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PREFACE

In writing this book I have tried to see the subject from the

point of view of the engineer rather from that of the mathematician.

It is for that reason that the title Applied Elasticity has been chosen.

Although there is not much in the book that could not be covered

by the usual title Theory of Elasticity, yet this theory has been de-

veloped only so far as it seemed likely to lead to the solution of

practical problems. Moreover, in the course of the work, only such

problems as were deemed to have a practical interest have been

chosen to illustrate the theory.

One very important departure from the strict mathematical theory

is to be found in the use of approximate methods of solution based

on the principle of minimum energy. The application of this method

requires nothing more difficult than some simple integration, and the

probable errors in the results attained are generally much smaller than

1 the probable errors due to ignorance of the values of the elastic con-

;'^ stants. The method is ideal for dealing with problems on stability,

since, with very little effort, it usually gives buckling loads to within

one per cent. The process can also be applied, with unexpected

success, to the task of finding the periods of normal oscillations of

elastic bodies. Mathematically these oscillation problems are identical

with the stability problems before mentioned.

Some of the results of this book are here published, as far as I

know, for the first time. Among these are Arts. 279 to 283 on the

deflexion of a thin plate under normal pressure when the stretching

of the middle surface is taken into account; Arts. 307, 308, 309,

giving the approximate method of finding the buckling loads of deep

beams; and Arts. 330, 331, 338, on the vibrations of a disk of

variable thickness. I wish also to mention the successful application

of the energy method to the problem of the buckling of thin tubes

in Art. 324, in spite of the difficulty, to which the late Lord Rayleigh

called attention, in getting an accurate expression for the energy in

a bent plate.
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The equations have been numbered consecutively through the

chapters, and the number before the dot denotes the number of the

chapter. Thus (14.53) is the number used to indicate equation 53
in chapter 14.

A few pieces of analysis have been put into three Appendices,

named A, B, and C. The loth equation in Appendix A is numbered

(A. 10).

I am under great obligation to Mr
J.

D. Cockcroft, M. Sc. Tech.,

for his most conscientious reading, either in the proofs or in manu-

script, of all the book except the Appendices. He has worked through

nearly every piece of analysis and arithmetic given in the book, and

through his labours innumerable errors, big and small, have been

eliminated.

So much tedious arithmetic has been involved in the production

of the book that it will not surprise me to learn that many errors

still remain in the printed pages. I shall, however, be content if there

are no serious errors of principle.

JOHN PRESCOTT.

June, 1924.
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APPLIED ELASTICITY
CHAPTER I

ANALYSIS OF STRESS

I. Definition of Stress.

When body is in equilibrium under the action of forces

applied at different points of its bounding surface it is

quite clear that the effect of the forces must be somehow
transmitted through the body. Even when the body is not

in equilibrium, or when the forces act at points not on the

boundary of the body, it is still true in general that actions are

transmitted through the body. Then it follows that, across any small

plane area in the body, forces are exerted by the matter on one

side of the area on the matter on the other side. Thus, if F is this

force across a small area A, we can resolve F into

two components, N perpendicular to the area, and

S in the plane of the area. We will suppose, for

clearness, that the force F shown in fig. i is the

action of the matter to the right of the area on

the matter to the left. By Newton's third law the

action of the matter to the left of the area on the

matter to the right is the force F reversed. The
normal component force N is called a tension if

its direction is away from the matter on which it

acts. Thus in fig. i , the matter on which F acts

being supposed to lie to the left of the area, the

force N is shown as a tension. If the force N is towards the matter on
which it acts it is called a thrust. Physically a tension is an action

inside a body resisting the separation of the particles of the body,

and a thrust is an action resisting the crushing together of the

particles. A thrust may be regarded as a negative tension.

The component force S in the plane of the area is called a shearing

force, or a shear force, and it can have any direction in the area

depending on the direction of F in space.

I

Fig. I
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N
The mean normal force per unit area of A is — , and this is

A
the 7nean normal stress on the area. If N is a tension this normal
stress is called a iensiojial stress, whereas if N is a thrust the stress

is a compressive stress or a negative tensional stress.

The mean tangential force per unit area on A is — , and this is

called the mean shear stress on the area A.

If the area A is infinitely small and concentrated round a point C
the mean normal stress and the mean shear stress are then called the

normal stress and the shear stress at the point C for an area having- the

direction (or orientation) of the area A. It will be shown later what
is the relation between the stresses at a point C for areas in different

directions through that point.

If the structure of matter is molecular there is probably no such

thing as stress at a point, for the very idea. of stress at a point involves

the idea of continuity of matter, which is quite opposed to the molecular

theory. Nevertheless, molecular distances are so small compared with

any lengths we usually measure that the area can be made very small

without its dimensions being allowed to approach the smallness of

intermoleoular distances, and we could then take the stresses on such

a small area as the stresses at a point, the point being the centre of

the area. In effect, for the purposes of the the theory of elasticity, our

results will be quite good enough if our points at which stresses are

taken are very small areas and not Euclidean points.

2. Component Stresses parallel to coordinate axes.

Let C be a point in an elastic solid situated at the point {x, y, c}

relative -to three rectangular coordinate axes OX, OY, OZ, fixed in

the body. Let three very small areas be taken at C perpendicular

respectively to the three coordinate axes. Let the tensional stresses in

the material in the directions of OX, OY, OZ, be denoted by P^, P2,

P3, compressive stresses being indicated by negative values of the P's.

The shearing stress on the area perpendicular to any one axis can be

resolved into two components parallel to the other two axes. Thus
there are two component shear stresses on each of the three areas, six

component shear stresses in all on the three planes through the point C.

It will shortly be proved that these six shear stresses fall into three

pairs, each pair having equal members, so that there are only three

different component shear stresses at any point. Let us consider only^

one of these areas, namely the area perpendicular to the axis OZ, and

suppose the outward normal tO: the matter, on which the stresses shown

in fig. 2 act, is parallel to the positive direction along OZ ; that is, if

OZ points vertically upwards, the matter on which the stresses act lies

below the area in the figure. We will denote the component stresses on

the area perpendicular to OZ by S^^^; and S^y, the first being parallel to
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OX and the second parallel to OY. There are in all six of these

component shear stresses at C, the other four beingf on the other two

planes through C perpendicular to the

other two axes One of these other

stresses is ^xxy which is the component

shear stress acting on the plane per-

pendicular to OX in the direction of

OZ. We shall show that ^xy^=^yx\

^yx ^^^ ^xy '} ^xx ^"^ ^xx-

It should first of all be observed

that, since action and reaction are equal

an opposite, the stresses on the plane

in fig. 2 are all reversed if we are con-

sidering the action on the matter above

the area. Moreover the positive directions

of the component shear stresses are deter-

mined by the fact that the positive tension and the positive shear stresses on
any one of the three faces are all the same as the positive directions

along the three co-ordinate axes, or all contrary to these directions,

and there is no trouble in determining the direction of a positive

tension. Thus in fig.2, P.^, S^^, S;;,,. are all in the same directions

as OZ, OX, OY.

Let us consider the forces on a small rectangular block with edges

parallel to the coordinate axes, the centre of the block being at (x, y, 2).

Since the dimensions of the block are small, and will be ultimately

infinitely small, we may regard the stresses at the centre of each face

as the mean stresses over the area, and the resultant force on each

face may be regarded as acting at the centre of the face. The errors

due to these assumptions are quantities of

smaller orders than the quantities retained

in our equations, and therefore in the

limit these errors vanish.

In fig. 3 only the plan of the block

on the xy plane is shown. The stresses

perpendicular to the xy plane, and the

shear , stresses on the planes parallel to the

xy plane, are not shown because they have

no moment about that line through the point (x,y, z) which is parallel

to the 2-axis.

Since the area of the face on which S acts is dyd% the force due

to this stress is ^ydz. By taking moments about the line through C
perpendicular to the xy plane we get

-Ma:{ S 4- (S + f5S)| dyd-.,— frV/ |S' + fS' + dS')\chdz = o.

,f|^«f|

S' ip

fS+SS

^+af;

Fig. 3
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Therefore, dividing by dxdydz and then making the block infinitely

small, which makes ^S —f o and dS' —^ o, we get

S— S' = o
^'

S = S'.

But S, being the shear stress in the y direction on a plane perpendicular

to the axis of ,r, is the value of the stress Sxy at the middle of the

face on w^hich it acts, which point ultimately coincidies with C.

Likewise when the block is infinitely small the stress S' is the stress

Syx at the point C. Therefore our result says that

and in the same way we can prove that

We may now put
^yx '— "^xy 3.nd ^^x — ^xx'

^1 ^^ ^2/« "^^ ^xyi

^2 ^"^ ^%x ^^ ^XXl

Thus Sj is the value of any of the shear stresses which tends to turn

the block about an axis through its centre parallel to the axis of x.

We thus see the connection between the suffix I and the jir-axis.

The suffixes 2 and 3 have the same connection with the axes of y and z
respectively.

3. Principal Axes of Stress.

We have now shown that the stress system at any point on planes

parallel to the coordinate planes is completely specified by means of

six stresses, namely, P^, P2, P3, S^, Sg and S3. By considering the

equilibrium of a small portion of the elastic body bounded by one

oblique plane and three planes parallel to the coordinate planes we can

find the state of stress on this oblique plane in terms of the six stresses

mentioned above. It follows then that the stress at a point across any

plane through that point can be completely determined in terms of

these six stresses and the known angles which determine the position

of the plane. It will be shown later (Art 6) that there is one set of

three mutually perpendicular planes through each point of the body on

which the shear stresses are all zero, so that, if the coordinate axes are

taken perpendicular to these three planes> the stresses S^, 83, S3, are

each zero. These particular coordinate axes are called the principal

axes of stress for that point, and the three planes perpendicular to

these axes are the principal planes at the point.

4. Principal Axes when 81 = 82= 0.

As a first step towards the general problem of finding the principal

axes of stress for a given point where the six stress-components are

known let us first consider the case vvhere S^ and S2 are both zero,

We shall show that, in this case the principal axes can be reached by

merely rotating the axes about the axis of z.
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In fig. 4 the stresses on opposite faces of a block of dimensions

dx, dy, dz, are shown as equal stresses, whereas actually they should

differ by small quantities of the order

dx or dy. These small differences, if

we took account of them, would not

alter the result of the following reasoning.

Let DK be a plane parallel to the

Z'Sixis, and let us consider the equi-

librium of the wedge shaped portion

DAK under the stresses Pj, Pg, P3, S3

and the stresses P and S on the oblique

plane DK.
The area of the face represented

by AK in the figure is dz dy tan 0, and the area of DK is

dz dy sec 0. Then the normal forces on these areas are P, dz dy tan 6

and Fdz dy sec , and the tangential stresses are S3 dz dy tan and

Sdz dy sec 0. Then resolving all the forces on the wedge in the

direction of S we get, for equilibrium,

Sdz dy sec 6 = (Pg^^^ dy tan 6 -j- S^dz dy) cos

— (P^^dz dy -f- S.^dz dy tan 0) sin 6.

Therefore

S = (P^ sin ^ + S3 cos ^)cos ^— (Pi cos -f S3 sin <9jsin

= S3Cos 2^4- |(P.2— Pi)sin2^ ....'.... (i.i)

The angle which makes S zero is given by

^(Pi — P2) sin 2O = S3 cos 2 e,

2S
or tan 26^==- ^—- (1.2)

M— i^2

Now as varies from o to 90 ^ the angle 2 varies from o to 180 ®

and therefore tan 26 varies firstly from o to 00 and then from — 00
to o, thus passing once through every positive and negative number.

It follows then that, whatever values S3, P^^ and P^ have, there is one

value of between o and 90^ satisfying equation (1.2). Let this angle

be a- If therefore the axes of x and y be turned about OZ through

the angle (90"— «) in the direction from OX towards OY then the

shear stress S3 for this new set of axes is zero. Also S^ and S^ are

still zero since our original assumption that S^ and Sg were zero meant

that the resultant tangential stress on the planes perpendicular to OZ
was zero, and these planes have not been altered. The axes in the new
position are the principal axes for the stresses at the point C.

5. Components, parallel to the coordinate axes, of the 're-

sultant stress on any oblique plane.

The six stresses on three mutually perpendicular planes through O
being given it is required to find the component forces per unit area

parallel to the three axes on any oblique plane through O.
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Let ABC be an oblique plane parallel to the one through O, which

point 'is taken as origin of coordinates for convenience. We assume

that the stresses over all the faces of the block OABC, which is

supposed to be small, are uniform, and then it follows that the resultant

force on any face passes through the centre of gravity of that face.

Thus for example, the point of intersection of F^, F2, F^, is the centre

of gravity of the face ABC. When the block OABC is reduced to

infinitesimal dimensions the stresses over the faces become uniform in

any case, and the stresses

on the oblique plane ABC
become the stresses on an

oblique plane through O.

Let /, m, n, denote the

direction -cosines of the

outward normal to the

face ABC; that is, the

cosines of the angles be-

tween a positive tension

on the face ABC and the

axes OX, OY, OZ; and
let a denote the area of

the triangle ABC. Then
the projected areas OBC,
OCA, OAB aie la, ma,

na. Let F^, Fg, F^, denote

the components of the re-

sultant stress on the oblique

plane ABC.
Now, assuming the

block to be in equilibrium, and resolving the forces on the block parallel

to OX, we get

F^a= Pi/a -|- S^ma -\- S^na.

Therefore F^= /P^ -|- mSg -(- nSg (1.3)

Likewise, by resolving parallel to the other axes,

F^^/Sg + mP^ + nS, . ...... (1.4)

F3= /S2 + mS, + wP3 (1-5)

By reducing the block OABC to infinitesimal dimensions equations (1.3)

(1.4) (1.5) give relations between the stresses at a point, namely the

point O in figure 5.

6. Principal axes for any given system of stresses.

It has been shown in the last article that the components, parallel

to the axes, of the force per unit area on an oblique plane through

any point at which the six independent stresses are given, are
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F^= lF^-{-mS^-\-nS^ (1.6)

F, == /S3 + mPa + wSi (1.7)

F3= /S. + 7«S, 4- nPg (1.8)

Now if there is no shear stress on the oblique area ABC then the

resultant of F^, F2, and F3, is a purely tensional stress, that is, a stress

in the direction /, m, n. Suppose P is this tensional stress. Then

Fi F, Fo
, ,

that is, -r=—=— , . . . . . . . (1.9)

= p, + is, + ;s.

We may write these two conditions thus

(m l\^ n ^ n ^

(n niX I I

S, +— So 82=0.

I n
Let a=— and 3 =— Then these last equations becomem m

and P^_p, + ^^_-LJSi+aS3-^S,=o

Clearing these of fractions we get

(o=-i)S3-a(Px-P,)-;8(S5-aS,)= o . . . (i.io)

(j8^-i)S,-^(P3-P,)-a(S,-jgS3)=o . . . (i.ii)

The value of ^ from equation (i.io) is

(a^-i)S3-a(P,-P,)
'

S, — aSi
. . ^ . [ . )

On substituting this in equation (i.ii) and multiplying up by (S2—aSj)^

we get

[{(a2_ i)S3_a(P,-P,)}2_(S,_aS,y^]S,

+(P2-P3)(S,-aSi){(a2— i)S3-a(Pi— P,)}

+ a(S,-aSi)[{K^-i)S,-a(Pi-P2))S3-(S,-aS,)S,]= o (1.13)

The coefficient of a^ in this equation is

SO that equation (1.13) is a cubic equation in a, since the coefficient

of a^ does not vanish identically. Now a cubic equation has at least
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one real root, and therefore there is certainly one possible real value

of the ratio — , and corresponding to this value ot a there is one real
m

value of y5 given by (1.12). Then the general relation between direc-

tion-cosines, namely,
/i2 _[_ ^2 _^ n~= I

gives m^(a:'^' -}- i -]-
fi^)

=z i

^

which determines m. Thus one set of direction-cosines is a nt, m,

^ m. It follows then that there is certainly one plane on which there

is no shear stress.

As we have now proved that there is one plane through the given

point on which there is no shear stress let the axes be turned so that

the new axis OZ' is perpendicular to this plane. Then, stresses on planes

parallel to the new axes being -denoted by dashed letters, our new condi-

tions are that S\ = o and S'2= o. Then the stresses relative to the new
axes are exactly similar to those in Art 4, where it was proved that,

by rotating the axes about OZ (in the present case about OZ') a posi-

tion can always be found where the stress S3, referred to the last posi-

tion of the axes, is also zero. This proves that, whatever the state of

stress at a point, there is always a set of mutually perpendicular axes

for which the stresses S^, S^, S3, are all zero at that point; that is,

there is certainly one set of principal axes for each point of a stressed

body. Moreover, there is only one set, for the three roots for a given

by (1.13) would only give the three principal axes in a different order.

The stresses P^, Pg, Pg, on the principal planes through a point are

called the principal stresses at that point.

7. Stress on an oblique plane in terms of principal stresses.

If the coordinate axes are principal axes for a point C then, since

Si= S,= S3:^o, equations (1.6), (1.7), (1.8), give

F,==/P, 1

F,=mFA ....... (1. 14)

Pi, (1. 15)

If Pj, Pg, P3, are all equal then

?l = !i _?1
/ m n

which are the conditions that the resultant stress on the oblique plane

should be a purely normal stress equal to P^. This shows that, if the

three principal stresses are all equal at any point, then the stress across

any plane at that point is exactly the same as it is across each principal

plane, from which it follows that any set of rectangular planes through

the point are principal planes. If P is negative then there is- a pure

thrust across every plane, this latter being the condition in the atmo-

sphere or in a liquid, and we shall refer to it as a state of hydrostatic

thrust.
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In the general case, where P^, P2, Pg, are unequal we get

F, 2 F 2 F 2

^i ^2 ^3

If we regard F^, F^, F3, as the coordinates of a point, relative to an
origin at the point where the stresses act, then the vector drawn from
the origin to the point F^, F^, F3, is the resultant stress on the oblique

plane, and equation (1.16) shows that the end of this vector lies on the

ellipsoid whose equation is

/y'2 7i2 /j'2

^i ^2 ^3

This shows that, of the three principal stresses at a point, one is the

maximum and another the minimum stress across any plane through

that point.

The ellipsoid (1.17) or (1.16) is called the ellipsoid of stress for

the point whose principal stresses are P^, Pg, P3.

The tensional stress across the oblique plane is the sum of the

components of F^, F^, F3, along the normal to the plane. Thus, denoting

this tension by P, we get

P= /F^ -f mF^ -}- nFg
==/2p^_|_^2p^_|_,^2p^ ..... (1. 18)

The resultant stress is

R = yFi2+ F22+ F32=V/2p^2_|.,^2p^2_^^2p^2 .(i.jg)

If P2= P3--=:P^ then, since p -^ m'' -{- n^ == 1

,

P= R:=P^,

which shows in another way that the resultant stress across any oblique

plane when the three principal stresses are equal is a normal stress of

the same magnitude as each principal stress.

8. Shear stress on a plane inclined to two of the prin-

cipal stresses.

Since we are now dealing with principal stresses we must put

83= in equation (i.i), and then we find, for the shear stress on a

plane inclined to the principal stresses P^^ and P2 but parallel to Pg,

S== -ifPg — Pj)sin2^ ..... .(1.20)

If we vary ^ in this it is clear that S has its maximum value when
sin 2^= I, that is, when ^=45**. Moreover S depends only on the

difference of the tensional stresses, so that the addition of the same
amount to both stresses would not alter S.

Again, if P^=— Po, that is, if the principal stresses are equal in

magnitude but one is a tension and the other a compression, then

S = P2 sin 2^ . . . . . . . (1.2 1)
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and the maximum shear stress is equal to P2. It is easy to verify this

directly. Figs 6 a and 6 b show the related stresses

Fig. 6 a Fig. 6b

9. Stresses on planes which are rotated relatively to OZ.
Given the stresses P^, P2, S3, on planes perpendicular to axes OX,

OY, it is required to find the stresses on planes perpendicular to axes

OX' OY', which are in the plane XOY but inclined at an angle to

the original axes.

Let P'j, P'2, S'3, denote the stresses on the faces perpendicular to

the new axes. Since the direction of P'^ in fig. 7 is parallel to OX'
it follows that the direction of S'jj is

parallel to OY' on the same face, ac-

cording to the rule given in Art 2.

The triangle LMN (fig. 7) represents

a small prismatic block of length dz per-

pendicular to the plane XOY.
Let A denote the- area of the face

MN. Then the areas of the faces LN
and LM are A cos and A sin 6.

Thus the force due to P^ on the face

LN has as magnitude P^A cos 0. Similarly the force due to

Sj on the same face has a magnitude S3A cos 0. The forces on the

face LM are PgA sin and S3A sin 0. Now resolving all the forces

on the block in the direction of OX', we get, for equilibrium,

P'l A = (PjA cos 0) cos + (PgA sin 0) sin 6

+ (S3A cos 0) sin + (S3A sin 6) cos

= A{Pi cos2^ + P.2 sin2^ -|r 2S3 sin cos 6],

P'l = Pi cos2 l9-f Pg sin2^+ 2S3 sin ^ cos ^ . .whence

Since

stress P'9

1.22)

OY' makes an

by putting

angle {0-\ ) with OX we get the tensional

(«+r)
for 6 in the expression for P j ; that

is, by putting cos ^ for sin^ and -sin^ for cos ^. Thus

F2 = Ptsin2^-f P2COS2 (9— 2 S., cos ^ sin ^ . . .(1.23)

Again by resolving the forces on the block in fig. 7 in the direction

OY' the condition for equilibrium is
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S'gA = (P2A sin 0) cos — (F^A cos 0) sin S
-|- ( S3A cos 0) cos ^ — (S3A sin 6} sin 0,

whence

S'3 = (P2 — Pi)sin^cos^ + S3(cos2^— sin2^) . . . (1.24)

10. Rotation of the axes in three dimensions.
Suppose the stresses on faces perpendicular to three given

rectangular axes OX, OY, OZ, are known. It is required to find the

stresses on faces perpendicular to axes OX', OY', OZ', whose
-direction-cosines relative to the first axes are {l^,m^,n^), (l2,m^,n^),

Consider the equilibrium of a small tetrahedron which has its faces

perpendicular respectively to OX, OY, OZ, OX'. Figure 5 may be

taken to represent this tetrahedron. Then OX' is perpendicular to the

face ABC, whose area is a.

Let dashed letters represent the stresses relative to the axes OX',
OY', OZ'. Then using the results in (1.3), (14), (1.5), with l^-, m^,

n^, for /, m, n, in the expressions for the F's we get, since P'^^ is the

sum- of the components of F^, Fg, F3, in the direction (/^, m^, %),

P'i=/,Fi+w^,F24-%F3 .

=?P,+m^P,+nfP3
-^2m^ny^^-\- 271^1fi.^-\-2l^m^S.^ . . {1.25)

We can write down from symmetry the other two tensional stresses.

Thus for P'„

-[-2^2^255^-1-2^2/2^2 + 2/2^253 . . (1.26)

Again, since the sum of the components of F^, F^, F,, in the direc-

tion OY' is S'3, we get

S'3= /2Fi + ^2F2+^^2F3
= /1/2P1 + m^m^F^ -\- ii-^ftoF.. -\- {m^n^ -\- mj^n^)S^

-]-\nJ, + nJ^S,-\-il^m,-^l^m,)S, . . . .(1.27)

We should get the expressions for S\ by replacing l^, m^, n^, by

/g, Wg, W3, in the last result; and we should get S\ by replacing

/i, m^, n^, by l^, Wg^ n^.

1 1. Validity of the stress-relations at a point in all cases.

To simplify the reasoning it has been assumed so far that the body

under stresses was in equilibrium and was acted on by no body forces

such as gravity or magnetic or electrical forces. But the stress relations

are not altered if we do take account of such forces^ or if we assume

that the body is being accelerated. In dealing with the motion or

equilibrium of an element of dimensions dx, dy, d%, any of these body

forces, or the inertia due to acceleration, introduces a term into the

equations proportional to the product ^x^i/<3s;, whereas the terms due
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to the stresses are proportional to areas such as dx dy, and w"heii dx,

dy, and dz, are made infinitely small the terms of the third order

vanish in comparison with terms of the second order; that is, the

effect of body forces or accelerations vanishes in comparison with the

effect of the stresses, so that the final equations contain only stresses

and give the same relations as if the body forces or accelerations were

not taken into account.

It is necessary to remark that the stress-relations that remain true

when body forces or accelerations are taken into account are those

relations not involving differences of stresses on parallel faces, for

these differences are, of course, of smaller order than the stresses

themselves.



CHAPTER II

RELATIONS BETWEEN STRESS AND STRAIN

12. Elasticity.

Although we often speak of rigid bodies there are no absolutely-

rigid bodies, for every body alters its shape or size under the action of

stress. If, for instance, the three principal stresses at every point of

a body are all equal tensional stresses, in which case the stress across

any plane in the body is also a tensional stress of the same intensity,

then every element of the body slightly increases its volume without

altering its shape—a spherical element becomes a sphere of larger size,

and a cubical element becomes a cube of larger size. Again a rod under

the action of a pair of balancing pulls at its ends has is lenght slightly

increased by these pulls.

A body whose shape or size is altered by stress is said to be

strained. To every kind of stress there is a corresponding strain. If

the stresses are not too great (and the limit of greatness can only by

determined by experiment for any particular material), the strained

body will recover its original shape and size when the stress is removed.

This property which a body possesses of recovering from strain is

called elasticity. The elasticity is perfect if the body recovers

completely. Some bodies, such as steel, recover completely after very

large stresses, while others, such as cast iron and lead, do not completely

recover from comparatively small stresses. The strain that remains

when the stress is removed is called permafient set. If forces are

applied to any rigid body and these forces are gradually increased the

body* will be perfectly elastic (that is, would recover its original size

and shape it the forces ceased to act) until some definite magnitude of

these forces is reached, and any further increase of the forces would

produce permanent set.

13. Isotropic Bodies.
A body which has the same elastic properties in every direction is

called an isotropic body. A substance such as wood with a fibral

structure has certainly not the same properties .in every direction. For
instance, if forces are applied to a cu'be of wood with one pair of faces

perpendicular to the fibres, the same tension is not likely to produce
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the same extension when the tension is along the fibres as when the

tension is perpendicular to the fibres.

14. Hooke's Law.
If a pair of balancing pulls are applied at the ends of a rod or string

the increase of length of the rod or string is proportional to the pull.

This was expressed shortly by Hooke thus:— "the force is proportional

to the extension." This is Hooke's Law in its simplest form. The
generalised Hooke's law may be expressed in the following way:— the

relative displacements of the particles of a body by any given set of

forces will be increased in the ratio n '. i if the forces are all increased

in that same ratio.

15. Young's moduius of elasticity.

Suppose a rectangular block of dimensions a\by^c is under the

action of a uniform tensional stress over a pair of opposite faces and

no uther stresses on the six faces, as

shown in fig. 8, then it is known by
experiment that the length a increases

and the lengths b and c decrease. Let

the new lengths of the edges of the

block be a-{-u^ b — v, c—w. Then the

A 7
i

P

bA
a

three ratios
U V u^

are called the strains
a c

of the block in the three directions, the first being an extensional

strain and the two latter compressive strains. It is clearly convenient

to treat a compressive strain as a negative extensional strain. Then,

regarding extensional strains as positive, the three strains are

,, Let these be denoted by a,be
or

Ea,

P

E'

y. Then Hooke's law gives

(2.1)

(2.2)

E being a constant which is called Young's modulus of elasticity.

16. Poisson's Ratio.

The other experimental fact is that

P
y5=7 = — oa = — a- (2.3)

a being a constant called Poif^^oiix Ratio for the material. The state-

ment in words is that "a tension in one direction only causes, in any

perpendicular direction, a negative extensional strain bearing a constant

ratio to the extensional strain in the direction of the tension'*.

17. Shear strain.

Suppose a block, originally rectangular, is subjected to equal shear

stresses S on opposite faces AB , CD, and the equal shear stresses,

which we have shown (Art 2) must accompany these, on the faces
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BC, DA, and no other stresses on the six

faces of the block. In this case two op- ^rr-
posite faces of the block are distorted into

parallelograms, the pair of angles at A and
C in fig. 9 being decreased. The radian S
measure of the change of angle at one /

B

of the corners is called the shear strain, 'S

and Hooke's law for this case is expressed
Jrig- 9

by the equation

S = nO, (2.4)

n being a constant called the modulus -of rigidity, or sometimes the

bhear modulus, of the material. In practice is so small that we may
take either sin or tan 6 for 6. Then we could express Hooke's
law in either of the forms

S = nsme = n—- (2.5)
AU

or S = ntan^= w——7 (2.6)
AL)

18. The Bulk Modulus.

Suppose a uniform tensional stress, P, and no shear stress acts on
every face of a rectangular block. It has been proved that the only

action across every plane in the block is an equal tensional stress.

Under such a system of stresses the extensional strain is the same in

every direction, and there is no change of shape, but necessarily an

increase in volume. Let V be the original volume of the block, and v
the increase in volume under the stresses. Then Hooke's law for this

case is expressed by the equation

P = /4' [2.7)

k being a constant called the hulk modulus of the material. The ratio-

V— may be called the volume-strain or bulk-strain.
V

19. Strain due to simultaneous stresses.

It is an experimental fact, which must be regarded as fundamental

to the subject of elasticity, that, when several stresses exis\: simult-

aneously in any element of a body, each stress produces its own strain

just as if no other stress were present.

20. Relations between the elastic constants for an iso-

tropic body.
We have defined four elastic constants, namely, E, o, n, and k^

For an isotropic body only two of these are independent, and therefore

any two of them can be expressed in terms of the other two. There



i6 APPLIED ELASTICITY

are many ways of obtaining these relations, but it is probably best to

get them by considering simple cases from different points of view,

and using the fact, stated in the last article, that simultaneous stresses

produce their own strains independently. We shall now consider two
special cases.

Consider a cube (fig. lo) each face of which is subjected to a uniform

tensional stress P. Let c be the natural length of each edge and a the

strain of each edge, so that the new length is c(i -\- a), and therefore

the new volume is f=^(i -[- a)'"= c^(i -|- 3a) neglecting powers of a
beyond the first. Then the bulk-strain is

3a, and consequently

P= 3A:a (2.8)

If P acted on only one pair of opposite

faces the extensional strain perpendicular

P
to those faces would be --• This is the

strain of AB due to the stresses parallel

to AB. Again the strain of AB due to

the stresses on one of the other pairs of

P
I opposite faces is — o~ and the strain

. ^ P
of AB due to the stresses on the third pair of faces is — a —

p p E
again. Hence the total extensional' strain of AB is -

E

P
Therefore

_(i_2a) = a (2.9)

Equating the values of from (2.8) and (2.9) we get

* (2.10)
20

Consider next the same cubical block

(Fig. 11) with a uniform tensional stress P over

one pair of opposite faces and an equal uniform

compressive stress over another pair of opposite

faces and no other stresses. We know by

Article 8 that there is a uniform shear

stress of intensity P over the faces LM,
MN, NR, and RL. The figure was a

square in the unstrained state and becomes a parallelogram with

unequal diagonals in the strained state. The extensional strain of AB
P P

is — due to the stresses parallel to AB, and o — due to the stresses

E E
perpendicular to AB. Thus the total strain of AB (or CD) ir, an
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P
extensional strain of magnitude — (i -f ^)- There is also an equal

^ P
compressive strain in AD. If a be written for — (i-fo) the new

K
lengths of AB and AD are c(i -\- a) and c(i — a) respectively. Let

be the diminution of the angle LRN, so that the actual value of the

angle is (4 Ji— 0). Now by trigonometry, applied to the triangle

LNR,
^ LR2+RN2~LN2 2LR*'J — LN^

cos(i.-^)=^
2.LR.RN

==
2.LR^

Now

Therefore

LR2= AL2 + AR2,

LN2= 4.AR2.

2.LR2—LN2=2{AL2— AR2}
= 2{AL— AR}{AL + AR|
= 2 xcaxc= 2c^a

;

and, neglecting a^, LR2= AL2 + AR2 = -ic^.

Consequently

sin^ = cos(-^jr— 0)

This is the shear strain of the parallelogram LM]-iR, and the shear

stress is P. Therefore

P = wsin^ = 2na

P
or a =

2n
P

But a==-{i+o),

whence 2n = . . . (2.11)

Equations (2.10) and (2.1 1) express k and n in terms of E and a,

thus showing that only two of the four constants are independent for

an isotropic body.

21. Strain in terms of displacements in two dimensions.
We shall suppose that a naturally plane body (or sheet) is strained

in such a way that all the particles remain in one plane after the strain.

It is necessary to refer all the displacements to a pair of axes fixed

relatively to some particles of the body. Let the origin O be situated at

one of the particles of the body, and if that particle moves O is

supposed to move with it ; and let the axis OX always pass through

on€ other given particle of the body. The axis OY is always perpen-

dicular to OX and in the plane of the particles.

2
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Let the particle which was at (x, y) before strain be situated at

(x -\- u, y-]-v) after strain. Both u and z' are functions of x and y
since each will vary with both x and 3;. We have to investigate the

change of size and shape of an ele-

ment, which, in the natural state, is

a rectangle with sides dx and Sy.

The rectangle CDKH (fig. 12) is

displaced relatively to the axes into

the position C'D'K'H'. The displace-

ment of C has components u and v.

Now suppose

u = f{x,y).

Then, denoting the displacement of

D parallel to OX by (u-\-Su), we
get, since the coordinates of D are {x -}- dx, y),

It j^ ^u = f{x-\- dx, y).

Su = f(x + dx, y)— f(x,y)

= — ox neglectmg {ox)^
ox

du „

But ^w is the displacement of D' relative to C and is therefore the

excess of C'N over CD. Now tlie length of CD is dx, and the

horizontal projection of CD' is greater than CD by— dx. Hence the

extensional strain in the direction of OX is

du

C'N - CD dx du

cv

cy

CD dx Bx

Likewise the extensiona strain in the direction of OY is

Again let

and let (v + dv)

and therefore

be the

t

dv

v^Y{x,y)
value of V for D'. Then
-^dv = ¥[x-{-dx,y),

=^Y{x^-dx,y)— Y{x,y)

S'Pix^y)^
= — ox

dx

dx

This dv is the vertical displacement of D' relative to C, and is shown

du
as ND' in fig. 12. Similarly MH' is -^dy.
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The shear strain for the Hnes CD' and C'H' is, by definition, the

whole change of angle at C ;
that is, the shear strain is (991-1-9^2 )• ^^^

ND'
(pi
= —— approximately

dv

dx

du
and ?>, = ^-

Therefore the shear strain is

Sv du

dx By

22. Strains in terms of displacements in three dimensions*
In the last article we showed that, when a plane body is strained

into another plane body, the component extensional strains at a point

{x, y) are

du

dx
parallel to OX

and -—- parallel to OY.
dy

Also the shear strain for lines parallel to the coordinate axes is

dv du

dx dy

Let us now go into three dimensions and choose our origin at one of

the particles, and OX through another particle as before. Also let the

plane XOY always pass through a third particle which is at safe

distance from OX in the unstrained state. (This distance will be safe

if it is greater than the largest value of v.) The axes OY and OZ are

always perpendicular to OX and to one another. This completely

determines the axes in any state of strain.

Let a particle originally at (^x, y, z) move to (jf -{- w, 3; -)- v, z-\- w).

The displacements parallel to the x y plane are exactly the same as if

w were zero, and therefore the extensional strains parallel to OX and

OY, as well as the shear strain of the faces perpendicular to the axis

OZ, are just the same as in the last article.

It follows then that the three extensional strains are

du dv dw
—-, — and -—

•

dx dy dz

Likewise the three component shear strains are

/dv dw\ (dw du\ , /5«* . ^^\
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We shall denote the extensional strains by «, ^, y, respectively, and

the shear strains by a, b, c, respectively. That is

a

dv dw

du dv dw
. (2.12)

^. , ^.- ^ dw du du dv

dz dy dx dz dy dx

23. Stress-strain relations.

• p Fig. 13 represents one view of a small

T ^ S3 rectangular block under tensional stresses

Fig. 13

fS^ p P^, Pg, P3, and shear stresses S^, S2, S..—>' The shear stresses Sj, and Sg, which cause

no strains in the plane of the figure, are

not shown; and Pg is not shown since

it is perpendicular to the plane of the

figure. The strains also are not shown
in this figure.

The extensional strain in the direction of P. is
p.

due to P,

P2
due to Pn, and— a—^ due to Po. Hence

also

and

a = -|{Pi-''(P.2 + P4 (2-I4)

/3 = ^JP2-<'(P3 + Pi)|. ..... (2.'5)

7-'^\Ps-o{P,+-pA (2.16)

Again the relations between shear stress and shear strain give

dv dw'

(dw
,
du

^^ = "* = Ha^ + 5J

(du dv\
' Uy^dx)

(2.17)

(2.1&)

(2.19)

24. Tensional stresses in terms of strains.

Equations (2.14), (2.15), (2.16), give strains in terms of stresses.

The equations can be solved for the stresses P^, P,, P3, in terms of

a, p, y. Adding the three equations we get

« + /^ + y =^— (P1 + P. + P3).
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whence

Pi + P, + P3=^-(a + /J+ y)

= 3k{a
-\-
P

-\- y) by equation (2.10).

Now the strained volume of a small block of natural dimensions

Sx, Sy, dx, is

6x(i -\-a)xdy(i
-\-
P)x dz(i -\-y) = dxdydz(i 4-« + /^+ J')

neglecting products of «, fi
and y. Then it follows that the ratio of the

increase of volume to the original volume is (a-\- fi
-{- y)- Call this A.

Then

Pi + Pa + Ps^S^A . (2.20)

Therefore

and substituting this in equation (2.14) that equation gives

Ea = Pi— a(3A;A— Pi)
= Pi(i+a)— 3aA;A,

30k E
whence Pi =—;— A H ;—

«

i-f-a I + a

= {711— ?^)A + 2wa

where m and n are constants, n being the modulus of rigidity.

In terms of E and a

oEm—n=-—I—
(i+a)(i— 2a)

and thus m = \-n= (2.21)
1

—

20 1 — 20

Consequently the three equations for the tensional stresses in terms of

strains are

Pj=(m—w)A+2wal
P2 = (m— n)/\-\- 2np\ (2.22)

P3 = (m—w)A + 2wyJ

where
*

A= « + j^+ 7

du dv dw . .

^Si + 8y+ T.
'"3)

25. Relations between stresses and external forces.

We shall deal with a rectangular block of dimensions dx x dy x dx
having its centre at x, y, 2, and take the means stresses on the faces

to be the stresses at the middle of the face concerned. The middle

points of the two faces perpendicular to the axis of x have coordinatey
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{^'dli^-^'' 3'' '^)' ^^^^ ^^^ middle points of the other faces are at {x, y
±^Sy, z) and {x, n, %±\dz).

Let the body force per unit mass at {x, y, z) have components X,

Y. Z, and let q be the density of the body. The mass of the block

being Qdxdydz, the body force on
the block has components qXdx
dydz, qY dxdydz, qZdxdydz. Sup-

pose also that the element has

component accelerations fy,f2^f^'

Fig. 1 4 shows a perspective view

of the block, and only those stresses

are indicated that act parallel to the

a:-axis. A similar figure for the y
direction would show V\, V\, and

also the shear stresses S\, S"i,

S'g, S"3, all acting parallel to OY.
Now let P,, P^, P3, Si, S.3, S;^

denote the values of the stresses at

{x, y, z). Then since P'\ is supposed to act at {x-\-^dx, y, z) we
find, neglecting powers of dx beyond the first,

—

Y

Fig- 14

P"i=Pi+^x(lfc)-

Also, since V\ acts at {x— ^dx,y,z).

Hence

Again, since S'o and S'^g are supposed to act at (x,y— \dy,z) and

[x,y -{- \ dy, z), it follows in the same way that

5S.
S

3
S3

dy
dy.

Also .S'.,=^<5;..

The force on the block in the direction OX due to P\ and P''^ is

(P"i-P,)
dx

dx dy dz.

Similarly the forces in the direction OX due to the stresses S'o, S"2

and S'3, S"3 are
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(S"2 — S'2) dx dy = —^ dx dydz,
0%

and (S'^g— S'^)dxdz=—^dxdydz.

Then the total component action of the stresses on the faces of the

block in the direction OX is

t + l^+aTJ^"''-^''"

Since the component of the body force on this element is Q^dx dy dz

and the component acceleration is f^
the equation of motion of the

element is

Bx By
whence

+ -^ -\-qX.\ dxdydz = {Qdxdydz)f^,

The two corresponding equations, oibtained by resolving- parallel to

the other axes, are

t+fi+S+^^=^^^ f^-^^)

If the body is in equilibrium the accelerations
f-^, f2> /&> ^.re zero. If,

however, the body is not in equilibrium but nevertheless the three coor-

dinate axes—which, it must be recalled, are determined by means of

three particles in the body—are themselves at rest, then the displace-

ments u, v, w, are true displacements in space, and therefore

_B-'u B'v ._Bhv
;t-^^2' /2-^^2; /a-^^2 ^^'^7)

t denoting the time measured from any particular instant.

These last forms of the accelerations are applicable when we are

dealing with small oscillations of an elastic body.

The equations (2,24), (2.25), (2.26), will be called the equations of

equilibrium or of motion according as the fs are all zero or not

all zero.

26. Equations of motion in terms of displacements.

Since P^ = (m— n) /\-\- zn —-,
uX

S3=«{^
iBu Bv\
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Idw du\

and A = - + - + -,
dx By dz

then equation (2.23) becomes

or 7n — f- n

'

dx

This equation is written

The two corresponding equations for the y and 2 directions are

^^-^ + nV'v+ QY-=Qf, (2.29)

m—-{-n\;^^w-\-QZ = Qf^ ..... (2.30)

27. Relations between the six stresses.

Since the six stresses can be expressed in terms of the three dis-

placements u, V, w, and their rates of change in space, it follows that

there must be three independent relations 'between the six stresses.

There would be no great difficulty in deducing such relations, but they

would not be of much use when they were deduced. When the three

equations of motion are expressed in terms of stresses these equations

contain six unknown stresses, whereas in terms of displacements there

are only three unknown displacements. It is for this reason that the

equations in terms of displacements are more useful than those in

terms of stresses, although the three additional equations due to the

three relations between the stresses would give us the requisite number
of equations from which to find the six unknowns. Nevertheless, three

equations and three unknowns are much preferable to six equations

and six unknowns. When, however, we are dealing with a problem

where the coordinate axes are known to be the principal axes for

every point of the body, then our stress equations contain only three

unknown stresses, and these equations may in such a case be preferable

to the equations in terms of displacements, particularly as these

equations give stresses directly, which are the tilings we are usually

aiming to find. Moreover, we may make the six stresses satisfy any

three arbitrary equations and then find the six stresses from these three

equations and the other three relations* that we know always exist

between the stresses. In this way we get the solution to some problem
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in elasticity. The three permanent relations 'between the stresses can

be got by eliminating u, v, w, from equations (2.17) (2.18) (2.19), and

(2.22).

28. Solution of problems in elasticity.

The object of a problem in elasticity is usually to find the stresses

in a body, and in some cases to find the strains due to given body
forces and given conditions at the boundary of the body.

The stresses and strains are completely determined by means of

equations (2.28), (2.29), and (2.30), if, at the same time, the conditions

at the boundary of the body are given. If the theory of differential

equations had been carried far enough it should be possible to write

down, from equations (2.28), (2,29) and (2.30) alone, values of u, v, w,
corresponding to given values of X, Y, Z, and f^, f^, f^. These
expressions would contain arbitrary functions of x, y, z, the form of

which functions would be determined by the known conditions at the

boundary of the body. Unfortunately, however, pure mathematics has

not reached the stage of solving these equations in general terms, and

therefore we have to be content very often with the reverse process of

finding any solutions of the equations and then finding out the

problems of which they are the solutions. That is, the real problem

is; given the forces X, Y, Z, and the accelerations f^, f^, f^, calculate

the displacements and consequently the stresses. The easier problem

is ; assume some displacements and calculate the forces. Luckily many
of the most important problems have comparatively easy solutions.

29. The equation for the volume strain A-
If we are dealing with a problem of equilibrium, so that

f^, f^, f^^

are all zero, we can get a differential equation for A alone. Assume
that the accelerations are zero and differentiate (2.28), (2.29), (2.30),

with respect to x, y, 2, respectively, and add the corresponding sides

of the resulting equations. Then since

^ dx
the final equation reduces to

dx oy cz

and when X, Y, Z, are given as functions of the position x, y, z, this

equation contains only the one unknown A.

When A has been found from equation (2.31) then u, v, w, can be
found in turn from (2.28), (2.29), (2.30).
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30. Stresses due to a number of different forces acting

simultaneously.
When several forces act on a body each particular force or system

of forces produces its own stresses and strains exactly as if nong of

the other forces acted. This means that the total stress at any point

is merely the sum of the stresses due to each force acting separately.

For this purpose an acceleration must be treated as if it were one of

the acting forces because it is clear from equations (2.23), (2.24),

(2.25) that, if no forces act on any portion of an elastic body,

there will be stresses in that portion if the accelerations f^, f^, f^,

are not all zero. Moreover, forces of given magnitude at the boundary

of a body must be treated in the same way as forces X, Y, Z, acting

inside the body. But forces arising at the boundary, due to fixing that

"boundary, need not be treated as forces producing stresses since they

are themselves merely stresses caused by other forces and proportional

to those other forces.



CHAPTER III

SOME PARTICULAR SOLUTIONS OF THE EQUATIONS
OF EQUILIBRIUM

31. Recapitulation of equations.

As it is a great convenience to have all our important equations

gathered together those we have already proved are collected below.

Equations of motion

ox

m SA
6y

dA

nV^v + ^Y = ^/'2, (3.1

du dv dw
where A =^ + V- + T~'dx dy dz

^2 ^2 ^2

The equations of equilibrium, obtained by putting zero for each

of the component accelerations
f.^, f^, f.^,

in equations (3.1), are

m— 1- nV ^^ + Q^ = o
dx

dAm— l-n\/''v4-pY = o
dy

rn— \- n\/ ^w -}- qZ = o
dz

(3.2)

The relations between the stresses and strains, the latter being

expressed in terms of the space variations of the displacements, are

P^ ==(m— n)/\ 4- 2?i

^2 = (^^' ^)A + 2?2

F,=={m—n)A 271-

dx

dv

dy

dw

dz .

(3-3)
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(dv du\

(3-4)

Equations (3.3) express the tensional stresses in terms of the

extensional strains. The same relations among these six quantities can

be shown by equations giving the strains in terms of the stresses, as is

done in equations (2.14), (2.15), (2.16). These equations are

eJ?=P3-o(P, + P,)

Adding these last three equations we get

EA=(i-2a)(Pi + P2 + PsK

(3-5i

or P1 + P.2+P3
20
A = 3^A= (3-^)

k being the bulk-modulus.

Relations between the elastic constants,

•'- ~
E

n

I — 10

m—n

2in

7i{^m—n)

2n=-

m =

a =

E =

7)

We shall now turn to some of the simplest solutions of the equations

of equilibrium and find the stresses corresponding to them, as well as

the body forces X, Y, Z.

32. Homogeneous strain.

Assume that the body is in equilibrium and that the displacements

arc

u=^.ax, v--by, w^=c2, (3-8)

where a, b, c, are constants.
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r«, ^«* dv ^ dw , ^ ^

^^^"
a^ = "'a^ = *'^ = ^' ^ = '' + * + '''-

• • <3-9)

^w 5w 5«; dv dw dw

dy dz dx dz By dx

Therefore

Pj= (w— n) {a -\- h -\- c) -\- 2na
=^{m-\-n)a-\- {m— n){h -\- c) . . . . . (3.1 1)

'P2= {m -\- n)h -\- {m— n)(c + a) (3-i2)

Pz= {m-\-n)c-^{m— n){a-\-h) (3.13)

S,= S2= S3-=o (3.14)

Thus P^, Pg, P3, are principal stresses and are constant everywhere.

Equations (3.2) give

X=0, Y=:0, Z:==0,

so that the body forces are zero. Then the only forces on the body
are forces at the boundary, and if the 'body is bounded by faces per-

pendicular to the axes there must be pulls across these faces of amounts

P^, Pg, Pg, per unit area.

33. Two tensions zero.

The simplest case of homogeneous strain, from a physical point of

view, is the one in which P2= o and P3= o. These conditions require

that

(m -\- n)b -\- (m— n)(c-\-a)=o
(m -\- n) c -]- {m— n,) (a -\- b) ^^ o

whence, by subtraction,

2n{b— c) =0
that is, b= c

n
Im— 71 tn

and therefore b = c= a = a
2m 2

I

—

(tt— 20)
== a

2

= —oa (3.15)

Thus the three displacements are

u=^ax; v==—oay; w = — oaz] . . . . (3.16)

and the strains

a=±a; ^5 =— oa\ 7 = — oa; . . . . (3.17)

which only show that the mathematics agrees with our original assump-

tions as expressed by equation (2.3).

34. The three tensions equal.

Another simpk case occours when
P,= P,= P3, (3.18)
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and therefore

whence
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(3m

(3.19)

3^=—na
n

n) « =
(

Y

J— 20

2(1 + 0)
na

20

(3-20)

This is the case where the stress is a pure tension of the same

intensity across every plane in the body. There must, of course, be a

tension ^ka across unit area all over the boundary of the solid. If the

P's are negative, and therefore a negative, the stress is a hydrostatic

thrust.

35. The stress zero in one direction and the strain zero

in a perpendicular direction.

Another useful case is the one where

Pg= o and b= o (3-2i)

Equations (3.1 1), (3-i2), (3.13), now give

'P_^= (m -\- n)a-\- {m— n)c

P2= (w— n) (c -\- a)

o= {m -\- n) c -\- (m— n)a

The last of these gives a relation between a and c, by means of

which we can express P^ and F^ in terms of a alone. Thus

Pi {m-\-n)a— (m n)
m-\-n

and

4w

4W *

Q
2—20
E

I— o^

\ = {m— n) (i

2n{m—n

( m— n\
I a

\ m~\-n/

m-\-n
E I (I 20)

I +a I +(i — 20)

oE

(3.22)

(3.23)
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a

m—n
Also c = a

m + n
' _ I— (l— 2g)

I+(I— 20)

This last case would be useful if we were dealing with the

stretching of thin sheets by a pull in one direction, the length in a

perpendicular direction being kept constant by some means. The
stresses P^^ and F^ are parallel to the faces of the sheet.

36. A prism (or rod) hanging vertically under its own
weight.

The problem before us is to find a solution of the equations o£

equilibrium which satisfy the following conditions, if possible:

—

X= constant, Pg^o, Pg^o:
Sj= S2= Sj5= o

;

u= o ^

V = o > at the origin;

?n= o
J

P^= o where x= l,

I being the length of the rod.

It is easy to verify that the following displacements make the shear

stresses S^^, 83, S3, all zero.

v= — 2cxy + hy i (3.25)

w= — 2CXZ -\-hz
J

Also the displacements are zero at the origin.

Now du
-;— = 2ax4-b
Bx

__ ==. 2CX + h
dy

Bw
—- =— 2CX -\- h
Bz

/\= 2 (a— 2c)x -\-b-\- 2h

\/^u-=2(a-\- 2C)

Therefore — QX =m-^ -f n\/ ^u
uX

'= 2a(m-{-n)— 4c(w— n) . . . (3.26)
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Also — qY = m -—— -\- n\J '^v

dy
= o, (3.27)

and — QZt=o (3-28)

The stresses are

du

= 2x{{m'\-n)a— 2(m— n)c]-{-(vi-\-n)b-\' 2(m— n)h (3.29)

dy
= 2x\{m— n)a— 2mc\-\-(m— n)h-\-2mh (3-3o)

P8==P2 (3.3I)

To make Pg and P3 each zero at all points it is necessary that

2mc = {m—n)% or c = oa (3-32)

and 2mh= — (m— n)h, or h =— ob . . . (3.33)

Using these to express c and h in terms of a and h we find that

m m
The condition that Pj^=ro when x==l now gives

b=— 2al (3.35)

Then ^== — ^J!:i^ZZ^a(l-x)^ — 2Ea(l—x) . .(336)m
2n{-\m— n) ^and ^X = -a = — 2Ea (3.37)

rti

If we now write gg for ^X, which, in the present problem is the

weight of unit volume of the solid, then

^i = Q9{l— ^)^

which is the weight of a column of the material of unit area extending

from the point (jt, y, z) to the lower free end of the solid where x= I.

The displacements in terms of the one constant a are

u == ax^— 2alx -\- oa [y^ -\- z^]

=^a{x^—2lx-\-o(y^-{-z^)\ .... (3.38)

v=2oay{l— x) (3-39)

w=2oaz(l— x) (340)

The stress P^ is constant over the top surface of the soHd where

x= o, and its value, could, of course, have been found by simply con-

sidering the weight supported by the stress. The vertical displacement

at this upper surface is, however,

u = oa(y^ + z^) = ^^(y'^ + z^) .... (3.41)
2xL



SOME PARTICULAR SOLUTIONS OF THE EQUATIONS 33

If we write r for the distance of a particle of the top surface from
the .t--axis then the displacement of the particle is

«o = ^«'-=—^'- (342)

Regarding u^ as the .r-coordinate this is the equation to the

surface into which the originally plane top surface is bent. It is the

surface of revolution obtained by rotating the parabola

---1^^ (3.43)

about the .r-axis.

The radius of curvature of this parabola at the origin is

T F
=s= . (3.44)

20a ogg

which is very large for most materials. Unless the area of the top

surface of the solid is very great the parabola may be regarded as an
arc of a circle with the above radius of curvature as its radius.

37. The same problem from another point of view.
The same problem will now be treated in a much simpler way. It

has been solved rigorously for the sake of showing how the equations

of equilibrium can be used, and at the same time of showing what sort

of error there is in the usual simple method of treating such a problem.

Let Pj denote the inean tensional stress across a horizontal plane at

distance x from the top end, and let w denote the mean displacement

of that plane of particles in the downward direction. Then, since the

total tension across the plane must balance the weight below the plane,

Ave get, denoting the area of the section by A,

F,A = QgA(l--x). ...... (3.45)

or ^i = Q9{i—oc) (3.46)

Also, assuming that the same relation between mean stress and mean
strain exists as between actual stress and actual strain, we get

E—^F,=Qg{l-x), . .... (3.47)

whence u=-~{Ix— ix-), (348)

no constant being needed in the integration because u= o when .r= o.

In this case ?* is a function of .r only since u is the mean displace-

ment for all values of y and 2 and one value of ,x\ The present method
cannot, therefore, show any variation of u with y or 2 such as we got

l)y the previous method. It will be observed, however, that the value

of u given by the present solution is the same as that along the axis

of X (where y= 2= o) given by the last solution. Moreover, at

3
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points where .v is large compared with y or a, the present value of u is

practically the same as the more exact value of u. Then it follows

that the present solution is sufficiently exact for a thin rod.

The exact solution shows that, to make P^ constant, the top surface

cannot remain plane. If the solution were altered so as to make the top

surface plane after the strain then P^ would not be constant, and, in

addition, shear stresses would be introduced on the planes parallel to

the coordinate planes. These shear stresses would have to be zero at

the vertical faces of the solid, and, in the case of a thin rod, they would

be small compared with P^ everywhere except near the lower end where

Pj itself would be small.

38. Straight rod bent into a circular arc.

Another very interesting problem is given by the displacements

"=-"7"
} (3.49)

Here

du dv dw
, ,= az, — = —oaz, —- =— oa^, . . .(3.50)

dx oy oz

A=a (i — 2o)z (3.51)

\/^u=^o, \/'^v= o, \/^w = —'a , . . (3.52)

Therefore

r5 A— QX = m-^^n'^^u = o .... . (3-53)

<9 A
-—(jY = m-—-{-n\/^v = o (3.54)

oz

= a {(I— 2o)fn— n^

=-0 by equations (3.7) . . . (3-55)

Thus the three body forces are zero.

Again

, du
p = (m— n) A + 2n —

^ ^
^

CJX

^ |(i— 20) {m— n)-\-2n^aZ'

= \20n-\- 2n}az
= 2naz{i -{-o) = Eaz (3-56)

p,, = {(i — 2o){m— n)— 2on]az

.

' = (3.57)

and F. = Ui - 2o)(m— n)— 2on}az
^ = (3.58)
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Also

(dw Sv\

= na{oy— oy) = c

>'-'(S+l) 1 <»"
=- jia(x— x)=^^o

Thus the only stress that is not zero is P^, and this is

Pi= Ea^ (3.60)

Now let us suppose that our equations apply to a rod of uniform

section, and we will suppose that, before the strain, the jr-axis was
the line passing through the centres of

inertia of the normal sections of the rod.

The line in any cross section where the

stress P^ is zero is called the neutral

axis of the section Thus the ,^-axis is

the neutral axis of the section in fii; 15.

Let dA denote the element of area of

the cross section at distance z from the

axis of 1/, the strip PQ in fig. 15. Then
the total tension across this section is Fig. 15

T =fP^dA=fEnzdA ^EafzdA . (3.61)

But, iby the equation for the position of the centre of inertia of an area,

JzdA^zA,
and in our case^= o by our hypothesis that the ;r-axis passes through

the centre of inertia. Consequently

T= o.

