering the failure along the pile surface as a “direct shear” type of failure, where failure is induced along a predetermined surface.  For the case where the principal stresses are normal and tangential to the surface (which is generally the case with driven piles) the failure surface predicted by Mohr’s circle and Mohr-Coulomb theory is not the same as the “predetermined” surface.  The most acrimonious manifestation of this problem was with the shear failure of cellular cofferdams, which led to the dispute between Karl Terzaghi and Dmitri Krynine.

Although various studies have been made to determine friction on an empirical basis, probably the simplest solution, suggested by Šuklje (1969), is to compute the apparent friction angle by the formula

$\delta = tan^{-1} (sin \phi)$

Using this result and the active earth pressure coefficient, the minimum value for $\beta$ is readily computed.

### Pile Toe Results

Now we get to the application of these parameters.  The decision to not use equivalent CPT values has two immediate results.  The first is that the unit toe resistance is most easily computed (for cohesionless soils) by the equation

$q_t = N_q \sigma'_{vo}$

Use of bearing capacity factors for toe resistance is both well embedded in literature and practice and well criticised in the same place.  Additionally it is necessitated by the fact that the shaft friction is dependent upon $N_q$, as discussed here.

So what value of $N_q$ should we adopt?  As is all too common in geotechnical engineering, there has been a proliferation of values for this parameter.  We experimented with several, including that of Vesic (1977).  In addition to the usual theortical vs. empirical (and all the variations in between) divide, another factor is whether provision for soil elasticity is taken into consideration.  Although methods such as Vesic (1977) do this, their main weakness is their tendency to be stiff, thus returning unrealistically high values of $N_q$.  Taking into account both theoretical methods and empirical ones such as Dennis and Olson, the first method tried for TAMWAVE was from Verruijt), namely:

$N_{\sigma} = K_p e^{\pi tan \phi}$

Note that we’re not at $N_q$ quite yet.  For reasons explained by Vesic (1977), the pile toe unit resistance should be a function of $\frac {I_1}{3}$.  (An explanation of this quantity can be found here.)  Thus,

$N_q = K_p e^{\pi tan \phi} \frac {I_1}{3 \sigma'_{vo}}$

If we use Jaky’s Equation for normally consolidated soils for the pile toe condition (we will definitely change this for the shaft,)

$\frac {I_1}{3 \sigma'_{vo}} = 1 - \frac {2}{3} sin \phi$

and so

$q_t = K_p e^{\pi tan \phi} \left( 1 - \frac {2}{3} sin \phi \right) \sigma'_{vo}$

This method yields conservative values of $N_q$.  It only takes into consideration the plasticity of the soil, and is additionally subject to the criticism of the entire concept of “bearing capacity” at the pile toe.  Given this, a different (and more empirical) approach based on Randolph, Dolwin and Beck (1994) was chosen, which estimates the bearing capacity coefficient as follows:

$N_q=\frac{0.065S+25}{\left( \frac{\sigma'_{vo}}{p_{atm}} \right)^{0.25}}$

$S$ is the coefficient from the Hardin and Black (1968) method of estimating the shear modulus of the soil (see below.)  Although this coefficient varies with silt content, for TAMWAVE we will assume $S = 315$, thus this reduces to

$N_q=\frac{45.475}{\left( \frac{\sigma'_{vo}}{p_{atm}} \right)^{0.25}}$

If static capacity were our sole interest, we would be done with toe.  But what about its response to movement?  For both toe and shaft resistance, in both static and dynamic cases, we intend to use an elastic-purely plastic model.  Assuming no preloading of the system, there are only two parameters we need to know: the ultimate/purely plastic resistance of the soil, and the deflection at which we reach that resistance.  The spring constant can be computed by dividing the ultimate resistance by that deflection, or conversely we can determine that deflection by dividing the resistance by a known spring constant.  It is the latter operation we will use in TAMWAVE, which leaves us to determine the spring constant of the toe and eventually along the shaft.

