Laboratory Testing

em-1110-2-1906-banner

Laboratory Soils Testing

Related documents to Laboratory Soil Testing:

USACOE EM 1110-2-1906
20 August 1986

This manual presents recommended testing procedures for making determinations of the soil properties to be used in the design of civil works projects. It is not intended to be a text book on soils testing or to supplant the judgement of design engineers in specifying procedures to satisfy the requirements of a particular project. Test procedures included are the following:

  • WATER CONTENT – GENERAL
  • UNIT WEIGHTS, VOID RATIO, POROSITY, AND DEGREE OF SATURATION
  • LIQUID AND PLASTIC LIMITS
  • ONE-POINT LIQUID LIMIT TEST
  • SHRINKAGE LIMIT TEST
  • GRAIN-SIZE ANALYSIS
  • COMPACTION TESTS
  • COMPACTION TEST FOR EARTH-ROCK MIXTURES
  • PERMEABILITY TESTS
  • CONSOLIDATION TEST
  • SWELL AND SWELL PRESSURE TESTS
  • DRAINED (S) DIRECT SHEAR TEST
  • DRAINED (S) REPEATED DIRECT SHEAR TEST
  • TRIAXIAL COMPRESSION TESTS
  • CYCLIC TRIAXIAL TESTS
  • DETERMINATION OF CRITICAL VOID RATIO
  • UNCONFINED COMPRESSION TEST
  • MODIFIED PROVIDENCE VIBRATED DENSITY TEST
  • PINHOLE EROSION TEST FOR IDENTIFICATION OF DISPERSIVE CLAYS

Materials Testing

We also have the previous edition of this (FM 5-530) available for download here.

Field Manual FM 5-472
NAVFAC MO-330
AFJMAN 32-1221 (I)
1 July 2001 (Change 2)

This manual provides the technical information necessary for military personnel to obtain samples and perform engineering tests and calculations on soils, bituminous paving mixtures, and concrete. These tests and calculations are required to achieve proper design with these materials and adequate control over their use in military construction.

This manual covers soils, aggregates, bituminous cements, bituminous paving mixtures, Portland cement concrete, and stabilized soil including stabilizing agents such as bitumens, cements, lime, fly ash, and chemical modifiers. The manual gives detailed instructions for taking adequate representative test samples and step-by-step procedures for making physical properties tests and for recording, calculating, and evaluating the test results. The manual explains methods for designing bituminous paving mixtures and Portland cement concrete and ways of stabilizing soil. It also gives the procedures and tests required to control the manufacture of these mixtures. The manual describes the tools and equipment for performing these tests and contains general instructions for the care, calibration, and use of test equipment.

Rapid Drying Soils with Microwave Ovens

Kevin J. Gaspard, P.E.
Louisiana Transportation Research Centre
LTRC Project No. 99-3GT

Soils are normally dried in either a convection oven or stove. Inspections of field and laboratory moisture content testing indicated that the typical drying durations for a convection oven and stove were, 24 hours and 60 minutes, respectively. The objectives of this study were to determine the accuracy and soil drying duration of microwave ovens. This was accomplished by testing soils with and without additives. The soils were tested with a convection oven (CO), computer controlled microwave oven (CMWO), standard microwave oven (SMWO), and stove. The convection oven was considered to produce the true moisture content and was, therefore, used as a basis for comparison for the results of the other devices. Based on appraisals of the results, the standard microwave oven is the most feasible device to use in drying soils.

Soils Engineering

Army Institute for Professional Development
EN-54537, Edition 7

The Soils Engineering Subcourse is designed to teach you how to determine soil strength of swelling, non-swelling, and free-draining soils using CBR; determine after soil emplacement, field density and moisture content; use test data to determine stabilizing agents, the quantities required, and the construction sequence for given soils; and, direct a deliberate soil survey. This subcourse is presented in five lessons:

  1. Basic Soil Properties
  2. Soil Classification and Field Classification Procedures
  3. Soil Surveys
  4. Field Control Procedures
  5. California Bearing Ratio

Soils Sampling and Testing Training Guide for Field and Laboratory Technicians on Roadway Construction

Eugene R. Russell and Michael Renk
Kansas State University
Report No. K-TRAN: KSU-96-10
December 1999

This manual has been developed as a training guide for field and laboratory technicians responsible for sampling and testing of soils used in roadway construction. It was completed in conjunction with K-TRAN Project KSU-96-10, entitled “Pilot Study to Determine Personnel Certification and Training.”

The development and implementation of Quality Control/Quality Assurance (QC/QA) specifications by the Kansas Department of Transportation has been a driving force behind the development of a soils training and certification program. Soils training and certification will increase the knowledge of laboratory, production, and field inspectors. Both the owner agency and the contractor will benefit with an increased number of qualified personnel to perform acceptance and quality control functions. In addition, it is anticipated that this program and its standardized set of core tests will help to achieve certification reciprocity throughout the region. This manual is a guide for training personnel to perform the core soils tests they should understand in order to be certified.

The manual is based on ASTM and AASHTO test methods and procedures. During the 4th Annual FHWA Region 5 & 7 Training and Certification Workshop, a core content of ASTM and AASHTO tests for soil technician training was defined by the Soils Training Development Team. This training manual implements this core content for certification of laboratory soil field inspectors.

The Unified Soil Classification System

United States Army Corps of Engineers
Technical Manual TM 3-357
April 1960

The purpose of this manual is to describe and explain the use of the “Unified Soil Classification System” in order that identification of soil types will be on a common basis throughout the agencies using this system.

The program of military airfield construction undertaken by the Department of the Army in 1941 revealed at an early stage that existing soil classifications were not entirely applicable to the work involved. In 1942 the Corps of Engineers tentatively adopted the “Airfield Classification” of soils which had been developed by Dr. Arthur Casagrande of the Harvard University Graduate School of Engineering. As a result of experience gained since that time, the original classification has bean expanded and reviewed in cooperation with the Bureau of Reclamation so that it applies not only to airfields but also to embankments, foundations, and other engineering features.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s