Taking moments about OY of the tensions on the elements of area,

we get, as the total moment,

M = fzF,dA
=^Eafz^dA
= ¥Aa (3.62)

where I denotes the moment of inertia of the area about OY.
If we take strips of area parallel to the <?-axis and denote one of

these strips by dA the total moment of the tensions about OZ is

W = —fyF^dA
= — EafyzdA
= — E«I yx (3.63)

where ly^ denotes the product of inertia of the area relative to the

axes OY, OZ.
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If OY, OZ, are principal axes of inertia at O of the cross section

then lyx is zero, and therefore M' ==o. If either OY or OZ is an axis

of symmetry of the cross section then these two axes are principal

axes of inertia, for it is clear in this case that ly^ is zero, because

the axis of symmetry divides the area into two portions in one

of which the integral fyzdh is positive, and in the other of which it

has an equal negative value.

We see then that the assumed displacements correspond to a

tensional stress across normal sections of the rod, which stress is

proportional to the distance of the element of the section from the

xy plane. These stresses are positive, that is, tensional, when z is

positive, and negative, that is, compressive, when z is negative.

Also if OY, OZ, are principal axes of inertia of the sectioli these

stresses are equivalent to a couple of magnitude Ela, and this couple

is constant along the rod. This state of the rod could, then, be pro-

duced by applying a pair of balancing couples at the ends of the rod,

the stress system across any section on the portion of the rod on one

side of that section being the action necessary to balance the couple

at the end of that portion.

Let us consider again the case where OY is the neutral axis but not

a principal axis of inertia of the section. We have already found, in

equations (3.62) and (3.63), one pair of component couples acting

across the section. The axes of these couples are the axes of OY and

OZ, and the resultant couple across the section can be obtained by

adding vectors of magnitude M and M' drawn along OY and OZ
respectively. The method consists merely in .representing a couple by

a vector perpendicular to its plane, and the

right-handed screw system is understood here.

The resultant couple across the section

can, however, be represented by a more
useful pair of components than the pair

in equations (3.62) and (3 63). These

more useful components have as axes the

principal axes of inertia of the section.

Let OY', OZ' (fig. 16) be the principal

axes of inertia of the section. Then, if y' , z' , are the coordinates of

an element of area c/A referred to the new axes, the moment about

OY' of the stresses across the section is

M,

Fig. 16

But

Therefore

== EafifzdA

z = cos(p— y sm(p.

My' = Ea/(x'2 cos fp _ ^'yy' sin (p'jdA

= Ea cos q?fz'^dA
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since fz// dA = o

because the new axes are principal axes. If we write lyf^ for the

moment of inertia of the section about OY' then

My' — Ely' a cos 99 (3-^4)

On comparing this with the result in (3.62) we see that the component
couple about a principal axis, which is inclined at the angle (p with

the neutral axis, has the same magnitude as if the principal axis itself

were the neutral axis and as if at the same time a were replaced by

u- cos (p. It is shown in the next article that a represents the curvature

of the bent rod. Then if OY' were the neutral axis My' would be the

couple corresponding to a curvature a cos 9? in a plane perpendicular

to OY'. It can also be shown that a cos (p is the curvature of the

curve we should get by projecting the actual curve of the rod on the

plane perpendicular- to OY'.

The component couple about OZ' is clearly

M.' == EIx' a sin q).

If we are given the component couples M,,' and M*' the magnitude of

the resultant couple is yM^ , -{-
M'^

,
, and its axis makes an angle

tan~"^ —-- with OY'. The resultant curvature is

My'

'.mr-m
and the neutral axis, which is perpendicular to the actual curve of the

rod, makes an angle

with OY'. We see again, what equation (3.63) has already shown, that

the axis of the resultant couple does not coincide with the neutral axis

except when the neutral axis coincides with one of the principal axes

of the section.

39. The form of the strained rod.

The displacements of points originally on the ji'-axis are obtained

by putting y=zo, 2= in the expressions for the displacements.

These displacements are

r°-:I;7'}- • • • • • •<3.65)

Since w is a displacement in the ^:-direction we may write 2 for w
to get the equation to the curve into which the old' jr-axis is strained.

This curve is

^=_iax- -{3.66)

I
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The radius of curvature of this parabola is

R

(I +a2x^)^

a

(-S)
ni

=— approximately (3-^7)
ci

This last approximation is obtained by neglecting ^'- in comparison

with x'-, z being the displacement w in this equation. This is

in agreement with all our previous work since we have always assumed

that the displacements were so small that they could be neglected in

comparison with the dimensions of the body we were dealing with.

All the more may we neglect the square of a displacement in

comparison with the square of a dimension of the body. Then it follows

that, to the degree of approximation that is usual in elasticity, the

radius of curvature is constant along the rod.

In terms of the radius of curvature the couple M about OY is

M = ^ . . . . . . . . (3.68)

The shape of the cross section is also altered. It is easiest to study

the section containing the origin. At this section x= o and therefore

u = 0,

v==—oayz

==

w= z^-).

(3.69)

The first of these equations shows that the originally plane section

remains plane.

Suppose the unstrained form of the cr®ss section was a rectangle

with sides parallel to the axes of y and z. Let the equations of these

sides before strain be

vy = +h and z= ^c.
The hne y = b
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becomes

and the line

becomes

ij ^ b -\- V

1 1

^^

(370)

. (3.71)

Thus these two edges remain straight lines but each is turned through

the small angle — and they are turned in contrary directions.

The other two edges are changed into the two curves

- = -±^ + ^^'/--^-) (372)

These are equal parabolas and the two curves differ from the curve

o

2R
//- (3.73:

only in being bodily displaced parallel to the axis of z. Comparing

(3-73) with the curve of the central line of the rod, namely

X-

2R (374)

^vhich we have shown has a radius R, we see that the two strained

edges have a radius — , and the vector representing the radius of
o

* curvature of either of the edges is drawn in the direction contrary to

Z

- >- --"V 1

i

....
^^

Y

-.

\

a.

Fig. 17

that in which the radius of the central line is drawn. The strained

section is shown in fig. 17.

We have shown that the cross-section containing the origin remains

plane after strain, and it can easily be shown that all other cross-
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sections remain plane and perpendicular

to the line of centres of the cross

sections. Thus the cross-section B'B
(fig. 1 8) whose equation before strain is

./; = I

is displaced by the strain to

x = l-\- u

=^ + ^^ . (375)

This is a plane parallel to the plane

/

which latter contains the 3;-axis and is inclined to the ^-axib at the

small angle — Thus the original plane is rotated about a line parallel

/
to the 3r-axis through this small angle — • But, the equation to the

R
line of centres being

y.2

2R'

the slope of this curve at the point x

/dz \ _
I is

/

R (376)

which is equal to the angle through which the cross-section is turned.

It is clear that the curve and the cross-section have been turned in the

same direction and therefore that each is perpendicular to the other.

40. Case of failure of the preceding solution.

It might be imagined that everything in the preceding solution is

quite rigorous and that therefore it is the correct solution to the

problem of a beam bent by a pair of opposing couples at its ends. But

there is at least one simple case in which the solution fails. Suppose,

for instance, that the cross-section is a rectangle and that the breadth

2b is several times as great as the depth 2c. The rod would then be a

strip like a steel rule, and for such a strip the radius R. might easily

be little greater than 2b, or even, for a very wide strip, less than 2^.

Now the displacement of a point in the ^r-direction is

w =
2R

and this, for points on the edges where y= b '\s

w
2R

(h^—c^)
2R

approximately (377)
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For a thin strip this might easily be greater than 2c, in which case

a point would be displaced right across the width of the strip. But
there are many points in our theory which are justified only on the

assumption that displacements are small compared with the dimensions

of the body. Then our present solution will only hold provided is

small compared with 2c ; that is, b'^ must be small compared with Re
We shall return to this point in Chapter 14 when we deal with the

bending of thin plates.

(



CHAPTER IV.

THE EMPIRICAL BASIS OF ELASTICITY.

41. Hooke's law.

We have already assumed some of the empiricaj properties of

materials in Chapter II. We shall state briefly the laws deduced from

experiments on elastic bodies.

Under the action of forces an elastic body is deformed or strained.

If the forces do not exceed a limit which, for any particular materi-al,

and for forces applied in a given way, is determined only by experi-

ment, then the body recovers its original size and shape when these

forces are removed. If the forces exceed the experimental limit

mentioned then the. body only partially recovers its size and shape

when the forces are removed. The body is said to be perfectly elastic

within the limits in which it completely recovers from the strains.

When the body does not completely recover, the forces, and therefore

the stresses in the body, are said to have exceeded the elastic limit,

and the strain that remains after the forces cease to act is called a

permanent set.

Hooke's law has already been stated in Chapter II. If can be expressed

shortly in the following form :— Within the elastic limits the stress

producing any strain is proportional to that strain. A more generalised

law, which includes Hooke's Law, and of which we have already made
use in Chapter II, can be expressed thus :— Each force acting on an

elastic body produces its own strains independently of the other forces.

To put it in another way:— The total strains due to several forces

is the sum of the .strains due to^ each, force .separately. It is easy to

see that Hooke's Law is involved in this last law, for, if a particular

force produces certain strains, then a force of n times the magnitude

wnll produce strains n times as great, since each of the n forces pro-

duces the same strains.

Another assumption in the theory of elasticity, which agrees very

well with experiment, is that, within the elastic limits the ratio of

stress to strain is the same for positive and negative stresses.

The limits within which Hooke's Law holds and those within which

no permanent set is produced are not precisely the same for all bodies,
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but they are nearly the same for steels and wrought iron. The mathe-

matical theory of elasticity really only applies up to the limits within

which Hooke's Law is true.

42. The yield point.

In finding the tensile strength of any given material, small bars^

usually of circular cross-section, whose longitudinal sections are as

shown in figs, igi-a) and 19(b) are gripped at the ends, and put in

Fig. iga Fig. 19b

tension till they break, the tension and extension being observed

continuously till fracture occurs. The graph showing the relation

between stress and strain for such a test-piece of steel is shown in

fig. 20.

The portion OA is a straight line, but AB is slightly curved, the

lower side being the concave side. The point B, at which the strain

begins to increase greatly for very little increase of stress, is called

the yield point The point A determines

the elastic limit for the purposes of the

mathematical theory, but there would pro-

bably be very little error for most materials

in using the theory up to the point B.

The maximum stress is reached at D, and

is considerably greater than the stress at

the elastic limit.

The stress at the elastic limit for cast

iron is so low compared with the maximum
stress that the material will stand, before

fracture that it can hardly be called an

elastic material at all. Nevertheless, it

is in a. different class from such a ductile material as lead, because

it does recover from much of its strain when the elastic limit has been

far exceeded, whereas lead hardlv recovers at all. Its behaviour will

Strain

Fig. 20
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be best understood if we conceive that, in the figure for cast iron

corresponding to fig. 20, the length OA is a small proportion of OB.
Also the elastic limit is not so well defined as for steels and wrought iron.

43 Ultimate stress.

The ultimate stress of a test piece is defined to be the quotient

obtained on dividing the maximum pull on the piece during the process

of breaking by the original area of the thin part of the section, where
fracture ultimately takes place. This does not coincide with the

maximum stress in fig. 20 because in that figure the stress is calculated

on the actual area of the section at any instant, and as the bar lengthens

the area of the section decreases to a measurable extent.

44 Factor of safety.

In actual engineering practice it is usual to calculate, as nearly as

possible, by the theory of elasticity, the greatest stress to which any
piece of material in a structure will be subjected, which stress is called

the working stress, and the fraction

ultimate stress

working stress

is called the factor of safety of that particular piece. The ultimate

stress used in the calculation is, of course, the ultimate stress of a

similar piece of material which has been tested. It is common, wh.en

dealing with material whose stress depends very much on what may
be regarded as the unknown accidents of manufacture, to make test

pieces at the same time and under the same conditions as the actual

material that is to be used in a structure. This gives some guarantee

that the ultimate stress assumed in calculating the factor of safety is

very nearly correct for the piece to which the calculation applies.

45. Viscosity in solid bodies.

Any elastic body may be set vibrating in different sorts of ways^

and these vibrations always die out after a short time. Since the

vibrations usually take place in air the whole of the damping effect

might be attributed to the action of the air on the body ; that is, it is

possible that the whole of the energy in the vibrating body is dissipated

into the air by means of air waves, such as those that produce sound.

But it appears to be well established by experiment that the air alone

is not sufficient to account for the whole of the damping effect; that,

in fact, there is a sort of internal frictional resistance to the relative

motion of the particles of the body, this resistance depending on the

relative velocities, and increasing as these relative velocities increase.

The property of an elastic body which causes such resistance is exactly

similar to viscosity in fluids.

46. Elastic fatigue.

Although the strength and other elastic properties of a body are
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usually unaltered by stresses within the elastic limit there are

circumstances in which this is not true. When a body is subjected

for some time to rapidly alternating forces the properties of the

material may be very much changed. Experiments show that such a

body may be broken by a stress far below that at which it would have

iDroken before the application of the alternating force. The mere

repeated application and removal of a load, if the change takes place

rapidly, is known to weaken an elastic body.

47. Theories of elastic failure.

Something in an elastic body has certainly given way when per-

manent set is brought about, and it seems reasonable to regard the

point at which permanent set begins as the beginning of elastic failure.

The theory of elasticity does not help us to make calculations beyond

the elastic limit because this theory is all based on the assumption that

Hooke's law is true, and there is no adequate mathematical theory

beyond that point. Experiment has not settled' at what particular state

of stress or strain rupture or permanent set occurs. Three theories

have been advanced but no decisive experiments seem to have deter-

jnined which is right. The first theory states that failure occurs when
the greatest principal stress reaches a certain definite limit for a given

material; the second that the greatest principal strain is the deciding

factor; and the third, that failure occurs where the greatest

difference between the maximum and minimum principal stresses at a

point reaches a fixed amount. The last theory amounts nearly to the

same thing as taking the shearing stress as the deciding factor.

It is easy to think of rational objections to all the above theories.

The last surely cannot be entirely right because it would mean that a

body could not be ruptured by an infinite hydrostatic thrust or the

corresponding tension. It seems probable that the factor that deter-

mines rupture is different in different cases. Possibly the first theory

is right in many cases, but if the same piece of material had been

subjected to a different set of stresses the shearing force might have

been the deciding factor. In fact, instead of saying that any one cf

the three theories is right it is probably much nearer the mark to

say that each contains a part of the truth, and that failure really

occurs when some more complicated combination of the stresses

and strains reaches a certain limit, and in certain simple cases the

condition may reduce to one of the three given. To give a geometrical

illustration, the point (x, y) certainly lies outside the circle x' -j- y-

= a^ when x > a, or when y> a; but there are many points outside

the circle for which neither x nor y is greater than a. It may possibly be

that all the three conditions for non-failure must be true simultaneously;

that is, failure may occur when any one of the three following

conditions is satisfied:

—
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( 1 ) if the greatest principal stress exceeds a certain given magnitude

;

(2) if the greatest principal strain exceeds a certain given

magnitude

;

(3) if the greatest difference between the maximum and minimum
principal stresses at any point exceeds a given magnitude. .

We have, however, enough experimental data on which to build a
jj

mathematical theory within the elastic limits, and it rests with the

experimentalists to settle the doubtful points in their own domain.



CHAPTER V.

THE BENDING OF THIN RODS BY TRANSVERSE
FORCES.

48. Rod bent into a circulur arc.

In Chapter III the stresses were obtained in a uniform rod in

which the Hne of centres of inertia of the cross-sections was bent into

the form a circular arc. The results are valid provided the breadth

of the cross-section is not much greater than the depth. A thin rod,

m this chapter, will be taken to mean a rod whose length is much
greater than its breadth or depth, and of which the breadth and depth

are not greatly unequal. It is not the absolute dimensions but the

ratios of these dimensions that matter.

Taking the axes in the same positions as in Art 38, in which, it

must be remembered, the A'-axis passed through the centres of inertia

of the cross-sections before strain, we shall assume that the axes of

y and z are principal axes of inertia of the cross-section which contains

the origin. Then the stresses are equivalent to a couple given by

M-|.

I being the moment of inertia of the section about the 3;-axis, and

R the radius of the circle into which the line of centres of inertia is

bent. The plane of this latter circle is the zx plane. The line of

particles which lay on the y-axis before strain are distributed on a

circle of radius — after strain, but it will be convenient in future to
a

assume that this line remains straight after the strain. This will not

make any difiference to- our results as long as the maximum displace-

ment in the ^-direction due to this curvature is small compared with

the dimension of the rod parallel to the .^-direction, and this will always

be true for the sort of rod we are deaHng with in this chapter.

49. Rod under transverse forces.

Suppose a rod AB is in equilibrium under the action of a number
of forces perpendicular to its length such as P^, Pg, . . . . Q^, Qg etc
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in fig. 21. Since the portion CB is in equilibrium the action of AC on

CB across the section at C must be such as to balance the forces P3

and Q3. This action must consist of a force F parallel to Q^ such that

F= P.-Q, '.

. (S-i)

and a couple M which will balance the couple formed by F and the

resultant of P3 and — Q^. By taking moments about C for the portion

CB (fig. 22) we find that the moment of this couple is

M=CHXP.-CKXQ3 ..... (5.2)

The force F is the total shearing force across the section at C, and

M is called the ibending moment at C. We see that F is equal to the

algebraic sum of all the forces on one side of the section and M is

the sum of the moments of the same forces about a line through C
perpendicular to the plane containing the forces. For definiteness we

A[

p,

r- c
Pz

1 I 1 IB

V Q3

c 4—ZHBhT
Q3

Fig. 21 I'ig. 22

shall refer to forces such as P3, which are arawn downwards in the

figure, as downward forces, though as far as the theory is concerned

they might be horizontal forces.

|We have shown the shearing force at C on the portion CB as an

upward forpe, but it may easily be a force in the contrary direction.

We shall, however, make it our rule that the shearing force F on a

horizontal rod is positive when it has the direction shown in fig. 22,

and negative when it acts in the contrary direction. This is quite in

accordance with regarding a thrust as a negative tension. Since a

shearing force is a reaction between two parts of a body it has contrary

directions on the two portions. The rule is that the shearing force on

any section is positive when the part of the rod to the right of the

section exerts a downward force on the part to the left; or what

amounts to the same thing, when the part to the left of the section

exerts an upward force on the part to the right.

A similar rule for the sign of the bending moment is needed. The
rule we shall use is that the bending moment is positive when the part

to the left of a section exerts a counter-clockwise couple on the part

to the right.

In order to fix the rules of signs for F and M it is worth while to

observe, and remember, that both F and M are positive for a rod

built into a wall at the left hand end and supporting a load at the other

as in fig. 23.
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Measuring x from the fixed end

in this case, and neglecting the

weight of the rod itself, the shearing

force and bending moment for this

beam are given by

F = W (5.3)'

M = Wil—x) . . . . (5.4)

1 being the total length of the beam.

It is clear that the shearing force

in a beam changes, in passing an

isolated load, by an amount equal

to the load. The shearing force

and bending moment for a beam
under several isolated loads are shown
by diagrams for one case in fig. 24.

It should be observed that, in

passing a load, although there is a

sudden change in the shearing force

of amount equal to that load, there

is no sudden change in the bending

moment. Thus the bending moment
has the same value immediately on
opposite sides of a load. It is the

slope of the bending moment dia-

gram that makes a sudden change.

Q
Fig. 23

Fig. 24

P

CL_:)M+dM

I

50. Beams under distributed loads.

Let the load per unit length on a beam be w at distance x from

some origin taken on the line of centres of the beam. Then wdx is

the load on dx, and w may be constant

or a function of x. The shearing stress

and bending moment are F and M at j",

and {F-{-dF) and (M + rfM) at {x + dx). ^
The forces- on this element are shown

in fig. 25. Suppose that ladx acts at a

distance fdx from P. Then /* is a fraction yy^x F+dF

which is approximately one half. Resolving Fig. 21

the forces perpendicular to the beam

(F4-c?F) + M'dx = F;

or rfF =—wdx
dF

dx
whence = —w

Again, taking moments about P', we get, since each of the couples

M and (M -\- dM) has the same moment about all points in its plane.
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(M + dU) + Fdx = M — wdx x{i—f)dx;
or dU -: —Fdx~w(i —f)(dxy,

whence -7- = — F — w ii — f)dx
dx
= - F

since, in the limit, d.v= o.

We have now obtained the equations for beams under distributed

loads, namely,

dF

f-'- ««>

rf2M dF
from which ——

- == — -—
dxJ dx

-'x^ (5-7)

If there are concentrated loads on a beam as well as distributed

loads then equations (5.5), (5.6), (5.7), still remain true between any

pair of loads, but, by considering the equilibrium of an element on

which a finite load acts, it is easy to show that the values of the

shearing force in the immediate neighbourhood of this finite load, and

on opposite sides of it, differ by the amount of the load. That is, there

is the same discontinuity in the shearing force diagram as in fig. 24^

but there is no discontinuity in the bendin-g moment.

51. Relation between the bending moment and deflexion.

If M is the bending moment in a beam and R the radius it was
proved in chapter III that, when M is constant and when the

principal axes of inertia of the section of the beam are respectively

in the plane of the couple M and perpendicular to this plane,

EIM = -^- (5.8)

Now M is not constant in beams under transverse loads. A
shearing force F exists, as equation (5.6) shows, only when M is

variable. But when we are dealing with a beam whose length is much
greater than its breadth or depth there is no appreciable error in using

the formula (5.8) for M just as if M were constant. We shall assume

provisionally that (5.8) is correct and show later that is justified.

There is a line of fibres crossing any section of the beam that are

neither stretched nor shortened. These are along the 3;-axis in fig. 15.

This line is called the neutral axis of the section. The tensional stress

at distance z from this axis is, by equation (3.60),

Fz
Pi = Ea^=~ (S.9)
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The relations expressed by (5.8) and (5.9) are usually written,/•ME .

-.^T-^R ^5.10)

f being now written for the more cumbersome symbol P^.

In dealing with beams we shall use use 7] for the downward de-

flection of a point on the line of centres of inertia of the cross-section

of the beam. It- will be seen than rj is the displacement, parallel to the

negative direction along the ^-axis, of a point on the line of centres

of the beam, and therefore that it is what we have previously denoted

by —w for such a point. It is more convenient, however, to have the

displacement reckoned positive when it is downward. If it were not

that we already have a '\'-axis in the plane of one section of the beam
it would have been convenient tO' write y for rj.

In equation (5.10) R is now the radius of curvature of the xrj

curve. The abscissa x is measured from any convenient origin, but

will always be reckoned positive towards the right in our figures. Fof

this curve

I dx'^

—
R^

""
"i 7r/*i\2|3

and since,j in beams

may take

{Si

I +
\dx)

(51 )

r

R "" — dx^ '

Then the equation for the bending moment is

dh^

is always small compared with unity, we

d'^ri

M«=EI
dx^

• (5.12)

• (5-13)

requires that M should be positive when ^^, is positive. In fig. 26

the positive sign being chosen for R since our convention that M
is reckoned positive when the curve is concave on the lower sii^e

d'^Tj . . . ^ „ ^ dn— IS positive. In % 26 —
starts by being positive at O and becomes zero at D, from which it

dr} . d'Yf
follows that —^ is decreasing as x increases, and therefore that —

^

dx dx^
is Negative, which agrees with our convention for the sign of M.
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(5.i6)

Now for a uniform beam, for which I is constant, equations (5.7)

and (5.13) give

e^t' = «' •^•'4>

Also equations (5.6) and (5.13) give

-S--^ <-^)

52. Solution of beam problems.
liWhen w is given as a function of x (or as a constant) e(j[uation

(5.14) can be integrated four times in succession and thus tj can be
found, and consequently F and M can be found. The complete integral

involves, however, four constants, one of which appears at each

integration. The problem is not solved until these constants have

been determined. It is the conditions of the beam at its ends that

determine these constants, and there are two conditions for each end,

four conditions in all from which the four constants can be determined.

We shall state what these conditions are.

(i) For a free end, with no load on that end,

F = o i.e.—f = o,

dhi
and M = o i.e. —-^, -- o,

dx-

If there is a load W on the free end then F=W at that end.

(2) For a supported end, that is, an end resting on a support, but

not gripped,

dhj )M = o i.e. —-^. =^0, I . „x
dz- } (5-17)

and 1] is known J

(3) For a clamped end, where both the position of the beam and

its direction are fixed, as when it is built into a rigid wall,

— is known, and is usually zero, I /^ q\
dx > . . . . (5-io;

and r] is known j

Thus we have in every case enough information to determine ij

completely, and therefore to determine completely F, M, and the

stress
f.

53. Distribution of shear stress in a beam.
We have found that there is a shearing force F across a section

of a beam, but this cannot be distributed as a uniform stress across

the section for this would require an equal shear stress over planes

perpendicular to the ^-axis, and in particular, over the top and

bottom surfaces of the beam. No such boundary forces are applied
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and therefore the shear stresses near the highest and lowest parts of

a cross-section must be zero.

Let us consider a beam of uniform rectangular section. The
following argument is good for such a beam.

Let 2b be the breadth of the beam and 2c the depth. Consider

the forces on the bundle of fibres of length dx, width 2b across a

section, and height ds. These form a .thin rectangular plate as shown
in fig. 27, where dx is shown much greater than ds.

The tensional stresses at the two

ends are /' and f-\-df, where ^~ \^^

Let the shear stresses on the upper
]^

-j

and lower faces of the plate be S ^ ^ ~l
and S -\- dS, where , Fig. 27

dS= —dz.
d%

Then, resolving in the direction of dx, we get

df X 2bdz + (/S X 2bdx=^o.

Dividing by 2bdxdz,

/ + =0 (5.19)
dx a%

But, by (5.10)

/•=^M . . (5.20)

Therefore, since I is constant,

d^__^dM ^ z^
dz 1 dx I

and consequently

n-ii)r ^':':^

the constant being adjusted so as to make S=o when z= c. Writing

A for the area of the section, we get

l=^\c'K , (5-22)

and therefore

3(s;2_c2)F , .

S^'^^ ;— X ^5-23)
2G^ A

Neglecting the sign the maximum value of this shear stress occurs

wher€ ^= and its value is

s„=i| ....... . (5.24)

which is once and a half the magnitude of the mean shear stress over

the area.
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54. Justification of the neglect of the shear strains in beams.
We have just shown that our equations for beams lead to the

conclusion that the maximum shear stress in a beam of rectangular

section is P

^»=iA <-^5)

Also the maximum tensional stress given by (5.20) is

'c M
^^ = 1^^ =^^ ^'-'-'^

Then ^=^ (5.27)
A 2M ^^^

^

Now F is a force of the same. order as the loads on the beam, while

M is of the order /F where / is the length of the beam. Of course

there may be .points where M is zero or very small but the strains

due to these small values of M are themselves negligible, and over

practically the whole of the beam M is of the order IF, and the

deflection of the beam is due to bending moments of this order.

So ^
Then -7- is of the order — , and for most beams this is a small fraction.

/i /
For the ideal thin rod it is a negligible fraction. Now since the shear

stress is of smaller order than the tensional stress it follows that the

shear strains are also of smaller order than the tensional strains ; and

fcally the displacements du'C to the shear strains are of smaller order

than those due to tensional strains. But if we neglect altogether the

shear strains we arrive back at the condition where there is no

shearing force, and therefore a constant bending moment. This

justifies us in using equation (5.8) even when M is not constant. It

should be remembered, however, that the preceding argument is based

on the assumption that the depth is small compared with the length.

The greater the ratio r : / is the less accurate do our results become.

A precisely similar argument to the above could be used for a

beam with any shape of cross-section.

55. Uniform beam clamped horizontally at both ends under
a uniformly distributed load

Let w be the load per unit length and / the length of the beam.

Fig. 28

Let X be measured from the left hand end of the beam, and r] froni

the level of the central line at the ends. We shall write D, D^, etc,, for

d (V^
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Then, starting from equation (5.14),

EID^/y^^t; (5.28)

^nd integrating four times in succession we get

EW'^r] = wx -[-

A

(5.29)

EID^r]^iwx^-\-Ax + B (5.30)

EIDr] =-}iWx'^ + iAx^--\-Bx + C {5.31)

EI^ =Ai^x* + iAx3-l-iBx2 + C:^ + H . . (5.32)

The end-conditions clearly are

?; = o I both where x= o\
( \

I)ri = o\ and where x= lj ' ' ' '
^^'^^'

The two conditions at the end x= o give

Oz=:C'
The other two now give

o=^>/4 + iA^^ + iB/2 .... .(5.34)
0= iwP-{-iAl'^-\-Bl (5.35)

Solving these equations for A and B we get

A = — 4- wl

B= -^^wP
Then the complete solution is

Elrj = ^-;^wx^— -y\jwIx^ + -^^wlV
= i^wxHl-xY {5.36)

Also M==EID2,^
= J ,^(6.x^— 6/x+ r^) ..... (5.37)

F = — EID=^?^

= w{l-l-x} (5.38)

Thus F is zero at the middle of the beam, which is obvious from the

symmetry about the middle. Also M is zero where

ox-^— 6lx-{-l' = o

or y =i±— (5-39)

These two points are at the same distance —— I from the middle
b

of the beam and. on opposite sides of the middle.

The maximum deflexion occurs at the middle of the beam and its

magnitude is

=^4^ • •
•(5-4°)

The bending moments at one end and at the middle are respectively

yi^^^^wi' and M, = — ^i^«^/- ...... (5.41)

whence it follows that the greatest stresses are at the ends of the beam.
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56. Uniform beam, under a uniformly distributed load»

clamped horizontally at one end and supported at the other
at the same level as at the clamped end.

Fig. 29

The origin is taken at the centre of the section of the beam at the

clamped end just where it enters the wall.

As in the last question

EID*»; = w
Elrj = -^^wx'^ + i A:r3 + ^ Ba;^ + Cx + H.

The end-conditions now are

D^^o} ^^^""^ ^^^ ..... (5.42)

j^IJjZlj'^^^^^ ^ = ^ (543)

Conditions (5.42) give H= o and C= o.

Then conditions (5.43) give

o = -Jw.'/2 + A/+ B.

The values of A and B satisfying these equations are

A = — pvl,

B = IwlK
It follows that

F ^—EW^^ = —(wx + A)^w{^l-x),\ ' , .

and M= EID'^yj = w(\x^— ^lx^ll') J
* *

^^''^^'

The value of F at the supported end of the beam, where x= l, is

F, = -!«.•/ (5-45)
But the shearing force at the end is equal to the load on the end. The
support at the end must be regarded as applying a negative load the

magnitude of which we have shown to be ^wl or fW, W being the

total load on the beam. Then
-J

of the weight of the beam must be

supported at the clamped end.

The greatest magnitude of the bending moment in the beam, and

therefore also the greatest stress /, occurs either at the. clamped! end,

or at the point where DM= o, that is, where F= o. But F=o
"where x= ^l. The values of the bending moment at jr= o and at

x==^l are respectively

and M, ==_^|,,„/2=_3|-W/) • • •
^^'^'

so that Mq has the greater magnitude.
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The maximum deflexion occurs where T)i]= o, that is, where

ix» + ^Ax-^ + B.r = o

or x(lx-'--f^lx + il-')=^-o

whence
I i6

(5-17)

The positive sign cannot be taken since the corresponding point is

not on the beam. Then

15— V33
10

= 0578^ (5.48)

57. A uniform beam of length /, clamped • horizontally at

one end, under a given concentrated load W and a given

couple C at the other end.

I'ig. 30

By taking moments we find that the bending moment at x is

M = C + W(/^-.r) (549)
Therefore

EID-^»y = (C + W/)— Wx- (5.50)

Integrating twice we get

ElDi] =iC + Wl)x— iWx^ (5.51)

EIrj '==i{C + Wl)x-'—lWx\ .... (5.52)

no constants of integration being needed because rj = o and Da; = o
where x = o.

Let 0^ denote the slope of the beam at the end x= l, and rji

the deflexion at the same point. Then

EI tan ^, = (C -f W/)^— |W/2
^{C + iWl)l (5.53)

EIiy,==(lC + iW/)/-' (5.54)

Since ^j is small we may write 6^ for tan O^. Then solving equa-

tions (5 53), (5.54), for C and W in terms of 0^ and rji we get

W = ^^2,y,~/^,) ...... (5.55)

C =

Then

2EI,

EI

210,) .

C + W/ = — (69/1— 2/^1)

. (5.56)

• (5.57)
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>y = ^(3»?i-^^i)-^(2^L-^^i) . • . i5-5^y

In terms of r]^ and 0^ our equation for rj becomes

^ = 7^(3*?]

In particular, if ^^ ^^ o then

V

whereas if rji^o we get

3a;2

V-Vii'Yi ^) ^^-59)

"^-^'^ (¥--¥) •
• • • •

•(3-M

In the general case

= ^j'';i(6^-i2a;)-Ze,(2Z-6x)j . . .(5.61)

F = —DM
= ^j^'?i-'eij =w {5.62)

This last result is only a verification of (5.55) since F is clearly

constant along the beam.

58. Deflexion of a beam due to several loads or several

systems of loads.

Suppose that the conditions at each end of a beam are that two

of the quantities rj, Dr], T)^^r], D^r], are zero, and suppose that it is

required to find the deflexion rj due to a load (w-^ -\- w^) per unit

length. It is our purpose to prove that

where r]^ is the deflexion due to the load ii\ alone with the given end

conditions, and 9^2 ^^ the deflexion due to w^ alone with the same end

conditions.

The equations for rj^^ and j-j., ^^^

EID'rj,=^w, (5.63)

EID% = w, (5.64)

Adding these we get

EIDM>?l+»?2) = ^'l+^^'-> (565)

JBut if f] is the deflexion due to the total load {w^ + w.y) then

EW^7] = w^+w.^ (5.66)

Thus 7] satisfies the same differential equations as (r]^ + t;.^)-

Suppose one of the end-conditions is that

D'*?y = o at that end (5-^7)

Then

S?^^°l at the same end .... (5.68)
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o} • • •
<575)

Adding these last two equathons we get

D^(m + V2y^o ....... (5.69)

which shows that (>/i+'72) satisfies the same end conditions as rj.

Thus the total deflexion r] satisfies all the equations and end-conditions

that {rji -j-r]2) satisfies Then rj must be equal to {f]i-\-t}2)'

If one of the end-conditions is that

D">/— « • (5.70)

then the corresponding end conditions of t]^ ane i-j.^ can be

D«?/,==oj
'•••••• K571)

or we may choose

Vtj.^af (^-7^'

In either case

D«(>yi+7y,) = a = D«»; (5.73)
As a particular case, if one of the end conditions is

>y = «, ........ (5.74)
Then we can choose

V2
at that end.

The preceding argument can be extended to include concentrated

loads. A concentrated load W^ may be represented by w^ per unit

length provided w^ is a function of x which is very large over a small

range of values of x on opposite sides of the point where the load

is applied, and zero everywhere else, and sucih that,

l'to\ dx = W,

.

This device of replacing a load at a single point by an equal load

distributed over a small length (or area) of the beam has the advantage

that it does actually represent the physical facts, for a finite load

cannot be concentrated on a point or on a geometrical line.

A couple applied at any point of a beam can also be included in

the preceding argument, for the couple can be regarded as two large

concentrated forces acting in opposite directians at a very short distance

apart.

What has just been proved is only a particular case of the law,

stated in Art 41, namely, that each force produces its own stresses

and strains just as if the other forces were not acting.

The proof has been given only for uniform beams but it is equally

true for beams with non-uniform sections.

59. Uniform beam clamped horizontally at one end and
free at the other, carrying only a concentrated load W.

Let the load be applied at distance a from the clamped end, which

is taken as the origin. Then, by taking moments about the point at x,

when .r<a,
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that is,

Therefore

and

M

EtD/;

EI>;

W(a— x) . .

W(ax- ix-l . .

. (5-76)

• (577)

• (5-7«'

• (5-79)

no constants of integration being needed in consequence of the condi-

tions at the origin.

The part AB is under no load

and is therefore straight. To find

its equation we need the value of

1] at A and the slope at A. From
(5.781 and (5.79) wet get, writing

1]^ for t] at A,

Therefore the equation to AB i;

Wft*^

or

whence

EI(?; — jy^) = -lW«2{x— a) .

Elrj ^ Wa'-(lx — {a)

(5-8o)

(5.81)

(5.«-')

(5.83)

The values of jj and D?y at the free end where x= l are given by

Ehiy = Wami- }a) ...... (5.84)

EID^.,=iWa'-^ (5.85)

60. Uniform beam clamped horizontally at both ends and
carrying only a concentrated load.

Let the load be applied at A and let the origin be taken at the end

O; let OA= a and 0B= /.

If the end B were free the deflexion ?y would' be that given in the

last problem. Now the wall at B exerts a couple and a force similar

to those dealt with in Art 57. If

W B ^^ ^^ *^^^ ^i ^^^ ^^^ deflexion and slope

due to these at the end B then

^ equation (5.58) gives the value of

f] corresponding to the actions at

B alone as

mo
A

Fig- 32

fj='^(sm-io,)-^.{2fn-io,) . (5-86)

If we take ay^ arid ^^ in this equation as the negative of rj2 and Brj^

in (5.84) and (5.85) then we get
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EIri = — y'(waMI'—»— iWa^/J

= -w"^(l-ia)+w'^{il-ia) .(5.87)

By adding together the deflexion in (5.79) and the deflexion in

(5.87) we shall g€t the deflexion between O and A in the present

problems. Writing ?^ a ^or the sum of these two deflexions we get

VVr- (

= i-^(/-«)-|3«^-(^+2a)xj (5.88)

as the equation between O and A, that is, where .v<a.
The deflexion between A and B can be obtained by adding the

deflexions in (5.83,) and (5.87). But it is easier to deduce it from

(5.88) by changing' fl! into (/— a) and x into (/— x). Then

Wa- i I

ElrjB= i-^(l-a:)^(3l-2a)x-ar^ . . . (5.89)

gives the deflexion between A and B.

61. Uniform beam clamped horizontally at both ends under
any load.

We can make use of the last result to get the deflexion of a beam
clamped at both ends under any load. If there are a number of

concentrated loads the deflexion for each load must be calculated and

the deflexion added at every point of the beam.

If there is a distributed load zv per foot, w being constant or

variable, we can write wda for the load at Xf=a, regarding w as a

function of a, and then integrate to get the total deflexion at .r due

to the whole load. Thus writing wda for W in (5.88), and writing

dr] for the deflexion due to wda,

x^ \ 1

mdri = ^—(l -aY{:ial— (l-\- 2a)x\u-da . . . (5.90)

This is the correct equation when x<a, whereas if x^a the

equation for dr] is

EI^'? = i-jsi^—-^)- 1
(3^ - 2a)x - al

j
wda. . . . (5 90

The total deflexion rj is obtained by integrating both sides of (5.90)

from a=x to a= l, and by integrating (5.91) from a= o to a=x
and adding the results. Thus
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Elrj = ff(a,x)da+rF(a,x)(la. . . .(5.92)

where f{a,x)da is the expression on the right of (5.90) and ¥{a,x)da
is the expression on the right of (5.91).

To avoid the labour of working out two different integrals we can

express both in the same form. If we write a^ for (/— a) and x\ for

(/— ,r) we know that

f{a, .r)= F(«j, j-J
Also daj^=— da
Therefore

Consequently

/ f(a, x)da=— F(ai, Xi)da^^

'

=J F(ai,Xi)dai

Elrj = r^Fia^, x^) da, + ^Fia, x) da (5.93)

the function to be integrated being obtained from equation (5.91)

Suppose w is constant. Then

EI^ = ^ '-^^=^1"^iM— 2a^)x- uh] da

+ ~
'-^^TT^/'^'I'S^^'-

2a,^)x,-a,H\ da,

WXi^X^

b /«
ilx^—ix'

W X^ '^X^

w XiV
6 /3

3/^ 2 I/7. 3

}Z(x2+ a:i2)_^(aj3 + a:i3)

= '^'^\mx' + x,^)~il(x^-xx, + x,^}^

W X. 2^2

6 l^
x\l{x^-\-x)

= ^V^a-2(/— x)2 .(5.94)

which agrees with the result in (5.36)
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The advantage of the last method for a beam clamped at both ends

is that the deflexion is obtained, for any system of loading, by means
of a pair of integrals without any necessity for the adjusting of

constants.

62. Bending moment expressed by integrals.

It is often convenient to get the bending moment by a direct

integration for the clamped-clamped beam just as we have already

obtained the deflexion; that is, an equation for bending moment
similar to the equation (5.92) for 7] is wanted.

The bending moments in the two parts of the beam in fig. 32 are

obtained by differentiating both sides of equations (5.88) and (5.89).

Thus

Ma = EIDV
= -j^{l-a)^\al-(l+2a)x^ ..... (5-95)

= -^j«/— 2/2-L(3/_2a)xj . . . .(5.96)

the first of these being the bending moment for values of x less than a,

and the second for values of x greater than a. Then the bending

moment at x due to a distributed load w per unit length at x= a is

M = / —-4^ wda 4- / -— wda

= / —--—

{

al - (l-\- 2a)x ! uxIq,

f?l al — zl- -{- [-^l - 2a)x\wda . (5.97)

Equation (5.97) gives a formula for the bending moment in terms

of X, but it can be used very conveniently for finding the bending

moment at a particular point by putting for x the abscissa of the

particular point. It should be remembered that the x to suit equation

(5.97) is measured from one end of the beam.

As an illustration we shall find the bending moment at the middle

of a clamped-clamped beam which is symmetrically loaded about the

middle, the load per foot at any point

being proportional to the distance of that

point from the nearest end of the beam.

The load curve is in fact, a triangle with

its apex at the middle of the beam as Fig. 33
shown in fig. 33.

Here w= ka or k{l— a) according as a is less than or greater

than \l. Then in equation (5.97) we put x=^\l since the bending

moment at the middle is required. Therefore
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fd il— aY rU a^U= —"L^J-kada-^n -k{l—a)da
J^l 2l J^ 2l '

=--'iVw/ (5.98)

where W is the total load 1 kl-.

63. Beams with variable cross-sections.
Provided the cross-section of a beam does not change quickly with

the length, or to be precise, provided that all the sections of an

unstrained beam containing some straight line, which we may call the

length, are bounded by a pair of curves every element of which is only

slightly inclined to the length, we may still use some of the equations

which we have proved for uniform beams, and which we .rewrite here

in the forms in which they apply.

^ = -"' (5-99)

- = -F, ....... (5..00)

dm

When we substitute for M from (5.102) in either of the equations

(5.100) and (5.101) we have to remember now that I is a function

of X. Consequently

^£(^2)="' '-'°^'

We can always get M by integrating (5.101) twice, and then we
can get yj by integrating twice both sides of the equation

d'^-ri I yi

d^-ET' ^5.105)

64. Example of a beam 'with variable section.

A beam of uniform width b and variable depth c? rests on supports

at its ends, and carries only its own weight. The depth at distance x
from the middle is given by

r^zZZ^̂ ^^^^^^ X nx
d = ccos-Y . . . (5.106)

Fig. 34 where / is the length of the beam.
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Such a beam is shown in fig. 34. Here the load w per unit length

at X is Q'bd where q is the weight of unit volume of the material

Hence

-^^gbd= Qbc cos
-J-

. ... . (5 i07>.

dM pbcl , nx
-7- = sm— » ..... . 5 io^>
ax n I

No constant need be added here because M is cltarly a minimum at

-the middle of the beam where :tr==o. Integrating again

pfcc/2 nx ,M = — -^cos-y (5»09)

Again no constant is needed because M is zero at the ends where

x= \i\l, and at these points the cosine is zero.

Now
TtX

l = ^bd^=^bc^Q.os^ —- .... (5.iio>

and therefore

Integrating

dH M 120/2 nx
, ,—^ = — = —^=— sec^— is.iiii

dx^ EI jr2c2E /
^^ ^

dr) \2qI^ nx
, ^^

1 2 cHj nx
log, sec — + Ha: + K . . (5. 1 13)

7r%2E "^
I

drj
The constant H is zero because —- is zero at the middle of

dx
the beam. Then to find the constant K we ihust use the condition

/

that Tj = where x==—. But this gives

o = — 00 4-K

which makes K equal to + 00 We can shirk this difficulty to some
•extent by measuring »y from 'the displaced position of the middle of

the beam; that is, by taking iy= o where x=o. Then K= o. Therefore

I 2qI^
^

nx
/ k

As long as we keep away from the ends of the beam the last value

of T] is quite reasonable, but at each end we find rj— — 00, so the

difficulty returns. This difficulty will always appear with a beam.

lapering to a sharp edge at an end where a finite force is applied^

Jthe edge being perpendicular to the load as in our present problem-

5
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The correct interpretation is that the beam fails at such an edge-

But even where a beam fails the deflexion ?y should not become infinite^

The reason why infinity occurs is because we have used an incorrect

, d'^V
expression tor curvature, namely —~, in our beam-equations.

Since it is only just near the ends that failure occurs this failure-

could clearly be avoided by adding a little to the depth at and near

the ends without adding anything appreciable elsewhere. It is easy

to write down mathematical expressions for suitable additions to d,

but it is not easy to perform the complete integrations for tj when we
have got our new expression for d.

We can avoid the infinite value of 7] in another way. Clearly all

our equations apply correctly to ^ beam of the assumed shape fixed at

any two points of its length provided only that the supports at the

fixed points apply the calculated shearing forces and bending moments.

df]
at those points, and give the beam the calculated values of ri and —-•

dx
Further, if the supports of the beam, which we originally assumed to>

be at the ends, were brought a little inwards towards the centre, and
the overhanging pieces cut off, then the new state of the beam would.

differ from the old state in that the bending moment would be zero»

at the new supports instead of at the old ones. The additional stresses

and deflexions of the beam would then be those diie to the pair of

coupks, applied at the new supports, which would neutralise the

bending moments existing at those points with, the old supports. If

the new supports were not far removed from the old then the bending-

moments that existed at the new supports were small, and therefore

the new state of stress would differ little from the old state, and the

part at which infinite deflexions and stresses occurred would now have

been removed off the beam. We know, in fact, that the old equations

give stresses and deflexions slightly too big for the new conditions.

65. The modulus of a section of a beam.
When the bending moment at any section of a beam is known

the stress at distance 2 from the neutral axis of the section is given by

f-f (5..r5)

If h is the greatest distance of a point of the area from the neutral

axis, 'that is, the greatest positive or negative value of 2, then the

greatest stress at the sections is /"^ given by

^ /^M M ...
A =X= V ^^''^^

where ^""7 (5-1 1 7)
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This quantity V is called the modulus of the section for bending.
Engineers prefer to remember the modulus of a section rather than
its moment of inertia. For a circle of radius r we have l= -^jir^, h=--r.

and therefore Y=-}7ir'^ For a rectangle of breadth b and depth d
we get l= -^^bd'^, h^ld, and therefore V= lhd'K Most engineers'
pocket books give the moduli of the sections of such beams as occur
in practical engineering.

66« Beams of uniform strength.
If the maximum stress f^ is the same for all sections of a beam we

call it a beam of uniform strength. It is always possible to vary the
section of a beam so as to keep /, constant whatever the load on the

beam may be.

Suppose a beam fixed at one end and free at the other carries a

load W at the free end and no other load, the weight of the beam
itself being negligible. We shall show how to make the beam of

uniform strength.

Measuring x from the load W we find, by taking moments about any
section, that

M= W.r . . (5:118)

Then since

we find that

I W
-— = — = constant .... (S-HQ)

There are many ways of making I proportional to xh. Suppose we
choose a rectangular section. Then /A= ^fl( and 1= ^^2 6c^^. Therefore

we must make hd^ proportional to x. We could make d constant

and b proportional to x. This would be a wedge shaped beam with the

edge of the wedge along the line of action of W. Or we might make
d^ proportional to x and b constant. This gives a beam whose vertical

section taken along the length of the beam is a parabola. Or again we

might take b and d each proportional to yx giving a beam whose cross-

section has a constant shape but a variable size.

We might also make the section of the beam circular, in which

case r would have to be proportional to '\x.

67, Beam of uniform strength supporting only its own
weight.

A beam fixed at one end and free at the other supports its own
weight only andl is of uniform strength. Assuming the depth to be

constant we shall find the breadth necessary for uniform strength.

Taking the origin at the fixed end

-^-Q^d ....... (5.120)

5*
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Also

= iMYi (5>2')

Differentiating (5. 121) with respect to x twice, with the condition

that b is the only variable on the right

^ = KA^. • • • • •
•(-")

From (5.120) and (5.122) we get

d^^^Ud^
= n^b (5-123)

where ^^=:?^ (5124)
fid

The solution of (5.123) is .

6 = He**^+ Ke-«^ (5.125)

Now it is impossible, with this value of b and the corresponding value

of M given by (5. 121), to make both M and F equal to zero when
j;= l, for these conditions make both H and K zero. We can, however,

^et something out of our result if we make H zero. Then

6 = Ke-«^ (5-126)

whence M = ^£?YiKe-«^ (5.127)

and . F=—^ = ^«6/2/iKe-*^ . . . (5.128)

Thus the breadth b, the bending moment M, and the shearing force

F, are all zero when x ==00. Our solution then gives a beam of infinite

length, having only finite stresses. If, however, a beam of length /

be taken whose breadth is given by (5.126) and if, at the free end, a

shearing force

Fi= ^nrfYiKe-»' ....... (5.129)

and a bending moment

Ui= idYiKe-^^ ...... (5.130)

he produced by means of externally applied forces, then the stresses

in this beam are those given by (5.127) and (5.128). In effect, this

amounts to supposing that the actions across the section at x= l due

to the weight of the infinite length of beam from x= l to x= oo are

supplied by external forces applied at the section instead of by the
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(

I

weight of this infinite portion of the beam itself, which is supposed

to be cut off. If these actions are not applied at all then the stresses

in the remaining portion of the beam, from x= o to a*= /, are

actually less than we have calculated. The beam then is not one of

Fig. 35

uniform strength but one in which the maximum stress is everywhere

less than f^. The shape of the horizontal section of the beam is shown

in fig. 35.

68. Unsymmetrical bending of a beam.
In all the preceding part of this chapter it has been assumed that

the neutral axis of any section of a bent beam was coincident with

one of the principal axes of inertia of the section, and therefore that

the bending moment acted in the plane

perpendicular to this principal axis. We
shall now consider what happens when
the bending moment is in a plane in-

clined to both principal axes.

Let OY', OZ', be the principal axes

of inertia of a section, and suppose O

Y

is the neutral axis of the section of the

bent beam. Then by equations (3.62)

and (3.63) there is a couple M about

OY and M' about OZ such that

Fig. 36

where

M = EI„a

M
I

=— Fly^a

• (5.131)

. (5.132)

a =
R

the curvature of the beam.

The signs attached to the quantities on the right hand sides of

(5. 131) and (5.132) indicate the directions in which the vectors

representing M and M' must be drawn along OY and OZ respectively

according to the right-handed screw system. In this system a couple

is represented by a vector perpendicular to its plane and the direction

in which this vector is drawn is that direction in which a right-handed

screw, whose axis is perpendicular to the couple, would move in a fixed

nut if it were under the action of the couple. Thus a pair of equal "but

opposite couples in the same plane are represented by equal vectors

along the same line but drawn in opposite directions.
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The couple M is thus represented by a vector along OY, and M'
by a vector of length Eal^^ in the negative direction along OZ.

Now let the principal moments of inertia be ly' and I^^ •

In the theory of moments of inertia it is proved that

ly =- ly' cos2 e + I^' sin2 (5-133)

and ly^ = (Iy—l:^r) sin cos (5-134)

f) being the inclination of OY to OY'

Now resolving the couples M and M' along OY' and OZ'
respectively we get

My --=« Ealy COS -{- Ea Iy» sin

== Ea{ly' cos^ + Ix' sin" 6 cos 0}

+ Ea(V— I^')sin2^cos6/

= Ealy' cosO . (5 135)

and Mv == Ealj^sin — Ealy^ cos

= Ea {Ij/- cos2 ^ sin ^ + I.' sin^ ^}
-— Ea {ly' - I;c' ) sin cos^ ^

= EaI^,'sin^ (5-i3^)

These are the two components of the couple about the principal

axes.

We are now in a position to find the neutral axis when the axis of

the bending moment is given. Let this bending moment be resolved

into a pair of couples M^' and M^,' about the principal axes of the

section. Then
• M^. I*

tan
^y V

tan
M,'

.
My

I.'
•

I.'
tan^ = T^^T^ (5-137)

Thus the angle is known since all the quantities on the right

hand side of (5.137) are known. The radius of curvature caused by

the couple is R given by

and the angle which the axis of the resultant couple makes with OY
is (p determined bv

It is worth while to notice that, if we regard the curvature of the

central line of the beam as a vector drawn in the direction of the
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radius of curvature, which, in fig. 36 would be in the direction

contrary to OZ, the components of curvature perpendicular " to OY'
and OZ' are a cos 6 and a sin 0.

and CU' equations (5.135) and (5.136) become

(5.139)

Writing these in the forms ay'

My' = Eay' ly'

U^' = Ea^'I. . (5.140)

showing that each component of the bending moment perpendicular to

a principal axis produces its own component curvature.

If the cross section of a beam has an axis of symmetry this axis

must be one of the principal axes of inertia through the centre of

gravity of the section, and the other principal axis is perpendicular

to the first. If the cross section has more than two axes of symmetry
then each of these is a principal axis, and consequently there is more
than one pair of principal axes. In such a case it is 'proved in the

theory of moments of inertia that all axes through the centre of gravity

are principal axes and the moments of inertia about these axes are

all equal. Such a beam bends, therefore, in the plane of the bending

moment. An equilateral triangle, for instance, has threfe axes of

symmetry, namely, the medians of the triangle. A square has four,

namely, the two diagonals, and two lines parallel to the sides. A regular

polygon of 11 sides has n axes of symmetry. Then, if the cross-section

is a regular polygon the beam bends in the plane of the bending

moment, and the amount of curvature produced by a given couple,

whose axis is perpendicular to the length of the beam, is the same for

all positions of the axis of the couple in the plane of the cross-section.

For example, a rod with a square section, fixedi in a given way and

carrying a given load, has exactly the same deflexion when a pair of

sides are vertical and when these sides are inclined at any angle to

the vertical. The beam, however, is not equally strong in all positions

iDCcause the maximum stress depends on h (equation 5. 116), which varies

as the rod is rotated about its axis, although M and I do not vary,

69. The theorem of three moments for uniform beams.
When a beam rests on a number of supports at known levels there

is a relation between the bending

moments at three successive supports

and the relative positions of those

supports, a relation which is in-

dependent of the conditions outside

those supports. This relation is ex- pjg ^y
pressed in Clapeyron's theorem of

three moments, which we shall now prove for the case of a beam

of uniform section.

Let the origin be taken at the middle support so that ,r and y are

both zero at this support. Let the coordinates of the supports A^ and
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Aj be (/j, 3'j) and (

—

l.^, yu). Let the load per unit length along-

OAj be w^ and along OA^ let it be w^, and let ijj, rj2, be the downward)

deflections in these two regions. Then

^'^-' (•^'^'>

We shall have to integrate four times to get r]^, and it will be

convenient, since we are regarding w^ and w.^ as functions of x, and

not necessarily constants, to write a short symbol for the fourth

integral of u\ with respect to .v. Then let f(,v) be a function of x
such that

W,^f'y{x), ........ (5.I42>

and f{x) is that particular fourth integral of W-^ obtained by integrating

each time between the limits o and x.

Thus
X

f"(x)=f'>^Yd% ...... (5.143)

f"(x)-^f^^fw^dx]^dx .... fo.144)

and so on. It follows, by putting x^=o, that

r (o) = o, f'\o) = o, f\o) = o, f(o) = . . (5.145)

Xow integrating equation (5.141) once we get

Ei^=r'(^)+A, (5.146)

If we put .r= o in this the left hand side is the negative of the

shearing force immediately to the right of O, and the right hand side

is Aj. Then — A^ represents the shearing force immediately to the

right of O, and this differs from the shearing force immediately to

the left of O by the amount of the supporting force at O.

Integrating equation (5.146) once again we get

El2^ = r(«) + A,x+Mo, .... 15.147)

the constant M^ being clearly the bending moment immediately to-

the right of O, which is the same as the bending moment immediately

to the left of O. Integrating twice more we get

Eliy, = f(x) + lK,x^ + W^x' + B.z: . . .(5148)

The constant B represents the slope of the beam at the origin.

Also, no constant is added at the last integration because ^y^= when
.i-= o by our choice of axes.
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If F(x) represents the fourth integral of w^ obtained in the same
way as f(x) was obtained from u\, then four successive integrations

of the equation

E^S= --^ <5.'49)

give

EIr],^F(x) + iA,x' + iM,x^ + Bx . . . (5.150)

Mq and B being the same constants as in equation (5.148) ; whereas

Ag, being the negative shearing force, is different from A^.

Putting /^ for x in (5.147) and (5.148), and writing M^ for the

bending mioment and y^ for rj^ at this point we find

Mi=r(A)+ Aii, + Mo (5.151)

EI»?,=/'ft)+ iA,ii3+ iM„ii2+ B/i . . .(5.152)

Eliminating A^ from these two equations we get

The corresponding equation obtained from the span OAg is, since — U
takes the place of l^,

Now eliminating B from equations (5.153) and (5.154) we get finally

¥2 {Mi/i + M2/2 + 2 (Zi + /2)Mo }— 6EI(/22/i + /12/2)

= -6l,f{l,)-6l,F(--l,) + lJ,{l,r(l,)-{-l,F-(-l,)\ (5.155)

This is the theorem of three moments for the case we have considered.

As a particular case, suppose w^ and w^ are constants, and that

-the three supports are all at the same level, so that 3;^ and y^ are zero.