We will have occasion to return to this topic, but to determine spring constants we will use the model of Randolph and Simons (1985).  For the toe this in turn is dependent upon Lysmer’s Analogue; both of these are discussed in detail in Warrington (1997).  They are dependent upon determining values for the soil shear modulus $G$.  (They are also dependent upon the dry unit weight $\gamma$ and Poisson’s Ratio $\nu$, but both of these parameters are known from basic soil properties and, indirectly, through Jaky’s Equation.)  That in turn brings us to another “sticky wicket,” namely determining the shear (or for that matter the elastic) modulus of the soil.  An interesting discussion of this topic can be found in Salgado, Loukidis, Abou-Jaoude and Zhang (2015).  Assuming a hyperbolic type of soil deformation, there are two basic extremes to this parameter:

1. The small-strain (or tangent) value, the highest possible value.
2. The large-strain (or secant) value, the lowest possible value.

Based on their review of the literature, they conclude that the value for (2) can be 10-50% of (1).   Although this problem is frought with uncertainties, it is hard to avoid the conclusion that this is a substantial spread and, for our purposes, raises as many questions as it answers.  The “solution” to this problem is found in this post, where one attempts to define a ratio between (1) and (2) based on some consideration of anticipated deflections under load for a given application.

Based on some experimentation with the code and earlier considerations, we decided to use a ratio between the two of 0.15, i.e., the secant modulus used in elastic-purely plastic models is 15% of the tangent modulus from the hyperbolic model.  We should emphasise that this is not “set in stone” but subject to variation.  One of the advantages of a project such as TAMWAVE is the ability to alter parameters and see the results without affecting results on actual projects.

“Fixing” this ratio allows us to determine the shear modulus based on the tangent or small-strain value, and this can be computed by the method proposed in Hardin and Black (1968).  There is little difference between the correlation for cohesionless and cohesive soils.  There are many ways of expressing this; the one we used (for values of $G$ in psf) is as follows:

$G=S p_{atm}\frac{\left(3-e\right)^{2}}{1+e}\sqrt{\frac{\sigma'_{vo}}{p_{atm}}\frac{1+2K}{3}}$

As before, for TAMWAVE (and many applications) $S = 315$.  The same formula is used for the shaft friction, the main difference is that the lateral earth pressure coefficient is different thus the lateral/confining stresses are different.  At the toe we use the result from Jaky’s Equation, which was explained in Verruijt’s method above.

Once this is computed, the pile toe stiffness is computed.  The stiffness is increased by multiplying it by a depth factor (Salgado, Loukidis, Abou-Jaoude and Zhang (2015)

$D_f = 1+\left( 0.27- 0.12 ln \nu \right)\left\{ 1-e^{\left[ -0.83\left( \frac{D}{B} \right)^{0.83} \right]} \right\}$

Even at this, when compared to “conventional” toe quakes in dynamic analysis, the toe quake shown above seems rather large.  We will leave this as it is for the static analysis and will return to this topic with the dynamic analysis.

Since we are computing stiffnesses for shaft and toe here, we will also do the same for damping.  Traditionally wave equation programs have used “Smith damping,” but as we will see this will be modified for the wave equation analysis.  To start let us redefine the “Smith type damping constant” as

$j = \frac {\mu}{R_u}$

In this case $\mu$ is the damping constant for the toe or shaft element in question, computed using the formulae given in Warrington (1997). $R_u$ is the ultimate resistance of the toe or shaft element in question.  The toe damping constant that results in this case is somewhat lower than “standard” values; this will be discussed later.

### Final Results

The final results are at the end of the table.  The shaft friction computation will be discussed in the next post.  The cohesive calculations have a provision for pile set-up using cavity expansion theory and this will be discussed later.

### References

In addition to works already cited in this and the STADYN study, the following should be noted:

• Hardin, B.O., and Black, W.L. (1968). “Vibration modulus of normally consolidated clay.” J. Soil Mech. Found. Div. 94, No. 2, 353-370.
• Salgado, R., Loukidis, D., Abou-Jaoude, G., and Zhang, Y. (2015) “The role of soil stiffness non-linearity in 1D pile driving simulations.”  Geotechnique 65, No. 3, 169-187.  http://dx.doi.org/10.1680/geot.13.P.124
• Vesic, A.S. (1977) Design of Pile Foundations.  NCHRP Synthesis 42.  Washington, DC: Transportation Research Board.