Posted in STADYN

STADYN Wave Equation Program 10: Effective Hyperbolic Strain-Softened Shear Modulus for Driven Piles in Clay

It’s been a while, but we hope it’s worth the wait: the monograph Effective Hyperbolic Strain-Softened Shear Modulus for Driven PIles in Clay is now available.  It was presented at the Research Dialogues for the University of Tennessee at Chattanooga 9-10 April 2019.  The abstract is as follows:

Abstract: Although it is widely understood that soils are non-linear materials, it is also common practice to treat them as elastic, elastic-plastic, or another combination of states that includes linear elasticity as part of their deformation. Assuming hyperbolic behavior, a common way of relating the two theories is the use of strain-softened hyperbolic shear moduli. Applying this concept, however, must be done with care, especially with geotechnical structures where large stress and strain gradients take place, as is the case with driven piles. In this paper a homogenized value for strain-softened shear moduli is investigated for both shaft and toe resistance in clays, and its performance in the STADYN static and dynamic analysis program documented. A preliminary value is proposed for this “average” value based upon the results of the program and other considerations.

The slide presentation for this follows:

This slideshow requires JavaScript.

Advertisements

2 thoughts on “STADYN Wave Equation Program 10: Effective Hyperbolic Strain-Softened Shear Modulus for Driven Piles in Clay

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.