Then

fU{x)==lw^x^ F^Hx)^iw,x''.f '
' '

^^'^''^

Therefore

UJ, + M,l, + 2(1, + l,)Mo=iw,l,^ + iw^l^''^ . (5.157)

70. Two supports coincident.

At a point where a beam is clamped, that is, where its direction is

fixed, we may look upon the beam as having a pair of supports at a

zero distance apart, one above and one below the beam. We can there-

fore use the theorem of three moments to give a relation between the

bending moment at a clamped end and the bending moment at the next

support. Thus, in fig. 29, we may regard the point A^ as coincident with

O, and Aj at the end B. Then for this case

M2 = Mo , Ml = o,

w, = rv<2 = w (a constant),

Uv = !h =
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Then, using equation (5.175), which applies to this case,

2lMo = -lwl'\

whence Mq = -^ wl-

which agress with (5.46).

Again, taking the case shown in fig. 28 we get everything as in the

last case except that now
M, = Mo.

Therefore equation (5.157) gives

whence Mq = -^jwI^,

which agrees with (5.41).

We can apply this method to find the unknown bending moments
at the ends of a beam clamped horizontally at the same level at both

ends under any load whatever provided there is no support between

the ends applying an unknown force.

Let the bending moments at the left and right hand ends be M2
and M^ respectively, and let us first regard the left hand end as the

point at which there are two supports. Then in equation (5.155)

1.2 =0, l^ = I

w^^ = W2 = w ^ f^^ (x) .

In order to use equation (5.155) for cases where /^ or L, is

infinitesimal it is necessary to divide by this infinitesimal quantity.

Dividing by l^ l^ at once, the general equation becomes

M,l, + M,l, + 2(1, + I,) Mo - 6EI ^'^ +
'I j

--Tfih)-T^(-h)+hnfi)+kF"i-h) . (5159)
1

1

i.y

In the present case both Vo and /^ are infinitesimal, and conse-

quently— must be regarded as the slope of the beam at the point

h
where M^ and Mg act. Since the beam is clamped horizontally this

slope is zero, but it is clear that if the beam were fixed in any other

direction but the horizontal at the end where M^ acts we should have

to take account of this slope.

The value of /(Z^), expressed as an integral, is

f{\)=f\fffwdxdxdx\dx (5.1M
(000 I

the symbol on the right indicating four successive integrations, the

first three from o to x and the last from o to /^.

:5-i58)
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F(

—

l^) is a function similar to f(I^) and it is clear that, if l^ is

small, F(

—

l^) is of the fourth order in L^. Consequently — .F (— 4)
1.2

is of the third order in L, which vanishes when [^ vanishes. Moreover,

i.,F''(— /g) obviously vanishes when l^ vanishes. Therefore equation

(5.155) becomes, on the assumption of two supports at the left hand

end,

whence
HU, + .U,y^ -'- fd) + If" (I)

M, + 2M, = f"{l)-p{l) (5.161)

If we next regard the other end as having two supports and write jr^

ior the distance, measured along the beam from that end, that is,

j.\=(l— x), then we shall get another equation exactly similar to

(5. 161) but with M^ and M2 interchanged, and with w expressed in

terms of ,t\ instead of x. Thus

M, + 2M,=(p''{l)— -cp{l). . . .. (5.162)

Avhere the function (p^^(xi) is defined by

(p^^x^) = w = f^^(x) . . .... .. (5.163)
Xi Xi Xi Xi

and (p(x^) = ff ffwdx^dxidx^dxi . . .^. (5.164)
0060

We may express our symbols physically in this way : — f [l) and
KI

f"{l) would be the deflexion and the bending moment at the right

hand end if, with the same loading, the right hand end were so held

that the shearing force, the bending moment, the slope, and the

deflexion were all zero at the left hand end. —q)[l) and (f" {J)
are

similarly expressed with left and right interchanged in the preceding.

71. Concentrated loads.

A concentrated load or several concentrated loads may be covered

hy w. It is only necessary to notice that

f"(x)^fwdx

— total load from o to a; . (5 165)

which total load may include any number of concentrated loads.

Also J.,,, J
bending moment at x assujningl . ,..

' ^^'~\ that the end :r = o is free / ' ' V-"^ ^ ^
To illustrate the use of equations (5. 161) and (5.162) we shall find

the bending moments at the ends of the beam in fig. 32. Here,

measuring x from the left hand end,
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Also

and

Likewise

/"" (x) = o when x < a )

= W(x— a) when x>af
'

f(x)=^rf"{x)dx

= o when x < a

= Cf" (^) dx- + frix)dx
Jo Ja

= o + |W(.r— a)2 when x>a.

(5 167)

f(x) = o when x < a )

= ^W(x— a)^ when x>aj
Therefore equation (5. 161) gives

Ml + 2M2 =W(/— a)—iw(/ - af
I

W

For equation (5.162) we need only write (/— a) for a in the

preceding, and interchange M^ and M2. Then

. (5i68>

. (5.169)

W
c

Solving (5.169) and (5.170) for M^ and M^ we get

W
Ml

r^
a^(l—a)

W
M,^-ail-ar-

(5.170)

(5.171)

Mj being the bending moment at B, and M2 the bending moment at O,

72. Transverse forces in different planes acting on a uni-
form beam.

Let a pair of axes OY, OZ, be parallel to the principal axes of the

normal sections of an unstrained beam. Let the force per unit length

at any section x be resolved into two compo-
nents w^ and W2 parallel to OY and OZ re-

spectively. Let the components of the bending

moment at x be M^ and Mg about lines parallel

to OZ and OY respectively, and let the corre-

sponding moments of inertia of the section be

Ii, I^. Then by equations (5.139) and (5.140),

Fig. 38

dhj

(5.172)

y and 2 being the component displacements of the beam at x.
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Differentiating each of these twice we get

^^Mo ^, d^%

rfx2 -dx\

(5-173)

But the relation between Mj and ii\ is just the same as if Mg and w^
were zero, for this relation is obtained by resolving forces in one plane.

That is.

^^ = ^^
dx^

'

Therefore

. (5-174)

• (5.175)

Each of these equations can be solved independently of the other.

The method of solution is exactly the, same for each equation as if the

deflexion were entirely in one plane. Then it follows that the usual

equations for a beam under forces parallel to one principal axis only

can be used for this case, the only thing new being the resolving of the

forces parallel to the two principal axes. Since even a concentrated

force can be supposed to be a force distributed over a very small

length of the beam it is clear that a concentrated force can also be

handled by resolving it into two components parallel to OY and OZ,
and then treating each component in the same way, as if only that

•component acted.

Even if the forces on a beam are all in one plane and that plane

is not parallel to one of the principal axes we are obliged to use the

method of the present article.

73. A particular example.
As an easy example to illustrate the method suppose a rod of

length / with a uniform circular section is acted on by a uniform force

^w per unit length the direction of w at x being the direction of the

radius of a helix which wraps once round the whole length of the

rod; that is, if OZ is parallel to w at O, then the two components

of w at X are

. 271X
u\ = w sin —

—

271X
W., =- W COS—

—

I

(5.176)

Suppose the end .r= o is built into a rigid body, and suppose that,

at x= l, a smooth fixed pin parallel to the ^-axis passes through
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the rod, so that the rod is free to slide along the pin while the pin

maintains its direction. Then the boundary conditions are

dy

ax

where x = o . (5-177)

<^^ ^ J where x= l. . . . (5.178)

Tx= °' ^^ = °'j

The two principal moments of inertia of the section of the rod are

equal ; let the common value be I. Then

d^fj . 271X
hi —— == tv sin ——

-

dx^ I

^^ d*Z 271X
EI -—- = w cos —

—

dx'^ I

' . (5.179)

The solutions of these equations satisfying the conditions at x= o

are m
Ely.

1671^

27tX
w Sin—

:;^ h Ax'^ -\- Bx^

EIz=
I

271X
IV COS

6ji* I

The conditions for y at .r= l give

AoX^-\-B2X'

=
whence

Therefore

A=-

471^

wl

271

wl

sin 271 -\- 6A^-|- 2B

cos 27l-\-tK

B--
271' 47c

Wli l^ . 271X \EI?/ =—{—- sm ——h \x^— Ix^i

Also, the conditions for z at .r= l give

o = 3A2^2+2B,/,
Uvl

O =, cos 271 + 0A2;

whence

Therefore

\27l

B.=

wl

Elz=— {—^ cos—

-

471x471'^ I

1271

2 71X
kx^-\-^lx^

I-

(5.i8o>

. (5.i8i>

(5-i82>



CHAPTER VI

THIN RODS UNDER TENSION OR THRUST

74. Stresses in a rod under bending moment and tension.

In treating of the bending of beams in the last chapter we assumed

always that the neutral axis of any section passed through the centre

of gravity of that section. When the neutral axis is in this position

the resultant of the tensional stresses across the section is a pure

2

:>

I

^' . ^^-^
"b^
^ Y

Fig. 39 a

couple. Let us now assume that the centre of gravity of a particular

section of a bent rod is at a distance r from the neutral axis, the fibres

through the centre of gravity being in tension. In fig. 39(a) OY is the

neutral axis and G the centre of gravity, the length of OG being r-

Let R be the radius of curvature at the point G of the line of fibres

through G. Let fig. 39(6) represent a short piece of the rod bounded
by two cross sections BOGZ and B'O'G'Z' which were parallel before

strain. In this figure O'O, being on the neutral axis, has its natural

length; G'G has a length R^, and O'O a length (R—r) 0. A thin

bundle of fibres parallel to O'O, of cross section dA, and cropping out

of the section OYZ at distance 2 from OY has a strained length

(R

—

r-{-2)0. Since its natural length was the same as that of O'O,.

namely, (R

—

r)6, its strain is therefore

{R—r)0 R—r ^ ' ^
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and the tension in these fibres is

dT=/aA««- rfA (6.2)

Th€ total tension across the section is thus

E= _£_y^A ...... (6.3)

But by a property of the centre of gravity

fzdA = ^A = rA, (6.4)

5 being the 2 of the centre of gravity of the section. Hence

Er
^ = r3;^ (^-5)

Denoting the stress of the fibres through G by f^ we find

A-^^, ........ (6.6)

and therefore

T= A^, . (6.7)

thus showing that the mean stress across the section is the stress at

the centre of gravity.

Again the moment of dT about an axis through G parallel to OY is

dM={s— r)crr

=
(^-'')Rir7.<^A (6.8)

The total moment of all the stresses about the same axis is

E(x^— rz)~ -('

R— r

E r .,. Er

R— ?;/ R—rJ
xdK

E

R^r1 1 — r(?Ai> (6.9)

^here ly is the moment of inertia of the section about OY. But. if I

denotes the moment of inertia of the section about the parallel axis

through G,

Iy=I + r2A (6.10)

EI
Therefore M = —

R— r
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In the preceding- investigation we have retained (R— r) but there

will be very little error in writing R for this since ;- is certain to be

small compared with R. Making this assumption we get

/-¥•
•

•• (^•")

T = yA-=/;A ...... (6.12)

M =^ (6.13)

This shows that the resultant of the tensions across a section which
is symmetrical about OZ is the tension T acting through G, together

with the couple M, which is the same couple as if the neutral axis

passed through the centre of gravity itself. If then, we always take

moments about an axis through the centre of gravity of a cross section,.

FT
the bending moment is always equal to — whether or not there is a

R
tension (or thrust) in addition to the bending couple.

75. To find the position of the neutral axis.

If we are given T and M we can find the position of the neutral

axis and therefore the stress at any point. Thus from (6.12) and

(6.13)

T _ rA
M~T
r-^x{- ...... (6.14)

which gives the distance of the neutral axis from the centre of gravity.

If T is a tension the fibres through the centre of gravity are in tension

and therefore the n^eural axis is on the side of the centre of gravity

towards the thriists; whereas if T is negative, that is, represents a

thrust, then the fibres through the centre of gravity are in thrust and

the neutral axis is on the tension side of the centre of gravity.

Neglecting- r compared with R the stress at distance 2 from the

neutral axis is

'^~'r"'T^

Let 2' be the distance of the same fibres from the axis through G
parallel to the neutral axis,

Then
M . M M

/•=_-(- + r) = -^' + —r
I

6
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The two terms in the expression for / are the stresses due to the
bending moment M and the tension T separately, the stress for each
of these actions being calculated as if the other were not present.

76. Euler's theory of struts.

Suppose a pair of balancing forces, each of magnitude P, act at

the ends of a thin uniform rod of length /, these ends being free frorrt

couples. As long as the rod remains straight it is in equi-

librium, and it can only fail by crushing, that is, because the

compressive stress set up is greater than the material of the

rod can stand. But it is a well-known fact that a rod, whose
length is thirty or more times its breadth, may bend or buckle

long before it fails by crushing. If the forces P are gradually

increased from zero, there is, in fact, a particular magnitude

of these forces at which the straight state of the rod ceases

to be stable, although equilibrium is still possible.

Suppose the rod is slightly bent under the action of the

forces P at the ends O and B (fig. 40). Let Q be any point on

Fig. 40 the rod and let ON r^.r, NQ= v- Let M denote the bending-

moment at Q. Then by taking moments about Q of the forces

acting on the part OQ,
AI= P>' (6.16)

But by equation (5.13)

^"^=±^'2 <^-'7)

// being now used instead of r^.

From (6.16) and (6.17)

Elg=±P, . . .
.'.

. .(0.,8)

The ambiguity of sign in (6.18) is removed by the fact that, if y is

positive in the figure, then —^ is certainly negative (and vice versa)^
dx-

Hence

EI^ =— P;/y (6.19)

Let this be written in the form

p
where **^ = ^FT • * ' ' * " * ' '

(^-^0
EI

The solution of (6.20) is

y= A cos nx -\- B sin nx (6.22)
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The two additional facts that we know about the rod are that

(J
= o where x -= o\ ,, .

and where x== If
I • 3/

These conditions give

=A cos o -j- B sin o

=A
and o = A cosnl + B sinnl

== B sinw/ (since A = 0) (6-24)

There are two distinct ways in which equation (6.24) can be satis-

fied ; firstly, if B=o, in which case 3'= o everywhere, and the rod is

straight ; secondly, if

sin//,/ = o,

that is, if nl=ji, or 271, or 377, etc., . . . (6.25)

Taking the first of these values of n, we get

n = — (6.26)
L

whence P = EI -—- i^-^j)
i"

7tX
and ;//

= B sin — . . . . . . . (6,28)
1/

nx
As X varies from o to Z the angle —- varies from o to jt, and

V

therefore the rod takes the form of one half wave of a sine curve, as

shown in fig. 40. It is remarkable that the two end-conditions of' the

rod have determined A and P, and not the two constants of integration

A and B, as such conditions usually do. The interpretation of our

result is that there is a minimum value of P, given by (6.217), which

will bend the rod, and this same value of P will bend the rod into the

curve given by (6.28) with any value of the constant B. It should

be borne in mind, however, that if B is large and therefore the

deflexion y large, then the approximate expression used for curvature

in equation (6.17) is not valid. For a large deflection we must use

the correct expression for curvature, namely,

which will give a different value of P from the one wc have obtained, a

value depending on the amount of deflection (see Art 88), which,

however, will approach the value in (6.27) as'the deflection is made to

approach zero. The value of P we have found, is, in fact, the force at

which the rod is unstable in the straight state.

6*
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If we take the second value of // from (6.25) we find,

/2

27tr

T
This curve is shown in fig. 41(a)

The rod is in equilibrium in this state but it is less stable equilibrium

than in the form of one half wave. The point C must be held in

and

P = EI

y = Bsin

(6.29)

(6.30)

position in the line OB to make it stable, although theoretically no

force is needed to keep C in position, just as no force is needed to

hold a needle in position when it is standing in equilibrium on its point.

The third value of n gives

--f-
y= B sin

I

(6.31)

(6.32)

and the curve is shown in fig. 4i(?7).

Although there are many possible states of equilibrium of the rod

under the pair of thrusts P there is only one stable state with the ends

at a distance apart less than / and that is the one shown in fig. 40, and

the corresponding value of P in (6.27) is often called the breaking

load for the rod used as a strut, but it is really the buckling load. The
breaking load will be shown later to bfe greater than the buckling load.

It should be noticed that the half wave OC of the rod in fig. 41(a)

i$ exactly similar to the whole rod in fig. 40. There is a pure, thrust

and no bending moment at C and we can get the results for the rod

in the state shown in fig. 41(a) by putting 4 / for / in equations (6.27)

and (6.28).
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77. Rod clamped at both ends.
Suppose that a strut of length / under the action of balancing forces

P is clamped so that the tangents at the ends are in the direction of

the P's. In this case there is an unknown couple Mq _
acting at each end. The bending moment at distance x
from one end O (fig. 42) is

M= M^— Fy
Hence

-S=".- p?/ . (6.33)

takes the place of equation (6.19). Writing /y^ for ly
-^J

this last equation becomes

EI ^!Ju (6.34)

which in the same equation for y^ as we had for y in

P
(6.19). Again, writing }i'^ for—-, the solution is

El

y^ = A cosna; + B sinnXy

whence
M,

U --}- A cosnx + B smnx

NAQ

\M,

Fig. 42

(6.35)

The end-conditions are now

and

These conditions srive

y= o\

t-A
both where a:; = ol

and where ic = / f

o=^+A
Ma

o = —- + A cosw^ -\- B sm.nl

o=nB

(6.3<^)

(6.37)

(6.38)

n \—A sini

(6.39)

+ B cosw/[ .... (6.40)

From the first three of these equations we get

o==A(i— cos;i/), (6.41)

and from the last two

Or^Asinw/ (6.42)

Thus, either A is zero as well as B, or

nl==2n, 014^1, or 67r, etc (6-43)

The only stable state with the ends at a less distance apart than I

corresponds to the first value of nl. With this value of n
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P = EIx^ . (6.44)

Mo/ 27ZX\ ., .

^nd ^y = _-j i_cos-y-j (6.45)

There is one complete wave of the cosine curve on the rod, the

distance from one crest to the next crest on the same side, as shown
in fig". 42, or similar to the portion from H to K in fig. 41(b).

There are again many possible equilibrium states, one corresponding

to each of the infinite number of values of n given by (6.43), but only

the first gives any sort of stability except when P is less than its value

in (6.29), in which case the straight state is stable. It should be

noticed that the load at which the straight state is unstable, when the

ends are clamped, is the same as the load that would hold the rod in

the form of a complete wave of a sine curve when the ends are not

clamped, that is, the load given in (6.29).

78. Strut eccentrically loaded.

Let a pair of balancing forces P act along a line parallel to the

line joining the centres of gravity of the end sections of a thin uniform

rod of length /, and at distance a from that hne. If, in fig. 43,
ON =x, NQ = vy, the equation connecting P and y is

EI0= P(2/ + a) (6.46>

the solution of which is

y -\- a= A cos nx -\- B sinn.r ...... (6.47)

with the usual value of n.

The end-conditions are that

y==o where a; == o
]

and where x= I

Therefore

a= A (6.49)

a= Acosn/-|- Bsinw/ (^ 50)

I — cosnl

(6.48)

whence * B = a
sin nl

2 sin^iw/= a
2 sin ^ nl cos ^ nl

= atan|wZ (6-5 1)

On substituting these values of the constants in (6.47) we get

y -{- a = a cos nx -\- a tan ^ nl sin nx . . . (6.52)

Now there are particular values of n that make tan-|«/ infinite,

and these values make y infinite also. The only interpretation of this
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inathematical infinity in our equation is that the rod is unstable for

the values of ;/ satisfying the equation

tan J w/= + 00

-that is. the values of n given by

The load at which instability really appears is the first one, given by

^ _ 2 _ ^'

EI""' ~1^

etc.

(6.53)

(6-54)

(0-55)

'exactly the same as if the load were not eccentric. In this case the

strut bends under any load, however small, and the deflection is

correctly given by (6.52) before instabihty is reached, but at the

particular load given by (6.55) the rod is really unstable, since

•equilibrium is not now possible, because infinite deflections are certainly

not possible.

If the length a is large the stress in the rod may become so great

l)efore the load is great enough to produce instability that the rod

fails just as a beam would fail under transverse loads. If there is any

possibility of failure in this way it will be necessary to make two

separate calculations, one to find the safe load assuming instability

impossible, the other to find the buckling load assuming that the stresses

<io not become unsafe before buckling begins. The smaller of these

loads is the safe load for the strut.

79. Strut clamped at one end.

Suppose a strut is clamped at one end O, that is. under the action

of a force and a couple, so that the line of action of the force is along

Fig. 44 a Fig. 44 b

the tangent at that end; and suppose that the other end is in contact

ivith a smooth plane which is perpendicular to the force at the clamped

end. Then it is clear, without working out the equations afresh, that

the curve is a portion of a sine curve with the clamped end at one
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of the crests and the other end at one of the points of inflexion. The
strut has two stable forms when the straight form is unstable and
these forms are shown in figs 44(0) and 44(b).

In fig. 44(a) the rod forms a quarter of a sine wave, and corresponds

to the length LA of fig. 41 b. In fig. 44(b) the rod forms three quarters

of a sine wave and corresponds to LB in fig. 41(b). In the first case a

length 2 / would form half a wave, an^d in the latter case a length -| /

forms half a wave. Then the values of P for the two cases are obtained

by putting 2/ for / or | / for / in equation (6.27). These values are

P = EI--for Fig. 44 (a)

and P= EI^ for Fig. 44 (b)
4^

The couple M,^ at O balances the couple formed by the two P's

at the ends of the rod, and therefore, in both cases

M,= CBxP (6.57)

80. The same strut with the end B in the line of the
tangent at O.

It is clear that the end B in fig. 44(a) could not be brought into

the position C without the action of a transverse force in

the direction BC. Lotus suppose that a force X is applied

at Bin the direction BC so as to bring B to C. There must

be a balancing force X at O together with a couple X/ to

balance the pair of X forces, which couple will only alter

the magnitude of M^,. We shall solve this problem to find

what difference the force X makes in P.

The bending moment at distance x from O in the direc-

tion of My is

that is, EI-^= Mo— P?y + Xa:

. (6.58)

Now let

Then

EI/''
dx
i=Mo-

-'\f

2/1
=.-f-

dx'

dhj

dx-

—.v+p-^l

X
-p^

=— P.V, (6.59)

p .

y^=zA cos nx -f- B sin nx.

P
The solution of this, with w^ for— , is
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A/r "v^

whence // = 7—^ -{- -—x-\- A cos nx + B sin nx . . (6.60)

The end-conditions are

dy _ j. where .r = n (6.61)

dx J

and ^= where .1'= / . (6.62)

These give

o = ^« + A . . . . (6.63)

o =— + wB (6.64)

o = -^-f -/+ A cos w/+B sin w/ . . . (6.65)

We have one other condition which we have not yet used, namely that

M= o where x==l.
Therefore

o= Mo + X/ (6.66)

Equations (6.63) (6.64) and (6.66) give

A^ ^ =^ = -nm, (6.67)

and therefore (6.65) is equivalent to

a{cos«2-^J= o (6.68')

Assuming that A is not zero we find that

tanw/ = nl (6.69)

The most direct way of solving this equation is by plotting the graphs

2/;=tanx|
(^

and y = x \
^ ' P

and finding the abscissae of their points 6f intersection. The graphs

show that the smallest root corresponds to an angle in the third

quadrant and is nearly

The arithmetic is simplified by putting

nl = u.
2

Then equation (6.69) becomes

3^
cot« = u

2

= — nearly . (6.7^)'
2
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The first approximation to the root is

u^=o- 207

A better approximation is the value of u., given by

cot?<2 = u,
2

^

= 4-506
whence 1^2 =^0*^^^

A still better approximation is the value of u.^ satisfying

3^
cot 11.. = ti.,

2

= 4-495

The final value, to 4 figures, is

w/=4494 = I-43I7T {6.72)

and therefore P= 1-4312-- EI

= 2.048^EI (6.73)

This result, it will be seen, does not dififer much from the second

value of P in equation (6.56).

81. Rankine's empirical formula for struts.

The buckling loads calculated by Euler's method are the loads at

which the straight rod becomes unstable assuming that it does not

fail in any other way before this buckling occurs. But a very short

rod would clearly fail by crushing before it buckled. If f is tl^e

maximum intensity of compressive stress that the material will stand

without taking permanent set, and if A is the area of the cross section,

the short rod will fail when
P=-A^ (6.74)

and a very long rod with no couples at the ends would fail when

• P = EI^'==EA«:2^' (6,75)

where k is the radius of gyration of the area of the section for the

axis through the centre of gravity perpendicular to the plane of

bending.

Now if we write P^ for the value of P given by (6.74) and P^ for

the value given by (6.75) then the equation

¥-i+i <^-7^>

makes P= Pi when P2= 00, and P= P2 when Pi=oo. At these

two limits the equation gives the correct values of P, for clearly
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failure will occur by crushing if / is very small, that is, if P2 is very

great ; and failure will occur by buckling if f is very great, that is if

Pj is very great. But it is to be expected that the load .at which failure

occurs will vary gradually as / or / is varied, and therefore that there

is a continuous variatioa of P from P^ to P2. For such reasons

Rankine gave equation (6.76) as an empirical formula for any strut,

where P^,^ is the load that would crush it, and F^ is the loadi that would

buckle it. For the strut with hinged ends

.Ji

F, = EAk^-; (6.77)

for the strut with clamped ends

P2=4EA&';^; (6.78)

for the strut clamped at one end and hinged at the other end, the

hinge being on the tangent at the clamped end,

F, = 2^04SEAk^~ (6.79)

In all cases F^=qEAk^— (6.80)

Then Rankine's formula can be wTitten

p. Pil P2

Pi I
^ qji^Ek^i

f
^where c denotes the factor which is a constant for struts of

qji^E

the same material with the ends held in the same way. The constant

q depends only on the way in which the ends are held.

For a solid rod with a circular section of radius r the value of k^

is Jr^, and for a thin tube of circular section k'^ = ^r^. For a rod

of square section, side a, k^ = ^^a^.

A rod cannot fail by pure buckling if P^ > F^, that is, if

f>q^lc'Y' ^^'^'^

For a solid circular rod hinged at both ends this inequality becomes

/'>iEr2^ (6.83)
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Taking a steel strut

square inch, and E
inequality gives

whence

tor which the yield point is about 25 tons per

about 13000 tons per square inch, the above

/2 I3000JI-

r2 4x25

2r

For a thin tube we get

2r
>25-5

(0.84)

(^•B5)

Then it follows that Euler's rule alone should not be used for a hinged

steel strut whose length is not greater than about 30 times its dia-

meter, and it is better to use Rankine's formula for lengths between

say, five and forty diameters.

82. Strut subject to a lateral force.

Let us take the case of a uniform strut with hinged ends under a

pair of balancing forces P through the centres of gravity of the end

sections and a single force Q
perpendicular to the strut at

distances a and b from the endSy

with {a-{-b)= I. The forces at

the ends necessary to balance

Fig. 46
Q are - Q and - Q as shown

in fig. 46. Taking the origin at A and denoting quantities in the

portion AC by suffix (i), as

moment in this portion is

y^, M^, etc., we find that the bending

(6.

Therefore

-S=-''.
bx

By putting z^ for
| y^

Writing n^ for —- as
EI

OP
PI

EI

-p{..i'.|
we find that

P^l
dx^ dx-

usual, the solution of this is

Zi = Ai coswa: + B^smiix;

(6.87)

(6.88)
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that is,

Qb
;//i
= — —-x-\- Aj^ cos?ix + Bj sinnx

We know that \< .

and therefore

o at the end A where .r= o. Hence

o = Aj,

;o.89)

(6.90)

Qb
y/i
= — pja; + B^sinw.x (6.91)

gives the deflexion between A and C.

We can write down the deflexion between C and B by replacing

h by a and .r by (/

—

x) in the above. Then, denoting quantities in

the region CB by the suffix (2) we get

!h -^(l—x) + B,smn(l—x) . . .(6.92)

as the deflexion between C and B.

Since the deflexion and slope are the same for the two portions

at the point C we have

dx dx J

Bj^ smna— B, smnb = o . ...
and ^{^1 cos/2a + B2 cosnb

}
= ^

From the last two equations we get

and

These grive

(6.93)

(6.94)

(6-95)

whence

and therefore

and

Consequently

B^ \ cos na -\- cos nb
sinwa I

smnb I

smn{a-\-b) Q

Q_

B, =

smnb nV

Q smnb

nV smnl

Q smna

n? smnl
(6.96)

2/1==-
Q ( sinwfe sinw.r

?/2
=

P I n smnl

Q i smna siiin(/

—

x)

r\

n smnl f(-.)}

(6.97)

{6.98)
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Also

nQ siniib= — EI—- smnx
P sm nl

Q sinnb- . >. ^=
: -smnx (o.QQ)

n sm nl

Q sinna
. ,, , ,. ^M« = smnil— x) .... (o.ioo)

It should be observed that M^ and M^ are both infinite when
sinw/= o. This means that the rod is unstable for exactly the same value

of 11, and therefore of P, as if Q did not act. Then the lateral load

does not affect the stability, although, of course it produces its effect

on the bending moment when P is smaller than -the buckling thrust^

and the rod may fail as a beam fails, namely, because the tension (or

compression) in the fibres exceeds the safe stress.

83. Effect of several lateral forces and of a distributed force.

It is easy to show from the differential equation that the total

bending moment due to several lateral forces is the sum of the bending-

moments due to each force separately. Suppose forces Q^, Q^, Qg,
act at points distant a^, a^, a^, from the origin end of the strut, and

h^, h^, &3 from the other end. Then the bending moment on the

origin side of all the loads is

smnxM =
I
Q^smnh^ + Q2 sinnh^ + Q3 sin^ifcg

J
. . (6.101)

n smm
\ I

The bending moment on the origin side of Qg and Q3 and on the

opposite side of Q^ is

sinnicM = ".
{ Q2 smnh^ -j- Q3 smnh^ \

Q^sinna^ (6.102)

n smnl
smn(l— x)

n sm/i

The general form can be written thus

smnx „^ . ,

n sm.nl

smn (I— x) ^^ . /^ ^^ HQ smna . . (6.103)
nsinnl

the sum ^Q sin;/.?? extending over all the forces for which a>jr, and

the sum ^Q sin na extending over all the forces for which a^x.
We can adapt these at once to give the bending moment for a

continuous distribution of lateral force. Suppose that the force on the
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element of strut between x= a and :v= (a -{- da) is wda. This takes

the place of O in equation (6.103). Thus

smnx
, . , ,M = ; / smnb • tvda

n sm.nl fJ X

smn [l—oc)
Z*^.

-.
— sinna-wda . . (0.104V

n smnl Jo

Since (a-\-b) = l it follows that db=— da and the limits for b
corresponding to x and / for a are (/— x) and o. Hence

M = :

—

~
I
smnb • wab

sm.nx

n smnlJi_x
smn[l— x) ^^

'-/:

smnx ^^~^

n siD nl

- / w sinnbdb
n smnlj^

sinw(/

—

x)

sinna-wda

n sinnl

As a particular case suppose w is constant. Then

sinnx ( ,. ,)M =—w——-;—-<; I— cosnll— x)}
n^ sm.ni \ j

smnil— x) { \— w -—{ I— cos wee >
nl y )

nOCr

-I w sinnada . . . (6.105)

w^ sm;

^ wEI
f sinn3:; + sin^(/— x) \

P sinnl \ — sin nx cos n{l~x) — cos nx sin n (l—x)j

^^^ 1 •
, • n ^ i\{sm.nx + smw(/— x) — sinm >

P sinnl

EI f 1
_ ; 1<2 sin^nl cos n (x— II)— sinnl >
P smnl [

V 2 /

j

I
(6.106)

wEl ( cos nx'

P \ cos ^ nl

where x'= (x— -II), which is the abscissa measured from the middle

of the strut.

84. Another method for a distributed lateral force.

There is another distinct method of arriving at the bending moment
in a strut under a distributed lateral force. Let M' be the bending

moment at x due to a distributed lateral force w per foot at x when
P does not act. Then the total bending moment at x is

M=— P3;-fM' 6.107)

Differentiating this twice we get

^=-P^+^ .... .{6.108)
dx^ dx^ ^ dx^

^ '
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But since M' is the bending moment on the assumption that only

lateral forces act we are entitled to use equation (5.7) That is

^J^ =
^' (^'^^9)

Also EI—^=M (6.1 10)

Therefore equation (6.108) becomes

^'M P _^ = -El^ + " <^'")

or --—--\-n^M = w (6.112)
dx-

In this equation zv must be regarded as a function of x, unless it

is a constant. Let f(.v) be written for w. Methods of solving this

are given in books on "Differential Equations". One method is given

in the appendix. It is shown therein that the solution of (6.1 12) when
w= f{x) is

I r-'^

M = A cos nx -{-Bsinnx + — sin n (x— i() fiu) du . (6.1 13)

The conditions at the hinged ends, namely

M == o where .x' = o] . ^

and where x = I
j

'

give o= A , (6.1 15)

I r^
and o= B sin/2/-j— sinn(l— u)f(u)du . . (6. 116)

This last equation gives

I r^
B = —^

—

- smnll—u)f(u)du . . .(O.ii?)
n sinnlj^

and therefore

sin^za:; r'.
x r/ \ jM = / smu (I — u) flu) du

n sin nlj^

I /*^
-\— sin?i(x—u)f(u)du . . . . (O.118)
nj

It can be shown that this last result agrees with (6.104) if we write

u for a and (/— u) for b in that equation.

Instead of using equation (6.1 18) or (6.105) it is often easier to

solve equation (6.1 12) at once when w is an easy function of x.

Moreover it must be borne in mind that equations (6.118) and (6.105)

apply only to the cise of a strut with hinged ends. For any other case,

say the case of clamped ends, it would be necessary to find afresh the

equation for M. This could be done by the method of Art 83, that is.
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by finding the effect of a single force Q and then getting the result

for a distributed force by integration ; or it could be done by adjusting

the constants in (6. 113) to satisfy the end conditions,

85. Strut clamped at the ends with uniformly distributed

lateral force.

For this case we will use (6.1 12) directly. It is uinderstood that y

and — are both zero at the ends and that the forces P act along the
dx

_r-axis. Since zv is constant the solution of (6.1 12) is

w ^ .

M = Acqs 7^ic-l- B sin 7ix+ — .... (6.1 ig)

Let ^ represent the slope at any point, s^ and j^ the slopes at the ends.

Then, taking the origin at one end,

M = EI -4

ds= EI— (6.120)
dx

Therefore

fMdx=El{s— SQ}

= EIs ....... . (6.121)

since Sq = o. Also
I

fMdx = FJs^=o (6.122)

Similarly we find

fEIsdx^Elf—dx
Jo J^ dx

= El{7/i— y/o}-o . . . (0.123)

Equations (6.122) and (6.123) are the end-conditions for the present

case. With the value of M from (6.1 19) condition (6.122) gives

-
( A sin 7f / -j- B— B cos nl\-\—;; = o, . .. (6.124)

n \ n^

and equation (6.121) gives, as the general value of EI^,

I / \ ivx
EAs --= -

I
A sin nx + B— B cosnx\A . . (b. 1 25)n\ I n-

Now condition (6.123) gives

I ( \
w]?-— A—A 0087^/4- B;</— B s\nnl\ 4--^-^ = o (6.126)

n- \ ) ^ n-

7
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Equations (6.124) and (6.126) determine A and B in terms of n and I.

The values of A and B obtained by solving these equations are

2n

A = cot i nl
2n ^

(6.127)

Then the final value of the bending moment is

{2 — nl cot -i nl cos nx

w i nl cos n (x —\l)

w
IM =- {2 — nl cot 4 nl cos nx— nl sin nx

2n^ \

^
)

2^2
I sin ^ yz/

_ ^^^^
I

w^ cos nx
2

2P I sin^w/
-| (6.i28>

where .r'= (.r— \V), which is the abscissa measured from the middle

of the strut.

It is worth while to verify the result in (6.128) by taking the

particular case when P is zero, that is, when n is zero. This should

give the same value of M as in (5.37) where we dealt with the

transverse load only. Starting from the first form for M in equation

(6.128) and expanding in powers of n as far as n^ in the bracket, since

n is to be zero finally, we get

.. , nlQ.os\nl
. \M =—- \ 2 -.—;—-— cos nx— nl sm nx \

2 n'^ \ sin \ nl

2n
2 ^—r-? oT>T—^ -nlxnx]

i 2 — 2 {1 ~^nH-^~ ^nV -\- ^\nn-^)— nHx\

^x''~ix-]-ir'\ . (0.129)

27^2

W
2

which agrees with (5.37)

86. Tie-rod under lateral forces.

A tie-rod differs from a strut in being subjected to tension instead

of thrust. That is, the force P in strut problems must have its sign

P
changed. If we still write n^ for — then the results for tie-rods can

EI
be deduced fr^om the results for struts by writing —n^ for n^, that is

by writing n \ - \ for n. All that is necessary to turn the results into

real form is then a knowledge of the algebra of imaginary quantities.

Let us change the result in (6.105) so that it will apply to a tie-rod
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with hinged ends instead of a strut. Writing i for y— i and
substituting in for n in that equation we get

sin inx ^'

M == : r-r I w sin inhdbm sin iJil

sin in (I— x) r^ .

- w simnada . . (O.130)m sm inl

But it is shown books dealing with imaginary quantities that

sin iO = i sinh

Therefore

sinhr?.a; /^'-^.

M = r-T-
—

-. / w smhnbdo
nsinh nl

sinh7^(/— x) ^^

n sinh nl

I r
- wsiuhnada . . (6. 131)

When the vakie of w is given it may be found easier in any

particular case not to change the sines into hyperbolic sines till the

integrations in (6.105) have been performed, for the reason that

circular functions are more familiar than hyperbolic functions, and

therefore it is easier to integrate circular than hyperbolic functions.

Thus, using the result in (6.106), since

cos iO =^ cosh^,

the corresponding result for a tie-rod is

wEl [ cosh nx'M=
P

I
cosh I nl j

wEl
I

cosh7?.T/
I

Again the result in (6.128), adapted to a tie-rod, is

EIi^ i inl cosh nx'
]V[ = —{2 . . , ,

—-
2P

[ ^smhYW^
Kiwi 7tlcosh.nx' .

2 r-T-T-T- . . • . (6.133)
2P

'I
i^inh^ nl

87. Tie-rod carrying a single lateral load.

If the forces P are reversed in fig. 46 then the results in equation

(6.97) and (6.98) become, when in is written for n and — P for P,

y-i

Qj h sinh ri6 sinh n.x I

P I
/

'

nsinhnl I

Qia,^ , smhnas\hhn(l — x)]

88. The Elas»ica.

In the problem of the strut we have throughout used an inaccurate

expression for the radius of curvature. This makes very little error

7*



lOO APPLIED ELASTICITY

provided that the slope of the strut at every point is small. This

assumption led to the conclusion that the same thrust would produce

either large or small deflexions. But, of course, we are not entitled to

draw any conclusions from our equation concerning what happens

when y is not small precisely because our differential equation involves

the assumption that y is small. A very thin rod is capable of bending

so that its slope is large, but to investigate the state of such a rod

we must use the correct formula for curvature. When only a pair

of balancing forces with or without a pair of balancing couples act at

the ends of a naturally straight rod (as in the case of the struts in

figs 41, 42) the form of the curve of the rod is called an elastica.

There are many different forms of elastica. Two forms are shown in

figs 47(a) and 47(b)

Let s denote the arc of the curve of an elastica measured from

any convenient point on the curve, (p the angle which ds makes with

p. Y P
B^

>

( y
X

Fig. 47 a Fig. 47 b

the line of the forces P. Then, with the axes as shown in figs 47(a),

47(&), the equation for the bending moment at C is

FI_ = M = P(.Vi-2/)

where 2/, is the ordinate of B, and y the ordinate of C. This equation

may be written

dcp
EI

ds
P(2/i-.^) (6.i3(^)

The sign on the left hand side depends on the directions in which cp

and ^ are measured. The sign suits the case of fig. 47(a) where the

arc OC is taken as ^.

Differentiating through (6.136) with respect to s we get

ds^ ds
P sin 99
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whence

^=--sm9, (6.137)

This last equation is independent of the direction in which s is

measured; for if ds were measured from C towards O then one sign

would be changed in (6.136) but this would right itself in (6.137)

dy
because then — would be sinw. Equation (6.137) is, then, the

ds

general equation for all forms of elastica. It is useful to compare this

equation with the equation for the motion of a simple pendulum of

length /. When the pendulum makes an angle 99 with the downward
vertical the equation of motion is

d^w g .

Thus the pendulum problem is precisely the same as the elastica

problem, the arc s in the case of the elastica corresponding to the

time t for the pendulum, the curvature to the angular velocity, and

P q
the constant — to the constant — • The strut with very little curvature

corresponds to the pendulum swinging through a small arc. The
complete period of the pendulum in this case is

This complete period corresponds to the length of a complete wave
on the strut; that is, to the length 2 / for the hinged strut. This gives

2/= 271

71^
whence P = EI

—

as in equation (6.27).

Fig 47(a) corresponds to the case of a pendulum os<:illating from

about 120^ on one side to 120^ on the other side of the vertical.

89. The general case.

To solve (6.137) in the general case requires elliptic functions, but

we can get the useful results by means of series. Let u be written for

the curvature -J^ • Then equation (6.137) gives
ds

du P .

where n^ =»= -—
EI

•—
: sm 99 = — n- sm 99

EI
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that is

dudqp— = — n^ sm w,
d(p ds

du

d(p ^
or

. . . . (6. 138)

Iiitegratin g this we get

I It' = + ^<^^ cos 9? + H . (0. 139)

We shall now work out the problem shown in figs 47(a) and 47(&)
where the whole range of 99 from the force P at one side to the force |

P on the other is less than 2 ji. Let the value of cp at B be 2 a, where 1

2 a is, as we know, less than n. At the point B we know also that |

O'l-y) is zero and therefore, by equation (6.136), that u is also :iero.

Thus one end-condition is that

u = where cp = 2a . . . . (6. 140)

This determines the constant H in (6.139), ^"d the result \i

or
u^ = 271^ (cos 99 — cos 2 a) .

l-^] = 2n^ 1 I — 2 sin2 —— I -f zsin^a
1

\ds} \ 2 J

. (6. 141)

= 4^2|sin2a— sin^^j . . . (0. 142)

Therefore
\ ^ /

«

ds 1 I

. (6. 143)

' 2

Writing s ^ for the length of the arc AB, we find that

I Z'^" . d(p

/sin2a— sm2-^
' 2

, . . . (6. 144)

To work out this integral put

w
sin— = sin a sin ^

2
. . . (6. 145)

Then

\ cos—dq) = sin a cos OdO

sO . .

. (6.

. (6.

146)

147) •and 1/ sin^a— sin2 —= sin a co

Also the limits for are and — corresponding to and 2a for cp.
j

'

f
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dOI r-^ du I r-, au
1=-/ = -/ , . . (1. 148)

nJ (p njo Vi— sin2a sin2^

Then s
nJ

cos
.2

Now by the binomial theorem

y-i—x
{i-xT'

I +i^+-J^:r2 4-^^x3+ .(6.149)

Hence

—
W5^ = r '

I

I + |-sin2« sin'-f^ +— sin^a sin^^ + . . . . 1 ^^ (6.
1 50)

But it is proved in works on the integral calculus that

In particular

/ 2n 2n — 2 422

I.

i:
Therefore

2 2

JT

^ sm^OdO = ^^---
422

2 t2.72
M5i=-5i H- — sin^aH--—— sin*a + ...} . . (6.152)

2[ 2^ 2^.4^
I

Writing I for the whole length of the rod, which is also 25^,

l/fi=

12:32

If we take only the first term on the right we get the usual value

of P for a strut with hinged ends. The remaining terms in the series

are thus the corrections to the result for the strut. The series of powers

of sin^ a is convergent for all values of a less than — • We see from
2

our present result that P is always actually greater than in the usual

strut theory, and that P increases as a increases, 2a being the angle

of slope at the end of the strut. If, for example, 2a is 20*^, then

^l/^-=:7r| I +-sin2ioo| = 1.0075 JT, • • (6.154)

so that

P= 1-015^ EI (6.155)

which is only i-|- V^ greater than the ordinary strut theory gives.
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If 2a ^90^, in which case the ends of the elastica are perpen-

dicular to the forces P, as shown in fig. 48, then

/l="l-i sin''^45<^ + -^ sin* 45^ + • . •

whence

9^

4 " 64
71 X i-iBo (6.156)

P=i.392^El , . . . (6.157)

which is 39 Vo greater than the force that will just start the buckhng-

of the same rod.

If we denote by Pq the force that will just buckle a rod of length

/ with hinged ends, we see now that, as the ends are pressed nearer and

P Y P

( J \2a=l3l

X

Fig. 49

nearer together, the force P increases, and its value when each ^nd

has been turned through the angle 2a is

where S denotes the series in brackets in (6.153). It can be shown that

the ends come together as in fig. 49 when 2a is about 131 ^, and then

P is approximately 2-28Pq. As the

angle 2 a approaches 180^ the series S
approaches infinity, and therefore P
approaches infinity. But at the same
time the loop shown in fig. 47 (b)

diminishes to infinitesiinal dimensions

and the rest of the rod straightens

out. Long before this stage is reached

any rod would break. Fig. 50 shows

the curve obtained by plotting the

series for S against sin a.

Although it is usual to regard

the buckling load of a strut as the

Kig. 30 load at which failure begins, yet it
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is possible that the strut may be well within the elastic limit for small

values of the angle a- Failure may occur first on either the compression

or the tension side according to the shape of the cross section and the

strength in compression and tension. Let us assume that it occurs on

the compression side first, and let h be the greatest distance of a point

of the section through the middle of a strut from the axis passing

through the centre of gravity of the section, and parallel to the neutral

axis. Then the maximum stress on the compression side is, by the

same reasoning as for (6.15),

this being the maximum stress in the middle section. But, for the

middle section, where the stress due to bending is greatest, (p= o,

and therefore

1 dqp .— = -f- = 2n sm Of.

R ds

Also P = 7^2EI = n^EAk\

where k is the radius of gyration of the section corresponding to I.

Hence

f= Kn^k^ + 2Enhs'ina (6.158)

If f is given the value of n corresponding to this / is the value at the

intersection of the two curves obtained by plotting n against sin a
from equations (6.153) ^^'^^ (6-158). In equation (6.153) n must be

written for I/—

•

90. Strut with variable cross section.

We have so far assumed that our struts had uniform cross sections,

but in practice it is not uncommon to vary the cross section so as to

save material, as for example in the case of the struts between the

wings of an aeroplane.

The equation from which the buckling load has to be determined

is still

El3=-P'/
• -(6.159)

but now I is not constant. Writing this last equation in the form

we can use this to calculate I corresponding to any given form of

curve assumed for the central line of the strut. If, as is usual, y is

measured from the line joining the ends then the assumed curve must

make ?/= o at the two ends .r= o and .r= /.
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TIX
Suppose, for instance, that y = B sin— •

t

rr,, T
F ^ , 7ix 71^ nx

Then I = — — B sin— -7-—— B sm —

—

3^ I I I

/2 P

""jT^E
(6.161)

giving a constant value of I, and giving at the same time the value

of P in terms of I.

Again suppose the curve is a parabola passing through the ends

;

that is, y= Bx(l— x) . Then

P
I-- — -Bx(/—:r)-^— 2B

E

--^^(i-^) (6.162)

If /B is a small fraction the curve y=zBx(l— x), which is really a

parabola, is practically coincident v^ith a circular are between the

limits x= o and x= l, the radius of the circle being
^ 2B

It should be observed that the moment of inertia I in the last case

is proportional to 3;. If follows then that this rod must be much
thinner at the ends than at the middle. Suppose, for simplicity, that

the section of the rod is circular of radius r. In this case l=^7ir^
and therefore equation (6.162) gives

2P
r^^-—x{l—x) (6.163)

which determines the radius of the section at any point of the rod.

Let us next suppose that the rod has any form of section subject

to the condition that the section has a pair of perpendicular axes of

symmetry, one of which is in the plane of bending, and let us suppose

also that all the sections are similar figures. Let h denote the maximum
breadth of any section, and h^ the corresponding dimension for the

middle section. Then, since the sections are all similar,

I= Ch^

where C is the same constant for every section. Therefore equation

(6.162) gives

Ch^-^x{l-x)', (6.164)

and at the middle section, where x^=\l,

p/2

CV=8E '^-'^5)
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By division from the last two equations

fb y _ 4x{l— x)
(6.166)

which gives the breadth of any section in terms of the breadth at the

middle and the abscissa of the section. The breadth of an actual strut

could not strictly be made according to equation (6.166), for this

equation makes the strut taper to points at the ends, whereas its

section must be great enough at the ends to stand the stress due to

the thrust P distributed uniformly across the section.

91. The strut with variable cross section (continued).

The problem of finding the buckling load for a given strut with

variable cross-section depends on the solution of a differential equation

which can seldom be expressed in terms of finite algebraic, trigono-

metric, or logarithmic functions. The solution usually involves Bessel

Y

Fig. 51a

functions, or still less known functions expressible only by infinite

series. There are, however, certain algebraic values of I which lead

to finite algebraic values of y. We shall now consider some of these.

Suppose we are still dealing with a strut with hinged ends. It is

convenient to take the origin at the middle of the straight line joining

the ends as shown in figs. 51(a) and 5i(Z?). For such rods as we shall

deal with there are tv/o distinct cases to consider, in the first of which

dy

dx
o where x,= o, and in the second y= where x= o. We shall

deal firstly with the case where—
dx

The equation for 3; is

o at the origin.

dxJ
^ (6.167)
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Now suppose

-•(-3 (6.168)

where a denotes half the length of the rod, / being the whole length.

Clearly I^^ is the value of I at the middle of the rod. Also let us write

u for — • Then «=+ i at the ends, and
a

d^y d (dy \ d f dy\

dx^ dx \dx) adu \aduj

_ I d^y
~

a^ du^

Then the equation for y in terms of u is

d^y
whence (i —^^)j~^^— ^^2/ (^-^7^}

where w2=-- = -—— .... (6.171)

Equation (6.170) can be solved in series, and this series will terminate

under certain conditions which we shall discover. For the case where

y is a maximum when x^=o, that is, when u=^o, it is clear that y
must have the same value for equal positive and negative values of u.

Then y must involve only even powers of u. Let us assume, therefore,,

that

.y= 2/0(1 +,^2^2 + 64^*4-^6^6+ ..
.)

dhj
Then ^ = 2/0(2^2 + 4.3<?4^^+ 6.5^6 *** + • • •)

Substituting in equation (6.170) we get

;//o(i— w^)(2C2 + 4-3^4^2+ 6.5^6 w* + . .
.)

=— w22/^(l_|_C2i*2_|_c^^^4 + C6Z/«+...) . .(6.172)

Equating coefficients of like powers of u we get, after taking out the

common factor 3;^,

2^2=

—

n^

4.^6^—26^=— n^c.
^ .(6173)

6.5^6 — 4-3^4 = —w%
I
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These give

Therefore

2/ = 2/o
I-

li

n\n^— 2){n^— 12)

^2(^2_2)(^2_i2)(w2_3o)

i!

(6.174)

Now we can make this series terminate by properly choosing the value

of n^. For instance, if we take

n'^ = 2 (6.176)
p/2

that is, —r = ^ • • {^'^77)

v:e find

3^= 2,„(i-m2) = %(i-^') . . . .(6.178)

This value of y is equal to zero at the ends, so that our solution

satisfies all the conditions of the problem. Indeed the value of I in

this case is, allowing for the difference of origin, exactly the same

as the one in (6.162), and the present value of y is the same as the

value of y from which equation (6.162) is deduced Our present

problem is, in fact, the previous problem attacked from the opposite

end.

The value of y in (6.175) can also be made to terminate, and at the

same time to vanish at the ends of the strut, if we 'take

n^ = 12 (6.179)

p/2
[8 (6.180)

EI

Then

y .VoCi — 6^2 + 5^')

= 2/0(1 — ^') (I— 5^') (6.181)

This value of y vanishes not only at the ends but also at two other

points given by

5u'

or
V5x= +-^-^/= ±0-2236/ (6.182)
10
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The form of the curve is shown in fig. 52. The distance A'A is

equal to —=r /. Let us write /j for this length. Then, from equa-

V5
tion (6.180),

EL
^48
- 5

9.6

(-J?)
and y = Vo

4 x^

^1^.

. (6.183)

. (6 184)

• (6.185)

The piece A'A would' be in equilibrium if the forces P were applied

at A and A', so that the last three equations may be regarded as

applying to a rod of length /^. It should be observed how near the

number 9-6 in equation (6.183) is to the number tt^ for a uniform

rod. This is to be expected, because the value of I at A or A' is |- 1^,

which is not very much less than I^. The portion A'A is thus very

nearly a uniform rod.

By taking

w2 = 3o (6.186)

P/2

EL
20. (6.187)

we get

so that y vanishes, not only at the ends, but also where

I — I4?/2_|_ 2i?t^ = o

(6.188)

that is, where

whence

or

3-31/7
= 0-5853 oroo8i3

^ = +0-765 or +0 285.

X'= -ho-7b5a
\

x = ±_o-2S$a
J'

(1.18c)
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Thus the strut crosses the ;r-axis four times between the ends, and

the length of the middle bay, corresponding to A'A in fig. 52 above,

is 0.285 /. Denoting this by /^ as before, we get

I
4x(o.285a:F|

"I I? )

gj-=9-76 (6.191)

By the preceding process we can clearly get an infinite number of

possible curves and the corresponding thrusts that will hold the rod,

whose section has the given moment of inertia, in the form of these

curves. Our method will give us an odd number of bays on the strut,

corresponding to an odd number of half-wave lengths on the strut

of constant section. If we now find the solutions giving an even

number of bays we shall have done for the given rod what was done by

Euler's method for the strut of constant section.

92. The same strut with an even number of bays.

We have now to get a solution of (6.170) which, will make y zero

where u= o. Then, since y must change sign with u, we assume that

y=riu-\-c^u^-j-c^ii^-\-c,u^-{- . . . .) ... (6.193)

Proceeding to find the values of the c's exactly as before, we get

finally

j
^2

_
,^2(^2_2.3) W>2_2.3)(y^2_4.5)

y = rlu u^-\ '^ ~-u^ ^ ^^^ -^^u^ + . . . (6.194)

The smallest value of n^ (omitting the case where n^= o) which

makes this series terminate, is

n^= 6, (6.195)

whence
p/2 = 24 . . . . . . . . (6.196)
EIo ^ ^ ^ ^

Then

y = ru{i — u^)

X ( 4X-

which makes y 2ero only at the middle and ends.

The second solution is obtained by taking

^2^20, . (6.198)

^'j . . . . . . (6.197)
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P/2
and therefore — =80 . . (6.199)

Then

= ru{i— u^)(i— ^u^) .... (6.200)

which makes y zero at the middle, at the ends, and at the points where

=+ 03273/ (6.201)

Further solutions can be obtained by taking n^= 6.y or 8.9 etc.,

and the corresponding values of y will be zero at the middle and

ends, and at four, six, etc. other points respectively.

Because the value of I reduces to zero at the ends of the strut that

we have just been considering, it might be expected that the bending

stress at the end would be large. But the stresses at the ends due to

bending are actually zero. Let h be the greatest distance of a point on

a cross section of the strut from the neutral axis. Then the maximum
stress due to bending at that section is

^ hU }i?y
f= =—- 6.202)III . V ;

Now at the ends I vanishes because it contains the factor i

But y also contains the same factor, and therefore —is a finite quantity

at the ends. Moreover in a reasonably constructed strut, h will be

zero when I is zero, and therefore / will be zero. It follows then that

the tapered strut that we have dealt with would be quite good enough

to stand the bending stresses. It would, however, fail to stand the

crushing stress at the ends. In practice, then, a tapered strut must

P
have a section A at the ends such that— is a safe working compressive

A
stress.

93. Uniform vertical rod, clamped at the lower end, under
a distributed load.

Let the coordinates ot the point C referred to the

axes shown (fig. 53) be {x, y), and the co-ordinates of

H {x', y). Let w denote the load per unit length at H.

We must regard w as a function of x' ',
say 'w= f(x').

The moment, about C, of the weight wdx' at H, in

wdx'(y'— y). Then total bending moment at C is

M - f w{y—y)dx ...... (6.203)

the whole length of the rod being /. We can write this

in the form
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limit X we get

dM
dx

M = / w{y—y )dx

Differentiating both sides of this equation with respect to the upper

\x'=x J I dx
dy r^= w{y'—y)+-Jwdx

== — J- I wdx (6.204)

In the preceding differentiations it has to be borne in mind that y is a

function of x but not of x', and y is a function of x' but not of x.

dy
Likewise -f- is not a function of x , and can therefore

dx
be treated as a constant in integrating with respect to x .

It is worth while to deduce equation (6.204) without

differentiating an integral. Let C be a point on the

rod at (x-{-dx, y-\-dy), and let the total load above

C be W, and suppose its line of action passes at

-distance z from C. Let rfW be the increase in W due

to the increase dx in x. Then dW is negative and its

magnitude is the weight of CC. The bending moments
at C and C are denoted by M and M + c?M. Then

U+ dU = (z— C'N)W— I C'NrfW

dW
A

N

dx

W
Fig. 54

Therefore

whence

= -%{W4-|c/W};

in the limit when dx and dW vanish. This is the same result as in

I

equation (6.^94) since fwdx' represents W.
X

Now using the value of M in terms of y and x, namely,

dhi
M = EI^, (6.20b)

equation (6.205) gives

dx-

dx^ dx



114 APPLIED ELASTICITY

Writing p for ^— this becomes
dx

In this equation the symbol W, which denotes the total load above C,

may include any number of concentrated loads. In particular it may
include a load at the top end, and the equation will, of course, remain

correct if the end load is the only load, in which case w vanishes

everywhere but near the top and there w is very large, so that fwdx^
over a very small length is equal to the finite load at the end.

94. The load per unit length assumed constant.

If w is constant and there is no load on the end, then W=w{l—x)^

Therefore

whence

^^^c(l— x)p. ..... (6.2o8>
dx^

w ,.
where c=— . . (0.209)

Let /— x= z, thus measuring z from the free end. Then

dj^j) d (dj)\

dx^ dx\dxj
__d(_dp\

d% \ d%)

_d^p
""^

and therefore

d^v
e.p . ... . . .(6..10)

We can express p in terms of Bessel functions, or we can solv^e the

equation for p in powers of z directly from the differential equation.

We shall use the latter method. Let

p = a^ -\- a^z -\- a^z^ -\- a^^^ -\- a^%^ -\- . . (6.211)

Then
d'^v-^ = 2a.^ + 3.2 a^z + 4.3 «4^^ 4- .

az^

Hence equation (6.210) gives

2^2 + 3-2 a.^z + 4.3 a^z^ + 5.4 a^z^ +
= — c\aQZ -i-a^z^ + a.2Z^+ ^.5^* +

}

from which, by equating coefficients of like powers of 2, we get
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2a2 = o,

c

3.2^3 = —c%, a^ -= — -— ao
3-2

c

4-3
4.3a4 = — car

,

«4 =—77 «i
4-3

6.5«6 = — c«3' ^^^~"6^^\
V2J'

2.3.5-6
/>2

7.607 =— CO4

Thus we get

P

' 3.4.6.7"^-

/ cz'^ e^z^ \

"V 2.3 2.3.5.6 ;

/ cz^ cH'^ \
-\-aAZ 1

. . . (6.212)

To determine the constants a^ and a^ we must use the conditions

p = o where z=^l
and M = o

j

dp \ where x^^o.
that IS, ^r-

= o
dz ]

The second of these conditions gives

«i = o,

and then the first gives

d^ ^2/6 ^sp
0=1 -A ; \- .... (6.213)

6 ^ 180 12960^ ^
^'

Equation (6.213) is satisfied by an infinite number of values of cl^.

The series is similar in type to a cosine series. Each of the roots of

our present equation corresponds to one of the possible equilibrium

forms of the rod, and there is an infinite number of these forms, just

as there is an infinite number of forms of equilibrium of the uniform

strut. Instability begins when cl^ has the smallest value which will

satisfy (6.213). Writing the equation in the form

,,3 = 6 +<^-<f?+ (6.ar4)
30 .2160

we see that there is a root not. very much greater than "6. When cl^

is 6 the third term on the right is o-i, so it is clear that we shall get

a good value of c/'" by solving the quadratic

(r/'^)2— 30^/3 + 180=
8*



IIO APPLIED ELASTICITY

The smallest root of the quadratic is

Take, as a first approximation,

cP= S.

Then, using (6.214), a better approximation is

82 82 83
c/3 = 6 H 1

30 270 270x11x12
= 7.9.

The root appears to be near 8. To get a better approximation let

f(x)==6— z+ - ^H >

30 2160 2 1 60. 1 I.I 2»

/y /v2 /y3

Then /•»= — iH -^ +-—
15 720 2160.11.3

Let the smallest root of f(jj):=o be (8 -|- «) in which we know that

u is small. Therefore the equation

/-(^)=o

l)ecomes, on neglecting powers of u beyond the first,

/(8)+«/'(8)=o,

whence an approximate value of u is

U--M
r(8
—0.0898= ^7^= — 0-164.
—0-05486

Therefore

= 7«84 approximately,

or _- = 7.84 (6.215)

If w is given the critical length at which instability begins is

,-(,.s,S)*

-'99(f)*
('•"')

If / is given, the critical value of w is

EI
2^; = 7.84— (6.217)

In the preceding work w is the load per unit length. Suppose the load

is the weight of the rod itself. Now let A denote the area of the cross-
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section, g the weight of a cubic unit of the material, and k the radius

of gyration of the cross-section. Then, since a'= ^A and 1= ^2^

the preceding results can be written

and ^=7.84—.

Suppose a solid steel rod with a circular section, whose diameter is

two inches, is clamped at the lower end and held vertically. Taking
E= 3i X 10** pounds per square inch and ^:=r 0-285 pounds per cubic

inch, the straight form is stable provided

/<!.
/3IX IO«>C l2\l

,

99 o inches
^^\ 4x0285 ;

1=1— r X 50 feet

V

or < 50 feet

If the diameter were -^^ of an inch then, since k is proportional to the

diameter, the critical length would be

Ml
.20,

= 0-8 feet.

95. The extension and tension of a rod due to lateral

displacements.
When the central line of a rod, which was originally straight, is

bent into a curve, the whole lentgth of that curve is greater than the

length of the straight line unless the ends of the rod are allowed to

move nearer together as the rod takes the curvilinear form. For
example, a beam built into rigid supports at the ends must increase the

length of its central line when any load is put on it. Of course no
supports are so rigid that they w^ill not yield to forces applied to them,

so that in every case the ends of a rod under lateral forces do move a

little nearer together. Nevertheless the supports may be in some cases

so stiff that they yield only a negligible fraction of the increase of

length of the rod. We shall deal only with the case where the yield of

the supports is negligible, and assume therefore that the increase of

length of the central tine is the difference between the length of the

curve into which it is bent and the shortest distance between the ends.

Let the .r-axis be taken on the line joining the centres of the end

sectiojis of the rod, and let (x, y) denote the coordinates of any point

on the curve of the central line in the bent state. Then, if the origin

is taken at one end of the rod, the strained length of the central line is

(dy)'f
2 -I MuU [^
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dyNow we shall deal ouly with the cases where — is everywhere small,
^"^

dy
as in all beam problems. Then neglecting all powers of — beyond

dx
the cube,

s =^

Therefore, the increase of length is

Then the longitudinal strain of the central line is

I 2lJ^ \dx/

It follows that there is a tensional stress in the fibres which pass

through the centres of gravity of any section the magnitude of which
stress is

'djj\^

^\ dx (6.220)
dxj

If A denotes the whole section of the rod the whole tension across the

section is

EA ^'

'-?-/(

P = foA=— / [-f]dx ..... (6.221)

when the origin is taken at one end of the rod. But if the origin is

taken at the middle of the rod, and ii 2b is the length of the rod,

96. Beam with ends attached to rigid supports.

To find the deflexion of a beam when the ends are held at a fixed

distance apart we can use equation (6.111) provided we put —P for P.

Thus

d'^M P ,

d^M
or — 7i^M = w (6.223)

dx'^

This equation gives M, and therefore also y, when the boundary condi-

tions are known. The substitution of the value of 3; in (6.221) or

(6.222) will then give an equation for P.

We shall investigate the problem of a beam with pinned ends held
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at a distance apart equal to the natural length of the beam when a

uniform load w per unit length is applied to the beam.

Equation (6.223) can be written in the form

^—•^(m + -J=o . . . .(6.224)

/ w\
When V is put for I M + — I this becomes

d'^v
.——

—

n'v = o

the solution of which is

v = Kcosh.nx-\-Bsmhnx\
that is,

wM = --\-Kcosh.nx-\-Bsmhnx . . . (6.225)

Now let X be measui^ed from the middle of the beam. Then the condi-

tions that M is zero at both ends, where x= ^b, give

w
o=

:; + A cosh nb-\-B sinh nb,

w
o = ^+ A cosh nb— B sinh nb',

whence

Therefore

n^ cosh nb'

M = w fcoshnx
j, . . . . . (6.226)

or

n^ \ cosh nb

d'^y w / cosh nx \

dx'^ n^ \ cosh nb )

Integrating this twice we get

^^ w /coshwj:; . „ „ \
Ell/ = — ;—^_ 1 ^2^2

-I- Hx -f- K

Since 3; is zero at both ends the equations for H and K are

cosh nb
o =—-—_ 1 ^2^2 _{- H6+ K,

cosh nb ^

cosh nb

cosh nb ^

from which

H=o,
K = |w2&2— I.
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1/0 \ cosh vhcr \

Therefore EIv =- —U^^n^h'^-x'*^)], . .(6.227)

Consequently

c?iy *<; /sinh nx \

dx n^ \cosh nh )
dy

With this value of — equation (6.222) now gives
Q/X

^ EA r^ w^ isinh^nx sinhnic „ )
,

P =—r-/ -T^TTTir—j!
—

^ir-;— 2Wit;

—

-—- -^n^x^)dx
4bJ _bE^I^n^ [cosh^ no coshno \

16'^A fsinh 2nx

—

2nx 7ixcoshnx— sinhwa; . _~|^— 2 I 1 77/ X I

2n%Er'^\_ picosh^nb n cosh nb j^

w^A
[ i=—

^ j
tanh nb— 7ib sech^ nb— ^nb -\- 4tanh nb -{-^n^b''^)

w^K { I

;rj^{l«^— 5-+ 5tanh;?;rl-;^tanh2;?;J (6^228)
4«^6EI'

where 2= nh.

Now writing ^^El for P and ^^^A for I in the last equation, and

then expressing n in terms of 2, we get

4 ^^^J^'
^-'--3 ;^^- 5-+ 5 tanh;- + ^ tanh^ v .(6.229)

This equation gives the value of 2, and therefore of n and P. When
the value of n found from this last equation is substituted in (6.227)

the deflexion of the beam is determined.

Let us examine the two extreme cases, when 2 is small, and when

^ is large.

The case where % is small. When 2 is small tanh^ can be expanded

in powers of 2. Thus
z^ %^

%^ - A h
11 |5

tanh;!;= "— •—
z^ z*

I 2 17 62

3 15 315 2835
wb^

When c is written for ——tt equation (6.229) becomes

4 o ( 17 -,
62

-^ x;9 = 2 —^ z^— 2 —

—

c^ I315 2835
whence

X^ = c2 (21
\630

^.^+) . . . .(6..30)
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The first approximation gives

630
and the second

17 62c2 17

630 2835 630

= -^c2f I—-^cA . ... .(6.231)
630 \ 2835 ; ^ ^ ^

The second approximation to P is therefore

^ ^^x^ 17 EIc2 / 62 \ ,
"

P = EI— ==—^-—- I TT—c^]. . . .6.232)
h^ 030 z»2 1, 2835 ;

^ ^ '

If we are dealing with a beam of rectangular section it is quite

clear that the maximum stress is the greatest tension in the middle

section. If f^ denotes the tensional stress due to the bending moment
alone and f the total stress due to P and M together, then, writing 2h
for the depth of the beam, we get

where 7t»«^ t , ^

cosh nxhM hw I

cosh nb
^

at the middle of the beam.

Therefore

, hwh'^ I /
, \ E^^ .

/= — I — sech z + —— z^

hwh'^\i — sech^i; EA/c* I

^~¥k\ ^ ^ wb'li ^
]

hwb^^ i I — sech z k z^\ ,, ^= m:\—^^+kir] • (6-^34)

With the assumption that z is small we find

/ z"^ z^ z^ \—

I

sech;i;= iH 1 1 h 1V-
V 2^24^720^; L^

z^ 5z^ biz^
^

~
- 24 720

Therefore

f= 1—h ^I^^H ^*— >• . . 6.2SS)
' k-'A {2

^ \he 24) ^ 720 I
^

^^^
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By means of equation (6.231) this becomes

For very small values of c we may neglect the terms containing c* and

then we get

^ hwh'^ii 17 (he 5 \]

7%e ca^e w;^ere ^ is large. Let us now turn to the case where z is

large. The value of tanh^r for quite moderate values of z is very

nearly unity. Therefore equation (6.229) becomes approximately

4^9 2

whence
= 1^^—4^+5

z^ = ^c^ii— ~-\.^^, . . . .(6.238)
6 V z'^^ 2%^] \

o f

We shall carry the solution of this to a second approximation and

shall therefore neglect the last term in the bracket. Then

The first approximation is

and the second
(it

To this degree of approximatiQA

;r/2 EA/^-'(/c2\i
]

Also, at the middle of the beam,

A=-— = _-^i-sech.j . . . .<6.24i)

But

Therefore

sech % =—-— = =— nearly
cosh;?; e*4-e * e^

hwb^ ( \
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ni
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liwb'^ ( \

Therefore the total maximum stress is

= —r^ni* + TT/T approximately

-(

^2 ' A;2A

Ew;2fe2w /^^,^,2

-6A^) +-^^ ^'-^44)

This last equation gives the most important terms in the maximum
stress when z is large, that is, when c^ is large.

It is worth while to notice the form of the curve of the beam when
z is large. We may write equation (6.227) in the form

from which it is easily seen that, when z -s large, the approximate

equation for y is

2

This can also be written in the form

(6.246)

«^/>2 / ^2\

^'2Fy~Vyy-—^~{^—r.] (^-247)

Thus the limiting form of the beam for very large values of w is

circular.

97. An approximate method for a uniform beam under
tension.

From the single example that has just been worked out it is

apparent that the accurate method is very cumbersome. To avoid the

labour of this method we shall now indicate how approximate results

can be got which are good enough for most practical cases.

When we multiply both sides of (6.223) by ydx and integrate over

the length of the beam we get

I y--—-dx— ?^2/ yMdx^ wydx .... (6.248)
J —b dx^ J —b J^b
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Now integ^ration by parts gives

dm dM dtj r d'^y

Therefore

J ^0 dx^ l^ dx dxj^b J~b dx^

-i:

But the integrated terms are zero at either pinned or clamped ends.

Consequently

J_t' dx^ J_t dx'^

^y... . . .(6.49)

Again

' dx\_b J_.b \dx)

Therefore equation (6.248) becomes, when P is written for El/i^,

where P itself is given by (6.222), that is, by

^ EA r^ (dyy
,

The last two equations are, of course, quite accurate if the correct

expression for y is used in the integrals ; but the real value of these

equations is due to the fact that the equations remain nearly true if

any expression for 3; be used which makes the assumed curve for the

beam not widely different from the real curve. In fact, if we use for 3;

an expression which looks very different from the true expression,

provided that it gives a curve of the same general character as the real

curve, the resulting error in P and in the maximum deflexion is quite

small. A few examples are given below. The method consists in

assuming an expression for the deflexion involving one unknown
constant, and then using (6.251) and (6.252) to determine this constant.

98. Beam pinned at both ends under a uniform load.

Since y and M are zero at both ends a good expression for y is

y^acos—- (0.253)
20



THIN BODS VNDER TENSION OR THRUST 1 25

a being the deflexion at the middle of the beam, a quantity which has

to be determined by means of equations (6.251) and (6.252).

Then

~i6p

/wifdx =2 wa cos-— dx
-b

'

'Jo 20

4wab

Therefore equation (6.251) gives

^ I6ft^ +^^6^^~V
Now let d denote the depth of the beam, and' let us assume that the

section is rectangular. Then

and therefore

I = A Ad-'

whence

EA -\-EA---^^ ,

1926^ 646^ jr

wb*

EAd'^ 256h ^ W )

= 0-398-+ 1. 195 1

~j , . . .(6.254)

which is the equation for a.

As another example we may take the usual deflexion for the beam
under a uniform load when there is no tension. When x is measured

from the middle of the beam this deflexion can be written in the form

= -^,-(5*^-6^2^:2 + ^4^ . . . .(6.255)

where a denotes the deflexion at the middle, as in the last example.

In this case equation (6.251) gives

wb^ 2 a ux^^y/ay
/EArfB

-^-f- \5x35; [dj

= 0400-+ 1.208 (-j . . . .(6.256)

The two coefficients on the right hand side of this equation differ from

the corresponding coefficients in equation (6.254) by only one half

per cent and one per cent respectively.

y
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When a is much smaller than d equation (6.256) gives a nearly

perfect result, for in that case the deflexion differs very little from

that obtained on the assumption of no tension. It is useful, as well as

interesting, to apply our present method to the other extreme case,

namely, the case where the tension is much more important than the

rigidity in supporting the load. If the rigidity had no effect at all the

curve of the beam would be circular; that is, we should have

a parabolic curve which is approximately circular for small values

of y. The substitution of this expression in (6.251) gives

wb^ I a m "-"
The fact that (6.256) and (6.258), which represent the two extreme

cases, do not disagree very greatly, shows that the present method is

a good one. Equation (6.257) should not be used for a beam that has

any appreciable rigidity. In nearly all cases the two earlier equations

will give better results.

99. Rod clamped at both ends under a uniform load.

The deflection for a clamped beam when there is no tension is

:'^ = «(^-p) (^-^59)

Another expression for y which makes y and -^ zero at both ends is

dx

.V
= i«( I +COS—-j (6.260)

When these values of y are used in equation (6.251) the resulting

equations are

g^=..-03^+i-52y . . . . .(6.a62)

which are again in close agreement.

It should be remembered that all the preceding results by the

approximate method, from equation (6.254) onwards, have been

obtained on the assumption that the beams had uniform rectangular

sections. For any other sections the proper value of I must be used,

100. Approximate method of finding the buckling thrust

of a strut with any cross-section.

The differential equation from which the buckling thrust has to be

determined is
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EI§=-P2/ (^•^'^3)

Multiplying this by -^ and integrating from one end to the other of
dx-

the rod we get, taking the ends at jir= o and x==l,

dx = — P / y-r^dx
Jo <J^ \dxy Jo^dx^

= _p dy

'+^f^th- <'"'^)

Now if the ends are pinned y must be measured from the line

through the ends in order that equation (6.263) should be true. If the

ends are clamped y is measured from the line joining the points of

dy
inflexion on the curve. In both cases either 3; or ^—

^ is zero at each
dx

end. Consequently the integrated term in (6.264) is zero. Therefore

whence rL^fd'^vX^,
\dx

v*«aw
(6.265)

(6.266)

Now if the value of y in one of the possible equilibrium forms of

the strut is used in this equation the equation gives correctly the

corresponding value of P. The advantage of this equation, however,

lies in the fact that quite good values of P can be found from only

approximate values of y. We give a proof of this below.

Let the possible forms of equilibrium of the rod be given by the

curves

:'/
= A32/3,

etc. . .

and let P,j be the value of P corresponding to «/«. In the case of a

,.,.,, . nx . 2nx . '\nx
uniform rod withpmned ends y^, y^, y^, are sm — , sm——, sm ——-•it i

Now the values of y in equations (6.266) are the only correct values

of y to substitute in (6.265)." But suppose we use an incorrect value.

Let us suppose that we use

y.= Ai yy + A2 ly^ + A3 «/3 + . . . . . . , . (6.267)

This is a series like a Fourier series, and it is possible to represent
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any function of x between x= o and .v= l by such a series. The
functions y^, y^, etc. are such that

J ~¥J
[m^n) . . (6.2(>8)

which result is included in (6.274) below. If therefore we multiply

?y dx
throughout equation (6.267) by ——- and integrate from o to / we get

EI

If y is a given function of x, and if the functions 3'^, 3^' ^^^^ ^^^

known, this last equation gives A„. Thus the coefficients in the

expansion of any function of x in terms of y^, y^, etc., can be

determined.

Writing D for —, we find from equation (6.265)
tttJU

f EI I A. D2v/, + A^D V> + AoD?//, -^ ..]''- dx

/^ {A.Dyi + A,Dy, + A,By, + . . .^ d.

Now rEWhjnB^ymdx=f— V^tjnD^'Jmdx

= — PnhyJ + P« / TiymPyndx,
'^

The integrated term is zero at both limits since it is understood that

tjn and ym satisfy the boundary conditions as well as the differential

equation. Therefore

fElD'-ymDhjr.dx^Fnf'DymDyndx . . . (6.271)

By the same method we get

fElDhjn,myndx=VmfBym^yndy • • • (6.272)

Therefore, by subtraction,

o = (Pn— PjrD^^D/A^:r

whence, if yi is not equal to m,

l'DynJ)y„dx = o ....... (6.273)

Now it follows from (6.271) and (6.273) that, if m is not equal to n,

fETDhj^T>^yr,dx = o .*.... (6.274)
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We have now proved that the integrals of all the terms except the

squared terms in the numerator and denominator of the fraction on

the right of equation (6.270) are zero. This equation therefore becomes

P= -, . . (6.275)

Now equation (6.271) is still true if m= n. Therefore

Let us write

:^==f{Dyny'dx ...... (6.276)

Then

A,H,^F,+A,W^, + ..^ .... (6,277)

Now suppose we are seeking the smallest buckling load, which we
have denoted by P^. We can usually make a fairly good guess at an

approximate expression for y for this case. The absolutely correct

expression is, of course,

but we may find it very difficult to get the exact expression for 3;^ in

terms of x. If our guess is a good one then we have taken

y= \yi + \y2 + ^Ys +
where A^y^, Agj^g, etc., are all small in comparison with A^y^. In that

cas€ A^c^, A^c^, etc., are still smaller in comparison with

But

A 2/. 2p
' A 2/> 2p ~r- •

^

=Pi \l7— ...... (6.278)

1 H- ' '

A,^c^

Now since P^ is the smallest of the forces P^, P2, P3, etc., it follows

that the approximate value of P given by the last equation is greater

than the true value P^^ unless all the A's except A^^ vanish, in which

case it is equal to V^. Therefore the true value of the smallest buckling

thrust is the least value of P given by (6.265) whatever function of x
IS used for y.

9
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If we take care that the value of y we use in equation (6.265)

satisfies the boundary conditions, then it is true, whatever these

boundary conditions are, that the least buckling load is the least value

of P given by that equation. Moreover, if we want any buckling

load except the smallest we need only take a value of y which has the

known characteristics of the ordinate corresponding to this load. Thus
if we want the second load we have to take an expression for y which
crosses the ;ir-axis once between the ends, and find the least value of

P for such a 3,'.

An excellent method of arriving at a close approximation to the

buckling load that we are seeking is to use an expression for y which

satisfies the boundary conditions and which has one constant in it

which we can vary at will without altering the desired characteristics

ill y. We shall now apply the method to a few cases, and we shall

take first cases where we know the result for the sake of testing the

method.

1 01, Illustrative examples.

(a) Uniform strut pinned at both ends.

It is slightly easier to take the origin at the middle instead of at

one end. Then let 2a denote the length, and let the origin be taken at

the mid point of the line joining the ends.

Let us take

y= k(a^— x'-)(na^-{-x^) (6.279)

This value of y vanishes at the ends ;r===+a. Moreover, since it

involves only even powers of x it represents a curve symmetrical about

OY, which we know must be a characteristic of the correct curve. The

parameter n can be varied for the purpose of making P as small as

possible for this form of y. The constant k will introduce a factor k^

into numerator and denominator of the fraction in (6.265) which

gives P. We may therefore take k=i without affecting the result.

Now
y= fia*— (n— I ) aV— .r*

It will save trouble in writing to use a sitigle letter for {n— i).

Therefore we write tn for (w— i). Then

y={m-\-i)a*— ma'x^—x'^ (6.280)

Substituting this value of y in (6.265) we get
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p =
/ (zma^x -{- 4X^)^dx

2EIa5(4m2+i6w + ^)
2a

Therefore, writing ic for —-— , we get
2 1 EI

. (6.281)

^^y^+2om + 36
^ .... .(6.282)

35^2-1- 84m -f ^o

whence

(35-^1^— 5)w^ + (84^— 20)w + (60X— 36) r=: o . . (6.283)

We have to choose m so that x has its least value. Now the values

of m given by (6.283) will be real provided

(84;r— 2o)2>4(35.r— 5)(6o^— 36) . . . .(6.284)

This then must give the range of values of x that are possible for

real values of m. The least value of ;r is what we are seeking. This

least value is the least root of the equation

(84jr— 20)2= 4(35;tr— 5) (6ojr— 36),

which is equivalent to

(42;r— 10)2= (yox— io)(30;r— 18),

whence
2ix^— 45^-{-S= o.

This least rood is

45— V1605x=
42

4-9375

Therefore
42

(6.285)

P 21a:; 84.x

_ 9'875
/2
••••••

The correct value of the coefficient is ji^^, which equals 9-8696. Thus
the error is less than one in a thousand.

Sirut with a variable section.

As a second example we take the case of a pinned strut the moment
of inertia of the section of which is

I = locos— (6286)
2a

9*
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at distance x from the middle, 2a being written for /, the length of the

strut. Thus I is I^ at the middle and zero at the ends.

The expression for P is, since the ends are at ;r=+ a,

2

dx

P =MS)
If we take

y = cb^— x"^ (6.287)

£EIo cos ^— 4dx

/a
^xHx

-a

6 EIq 24 EIq

KT= 7-640-^ (6.288)

Next suppose we take the same expression for y as we took for the

uniform strut, namely

y==(m-{- i)a^—maV

—

x^' . (6.289)

Then

/^^ EI(2ma2+ i2x^y^dx

f^^ (27na^x-{- 4X^ydx

/d JIX
cos— (m^a* -I- I ima^x^+ 3 6x^).dx

= ^^0 -z^

/ (m^a^x^-{- 4ma^x^-{- 4x^)dx
v —a

Since we are dealing with an even function of x the integrals have the

same values over each half of the strut. Consequently we need integrate

only over half of the strut. Therefore

P = EIo

cos— (m'-'a^ + I zma^x'^+ 3 6x^) dx
20'

71—m'^-\-{n^— 87r2)m+37r*

—

1 /^
471'^ -\- 11^2

24EI0 12
//: \— (6.2QO)
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The minimum value of the expression representing P for different

values of m is

P-7-6j4y^'' (6.291)

This differs very httle from the result in (6.288). The smallness of

this difference indicates that the form of the curve given by (6.287)

is a fairly good approximation to the true form of the strut.



CHAPTER VII

TORSION OF RODS. SAINT VENANTS THEORY
1 02. Rod with a uniform twist per unit length.

Suppose that a uniform isotropic rod is fixed at one end, and that

any section of the rod at distance 2 from the fixed end is twisted

through an angle rz, so that t is the angle of twist per unit length.

We shall assume that all elements of th-e rod of equal length are

strained in exactly the same way. This means that the stresses and

strains are independent of 2. For the present we make no assumptions

about the displacement w, which is in the direction of 2, except that

w is independent of 2. Our object is, howev-er, to try if the assumed

displacements, together with some yet undiscovered value of w, will

reduce the shear stresses over any cross-section

to a pure couple, and at .the same time give

no forces on the sides of the rod.

We shall suppose that we are deaUng with

a short length of the rod, so that we may re-

gard TZ as a small angle. In fig. 56 the apgle

POP' is TZ, P' being the displaced position of P.

Regarding PP' as a straight line of length rrz

we see from the figure that the component
displacements parallel to the axes OX, OY, are

u= — PP' sin =^— VIZ sin

=-—Tyz (7.1)

V == -f PF cos

= TXZ {7.2)

Our assumption concerning w is that w is not a function of 2, that is,

w= f(x, y)

The above values of the displacements give

cu dv c)w
r=0, — = 0, — = 0, (7.3)
cx cy cz

whence it follows that

P,^o, P,= o, P3= o (7.4)
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Moreover,

/ow . dv\

= 7i(— T%-\-r%)

(7.5)

103. The boundary conditions.

Let us now consider the boundary conditions. We have to make
the action on the sides of the prism everywhere zero. Let HN
fig. 57(a) be the normal to the surface of the rod at a point H, and

Y

/\0 \
/N 1 X

P.

f^
"^^ S"

S3.
^^ 72

K "^-\

S
) .

p.

Fig. 57 a Fig. 57 b

let HH' represent an element of the surface which is assumed to have

a length dz in the ^-direction. The element HH'K is shown enlarged

in fig. S7{b), and all the stresses on this element are shown which are

parallel to the xy plane except the stresses on the triangular face

opposite to HH'K. These stresses not shown we may denote by S\
and S'2 ; they act in the directions opposite to the directions of S^^ and

S2 respectively, and, since they act at 2—dz, we get

S'l s -5^f-

O o "^o ~~~

dz

dz)= —^ dz
dz

dz

Now in order to get the boundary conditions we shall not at first suppose

that the stresses on the surface are zero. Let the component stresses

parallel to OX and OY on the element of boundary HH' he Fj^ and Fg.

Then, resolving parallel to OX and OY in turn, foi the equilibrium

of the element, we get

dz{P^ X KH' + S3 X KH} -h |KH x KH'(S/— S^)= F^dzx HH',
and

dz{F^ X KH + S3 X KH'} +iKH X KH'(S/— Si) = F2C?;i;x HH'. •

These give

F| = Pj cos (p -f- S3 sin 99— iHH' sin 99 cos (p -r-^
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Fo = P.) sin q) -\- S- cos qj—IH H' sin cp cos (p -— •

Now, in consequence of (7.4) and (7.5), and because HH' is an

infinitesimal length, these equations make F^ and F^ identically zer6.

J

We have still another boundary condition to

satisfy since the forces parallel to the ;?;-axis must

be in equilibrium. On the faces KH' and KH
the stresses Sg and S^ act, both perpendicular

to the plane of the triangle and both in the

same direction. Therefore, for equilibrium,

dz{S, X KH^ + Si X KH} = o;

that is, S2 X HH' cos 99 -[- Sj^ x HH' sin 99 = o,Fig. 58
whence 83 cos (p -^S^ sin 99 = o . (7.6)

This is our third boundary condition.

Now

S., = n
cu

c)z
+

cxj

fciv

\cx

cw

iv

Cz

(7.7)

n\- \- TX

Therefore equation {y.d) becomes, after division by

fdw

\dx'
jy 1 cos 99

<^//

+ TX sin cp

(7-8)

(7.9)

Since this last equation is a boundary condition the coordinates X
and y refer to a point on the boundary. Then let H (fig. 57 a) be the

point {x, y) and H' the point {x -{- dx, y -\- dy) , :2ind let the length

HH' be denoted by ds. Then

dx =—KH = -^ ^.s- sin 99

;

dx
sin 99 =? -

ds

, Av
cos<p=-^,j-

Substituting these values in (7.9) this equation becomes

dw dy

dx ds

that is,

Likewise

dw dx

dy ds

dx dy

(-.10)

(7.1 1)

Let us assume that another function, ip^ of x and y exists, such that
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dip dw

dy dx'
dip dw

dx dy\

(7-12;

)xp dy dipdx ( dx dy\

)y c^<? dx ds \ ds dsj

1^ (^2 + ^2)_o

(7.13)

(7-14)

and leave the justification of this step till a little later. Then (7.1 1)

may be written

dyj

dy

which is equivalent to

dip d

ds ^ ds

Integrating this last equation with respect to s, and keeping in mind

that our result is true only along the boundary, we get

ip— ^T (x^ ~j- y^) = a constant . . . . .(7.15)

This last equation may be taken as our boundary condition.

104, Equations for internal equilibrium.

We have not yet used the equations of internal equilibrium, the

eauations (2.28), (2.29), and (2,30). Since

dv dw

dy dz

= (7.16)

dx

and since we are assuming that all the body forces and accelerations

are zero, the first two of these equations are satisfied because all the

terms vanish. The third equation reduces to

n\/ hv= o,

or, since w is not a function of z,

d^w d'^w

dx'
=

fU
(7-17)

This is the equation we needed to justify the assumption in (7.12).

In trying to find \p to satisfy both equations in (7.12) we were imposing

too many conditions on ip. In fact \p is almost completely determined

by one of the equations (7.12), and' the equation (7.17) is really

implied in the two equations (7.12). For

f:>'^w d^ip

dx"''' dxdy
d^
dy'

a^ip

dxdy .

(7.18)
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and therefore

Having now justified yj we have to find w^at equation it satisfies so as

to determine the function. From (7.12) we get

(l^yj d^w

dy^ cjxdy

dx' 'dxcy

Therefore

d^yj
,
ohp

-e:F'+ W'^"' •

-^'-''^

an equation exactly similar to the one for w. The function yj has to

be found to satisfy equation (7.19) at all points within the boundary

of the cross-section, and to satisfy equation (7.15) at all points on the

boundary. Then w is found by means of (7.12).

105. Solution of the equations.
A special method has been developed for solving equations such as

(7.19), which is particularly useful when a function w which satisfies

(7.12) is also needed. This method is given below.

In the boundary condition (7.15) the constant may be taken as zero

without loss of generality. If the constant is not zero let it be C.

Then if we write tp^^ for (ip— C) the new function yj^ will satisfy all

the equations that y; has to satisfy, of which (7.19) and (j.is) are the

most important, and equation (7.15) becomes

yJi— lT(x^-\-y"l = o

Then we may regard the constant as zero in (7.15) and retain the

symbol yj instead of y^^^.

Let us assume that zv and yj are real functions of x and y such that

w-}-hp = f{x-^iy) (7.20)

where i denotes }/— i and / indiicates any function. This means that w
is the real part and yj is the part multiplied by i, in the expanded form

of f(x-\-iy). Then we can prove that w and yj , given by equation

(7.20), satisfy also the two equations (7.12), as well as equations (7.17)

and (7.19) which follow from (7.12). Let 2 be written for {X'\-iy)'

Then
w + iyj=--f{z) (7.21)

Therefore

cJw '-^W _j". \^

=r(^) (7-22)
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and
cw .dip .,, .dz

==ir{z)

.

Consequently

dy dy \dx dx
.dw dw

dx dx

• (7.23)

(7-24)

Equating real and imaginary parts of the two sides of this equation

we get

dw dip '

dy dx'

dip dtv

dy dx
'

which agree with equations (7.12), from which (7.17) and (7.19)

follow. Then we can get values of w and ip satisfying the differential

equations (7.12) merely by taking any function of (x -{- iy) in (7.20)

and equating w and i y.f to the real and imaginary parts of the function.

Then the boundary condition (7.15) gives us the equation of the cross

section of the rod to which the solution applies.

106. Resultant action on a section of the rod.

We have still to prove that the action

over a section is a pure couple. We can

do this by showing that the component
forces on the whole area in the direc-

tions of the coordinate axes are both

zero.

Let dA denote an element of area

of the cross section x, y, on which the

component shear forces S^ and Sg act.

Then the total component action

the section in the direction OX is

fs.dA =/K£~'^)^^

=
1J'>^\^

— vAd^dy . . . .7-25)

Let 3'^ and y^ denote the values of y at H^ and Hg in fig. 59, and yj^^

and yj.y th-e values of ^p at the same points. Then

m-">' w- i^y^
y»

Vi

= (v^2—4^.%^) - iy^i—hyt^}
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But, by equation (7.15), at a point on the boundary of the section,

Therefore

nv^ /f)i/) \

dy ^ Itx^— }jTX-

o (7-26)

X being the same at H^^ and H2.

The ;i'-component force on the strip H^H2 of width dx is

m-")

dxx (- Ty]dy = o by (7.26)

Therefore the .I'-component force on the whole area is zero, since it

is zero on every strip.

The total ^/-component force is

fSidA=ffn(— '^^ + Tx)dxdy . . (7.27)

Integrating this time from H3 to H^ where x has the values x^ and

x^, and yj the values ip^ and y)^, we get

r(- -^ + txjdx= (— Vi + -h»4^)—(—Vs + h^s^)

= . (7.28)

since y is the same at both ends.

It follows again, just as in the case of the .;ir-component force,

that the total 3;-component force is zero. Then the action on the

section must be a couple.

107. Moment of the couple on the section.

Taking moments about O (fig. 59) we find that the moment of the

shear forces on the element of area dxdy is

(xS^— yS2)d-^dy

Therefore the total moment on th^ whole area is

ff(xSi—yS^)dxdy

= ~//|.(.^+ .^)-(xg4-.|)j«.

= ml— n (x-^-\-y^\dxdy (7-29)

where I denotes the moment of inertia of the area of the section about

the axis of 2, and the integration extends over every element of area

of the section.

The torsion problem for a section bounded by a single closed curve

requires, therefore, a value of yj, as a function of x and y only, to

satisfy the equation
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1

^+Vi=o (7-30

at all points of the cross-section, and to satisfy the condition

^p = \x{x'^J^^f) (7.31).

at all points of the boundary of the section. Then the couple or

torque is given by

when each unit length of the rod is twisted through t radians.

The results we have obtained are sufficient to determine the torque,

but it is worth while to express the torque in another form. For this

purpose let r, 0, be the polar coordinates of the element of area dA.

That is,

x = r cos
I

y/ = r sin(9 i ...... . (7.33)

so that r^= x^ -{-y^j

Let us write | for yj— ^t(x'^ -\-y^). Then the torque Q in terms

of ^ is

Q= ml-nff\x[g+ rx)+y(^^+ ry)]dxdy

= wtI— n (x-7:^-\- y~\dxdy— nxff(x'^ -\- y'^)dxdy

^^y—]dxdy (7.34)
dx cy)

—nff(x
since

Now
ff(x^J^y^)dxdy = I

d^= —-dx + ^-dy
ex dy

=~ (cos Odr— r sin OdO) + -^ (sin edr+ r cos OdO)
dx %

If we let r vary and keep constant we must put zero for dO m the

last equation. Then

-^ =^ -- COS ^+ ^— sm 6/

dr dx dy

r dx r dy

whence

r-- = x-;r—\-y-z-
dr ex dy
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In polar coordinates the element of area is the element bounded by
the two radii at 9 and (0 + dO) and the two circles with radii r and

(r-\-dr), and its magnitude is rdOdr. Then it follows that

//(^l

+

^t)
^^'^ ^//' i'''^'''

' (7-35)

In the integral on the right the limits for r for the section shown in

fig. 6o are o and r^, and the limits for are o and 27z.

Now integration by parts gives

pri^ldr = \r^\--2rr^dr

= o— 2 / r^dr

the integrated part being zero at the upper

hmit because '^ is zero at the boundary,

and at the lower limit because r is zero

at O.

Fig. 6o

Therefore

2nffr^drde

^~^~~^y~] dxdij
dy)

= 2nff^dxdy . . . . • (7.36)

This form is alternative to the one in (7.32).

108. Tubular rod.

The preceding rules require modification when the boundary of

the section consists of more than one closed! curve, as, for example,

when the rod is a tube. Let us con-

sider only the case of a tube whose

section has two boundaries, one closed curve

inside another closed curve, as in fig. 61.

Let OK = 7*0, OH = ri. The boundary

condition for ip is that tp—y(^^ + 2/^) is

constant along any boundary curve. But

it need not have, and indeed is very

unlikely to have, the same constant value

along two diflferent curves bounding the

section. The boundary conditions, in.

fact, for such a section as the one in fig. 6 1 can be put in the form

^= o over the outer boundary

I= C over the inner boundary.

Fig. 61



TORSION OF RODS. SAINT VENANTS THEORY 143

The value over the outer boundary need not be zero; it is zero by

choice. But the difference between the values of ^ over the two
boundaries is something we cannot choose ; this difference depends only

on the shape and size of the section and the twist t.

In (7.35) the limits for r are now r^ and i\. Then

/ r^±dr= r2|
\

~2 r^dr
Jro or L J'-o ^^0

^-r.^C-zpridr .... (7.37)

In this case

r^^-dO + zn / r^dOdi'

= zhCAq-}- 27iff^dxdy (7-38)

wher€ Aq denotes the area enclosed by the inner boundary of the

section, for ^r^'^dO is the area of a triangular element with its vertex

at O and its base on the inner boundary.

We have now got the complete theory of the torsion of thin rods

whose sections have one or two bounding curves. It should be noticed

that the interpretation of the displacements expressed by (7.1) and

(7.2) is that the points originally on the axis of 2 remain oil that

axis, and that every cross-section of the rod except the fixed one is

twisted about the s.-axis. But the sections do not

usually remain plane, for this would require that

w should be constant, whereas the theory shows

that %p, and therefore also w, is not usually con-

stant. In fact, the only section for which y) can

be constant is the circular section. This nieans

that the different cross sections, which were origin-

ally plane, become slightly curved surfaces, all

sections being distorted in the same way since w Fig- 62

is not a function of %. It is clear that our theory

does not apply to sections near a fixed end of a rod, nor to

sections near where an external torque is applied. The constraints

may be such at a fixed end that w is forced to be very small,

as when the rod is a protruding piece from a much larger body

of the same material. The preceding theory of torsion is valid, then,

at sections of a twisted rod which are so far from the ends that the

forces applied at the ends have no appreciable effect there.

log. Rod with circular section.

Suppose that the equation to the boundary of the section of the

rod is

^2_^y^^fl2 ......... (7.39)
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Combining this with equation (7.31), which is also true at the boundary,

it follows that

yj=ira- (740)

over the boundary of the section. But a constant value of ip also

satisfies equation (7.30). Then

satisfies all the conditions of the problem, and the torque is, by (7.32),

Q = ml
= -|nTjra'^ (74 1)

Equations (7.12) show that —- and -^^-are each zero and therefore
ex cjy

w is either zero or a constant. If w is zero for one section then it is

zero for all, and it is certainly zero for a fixed section. If we assume

«; is a constant it does not materially alter the solution. It only gives

a bodily displacement to the whole rod in the direction of the ^-axis.

In any case the plane sections of the rod remain plane after the strain.

The circular section is the only section that is not distorted into a

curved surface by a torque.

The preceding method can be used for a circular tube whose inner

and outer radii are h and a. In this case, since ?/; is constant over the

whole area, it has the same value over each boundary curve.

The torque in this case is

no. Elliptic Section.

The differential equation (7.30) is satisfied by

^ = A(:r2-2/2) + C (7.42)

With this value of yj the boundary condition (7.31) is

or x'^(^T-K)-\-y'^[\T + K) = C (7.43)

If |-T> A this is the equation to an ellipse and if the equation to the

ellipse be written in the form

S+S=- •
c-i

C
then a-

=

_T—

A

Q
and h"^ = —

;

-^T + A'
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and

Therefore

and
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^

w-

2[a'-^h^^)\
(.t2— 2/2) (a2_fc2) + 2^262

For the ellipse

Also
I = |-7r«6(a2-[-62).

Ciy CI/; ^2 fe2

. (7.45)

• (7.46)

. {7.47)

Therefore (7.32) gives

Q = \nxjtah[a- -\-h^^

'2— &2

= i m7i«& (a2+ 62) _ ^^_' (i^ _ i^) (7.48).
«2 + ^,-

where 1^ and I^^ denote the moments of inertia of the ellipse about

the axes of x and y respectively. The values of these tare

Finally then

ly =^^jia^b\
(7.49)

,3^3

Tinr

The components of the shear stress are

(7.50)

b IN. ,———X^
Ol a 1 X

St = '^ -7; \-TX\

dx
+ Tx\

2h^

a' + 62
nrx

dip

6y ''

2a'

Fig. 63 a^^¥
nry

(7.51)

(7.52)

10
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The resultant shear stress is the vector ' sum of S^ and S^, and
the maximum magnitude of this resultant is the value of Sg at the end

of the minor axis where 3;=— b. This maximum is

(7-53)S'= nr
a^ + /;2

The magnitude of the resultant stress at any point {x, y) is

S = V^^:^- + «'// (7-54)

The most convenient way to express the resultant stress at a point of

the boundary is by means of the eccentric angle defined by

x = acos(f, ii
= hsm(p (7-5 5)

Then the stress at the boundary is

2mab

2 mab , ,—

,

^b'^ cos '-^

99 -f a- sin ^ 99

(a-— 6-) sin- (/^

the greatest value of which clearly occurs where sin cp-.

. . (7-56)

0, and its

value is S' given in equation (7.53).

The value of w corresponding to ip for the elliptic section is most

easily obtained by observing that ?/; is got by taking f{x -)- iy) to be

f{x + iy)=iA{x-\-iyy + iC ....... (7.57)

Then
w + iip=iA{x''—y^) ^iC— 2kxy . . .(7.58)

Therefore w=— 2hxy

=
:r-r j,-^^'ll (7-59)

a- + b-

This shows that, in the quadrants where x and y are both positive or

both negative, points of the cross-section are displaced in the direction

of ZO, and in the other two quadrants in the direction of OZ, and

that the contour lines of the distorted sections are rectangular

hyperbolas with the axes of x and y as asymptotes.

The values of ip and w found for the

complete ellipse apply equally to a tube whose

inner boundary is an ellipse similar to the

outer boundary. This follows from the fact

that y)— ^r. {x~ -\-
y"^) is constant over the

inner, as well as over the outer, boundary.

III. Section in the form of an equi-

lateral triangle.

Fig. 64 Denoting the height of the triangle by
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3a, the equation to its three sides in. the position shown in

fig. 64 is

(sc— a) {x -\-2a— y tan 60*^) (x -\- 2a -\- y tan 60*^) ^
or x^— 3xy^ -\- 3a(x^ -\- y^) — 4a^= o (7-6o)

Now if we take iA(x ~\- iy)^ -\- iC for f(x-}- iy) in (7.20) we get

w -{- iyj=iA{x+ iy)^ + ^C

= A{y^— sx'y) + tA(.r^— 3x3;^) + iC (7.61)

Therefore

yj--=A(x'-^xy')-^C . . ... . .(7.62)

The boundary condition gives

A(x^— Sxy'')—iT(x'-\-y') — C= o .... (7.63)

This must be the equation to the boundary of the section of the

rod to which yj applies, and it will be equivalent to (7.60) provided

c
aA=- — ^T=

—

:^
(7.64)

Then the value of ip to suit this triangular section is

I T
yj=^ {x^ — ^xy^)— fa'^T

I T= -~{^xy^— x^—^a^) (7.65)
O O/

For this section

I = a2x(area of triangle)

= 3V3«* (7-66)

Also

//KS+^S)'^*''^=//J^<3.r2/^-^'>'^^'^2/. -(7.67)

The values of y along the lines AB and AC are

and these are the limits for 7 in the integral {j.^y). Then between

these limits

r r 1^3
/ (3-^2/^

—

x^dy = xy^— x^y
J

[_ I

x-\-2a

V3

X-

-=
|i- (x + 2a)2 - x^^

3V
^ {4a^x-^6a^x^—x^} , . .(7.69)
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The limits for x are — 2a and -|- a. Consequently the double integral

in (7.67) becomes

2 T />«

{4a^x-\- 6a- x'^ — x^)dx

2a^x^— Ix^

6V3
ra^

Hence the torque on the rod is

nix

9V3

Q = nr X 3y 3 a^— —^— nah

na^T
5

The shear stresses are

= ^?2Tf 2a:; +
X'

« /

Along the side BC, where x= a, these shear stresses become

Si
3«'

^,1

I

(7.70)

(7.71)

(7-72)

(7.73)

(7.74)

Then along the side BC the stress Sj^ is the resultant stress and this

has its maximum value lat the middle of the side where y= o, this

maximum value being |- nta. It is easy to show that this is the

maximum shear stress over the sfection.

It should be remarked that the shear stress is zero at the corners

of the triangle, and yet at these points the displacement due to the

twist has its greatest value.

112. The rectangular section.

Let the sides of the rectangle be 2a and 2b, and let the origin be

at the centre of the rectangle and the coordinate axes parallel co its

sides.

Our equations are, as before,
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ex- cy^

over the whole rectangle, and

over the boundary.

• (7.75)

{7.76)

B

Y
A

a

b

a

b

X

C

Fig. 65

It is convenient to have only one variable in the boundary tondition.

Then let

(p = ip + iT(x^—y^)-\-C ..... {7.77)

c'^09 d^w d^w d'^w
whence T^ + TT = T^ + -^ = °-

dx^ cy^ cx^ dy^

Also (p= TX^ -j- C

over the boundary, and if we take C = — ra^ we get

(p = t{x^—a^) (7.78)

as the condition over the boundary. Thus the boundary condition is

(p= o over the sides AD, BC.

(P
= t(x^— a^} over the sides AB, CD.

The problem before us, then, is to find (p such that

(7.79>
d^<p d\
dx

at every point of the area of the rectangle, and

(p='0 where x = +a,
t{x^— a2) where 2/=lh^

• (7.80)

• (7.81)

However y is involved in (p it must be involved in such a way that

( Oyh I
T I Tt'ir

the terms all vanish when .r == ^a. Terms such as r) cos
2a

where n is an integer and r) a function of y only, satisfy this con-

dition. Let us then try to satisfy equation (7.79) by such a function. If

(p = r]cosmx ........ (7.82)
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then

-—^ =— 7nhi cos mx

and —^ = —— cos mx.

Therefore equation (7.79) gives

»? = o (7.83)L /ni^'

dy'

whence »^ = A cosh w?^/ + B sinh w?/ . . . . (7.84)

On account of the symmetry about the axis of x the constant B
must be zero, for sinh my is an odd function of y, that is, changes sign

with y, whereas cosh my, being an even function, has the same values

for equal positive and negative values of 3;.

Then
r] = Acosh.my (7-85)

and 99 = A cosh mi/ cos m:z; (7-86)

will suit our present problem. But as it stands this value of (p cannot

be made to satisfy the boundary condition where 3/=+ &. To satisfy

this condition we need to sum such terms as those in (7.86), the values

of m being chosen to satisfy the boundary condition over the other

pair of sides.

For convenience let x = . Then one solution satisfying the

first boundary condition is

9?==A„cosh'-^^?-^tl^cos(2w+ i)^; . . .(7.87)
2 Qi

and a more general solution is

cp = FAnCosh
^^'^ "^ ^^""^

cos {2n -\-i)0 . . . (7.88)

The boundary condition (7.81) in- terms of is

71'

If we put y=:^b in (7.88) we get

n=o

99 = 2*An cosh C0S(2?*-1- l)^ . . . (7.90)
n-

If we now expand f
^^ ) in a Fourier series we can make

71^ \ 4 /

these last two equations agree. The Fourier expansion in cosines of

the necessary type is
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'^{''-t)
— '^{-^' - ^,cos3.+ i-,cos5.} iy,.

To make (7.90) agree with (7.91) we must have

327^2
A, cosh— =

2a

Aq cosh ^ =
^

2a

1 327^2

3^ JT.^^

(7.92)

and so on.

Then the general value of (p satisfying all the conditions of the

problem is

9^

32Ta-

71^

cosh-^ cosh
2 a TCX I 2a ^TlX

cos cos 1-

, jro 2 a 3*^ , 3710 2a
cosh— cosh

2a 2a

Then, by equation {y.yy),

ip = (p— iT(x^-y^)— C, . . .

whence

dtp dip dcp d(p
x~-{-y ^=x-^^ y~-— T(x^— y^)

cix oy dx By

' (7-93)

. (7.94)

• (7.95)

Therefore the torque is

Q == ml— ''^ [OC— 4- y-^j dxdy -\-nr (x^—y^)dxdy

The limits for x and y in the double integral are + a and + b. Now

dx/_r^S'^=H-a~r/''^
= — f q[>dx by {7.80} . . .(7.97)

J —a

Therefore

Also

/ jx-~dxdy= — I jcpdxdy

-b —a —b —a

t> b

(7.98)
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= br{x^—a^)— {—b)r(x'^—a'^}

—f (pdy by (7.81)
J-b

= 2bT(x^— a^)—J<pdtj (7.99)

Therefore
a b

/ /
y-^dydx = zbT (x-— a'^) dx— / •/ (pdxdy

— a—b
rM r,b

== — ^ba^T— / / (pdxdtj . . . . {7.100)
J—a^-b

Thus we get

Q = wt(I— Ix -\- ly) -{- -l-ba^nr -{- 2n (pdxdy

= ^a^bnT-\-2n (pdxdy (7-ioi)

A typical term in (p is of the form A cosh my cos mx. Now
r^ 2
/ cosh 7ny cos mxdy =— sinhmftcos ???rc, . . (7.102)
J -b 'm

and therefore

// cosh my cos mx dydx = —- sinh mb sin md . (7. 1 03)
-a J —h f^

n 3jr ^TT
The values of m>a for the successive terms in (p are — , — ,

^^— , etc,222'
and therefore the corresponding values of sm.ma are +1, — i,

+ I, etc.

Finally then

Apd^YhX ( I I

Q = i6a^J^x: — {tanhrH -tanh3r+..} . (7.104)
i> TV" \ 3^ )

where r =— (7.105)
2a

In the preceding expression for Q it is more convenient to take 2a as

the sho'rter side of the rectangle. The reason for this is that tanh r

approaches unity very quickly as r increases. Thus

tanh r
f -\-e-^ I + e-

IDTF
tanh 3 _

= I— Y^^ approximately
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tanh^= I— ^^8

tanh— = I— -^yi^^j^

These show how quickly tanhr approaches unity. It is clear that,

if b>Sa, the series of hyperbolic tang-ents can dififer only in the fourth

significant figure from

'+7^+7^+7^ + ^^
+ ^'-'"'^

the sum of which is approximately 1-0045. If> then, &>3(Z we may write

^ 16 o, I IQ2 a )Q ==—a^bnT{ i r t x i '0045 >

3 {
71'' b )

=—a^fcnrl i— 0-630— I ...... (yioy)

So far we have denoted the dimensions of the cross-section by 2a and

2b. If we now use a^^ and ib^, for these dimensions we get, when

^i>3%,

Q = -a^sb^nTli — o-67,o^\ . . . .(7.108)

It is worth while to observe that the coefficient •Jfli'^^i is the moment
of inertia of the cross-section about one of the longer sides, or four

times the moment of inertia of the section about the axis through its

centre parallel to the longer sides.

When b is not so great as 3a there is no great difficulty in summing
the series of hyperbolic tangents. Even for the square section, which

is the worst case to calculate, tanh ^r tanh 5r, etc., are all practically

unity. The only term that cannot be regarded as unity is therefore

the first, namely tanh r. If, then, b is not less than a,

tanh r-\ tanh 3 ?' -| -tanh 5 r -}- • • •

3^ 5^

= tanh r + 0-0045 approximately (7-i09)

Hence

Q =—a^bnrli - — (tanhr+ 0*0045) i . . (7. no)
T,

[
71^ b

j

For a square section, b^==a, r= — , then

^ 16 , f
IQ2 1

Q =— a^nx{ I r- X 0*0217 \

=—a^nx X 0*42 18
3

= o*8436l7iT (7-1 11)
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Equation (7. no) is the general result for the torque on a

rectangular section provided b is not less than a, and equations

(7.1 11), and (7.108) are particular cases of (7.1 10), the first being

applicable when b^^a, and the second when i>>3a.

The shear stress S^ is given by

^'=H'^~S)""("^-S

Gnra
2 rnx-

Now

cosh

cosh

2 a nx—-sin

—

no 2a

2a

cosh

3' ^?snh
cosh

3^y

2 a . 371X
sin

2a

2a

(7-

dy

8nT

71

sinh

cosh-

jiy

2a . 71X—- sm
710 2a

sinh

cosh

3^
:a , ^7tx—

- sin
3jro 2a

(7-1 13)

2a 2a

which is clearly zero when 3;= o. Then if we allow y to vary along

the side ;ir= a it follows from the last equation that Sj^ is either a

maximum or a minimum where y= o, and since Sj is zero at the

corners we may infer that the value of Sj at the middle of the side is

the greatest value along that side. Also Sg is zero everywhere along

the side, so that S^ is the resultant shear stress at any point of the

side x^=a. This resultant shear stress at the middle of the side is

S'l 2nTa
6 nra j nh—T—

I SGch \-

71' 2a
sech V- .

.

2a

= 2nra sech r -\ sech 3/* -}- . (7-114)
7t^ y y -

)

The greater the ratio oi b to a is the more quickly does the series in

the brackets converge. Even for the case of the square, where r=—

,

we rnay neglect every term beyond the second in the brackets because

Moreover

37r 2

I 5jr
—-sech— is less than o 00005.
52 2

sech
3^
G 2

3^

3^
2 approximately.

Therefore the. shear stress at the middle of a side of

section, with sides of length 2a, is

T,2nTa i I

a square

S = 2nTa

c 2 -|- e 2

I -3!^
2
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= 2ma — X 0'2003

= 1-351 nm (7.1 15)

For a rectangular section, whose shorter sides have a length 2a, the

shear stress at the middle of the longer sides is greater than 1.351 nia

because the series in the brackets in (7. 114) decreases as b inqreases.

Again

')dy j dy

. . smh— smh
|loma

I
2a 7ix I 2a ^nx \ . ,^

cos -cos 1-..> (7'iio)
, 7cb 2a 32 37r6 2a

,

cosh

—

cosh I

2a 2a '

At the point x=^o, y=— b, which is the middle of one of the shorter

sides, this last stress becomes

^, i6nrai nb i ^nb \

S2=-1 -—{tanh -tanh^^ T---}- -(y-n?)

nb
Writing, as before, r for— , we get

2 a "-\^

S2=-^-^jtanh r ^ tanh 3r + . . . .

|
. . .(7.118)

When b= a the stresses given by (7.114) and (7.ii8), being the

stresses at the middle points of the sides of a square section, must be

equal. Also each of these stresses increases as b increases, that is,

as r increases while a remains constant. It follows then that, when

b>a, that stress will be the greater which increases at the greater rate.

Now from (7.1 14) and (7.1 18)

' sech r tanh r -|— seen 3 r tanh 3 r-f-
dr 71^ { 3

dS'2 lOnxai , „ I

I sech^r— — sech^ 3 r 4-
}dr

Since tanh r >> sech r it follows that

dS\ dS\,

dr dr

and therefore S\>S'2 when b>a^

It may be inferred from the preceding proof, which cannot be

regarded as very rigorous, that the greatest shear stress in a twisted
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rod of rectangular section occurs at the middle points of the longer

sides of the cross sections, and its value is approximately

S = 2 }iTa
6ma Jib—-— sech—

za
(7-II9)

2a being the length of one of the shorter sides. If h is large compared

with a then the absolute maximum shear stress is

S\=^ znra, (7.120)

and the shear stress at the middle points of the shorter sides is

I bma
j

I

+
/

1 6 nra

r2
X o- 60

= i-4SsnTa (7-i2i)

which is very little greater than at the middle points of the sides of a

square section whose sides have a length 2a. .

113. The component shear stress in any direction.

It follows from the reasoning that led to equation (7.14) that the

component shear stress at any point of a section, in the direction

perpendicular to an element ds of a curve in the section, is

cs cs
. (7.122)

Fig. 66

and ds= (

know for

the direction of the component stress being such that it

makes a negative right angle with the vector ds if the

outward normal to the section is parallel to the posi-

tive direction along the ^-axis. If we put ds=dx
in turn in (7.122) we get the expressions we already

S^ and +S2 respectively.

114, Shear stress at a sharp angle of a boundary.
If the boundary of the cross-

section of a twisted prism has a

reentrant angle, such as B shown in

fig. 67, the theory makes the shear

stress infinite at such a point.

To deal with this problem it is

convenient to shift the origin to the

point B. It has to be remembered
that the origin in all the preceding

part of this chapter has been on the

untwisted axis of the rod. Let us

now write x, y, for the coordinates

Fig. 67 - of an element of area referred to
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axes through B as origin, and let the coordinates of B itself be (x^, y^)
referred to the old origin. Then

X= Xj^-\- x'

It follows then that

dx= dx'

dy == dy'

and therefore equations (7.12) become

dtp _dw \

dy' dx" \ . .

dip_ dw ^7-123)

dx' dy''

the solution of which can be written thus

w-{-iip = f{x'-Jriy'), (7-124)

an equation exactly similar to (7.20).

Now let 2 be written for {^' -\- iy')- Then

tv-\-iifj:=f{z) (7.125)

If we restrict ourselves to points in the neighbourhood of B, where
both x' and y' axe small, and therefore also 2 small, we can expand

f(s) in ascending powers of 2, and while 2 is very small only the

lowest powers of 2 need be considered, since the higher powers will

be negligible in comparison with the lower powers. If B were any

point inside the section f{2) could be expanded in integral powers of z,

but, at an exceptional point such as the present position of B, the

function does not consist of integral powers alone. Then we assume

that

w-{-iip= WQ-\-iipQ-{-cz'^-\-CiZ .... (7.126)

where Wq and ^>q are the values of w and Jp at the point B. The
reason for introducing the term c^z will be evident later.

Now let

x'= r cos^l , X

/ . ^I> (7-127)

so that r and are polar coordinates with B as pole. Then

z= r {cos 0-{-i sin 6) = re^O\
/jjw __ j.mgim£^ I • • • •

(,7-I2o)

Therefore

w + iip^-WQ+iipQ-l-cr^e^^Q-^-Ci^reiO . . . (7.129)

The constcints c and c^^ are not necessarily real constants. They may
be written in the forms ke'^^ and k^e^^^. Then

w-\-iyj = WQ + iipQ-]-kr'^e^(^9+^) + kj^re^(d+^i) . (7.130)
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Differentiating both sides of this equation with respect toi r and keeping

constant we get

— +i^'= m/cr^-^e»'(-0+/?) + A:.e^(04-A). . (7. 131)
or dr

By equating the imaginary parts of both sides of this last equation we
find that

L^ =. mkr"^-' sin imO -{- ^) + L sin {0 + ft).

Now equation (7,122) shows that the shear stress perpendicular to dr is

^ = ^1?-*'^*^' + ^'^} ^7.132)

But

ic2 -[- 2/2 ^ ^x^ -j- r cos Oy + (2/1 + ^ sin Oy^

= x^^ -\- y^^ -\- 2r(Xi cos -\-y^ sin 9)

neglecting r-. Hence the shear stress perpendicular to dr 'S

T (x^ cos -\-y^ sin 9)

= n {mkr'^-'' sin (m9 + ^) + A^^ sin (^ +ft)

}

—nx (Xj cos 9 -\-y^ sin ^)

= w?72A:r*"-' sin(m^ + /9) (7-133)

provided we choose k^ and ^^ so that

A;^ sin [9 -\- P^)^=t {x^ cos ^+ .Vi
sin ^)

Now let the two tangents at B make angles y and (a + y) with OX.
Then S must be zero when 9 is equal to either of these angles and

when r is small but not zero. Thus we get

sin {my + p)=o (7-134)

sin {my -\-ma-{- ^)=o (7-135)

If we now assume that the shear stress does not vanish acro§s any

radius vector drawn from B inside the angle a then the solutions of

the two preceding equations are

my -\- ff
= o

my -\- ma -\- [i= n

whence in = — (7-136)
a

For a reentrant anglea>jr, and therefore w<i. Consequently r^-^
is a legative power of r, which is very great whep r is very small.

It follows that the shear stress in the material near B is very great,

and at B it is theoretically infinite. Of course infinite stresses are

impossible; the hypotheses of the theory of elasticity fail when the
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stresses become very great. We can, however, fairly conclude that

the elastic limit is exceeded at B.

The flaw in the preceding proof is the assumption that the shear

stress does not vanish across any line drawn from B inside the angle a.

That this is true however can be seen from physical considerations.

A line across which the shear stress is zero is in the direction of the

resultant shear stress. A series of curves can be drawn in the section

such that the tangent to any curve at any point is in the direction of

the resultant shear stress at that point. The boundary of the section

itself is one of these curves, and it follows from considerations of

continuity that the next curve of the system must be a closed' curve

running very near the boundary and approximately parallel to it. But

this curve would have to meet the boundary at B if' the shear stress

vanished across any line through B except along the boundary. Then
we infer that the shear stress does not vanish across any line through

B inside the angle a, and therefore that the result in equation (7.136)

is a correct deduction from the equations of elasticity.

115. The position of the axis of twist.

All the equations of this chapter as far as (7.38) remain true

whatever be the point at which the axis of 2, which is the axis about

which the sections are twisted, meets a section of the rod. In all the

particular cases that we have so far worked out, however, the axis of

twist has passed through the centre of gravity of the sections. We shall

now show that, for the same valu'e of z, the shear stresses, and there-

fore the torque, are unaltered if the axis of twist passes through any

other point of a section.

Let us suppose that we have found y; , S^, Sj, to suit one position

of the axis of twist, and let us now suppose that we require the shear

stresses for a new axis of twist which meets the sections at (x-^, y^)
relative to the old axes. The new displacements at (x, y) are therefore

v=r(x-x,)z
J

^7.137)

Equations (7.3), (74), (7-5)^ remain true for there new displacements

as for the old ones. We shall use y;\ S\, S'g, for the function yj and

the shear stresses for the new strains. Then

^\ = ny-^ + T{x-x,y^

==^{~^+r(r^~^i)j ...... (7-138)

S'2 = ^j^-~T(?/-2/i)l ..... (7.139)
[ cy I

The function tp' has to be determined to satisfy the equation

dx^ c//'
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at every point of the section, and

= |T(rr2 + 2/2)— T(a:a:i+2/2/i) + K . . . (7.141)

over the boundary.

Now the function ij' satisfies the equation

^ + V^ =
^ (7.142)

at all points of a section, and

V'
= iT(.X-'^+^-) + C (7.143)

over the boundary. If we write

t// = i/;_T(a:a:i + 2/2/1) + H .... {7-144)

it will be seen that (7.140) follows from (7.142), and (7. 141) follows

from (7.144). Then equation (7.144) gives the new value of y;. Also

we now get

S\= n\— ^-{-TX^-{-T(x—x^)\
[ CJX I

[ dx I ^

and likewise

Thus the shear stresses are unaltered by the shift of the axis of twist.

It follows, as before, that the stresses are equivalent to a poire couple

of the same magnitude as with the old axis of twist.

If the axis of twist does not pass through the centres of gravity

of the section of the rod then the line joining these centres is bent into

a helix which has a curvature at every point. This curvature can only

be maintained by a bending moment, the plane of which, at any point

of the curve, is the osculating plane, that is, the plane of a small

element of the curve in that neighbourhood. The central line could not,

in fact, be bent into a helix without other strains than those we have

assumed. We have dealt with only a small element of the rod, and we
have really assumed that there was no tension parallel to the ^--axis.

116. Position of greatest shear stress.

It has been remarked that, in the special torsion problems that we
have worked out, the shear stress had its greatest magnitude at some
point of the boundary. We can prove that this is true in every case.

Let S denote the resultant shear stress. Then

S='=S/ + S/ (7.14s)

The first conditions that S should be a maximum for variations in x
and y are that



^^
a negative quantity . . . . (7.147)
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-- = o and ^r- =0 (7.146)
ex cy ^^ ^ '

A further condition that S should be a maximum for variations in x
alone is that

ex

And the condition when y alone is varied is

e^
cy

Now from (7.145), by differentiating twice with respect to x, we get

^^S,^+S,^ ,7.X49)
cx ex dx

A similar equation can be obtained by differentiating all through

equation (7.145) twice with respect to y. Therefore, by addition,

Now from the value of S, in terms of w we find thatyj

d^S,
, ^2Si d foV

, 6V
ciC cy^ ex[dx'^^ ' ey'^j

= 0.

Anotner similar equation for S^ can be written down. Then the

expression on the right of equation (7.150) is certainly positive since

it reduces to the sum of four squares. Now let us suppose that we
have found a point where the first conditions for a maximum value

of S, namely, those in (7.146), are satisfied. Then equation (7.150)

tells us that, when S is positive,

:^ + T-^ = a positive quantity . . . . (7.152)

It follows therefore that it is impossible to satisfy both the condi-

tions in (7.147) and (7.148) at the same time. Consequently S cannot

have a maximum value for variations in x and a maximum value for

-vrariations in y at the same time; that is, S cannot have an absolute

II
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maximum value anywhere inside the section. Its greatest value must
therefore be found on the boundary of the section.

We can always stipulate that S, given by equation (7.145), denotes

the positive root of the right hand side. There is thus no necessity to

consider negative values of S.

117. The lines of shear stress.

If we start at any point in the cross section of a twisted rod and

draw a curve in this section such that the resultant shear stress at any
point of the curve is in the direction of the tangent to the curve, such

a curve may be called a /me of shear stress. If we have solved the

torsion problem for the particular rod we are dealing with, such a

curve can be drawn from whatever point of the section we start. Any
number of such curves can therefore be drawn, like th€ contour lines

on a map. The component shear stress at any point, in the direction

perpendicular to the line of shear stress through that point, is zero.

If, therefore, the element of length ds in equation (7.122) be drawn
along a line of shear stress it follows that the expression on the right

of that equation must be zero. Let us put again

^ = tp— lr[x'^-{-y^) ...... (7.153)

Then equation (7.122) becomes

s = n— , (7.154)
cs

and if ds is drawn along a line of shear stress then

^^ = 0.
ds

Integrating this equation along the line of stress we find that

I = constant (7-155)

along that line.

This must be the equation to a line of shear stress. One such line

is the boundary of the section itself. If the rod is tubular, so that the

section has an inner and outer bounda.ry, ^ is constant over each

boundary, but the constant is different for the two curves.

A line of shear stress cannot meet the boundary and it cannot end

at any point in the cross section, for there is always a direction of

resultant stress. Each line of stress must therefore be a closed curve.

Moreover, two shear lines cannot inters'ect, nor can two branches of

the same line intersect, for this would give two different directions for

the resultant stress at the same pomt. The one exception to the last

statement occurs at a point where the shear stress vanishes. At such

a point two branches of the same shear line may touch, or a shear line

may reduce to a closed curve of infinitesimal dimensions. In general,

however, the shear lines form a system of non-intersecting closed
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curves, starting from the outer boundary as one of the lines, and

endings with the inner boundary for a tubular rod, or ending- with one

or more infinitesimal closed curves at some point inside the section

in case the boundary consists of only one closed curve. Even a tubular

section may contain one or more sets of closed curves, the limit in

each case being an infinitesimal closed curve. For the circular section

the lines of stress are concentric circles ; for the elliptic section they

are a set of similar concentric ellipses; for the rectangular section

they are a set of curves which may be described as rectangles with

rounded corners, with the boundary itself at

one extreme, and an infinitesimal ellipse at

the other extreme.

118. Torque on an area bounded by
two closed shear lines.

In fig. 68 the two closed curves are sup-

posed to represent two shear lines very close

together in a section of some particular twisted

rod. Let Si be the difiference of i for these

two curves, and let dp be the perpendicular

distance PP' between the curves at some point P. At different points

of the curves dp may be different, but S^ is constant since ^ is con-

stant along each curve. Then if S denotes the resultant shear stress

at P, equation (7.154) gives

S = 7i -r- approximately; (7.156)
op

that is, at different points of the inner shear line

' ^°^i
'^-^-"^

Thus the closeness of the shear lines indicates the intensity of the

shear stress—the closer the lines the greater the stress.

Again, let p denote the perpendicular distance from the axis of

twist O on to the line of action of S at P, and let ds denote the length

PR of an element of the shear line itself. Then the shear force on the

area contained between the two shear lines and between the two

normals at P and R is SSpcls and the moment of this about O
is dQ given by the equation

dQ =pSSpds
= npdids ....... (7.158)

Now
|7?c?s = area of triangle OPR

= c?A say . (7.159)
Therefore

dQ = 272d^dA (7- 1 60)
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Then the torque due to the stress on the whole of the area between

the two shear curves is

fdQ = 2nd^fdA

= 2)/Ad^ (7-161)

where A is the total area enclosed by the inner shear curve.

Equations (7.161) and (7.38) would be identical if the double

integral in the latter equation were dropped. The term containing

the double integral represents 2nA'|', where A' is the area of the

section, and |' is a mean value of ^ over

the area of section. For a narrow section

A' is small compared with A, and |' is

less than C.

It should be noticed that the result in

(7.161) is independent of the position of

the axis O; and it can be shown that it

remains the same if O is outside the area,

as in fig. 69. The area described along

HPK which is the area OHPK, must be
regarded as positive because the torque due to the stress along HPK
is positive; and the area described along KGH is to be regarded as

negative because the torque due to stress along KGH is negative.

Thus the total torque for this case is

/'dQ = 2w^^{area OHPK— area OHGK}
2n\di

where A denotes, as before, the area enclosed' by the shear curve.

119. Torsion of thin tubes.
When a thin tube is subjected to torsion all the shear lines are

closed curves completely encircling the inner boundary of the tube,

and the variation of stress across the section is very small. We may
therefore use the results in (7.156) and (7.161) for such a thin tube.

The shear stress S in the former equation is really the mean stress

across the thickness, not the stress at the inn-er or outer boundary.

The two shear lines shown in fig. 68 may be regarded as the boundaries

of the section of the tube.

Writing Q for the torque in a thin tube equation (7.161) gives

Q = 2nAdi, (7-162)

where A had best be regarded as the mean of the areas enclosed by

the inner and outer boundaries of the section, and d^ is the difference

of I at the two boundaries. Moreover, if we write t for the thickness

of the tube at any point, the mean shear stress across the tube at that

point is, by equation (7.156),

c ^^
S == n —

>

t

whence nd^ = ^S.
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Therefore we find that

and consequently

Q-:2L\S, . . .

2tA

. . . . {7-^^i}

.... (7.164

We have thus got an expression for the stress in terms of the torque

and the thickness t of the tube. This thickness may vary from point

to point of the tube, but the stress varies with it in such a way that

tS remains constant at all points of the tube. If t becomes very small

at any part of the tube the stress S becomes very great. A closed

tube under torsion will fail at the thinnest part of the tube.

120. Torque on a tube in terms of twist.

The result contained in (7.164) is all that is needed for many
questions on the torsion of tubes, but there

is nothing in the result which shows the

relation between the shear stress and the

twist T. We shall now find this relation.

Let S denote the resultant shear stress

at any point P of the shear line PRT
(fig, 70), which is supposed to be the cen-

tral shear line of the tube. Take axes OX,
OY, through the axis of twist O so that

OX is parallel to the shear stress S at P.

Then, by equation {7.7),

V dx
dw = S + my.

.)

whence
ex

If ds denotes an element of length PP' of the shear curve at P we
may write ds for dx in the last equation and get

cw

cs
S-Ymy (7-165)

Now, what we know about w is that it must return to the same

value if we travel qnce round the shear curve PRT. Then integrating

both sides of (7.165) once round the curve we get

that is,

But

nj — ds= Sds + nxjyds

—o /yrf'5 = area of triangle OPP'

(7.166)

dA say,
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the negative sign being necessary because

Finally then, equation (7.i6()) give."-

A,J t

4/<tA

// is negative in the figure.

(7.i(>7)

Since t is known at every point of the tube the integral involved can

be worked out either analytically or graphically. If t is constant and

if / is the total length of the circuit midway between the two

boundaries of the tube, the result is

t

168)

The results in (7.167) and (7.168) are only approximate, and the

accuracy increases as the thickness t diminishes. The result is very

good so long as t is small compared with the radius of curvature of

the inner boundary of the section of the tube. To be sure of getting

good results a curve should be drawn midway between

the two boundaries of the tube and then A is the area

enclosed by this curve and ds is an element of length

measured along the curve. Some examples will now be

given.

121. Section in the form of a Hollow Rectangle.

Let a,h, denote the dimensions of the outer boundary

;

t, ty, the thicknesses of the sides, as shown in fig. 71.

Then, for the mean rectangle, the sides have lengths

[a— i^) and (h — i^). Therefore

A=^(a — t)(h — t^)

/ds a — t h— t,

t~^L ' " t

*.

t
1- •

a
Fig. 71

Also

= 2
at + ht^ — i^ — t,'^

Therefore

Q = znx

tt,

tt^ia—i)Hb
(7.169)

at + ht^ -

If we make a= b and t-^= t, thus making the inner and outer

boundaries concentric squares, we get

Q = mt(a—ty^

If, further, we make t^=^^a, so that the, central hole infinitesimal,

the result becomes

Q = i?iTa4 (7-171)

Such a rod as the one to which the last equation applies can hardly

be regarded as a tube, and yet the result contained in that equation
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differs by only about 12 % from the exact result for the square given

by (7.1 11), where, it must be remembered, 2a denotes the length of

the side.

Returning to equation (7.169) and making the thicknesses t and t^

equal, and also making them negligible compared with a or b, we find

Also the shear stress is, by (7.164),

S=^—^=7iT ,- . (7- 1 73)
2iab a-\-b ^^ ^^'

This last result for the shear stress is correct where the shear lines

are parallel curves, that is, along the sides of the rectangle not near a

corner. It must not be forgotten that the shear stress is very great

in the neighbourhood of a reentrant angle, such as one of the corners

of the inner boundary. To avoid these very .great stresses the inner

corners should be rounded, and not sharp angles.

122. Uniform circular tube.

The exact torque for a circular tube, of mean radius r and

thickness t, is

= -nTlir+lt)^— {r—W'
= 27inTrt(r^-t-}t^) (7-i74)

This result is. obtained by the the same method as for the complete

circle; yj is constant for the tube as for the complete circle.

The preceding approximate method, applied to the circular tube,

gives

t

t= Anx Ji^r^
27ir

== zjimrH (7-175)

the error in which is
j — j of the whole. If i is as much as a quarter

of the mean radius the percentage error is only 1-5.

The result given by (7.167) can be verified directly for the tube;

whose inner and outer boundaries are the similar ellipses

and -, + r7 = ( ^ + W-
a- b-



1 68 APPLIED ELASTICITY

If the square of k be neglected, (7.167) gives

Now when the section is a complete ellipse the shear lines are similar

ellipses. Therefore the tube between similar ellipses is under the same
stresses as when it forms part of a complete ellipse. Consequently, the

torque in the tube is precisely the difference of the torques in the

complete ellipses extending to the inner and outer boundaries. Thus
the precise torque is, by (7.50),

,n = jinii — >

, . ,
4JiknTaW'

which =
a- + b-^

when powers of k beyond the first are neglected. Thus the approximate
formula gives the same result as the exact process when k'- is neglected.

123. Torsion of unclosed thin tubes.

The reasoning that has just been applied to closed thin tubes cannot

be used for unclosed tubes, or for any rod whose cross-section consists

of one closed curve. The behaviour under torsion of a closed circular

tube and the same tube with a split parallel to the axis of the tube is

vastly dift'erent. The essential difference is that, in the case of a

closed tube, the shear lines are curves enclosing the inner boundary^

whereas in the case of an unclosed tube the shear lines, while they

are still closed curves, must turn back before they arrive at the split,

and consequently there are shear lines running very close together in

opposite directions, as, for example, in the case of a very thin

rectangular section.

Let fig. y2 represent the boundary of what we shall call an open

tube 'even when the ends do not come near together.

We shall assume that the thickness is very small compared with

the radius of curvature of either the inner or outer part of the

boundary, and also that the thickness either

does not vary at all, or varies in such a way
that the normal to the outer part of the boun-

dary at any point is very nearly normal to the

inner part also, except near the ends of the strip.

Then any small portion between two normals

such as PP' and QQ' is stressed in much the

same way as a piece of a long rectangle. We
Fig. 72 shall be obliged to use the results for the long



TORSION OF RODS. SAINT YENANT'S THEORY 1 69

rectangle to guide us in getting an approximate solution in the present

case. We shall first show what the state of stress must be at points not

near the ends.

Consider a small piece of the section PP'Q'Q and let us suppose

that its sides are straight and parallel. Let the 3;-axis be taken along

the middle of the strip. Now the shear lines must be parallel to the

3,'-axis. Therefore

S., = n I^— Tf/ 1
= o.

Integrating this and dividing by n we get

f(x) being any function of ,v. In consequence of the equation

d-w c'V

f(.v) must satisfy the equation

d-^f(x)
T = O,

whence we get

and therefore

dx'^

/(x) = — |T.z'2 + Ax-f B,

yj = |t(//2_ ;^2) _|_ A:i; + B.

The boundary condition that yj has the same constant value when

x= +^t, where t is the width of the strip, makes A= o. Thus

Thus the resultant shear stress is

(-1)
= 271TX (7-17^)

If we imagine the section to contain two rectangular pieces of

different widths the shear stress is the same at the same distance from

Fig. 73

the central line in the two parts. The wider part must therefore contain

some extra shear lines not contained in the narrower part. Fig. 73
indicates the behaviour of the shear lines. The boundary itself must
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be a continuous shear line, and the extra lines in the wider part are

found inside the lines coming from the narrower part. This generation

of new lines must occur wherever the section broadens out. and some
of these lines must close up when the section narrows again.

It would need a lot of tedious and difficult analysis to find the

exact action at a point where the section suddenly broadens. We
shall therefore assume that the change of width is so gradual that we
may regard the shear lines at every point as parallel to the middle line

of the section, except just where a line turns back. We shall assume,

in consequence, that the shear stress is given by (7.176), where .r

means the distance from the middle line of the section.

Let t denote the width of the section at any point. Now appl;^ing

(7. 161) to a shear line passing at distance .r from any point of the

central line, the area A is

K^Jixds '.
. . . (7.177)

ds being an element of the middle line of the section. In this integral

X is a function of .s" if the width of the section varies, for the breadth

of the shear curve increases with the breadth of the section. Thus the

total torque on the whole section is

Q ^fznAdi
= ff/\x(lsnd^

= ff4TdsSdx
= Smffx'^dsdx

Sml { I 'xMx\dsM'
= ^mftMs (7.178)

The reason why the limits for x are o to ^t and not — ^t to -\- ^t

is because we are not integrating across the section, but from the

centre to the outside of the shear curves. The limits for s have to

be taken from one end to the other of the central line. If the central

line of the section is straight the result in (7.178) can be written

Q = 4nTl2, (7-179)

the central axis being the v-axis. It should be observed that, according

to (7.178), the curvature of the central line does not alter the torque.

The result given by (7.179) is correct both for an infinitely long-

rectangle and for an infinitely long ellipse, which are the only long-

sections for which we have worked out the torque accurately. The
result expressed by (7.178) asserts that the torque in a body whose

section is a long rectangle or a long ellipse remains the same for the

same twist t when the body is bent into tubular shape.

The approximate result given in (7.178) is usually a little above the

mark for it really involves the assumption that the area over which

the shear lines are not parallel to the sides of the strip is infinitesimal
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compared with the rest of the area. Its accuracy is, however, very

high for long thin sections wnth nearly parallel sides. If the thickness

varies rapidly at many points, so that the shear lines are not parallel

curves over most of the section, the accuracy is low. As an extreme

case, suppose the section were made up of a number of small circles

strung together, with an infinitely thin strip connecting consecutive

circles, then each circle would act independently of the rest and

equation (7.179) gives, for one circle of radius r,

Q = jinTT^

whereas the correct result is

Q = ^ jznrr'^

This, however, is a very bad case, and one to which the formula is not

intended to apply; but it gives some idea of the sort of error to be

expected.

124. Thin circular tube split longitudinally.

The torque in a circular tube of mean radius r and uniform

thickness t (the same tube as equation (7.174) applies to, with the

difference, however, that there is a split parallel to the axis) is

Q = ^nxf'^ X 2nr

=^^7inxih- (7- 1^0)

The ratio of the torque in the split tube to that in the complete tube

is for the same t. The maximum shear stresses in the two

cases are, rut for the split tube, and nT{r-\-\t) for the complete tube.

If the twist is adjusted in the two cases so as to make the maximum
stresses equal the ratio of the torques, is

— = nearlv . . . . (7. 181)
3 ^'- 3 r

The split tube is therefore m.uch weaker than the complete tube under

torsion, and very much less rigid.

125. The state of stress in a split circular tube.

We can find the state of stress in a split circular tube of uniform

thickness at all points except near the ends. The result we get is just

as accurate as the result for the stress in a long thin rectangle at points

not near the ends. This investigation of a particular case will give

confidence in the formula obtained for open tubes.

Let the inner and outer radii of the boundary be r^ and r-^, and let

the polar coordinates of any element of area of the section be [r, 0)

with the common centre of the boundary curves as pole.

Now it is quite cleair that the shear lines must be almost precisely

circles concentric with the boundary at points not near the open ends

of the tube. Theii at all such points ^ must be constant when r is
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constant, and therefore yj must also be constant when r is constant.

Therefore ip must be a function of r only. Now

w -\-i\p = f{x -\- iy) ^ f{re'0)

The only function of re'0 that contains a t^rm not involving is

Alog(rc^0), and since we want y) to involve r only we must take

iAIog(re'0). A constant may also be considered as a function of

?'e*6^. Therefore the most general solution giving \p as a function

fo r only is

IV -f iy) = iA\oge{re^O) + B + *C
= iAloger— A<9 H- B + iC,

whence

ip = A\oger+C
and ^ = V' — ^"^^^

= AlogeV— i-rr^-f C.

The boundary condition is that

^ =::: O whCn T = ?'(>

Therefore

from which

and ?• = i\.

o = Aloge?o— |t?*o' + C,

o = A loger^ — I T7\ 2 -}- C

;

and

r 2 ^ 2

^ logri— logro

^ r^ 2 log 7-0— 7-0 2 log r,

log;-! — log^'o

The resultant shear stress is

b = — n-—
dr

=
»(«-J).

So far these are accurate results deduced from St, Venant's theory

on the assumption that the shear lines are circles. This must be very

nearly true for a thin split tube everywhere except over a very small

range near the open ends.

To reduce the expression for the stress to the form we previously

obtained let a denote the arithmetic mean of r^ land 1\, and let t denote

(^'i
—

^o)- Then
r^-r^ = {i\-r,){r,-{-r,)

= 2at

t

i + —
7\ 2 a

and lege - = lege —
»0

J
{_

2 a
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If we neglect all powers of — bevond the first we find that
a

, tat
A = — = T«2.

Therefore

S = nlxr J-

I
r

\

Now let r = a-\rx,

.V being thus measured radially from the middle line of the section.

Then, neglecting (
—
e-)'

a-
nx [a -\-x) — nx

a-\-x

nx {a-\-x) — nx (-:-)-
= 2 nxx

,

just the same expression as for a strip with no curvature.

126. Torque in a rod with an I -section.

The shear lines in such a section as is shown in fig. 74 are nearly

parallel to the neighbouring boundary except just in the region of the

ends of the upright strip, and every shear line that runs

lalong any one strip must return along the same strip. Then
each portion of the section is in the same state of stress as

la portion of an unclosed tube. If, then, the strips are fairly

narrow, the formula for torque given in (7.178) can be

applied to this case. Let the section be divided into three p-

strips, as indicated by the dotted lines. Then the torque in

each strip is approximately

Q = \7ixttHs,

t and ds having the same meanings as in (7.178). The total torque

is the sum of the torques due to each strip. The middle line of the

vertical strip is quite straight, and consequently the coefficient of nx

in the expression for the torque in that strip is four times the smallest

moment of inertia of the strip.

127. Section shown in fig. 75.
For this section a number of shear lines follow the outer boundary

into the projecting pieces such as AB. Others of these lines cling

very closely to the inner boundary. The shear lines in each projecting

strip go and return down the same strip, and therefore the torque in
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each such strip is given by (7.178). The
torque in the part forming a hollow rectangle

can be calculated by the methods used for a

closed tube, and is given by equation (7.167).

As a particular case let us suppose that the

thickness t is constant, and that A'A= a,

AB= ^a, AC=(2a-{-t). Then the total

torque in the four projecting pieces is

Fig- 75

The torque

(7.168),

the hollow rectangle is, by

x(2a2);

Thus the total torque is

Q= Q^ + Q,

= Q2 1 +
4a') (7.182)

is as much as -|( then Q2If t

flanges is negligible in

rectangle. At the same time the greatest stress in a flange is

is 36Qj, so that the torque due to the

comparison with that due to the hollow

'.nr X nxt

and the mean stress in the hollow rectangle, except near the corners.

by (7.164) and (7.168),

S2 = 2nr ^nxa,

A being the area enclosed by. the middle line of the hollow rectangle.

128. Distribution of shear lines.

When shear lines are being used for the purpose of reasoning about

shear stresses it is useful to remember that there is the same difference

in the value of ^ between any pair of consecutive lines. Consequently,

since

and since d^ is the same from any one line to the next line, it follows

that the shear stress at any point of the section is inversely propor-

tional to the normal distance dp from one shear line to the next in the

neighbourhood of that point.

If a straight line AB of any length be drawn in a section of a

twisted rod, and another parallel straight line A'B' in another section

at a distance dzirom the first section, and such that AA' and BE' are
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parallel to the axis of twist, then the mean shear stress on the plane

ABB 'a' is -

—

~—— where ^.^ and |^ are the values of | at A and B
AB

respectively. The proof follows.

It has been shown in Art 2 that a shear stress on one plane at any

point requires an equal shear stress on a perpendicular plane. In fact,

each shear line from the cross-section in which AB lies meets, on the-

line AB, another shear line running' along the face ABB 'A'. The shear

lines in this latter plane are parallel to the axis of twist because the^

shear stress S.. is zero. Then, if we take AB as ji'-axis, the total shear-

force on the plane ABB'A' is

jSydxdz = dz Sydx

= — ndz^ dx
J ox

^-7idz{^,-i,) (7.183)

Since the area on which this acts is AB x dz it follows that the meanp.

stress is

Mean S
AB (7.184)

When shear lines are drawn over any section of a twisted rod the

number of lines crossing any line AB in the section is supposed to

be proportional to the difference of ^ at A and B ; that is, the number
of lines is proportional to(<^, --IJ. If shear lines cross AB in opposite

directions the number of lines which is proportional to (^2 — ^1) i^

understood to be the excess of those crossing in one direction over

those crossing in the opposite direction. By this rule the total shear

force on a strip such as ABB'A' is proportional to the number of

lines crossing AB,

129. Torsion of rod with section shown in fig. 76.

In such a section as this a certain number of lines enclose the area

(i) only, others enclose the area (2) only, and still others enclose both

areas. Let the numbers of lines enclosing these three circuits be.

denoted by N^^, Ng, N, respectively. We shall
^

assume that each of the three vertical strips has

the same thickness t, and each of the two hori-

zontal strips the same thickness t', although the

following method would be valid if these thick-

nesses were unequal.

Let CD= a+^, DF=rZ7-f f.

The numbers of shear lines running across the

normals to the boundaries at L, M, and K, are

N-j-N^, N+ N2, and N^— N2 respectively. Then

L H M
1

1.

_ K

2.

the mean stresses across these three normals are Fig. 76
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N + N, N + N, Ni — N,

M+N,

i' t

where c is some constant.

Now let us regard the section

in fig 76 as a horizontal plane,

merely for the sake of naming
directions. Then let us consider the

equilibrium of the T piece whose
section is LMK and which has unit

length in the vertical direction.

This T piece is shown in fig. yy and

arrows are drawn to show the direc-

tions of the mean shear stresses.

Since the vertical forces must

balance we get

that is,

whence

I
N + N.

c -.

—-

c(Ni-N2)

N,— c

1)

N,= N,

Thus the number of lines crossing the normal at K (fig. yy) in one

direction is equal to the number crossing in the other direction ; also

the total number of lines running round the four outer strips is every-

where the same, namely (N -)- N^). Then these four outer strips can

be treated as a closed tube, and the middle strip as an independent

rectangle, to which the method of the open tube can be applied. The
fact that the rectangle is attached to the closed tube makes the torque

rather greater than it would be if they were detached. Then the total

torque is given approximately by

Q =- Ql + Q2
where

\2a 2h\
Qi!— +— 1

= 4^^^^^^-

and

Therefore

t' ' t

= -knrl'^ nearlv

a^nt'
,^,,, , .— - (7.185)

at-^ bt

The accuracy of this result will not be appreciably affected if Q^
is neglected altogether, because we know, from the result for the

uniform circular tube, that the error in Q^ is of the same order as Q2
when t and t' do not differ much.
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130. St Venant's approximate formula for the torque in

rods with compact sections.

The torque in the rod with an elliptic section may be written in

the form

I wtA*

= 0-0253^- (7-i86)

where A denotes the area of the section.

For the rod whose section is an equilateral triangle

^= 95
—

= 00222-^- {7'^^7)

For the square section

Q = 0-0234-^. ....... (7.188)

For a rectangle with sides a^, Z?-^, when h^>2ai,

^ I nrA^f a,^\/ ^ a,\'
, ^ ,

gives a very good approximate value of the torque. If we put b^= 3^5
in this we get

_ nrA^
Q = oo244-^; (7.190)

b,

and if we put — == co we get

fixA^
Q = oo278-y- (7.191)

All these results are written in the form

, wtA*
Q^-^^^-j-' (7.192)

and it is remarkable what a small difference there is between the

several values of k. Saint Venant found that, for sections that are

fairly compact, that is, sections that have no projecting arms in any

direction and no reentrant angles, the coefficient k in (7.192) is

remarkably near its value for an ellipse, and he gave as an approximate

formula for all such sections

_ I nrA^ , .

Q=i^— •
• (7.193)

The formula is useless for open or closed thin tubes. Take, for

12
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example, the case of the closed circular tube with inner and outer radii

Tq and Tj. Here

Q = Inr

and therefore the coefficient k is

k

471'

which, when (r^— r^) is small compared with r^^, differs greatly

from ^\y.

There are few sections in actual practice that will not come under

either Saint Venant's approximate formula or under our rules for

closed or open tubes.



CHAPTER VIII

THE ENERGY IN A STRAINED BODY

131. Strain-energy.

The forces that strain an elastic body do work on that body during

the process of straining, since the body yields in the direction of the

straining forces. We can find the work done on each element of the

body by treating the element as a separate body under the action of

forces at its surface. For an internal element the forces at the surface

are the actions of the other parts of the body in contact with the

surface of the element, that is, the stresses at the surface of the

element. For an element at the surface of the body the straining forces

are the actions of the contiguous parts of the body together with the

action of the forces applied at the external boundary. Then the total

work done on all the elements of the body is the work done in

straining the body.

The total work obtained by dealing with each element as explained

above is exactly the same as the work done by the external forces on

the body, the external and internal forces on each element being

assumed to fbe in equilibrium at every instant. For example, if a beam,

clamped at one end and free at the other, is bent by the application of

a force at the free end the total work done on the beam is the work
done by the force at the end. If, during the process of bending, y is

the deflexion at the end and Q is the force, we know that Q is propor-

tional to y, and therefore the total work done by Q up to the time

when it becomes Q.^ and produces a deflexion 3;^ is iQi3/i, the factor

^ being due to the fact that the mean force during the operation is

\Q^. It will be found, by the processes to be given later in this

chapter, that the total work put into the elements of the body is the

same as ^ QiJ'i-

If the strained body is allowed to recover slowly its unstrained

state it can, if it is perfectly elastic, react on the body or bodies

maintgLining the strain at any instant with exactly the same forces as

when the strain was increasing ; that is, the strained body can. do the
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same amount of work on external bodies in recovering its natural state

as external bodies have done on the strained body in producimg the

strain. Thus a perfectly elastic body is capable of giving back all the

work that has been put into it, and for this reason the work done in

straining such a body is regarded as energy stored in the body, and is

called the elastic energt/ in the body, or sometimes the strain-energn

in the body.

We shall begin by finding the energy in a number of simpler cases

before finding the general expression for the energy in a strained

body. These simpler cases contain the most useful examples, and at

the same time serve the purpose of making clear the general result.

132. A uniform rod or string under a pair of opposing
pulls at its ends.

Let us assume that one end remains fixed while the other end moves

due to the extension of the rod by the pulls.

Let / denote the natural length of the rod and A the area of the

cross-section; and let « denote the extensional strain due to a, tensional

stress P. The extension of the rod is la and the work done by P at

the free end while the extension increases by d[la) is

^W==PxAx(5(/a)
= PA/(3a (8.1)

The total work done by P while the strain increases from a^ to a is

£W = / VKlda

EaAlda
«0

= iEA/(a'^— ao^)

= iA^(Ea + Eao)(a-ao)
= ^AZ(P + Po)(«-ao) (8.2)

where P^ and P are the tensions at the beginning and end of the

operation.

.
By putting ao==o ^^^ Pq^'^^ ^^ C^-^) ^^ o^^ *^^ work done in

producing the whole strain of the rod. This work is

W = \ A/Pa

= |t^ . (8.3)

where T is the total tension across a section and .y the extension of

the rod.

133. Rod under variable tension.

The result in (8.3) applies to a rod under a constant stress P, and

therefore also a constant strain «, all along its length. If the tension

is variable, as, for example in the case of a rod hanging vertically

under its own weight, we can still use the result in (8.3) for in-
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finitesimal bits of the rod. The work rfW that is done in stretching

an element d.v of the rod till its strain is a and its stress P is

dW^lAFadx, (8.4)

and therefore the whole work done in stretching a rod of length / is

W ==\fvKadx

I ^ ^--

If we write T for the total tension across the section, namely PA,
then (8.5) gives

I

W = |'
\L^^- («-^>

As a particular example suppose a uniform rod hangs vertically

under its own weight, the lower end being free. If w is the weight

of unit volume of the material then the tension across the section at

distance x from the lower end is wAx, the weight of the portion of

rod below the section. Hence the tensional stress is wx, and therefore

the work done in stretching the rod is

I

W = i/ '-''^'Adx
*x

= J^A ........ (a„

134. The energy per unit volume in an element of rod.

If dV be written for the volume of the element of rod in equation

(8.4) that equation becomes

dW = lFadY
and therefore

^"•"- <">

Either of the equations (8.7) or (8.8) may be interpreted to mean
that the energy in each unit volume, at any point of a rod under a

tension only, is ^ Fa, where P is the stress and a the strain at that

point. The rod need not be straight. Moreover, the resuU is still true

if the rod forms part of a larger body, provided that there are no

stresses in the rod except the tension P.

135. The energy in a bent beam.
We shall find the energy that has been put into a piece of a bent

beam between two cross sections at a distance {Ja: apart, the natural

state of the piece being straight.
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Let dA denote an element of area of one of the sections which is at

distance 2 from the neutral axis. The element of length dx and of

area dA may be regarded as an element of rod to which (8.7) applies.

Thus the energy in this piece is

dW = ^FadAdx

z
But « = -

Ez
and P = -

where R is the radius of curvature of the beam. Therefore

dW^lE^dAdx
^ R2

Then integrating over the whole area, we find, for the energy in the

piece of beam between the two cross sections

^W = SxJiE~dA, (8.9)

dW being written for the integral of <iiW over th-e area because this

integral is still an infinitesimal quantity of the order dx. Thus we find

SW = dxx^^ fzMA

= ^-><S. •
• (8--)

ly being the moment of inertia of the cross section about the neutral

axis.

Now let us assume that the action across every section is a pure

couple, and that the neutral axis is a principal axis of inertia of the

section. With these assumptions the neutral axis passes through the

centre of gravity of each section and the bending moment is

„ = 5.

I being the moment of inertia about the principal axis.

It follows therefore that

(5W =— dx = dx
2R 2EI

Hence the total energy in the whole beam of length / is

w = / -^^dx, (8.1 1)
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X being measured from one end of the beam. It is worth while to

notice that, if 60 denotes the angle subtended by dx at the centre of

the circle of curvature, then

dx

R
= 60

cUid therefore

<5W = 1 MdO

To make our result more general let

us now assume that the neutral axis is

not a principaj axis of inertia of the sec-

tion. Let OY', OZ' be the principal axes

of the section and let the neutral axis

make an angle (p with OY', as in fig. 78.

Then the energy in dx is still

E rdW = dxx-— Iz^dA
2RV

But, denoting by z', y', the coordinates of dA relative to the principal

axes, we get

z = z cos 99 — y' sm 99

Therefore

Edx

Fig. 78

i>W = —— / {%'^ cos^ 99 — 2i/z sin 99 cos (p -\-y'^ sin^ 99) dK

ESx C r ,= -—:
I
(z'^ cos^ ^-\-y^ sin ^99) dA

Ebx\
\

But, by (3.64) and (3.67),

FT
My' = —^00899, . (8.12)

M

^ R
EI.'

sin 99

Therefore

whence

SW=^Sx\^^+ ^^'

2 EL 2 ELj

(8.13)

(8.14)

W _j'\m}
_^ ml

J (2EL' 2EIj,
dx (8.15)

The question of the energy in a naturally curved rod will be dealt

with in chapter 11,
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136. Illustrative examples.
In the case of a uniform beam, clamped at one end and free at the

other, and carrying a load m per unit length, the bending moment at

distance .v from the free end rs

M = -^ wx^

Therefore the energy stored up in the beam is

I

*='1S"X
_ wH^

40EI

Again, for the beam investigated in Art 55,

M = ^\w{px'^— (^lx + /2),

and therefore the energy in the beam is

£/j(^-l/)^-A^^^^
8 EL „

.2 n^l

= 8El/
"^-^^"^

where u={x— ^/).

Therefore

W f' {u'-i^r-r- + TiTndu
8EI.

,

zwH^ii I I I I I

"^
"SeT 15' 2"5~l8' 2"=^ "^ 144 I

_ wH'^

1440EI

For a beam clamped at one end and carrying a load Q at the other

end, which is free, the bending moment at distance x from the free

end is

and therefore
.1 Q2a:2

2J0
W = -/ ^dx

6~Er
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If Vj denotes the deflection at the free end it will be found that

and therefore

which verifies in this particular case what was stated in Art. 13?.

137. Work done by the shear forces in a beam negligible

It will be observed that we have calculated the work done in

bending a beam on the assumption that the stress across each cross

section is purely normal, whereas we know that there is a shear stress

as well when M is variable. Nevertheless, as we have previously

pointed out (Art. 54), the shear stress is neglig-ible compared with the

tensional stresses in beams, and consequently the work done by the

shear stresses is negligible in comparison with the work done by the

tensional stresses which form the bending couple.

138. Rod under tension and bending moment.
It has been shown (Art. 74) that, when the neutral axis does not

pass through the centre of gravity of a section, the total action across

the section is equivalent to a tension acting at the centre of gravity,

together with a couple whose moment is the actual moment of the

stresses about an axis which passes through the centre of gravity of

the section and is parallel to the neutral axis. With the same notation

as in Art. 74, r being neglected in comparison with R, equation (8.10)

remains true for this case.

Now by the theorem of parallel axes in moments of inertia

I being the moment of inertia of the section about the axis through

the centre of gravity parallel to the neutral axis. Therefore

dW^dx-^a + r^A).

Also, the moment of the stresses about the axis for which I is the

moment of inertia is, bv (6.13),

„.|
Therefore

— dx
2

fM2 T2 1

where T is the tension at the centre of gravity of the section, tho

expression for which is given in (6.12).
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Thus the total energy in the rod in this case is

which is precisely the sum of the energies due to the couple M and the

tension T separately, that is, the sum of the energies given by (8.6)

and (8.II).

139. Energy in a pure shear strain.

Suppose a naturally rectangular block,

whose dimensions are p, q, r, is subjected

to a pure shear stress over the faces per-

pendicular to the edges of length r. Thus

S
'

in fig. 79
^'^- 79 AB^p, AD' = ^, DAD = a

The shear strain is corresponding to the shear stress S. Let us

assume that the face represented by AB remains fixed while the face

D'C is moved to DC. Then the work done by the forces on the four

faces is just the work done by the force on DC because AB does not

move, and the work done by the forces on AD and BC balance. While

6 increases by dd the length D'D increases by qdO and the work
done is

dW = [Spi-) X qdO

= SpqrdO . . . (8.18)

But S = nO

whence

^W = nOpqrde,

and the total work done in producing the whole strain is therefore

W = / npqredO
Jo

-^ - npqrO^

^ -'i^pqrO (8.19)

Thus the energy per unit volume is

W S"^—=lS^^i— (8.20)
pqr n

140. Energy in a rod under torsion.

If a torque O is applied in opposite directions at the ends of a rod

of kngth /_, and if the twist per unit length of the rod is r, then the

whole rod is twisted through- an angle It. The work done by the

couple Q in increasing the angle Iz, by Idx while one end is kept

iixed is

dW = Qldt (8.21)
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Now it can be seen from equations (7.30), (7.31), (7.32) that

Q= UnT (8.22)

where H is a constant which depends only on the distribution of the

area of the cross-section about the axis of twist. Therefore

dW=Hnhdr,
and the whole energy in the rod is

W = f'H?ihdT

-iQ(p, (8.23)

where cp is the whole angle through which one end of the rod is

twisted relative to the other.

If we are dealing with a rod in thich the torque varies along the

rod then the energy in an element of length d.v in which the twist is

T is

whence the total energy is

W
^/S>-- • • • •

-(8-4)

141. The general expression for elastic energy.
Let us consider the work done by the stresses acting on the surface

of an element of volume of dimensions dx^ dy, dz, inside any strained

body. Let the six stresses and corresponding strains be, as in

chapter I,

P P P S S S •

a, j5, y, a, h, c.

It is easy to see that Pj^ does no work except when a varies. Like-

wise the stress S^^, for instance, does no work on the faces on which

it acts except when the strain a varies.

When a increases 'by da the length dx increases by dabx, and
therefore the work done by the stresses V^ on the pair of faces on

which they act is

( P^ b]jbz) X dadx =
(
V^da) SxSySz.

Thus the work done per unit volume by P^ is Pj da- Likewise, when a

increases by da the work done by S-^ is, by (8.18),

{S^^da)^.x^y^z
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It is clear then that the total work done on unit volume of the body
when all the strains vary is

^ S^da -{- S.^db + S^dc .... (8.25)

Now let us suppose that all the stresses started simultaneously from

zero and increased up to their final values all the while maintaining-

the same ratios among themselves. Under these circumstances each

stress is proportional to its own strain. Let us then put

F^=k^a, P2 = M, F3=k^y (8.26)

Moreover, in all cases,

S^^ = na, S.2 = nb, S^ = }ic (8.27)

Therefore the total energy- in unit volume at the point where the

stresses are P^, P^. etc., is

W= / k^ada + -j- / nada -{-

Jo Jo
= lk,ai+ + iwa24-....

^iPia + iP-./^ + iPay
+ iSia-|-iS264-^S3C (8.2S)

The energy in the volume dxdydx is Wdxdydz, and therefore the

energy in the whole body is

\Y=fffWda:dydz, (8.29)

the triple integral extending throughout the volume of the body.

142. Energy in terms of strains, and in terms of stresses*

By means of equations (2.22) and (2.17), that is, such equations as

Pj^ = (w— n) /\ -{- 2na,

the energ>' per unit volume may be expressed in terms of the strains

without the stresses. The terms containing the normal stresses are

^F,a + V,^ -^?,y} == l{m- ?i)[a-i- 1^ -^ y) A-\- n{a^ + ^' -^ry')

= |(>2— 72) A 2
-r ^Ua2 + /52 -f 72)

Hence

W'= -J-{772—n)A^-r 1^(202-1-2/924- 272 -fa2_i.t2_|_ c2) (830)

Again, by means of such equations as (2.14) and (2.17), W can be

expressed in terms of the stresses without the strains. The result is

+ ±{S,2 + S,^ + S,'-). ........ (8.31)

If P.= P3= o then

W'=^' + — (Si2 + S,2 + Sj5). . . .(8.32)
2 Jc. 271
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143. Load suddenly applied.

When a load P is applied to any point of an elastic body the dis-

placement II of that point in the direction of P is usually proportional

to P when the stresses are in equilibrium with the force P. Then the

work done by a variable force P while it increases slowly from zero

up to its final value is, on the assumption that P^ kit while the work is

being done,

V = /" Fdu = f kudu = i /a<2

This, therefore, is the elastic energy put into the body by the variable

force P.

Let us now suppose that a constant load R is applied at the same
point of the body while the body is at rest and unstrained. When the

body next comes to rest after the force R is applied the total work
done on the body by the force R is in the form of elastic energy. But

the work done by a constant force R in a displacement u is Rw. If

P is the force straining the body the energy in the body is^P?/. Hence

lFu = Ru,

whence
P==2R

This is the maximum force applied to the body by the load R.

It might seem as if the force applied to the body is always R
throughout the displacement. But this, it should be remarked, is not

possible. The force R is really applied to the load, and the elastic body

resists with a force P which must be zero when the displacement is

zero, and increases as the displacement increases. The difference of R
and P is generating kinetic energy in the load, which kinetic energy

has to be annihilated before the load can come to rest. In order to

annihilate this kinetic energy a resistance must be applied which is

greater than R, and we have found above that the maximum value of

this resistance is 2 R. The load R performs, in fact, one half of a

simple harmonic oscillation in moving from rest to rest; the force in

the direction of motion at the beginning of this half oscillation is R—P,

which is R because P is zero; and the force contrary to the motion at

the end of the half oscillation is P—R, which is again R since P is 2 R.

The above is what is understood in engineering by a load suddenly

applied. It means that a load is applied to an unstrained body and

allowed to produce its full effect. In this way oscillations arise which

finally die out owing to frictional resistances. The greatest stress

occurs at one end of the oscillation, and this stress is twice as great as

it would be if the load were in equilibrium at the same point of the

elastic body. Thus if a load R is put on an unstrained beam and left to

itself the load oscillates, taking the beam with it, and the maximum
stress is approximately twice as great as when the load has come to rest.
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The preceding reasoning is all based on the assumption that the

mass of the applied load is much greater than the mass of the part

of the elastic body that is carried with the load. If this latter mass is

comparable with the mass of the load the greatest stress may be very

much less than twice the stress due to the load R in equilibrium.

144. The conditions of equilibrium as a consequence of

minimum or maximum energy.
It is a general rule in statics that, when a body or system of bodies

is in equilibrium, the positions of the parts of the system are such that

the potential energy is a minimum or a maximum. This means that

any infinitesimal displacements of the parts of the system from an

equilibrium state, which are consistent with the constraints of the

system, can make no change in the energy which is of the same order

as the displacements. Below is given a proof of this theorem, which is

clearly valid for an elastic body. Afterwards the method is applied in

a particular case to show how the conditions qf equilibrium can be

deduced from the principle when the strain energy of the body is known.

The method here used is the method of variations and comes within

the scope of the calculus of variations. Let the body or system of

bodies be regarded as made up of particles w^, m.^, m^, etc. The
forces on m^ are made up of the external forces (including what we
have called body forces as well as the forces at the boundary of the

body if fH-^ is a particle at the boundary) and the forces applied to m^
by each of the other particles. Thus the forces on tn^ are

the external forces«;

due to Woi
due to m^',

and' so on.

Let the component displacements, in the equilibrium position, of

Wj, m^, etc. be (m^, v^, ii\), (u^, v^, W2), etc., each of these displace-

ments being measured from any convenient reference point ; in the case

of an elastic body the most convenient reference point for any particle

would be the unstrained position of the particle.

Let us next get an expression for the total work done on all the

particles during infinitesimal displacements diii, Stc.,, Sk.;^, etc. The
work done on m^^ is clearly

5Wi=(X,-fXi2+X,3+...)ai*i

+ (Z,+ Z,i + Z,,+ ...)dw, .... (8.33)

The increase in the potential energy, which is the negative of the total

work on all pa'rticles, is

5V=— {^Wi+^Wo-f...} (8.34)

Now the conditions that V is a minimum (or maximum) in the

equilibrium position for all possible variations of Su^^ , dih , etc. must

x„ Y„ z,.

X12, Y„, z,=.

^IS' Y,„ z„,
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be that the coefficients of every one of the small increments of the

displacements must be zero except for those displacements which the

constraints of the bodies make impossible.

Thus, one of these conditions is

(X, +X„ + X,3+.A)^Wi^-o . . , .(8.35)

This is satisfied identically if the particle m^^ is so constrained that no
motion parallel to the ji'-axis is possible. But if no constraints are

applied to w^ then three of the conditions for minimum V are

X,+Xi2+X,3 + ...=0)
Y, + Yi,-hY,3+...-=o {8.36)

Zi +Z12+ Zj3+ ... =0]
These are the equations of equilibrium of the particle w^.

In general, for the particle nir, we get

(X, + X,i-fX,, + ...)^iV=o]

(Yr + Yr,+Yr,-h...)SVr=o\ . . . .(837)

and the same reasoning can be applied to these as we have already

applied to the corresponding terms for m^.

If a particular particle, let us say w^, is forced by the constraints

to move on a given surface, this gives one relation between du^jdv^,

Sw^^. For, if /, m, n, are the direction-cosines of the normal to the

surface at the position of m^, the particle is free to move in a small

element of the plane

l,v + "f^y -\-nz=^k, (8.38)

and therefore the relation between the increments of its displacements is

ldu^-\-mdt\-\-ndw^=^o (8-39)

By means of this relation one of the increments du^, dv^, dw^, should be

eliminated from the expression for ^V and then the terms should be

regrouped. If du^ is eliminated the terms due to w^ in dV will have

the form Fdvi-{- Qdi^i^, and the conditions for a minimum or a

maximum value of V will be P= o, Q= o, two equations now instead

of three; but we have (8.39) as an extra equation now.

If the particle w^ were constrained to move along a curve instead

of a surface there would be two such equations as (8.39). Then two

of the quantities dui , dv^ , dw^ , could be eliminated from the. expression

for ^V. If m^ is absolutely fixed, like a point on a fixed axis, or a

point at a pinned or clamped end of a beam, then^w, , Sv^, Sw^, sue all

zero, and consequently (5W^ is zero identically. Then the conditions for

minimum V would not require that the coefficients of dit^y Sv^^, dw^y

should be zero. Although these coefficients are zero they are not

necessary in the conditions of equilibrium, since all that the equations do

is to tell us the previously unknown forces exerted by the constraining

or supporting 'body.
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Thus it will be seen that the conditions of minimum or maximum
energy, subject to the actual constraints of the body, lead to all the

necessary conditions of equilibrium and to no others.

145. Application to a beam.
Let the beam have a length / and let the load per unit length at

distance x from one end be zv. Let the forces and couples acting at

Fig. 80

the ends of the beam be P^^, Po, C^^, C^, as shown in fig. 80. Let the

deflections at x= o and x= l be 3;^, y^; and let the slopes at the

same points be 0^, 6.^.

By equation (8.1 1) the strain energy in the beam is

Jo

Since the load wdx on dx is at distance y below a fixed level the

potential energy of the whole load is

Xwijdx.

The negative of the work done by the end forces is

7^1/1
/>!/2 f'^x r^-

O Jo Jq do

Thus the total potential energy or available work of all the forces is

V = if El(D^i/)^dx— fu'!/dx
t/ o «^ o

rvi Mh r^i f^2

+ / Pi^//i - / P2^^2 + / C.dO,- C,dO, . (8.40)
t/o Jq Jo ^ o

Now let us suppose that the beam is in equilibrium, when

y= f{x) (8.41)

In order to use the variational method we have to assume that the

form of the curve of the beam changes sHghtly. Let the change in y
be indicated by the equation

by= hY{x), (8.42)

where h is an infinitesimal constant, and F(ji') any function of x which

is finite within the range from .a-= o to x=-\. Then, due to this

change in y, the change in V is
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^V = J f si El(D\ijY\dx—fwdfjdx

the terms on the last line arising from such differences

following :

—

Jnyi+^yi nVi nyi-{-(hi
' F,dy,— F.dij,^: F,dy,
o ^ o *J

IJi

=P1^.'/, . . .

(8.43)

as the

(8.44)

Now
^(D2:V)2={D2(7/ + %)f2_(DW

= 2V>hjT>'\dii) to first order

Then, by integration by parts,

f m.'Dh)T>'^{dy)dx = EID2//D(^//)

— f ¥J)[YD'^y)D[dy)dx

. (8.45)

i
= EID2/yD(%)-ED(ID2//)(52/

^ f 'KD'^{lDhj)dydx . . (8.46)

But

D(%)
d{y -\- Sy) dy

dx

d

dx.

dy

dx
(8.47)

by the meaning of the symbol d.

Finally we can write ^V in the form

^V = r
j
ED 2(ID 277)—w dydx

+ Hi dy^— EU-d^, + K^dO^—KM, . (8.48)

where

H2^P, + E[D(ID2yy)]^=.,

K, = Ci~EI[D2^]^=o
K2 = C,-EI[D^'/y]^^,

Now in order that ^V should be of smaller order than

dO^, etc., it is necessary that

. (8.49)

K^dOy = O
(8.50)

13
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and nEDHID^f/)— wUydx--=o (8.51)

From the first of the conditions (8.50) it follows that, if y^ is not given,

that is, if the corresponding end is not either supported or clamped, then

H,= o,

that is,

d ( dhi\

This merely means that the shearing force at the end is equal to the

applied force at that end, which agrees with what we learnt in the

chapter on beams. Similar conclusions can be drawn for the other end.

Again the third of the conditions (8.50) is satisfied if Q^ is given

;

but if it is not given then it follows that

EID2i/=Ci where x= o; (8.53)

that is, at an end where the slope is not fixed, the applied couple is

equal to the quantity we have previously called the bending moment.
Thus the four conditions (8.50) give precisely the end conditions of

the beam.

Next, in order that (8.51) should be true for all possible values of

dy, it is necessary that

ED2(ID22/)— w;= o (854)

If this were not zero at every point of the beam but were equal to

some function 99 (;r), then, by taking F(,r) in (8.42) identical with

^(^r), that is, by taking

dy==h(p[x) (8.55)

w^e should get

MED2(ID'?//)— i^M«/rfx=r/iL(a;)j G?ic . . . (8.56)

which could not possibly be zero if (p{x) were not everywhere zero.

Then it follows that equation (8.54) must be true at every point of the

beam. This then is the differential equation for y.

Thus we see that, from an assumed expression for the energy in

an elastic body, it is possible, by the variational method, to deduce the

differential equations and the boundary conditions that are consistent

with that energy expression. Moreover, since there is a connection

between the differential equation and the boundary conditions it is

clear that these boundary conditions are consistent with the differential

equation. It follows then that, even if there is an error in the original

energy expression, nevertheless the boundary conditions deduced there-

from are consistent with the differential equation. There is one

particular problem in this subject, namely the bending of thin plates,

wh-ere the variational method gave boundary conditions consistent with
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the differential equation when intuitional methods had failed. It was
Kirchhoff who put the finishing touch to the work of the brilliant

French mathematicians who had preceded him in the treatment of

the subject of thin plates.

146. Extension of the minimum energy principle.

Suppose V^ is the potential energy of the internal and external

forces of a body in an equilibrium position, and suppose V is the

potential energy in any other position of the body under the same or

different external forces. Then let

V==V, + V' (8.57)

Now, in any equilibrium position, V is a minimum or maximum, for

all possible displacements. But V^^, being the potential energy in a

given equilibrium position, is invariable. Consequently V must be a

minimum or maximum in any new equilibrium position. If, then, there

are other equilibrium positions besides the one where 'V=V^ these

positions can be found from the conditions that V is a maximum or

minimum.

The preceding theorem is very useful in dealing with stability

questions.

One of the simplest examples in elasticity to which we can apply

this rule is the case of an elastic string carrying a weight at its lower

end. If / is its natural length, A the area of its cross section, x-^ its

extension due to a load W^, we get, by (8.6),

EA
Vi = i— ^,^~W,a;. .... .(8.58)

Now suppose a further load W2 is attached to the end. Then the new
potential energy in the second state is .

EA
Vi + V = i —(X, -\-x,Y— (W, + W2)K + ^2 ).

whence ,

V' = i^(a^2^+2^A)-(W, + W,)a;,-W,Xi . .(8.59)

Now .x\ is supposed to be given and therefore invariable. The condi-

tion that V should be a minimum when x^ varies is

that is,

EA

(8.60)

whence

which is clearly right.

Wi +W., = EA^^^i^'
: . . . .(8.61)

V

13*
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We shall now apply the theorem to an example of a different

kind, the sort of example for which the theorem is most useful. We
take the case of a strut pinned at both

ends under a thrust T. Let / be the

natural leng-th, (/—w^) the length in

the straight state just when instability

begins, (/

—

u^—ii) the distance be-

tween the ends in the bent state.

The potential energy in the straight

state is

EA
Vi = ^— r/,-^-Tt^,; (8.62)

and in the bent state

EA r^ M2
Y,+Y=i—u,^-Tn,-Tu-{-iJ^—dx . .(8.63)

Thus V' = |/ —-dx— Tu (8.64)
Jo EI

Now since the thrust in the rod is appreciably the same in the bent

state as in the straight state it follows that the length of the rod is

not altered by bending; that is, the difference between the lengths of

the straight line OB and the central axis of the rod is u, the displace-

ment of B since bending started. Thus if ds is the length of an

element PQ of the central axis of the rod and dx its projection P'Q'

on the axis of x, then

But

whence

ds

dx

Therefore

Then finally

= {ds— dc)

-a
ds

i\dx approximately . . (8.65)
dx

{dsy={dxy + [dyY,

-f'.'M" i"«
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By using the conditions that V should be a minimum for all! possible

variations in the form of the curve, that is, for all possible variations

in y, we can get the differential equation for the strut. Thus suppose i/

changes to (y-j-S/j), dy being equal to a function of x multiplied by

a small coefficient.

Then the new value of V is

cixJ dx^ ax ax

dx,

whence, neglecting squares of dy and its differential coefficients,

Now by integration by parts

The integrated term is zero at both limits because y = o at both ends.

Therefore

-=/|-S+-»l3- ;
'»-'

Now if the quantity in brackets under the integral sign is not zero

at every point of the rod it is possible to make ^//"such a function

of X that the quantity to be integrated is positive at all points of the

rod, and consequently dV' will not be zero for this particular variation

of //. But if

^^S+^^-° • •
•-• -(^-^'^

then ^V is certainly zero for any values of dy. This then is the

condition that V should be a maximum or minimum. But we know
that equation (8.74) is the differential equation for the strut. Thus the

minimum condition for V has given the correct differential equation.

147. Approximate solutions by the minimum energy prin-

ciple.

There is another way in which an equation such as (8.68) can be

made to serve a useful purpose. There are many stability problems of

the same type as the strut problem which lead to differential equations

the solutions of which are either not known or so cumbersome as to be

useless. In such cases, if we can write down the potential energy, it is

usually possible to get quite good approximate solutions to the problems

by assuming a reasonable type of strain in which constants are left to

be determined by the minimum energy principle. The reasonableness

of the assumed type has to be decided by intuition. Of course the

type will not be reasonable if it does not satisfy the boundary

conditions.
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Application to the strut.

The boundary conditions for th€ strut being that 3^= where x= o

and .r= l we must assume that

y= xil-x)fM,: (8.72)

f(,v) being a function of x left be chosen by intuition.

It will simplify our problem if we move the origin to the middle of

the rod. Then let l= 2a and let

X
.?=---- -I,

a

so that J is a variable varying from — i to -f-
i along the rod and!

proportional to the distance from the middle. Thus equation (8.68)

becomes

Now the form taken by equation (8.72) is

y= (i-s^)F{s),

and clearly, if T is the smallest buckling thrust, y is an even function

of s. Therefore

y=.(l— S^^)f{s^') (8.74)

We mav take

f(s^)=c-\-b,s' + b,s'-i- . .(8,75)

and then determine the constants c, b^, etc., from the conditions.

-T- = o, -T7- = o, etc (8.76)
CC COi

By this means we should, if we took an infinite series in (8,75),

get the absolutely correct solution to the problem. We should, in fact,

find that 3; is a cosine function of a multiple of .y. But, of course, the

method loses all its virtue if we do not get our result easily, and we
are not likely to find an infinite series very easy to handle. Intuition

tells us that we ought not to be very far wrong if we take only

y= c{i—s^^) (8.77)

The substitution of this in (8,73) gives

V' =— f Lc^EI— 4c-2a252T rf5

= f|EI-^a^T| (8.78)

The condition

CC
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gives

?||EI_ia2T} = o, ...... (8.79)

whence either

c = o (8.8o>

T = ffi =lf. ..... .(..8.,

The alternatives that we get in the last two equations are due to

the fact that the rod has two possible states of equilibrium, a straight

state and a curved state The last equation gives the approximate value

of T in the curved state. The factor 12 should, as we well know, be 71'^.

To get a better result put

==k{b-{-(i—b)s^— s^} (8.82)

Since it is slightly more convenient to have a single letter for the

coefficient of s^ inside the brackets we shall put

h=i—b
Then .

y^k{i—h-{-hs^--s*) . (8.83)

Now equation (8.76) becomes

The equations

dk ' dh '

become

¥j(h^~— 4h-\-^\^an(-h^—-h-{--\ . . . (8.85)

and

El(2h--^4) = an{lh-i) .... .. (8.86)

By eliminating h from these we get an equation giving T in terms

of EI. It seems easier, however, to determine h first.

By dividing the sides of (8.85) by the corresponding sides of (8.86)

we get

5 ^3 5 7

2{h-2) 2{:^h-l)
'

the solution of which is
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Then (8.86) gives

whence

«2T 2h—A

1-2J

-^-=9-875 (8.87)

a result which is remarkably near the true value ji- = 9-8690.

Thus an expression with only two variable coefficients in it gives a

result agreeing nearly perfectly with the true result which requires an

infinite series to express it completely. It should be noticed that this

method is, 'in effect, precisely the same as the one given in Art loi.



CHAPTER IX

TRANSVERSE OSCILLATIONS OE THIN RODS

148. The equation of motion.
Suppose a naturally straight uniform rod, fixed in any way at the

ends, is oscillating in one plane. Let the .I'-axis be taken along the

line of centres of gravity of the sections of the rod in its unstrained

state, and the v-axis" perpendicular to the .I'-axis in the plane of

motion. When the rod is in motion let y denote the displacement of

a particle on the central line which was at (.r, o), the component dis-

placement in the direction of the .I'-axis being assumed to be negligible

if it is not zero. The origin of coordinates may l)e taken at any

convenient point on the .I'-axis. Let P,

P' be two points on the central line of

the rod, whose abscissae in the undisturbed

state were x and (x-\-dx). Let the in-

clination to the .^--axis, at any instant, of

the tangents to the central line at P and

P' be 99 and ((p-\~dif'), as shown in fig. 82.

Now the position of the particular point

P varies with the time t', that is, y is a

function of t for a point which has a given

abscissa x. Also, at any particular instant, 3; is a function of x, wdiich

function is shown by the curve of the central line at that instant. If

we imagine that a series of instantaneous photographs of the central

line of the rod are taken at different instants these show 3; as a function

of X at each instant, but a different function at different instants. In

fact, y is a function of the two independent variables x and t.

The acceleration of P is the symbol for partial differentiation

being used because, when dealing with the motion of a particular particle

of the rod, x is constant while t varies. Again the slope of the curve

at P at a give7i instant is

tan 99 = -— (9.1)
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In this differentiation t is constant while x varies. The slope expressed

by tan 99 is the slope of the curve on one of the instantaneous photo-

graphs mentioned above.

''F+dF Let F and M denote the shearing force and

bending moment at P (fig. 83), (F-[-fl(F) and

(M + dM) their values at P'. Let a denote the

area of the cross section and w the weight per

unit volume of the material of the rod. Re-

solving in the direction of the 3;-axis for the

motion of the element PP', and assuming that

there are no forces on this element except the

shearing force and bending moments at its ends, we get

that is,

e^^Vei^ ' '.

^^'"^

Next we have to get the relation between M and. F by taking moments.

To do this we really need the moment of inertia of the piece PP'.

Regarding this as a straight piece of rod, its moment of inertia about

an axis through its centre of gravity perpendicular to the rod is

I, =(mass){^V(^^)^ + ^^'l

where k denotes the radius of gyration of a section of the rod about

the axis through its centre of gravity perpendicular to the plane of

motion.

Now the angular velocity of PP'is ^, and the angular acceleration is

f-w ^^

~Y • Then, taking moments about the centre of gravity of the piece

PP', we get, for the motion of this piece,

li'^ = idxcos(p{F-{-(¥-j-dF)} + dM

= ¥dx -f dU,

neglecting small quantities of higher order than the first.

Dividing the last equation all through by dx the result becomes

which, when dx is infinitely small, reduces to

^;^=_F+-,/2j . (9.3)
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Differentiating this with respect to x we get

(7^M cF wa,^ c'^w , .= k^—— . . . . . (Q.4)
c)x2 cx^ g cxciV'

^^^^

Since (p is small we ma)^ write (p for tan 99 in equation (9.1). Then,

differentiating both sides of that equation with respect to x, we get

^J^ (9.5)

Now making use of equations (9.2) and (9,5) the equation (9.4)

becomes

o'^^M wac'h/
,
wa,^ c^y , ,,= —^ A k^" -—^^- .... (0.6)

The relation between the bending moment and the curvature is just

the same as for rods in equilibrium. That is,

M = ElP'^=Eai2^{, (9.7)
cx^ ax- '

where I denotes the moment of inertia of the cross section of the

rod, as in the bending of beams. In the present problem we have taken

y positive upwards in our figure, and M is reckoned positive in the

direction contrary to that used in beam equations in Chapter VI. This

double change of signs makes no change of sign in equation (9.7).

Substituting in (9.6) the value of M from (9.7) we find, on dividing

by a,

dx^ g df' g cx^cf' ^^ ^

The last term in (9.8) is due to the rotary inertia of the rod. If the

rod is thin k is small but E is .large, so that Efe^ is not small, whereas

wk"^ is small. The term due to the rotary inertia is, then, small compared
with the other two terms in the equation for any ordinary rod or

beam. It is usual to neglect this term in dealing with the transverse

oscillations of rods since it makes no appreciable difference to the

results. Then the final differential equation for the transverse oscilla-

tions of thin uniform rods is

EF^^=-^^ ....... (9.9)

If the rod were not uniform the equation would be

c^
I

d^y\ wach^

^ V
^ dx^J g'^

The true proof that the term due to the rotary inertia is negligible is

not quite so simple as it appears above, but a! more rigorous proof would
lead to the same conclusion.
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149. Normal modes of oscillation.

A rod can oscillate transversely in an infinite variety of ways, in

every one of which the displacement satisfies equation (9.9). But there

are certain simple types or modes of oscillation in each one of which
every particle of the rod executes simple harmonic motion in the same
period and the same phase, but with dififerent amplitudes. That is, the

period is independent of x but the amplitude is a function of x. These

modes are called the normal modes of oscillation of the rod. A normal

mode is expressed by

y= u sin (pt + a) (9.10)

where w is a function of x and not of t, and is called a normal

junction for the rod. Each normal mode of oscillation has its own
normal function.

With the value of 3; given by (9.10) we find that

%^- = —p'^usm{pt-\-a)

c^y d*u
and ^r—, == -r-7 sin (pt 4- a)

The substitution of these values in (9.9) gives

d^u w
EA;2—-sin(»< + a)=- 4--/?2wsin(p^4' a), • •

(9-ii)
dx^ g

whence

-j— = m^u, 9-12)
dx^

where ^^*^ = -Ft; (9-13)

Our assumption that y could be expressed in the form given in (9.10),

where u was assumed to be a function of x alone, is verified by (9'. 12)

since this equation does not involve t; that is, it determines u as a

function of x alone.

To solve (9.12), which is a linear equation with constant coefficients,

assume

i^ = Ae*»^,

where n is a constant which must be determined. Then

dhi-— = ?i4Ae"^, ....... (9.14)
dx^

and therefore equation (9.12) gives

;i*Ae"^ = m^Ae'"'

or n*'= w*

,

whence n^= -\-m^,
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and therefore «= -j- 7;^ or + zw, (9-i5)

i being written for V— i

.

The following- are therefore separate solutions of (9.12)

2i = Aae*'"^
(9.16)

ti = A4 e-""^

and it is easy to verify that a solution is obtained by equating- u to the

sum of all the quantities on the right of equations (9.16). That is

i< = Aie"'^ + A2e-*"^H-A.e^'"'^ + A4e-*'"^ . . (9.17)

Now since

c-^^=coshmx— sinhw,x-

fdmx =cosmx-\-ismmx
^-fmx^ (,Qs ^„^— ^ gjjj^ ^

equation (9.17) can be written in the form

?« = A cos 7»x H" B sin m;r + H cosh w?ic+ K sinh mx . (9.18)

the new constants being connected with the old constants by the

equations

II=A, + A,

K=A,— A2
A=A3 + A,

B =t(A3— AJ
It can be verified directly that the value of u given by (9.18) is a solution

of (9.12), for the fourth differential coefficient of every term on the

right of (9.18) is the product of w* and the term itself. Also, since

(9.12) is a differential equation of the fourth order and equation (9.18)

contains four arbitrary constants, or constants of integration—the

requisite number for the complete solution of a differential equation

of the fourth order—it follows that (9.18) gives the complete solution

of the equation (9.12). The value of y corresponding to this value

of u is given by (9.10).

Just as for a beam in equilibrium under given loads there are four

conditions to be satisfied by y and its differential coefficients with

respect to x, which conditions depend on the forces applied at the ends

of the oscillating rod. These conditions, which are exactly the same

as for a loaded beam whose ends are fixed in the same way as those of

the oscillating beam, are given in equations (5.16), (5.17), and (5.18).

150. Rod clamped at one end and free at the other.

If the origin is taken at the clamped end the end-conditions for a

rod of length / are
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y = o and —- == o where x = o;
dx

d^y d^y
X—- = o and —— = o where x = I.

dx^
,
dx"^

Since y involves x only so far as it is contained in u these conditions

are equivalent to

dti
w = o and -— = o where x^o . . . . (q. i Q)

dx

d^u d^u—— = o and —- = o where x = l . . . . (Q.20)
dx^ dx^

Applying these conditions to the value of u in (9.18) we get

A + H= o (9.J1)

m(B4-K)=o (9,22)

m^j— A cos ml— B sinw//+ H cosh w/4- Ksinhw/} =0 (9.23)

m^lAsinml— B cos?/?/+ H sinhrr//+ K cosh w?/} = o . (9.24)

When H and K are eliminated from the last two equations by means

of (9.21) and (9.22) the equations take the forms

— A(cos m/ + cosh m/) = B (sin m/ + sinh m/) . . . (9.25)

A(sin ml— sinh ml) =B(cos ml -{- cosh ml) . . . (9.26)

Each of these equations gives a value of the ratio of A to B. The
equation obtained by eliminating this ratio is

sinh^ml— sin^ml = (cosh???/+ cos7niy

or zcoshml cosml=— {cosK^ml— smh'hnl) — (cos''^'m/+ sin^ml)

whence cosw2/== (9«2 7)
cosh ml

This equation determines ml, and therefore determines p since all the

other quantities involved in m are known. There are an infinite number
of roots of (9.27), and the period of oscillation corresponding to each

271
value of /) is —'-• Then this last equation determines all the possible

P
periods of what we have called the normal modes of oscillation.

Equation (9.27) can be solved by graphs and then by successive

approximations. Let s= ml and then plot the curves

J/i
= ^os z

2/2
= =— sech z

cosh z

For quite moderate values of 2 the value cosh z differs very little from

l^e*, and the value of sech;i; therefore differs little from 2e~*. For

example
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sech 71

207

2e~

2 e-''

I +0-00187

Fig. 84

The curves for y^ and y,, are shown in fig. 84. It can easily be seen

from the figure that the roots after the first are approximately

37r 571; yjt
%==— , — , —

,

(9.28)222
The first root is approximately

^= 1-87.

Let the first root be

\vhere z^ is a number that we know is small. Then the equation for v is

cosh (i -87-!- z/) X cos ( I -87-1- -z;)
=—

i

But, when we neglect v^, Taylor's theorem gives

f(a + 'v)=f(a)+zf(a)
Therefore

cosh (i-Sy -\- v) =- cosh i-Sy -\- v sinh 1-87

cos (1-874- z;) = cos 1-87— t; sin. 1-87

Hence our equation for v becomes

(cosh ,1-87 -\- V sinh 1-87) (cos 1-87— v sin 1-87) =— i

;

or, again neglecting v"^,

2;{cosh 1-87 sin 1-87 — sinh 1-87 cos 1*87} = i -j-cosh 1*87 cos 1*87,

which gives

o-02o6
V =

4-1

1

0*0050.

Then a better approximation to the first root is

j= 18750 . . . . . • (929)



2o8 APPLIED ELASTICITY

In a similar way better approximations to the other roots of equation

(9.27) can be found than those given in (9.28).

Suppose Zr denotes the rth positive root of (9.27). Then the

corresponding value of p is, by (9.13),

gEk^

...... (9.30)

'-m- w

kzr^i/gE
/2 y w

and the corresponding period of oscillation is

271 27ll'^

tr =
Pr '

The different periods of the normal modes of oscillation for a rod

clamped at one end are therefore approximately proportional to

I 22 22
• etc.

1-875^ S'^i' 5

For rods of the same material w and E are the same, and therefore the

periods of corresponding modes for such rods are proportional to —
Ic

If the rods have equal and similar sections these periods of cor-

responding modes are proportional to P. Thus, if two steel bars with

the same cross-section, one of which is twice as long a§ the other,

oscillate in their slowest modes, the period of the longer rod is four

times as great as the period of the shorter.

Again, if two rods of the same material have the same length and

similar but unequal sections, the periods of corresponding modes are

^yy^^yyyA H ^ proportioual to the inverse of the

linear dimensions of the sections.

First mode 1^ one section has twice the linear

dimensions of the other the periods

of its normal modes are half as great

as the corresponding periods of the

c^^^^^A r^Ario thinner rod. The thicker the rod.
Second mode ,

, , .
,

other thmgs being equal, the quicker

the oscillations,

^ 151. Shape of the curve for

Third mode the different modes.
Fig. 85 • For any mode of oscillation of

the rod' clamped at one end and free

at the other the equation to the curve is

y = {A (cos mx— cosh mx) -f B (sin mx— sinh mx)} sin (pt + a)
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where m is one of the roots of (9.27), p is related to m by equation

(9.13), and B is related to A by either of equations (9.25) or (9.26).

Let R be written for the common value of each side of equation

(9.25). Then

A =
R

B =
cosh 7nl -f- cos ml

'

R
sinh ml -{- sin ml

'

and therefore, in terms of the new constant R,

^ I
cosh mx— cos mx sinh mx— sin mx \ , , ,

y = R{
:

; ——-Ismipt-^a) (9.3 2)
I cosh ml -|- cos ml sinh ml -f sm ml |

The magnitude of the constant R depends on the way in which the

rod is started. If R sin (pt -f- a) is treated as a small constant at any

instant, the curve of the central line of the rod at that instant can be

plotted for any particular mode. For all modes except the first the

rod has nodes, that is, points which remain at rest on the .r-axis

while the rest of the rod oscillates. The second mode has one node,

the third mode has two, and so on. These are marked N.^, Ng, in fig. 85.

152. Positions of the nodes.
The nodes are at the points where

cosh mx — cos mx sinh mx— sin mx———— = . . . (Q.33)
cosh ml -j- cos ml sinh ml-\- sin ml

Now for all the modes of oscillation except the first, in which case

there is no node, cosh m/ and sinh ml are nearly equal and each is

large in comparison with cos ml or sin ml. Then the nodes are very

near the points where

coshmx— cos mx = sinh mx — sin mx
or coshmx— sinhm,x = cos mx—• sin mx
or e"^^ = cos mx— sin mx

'n
(9.34)=y2 cos (

—
-f-w^a;J

It is easy to see from the curves

2/2=V2C0s( [-?WiCJ

that the values of mx that satisfy equation (9.34) are approximately

1
mx^ =

mx2 =

mxo =

4

9:1

4
13^

4

(9.35)

etc.

14
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For the second mode of oscillation the only node is at x^^, and since

ml= — nearly for this mode it follows that
2

iCi'=-|/ nearly.

For the third mode, for which ml=-— nearly, the two nodes are near

153. Rod pinned at both ends.

The assumption in this case is that the rod is fixed by smooth

parallel pins q,t both ends. The end condition are therefore

V = o and ^—- = o^
dx^

at both ends. That is,

d^u ]

u = o and —-— = o I / z- \

dx^ \ ..... (9.36)

both where x = o and where x^l ]

Applying these conditions to (9.18) we get

A+ H = o

—A+H=o
A cos ml -\-'^ sin ml -\- H cosh ml -\-Y>. sinh ml =

— A cos m,l— B siji ml -{-H cosh ml -\-K sinh ml =
The firsl two of these conditions give

A = H = o (9.37)

Then the last two give

Bsinw/= o (9-38)

and Ksinhm/= o (9.39)

Since sinh ml cannot be zero the last equation requires that K should

be zero. Abo (9.38) is satisfied provided

either B = o

or sin m/= o

If the former is true then y is always zero and therefore the rod is at

rest. The other alternative gives

ml= jt, or 2 71, or 37?, etc., .... (9.40)

l^ /w\
whence Pvi^i ^ ^^' or 2^71^, or ^^71^, . . . (9.41)

Thus the curve of the rod for the wth mode is

TITZX
2/=-B„sin—psin(7)n2^ + a) (9-42)

which, at any given instaijt, is a pure sine curve having n half-wave

lengths ; and the period of oscillation of this mode is
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2 71 2 V^ ( W\\
^ ^

^» =]^-^lUJ '9.43)

The frequencies of the normal modes—the frequency being the number
of oscillations per second— are proportional to i^, 2^, 3^, etc.

154. Rod clamped at both ends.

Taking the origin at one end, as usual, the conditions at the ends

in this case are

u = o 1 both where

du > x = o

dx J and x = l (944)

Applying these conditions to u given in (9.18) we get

A + H = o (9.45)

B + K = o . (9.46)

A cos nil -\- ^ ^'in ml -\- ^ cosh, ml -^;- ^ smh ml == o . . (947)— A sin fnl -\-^ cos ml -\-^ sinh ml -j-^ cosh m,l = . . (948)
The elimination of H and K from the last two equations by means of

the preceding two gives

A (cosh m/— cos ml) = — B(sinhm/— sin ml) . . . (949)
A (sinh m/ -f- sin w/) =— B(coshw/— cos ml) . . . (9.50)

Now eliminating the ratio A : B from the last two lequations we get

(cosh w/— cos ml)^= sinh^ ml— sin^ ml
or 2 cosh ml cos ml = cosh^ ml— sinh^ ml -\- cos^' ml -\- sin^ ml

= 2

whence
j

cosm/= - = sech?7?/ (9- Si)
cosh ?nl

Since sech ml is very small except when ml <:^ it follows that the

larger values of ml satisfying (9.51) are near roots of the equation

cos ml = o (9.52)

By plotting the curves
;

y^ = cos z

2/2 = sech z
J ji

it will be seen that the smallest root of (9.51) is the one near— . Then
2

we know that roots of (9.51) are approximately

,
3Jr .Stt "771

^ .

m/ = ^, ~, ^, etc., (9.53)

and therefore the frequencies of the normal modes are approximately

proportional to

3^ 5^ 7\ etc.

The first root of (9.51) is actually

772/= 4.730, whereas — is 4.712. . . . (9.54)

14*
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If the origin be taken at the middle instead of at the ends of the rod

clamped at both ends the values of u take the forms

I
sinh???x

u

or w = R

[ sinh I
ml

coshmx

smmx
y

sin ^ ml I

cosmx \

cosh^ ml cosiml\'

(9-55a)

. (9.55b)

according as the middle of the rod is, or is not, a node. In the even

modes, the second, fourth, etc., the middle is a node, but in the odd

modes it is not a node. Conse-

quently (9.55a) is correct for the

even modes, and (9.55b) for the

odd modes. The forms of the

first and second modes are shown
in fig. 86.

155. Rod clamped at one
end and pinned at the other.

We are assuming that the pin

is smooth and is in the line of the tangent at the clamped end. That

is, the end -conditions, taking the origin at the pin, are

Fig. 86

M o or

and

where a: = o;

u = o,

du \ where x= l .

(9.56)

(9-57)

dx

Now the portion NB of the rod in fig. 86 above satisfies the four end-

conditions of the present problem, except that the length NB is called

\ I in that problem and / in the present one. Putting therefore / for ^ /

in (9.55 a) we get

{smhmx smmx\
smhml smml

)

which satisfies all the four conditions in (9.56) and (9.57). We are

certain that it satisfies those in (9.57) since they are the same conditions

as in the last problem. We must show that the twa conditions in (9.56)

are also satisfied.

The first of the equations (9.56) is obviously satisfied because

sin = and sinh = 0.

Also

d^u ( sinhmx smmx\

dx^ I sinhml sinml J
'
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which is also obviously zero where x= o. Thus (9.58) is the complete

value of u for this problem. It should have been obvious, without any

calculation, that the bending moment is zero at N in fig". 86, for this point

is clearly a point of inflection on the curve, that is, a point where the

curvature changes sign, and therefore where the curvature is zero.

The periods of oscillation in the present case can; be obtained from

the periods of the even modes of the clamped-clamped rod by putting

2 / for / ; or we may get w directly, in another way, from the second

of the conditions in (9.57). Thus
{'coshml cosml 1

sinh ml sinml )

or tan ml = tanh ml . (9-6o)

It can be shown that (9.51) is equivalent to

ml ' 7nl
/ z X

tan— ==+tanh— (9.01)
2 2

which, if I be put for ^l, contains the equation (9.60).

In short, a clamped-pinned rod oscillates exactly like one half of

a clamped-clamped rod of twice the length when the latter is oscillating

in even modes, that is, in the second, fourth, etc., modes.

156. Rod clamped at one
end and free at the other, and
carrying a finite load W^ at the

free end.

With the origin at the fixed Fig. 87

end the conditions at this end are

where a: = o (9.62)= I

dx

At' the other end the bending moment is zero; that is,

-—— = o where x = l (9-63)

The other condition at the load is that the shearing force is the force

due to the inertia of W. If 3;^ denotes the value of y at the load the

acceleration of the load is
•^^

. Then the force on W in the direction
di^

in which y^ is measured is =^, which force is applied by the rod.
9 df^

There is an equal and opposite reaction on the rod. If y^ is positive

this reaction is in the direction in which the shearing force is negative.

Thus the condition is

^—^IF (9.64)
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Now since

y = u sin (pt -\- a)

this last condition becomes, after division by sin ipt-\-a)f

d^u W „EI—- = p^u;
dx'^ g

that is, when p"^ is expressed in terms of m by means of (9.13),

d^u m^W
^ ^ ^

rf^=-^^"- (9.65)

where a is the area of the cross section of the rod. With the value

of u given by (9.18) the two conditions (9.62) give

A + H^o
and B-i-K= o

whence

u = A {cosmx— coshmx) + B (sinwx— sinhmic) . . (9.66)

Now (9.63) gives

—A {cos ml -{-coshml)— B (sinml -{- sinh ml) = o . (9.67)

Also (9.65) gives

— m^
{
A{sinhml— sinml) + B(coshmZ+ cosmZ)}

= |A(cosh?nZ^ cosml) + B (sinhmZ— sinm/)} (9.68)

On eliminating the ratio of A to B from the last two equations and

clearing the resulting equation of fractions we get

—(sinh^ ml— sin^ ml) + (cosh ml + cos miy
mW ( -\~ (coshml— cos wZ) (sinh w?/-}- sinm/)l

~ aw \— (sinhml— sinml) (coshmZ+ cos ml)
J

'

that is,

2 + 2coshwZcosmZ= 2 {coshmZsinmZ— sinhwZcosw/}
aw ^ '

W
If we write 2 for ml, and c for—— , which is the ratio of the weight

alw
W to the weight of the whole rod, the equation for 2 is

I -f- cosh;?; cos ;i;= c;s (cosh;?; sin^— sinh;?; cos;?;)

14- cosh;?; cos;?;
, , .

or —-

—

:

— = cz .... (9.69)
cosh;?;sm;?; — smh;?;cos;?;

This equation can be solved by plotting the curve

I + cosh;?; cos;?;

2/1
=

cosh z sinz— sinh s; cos ;?;

cos;?;+ sech;?;

sin;?;— cos;?;tanh;?;
(9.70)
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and the straight line

2/2= ^^ (971)

and finding the values of 2 at the intersections. For all except small

values of 2 we may use the approximate values

tanh 2=1, sech 2=
and then (9.70) becomes

cos z

COS

The true value of 3;^^ vanishes when

cos;r.

(9-72)

(9.73)

given by (9.72)

and is infinite when [z )

47

. (974)

vanishes

IS a

-sech;?;

and is infinite when
tan^= tanh^ .

whereas the approximate value of jy^

when ^ is an odd multiple of

multiple of jr, or zero.

The curve given by (9.70)

is shown in fig. 88.

Two straight lines are

drawn satisfying (9.71), one

when c is very small and the

other when c= i . The graph

shows that, for a small value of

c, the first few roots of (9.69)

nearly coincide with the roots

of (9.73), which is the same

equation as (9.27). This tells

us what we might easily have

guessed without calculation,

namely, that the possible

periods of vibration when the

rod carries a load which is

small comparedwith the weight

of the rod are nearly the same
as when there is no load on
the end.

Agaim when c= i the

graph gives roughly the following values of 2 at the intersections of

the line and the curves

Fig. 88
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;t= 1-23, 4-04, —> (9.75)
4 4

In getting a second approximation to the first root the calculations

are simplified if the first approximation be taken as 1-25. The second

approximations to the first two roots are

z=^ 1-238, 4-045 (9.76)

For the other roots it is sufficiently accurate to solve the equation

I cos^

Writing 6 for Iz
J

in this we get

(.+ j)sin.=^cos(. +
^)

= ^(cosO— sin^)

whence tan 6=
26 + ^+1

2

We know that the approximate solutions are 9 = n/c. Then let

= nji -\-v

where v is small. Thus
I

tan?; =
71

2n7i-\ h I

approximately; or, since v is small,

v =
7l(4W-f l) + 2

For the third root n= 2, and therefore

2

g-jr+2

= o 0660,

Therefore the third root is approximately

071 2

4 971+2
= 7-135 (9.77)

The periods of the first three normal modes are the values of t given by

g'^ k 2 71 2 71-271

w l^ z^^ z^^ z^^

= 4-101, 0-3841, 01234 .... (9.78)

V
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Thus, for a solid steel rod of length 20 inches having a circular section

with a diameter one inch, if £= 32X10^ pounds per square

inch, w^^4go pounds per cubic foot, the period of the slowest mode
is, since k =

-J
inch,

4QO 20'

32-2 X 32 X lO^X 144 -|^X 12

= 0-0315 sec; (9.79)

that is, the rod makes about 1905 oscillations per minute.

If the weight on the end has any other ratio to the weight of the

rod the same method will give the periods. There is, however, one

interesting case that can be investigated without the graph. It is the

first mode of oscillation when W is many times the weight of the

rod. This first mode is a very slow mode and the corresponding value

of 2 is small. Now when 2 is small

coss; =1

:osh;j;= '+7

sin;?; =
«8

sinh;?; =
z^

"+^
approximately. Therefore equation (9.69) becomes,

2
"3"_= lc%^.

4

When ^z^ is neglected on the left this gives

The corresponding period is

t

=?l/5"(f)*

==2Jl-\/ -^X

'W

w W
v^

k y gE ^wal

W/3
(9.80)
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a result which does not involve the v^eight of the rod. This shows

that our approximation involves the assumption that the rod has no

inertia, or that the inertia of W is infinitely greater than that of

the rod.

This last result could have been obtained by a much simpler

process, without, in fact, the theory of the oscillation of rods at all.

If the inertia of the rod is negligible then the internal forces in the

rod, that is, the shearing force and bending moment, are the same

as if the rod were at rest under the action of forces at the ends. At
the clamped end there are the necessary forces to maintain the position

and direction of the end ; and at the free end there is a shearing force,

which is the reaction to the force causing the acceleration of W.
Let y^ be the displacement of W at any time, and assume that

y^ = u^ sin(^^4-«)-

Then the shearing force at the end is

g dV^

W= —p'^u^ sin (pt -f a)

W
= -v^y^' . . •

(9-8i)

This load F on the free end of a clamped-free beam causes a

deflection y given by

and at the free end this deflection is

".=iS'
'»-)

Equating the two values of 3;^ in (9.81) ane (9.82) we %tt

gF _ I FP
W^ ^

3 EI

3.^EI
whence p^ =

W/3

Since the period is — this agrees with (9.80).

157. Free and forced oscillations.

The particular cases of rods oscillating transversely that we have

so far worked out are cases of oscillation under no external forces

except such as are necessary to keep the ends fixed. These are called

frefi oscillations to distinguish them from the oscillations which the

rods would have if periodic forces acted on them. Suppose, for

example, that the ends of any one of the rods we have dealt with
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were forced to oscillate in any particular way, then it is clear that this

motion would induce a motion of the same period in the rest of the

rod. These induced oscillations are called forced oscillations. One
very important distinction between free and forced oscillations is

this ; although there are an infinite number of possible free oscillations

yet the difference between the frequencies of any two modes is finite;

whereas the frequency of a forced oscillation is always the same as

that of the disturbing force, and can therefore have any magnitude

whatever.

158. Any free motion is a combination of normal modes.

When a rod is set in motion by a blow, or by being bent and then

let go, it is very unlikely that it will begin to oscillate in one of the

normal modes. Suppose, for example, that the clamped-free rod that

we dealt with first were bent by a force acting at the free end and then

let go from rest, it would not then begin tO' oscillate in the first normal

mode. It could only oscillate in this mode if the curve into which it

were bent at the start were the same curve as the rod assumes in one

extreme position in the first normal mode. But clearly the curve

represented by the coefficient of sin {pt-\- a) in (Q.32) is not the

same as the curve due to a load on one end of a beam which is

clamped at the other end. The one equation involves hyperbolic and

circular functions of x, and the other is an algebraic equation involving

powers of x up to the cube. It can be shown, however, t^hat the

subsequent motion is composed of a number of normal' modes of which

the first is by far the mo«t important.

Suppose a rod is oscillating freely, and suppose that, at any instant

(lat which we shall assume that ^ = o) the curve of the rod and the

velocity of each point are given by

y=FM . . . . . . . (9.83)

and f =^^(^)' (9.84)

the two functions F(;i') and f(x) being any physically possible

functions. We shall show how to represent the subsequent motion

by means of a combination of normal rnodes of the rod.

At clamped, pinned, or free ends of a rod one of the following

pairs of conditions is usually true.

'' - ..... (9.85)

(9-86)

..... (9.87)

y = 0,
dx

0;.

2/== 0, = 0;

0,
dx^

= 0;
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We shall assume for the present that one of these pairs of condi-

tions is true at either end of the rod we are considering. We shall deal

with exceptional cases later.

The case of the rod pinned at both ends gives rise, as we have

found, to only circular functions. We shall consider this case

separately because it is t'he simplest, and can therefore usefully lead

up to the harder cases. One of the normal modes in this case is

represented, as in (9.42), by

flJTQf

y = Bnsin -J- sin ipni-{- an) (9.88)

where n is an integer, B^ and a^ are arbitrary constants, and pn is

given by

^^=-7^(y (^-'^^

Differentiating both sides of (9.88) with respect to t we get

^ =Pn'BnSm-~- COS {pnt-\- an) • • • .(9-Qo)
ct L

Now if we write jy„ for the value of y given by (9.88) and then put

2/ = 2/i+2/2+2/s+ •••tooo (9.91)

we find, when t= o, that

TlOC 27ZX
^^ = B^sina^sin— + B2sina2sin— (-...to 00 . . (9.92)

cy ^ . ^*
, -o . 2:t:x

, , .

and — =jt?^B|COsa|Sm— -f-jjgBgCosagSm— j- . . . to oc . (9.93)
C f V i

The expressions on the right-hand sides of equations (9.92) and

(9.93) are Fourier series, and it is possible, as Fourier has shown, to

determine the coefficients so as to make each of these series represent

any given single-valued continuous function of x such as F(,r) and

f{x) in (9.83) and (9.84) must be. That is, we may put

^, , „ . . 71X
^ ^ . . 271X

,
. -

F(x) = B^smaism— -r BgSmagSm—

—

\- . . . (9.94)
i L

/v X T. sinjTX
. ^ . 2nx

, , ,

f(x)=p^B^cosa^—
^

1-^2^2 cos a2sm-y--f- . . (9.95)

tl/TlX

To determine the coefficient of sin —- in equation (9.94) multiply
V

flTZX
both sides of the equation by sin —— and integrate from o to /.

Thus

F(x)sm——dx==Bnsman/ sm^ —- dx . . . (9.90)
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the other terms on the right vanishing because

/^ . nn
sm-

njix .. rnx
,sm —— ax = o

V

• (9-97)

if n is not equal to r.

Also / sm~—-—dx= — < I — cos

—

-— }dx

i-
I . ZflJCX

sm —-

—

znjz I

Therefore (9.96) gives

= M

/ F(x) sm —j- dxB„sinan=
^

which determines B^sina^ because Y(x) is known.
In the same way (9.95) gives

^ 2 r^^, . sinwjrx
Pn^n cos an= jj fi^) —J dx .

• (9.98)

• (9-99)

. (9.100)

The two equations (9.99) and (9.100) determine the two arbitrary

constants B^ and a^: and by putting n=i, 2, 3, etc. in turn, all the

constants in (9.92) are determined. Thus y "is known completely at

any time t and at any place x.

As a particular case suppose the rod pinned at both ends is bent

into the form of the parabola

y=cx{l— x) (9-I0I)

and let go from rest (a pure couple at each end would bend the rod

into the initial state). Then the functions F(.r) and f{x) are

and

Therefore

Y{x)= cx{l— x) . .

fM-o
. (9.102)

• (9-103)

B«sina
2 r^

.J
. . njix

n = -j- c^(^

—

x)sm——dx

Now integration by parts gives

I njix
x(l— x)sm——dx = xll— xjcos—

r

J I nn I

\l— 2x)sm—— nnx

n^Ti' n^n^ I

whence it follows that

2C 2 1^

B„sinan =^—-— {i

—

cosnjt} .

since all the other terms disappear at the limits.

Putting n=i, 2, 3, in turn we find

. (9- 1 04)
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Bi sinaj
71^

B., sinag = o

B, sina,^
ScP

3^71^

(9-I05)

Again, since f(x)=^-0, equation (9.100) gives

B„cosan= o.

Since B„ is not zero this last equation is satisfied by taking

7t

an=— •

2

Then, since every a is — it follows that sina^ is unity for all
2

values of n. Therefore the B's are determined completely by the

equations (9.105). Also

sin {jJn t-\-an) = sin lpnt-{ ] = cospj-

The value of y at any time t after the rod is released is, by (9.92),

y=—-<sm—-cosj:>,^-]—-sm—-— cosjo.,^-|—^-sm——-008^5/+ > (9.100)
JT^

I / 3 ^
"^

5 ^ I

where the p's are given by (9.89).

Thus the complete motion is composed of an infinite number of

oscillations of different periods, but the eye would probably only

notice the first one, which has an amplitude twenty-seven times as

great as the second, and one hundred and twenty-five times as great as

the third. The real reason why the first mode preponderates so much
over the other modes is because the curve into which the rod was

bent at the start differs very little from the curve of ^the first mode,

namely

8c/2 jix

159. Rod with ends pinned, clamped, or free.

We return now to the general problem of the analysis into normal

modes of the motion of a rod whose conditions at the start, i. e. when
^= 0, are given by t9'83) '^"^ (9-84), and the ends of which are

subject to any one of the pairs of conditions (9.85), (9.86), or (9.87).

There may be the same,' or a different, pair of conditions at the

two ends.

The normal modes are represented by equations of the type

?/„ = RnWnsin(;?n^ + an) (9-io7)

where Uu is a function of x which satisfies the equation
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-j-^ = mtiUn (9.108)

at all points, of the rod, and satisfies the four end-conditions of the rod.

These four end-conditions do not, as we have found, determine the

four constants in iCn ',
they determine the three ratios among the four

constants and the equation obtained by eliminating these ratios deter-

mines nifi, and therefore aiiso pn, since m involves^. There is thus one

constant left undetermined in jy„ and this is represented by R^ in (9.107).

Let Un and u^ be a pair of the normal functions for the rod we
d d'^

are considering. Let us write, for shortness, D for —-, D'*^ for —- etc.
dx dx^

Then the equations for Un and Ur are

jy^iin — fniun (9-109)

D^Ur^^m^Ur (9-1 10)

Now multiplying both sides of (9.109) by Ur and then integrating

by parts we get

ni%fUnUrdx=fUr'D^Undx
= UrT>^Un— TiUrT>'^Un-\-'D'^UrT>Un UnD^Ur-\-fUnT)^tl'rdx

Now by means of (9.no) the last equation becomes

[trin m.i)fUnUrdx= Ur'D^Un— DWyD-?i„-|-D2l^yDw„— UnB^Ur (Q.I I l)

If we take this integral over the whole extent of the rod then

(mil— mi)funUrdx = o (9.1 12)

because one pair of the conditions (9.85), (9.86), (9.87), holds at

each end, and those conditions are equivalent to

w=i= o, T>u ==0;]
u^o, D% = o;[ (9-113)

D2i« = o, D% = o;J

these equations being true whether we put Ur or Un for ii. It will be

found, on examining these conditions, that one factor of each term

on the right of (9.1 11) is zero whichever of the three pairs of condi-

tions in (9.1 13) is true.

It now follows from (9.1 12) that, if n and r are not equal,

funUfdx = o ,

the integral being taken from one end of the rod to the other.

It will be convenient to assume that the origin is at one end of

the rod, though it makes no difference to the following argument

whether it is or not. Then our last result can be written

I

UnUrdx = . . , . . . . (9.II4)
ol
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Now let

y = R,Wi sin {pj + a,) + ^2^2 sin (pj + a^) + etc, . . (9.1 15)

and let us assume that (9.83) and (9.84) are true when ^= 0. Then

F(.r)= Ri^^isina^ + R2^2si'^^2 + • •• + RnWnSina„+ . . (9. 116)

and /'(a:)=7:>i Ri^i cos ai+jt?2 ^2 ^2^05 02+ .. .+/?„RnWn cosa„+ (9-ii7.)

Next multiply both sides of (9.1 16) by Ur and integrate from o to /.

Then, making use of (9. 114), we get

/ iir F(.r )dx= Rr Mr sin ttrdx ;

that is,

Rrsinar Urdx= UrF(x)dx .... (9.1 18)

Since Ur and F(x) are known functions of x this equation gives

Rysinay. In the same way

PrRr^OSOr uldx= Urf{x)dx, . . . (9.II9)
'^

which determines RyCosa^. The two equations (9. 11 8) and (9.1 19)

together determine both the constants R^ and a^. Moreover, we can

find ttr without integrating ul, since an equation for tan Oy is obtained

by dividing corresponding sides of (9.1 18) and (9.1 19). In particular,

if F(x) is zero for all values of x between o and /, then tanar= o and
therefore ar= o; whereas if f{x) = o then tanar= 00 and ar= Jtt.

When all the R's and all the a's are determined their values can

be substituted in (9.115) and then y is completely determined.

The integral of u'f^ , which is required for the determination of

the constants, can be obtained in every particular case by direct

integration of the terms in u^, but this process is laborious and it is

easier to get a general result to cover all cases. This result can be

deduced from (9.1 11) by an ingenious method which is given in the

late Lord Rayleigh's "Theory of Sound". Although nir and m^ in that

equation are understood to represent values of m belonging to a pair

of possible modes of oscillation, nevertheless the actual equation as

it stands remains true whatever constant values the m's may have,

because the only assumptions used in getting (9.1 11) were that

rod, mn and m^ can

T>^Ur, = r)liUny

and B^Ur = mtUr,

and. until we use the end - conditions of the

have any values we like. Then let

mr= m-\- dm
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where 7n is written for rrin. Also let us assume that the constants

of integration in Ur are the same as those in Un. Then to the first

order in dm,

mt— mn = 4m^dm,

du
,

Ur= u-\-——dm,
dm

'Dur=T)u4---~(Du)dm

,

dm.

etc.

du du X du X
Now ——= .x— == — = — Dw,

dm d[xm) m dx m
since u 'is> 2. function of mx only.

Likewise

d ,^ . x d ^ ^ X ^^
—-(Du) =— —{Du) = —D^u

,am mdx m
and so on for the other differential coefficients. Therefore

UrD'^Un— Un'D^Ur= (u 4- —Dudm\D^u—uId^u-] D^udm]
\ m I \ m J

X= —dmCDuD^u— uD^u);m
and in the same way

D^UrBun—BurB^Un^—dmiD^uDu—D^uD'^u)

The substitution of the preceding results in (9.1 11) gives, when we
divide by dm and then make dm approach zero,

— 4???,3 fu^dx == — {BuBHi—uB^u + D%Dw—(D%)2}
,

J m ^ ^ '
'

or fu'^dx = -^ {uD^u—2 BuD^u + (D%)2[
J 4m^ ' ^ '

}

Thus we find

fu^dx = ~ {uB^u— 2T)uB^u -j- {D^uy}a;=i
^ (9.120)

4'''^

the quantity in brackets on the right having its value at the end

x= l. We may, of course, substitute for D^u its value m%. If the

end jr= / is held by a smooth pin then u= o and D%t=o at that

end, so that

tt'^dx= -(BuD^u)x=^i . . . . (9.121)
J^ 2m^

15
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If the end x = I is clamped then u = o and Du = o, so that

/u-dx = iip'^i()x = i (9.122)
4771

If the end x ^l is free then D^w = o and D'^w = o so that

u'^dx=^il{u^)x=i (9.123)

Since the origin can "be taken indifferently at either end of the

rod we may tajce the end x = I to be that end which suits our

convenience, and the result in (9.120) remains the same for either

end. It is a point of interest that the expression in the brackets in

(9.120) must have the same value at both ends of any rod,

160. Clamped -free rod struck at the free end.

As an example to show the method of using the preceding analysis

we shall find the motion resulting from a blow given at the free end

of a clamped-free rod when the rod is at rest. In this case F(x) = o
at all points of the rod, and f(x) is zero everywhere except near the

free end where it is very great. Therefore equation (9.1 18) gives

Rysina,- = o

whence 0^=
Then (9.1 19) gives

PrRr uldx= Urf[x) dx

Let us suppose that the range within which f{x) is not zero is

from x^l— e to x= l, and let Ur be written for the value of Ur at

x= l. Then, by means of (9.123), the equation for R^. is

PrRrX^l u'r'^ — / Urf{x) dx
Jl—s

J

I

— I-

where N is written for the value of the integral of f (x). The reason

why Ur can be taken from under the integral sign is because u^ is

practically constant in the small range from {I— e) to /.

Finally

4N
Rr=

IprUr

Therefore the value of y when t seconds have elapsed since the blow

was struck is
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4N ( I i*, I Uo \= —r\ sin^J'i t-\ smpj +...},
I \PiU^ p.^u^

-

j

the series having an infinite number of terms. If we write ^^, t^, etc.,

for the periods of the normal modes we can put y in the form

2 N ( Wj
.

U2

" nl

!U.
. 11.2

I

approximately proportional to — , — , — , etc., which are the terms of

which is a convergent series because the periods, after the first, areIII

a convergent series, and —7- is not greater than unity. The position
U r

of the free end of the rod is obtained by putting Ur = Ur. Thus at

the free end 2N
y= —r {h sin??!^ + #2 sin;?2^ + • • •}

It follows from equations (9.28), (9.29), (9.31), that the ratio of

the amplitude of the first to that of the second mode at the free end

of the rod is

t^ \2xi-87sJ
Also the ratio of the amplitude of the first to that of the third

mode is

t, 12XI-875J
^^^^

These numerical values give an idea of the relative importance of the

different terms in the expression for y.

161. The case of the rod carrying a weight at a free end.

The conditions (9.1 13) do not cover the case of the rod clamped

at one end and free at the other where it carries a load. The pair of

conditions at the loaded end have been shown to be

D%« == o and D% = — m'^hu,

where h is the same constant for all modes. For this case (9.1 11) gives,

the load being assumed to act dii x = l.

(W
J,.
— mj) UnUrdx = {UrB^Un W^D ^U%^ i

If, as before, we used dashed letters to indicate values at the end

jjr:=/, then
pi

UnUrdx= — hllnU'r • - • • . (9.I25)

15*
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Then, still using the form for y in (9.115), equation (9. 118) is

replaced by

I UrF(x)dx= — hu'r [R^u\sma^ + R2w'2sina2 + • •

.}

-\- Rr sin Qr ujdx

,

the term involving Ur being omitted from the bracket. Then

/ UrF(x}dx=^ h u'r {F (/)— RrU'r sin Qr}

-{- Rrsinar uldx

,

whence

Rysinorj tirdx-{-hUr^\ = Ur¥{x)dx-{-hUrF(l)
, (9.126)

which determines R^sina^ in terms of known functions and their

integrals. In the same way we can get an equation for RyCosor

and thus find the values of all the R's and all the a's.

162. Oscillations of a beam under transverse forces.

We can prove that a beam on which transverse forces act that do

not vary with time oscillates just as freely as if the forces did not act

;

but the mean position of the central line of the beam is the equilibrium

position. For example, a horizontal beam is deflected by its own
weight, and if it is set in oscillation we should find just the same

motion relative to the equilibrium position as if we had ignored

altogether the action of gravity while still taking account of the inertia

of the beam. This follows very easily from the equations of motion

as we shall now show.

Let the transverse force on a length dx of the beam be f{x)dx.

Then it is easy to show that (9.9) is replaced by

d^v cbw S^y

^'d—Ysi^+^^'' ^'-'"'^

Now let

2/= 2/i+.^2 ....... (9-128)

where 3;^ is a function of x, and not of t, which satisfies the equation

EI^ =/W (9-129)

and the end-conditions of the beam. Thus y^ is the deflection of the

beam when there is no motion, that is, the ordinary equilibrium

deflection of the beam. We can define y^ by saying that it is (3;— yj,
y being the actual deflection during oscillation.
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Differentiating both sides of (9.128) with respect to x four times

we get

S*y d'y.d'y,
8^ =^*+^ ...... (9.130)

It must be clearly understood that y^ is a function of both x and t,

and therefore the symbol for partial differentiation is needed.

Again, from (9.128),

df' dt

since 3;^ is not a function of t. Therefore equation (9.127) becomes

By equation (9.129) this reduces to

^^^ = "7"^' - ' ' -
(9-^33)

which is the same equation for y^ as (9.9) is for y. That is, y^,

which is the displacement relative to the equilibrium position, is just the

same as y would have been if the transverse force had been neglected

altogether. Thus the modes of oscillation and the periods are all un-

affected by gravity, or by any other force which is independent of time.

To take another example, suppose a fiddle bow is drawn trans-

versely across a thin rod clamped at one end and free at the other.

If the bow is drawn at a constant speed it may set up oscillations in

which the maximum velocity at the point where the bow acts is equal

to that of the bow, but does not exceed it. Then the friction is a

constant force acting in the same direction throughout, and therefore

comes under the class we have represented by f{x) in (9.127). The
friction then does not, as might be expected, reverse its direction and

damp down the oscillations. It merely gives to the curve of the central

line of the rod a new equilibrium position about which the oscillations

take place, and it does not affect the periods of these oscillations.

163. An approximate method of finding the periods of os-

cillation.

The late Lord Rayleigh has shown (Sound, Vol. I Art. 89) that very

good approximations to the periods of oscillation of a rod can be

obtained by assuming any reasonable shape for the curve of the rod

and using energy methods. We shall first of all deduce an accurate

equation for the period, and then show that the approximate method
is a good one.

Let u be one of the normal! functions for a particular rod so that

a possible oscillation is represented by^

y=:Hu sin pt . (9-I34)



230 APPLIED ELASTICITY

Now from the principle of the conservation of energy it follows

that the sum of the kinetic and potential energies of the rod is constant

throughout the motion. But the energy is all potential at either end

of the oscillation, and all kinetic at the middle of the oscillation. Then
the preceding principle can be used in the following form: the kinetic

energy when the velocity is a maximum is equal to the potential energy

when 3; is a maximum Now.

dy— ^pUucospt (9-135)

Then the maximum value of the velocity at any point of the rod is

v=])Htt (9-136)

and the maximum value of 3; is

2/=^H^^ (9-137)

The bending moment corresponding to the maximum y is

M = EIH— (9.138)

and the potential energy in this position is, by (8.11).

Also the maximum kinetic energy is

/ ^ =-/ -ap^^^u^dx .... (9.140)

By equating these two energies we arrive at the following equation

for p
r^w /*' / dhi\^

p^ —au^dx^j Elf—-—) dx . . . . (9.14 1)
Jo 9 Jo \d^y

tion becomes, for a uniform rod,

l^ u^^dx = l^ l-—\ dx (9.142)

In terms of m this equation becomes, for a uniform rod,

m

When the normal' function u is known this gives the period, and it

is precisely the same equation for m*/^ as the earlier method in this

chapter would give. But the really useful thing about this result is

that the value of p which equation (9. 141) gives is very little affected

by the form, of the function u provided that the curve it represents

looks reasonably like the curve for the mode of oscillation that we are

considering. Before offering any reason for the last statement let us

try to find, by this method, the slowest period of the uniform rod
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clamped at both ends, and compare the result with the one obtained

in Art. 154.

Let us assume that the beam clamped at both ends oscillates between

the extreme positions given by

This is a reasonable curve since it is the curve that the rod does

actually assume when it is held horizontally under a uniform load.

Then, since a factor H^ would occur on each side of (9.142), we
may drop the useless factor H and take

from which -^:: = 2l'^— i2lx-\-i2X^,
dx^

f:
u^dx= -— , (9.144)

630

^"^
/(S)''^=f

• (9.145)

Therefore

m^l^ = 504 ,

whence ml= 4."/^g (9-146)

This should be compared with the result 4730 obtained by the exact

process in equation (9.54).

In order to put the method to a further test let us try the same

problem with a different value of u. Let us assume that the rod, in its

extreme positions, takes the form it would have if it were a strut. That

is, let us take

27tXu= I — cos—

—

1/

TIX= 2sin2— ....... (9.147)

d'^u 471^ mx
Then -r^ == -nr- cos

Therefore / /»» 71X
i^^dx= ^sin^— dx (9-148)

To work out this integral put

then dx= — dd
n

pi pTCl

and therefore / uHx^AJ —sin^ OdO
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Now it is proved in works on the integral calculus that

qn qrc

f lin'^ede =
^^^^^^

flin^'-'ede .... (9.149)

if q is an integer.

Consequently, by two successive applications of this formula, we
find that

/ U'dx = — X — X— / i.i

J. Jl A 2j ^

MO
4

1^ (9-150)

In the same way

2 TIT

Now equation (9.142) gives

(9.I51)

3

2 71

whence 772/= _— = 4 . 774 . . . , . (9.152)

)/3

which is still fairly near the truth, but not so good as the result

obtained by assuming that u had the same form as when the rod was
horizontal and deflected 'by its own weight.

A good result for the period of oscillation is usually obtained by
assuming that u has the form it would have if the rod were a beam
deflected by the actual loads that oscillate with the rod. It is not easy

to give very convincing reasons why this method should be so accurate.

Lord Rayleigh showed, however, that the frequency given by the

approximate method must lie between the greatest and the least of the

frequencies of the normal modes. If, therefore, we use the approxi-

mate method to find the frequency of the slowest mode, we are sure

that the result we get will err by being too high. The proof is given

below.

164. Proof of the principle for a thin rod.

Let the normal functions for the oscillating rod^—which need not

have a uniform section—be w^, u^, u.^, etc., and let the corresponding

values of p be p^, p^, etc. Then it can be shown that any function f(x)
of X can be expanded in the form

/(:r)=A,M, + A2W3 + A3W3 + (9.153)
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/
When wa and EI are not constant the normal functions are such that

waUnUfndx == o (9.154)

provided m and n are unequal. Also, by integration by parts,

Jo dx''^ dx^ [_ dx^ dx ^ dx\ dx^ J

Now the integrated terms are zero at both limits whatever the end

conditions are. Moreover, the differential equation for Un is

d'^ / d-Un\ wa
2 , ,

Therefore

r^_^^d'^Und^Um. ^ n^wa

I
El-^-^ dx =py UnUmdx

if

= by (9.154) .... (9.156)

Now the approximate method consists in replacing the single normal

function u in (9.141) by f{x), which is equivalent to the sum of a

number of normal functions with arbitrary coefficients, as given by

equation (9.153). Thus replacing u by f{x) in (9. 141) we get, as the

approximate equation for p,

But equation (9.141) is accurate for a single mode; that is.

Therefore equation (9.157) becomes

9

'^wa— {i?l2A^2^^2_|_^^2A22w2^ + ...} dx

,

, ;? 2A 2u 2-i-j^ 2A 2U22 + ...

rWCL-— u\dx (9.160)
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It is now clear that p^ lies 'between the greatest and least of the

quantities p^^, p^~, etc. Then if p^^ is the least of these it is certain

that p^ is greater than p^^. Moreover, if A^ is much greater than the

other coefficients, then A,^ preponderates still more over K^, K^, etc.

Consequently p~ must be nearly equal to p^. Now if f{x) is a function

of X obviously of the same type as u^, then we may be confident that

the coefficients A2, A.,, etc., are much smaller than A^^. But the greatest

confidence is gained by applying the method to cases where the result

is known, for the accuracy of the results nearly always exceeds any-

thing that could be expected.

165. The period of oscillation with several masses.

Lord Rayleigh's principle can be used to prove an approximate rule

for finding the period of an elastic body when it carries several masses,

provided the period is known for each separate mass.

Let V denote the potential energy of the elastic forces during

oscillation, and T the kinetic energy of the oscillating system. Let us

suppose that the system is oscillating in one of its normal modes. Let

m^, Wg, Wg, etc. be the oscillating masses, and let the displacements

of these masses in the actual oscillation be y^, y^, y^, etc. Then the

kinetic energy is

T = i«^l^l'^-^-iw^2i/.,2 + -^m32/32-f (9-i6i)

the dots indicating differentiation with respect to time.

Now since all the particles are oscillating in the same period and

same phase there must be a common factor cos pt in all the 3;'s. Thus

2/1 = ^1 cos^^; 2/2 = ^2 cos^^; etc.

Therefore

T = {\m^h,'^-\-^m,h'^-^\m^h,^-^...}pHm^pt . (9.162)

Moreover, the potential energy being proportional to the square of the

displacem^ents, which are proportional to cospf, it can be written in

the form

Y=c^cos'^pt, (Q.163)

the factor c^ depending on the mode of the oscillation; in the case of

a vibrating rod c^ depends on the form of the curve of the rod in the

position of maximum displacement.

Thus the energy equation, namely

T+V= const,

becomes

^ [m^b^^^ -{- m^b^^ -\- ...} p"^ sin^pt -}- c^cos'^pt = const . (9.164)

Since the constant cannot be a function of t the coefficients of cos^pt

and sin^^^ must be equal, in which case the left hand side of the last

equation reduces to c^. Therefore

ip^{m^b,^-{-m,b,' + m,b,'--j-...} = cK . . (9.165)
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Now let us suppose that the form of the curve in the actual oscillation,

is not very different from the form of the curve for one of the modes

of oscillation when m^ alone is attached to the elastic body. In that

case we know from Rayleigh's rule that we can get quite a good

approximation to the period for the mass m^ alone 'by using the same

curve as we have used in arriving at equation (9.165). But the poten-

tial energy is exactly the same whether one or several masses is

attached. Therefore, if p^ is the value of p when m^ alone is oscillating,

equation (9.165) gives

,
^p^^m^b^^^ = c^ approximately,

whence |*^i^i^=—^ • (9.166)

Likewise, if the mode when w<, alone is ocillating is not very different

from the actual mode when all the masses oscillate, then we get

If the same is true of all the masses equation (9.165) gives, after

division by p^c^,

I I I
I

I

Pl^ P-2^ Ih^ ^"'~P''
Writing t^, t^, etc. for the periods of oscillation corresponding to p^,

p^, . . . we find from the last equation

t,^+ t,'' + t,^+ .,. = P (Q,i67)

This is the approximate equation for the period t when all the masses

are attached in terms of then periods when the several masses oscillate

alone.

It is as well to recall the assumptions from which equation (9.167)

is deduced. It is assumed that the actual shape of the curve when all

the masses are attached is nearly the same as when each one oscillates

separately. Now although this assumption may be very much wrong
for some of. the attached masses it must be very nearly right for the

masses which have most kinetic energy during the motion, for these

are the masses that have most control over the motion when all the

masses oscillate together. Moreover these are the masses for which

the period is greatest, and therefore they contribute the largest terms

to the left hand side of (9.167). Since then the assumptions we have

made are nearly true for the largest terms in the expression for t it

follows that the error in t cannot be very big.

Since the approximate equation (9.166) always gives a value for

p^^ greater than the true value it follows that, if we use the true values

of tj^, f^y etc., in (9.167), we shall get a value of t which is greater

than the correct value. Equation (9.167) can also be used whether
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each of the periods t^, t.,, etc., is due to a system of masses or due t6

a single mass. Thus, for example, if t^ is the period of a rod under

its own mass, and t^ the period of the same rod (regarded as having

no mass itself) when a mass M is attached at some point, then the

period when both masses ate taken into account is approximately

y^j 2 _|_ ^^ 2^ Let us apply this to the rod with a mass at one end, the

case shown in fig. 87. Equation (9.80) gives the period of the slowest

mode when the mass of the rod is neglected, and equations (9.31) and

(9.29) give the corresponding period when the mass at the end is

neglected. Denoting these by t^ and t^ respectively, our present method

gives . ^2^

1-875^ W\
3 wal]

Now let z denote ml, as in the example that we are quoting, and take

'W= wal; then we can write the last equation thus

I I i %,n

I

= ^Ji+4.ii| =1-25 . . . (9.168)

A more accurate value of 2 for this case is given in (9.76) as 1-238,

which differs by only one per cent from the result in (9.1^8).

166. The whirling of shafts.

Suppose a shaft, whose section is a complete or a hollow circle,

rotates in bearings, either carrying no loads but its own weight or

carrying loads such as pulleys. There are certain speeds of rotation

at which the straight form of the shaft becomes unstable, just as a

strut becomes unstable for certain values of the end-thrusts. The
theory concerning this instability is not yet very satisfactorily worked
out, although the conchisions from the usually accepted theory are

probably correct in the main. The following theory, up to the point

where the tension is taken into account, follows the conventional lines.

Let us suppose that, by some means or other, the central line takes

for a moment the form of a plane curve. The problem is really to

determine the subsequent behaviour of the shaft. This problem in all

its completeness is never worked out. The assumption is made that the

plane of the curve rotates at the same speed as the shaft, and that

therefore, if the shaft oscillates, its motion is confined to a plane

which rotates at the same speed as the shaft itself. This cannot,

however, be strictly true, for it is not difficult to see that it is possible

for the plane of the curve to remain fixed while the shaft rotates.

Therefore
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Consider, for example, the curve into which the weight of the shaft

itself, (assuming the shaft to be horizontal) bends the central line.

If the speed of the rotation is slow, it is quite certain that this curve

remains very nearly in a vertical plane. In this kind of motion,

however, there is a small relative motion of the particles of the shaft

since each line of fibres parallel to the axis, except those along the

axis itself, is alternately stretched and contracted. The viscosity due

to this relative motion tends to carry the curve round with the shaft.

We shall assume then that, when the speed is constant, the shaft settles

into a state in which there is no relative motion of the particles; that

is, the shaft either remains straight or the central line takes the form

af an unchanging curve in a plane which rotates at the same speed

as the shaft itself. This last statement needs qualifying if a torque is

being transmitted along the shaft, for, in that case, the curve is not a

plane curve.

167. Steady motion of the shaft in a plane curve.

Let the angular velocity of the shaft be u) radians per second, and
let the equation to the curve of the central line be

y^f[x)
the curve being assumed to rotate with angular velocity to also. The

element of mass — dx situated at {x, y) has an acceleration yw^

towards the jr-axis. The product of the mass and this acceleration

reversed may be treated as a load on the shaft, which product is

usually called centrifugal force. Then the problem is the same as a

beam problem with a lateral load

—

yco^dx on the length dx; that is

jyco^ per unit length. Then the equation of relative equilibrium is,

^^ d^y waco^ , .
,

^^&f=-,-^ (9.169)

This last equation is correct on the assumption that the centre of

gravity of each element of the shaft was absolutely on the .r-axis

when the shaft was unstrained. This, however, is not possible, for it

i^ beyond human capacity to make an absolutely straight line or

absolutely hoimogeneous material. Let us assume then that the centres

of gravity of the different elements lay on a curve in the unstrained

state, and let the projection of this curve on the plane of the rotating

curve be

2/i
= F(a;) ........ (9.170)

Then the elastic righting force depends on {y— y^ and not on y,

so that the correct equation of relative equilibrium is,

^^d^iy— yA waco^
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Now it is possible to expand F(a') in terms of tlie normal functions

for the shaft we are dealing with; that is, in terms of the functions

which occur in the transverse oscillation of the shaft with the actual

end-conditions of the shaft. If these normal functions are u^^, Ur,, u^,

etc., then

2/1 = C^Wi + C^w^ + C,M3 + . (9-172)

To simplify the probkm let us assume that only one of these normal

functions occurs in y^. Thus

yi_=CnUn {9-173)

where w„ is a function which satisfies the equation for transverse

oscillations, namely,

T-,^
d^Un ivapl

as well as the end-conditions of the shaft, the constant pn being also

determined by these end-conditions.

Equation (9. 171) now becomes

^^d^y ivaco^ wap\^
^^d^ =-^^ + ^^''"» •

• •. •

'^-'75'

We may write this, after dividing by EI, in the form

d^y

j^^
= s^y + KCnUn (9-176)

This is a linear equation the solution of which consists of the sum of

several terms, one of which is due to the term containing ii^ and is

called the particular integral. Let us first find this particular integral.

A particular integral is any value of y which makes one side of equation

(9.160) identical with the other. Let us try

y = iiun (9-177)

Then equation (9.176) gives

mn¥Lun = s^Uun+ m.iCnUn (9-178)

which is an identity provided that
^4

Cn (9-179)

(9.180)

...... (9.181)

then the value of y is infinite. This means that the deflection of the

shaft v^ill become very great if the period of rotation of the shaft

happens to be nearly coincident with the period of oscillation in the

n^''' mode.

H mi

mi— s^

Thus part of the value of y is

mi ^
y mi— s^

If now s* = ^n, that is, if

0J'=pl .
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If we take the general expression for y^^ in terms of all the modes

the complete particular integral of (9.171) is

TiZ 971'

so that y will become very great when the period of rotation nearly

coincides with any of the possible -periods of oscillation of the shaft

when there is no rotation. Any one of these critical speeds of rota-

tion is called a whirling speed for the shaft. If a shaft continued to

rotate at or near one of these whirling speeds, and if the rigidity were

the only righting force, the deflection of the shaft would go on increasing

until rupture occurred. It shouM be observed that the term in equation

(9.182) containing C^u^^ has the same sign as C-^w^ as long as s* is less

than m-l^ that is, as long as co'^ is less than p^^; but when co^ is greater

than p^^ then the term has the opposite sign from C^u^. A similar

statement is true for any other of the terms in equation (9.182). When
CO- is very great compared with p^^ then the part of y containing u^

during rotation is very small and has the opposite sign from the

corresponding part when there is no rotation. Thus a high speed of

rotation, provided ay does not nearly coincide with one of the values

of p, tends to straighten out an originally crooked shaft, and what
little deflection remains is in the direction contrary to the natural

deflection.

168. The effect of tension on a rod vibrating transversely.

Suppose a uniform rod is attached by smooth pins at its ends to

two absolutely rigid bodies, so that when the rod is loaded transversely

or oscillates transversely the central line has to extend because the

pins remain at a fixed distance / apart. Let us consider how the

transverse oscillations of this rod are affected by the tension.

It has been proved in Art. 95 that the central line has its length

increased by
2

dx

when this line is bent into a curve. The coordinates of a point on this

curve are (x, y), referred to an :r-axis through the ends and a y-axis

through one end of the rod. Taking a as the area of the cross-section

the total tension across any section of the rod is

This tension P acts at both ends of the rod and may be regarded as

acting along the jf-axis. The rod is therefore in the condition of a

tie rod with the forces due to inertia as lateral loads. Let M denote

the whole bending moment at x, and M^^ the bending moment due to

V„ [dx)
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the accelerations and to the lateral forces at the ends. Then, since the

bending moment due to the force P at either end is P3;, we get

M = P/y 4- M,

Therefore, differentiating twice with respect to x, we get

But, since the product of the acceleration and the mass of unit length

wad^y
is ~

, and since this vector reversed may be treated as a force,
g dt

it follows that a^M^ ^ wa d'^y

Therefore equation (9.184) becomes

which agrees with the equation (9.9) except that it contains an extra

term due to the tension P. It is worth

while to verify equation (9.185) in quite

a different way.

Consider an element of rod BB' of

length ^x. In fig. 89 the displacement jy

is measured downwards so that the con-
'^ '^' °9 ventions are the same as in the beam

theory in Chapter V.

The component, in the direction of jy, of the force P acting at B is

dy
-^'PsiiKp, or approximately — P "^- The corresponding component

OJu

dy d ( dy\ „

atB isP—

—

h7r~P — ox. The difference of these is a force in
ox dx \ dxj

the direction of y of amount— ( P -f- j
dx. Then equating the forces

OX \ vX

)

in the direction of the acceleration y . to the product of mass and

acceleration we get

»+s(^l)'«=(7'')S''

that IS, _|_ p^ =_
dx dx \ dxj g

wa d^y

Now P has approximately the same value at all points of the rod at

the same instant since the accelerations in the jr-direction are obviously

of the second order. Hence P is a function of t but not of x. There-

fore the last equation becomes
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1

^ +P^=— -^, (9-186
ox dxJ g dt-

which will be identical with (9.185) when F is expressed in terras of

curvature.

To solve equation (9.185) put

TlX-

y = Tsm—
, (9.187)

where T is a function of t but not of x. This is the right type of

solution for pinned ends because it makes y and M zero at the ends.

Now equation (9.185) gives

71^^ . ^x ^^ ^r^ . ^^' tvad-T jix , ^^,EI_Tsm-=--PTsm~--_sm- . (9..88)

Also, from (9.183),

= f/^E«T2 (9.189)

Then the equation for T becomes

^7i^_ 71^ _., wad^T
EI — T= 7:EaT^ —

-;

that is, when ak- is written fox I,

S-S?l^-".| .^ .^,,..,0,

Now let

^
dt

d^^d^^d^dT^ d^
^^

,dP dt dT dt ^ dT
Thus (9.190) becomes

whence ^^ = —- ^^^{2kn^-\-lT^-2knQ''^^To^\{g.igi)

where T^ is the maximum value of T, which occurs when ^ is zero.

Therefore

dt I

dr'^l

2 /2l / 2W I .__ 2 in 210

~^~^f Eg^9 V(To2-T'^) (To24-T2+8A:2)

16

(9.192)
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This can be integrated by the substitution

T = To sin 6^ (9-103)
dT = To cos OdG

X 2

If we write c^ for —-

—

^———, the result takes the form
2To''*+8A;'^

dO

fzT^-^S/c^J yi— c'^cos^

The relation between T and t can only be expressed by means of

elliptic integrals, but the complete period can be obtained without much-

trouble. It is clear that T goes through one quarter of its cycle of

values while varies from o to —
, and this takes place in a quarter

of the period. Then the whole period is

'

dO
'' /r2 y Eg i/zT'^-^Sk'^^ i~iE^' y2 To -^-f- 8W yi— c^cos2^

Now

f " (i-c^cos^ ei^dO=f' [i,+ -c2cos2 + —c^ cos46> + ..\d9

the values of which are given in tables of complete elliptic integrals

for different values of sin— 'c. Then finally

Here T^ is. the absolute maximum amplitude of the rod, that is, the

greatest value of the 3; at the middle of the rod'. For a rod whose

section is a complete circle of radius r we know that /c-=-J r-. Now
if Tf^- is very small compared with ^k'^, in which case Tq is small

compared with ?*, then we may neglect c- and Tq^ altogether and in

that case we get

2 ^S /V
-sFi »""

which is the period of the first mode v/hen the tension is not taken

into account. We might have seen from physical reasoning that the

effect of the tension would be negligible if the amplitude were very

small. The foregoing result tells us that the tension exercises very

little control over the oscillations of the first mode when the maximum
amplitude is vepy small compared with the radius of the rod.

Let us make the opposite assumption, namely, that T^^^ is large
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compared with 4k^. We will take the extreme case and suppose that

c2 = ^ ; this is the case of a perfectly flexible string. Then

' jiT^fEgy 42 642^ I

_ 4/2 -|/~wr XII 803 approximately . . (q. 1 97)

It should be particularly observed that when the motion is con-

trolled entirely by the tension, that tension being zero in the equilibrium

position, the period varies inversely as the amplitude T^^; that is, the

greater the amplitude the less the period.

We have only dealt with the first mode of the rod pinned at both

ends, but the work is just the same for any other mode. For the

n*^ mode all that is necessary is to write — for I in the work for the

first mode.

The equations are much more difficult for a rod whose ends are

fixed in any other way. The curve does not then take the form of a

simple sine curve. The problem has not enough practical interest to

repay us for the labour of working out more difficult cases.



CHAPTER X

LONGITUDINAL AND TORSIONAL OSCILLATIONS
OF RODS

169. Longitudinal motion of a rod.

It is possible for the particles of a straight rod to move in such

a way that the only stress in the rod is a pure tension along its length.

This tension will be different at different parts of the rod. The main
and important part of the motion of the particles is longitudinal,

although there must be, of curse, lateral motion due to the extension,

which lateral motion is determined by Poisson's ratio. The strain does

not differ greatly from the homogeneous strain which was investigated

in Art. 32, Chap. lit. The stresses S^, S^, S3 are all zero.

Let the ,r-axis be taken al6ng the line joining the centres of

inertia of the cross sections, the origin being taken at some particle

of the rod. Our assumption is that the plane of particles, which would

be at .r if there were no strain, are all at (x -\- u) at any instant, u
being a function of both x and the time t. If we write P for the

tensional stress in the .r-direction, and / for the acceleration of the

particles in the cross-section at (x-\-u), then equation (2.24) gives,

since the shear stresses are zero,

aP— + ^X = o/-, (lo.i)
dx

X being the external force on unit mass of the rod.

We shall assume that the particle at which the origin is taken is

either at rest or has a constant velocity. In that case the acceleration

relative to the origin is the true acceleration f. That is,

d-u

w-^ •
"°"'

Moreover, in most of the problems we shall solve, X will be zero.

Then, making these two assumptions, equation (lo.i) becomes

ap_ a%

= -oW '°'^)

where w is the weight of unit volume of the material of the rod.
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Again, since the other two tensional stresses are zero, equation

(2.14) gives

^-^8^' (^°-4)

and therefore (10.3) becomes

dhi w d-it

where c2 = '— (iO.8)
IV

Equation (10.7) determines the motion. of the rod when the initial

state o^ the rod is given and the conditions at the ends are known.

Before attempting to solve the equation we shall show that the equation

of motion of a rod subject to torsion alone is exactly similar to (10.7).

170. Torsional motion of a rod.

Let the jr-axis be taken along the centres of inertia of the cross-

section of the rod just as for longitudinal motion. We are assuming

that there is pure torsion in each element of the rod. Let us assume

that the section at distance x from the origin is twisted through the

angle 6 relative to the section at the origin, and let co denote the angular

velocity of this section. The element of length dx is twisted through

the angle dO and consequently the twist per unit length of this

element is

89 . ^

' = 8^ • •

(^^-9^

Let Q denote the torque in this element. Then

36
Q = Km = K^ — , ( I o. I o)

dx

where K is a constant which depends on the shape and size of the

section of the rod and has the dimensions of the moment of inertia of

an area. The constants for several sections have been calculated in

chapter VI

L

Let I denote the moment of inertia of the cross-section of the rod

about the .^r-axis. Then the moment of inertia of the element of the

w
rod of length dx is —ISx, and the angular momentum of this element

W "^

is — IcoSx. The rate of increase of this angular momentum is equal
9
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to the total torque on the element, and this total torque is the excess

of the torque at {x -\- dx) over that at x, namely, ^ dx. Therefore

tha>t is,

g dt dx

= K>i -— dx
dx^

qn K d'^e dw
or ^—~--=—— (10. 11)w I dx- dt

^ '

Now if the section at the origin is at rest, or is rotating with constant

angular velocity, then the angular acceleration of the section at x
relative to the section at the origin is the true acceleration of the

section at x. That is,

B'O dci)— =— (10.12)

in which case (10. 11) becomes

^ dx' df' ^ ^'

where c^^' = —
. . . . . . . (10. 14)

Equation (10.13) differs from (10.7) only in having for u and c{^

instead of c^.

The constant K has the same dimensions as I, and tor a rod whose
section is a complete or a hollow circle K is equal to I. Coulomb's

theory of torsion, which was the accepted theory before St. Venant

published his work on torsion, made K equal to I for all rods.

171. Solution of the differential equation.

Corresponding to every problem in longitudinal oscillations there

is a problem in torsional oscillations, and it is easy to see th-e relations

between the pairs of problems. We shall therefore deal first with

longitudinal oscillations and make use of our results for torsional

oscillations afterwards.

The complete solution of (10.7) is

t,= f(ct-x)Jr^(ct-\-^r) (10.15)

where / and F denote any arbitrary functions. To prove that (10.15)

gives the complete solution of (10.7) put

|--=c^ — .T, 'i]=ct-\-x, (10.16)
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and let us regard w as a function of ^ and rj, which we can do

since t and x can be expressed in terms of ^ and rj, from which

it follows that any function of / and x can be expressed in terms

of $ and rj. Now
, 5w du

where the partial differential coefficients are obtained on the assump-

tion that )j is constant in the first, and ^ constant in the second.

But
dj= edt-dx,
drj = edt-\- dx',

Therefore

Bu Su
du = —-{cdt— dx)-\-^—(cdt-\-dx). . . . (10.17)

of Ctj

If we keep t constant then we make dt zero, and therefore the last

equation gives, when both sides are divided by dx,

(1)=-^+
cu du

Again, by repeating this process,

c;^u _ d /eu\ _ _ ^ /^\ «5 /eu\

cx^ ex \cx) c?| \dx) drj \dx)

_ c / du cu\ d / du du\

0% d^u d^u d-u

dp didrj drjdi dfj^

d^u . d^u d^uU VU U till fj Ml \= :^4-7-^ — 2-;^TTr- (10.18)
cP drj^ d^drj

If we next keep x constant, and consequently make dx zero in

(10.17) we get

cu
I

CI

d^'^d^

cu {cu . (du\

dt {ci drj

A repetition of this- process gives

d^u (d^u
,
d^u dht \^^==^ i^^ + ^^ + ^-^^F^r • • • •

10.19)
ct^ \dP crj- d^crj)

^
crj" c^oi],

By means of (10.18) and (10.19) equation (10.7) gives

d^drj

_ d'u
4C^

whence
1(5) = ° ••. (10.20)
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Integrating this with respect to ^ on the assumption that ij is con-

stant we get

du
^^ = constant
cr]

= any function of >y (10.21)

Let us write F'(ry) for the function of r] and then integrate again

with respect to rj. This gives, since $ is constant in this step,

21 --= F{}]) + ^iny function of ^
= F(7y) +/•(!)

= F(r/ + .r ) + /(// — ./•),

and this is clearly the most general solution of (10.20), and therefore

of (10.7).

172. Interpretation of the solution

We see that u is the sum of two terms u^ and u., where

u^ = f{ct— x) (10.22)

n.,-^ F(c^-f-.r) (10.23)

Since the functions f and F are arbitrary it is quite possible, in

particular cases, for one of the functions to be zero so that u is equal

to only one of the functions. Let us suppose that w, is zero. Then

u = ¥{ct + .r) (10.24)

When t= o this becomes

H = ¥[-x) (10.25)

In order to visualise these results let us suppose that curves are

plotted with u as ordinate and x as abscissae showing the relations

expressed by (10.24) and (10.25). We must regard t as constant in

the former equation, so that our curve gives an instantaneous .graph

showing u at all points for a particular value of t. Now the curve

representing (10.24) differs from that representing (10.25) only in

being bodily displaced a distance ct in the negative direction parallel

to the .r-axis. If, then, (10.24) be plotted for different values of t, a

series of curves is produced each of which could be obtained by sliding

the whole curve represented by (10.25) parallel to the jr-axis. Then
as t varies continuously the curve moves continuously, and, since it

moves a distance ct in time t, it is moving with a velocity c, and this

velocity is parallel to the negative direction along the jr-axis.

To put the argument in another form, suppose we pick on any

particular ordinate of the curve (10.25), say the ordinate at x = x^

The ordinate is

u^=^Y{x^) (10.26)

Now let t and x both vary so that

x-^ct = x-^ (10.27)
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Then at the point x given by (10.27) the ordinate of (10.24) is

But from (10.27)

dx

dt

dir
that is, ^ = — c. . . . . . . . (io.2q)

dt \ y/

Then in order to satisfy (10.27) the point x must travel backwards

along the jr-axis with velocity c, and in this way the ordinate u remains

constant and equal to u^. This means that every ordinate of the curve

(10.24) travels backwards along the .r-axis with velocity c and

maintains its size. It follows that the whole curve travels in one

direction, as a wave travels in water. For this reason we shall refer

to F(ct -\- x) as a wave.

From the fact that every value of u travels backwards with the same

velocity it follows that the values of — and — also travel backwards
dx dt

That is, the whole state of the rod is travelling backwards so that,

for example, the tension that existed at x^ when t was zero exists at

(ct -j- x) at the instant t seconds later provided that x and t satisfy

(10.27).

In the same way it can be shown that

10= f(ct— x)

represents a wave or a state of the rod travelling /br/^-a?^^ along the

.r-axis with velocity c. Then we may picture the general case,

represented by (10.15), as two waves or states travelling in opposite

directions with the same velocity c, each wave maintaining its form as

it passes over the other. The actual state at any point is the sum of

the states due to each wave. For example, the total tension is the sum
of the tensions in the two waves. Likewise the velocity of any particle

of the rod is the sum of the velocities due to the effect of the two

waves at the point where the particle is.

The velocity c is called the velocity of sound in the material of the

rod because these longitudinal oscillations in a rod generate sound

waves in air, and any sound waves impinging on one end of the rod

will travel to the other end with the velocity c.

173. Particular solutions.

(i) One particular solution is given by

u^.-R{ct— x)-i-K{ct + x)

= (H + K)c^+(K— H).r, . . . (10,30)

where H and K are constants.
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Then the tensional stress is

CjC

= E(K— H) (10.31)

Also the velocity of any particle of the rod is

^ = (H + K)c (10.32)

Since H and K are arbitrary constants it is clear that (H -f- K) and

(K— H) are also arbitrary. Then this is the case of a string moving
with a constant velocity and having a constant tension. There is no

relative motion of the string. If we make H=— K then the velocity

is zero. Thus we get the simple case of a stretched string at rest,

(ii) Another simple solution is given by

u==K{ix + ct)^—(ct— xy}
= ^Kcxt (10.33)

Then V = 4EKct (10.34)

and the velocity is

— = 4Kcx (10.35)

Thus the tension is the same at all points of the string at any instant

but increases at a uniform rate. The velocity is proportional to the

distance x from the origin. This is the case of a string which is fixed

at one end— the origin— and the other end of which moves at a

constant speed, so that the strain increases at a uniform rate,

(iii) A third solution is

= k|:
n(ct-\-x) . n{ct— x)

sm ; sm
\ I I ]

. nx net= 2Ksm— cos-— (10.30)
h i

_ 2 71^^^ nx net
Here P = -— EK cos —- cos -— (10.37)

V LI
du 2nc^^ , nx . net
^r- = — Ksm—-sm—- (10.38)
ct t t t

The displacement u is always zero at the origin. Therefore the origin

is a fixed point on the rod. The velocity of any point on the rod

n ct
varies with time as indicated by the factor sin —— . This represents

L

simple harmonic motion, and the amplitude of the particular particles

TCX
at X varies as sin —-. We see also that the points where x^=l, 2 I,

I

3 /, etc., are all at rest. At certain particular instants, namely, when
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1

TlCt
Sin -— == o

,

every particle of the rod is in its natural position, but it is not at rest

;

it is, in fact, in the same state as a pendulum bob swinging through

its equilibrium position.

174. Reflexion from a fixed point.

Suppose one point of the rod is fixed, and let the origin be taken at

this point. Then

M= o where x= o

Therefore, from (10.15),

0=:f{ct)-{-F{ct)

for all values of t. That is, writing 2 for the variable ct

/(£r)=-FU),
which expresses the function f in terms of the function F. Now the

complete value for u is

u= F(ct-{-,r)—F(ct— x) (10.39)

The wave F(ct-{-x) travels along the rod towards the fixed point

while the wave — F(ct— x), which is the negative of the reversed

forward wave, travels in the opposite direction. The physical inter-

pretation is this : the wave travelling towards the fixed point carries

to that point a succession^ of displacements; the fixed point reverses

each of these as it arrives and sends it back along the rod thus

forming the wave which travels in the opposite direction. The total

displacement at any point x^^ of the rod at any instant is the displace-

ment due to the wave travelling towards the origin plus the displace-

ment which has been reflected from the origin and has now arrived

at x^. This reflected, displacement passed through the same point x-^

in the contrary direction at an earlier instant, the interval of time

2 or

between the two passages being —^ , since the displacement has
c

travailed 2;irj, with a velocity c in that time.

Although the total displacement at the origin is zero it is possible

for each wave to cause a displacement at that point, but each of these

displacements is the negative of the other. It is in this sense that every

displacement on the wave travelling towards the origin reaches that

point undiminished and is suddenly reversed there to form the return

wave.

175.. Rod fixed at both ends.

Suppose a rod is fixed at the ends x^=o and x= l. Then, because

the origin is fixed, the displacement is given by

u= f(ct— x) — f(ct-\-x). ..... (10.40)

Again, because the end x= l is fixed,
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o= f{ct-l)-f(ct-i-l) (10.41)

which is true for all values of t.

Now let 2 be written for {ct— /). Then {ct -\- I) is (^-j-2/), and

the last equation gives

/U + 2/)=/U) (10.42)

Thus f(2) is such a function of the variable 2 that the same value of

the function recurs when 2 is increased by 2 /. That is, f{2) is a

periodic function which goes through its cycle while 2 increases by 2 I.

The periodicity we have just found could have been foreseen from

the more physical point of view of reflexion. Suppose we fix our

attention on the same point of the rod as time varies. During the

time that ct increases by 2 / each wave travels a distance 2 /. That is,

the displacement due to either of the waves travels to one end of the

rod, is then reflected to the other end with changed sign, and is again

reflected with a second change of sign to the starting point. Thus two

reflexions and two changes of sign bring the whole wave into exactly

the same position as at the start.

176. Reflexion from a free end.

At a free end the tension is zero. Let the origin be taken at the

free end. Then the condition at this end is

du
^-— == o where x = o.

ex

Using the general value of u in (10.15) this gives

-/•'(d) + F'(d) = o,

whence F' (ct) = f' (ct)

for all values of t. Integrating both sides with respect to ct wt get

F(d) = /-(d) + C.

Therefore

u = f(ct-x) + f(ct + x) + C.

Now the constant C is unnecessary because we can suppose 4^ C to be

absorbed into each of the functions; that is, we may put

(p(z) = f(z) + iC;
then u = (p(ct— x) -\- (p (ct -\- x) (10.43)

This form shows that the free end reflects the displacements which

arrive there with unchanged sign. Likewise a tension or a velocity

arriving at the free end on one wave is reflected by the return wave

as an equal tension or a velocity in the same direction.

177. Rod free at both ends.

If the free ends be taken at x:=o and ,r= / the displacement is

given by
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U = (p [ct — ./:) -|- cp {ct -\- X)

The condition at the other end is

^^ u
7"^ = o when x = t;

dx

that is,

o = — (p'{ct— /) + 99' {ct + /)

for all values of t. Integrating with respect to ct and neglecting the

constant for the reason given in the last article

o = — (p{ct — I) -\- g? [ct -\- I)

Now writing 2 for (ct— /) we get

(p{Z+2l) = (p(z) . (1044)

which shows that the function cp is periodic and its values are certain

to be repeated when 2 has increased by 2/.

178. Rod fixed at one end and free at the other.

Let the end x= o be fixed and the end x = l he free. Then,

because the origin is fixed, the displacement is given by

u =f(ct— x)—f(ct~{-x)

The condition at the free end gives

du

ex

= -f'{ct-l)-f{ct + l)

for all values of t. Integrating this with respect to ct we get

u= f{ct— l)-\-f{ct^l).

Again writing z for {ct— /) the result becomes

f(^J^2l)=-f{z) (10.45)

Thus f{z) is repeated, but with its sign changed, when z increases

by 2 /. Then if 2 be increased by 2 / twice in succession the function

will be repeated with the same sign. Thus

/^(2 + 4/)=-/U + 2/) = +/•(*) (10.46)

Thus each wave travels a distance of 4 /, that is, travels twice in each

direction along the rod, before the cycle is complete. It follows that

the whole state of the rod is certain to be repeated in a period — since
c

the waves travel with velocity c.

179, When the whole of a rod AB is moving with velocity

V in the direction AB the end A is suddenly brought to rest.

To find the subsequent state of the rod.

Up to the instant when the end A is brought to rest the value of u
is given by

u = vt . (10.47)
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Let the origin be taken at the end A, and let t be measured from the

instant when A is brought to rest. We must first analyse vt into a pair

of waves in the form given by (10.15). The result is clearly

u=.— {{ct — x)-\-[ct + x)\ (10.48)

These are the waves that exist just before A comes to rest. After

that instant these waves continue to travel along the rod* and are

reflected from the fixed end A and the free end B according to the

laws that we have found in the preceding articles.

If we write

V
^t^ =— (ct — X) (10.49)

w.> =— {d-^x) . . ... . .(10.50)
2C

the wave u^ travels towards the free end and the wave u^ travels

towards the fixed end. The effects represented by u^ and u^ are each

spread over the whole length of the rod when ^= 0, but as t increases

the rear end of each wave travels along the rod leaving no eiTect behind

it except what is caused by the other wave. Thus when, in fig. 90, the

rear end of the wave Wj has reached

. the point K, the front end of this wave

^ jfj j!^' g has been reflected from B and has

reached K'. Thus the whole eflfect of
'^* 9° the wave which was represented by u^

•

^ at the start is now spread over KB and

BK'. Likewise the effect of the other wave is spread over K'A and

its reflected part over AK. Then between K and K' the two original

waves are still superposed. Therefore the part KK' is still moving
with velocity v exactly as at the start. We have still to find the

state of the rod in the parts AK and K'B. Along AK we have the

wave tc.2 plus the reflection of u.^. Now using (10.40) we see that

u.y --= — f{ct -\- x) =— (d + x) . . . .(10.51)
2 c

Then the function / is defined by

V

^ ' 2C

Therefore the reflected wave is

V
u\=f{d — x)=— ^(ct— x) .... (10.52)

2 c

Hence along AK
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l( = U.2 + W'2

V V=— (c/ + x) (ci— j;)
2C 2C

vx

c ' * * "

and thus the tension in this portion is

(10.53)

_ _ cu Ev 1 /Ew
F = E— =— = v\ — 10.54

dx c Y ,g

which is constant. Also the velocity in AK is

du d /vx\

ct ' ct\c)
Thus AK is under a constant tension and has no velocity.

To find the state of K'B we must use (10.43). The forward wave
itself is

(p(ct— x)=^— {ct— x) .... (10.55)

which defines the function (p.

Therefore the wave reflected from B is

V
u\ = (p {ct -{- x) = -^ (ct -\- x) .... (10.56)

z c

Thus the value of u along K'B is

W =r Wj -f- u\
V V=— {ct— x)-] (ct 4- x)
2C 2i}

' =vt (10.57)

which is precisely the same as at the start. It follows that the length

AK is at rest under a uniform tension, and the whole length KB has

no tension and has the same uniform velocity v as at the start. The
point K, which divides the part in tension from the part with a velocity,

travels with a velocity c. When K arrives at B the whole rod is in

tension and at rest, and u is given by (10^53). From this instant

onwards the waves which were reflected from A and B have now
reached the other ends and are again reflected.

To find the next state of the rod we need only repeat the preceding

argument, starting from the equation

V V
u =— (ct-^x) (ct — x), . . . . (10.58)

2C 2,C

instead of from 'equation (10.48). The wave approaching the fixed end

is now

U2=Y^(ct + X)
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and its reflection is

V
Uo = (d— x)

2C

When the front of this reflected wave has reached K in fig. 90 the

displacement in AK is

u = 1I2 + w'2

vx=— (io.59)

which shows that AK is still in tension and at rest. The dispkcement

in KK' is given by (10.58) and is therefore in the same state as AK.
The wave approaching the free, end is

V
,

u, =- (d — x)
2C

and its reflexion, the front of which has reached K', is

V
u 1
= {d + x).

Therefore the displacement along K'B is

= — vt (10.60)

Thus the portion K'B has a velocity — v and no tension."

We have found then that in the second state of the rod the portion

Er
AK' has a tensional stress - -, just as at the beginning of the first

c

state, while the portion K'B has acquired a velocity v towards A, but

has recovered from its tension. When the point K' reaches A the

whole rod will have acquired the velocity v towards A and will be

unstrained. This last state of the rod differs from the first state only

in having the velocity v in the contrary direction. We have traced

the first half of the cycle, and the second half differs from the first

only in having a thrust where there previously was a tension and in

having the velocities in the direction opposite to those in the first half.

The important conclusion we draw from the problem we have just

solved is that the stopping of one end of a rod of. any length and- cross

section, which is moving with a velocity z; in the direction of its length,

sets up alternately a tension and a thrust each of magnitude

P-^ =^yf (-.6:)

It is worth while; to dwell on this result because the principles of

mechanics, applied to an absolutely rigid rod, indicates that the tension

set up by stopping one end would be infinite since the whole rod would

be stopped instantaneously. This problem gives a very clear picture

showing how elasticity prevents the infinite stresses of rigid dynamics.
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An elastic body cannot have the velocity of every particle suddenly

changed. Only an infinitely small mass has its velocity changed in an

infinitely small time.

Since velocities are all relative, it is clear from the result of the

problem just solved that, if the velocity of the whole rod were

originally (t- -f- '^'i).
a"<^ i^ the velocity of the end A were suddenly

reduced to tv- the tensions and thrusts set up would be exactly as

before, and the velocities relative to the end A would be exactly the

same as before. If z'^ were equal to — i' we should get the case of a

rod originally at rest and the end A suddenly set in motion with

velocity t', and still the stresses would be the same as before.

180. A rod with a sudden change of cross - section.

Suppose a single wave travels along a uniform rod with cross-

section a^ towards a point where the section of the rod increases to a2-

It is to be expected that some
part of the wave will continue in A '^—

^

the same direction along the por-

tion with the larger section and Fig. 91

another part will be reflected. Let

the wave travelling along AK (fig. Qi) in the direction AK be repre-

sented by

u=f(ct— .r), (10.62)

and let the wave reflected along KA be

u=:F(ct -\-x) (10.63)

Then the total displacement at a point in AK is

u^=f(ct— .r)^F(ct-^x) . .... (10.64)

where the function / is given but the function F is so. far unknown.

Again let the wave transmitted to the part KB be represented by

u.,^(p{ct— x) (10.65J

Now at the junction K
u^=U2

,

{10.66)

and the total tensions are equal, that is,

"'j^-'^W
"°-^7>

With the origin at K these give

f{ct)-^F{ct) = (p{d), (10.68)

and — a^ f {ct) + a^ F' [ci] =— a.^ (p' (ct) . . . (10.69)

Integrating the second' of these with respect to ct and neglecting a

useless constant we get

— a^f{ct)-\-a^F{ct) = — a.^q)(ct) . . . .'(10.70)

Solving equations (10.68) and (10.70) for ¥{ct) and cp (ct) we find

»7
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"2 "T "1

'p(^^) = -:r-rrf^^^'> (^^-72)
"2 "T "l

We have now determined the two unknown functions and have conse-

quently determined the displacement in each portion of the rod. Thus

u,=^f{ct-x)—'^'^f{ct-{-x) . . .(1073)
a.y -Y cii

and 2 a.

ih = -^—f{ct— x) (10.74)
a.-, + a,

The displacements we have just found are those due to a single wave
originally travelling in the direction AK along the portion AK only.

If there were also originally a wave

U = yj{ct^X] (10.75)

travelling along BK in the direction BK a repetition of the preceding

argument would show that the resulting displacements, so far as this

wave and its reflexion have travelled, would be

^1 =—--^— v^(d + a) . (10.76)
(Xc) —J- (Xt

u.^=yj(ct-{-x)+ '^ ^

\p{ct— x) . . . (10.77)
^2 "T" ^'l

Then, due to the two waves denoted by / and ?/•, the total displacements

along the two portions of the rod, up to the points where the reflexions

of these waves have travelled, are

u^==f{ct— x)—''^^-^f{ct-^x)-\--^^---xp[ct-\-x) (10.78)
Q^ "T" ^1 ^2 ~T~ ^\

— w ict— x) -\

a^ 4- «i ^2 + ^1

If it happens that

xp(z)=^f{z)

then the above results become

^2 ==^(d-f a:) + J' ^

„' vK^^~-^)+~—r:r/'(^^~-^) (^°-79)

«i = f{ci ~x)-\- f{ct -¥x)\ ,

^
g^v

11^ = u^ /

so that in this case the two waves are just th'e same as those originally

on the rod so long as the reflexions from other points, such as fixed

or free ends, have not reached the part of the rod we are dealing with.

We can make use of the results we have just proved to solve, for

the rod AKB in fig. 91, the problem we solved in Art. 178 for a uniform

rod. Let us suppose that the end A is brought to rest when the whole
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rod has just been moving in the direction AB with velocity v; and We
shall assume, to simplify the problem, that the part KB which has

the larger section is infinitely longer than AK. With these assump-

tions we shall' find the ultimate tension in the part AK.
Just at the instant before A was brought to rest the displacement

at every point of the rod was given by

— {(ct^x)-Jr(ct— x)} (10.81)
V

2C

Let u^ denote the displacement in the portion AK, and u^ in the portion

v
KB. Then, by the time the rear end of the wave — (ct— x) on AK

2C
has travelled to K, the front end of the reflexion of the other wave
has arrived at K also. At this instant

V
u^=— {{ct-^x)— {et—x)} .... (10.82;

2C

^^2=— {(^^+ ^) + M— «)} • . . . (10.83)
2 C

Now each of the waves in u-^ passes backward and forward between

A and K, and every time the wave reaches K a certain fraction of it

passes on along the thicker portion, and the fraction r of it is reflected,

«2 + %
After 71 reflexions of either of these waves from K its effect is there-

fore diminished in the ratio ?•**, and when n is very great this fraction

V .

is negligible. Moreover, the wave — (ct— x) in w does not affect the
20

portion AK because it travels away from K, It follows that the only

wave in the wider portion that affects AK after a long time is the

V
wave — (ct-T-x), which is constantly supplying, across the point of

discontinuity K, a wave represented by

The reflexion of this from A is

^ i^_^(ct-x), . . . .(10.86)
a^ + ^1 2 c

and the part of this that is reflected back again from K along KA is

r-l^—l-{ct-\-x), ...... .(10.87)
«2+«l2C ^^^
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which is r times the wave that originally passed over through K from
KB to AK. To this wave reflected from K must be added the wave
that is constantly flowing through K from KB. At this stage then the

part c yntributed to AK from KB is

,

'
(ct— x) (10.88)

It is not difficult to see that, after the front end of this wave has been
reflected n times from K back into the portion AK, the total displace-

ment on AK is

and when n = 00 this becomes

a., + «i 2 c
'

' I— r

a^ V

a, 0.

— X (10.90)

This means that AK has now been reduced to rest and is subject to a

tensional stress given by

du.f'-'-g

?'- <«'>

The total tension across the section is

V
a, P. == <7o — E

, (10.92)
~ c

and since the total tension at K is the same in the two portions it

follows that the stress in the thicker portion is

P _«.p.

= -E, (10.93)
c

exactly as if K had been initially brought to rest instead of A.

We now see that, although the stress in a uniform rod due to

starting or stopping one end does not depend on the cross-section or

the length of the rod, yet the stress set up by doing the same to a rod

whose section is not constant does depend on the variation of the

section; Moreover, it is fairly evident, although we have not worked
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1

out a case in detail, that the stress depends on the relative length of

the thill and thick portions.

181. Normal modes of oscillation.

Although it is possible to solve a number of useful problems on

the longitudinal oscillations of elastic rods by the method we have

already used in this chapter, yet there is a much more powerful method
of tackling the oscillations of a finite rod. This method consists in

analysing the motion into normal modes of oscillation, as we did with

the transverse oscillations. We shall now show how to apply this

method to longitudinal oscillations. The results will apply equally

well, of course, to torsional oscillations.

182. Rod fixed at both ends.

We shall begin by finding the normal modes of oscillation of a rod

of length / fixed at both ends. Our object then is to find solutions of

equation (10.7) that make the motion of every particle simple harmonic

and at the same time fit the end conditions of the rod. The differential

equation is

d'ho , 6-u

eti = '-^'- • •

•<'°-94)

and the end conditions are

u=^o where .r:=o (iO-95)

and M= o where x^^l, (10.96)

We may assume

u = ^ sm [pt -\- a) (iO-97)

where | is a function of x only, and ^ is a constant. Then

and -—- = -r— sm [pt ^ a),
ex- dx-

Substituting in equation (10.94) ^^ S^t

—|>2|sin(j9/-|- a) = c^-— sin (joZ-j- a),
dX"

whence ——^
:r 1^ ...... (10.08)

The solution of this last equation is

px ^ . px
^=Acos [- B sm— . . . . . (10.99)

Up to this point the end conditions have not come into the question

and the results will be valid for any end conditiohs.
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The condition (10.95) gives

o = A (10.100)

Then condition (10.96) gives

^ .
pi

B sin — = o
,

c

whence either B = o
,

pi
or sin— == o (lo.ioi)

The first of these alternatives makes u zero everywhere and at all times,

and therefore gives no motion. The second' gives

— = S7l
, (10.102)

C

where s is any integer.

The period of the 5''* normal mode is therefore

271
^s =

V

= — 10-103)
sc

The period of the first mode is

2/

which is the time taken for a wave to travel along the rod and back

again with its natural velocity c.

Returning to (lo.gy), the s''' normal mode is represented by

«« = Bssm—— smi—— + aJ .... (10.104)

It can be shown that any possible longitudinal motion of the rod can

be represented by summing all the values of u expressing the normal

modes with suitable values of the constants B and a for each mode.

Thus the general value of u is

'^^ . snx . [snci \
?« = ^B5sm— smi— + aJ . . .(10.105)

183. Rod fixed at one end and free at the other.

If the origin be taken at the fixed end (10.100) is still true. The
other condition is

^— = o where'a; = /

;

ex

that is, ^^ u 7

-TT- == o where x = /

,

cix

pi
or B cos— = 0.
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Hence the values of p for the normal modes are given by

— = - OT ^^— OT ^^— etc (10.106)
c 2 2 2

2S—I
2

s being an integer as before; and the s^^ normal mode is expressed by

„ . l2S— l)7lX . (l2S— l)7lCt
. 1 ,

Us = Bssm- smT -^ (-asj • (10.107)

184. Rod fixed at one end and carrying a finite mass at

the other end.

Let the origin be taken at the fixed end and let the mass at the

other end have a weight W. Then the condition at the origin still

makes (10.100) true. The other condition, assuming no external forces

act on W, is obtained from the fact that the acceleration of W is

produced by the tension in the rod. That is, at the end x = l

,

— -^^« — Ea— 10.108
g dv dx

where a is the cross-section of the rod. In terms of ^ this becomes

— »2_|= — Ea—- where ,'r= Z, . . (10.109)^ g dx

„W _ . «/ ^ P ^ pi
-~p^~B sin-= — Ea-Bcos-,

g c c c

pi Wc
, ,cot— = -

—

p (lO.IIO)

pi
If we write z for — this becomes

c

cot «=—-r- Z
Ealg

W=— z
wal

= hz . (lO.iii)

where h is independent of z, and i^, in fact, the ratio of the weight W
to the weight of the whole rod. Equation (lo.iii) has an infinite

number of positive roots for z, each differing from the preceding one

by rather less than jt. The first root is kss than ^ 71, and is very near

^71 when h is very small, and very near zero when h is large. When
S is large the .9^ positive root is approximately (s—^i) 71. Each root

of (lo.iii) corresponds to a normal mode of oscilktioii of the rod,

and any motion can be resolved into the sum of a finite or infinite

or

whence
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number of normal modes. The following problem will illustrate the

method of using these normal modes.

Suppose the rod, whose normal modes we have just found, has been

travelling, in an unstrained state, in the direction of its length when

the end which we have called fixed is suddenly brought to rest. To
find the subsequent state of the rod.

If t is measured from the instant when the end is brought to rest

the initial conditions are

v^ = o when / = o (10.112)

(' u
and ,

- --- 2; when / = o (10.113)
f /

The first of these conditions is satisfied identically l)y taking a = o

in every mode. I'hen the .s"' mode is represented by

Ps.r
^^^. =^B<;sin sin^^s^ (10.114)

the values of ;;, being obtamed from (lo.iii). Consequently the

complete displacement is given by
s,—-00

y = N^ Us ( I o, 1
1 5)

* = I

To satisfy condition (10.113; we have

-^r) = 2^Ps^s sm
S = I

= ^CsSin-— . . . . (10.116)-" c
s= r

Cs being written for pg Bg

We find the constants Cg in much the same way as in an ordi-

nary Fourier Series. Thus

L — =^ sm — { Ci sm-^^-— + C!>—~- [-•••} . ( i o. 1
1 7)vsm

Now integrating both sides from x= o to x^=^l we get

•' P^^ ,,. ._ li:.Mi I r ..„ /V^ + a, sin ''-i'^

C
"

cdo
V sin ^— dx -= \ sin -^ LC^ sin -^ -f- G, sin --*- + . . . (/.r ( i o. 1 1 8)

Now let us write ^s for sin -^—. Then we know that
c

and that, at the end x^=^l.

dHs pi ^ , ^ .

^ =
E^^-^^

..... (10.120)
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Next writing D for -- we find that
dx

Therefore

\^f^,Ldx= f^s^H^dx by (10.119)

= Us^^y-f^TyLT)^,dx

Jo ^Q

Jo ^ Oo

P'fiiLdx =

( I O. I 2 I

ii— i-,.^ M

W
Eag {Pl^—Ps)^'ik's 0.122)

the dashes indicating the values of the |'s at the end x =^ I. Then
finally

I ^^
UiLdx=^—--l\^'s .... (10.123)

i/o Eag

In the same way we can prove that

*J o

Wc-
Ldx = — -— ^;,ii.

Eag
(10.124)

provided that m is not equal to ^. li m=^s we get, on integrating

by parts,

- ^ fildx = I. D^J - fi^sYdx
G ^ o J o '^O

whence
Eag

fSidx^^jl

Now equation (10. 118) becomes

dx

Wc'^

2 Ea/y
(10.125)

fJ o

. Ps-i'
Jsm ax

c

Wc2
i;{c,f,-fc,f2 + Qf3 + ...}

Wc2
+ ic,/-f----c,i;2 .... (10.136)

2 Ea^

But the expression in the brackets on the right hand side of this

equation is v. Also the left hand side is
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sm ax
c

vc

Ps
cos

PsX 11

VC( Psl\
== — < I COS

—

I

Ps \ C J

Then finally ( 10.118) becomes

vcl psl\ WcH' . Ps^ , ,r^ J ,

^0^ ^ pj— I — cos^^— = — sin^ hvCfi/H —-CsSin2—
p,\ c 1 Eag c ' - '

' zEag . c

which gives

2VC ( pj\ .
zWc^v . Psl

I— cos =^— 4- —^^ sin
'—

Ps \ c J Eag c

2VC

Ps

Eag c

2VC

Ps

J
C Psl . Psl

I H cos— sin—
Ps C C

2V

Zg -j- COS Zg sin Zs
10.127)

Therefore

Bs
Ps

19f
C Zs

2vl

cZg {Zg + cosxg sin^s)
(10.128)

This last result, together with (10.114) and (10.115), gives the com-

plete analytical expression for u. The values of z^ are the roots of

(lo.iii), and these depend on the ratio of W to the weight of the rod.

But, as we have pointed out before, when j is large ;:^., is nearly (5 — i ) tt

whatever the value of h may be. It follows that, for large values of s,

B.=
2VI

nearly . fro. 1 29)
c{s— ly^ Tt"^

The important terms in the value of u are the earlier terms in the

series. It will be sieen that the actual calculation of tension in the rod

at any time involves a considerable amount of labour, and the calcula-
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tion of the maximum tension involves still more labour. We shall,

however, make use of the energy method to give us an idea of the

maximum tension.

When dealing with the case of the rod which carried no weight at

the end in Art. 179 we found that a stage was reached' at which the

whole of the rod was at rest and the tension was constant throughout

the rod. That is, the original kinetic energy of the rod was transformed

into potential energy uniformly distributed along the rod. It is clear

again that, if the rod had no mass itself but carried a mass at the free

end, a stage would be reached where the whole kinetic energy would

be transformed into potential energy uniformly distributed along

the rod. Then let us assume that the same is true for the present

case, where a rod which has mass carries a mass at the end. The total

weight is (W-{-wal)f and its original kinetic energy is ^{W+wal)—

.

The total potential energy of the stretched rod having a uniform tensional

stress P is, by (8.3) or (8.5), -. Then, equating the potential
2 K

energy to the kinetic energy, we get

wh^ce p ,/(W-{-wal)E
'^ —.—— (10.130)

alg^r'
This is obtained on the assumption that every particle comes to rest

at the same instant and that the maximum tension occurs at that

instant. It is certainly not true that every particle comes to rest at the

same instant, and it is quite possible that the maximum tension is

slightly above the value given by (r 0.130) for the reason that the

potential energy will not be uniformly distributed along the rod, and
therefore the tension will be greater in some places than in others.

Nevertheless equation (10.54) shows that the result given by (10.129)

is true when W=:o; and it is clearly correct also when ^= 0. We
should therefore expect that it could not be far wrong in other cases.

Since each B contains the factor v it follows that the tension at

any instant is proportional to v, and therefore the maximum tension

is proportional to v. The result in equation (10.130) agrees with this

conclusion.

185. Pulley at the end of a rotating shaft.

The torsional problem that corresponds to the last problem we
have worked out is this:— A rod, which carries at one end a mass,

siich as a pulley, whose centre of inertia is on the axis of the rod, is



268 APPLIED ELASTICITY

rotating itt an unstrai)ied stale with angular velocity a) when the end

opposite to the one which carries the mass is suddenlg brought to rest.

To find the subsequent stale of the rod.

The reader should have no difficulty in modifying the result we
have obtained to suit the torsion problem. The angular velocity o)

corresponds to i', the twist r corresponds to the strain -
, and the

( X
torque Q corresponds to the total tension Pa. It follows from what we
have proved that Q is proportional to (o In particular, the result in

(10.54), which applies to the caS'C when there is no mass at the end,

is transformed for the rod in torsion into

cx

= Hncol/
wl

-"'f-

f gnu

'wnlH

If the rod has a circular section then H = I and

t
^ . .

wn
loj

9
The constant c^ is a linear velocity, like the constant c in longitudinal

motion, and it represents the velocity with which a torsional disturb-

ance travels along the rod.



CHAPTER XL

THE EQUILIBRIUM OF THIN CURVED RODS.

1 86. The actions across a section of a curved rod.

A thin rod may be regarded as generated by the motion of a small

plane area which moves in such a way that its centre of gravity always

travels in the direction of the normal to the area. If the area keeps

its direction fixed in space a straight rod is generated. But if the area

rotates about an axis in its plane as it moves through space a curved

rod is generated. The generating area in any position is the cross-

section of the rod, and the path of the centre of gravity we shall call

the central line of the rod.

The body could still be called a rod if the area charged its shape

or size as it moved provided that these changes were slow. To put it

precisely the body would be called a rod if the boundary of a small

element between two cross-sections could be formed of lines which

were all nearly parallel. For example, a cone whose height is many
times greater than the diameter of its base may be regarded as a rod.

To find the stress across any section of a rod we must consider

the equilibrium of the whole of the rod on one side of thie section as

we did with straight beams in Chap. V. In order to analyse the

stresses we need three axes of reference passing through the centre of

gravitv of the section. Let the axis OX be taken

normal to the section, and let OY, OZ, be taken

in the plane of the section and coincident with

the principal axes of inertia of the section.

All the stresses across the section at O on the

portion OH (fig. 92) can be resolved into three

forces along OX, OY, OZ, respectively, together

with three component couples about these axes.

The force along OX is a tension; the other

two are shearing forces which may conveniently

be compounded into a single shearing force in- hi 8- 9^

clined to OY and OZ. The couple about OX
is a torque which puts a twist in the rod just as it would in a straight

rod; the other two couples are bending couples each of which produces

a change of curvature of the central line at O, the total change of curva-

ture being the resultant effect of the two changes.
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The system of forces and couples across the section through O are

balanced by the forces on the portion of the rod extending from O
through H to the end of the rod. They are also equivalent to the forces

on the other portion of the rod.

187. Spiral spring ^vith axial pull.

Suppose the central line of the coils of a spiral spring is inclined

at the angle (90^

—

(p) with the direction of the axis of the spring.

Then 99 is the inclination of the coils to the circular sections of the

cylinder on which the coils lie. We require to find the stresses across

the section at B in fig. 93. To do this we must find the component

forces and couples along the principal axes at

B which are equivalent to one of the opposing

pulls R. Let us suppose that two equal and

opposite forces R are introduced at B. The
upper R in the figure together with the down-
ward R at B form a couple of moment rR,

where r is the radius of the cylinder on which

the central Une of the coils lies. The other

R at B can be resolved into a tension T along

the tangent to the coils at B, where

T = Rsin^, . . . (II. I)

and a shearing force F in the tangent plane

to the coils at B, where

F = R cos 99. . . . (i 1.2)

The couple across the section at B acts in

the plane containing the axis of the coils and

the point B. The axis of this couple is in the

direction BC, and the couple can be represented as a vector along BC.
Then this vector Rr can be resolved into a torque

Q = Rr cos 99 ('1-3)

with axis along BD, together with a bending moment

M = R?- sin 99 (i 1.4)

with its axis perpendicular to BD and parallel to the plane BCD.
Now springs are usually made either with uniform circular sections,

or with sections such that one of the principal axes at B is in the

plane BCD. Then the bending couple M acts about one of the

principal axes. Now let W denote the work done by the force R in

stretching the spring from the state of zero stress to the actual state.

Let X be the extension of the spring, that is, the displacement of one

end relative to the other. Then the work done by the stretching

Fig. 93

forces is

W=fRdx (fi.5)

This must be equal to the total energy in the spring. This energy is,

by (8.15) and (8.24),
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W
2 J EI 2J Hu ^

where ds denotes an element of length of the central line of the coils,

and I the moment of inertia of the section about the axis of M.
Equating these two values of W we get, since M and Q are constant,

/
^

I MH I Q2/
Rax =——— H— ——

-

,

2 EI 2 Un

I being the total length of the central line of the coils. Now using

(11.3) and (11.4) we get

Rdx = ——^H —-^
. . . (ii.y

Jo 2 El ^ 2 Hn ^ ^'

Differentiating both sides of (11.7) with respect to x we get

El ^ mT"")^*
Therefore dx „,[sin'^g? cos^o?!

rfR='"'i^r + -H^| • • • •
•<'•"'

Since the right hand side of (11.8) is constant if we assume that q)

is constant, and since R = o when x= o, we find by integration that

Thus the extension x is proportional to the pull R. If the angle q) is

so small that sin- q) can be neglected, in which case cos^ qi may be
regarded as unity, then

RrH . .

""^-^
•

•

-(^^-^^^

If the wire forming the spring were straightened out and one end

held fixed while a torque Rr were applied to the other end, then the

twist per unit length in the rod would be x given by

Rr = H?iT

If a disk of radius r were attached to the free end this disk would
turn through: the angle Ix and a point on the rim would move through

the distance /rr, which is the value of x contained in (11. 10).

If the wire forming the spring has a circular section of radius a
then

•

\ = \7ia^

Then equation (11.9) becomes

.r =—-p—-^ + ^ .... (II. II
na^ IE n \
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The extension given by (11.9) is, of course, that due to the bending

and the twisting of the wire. No account has been taken of the

extensions due to the tension T or the shear stress F. It is easy to

calculate what these amount to, and the results show that they are

negligible in comparison with that due to torque if, as is nearly always

the case, the dimensions of the section of the coils are small in com-
parison with the radius r.

188. Spiral spring with the pull parallel to, but not along,

the axis.

Let fig. 94 represent a new view of the spring looking along the

axis, and let K be the point which represents the line of action of the

pulls. Let OK = c, and let 99 denote the slope of

the coils as before. Let B be any point on the

central line of the spring, and let KD be the

perpendicular from K on the tangent at B to

the circular section through B. Now let a pair

of opposing forces R be introduced at B parallel

to the axis, and another similar pair at D. One
of the pulls acting through K (we shall call it

i^ ig. 94 ^YiQ upward pull for definiteness) combined with

the downward R through D, forms a couple of

magnitude R x KD acting in that plane which contains KD and is

parallel to the axis. The other force through D combined with the

downward force through B forms another couple of magnitude

R X BD. We have left an upward force R at B. These two couples

and the remaining force at B are equivalent to the original single

upward force R at K. We have now to find the extension of the

spring due to the two couples, the extension due to the force at B
being negligible.

The couple R xBD = Rx OK sin6' is a purely bending couple.

The couple RxKD has its axis in the direction DB. This can be

resolved into a torque Q given by

Q = (RxKD)cos^ (1112)

and a bending couple

Ml = (RxKD)sin<p (1113)

whose axis is in the plane BCD in fig. 93. The bending couple

ivr^^RxOKsin^
^=Rcsin^ (1114)

has its axis in the direction OB. Thus the two bending couples M^
and M2 are in perpendicular planes, and their axes coincide with the

positions we assumed for the principal axes of the section in the last

article. If we assume the same positions for the principal axes again,

the equation corresponding to (11.6) is
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I /-M,-^ , I rUJ ,
I /-Q^W= -/ -4-^-"^* + -/ ^;-^«H— T^ds- ' • (11-15)

2J Ell 2j EI2 2j Hn ^ ^'

Now KD -= (r — c cos 0)

whence KD- = 7'^ — 2 re cos 6 -{- c^cos^O

Therefore,

fKD^ds =J\r^- — zrccosO -^ c^cos^O)ds
o o

But C0S2^=4(1 + C0S2^)

Consequently
I I

fKD^ds = (r2 + 1 c2) /4-/(i c2 cos 2 19— 2 re cos ^) ds
o o

Now ds = {rdO) sec cp (11. 16)

whence it follows that
I

/KDV/s = (?-2 -f 1 c2) / 4- r sec (p (l-c^ sin 2 ^^ — 2 re sin 6^) (i i.i 7)
o

where 6^ is the angle subtended at the axis of the spring by the whole

of the coils. If there is an integral number of half coils the terms

involving sin 0^ and sin 2 0^ are zero. In that case

/KD2ffe = (r2+ 1^2)/ (II. 18)
o

If, in the general case, we write

0^ = {2njz-\- a)

,

n being the total number of complete coils and a being an angle less

than 271, then we may replace 0^ by a in equation (11. 17).

In a similar way we find that

fU^Jds =f R2c2 sin2 • sec cprdO
o o

e.

= lR^c'-rsec<pJ(i — cos2e)de
O

= |R2 c2 r sec (f {6^ — ^ sin 2 6^)

= }jR^c^ (I ~^r secqp sin 2 a) . . . . (11. 19)

Then finally, making use of (11. 17) and (11.J9), we get

W =-R2(!^^ + cos^l ,^^2 + 1^2) i^r seccp (f c^ sin22 a - re sina)}
2 V EJj nn )

I R2c'-
-{ — (l— ^rseCQ9 sin 2 a) ..... (11.20)

4 EI, ^ ^ ^
^ '

Also '
„, i^^ ,W=jRax,

o

and by equating these two values of W and then differentiating with

respect to x, as in the last article, we arrive finally at the equation
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~ =
-J

^j- + —^^ > {(r2 -I- ^ C-) / + r sec (p (| c- sin 2 a — r^ sin a)}

I c2
+ -^(/—i»-sec99 sin 2 a) (11.21)

The terms containing a are usually much smaller than the other terms

because r and c are much less than /, Moreover, these terms vanish

completely when the spring has an integral number of half-coils.

When these terms are dropped the relation between x and R becomes

X
, , , „ (sin-w cos'-w\ Ic-

If c= r, in which case the pulls R are applied along a generating line

of the cylinder on which the central line of the coils lie, then

R-"^'n"Eir + "H^/
H

R '
( Ell Hw J

' 2 EI,

If 9? is so small that sin'^ 99 can be neglected this last result reduces to

x_ 3^2/ 7-2/ 3 rH
I

Hn
\

R ~ "2 H^ '^
2El,''^~jThi\^^ s El_, I

189. Spiral spring under a couple about the axis.

Let us suppose that the spring in fig. 93 is under the action of a

pair of opposing couples at the ends, these couples acting in planes

perpendicular to the axis of the spring. These actions tighten up or

slacken the coils of the spring so that one end rotates about the axis

of the spring relative to the other end. As a result of this rotation

there may be also a relative axial displacement of the ends, but this

we shall not at present take into account.

The couple K acting about the axis of the spring on one end is

transmitted as a couple with a parallel axis across the section at B
(fig. 93). The couple can be resolved into a torque.

Q = Ksin^?

with axis BD, together with a bending moment

M^ = KCOS99

with axis perpendicular to BD in the plane BCD.
Let one end of the spring turn through an angle relative to the

other end. Then the work done by the couple K in producing this

angular deformation is

.9

W= / KdO

Equating this to the energy stored in the spring we get
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Jo 2J0 EI^ 2J0 Hw
I /K-cos2(^ ilK-sm^cp

^
2

"

Ell ^^ ^ '

/ being the total length of the coils.

Differentiating with respect to the upper limit 6 we get

|/Kcos2^ /Ksin2^lrfK

Ell Hy^ M^
whence dO jcos-'^ ^^'^^

Regarding cp as constant this gives, since K is zero when ^ is zero,

icos^Q? sin^wj

190. Spiral spring under an axial pull and a twisting couple.

We have now found in Arts 187 and 189 the extension x and the

twist ^ of a spiral spring due to an axial pull R and couple K acting

separately. We shall now find the effect on the spring produced by

the simultaneous action of R and K. When R. alone acts there is a

twist 6 which we have not found. Likewise the couple K, acting

alone, produces an extension which we have also not found.

From the preceding results we should expect that the extension

produced by R and K acting simultaneously would be a linear function

of R and K. That is, we may assume

x = aR-}-bK (11.25)

Likewise

0==2)K + qR (11.26)

X
Now we know a and p, for these are the values of — and — in equations

R K
(11.9) and (11.24). We have yet to find b and q. We shall first prove

that b and q are equal.

The work done by R and K in producing the strains in the spring is

W=fRdx+fKde
-= /'R {adR + bdK} 4-/K {^^K + qdR}
=f(aR-\-qK)dR-i-f{pK + bR}dK . . . (11.27)

Now let us suppose that R increases from o to its final value R^ while

K remains at zero; then K increases to its final value K^ while R
remains at R^. Then in integrating with respect to R we must put

K = o; and in integrating with respect to K we must put R = Ri.

18*
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Thus r^^' r^^'W= / aRdR+ / (pK + bR,)dK
J o ^ o

= ]aRi'-^+ J;?Ki2 + ^,RjKi (11.28)

If the foregoing operations had been reversed; that is, if K had

increased to K^ while R was zero, and then R increased to R^ while

K remained at K^, we should have found

W=|«R,2-f|^Ki'^ + gRiKi . . . .(II.2Q)

Now clearly the energy in the spring in the final state is the same in

both cases. By equating the two values of W in (11.28) and (11.29)

we get q=.h (11.30)

We have now to equate either of the values of W we have just found

to the expression for the energy obtained from the stresses and strains

in the spring. For this purpose we must

find expressions for the bending moment
and torque at any point B of the spring.

Let BD be the tangent to the central

line of the coils at B, and DC a line

parallel to the axis of the spring. Then
the force R acting at the lower end in

fig. 95 gives rise to a couple acting across

the section at B, and its axis is in the

direction CB as shown in the figure. Like-

wise the couple K acting at the lower end,

in the direction tending to unwind the spring,

has its axis parallel to the axis of the spring.

The two lines through B marked Rr and K are vectors representing

these couples. Resolving these vectors perpendicular to and along

BD ^nto bending moment M^ and torque Q we get

Mj = R?'sin99 + K COS99 (11.31)

Q = K sin^ — Rr cos 99 . . . . (11.32)

Then the energy in the spring corresponding to the final values R^

and K^ is

--mM ds

2 Ell
R^r sin^? + K^ cos^pf- -f-

/

z-Rn

2H71

{Ki sin 99 Rircos9yj'^ (ii.33)

We may now equate the value of W given by (11.28) to the value

given by (11.33), and the resulting equation must be identically true

far all values of R^ and K^. Then regarding q? as constant, we may
equate coefficients of R^-, K^-, and RjK^, in the two expressions for

W. This gives
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, ^ lsin-Q9 cos"2g9|

b ^ lrsm(pcos(p I—— — —^^ .... (11.36)

We may rewrite (11.25) ^^^ (11.26) thus

x = aR4-6K ....... (11.37)

0=pK-{-bR (11.38)

wherein we now know the values of all the coefficients.

From the last pair of equations we find that, when R alone acts,

XX = aR\ .X
The first of these results we already knew, but the second gives a new
result, namely, the amount of twist produced by an axial pull R when
no couple K acts.

Likewise, when K alone acts,

xJhK\ ("-4^)

Again we may require to know the extension produced by a given

axial pull R when the constraints on the spring are such that one end

is not free to twist relatively to the other. In this case K is not zero;

it is expressed in terms of R by equating 6 to zero.

Thus o=;?K + ^R

h
Therefore K = R

,

P

whence x^dR R
P

. . (1I.41)

R

Ir'^R

Hw cos 2 99 4- EIj sm^(p

191. The variation of 99.

In the preceding part of this chapter it has been assumed that cp

was constant ; but it is clear that qj cannot be constant \vhen the spring

stretches. The errors resulting from treating cp as constant are only

small in any case, as we shall now show by taking account of the

variation of cp.

Let the unstretched length of the spring be h; that is, h is the

length of the projection of the coils on the axis, and does not include
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the lengJits of any attached end-pieces. Also' let f) denote the angle

subtended at- the axis by the whole of the coils. Now suppose the

surface of the cylinder on which the

central line of the coils lies is developed

into a plane, and with it the central line

itself. This central line develops into

a straight line which is the hypotenuse

of a right-angled triangle whose sides

are h and rO as in fig. 9O. From this figure we get

h = IsincpQ

When the spring is stretched so that h becomes {h-{-x) and 99Q becomes

(p the equation is

/^-|-x= /sin99 ([1.42)

If, now, we want to take account of the variation of (p in such an
equation as (11.7) we must make use of (11.42) both in the differentia-

tion to remove the integral, and in the final integral to get the relation

between R and x which corresponds to equation (11.9).

sin^qp cos-w
Letuswnte .= -^ +^_

Also let y —-h-{-x= Isincp , ...... (11.44)

£'

and
''-J^\^-E1

Then v = ^{i-c^y^], ^,= -i-(i -^2/^'^),

and dx = dy.

Consequently (11.7) becomes

Rrfa; = ^R2r2/r.

Therefore, differentiating with respect to the upper limit,

whence _i oil +Ji-^R
, 1 -At^^^^'I

[ dx ^ dx\

Consequently, by integration,

r^lRv^ = i v~idx



THE EQUILIBRIUM OF THIN CURVED RODS 279

sin^^ (cy)

y
T

Hn
I

EI

{sm-^c{h + x) - sin-'' ch)} . (11.45)

This last equation expresses R in terms of x. If we expand the right

hand side of (11.45) i^ powers of x and retain only the first power
of X we shall arrive at an equation which is identical with (11.9). If,

however, we carry the approximation as far as the second power of x
the result becomes

= X

2(1 — c^h-^}}

kx
f

I I \|

Irjf

where Vq is the value of v when x= o.

(11.46)

Since Vr. and
, ^^ —

j
are quantities of the same order it is

clear that the proportional error due to neglecting the variation of

99 ^is a fraction of the order — , which is certainly small in every

practical case.

192. Conical springs formed with
wire of uniform section.

Suppose the central line of a spring

lies on a cone. Let the central line be

inclined at the angle 99 to a circular

section of the cone at the point B at

which it meets the section. Then an

axial force R gives rise to a couple R?"

at B, the axis of this couple being BC,

the tangent to the circular section. Let

BL(fig. 97) be the tangent to the cen-

tral line and let CL be perpendicular to

BL. The couple Rr can be represented

by a vector along BC, ind this can be

resolved into a pair of vectors parallel

to BL and LC. These are respectively

the torque and the bending moment, and their magnitudes are

Fig. 97
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Q = Rrcos99,

M =^ R?" sin 99,

just as for a helical spring.

It should be particularly noticed that the axis of the bending

moment, is in the tangent plane to the cone at B. which is, of course,

not perpendicular to the radius through B. If this axis of M happens

to coincide with a principal axis of the section of the spring at B then

the energy stored in the spring is

Some springs are made, however, with one principal axis of the section

along the radius BK of the cone. Then the other principal axis is

perpendicular to this radius and at the same time perpendicular to

BL. In that case the bending moment must be resolved into com-

ponents with axes along these principal axes. Let I^^, Ig, denote the

moments of inertia of the section about BK and the other principal

axis respectively. Then the corresponding bending moments are

Mj = M cos a = Rr sin 99 cos a
\

Mg = M sin a = Rr sin 99 sin a
)

a being the semi angle of the cone.

Then the energy is

2 J Ell 2J EI2 2J Hn
The integrals involved iji W cannot be worked out until the variatjon

of ?' and 99 with s is known. Let us assume, as a parti-

cular case, that 99 is constant.

Let O be the vertex of the cone and let B' be another

point near B , on the central line of the spring, so that

BB'= ds. Let OB = I, 0B'= /+ dl. Let OB' produced

meet the circle throngh B at D (fig. 98), and let BD subtend

an angle at the point K in fig. 97. Then

ds = BB'= BD sec 99 = rdO sec 99.

Also dl= — DB'= — rdO tan 99.

But we know that

ds

(11.48)

(1149)

Therefore

whence

r= / sin a.

dr= dl sin a
= — rdO sin a tan 99

^^ — ds sin a sin 99,

d7'

ds -=
: :

sin a sin 99

If the values of r at the 'wider and narrower ends are r^ and r^ equation

(11.47) becomes
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1

w=-- Ar|^^-!^4-5^^!
sin a sm 99

iR^(r(^^ — }\^)ism^(p cos^ (p]

b sin a sin 99 [ EI Hn

Likewise equation (11.49) gives

I R2(7o^ — 7\ 3)
I
sin- ojcos^a sin^wsin^a , cos^cplW= ^-^ ^^j ^

1
^ ^} (11. SO)

6 sin a sin ^ | EI^ ^ Elg ^ Hn | ^ ^ '

By the method used in deriving equation (11.9) from (11.7) we can

prove here also that the relation between the force R and the extension

X is 2W

If the section of the spring is a long thin rectangle whose short side

lies along the radius of the cone the moment of inertia 1^ is very large

compared with I^. Also it is proved in Chapter VII that H is nearly

4 I^. Consequently, when the term containing I^ is neglected, equation

(11.50) becomes

I R-(rQ3 — /-j^) jsin299 cos^a cos2(^

6 Ii sin a sin 99 (
E 4/?.

2R2(r<)^ — rj3) jsin^c^cos^a cos^^?^

hb^sinasiiKp
\

E 4n j
' '

where h and b denote the long and short sides of the cross-section.

The same methods can be used for any shape of spring. In general,

however, both 9? and r will vary along the spring, and therefore both

these must be treated as variables in the integrals for W.

193. Spring of any form with nearly horizontal coils.

In most spiral springs the coils are so nearly- perpendicular to the

axis that very little error arises from making this assumption. It is

therefore worth while to work out for such a spring "an equation

connecting R and x which can be used when the radius of the coils

and the section of the wire are both variable for the case of an axial

force.

Since the angle 99 is here assumed to be negligible the bending

moment is consequently negligible. Therefore the energy stored in a

length ds of the wire when it is subjected to a torque Q is

2 Hn
The total energy stored is thus
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W=- / S^d.^
2 Jo Hn
1 /»^r2R2= — / as
2 Jo Hit

2nJr. H
The integral in the last line can be worked out when the radius of the

coils r and the shape of the section are known as functions of j.

The other expression for the work stored in the spring is

W= fRdx
'J.

Equating the two values of W we get

\dx^— C (11.53)
o

/
•/ o 271

where ^ ^^
/ — ^^ •

Differentiating both sides of equation (11.53) with respect to the upper

limit X we get

n dx

dR n
whence — = —

,

dx -C

and therefore R = — x (ii-54)

Thus the relation between R and x is known when the value of C is

worked out, and the value of this integral is a constant for the spring,

depending on its shape and size.

This last result Can be applied to a thing like a watch spring, where
all the coils lie originally in one plane, when a pull is applied per-

pendicular to this plane at one point, say the innermost end of the

spring, and a balancing force and couple at the outermost end.

194. The bending of nearly circular rings in one plane.
The rings that we are about to investigate are thin rings whose

middle lines are nearly circular both in the natural and in the strained

states. The rings may be closed or open; the general equations will

also apply to rods whose central lines form arcs of circles or whole
circles.

Let a circle which nearly coincides with the central line of the

ring be taken as a curve of reference. Let r be the radius of this

circle. In the equations of equilibrium involving the stresses and
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qr.d(9

T+dT

M+dM

external forces no appreciable error will arise if we treat the curve

as if it were exactly a circle. It is only when we come to express

stresses in terms of strains that the deviation from the circle need be

considered.

Let (r, 0) be polar co-ordinates of a point on the circle, the pole

O being at the centre of the circle. These will be taken as the co-

ordinates of a point K on the central line of the ring in the equations

of equilibrium. Let M, F, T, denote the "bending moment, the shearing

force, and the tension at K; and M -\- dU, F -^ dF, T -}- dT, the

corresponding quantities at K', whose coordi-

nates are assumed to be {r, -f- dO).

Let the external forces per unit length of the

ring be p acting radially towards the centre and

q acting tangentially in the direction in which

dO is measured. The resultants of these acting

on the piece of length rdO are prdO and qrdO.

Resolving all the forces acting on the

element KK' (fig. 99) along the radius through

the middle point of KK' we get, neglecting

quantities of higher order than the first,

dF-prde-Tde = o. . (11.55)

Again, resolving perpendicular to this middle radius,

dT-^qrdO+ FdO^o. ..... (11.56)

Taking moments about the centre of curvature C of the element KK',

which point coincides nearly with O,

dU -\- rdT -}- qr^dO = o . . .

sides of the above equations are divided by

Fig. 99

When both

results are

(11.57)

dO the

X
dO

pr

rfT

~dS
^F = -qr

(M.58)

(11.59)

m dT

le'^'de
^qr (I.1 .60)

It is interesting to notice that the last two of these equations give

-^= F ....... (xr.6i)

Since rdQ is the length of the element of the rod this is the same

relation between M and F as in a straight beam.

We want an equation connecting M with p and q. Then we must

eliminate F and T from our equations. Eliminating T from (11.58)

nd (11.59) we get
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From (11.61) and (11.62) we get

d'^U dU Jdp \
, . .

^+^='ii-'') ("'^^)

which is the required equation.

We have assumed so far that the ring is in equilibrium. Let us

now suppose that it is in motion as, for example, when it is oscillating.

Let us assume that the circle of reference, whose radius is r and whose
centre is at O, is either fixed or is moving with constant velocity without

rotation. We shall now need to take account of the displacement of K from

the circle. Let us suppose that the coordinates of K in the unstrained

state are q and 0, and let these become {q-^u) and (0 + rj) during

the motion. As we shall not apply our equations to any cases except

those in which u and y) are always small we shall assume that these

quantities are small at once. It follows that the element KK' has a

pair of component accelerations

—— radially outwards

and Q -^ in the direction in which q is positive.

Since q differs very little from r we may replace ^ by r in the latter

acceleration ; then the tangential acceleration can be written

Let w denote the weight of unit volume of the material of the ring,

and a the area of the crOss-section. Then the forces necessary to give

the above component acceleration to the element of length KK' are

wa ,^d'^u

9 ci^

wa d^rj
and — rdtf-r^—^

g dP

These two quantities should be inserted on the right hand sides of

equations (11.55) ^"^ (n-S^) respectively. An extra term is required

in (11.57) also. These alterations amount to replacing

/ wa d'^u^

P ''y Y + Jw-
and / wa c^r}\
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Also, since all the variables are now functions of both and t we
must write partial instead of ordinary differential coefficients. Then
equation (11.63) ^s altered to

Equation (11.61) remains unaltered when the rotary inertia is

neg-lected.

195. Relation between bending moment and displacements.
The angle between the radius vector of length {q -f u) and the

normal to the central line of the ring is approximately

r (^ + u)

QC10

-H
CO , cu\

-\-^( approximately
dO ' eof

The angle between the two radii which, in the

unstrained state, are inclined at dO, is d{0-{-r]).

Then it follows that the angle between the two

tangents at the ends of the element which sub-

tends d(0-\-rj) at the pole is

d(0 + r))-da

The length of this element is approximately

rdO, and consequently the curvature is

I dO-\-df] —da

(11.65)

Fig. 100

rdO

I cr]

r r cO

I fc^Q c^u\
(11.66)

I da

II CT] T 1/2,

r r tO r'

By putting u= o and ?y = o in this expression we get the curvature

of the unstrained rod. The other two terms, namely,

I drj I d^u

Veo~^W
represent the incnease of curvature due to thie displacements. Therefore

the bending moment is given by

The bending moment M and the tension T both produce extensional

strains in the fibres of the ring, but the strains produced by T are
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negligible compared with those produced by M since we are assuming

thas the thickness b of the ring is negligible compared with the radius.

If /j is the maximum stress due to M, and f^ the stress due to T, we
have M^ M

^' a

Now M is, at nearly all points of the ring, of the same order of

magnitude as Tr, whence it follows that"&>'

We are now justified in neglecting the extensional. strain of the central

line, that is, the strain due to T. This strain is equal to the increase

of length of the element KK' divided by the natural length. Equating

this strain to zero we get

{g-\-u)d{0-^rj)-Qde _
^6

"'''

that is, when second order quantities are neglected,

drj

or w+ r^ = o (11.68)

This last equation enables us to express the bending moment in the

form

When the ring is not in motion u is a function of only and in that

case the substitution of the expression for M from equation (11.69)

in equation (11.63) gives

d^u d^u du V^ { dp\

With the same substitution equation (11.64) becomes

d^u 6'^u du r^ i dp\ war*' d"^ (du \

or, in terms of r},

We have now obtained all the differential equations necessary for

dealing with the,equilibrium and small oscillations of thiin rings or thin

rods whose equilibrium shapes are nearly circular arcs.. For any special

problem we have first to solve these equations, and then to determine
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the constants by means of the conditions at the open ends for in-.

complete rings, and by means of equivalent conditions for complete

rings. We shall now state what these conditions are.

196. Conditions which determine the constants of inte-

gration for a rod in equilibrium,

For a rod in equilibrium for which p and q are known it would be

possible to find u from equation (11.70), and then, if we knew five

independent conditions like the end-conditions of a beam, we could

determine the five constants which would' arise in integrating this

equation of the fifth order. It is, however, easier to solve (11.63) ^^^

M, and then, if we require it, to find u from (11.6^). This, at least,

is the easiest process when the ends are open and not both clamped.

The end-conditions for an open ring are much the same as for a beam.

The following conditions are true

:

at a free end

I dM
M = o, and F = -— = 0; .... (11.72)

r dO
at a pinned end

at a clamped end

M = o, and u is known; (11.73)

u and -~ are both known (11.74)
du

Since the preceding rules give only two conditions at each end we
get at most only four independent conditions whereas we have five

constants to determine. This extra condition is contained in equation

(11.58) which we had to differentiate to deduce (11.62). Thus (11.58)

and (11.61) give

dp

If T is known at one end of the beam this gives an extra end-condition.

Suppose T=:Tq at this end. Then at that end

which is our new condition.

If a rod has a free end on which no finite forces act M can be

found completely from equation (11.63) ^^^ from the three conditions,

dM d'-M
^==°' W = "' ^=^"'

• • •

-^''-''^

which are all true at the free end.
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Again if a rod has an end at which a known finite force is applied,

but which is not clamped, this finite force gives rise to a known
shearing force F^, and a known tension T^^. Then the end conditions are

dM_ d^U

de~ ""^ 'dm
M = 0, -j^= r¥^, -3Z^

= ^To+F-2 . . . (n.;;)

It is thus clear that the stresses in an unclosed ring which has one free

end are completely determined without any recourse to the relations

between stress and strain. This is equally true, as we already knew,

for a straight rod. If, after we have determined M, we wish to find u,

we must solve the equation

2^ + .= _I;m .(::.;8)

The general solution of this equation is

t^ = 'W^ -I- Acos^ + Bsin^, (ii-79)

where u-^ is a particular integral due to the term containing M. The
two terms A cos ^ -|- B sin 6^ represent merely a bodily displacement

of the whole ring, which is, of course, accompanied by no strains.

This displacement has no importance since it is purely relative to the

point which we have taken as origin, and by taking as origin a point

which moves in a different way while the ring is being strained the

displacement could be reduced to zero.

If one end is clamped and one pinned, or if both ends are

clamped, or both ends pinned, then not only is u known at both ends

but also Yj is known at both ends. If 6=^^ a and 6 = ^ ^t the ends,

and if the values of rj at the two ends are tJq and >y^ , we get

= ^'im—Vo) (ii.Bo)

This is on extra condition which is necessary to replace (11.75) since

Tq is not known in these cases.

In every case of a rod with open ends we know five conditions to

determine the five constants in the expression for u. For instance,

du
when both ends are clamped, u and — are known at both ends and

du

iVi
—

^^o) ^s known.

A complete ring may be regarded as an open ring with both ends

du
joined together so that u and -—

- are the same for both ends at the
du

junction. Any point whatever on the ring may be regarded as the

junction. If the point ^ = a be regarded as the junction then our con-

ditions can be used in the form
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Z °l where O^a

dO
o

I
and where = 27z

»2it

and j udO
or

The preceding five conditions are sufficient to determine the constants

in u in any case. It is sometimes convenient to use the conditions in

other forms. One condition that we can deduce from the preceding is

^r-=5f(s+.)-
EI du 2 71

= 0.

197. The strains due to any given forces.

When p and q are given the equations can always be solved to the

extent of expressing the bending moment M and the displacement u
in terms of integrals. Thus, integrating (11.63) once we get

-\-jQ^+1^\=>-'P-'-'Il<i'^+^ ("-8')

Let the right hand side of this equation be denoted by A-\- f{0). Then
it is shown in the appendix that the solution is

•/'—M= f{v)sm{e — v)dv^A-{-BcosO-{-CsmO . (11.82)

The three constants A, B, C, have to be determined by the end-

conditions.

Let us now suppose that the integral in the expression for M has

been determined, so that M may be written

— M = F(^)-|-A4-Bcosl9 + Csin6/. . . .(11.83)

^j^' + ^^-|= F(^)+A+Bcos^+Csin^

If the right hand side of this equation were zero the value of u would

be given by the equation

EI—— u = H cos ^4- K sin 0.
r-

The particular integrals corresponding to the terms containing A, B, C,

can be found by the usual rules for finding the particular integrals

of linear equations. These rules give for the particular integral cor-

responding to these terms

FI
-Vw=A-f iB^sin^— iC^cos^

The particular integral corresponding to F(^) is similar to that due

to f{0} in equation (11.82). Then the total value of u is given by

19
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EI f^—-u= I ¥{v) sin (^ — v) dv

+A+ ^^(Bsin^ - C cos^j + H cos^ + K sin (9 (i 1.84)

This is the general expression for u involving the five constants which

are to be determined by the end-conditions. It may be more convenient,

in easy cases, not to get the result by this method because the integrals

may turn out to be clumsy. The method has, however, the advantage

of being direct since the whole process is reduced to mere integration,

198. The pressure required to produce a given deformation.
If the displacement u is given, equation ( 1 1.70) gives at onoe the

value of q— -j^, but does not give either p or q separately. If the value
do

of either p or q is chosen arbitrarily this equation gives the value of

the other quantity. Moreover, since we have to perform an integration

to get p when u and q are given, there is an indeterminate constant

in the expression for p. There is an obvious physical explanation of

this fact, for it is clear that a uniform pressure applied to a whole

ring, or to a portion of a ring with fixed ends, would cause no deforma-

tion of the ring. The deformation is due to the variation of p. It

follows then that the constant which would appear in finding p for

a portion of a ring with fixed ends is an indeterminable constant.

Suppose, however, that q is zero and that the ring has a free end

where both T and M are zero. Then equations (11.81) and (11.75) &ive

tT + r-> -f M = r-> -[-A
To make M and T vanish together the constant A must be zero. In

that case the equation for p at any point is

d^U EI id^u d-^u
I

1 99. The piston ring problem.
The problem before us is to determine the form of an open ring of

uniform cross section so that, when it is pressed into a cylinder, it will

just close up its ends and exert a uniform pressure on the containing

cylinder.

Let the radius of the circle into which the central line bends when the

ring is in the cylinder be denoted by v; let A (fig. 10 1) be the point of the

ring opposite the centre of the gap. Let the initial line from which
is measured pass through A, so that this fine produced backwards
passes through the centre of the gap. Let the pole O be situated half

way between the centre of the gap and the point A, the curve of the

ring being supposed to be produced through the gap when the ring is

free. Let (r -f- u) be the radius vector in the free ring of the particle

which is at (r, 0) in the closed ring.
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The Compressed Ring

Fig. loia

The Free Ring

Fig. loib

In this case it is easy to find M without salving equation (11.81).

The uniform pressure along the arc A'P in the closed ring is statically-

equivalent to an equal uniform pressure distributed along the chord

A'P The resultant is a force of magnitude p x A'F acting through

the mid point of A'P and the centre of the ring. The moment of this

force about P is

M = |^A'Pxpx A'P
=^^px{2r cos ^y 9)^

= pr2(i-fcos^)' (11.86)

This is the bending moment at in the strained ring, and sSince u
represents an inward displacement in this problem we must replace

u by — u in equation (11.69). Then

EI
• 2

d^'u
u + -T^J--=M=pr^l-{-cos0) (11.87)

sin ^) +A cos ^+ B sin^ . (11.88)

This equation can be solved by the rules given in the theory of linear

differential equations, and its solution is

The constants A and B depend only on where the pole O is taken

relative to the strained ring. We have already chosen this p'osition

so that the initial line is an axis of symmetry, and so that u has the

same values at ^=0 and 6= 71. The first of these conditions gives

du

o==B.

= o where =

whence

The second gives

which makes A = o.

pr*

EI

Then

u = pr''

EI
(i+i^sin^) . (11.89)

19*
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The angular displacement of each end of the ring when it is closed is

2EI

Then the gap in the open ring is

c= 2rr)y
T^TtpV^

EI

We can now express p in terms of the gap. Thus

EIc
P

7,7zr^

(11.90)

(11.91)

(11.92)

If the depth of the ring is denoted by h the pressure per unit area

between the ring and the cylinder is

P EIc

h 7^717'^ h

The expression for u in terms of the gap is

(11-93)

u =— (i + -|^^sin^) (11.94)
3^

The values of u where ^ = o and where = — are respectively

3^

and ••'ihm
(11-95)

(11.96)

The diameters through the gap and perpendicular to the gap in the

free ring are respectively

2C
2r -\- 2U(. = 27'-{

3^
2C •

and 2?' -]- 2W| = 2r-\ [- J c
3^

The difference between these diameters is ^ c.

It is usual for piston rings to have rectangular cross-sections. Let

b denote the radial thickness of the ring. Then

and the maximum stress, which occurs at the point A, where ^ = 0, is
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f^hb

= U

M
T
2pr-

^^hVi

I2pr'

hVi
(11-97)

= ^^r^
(11.98)

Fig. 102

The ratio of this maximum stress to the pressure per unit area is

fk

•
' P

When we use the value of jo in terms of the gap the stress can be

put in the form he

f=-^K ...... .(:r.99)

The piston ring whose central line has

the form of the curve given by equation

(11.89) could be closed into its circular

shape by a pair of opposing forces acting

on the open ends, as shown in fig. 102.

For the bending moment at K due to

the force R at A' is

M = RxA'N
= Rr(i + cos^) (11. 100)

This is exactly the same bending moment
as that due to a uniform pressure p,

provided that R = pr (ii.ioi)

Then it follows that the deformation of the ring caused by the force

R is exactly the same as that due to the uniform pressure, whence it

follows that the force R bends the ring into a perfect circle.

Whether the force R is or is not equal to pr it produces an inward

radial diplacement abtained by replacing pr by R in equation (11.89),

which displacement is

u = ^{i-v^esme). . . . . . (II. 102)

If the force R is reversed an equa'l outward radial displacement is

produced.

The usual method of fitting a piston ring on a piston is to open

the ring by a pair of forces similar to the forces R reversed. These

forces only increase all the magnitudes of the displacements of the

natural ring from the circular shape in the same ratio. That is, the

total displacement of the ring from the circular form, when it is

deformed by forces R in opening the ring, is given by

« = ^?^t|^-(i + i«sine) . . . .(II. 103)
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The ring will go over the piston only when the smallest diameter

exceeds the diameter of the closed ring by twice the radial thickness

of the ring. This smallest diameter is the one through the gap, and

it exceeds the diameter of the closed ring by twice the value of u

at the point where ^ = o ; that is , by

2{R-\-pr)r'^

Equating Uq to the thickness we get

The stress due to the forces R is, by equation (11.97)

A'

Also the increase of the gap is

^ =--^~ .••-•• (11.104)

1 2 R?-

^1 = -^^- (1 1. 106)

Adding corresponding sides of equations (i 1.97) and (i 1.105) we get

,+,.ii*^ <.,.o„

and this becomes, by equation (11. 104),

/•+A=^^E (II. 108)

Thus the sum of the maximum stresses in the ring when it is being

fitted on the piston and when it is in the cylinder is constant. To
keep the stress as low as possible under all conditions f^ will have

tx) be made equal to f.
Then

/=/-i=|^E, ...... (11.109)

and the free gap corresponding to this value of / is

Eb/

=— ft = 47ib (ii.iio)

Since the stress f^ exists for only a very short time and the stress /
for a very long time it is probably much better to let f^ be greater

than /, Probably a good rule would be to make f^ equalto 2f. This

would give c = jzb.

200. Circular piston ring.

Suppose a piston ring were cut in the form of a perfect circle

with a uniform rectangular cross-section. We shall find its shape

when it is put into a cylinder, and the 'forces it exerts on the cylinder.
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Let us suppose that the length of the ring is such that, when it is

fitted into the cylinder, the open ends just come together without

exerting any pressure on each other.

Let the external radius of the ring

in the unstrained state be (r ~\- c), and

let the internal radius of the cylinder

be r. Then, wherever the ring fits the

cylinder, the change of curvature of the

ring is approximately

r r -\-c r-

and therefore, the bending moment is

EIc
. . (II. Ill)M =

Since the ends are

r-

free,

Fig. 103

equation (11.85) gives

M
P

EIc
(II. 112)

all

all

Thus the pressure and the bending moment are both constant at

points where the ring fits the cylinder. But the ring cannot fit

along its length for that would require that M should have the same

constant value at the free ends, and we know that M is zero there.

The problem is to find where the ring does fit the cylinder.

It is easy to see that the free ends must be in contact with the

cylinder, and whatever finite forces the cylinder exerts on those ends

the bending moment vanishes there. Thus the change of curvature

at the ends is zero. It follows that the curvature of the ring near the

ends is less than the curvature of the cylinder, and therefore that

the ring cannot fit the cylinder near its free ends. Then there must

be a region between each end and some point on the ring where there

is no contacjt between the cylinder and the ring. The two regions

where there is no contact are from A' to H and from A' to H' in

fig. 103. In order that M should be constant between H and H' it

can be shown that there must be finite forces Q at H and H'. We
shall now show that all the conditions of the problem are satisfied

by the following:

—

(i) finite forces S acting on each free end;

(2) a finite force Q acting at each of the points H and H'

;

(3) a uniform pressure p per unit length between H and H'

;

(4) no contact from A' to H and from A' to H'.

Let the angles AOH and AOH' be each a- Then the bending moment
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at a point P in the region where the uniform pressure acts, and at

angular distance 6 from the point opposite the gap, is

M = Sr sin^+ Qr sin (a - 0) -^pr^{i — cos{a - ^)j (i i.i 13)

This result is obtained by taking moments about P of all the forces

acting on the part A'BHP. The part due to the uniform pressure on

HP is exactly similar to the bending moment in (11.86).

Writing cp for (a — 6} in the last equation, and also writing (a — 99)

for 6, we get

M = Sr sin (a — cp) ~\- Qr sin 99 -f-p'^ ( j _ cos(p)

= Srjsina COS99 — cosa sin99}+ Qrsivifp -\-pr^{i — cos 99) (i i.i 14)

But we have already found that, in the region between H' and H,

therefore

EIc = ^r2-j- (Sr sina —^r'-^) cos 99 + {Q>' — Sr cosa) sin 99 (i i.i 15)

for all values of 99 between o and 2a. The two sides of this equation

will be identically equal provided the following three equations hold

:

Elc
pr'^ = —

-

r^
(1..116)

Srsina

—

pr- = >

Qr — Srcosa =
These three equations are just sufficient to determine the values of p,

S, and Q. Thus

Elc

Elc
S = /?r cosec a =—— cosec a

ri'O

Q b cosa = —— cota

(II. 117)

201. Shape of the ring between A' and H.

At a point between A' and H at angular distance from A the

bending moment is

^ . ^ EI<? sin
U = SrsmO=-—--

r^ sma

Therefore the equation for the displacement is

El/d^u \ Elc sin 6^

or
dir-

+ u
r^ sma

sin 6^

(II. 118)
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The solution of this equation is

u=AcosO-\-BsmO — ^c—-. . . . (ii.iiq)
- sma ^ ^

The conditions that this value of u must satisfy are

u = c where = Ji

u= c
^

iu
\

du \ where = a

These give

71

c = —A + ic-— {11.120)
sma

. T. . 1
« cosa

c= Acosa-}- Bsina — ^c —r (11. 121)
sma

o = — Asina + B cosa .— (cosa — asina) . (11. 122)
2 sma

Eliminating B from the last two equations we get

/:cosa = |A— 4c
)
(cos-a + sin^a) + ^ccosa

\ sma/

=K—lc- \-\ccosa (11. 123)^ sma ' 2 -
\ o,

Now adding corresponding sides of (11,120) and (11.123) we get

c-\-ccosa = -kc-—. 1- 4c cosa,
sma

whence ji — a = 2sina -H sina cosa
= 2sina-f Y^in 2 a .... (11. 124)

This equation determines the angle a and therefore the positions of

the points H and H' where the ring comes into contact with the

cylinder. An approximate solution can be obtained graphically and

then the solution can be improved by analytical methods. This process

K^^^^ a =1*0025 radians

= 57^26' (11-125)

The correctness of this answer can be verified by the tables at once.

Thus, with the value of a in (i 1*125)

71 — a = 2*1391

and 2sina-l- i-sin2a = 2*1392
,

which are near enough for practical purposes.

By equation (11. 120)

\2sma /

= 0-8638^
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Also either of the equations (11. 121) or (11. 122) gives

B = 4 c
I
sina + -—

)

= 1-01466

Therefore

w— = o'8638 cos^+ 1*0146 sin^ — 0'5933^cos6^ . (11. 126)

The clearance between the ring and the cylinder is (u—c), and this

is a maximum where w is a maximum, that is, where

du

or where

— 0*8638 sin^-|- 0*42 13 cos ^4- o-5933^sin^ = o .

This is satisfied when 6 ^= i 01 0= 2-6 approximately. The first of

these roots is clearly a. The second is the one that makes u a

maximum, and since 26 radians is approximately 149® this miaximum
value of u is

u = [— 0-8638 cos3i^4- 1*0146 sin3 I ^-j- 0-5933 x 2-6 sin3i^| c

= 1-1056' , (II. 127)

Thus the maximum clearance is 0'io5f: and occurs at 31*^ from the

centre of the gap. Since no other value of between a and Ji makes

dtt/— zero it follows that the value of u in (11. 127) is the maximum value,
du

and also that u gradually approaches c as ^ varies from 2*6 to a or

from 2-6 to 7i; that is, the ring lies inside the cylinder between A'

and H, and therefore also between A' and H'. Thus the solution

we have obtained satisfies all the conditions of the problem.

202. Piston ring of variable thickness.

Suppose the outside of a piston ring has the form of a perfect

circle. We shall find what the value of I must be to make the ring

exert uniform pressure on the cylinder.

Let r denote the internal radius of the cylinder and (r -(- c) the

external radius of the free ring. Then the inward radial displacement

of every point of the ring is c. Therefore

£1 / d^u'

EIc

M
dO\

....... (11.128)

But by (11.86)

M=j9?-^(i -\-cosO).
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Therefore, equating these two values of M, we get

EIc—— = pr'^ ( I -j- cos 0)

whence
I (i + cos^) (II. 129)

If th€ ring has a rectangular section with a uniform axial depth h

and a variable radial width b this last equation gives the width. Thus
.4

b^'

iipr
(i + cos^) (11. 130)

Writing p^ for the pressure per unit area on the ring we have, since p
is the pressure per unit length,

whence , „ i zj^^r'
&3 =

Ech^
(i + cos^)

j=/£i?ir!cos^f:r
It will be noticed that the width b vanishes when ^= + 180^, that is,

at the free ends. This is due to the fact that the bending moment
vanishes and the change of curvature is finite at these ends. There

is only one practical way of avoiding wedge-shaped ends to a piston

ring and that is by making the radius of curvature of the outside of

the ring at its free ends the same as the radius of the inside of the

cylinder. Since M is proportional to the change of curvature equation

(11.87) shows that the ring whose form is defined by (11.89) has a

radius of curvature r where 6^=71.

203. The eccentric ring.

To save trouble in manufacture piston rings have been made with

the inside and the outside both circles whose centres were not quite

coincident. The gap is then cut out at the

thinnest part. Let us see what pressure the

ring exerts assuming that it fits the cylinder

everywhere.

Let O be the centre of the exterior of

the ring, C the centre of the interior, and

let OC = c. Then, if P is a point on the

exterior and if the radius of the exterior

circle is q,

CP = OP + COcos^
^^ + ccos^

If the radius of the interior circle is r then the radial thickness of

the ring is

Fig. 104
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b = CF-r
= Q-\-c COS — r

= k-\-ccosO, (II. 1 3 2)

k being written for the small difference [q— r).

Let Q—d denote the internal radius of the cylinder. Then the radial

displacement u is everywhere d. Consequently

M =^ ,,...33)

Now p is obtained from equation (11.85). Thus

I (rf^M

In the present case the variable factor in M is I, which varies because

b varies. Assuming that the axial depth of the ring is constant and

equal to h we get

I Edb^hM = -—
12 r^

= H6^ . (11135)

H being a constant. Then

db'^
But -— = — 3fe2csin^ by (11. 132)

du

^^^^^^
6bc^smW-^b^ccosO.

Therefore

d0^

Hb
{6c^ sin^O - ^bc cosO + b^}

= ^{k^ - kccosO + c^6smW - 2cosW)} . (11.136)

If k= c then the thickness vanishes at the gap and therefore M
vanishes at the gap. If the calculated M did not vanish at the gap the

ring could not fit the cylinder for we know that the actual bending

moment must vanish at a free end. Assuming that k= c we get

Hbc^
p = —-^(7—8cosO) (i + cos^)

= ^(7-8cos6?)(i + cos^)2 . . . . (II. 137)

This vanishes at the gap where 0==7i and also at the points where

8 cos ^=7, that is, where 0=+2g^. Between the points where

Or= —29^ and 0= -\- 29^ the value of 7? given by (i 1.137) is negative.



THE EQUILIBRIUM OF THIN CURVED RODS 301

But the cylinder cannot supply a negative pressure. It follows then

that the ring cannot fit the cylinder even when the free ends taper to

sharp edges. Then a ring whose inner and outer boundaries are circles

and whose axial depth is constant can in no case fit a cylinder. When
such a ring is used as a piston ring the actual distriibution of pressure

is different from that given by (11. 13 7)

for this is obtained on the assumption

that the ring is forced to fit the cylinder.

204. Stresses in closed rings.

Suppose a uniform closed ring is

subjected to n equal radial forces P distri-

buted at equal angular intervals 2a round

the ring.

Six forces are shown in fig. 105 but

the method could be used for any num-
ber of forces.

We need only consider the portion

L' L between two forces. Over the whole

of this portion p and q are both zero, and

consequently equation (11.70) becomes

d'^u d^u du
, o\

rf5i+^ie^ +^= ° •
• • •

•("•^')

The complete integral of this is given by (11.84). We may write the

result in the form

?i = A-f (B+C6')sin6/+ (H4-K^)cos6' . . (11. 139)

Now it is clear that the ring is symmetrical about the diameter through

A. That is, the value of m at 6* must be equal to the value of m at — ^

for all values of Q between o and a. Thus

A-f-(B + C^)sin^+(H-|-K^)cos^
= A+(B— C^jsin(-^)+(H~K6>)cos(-^)
=A-(B - C^)sin^+(H-K^)cos^.

Since this is an identity, the coefficients of sin Q and of Q cos on the

two sides must be equal ; that is,

B = -B,
K = -K,

whence B = o 1 , .

, T^ \ (11. 140)and K=oJ v t /

Therefore equation (11. 139) reduces to

^< = A^-C^sin^+Hcos^, .... (11. 141)

the right hand side now containing only even functions of Q.

We need three conditions to determine the three remaining con-

stants. The following three will suffice:

—



302 APPLIED ELASTICITY

du \

dO~ [where = a; . ^ . (11.142)

and F = - 4 P J

The last condition, expressed in terms of u, can be written thus

udO = o (1 1.
1 43)

Also the second condition is, if u represents the outward displacement,

Elfd^u du\ ^^

This combined with the first condition gives

d^u P/*^— = -^ where e = a (:i.r44)

^°* ~ = C(sme + ecose)-HsinS,
du

d^u
-r^ = — C(3 sin^ + ^ cos^) + H sin^

,

a

udO = Ka + C (sin a — a cosa) + H sina .

Then the three conditions give

o = C (sina + a cosa) — H sina
,

= C (3 sina -{- a cosa) — H sina
2 EI

o = Ka -\- C (sina — a cosa) + H sina.

The values of the constants satisfying these equations are

I Pr^
C = —— coseca

,

4 EI

I Pr^
H = ( I + « cota) coseca

,

_ I Pr^ I

^-2Er'a-
Therefore

I PrM2
I

u = — —— 6'sin6'coseca— cos^(i -\-a cota) coseca
[

(i 1.145)
4 EI [a I

The bending moment is

Elfd'^u

EI= -(A + 2Ccos^)

, _ / 1 cosO\
==-lFrl ^- (II. 146)

\a sin a J
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The bending moments at A and L are respectively

\sma a J

and Mi= — iFrl cot a
e-'

(II. 147)

The second of these is clearly negative. The ratio of the magnitudes

of the bending moments, and therefore also of the maximum stresses,

at L and A, are

-M,
cota

a

M„ 1 I

sin a a

sina— a cos a

a— sma

If a is small this ratio is approximately

-Ml (a-ia3)-a(i

(1 1. 148)

i«^

M.
= 2 "

. . . (II. 149)
Thus if a is small, anything less than 20^, the stress near one of the forces

is approximately twice as great as half vvray between two forces.

If only two forces P are applied at opposite ends of a diameter

then 2a = jr and therefore

'
'>) (11.150)

Also . 71

sm—
-Ml 227

. (II. 151)

M— i'4

Me 71 71

sm —
2 2

approximately. Thus even in this extreme case the ratio does not differ

much from 2.

205. A closed uniform, ring is subjected to a uniform pressure p
per unit length over an angle 2a and a

balancing force P on the opposite side of
the ring, as shown in fig, 106.

Let suffixes i and 2 be used to indi-

cate quantities in the regions AL and LA'
respectively. The bending moments in

these two regions are

Mi=Ai + BiCos^+ Cisin^ (11.152)

M2 = A2 + Bg cos^+ Cg sin^ (11. 153)

The shearing forces are F^, Fg given by Fig. 106
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rFj = — B^ sin^-f- C^ cos6' . . . . (11.154)

rF2 = — Bg sin^-f Cg cos^ .... (11. 155)
Now, in consequence of the symmetry about the radius OA, the

shearing- force is zero at A. Therefore

o=-Ci (iJ-i5^)

Moreover the shearing force and bending moment are both continuous

in passing the point L. That is,

m1 = mJ*''^'^^^
= " ("-'57)

Therefore

— B| sina + C^ cos a == — Bg sina + ^2 cosa

A^ + Bj cosa -}- Cj^ sina = A, + B^ cosa + Cg sina

These give, since Cj = o
,

Bg — Bi = C2Cota (II. 158)
Ag — Aj = — (B2— Bj^) cosa — Cg sina

= — C2 coseca (11. 159)

Again equation (11.58) gives

f =T+p''' ("•'^°)

and since T has the same value on opposite sides of L we find that,

when = a,

dF, d¥.,

w-w^p' ^''-'"'^

Thus — B^ cosa — C^ sina + Bg cosa -f- Cg sina =p7'-,

whence Cg sina + Cg cot a cosa =pr^,

or C2=jor2sina .... (11. 162)

Of the six constants in equations (11. 152) and (11. 153) we have

determined two, namely C^^ and C2, and we have two equations for

the other four. We need two new equations to determine them

completely. The direct method wOiild be to find u^, Uo, rji, r}2, and use

du
.

du
,

the conditions that u and -—
, are contmuous at L; that —r is zero at A

dO dO
and A'; that u has whatever small value we choose at A; and that

Yj is zero at A and A'. All this is very laborious, and to avoid it the

following two equations will be used, the proof being- given below

MdO = o ....... (II. 163)

UcosOdO = o (II. 164)

To prove the first of these we integrate both sides of the equation
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EI fdh, \

EI }d''u dfj\

~
r' [dO'^ '^dOj

.("--S
du n

o

Thus

Since — and rj are each zero at both Umits, equation (i 1. 163) is proved.
du

Next to prove equation (11. 164).

By integration by parts we get

/ ——cos (9flf^= cos ^-TTT 4~ / —prsmOdO
Jo dO^ I dO jo Jo dO

= o-\-\u sinj^ — I u cos 6d0

Therefore

-1} COS Ode.

cos OdO= o

,

from which equation (11. 164) follows.

Equation (11. 163) is equivalerrt to

f\de + fJo Ja
M^de= o

that is , since C^ = o

,

A^a 4- Bi sina + Ag (jt — a) — Bg sina + 02(1 + cosa) = o

,

whence

J1A2 = a (A2 — A^) + (Bg — Bi) sina — Cg ( i + cosa)

= — aC.2 coseca + Q cosa — C2 (i -f cosa)

by equations (11. 158) and (11. 159). Thus

A2 = pr2(sina + a) (11. 165)
71

Again (11. 164) is equivalent to

f Ml cos Ode+ f M2 cos edO= o,
Jo J a

which gives

Aj sina + i^i (" + ^i^" cosa) — Ag sina

-j- YB2(7r — a — sina cosa)—^Cg sin^a = o
,

whence

jrB2 = 2 (Ag — Aj) sina + (Bg — BJ (a -j- sina cosa) + Cg sin^a

= — 2 Cg + C2 (a cota -|- cos^a) + C^ sin'^a

= pr2(a cosa — sina) (11. 166)

20
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From (11.159) and (11. 165) we get

Ai i(7r.—jrr^ {71 sin a)

Also from (11. 158) and (11. 166)

I

B, /?r2|(7r — a) cos a -}- sina}

(11. 167)

(11. 168)

Then finally

Mj =— pr'^\7i — a — sina — [{n — a) cos a + sina^ cos 0]

M. J3r2[(sina + a) — (acosa — sina) cos^ — jr sina sin^]

By considering the equilibrium of the whole ring we find that

P =7? X 2 r sina

Then the bending moments in terms of P are

Pr
Mj = _ ._ [jT— a — sina— {(jT— a) cos a -h sin a

I
cos ^]

M,

271 sma
Pr

271 sin a
[(sin a-^a)— (a cos a— sin a) cos —n sin a sin ^]

(11.169)

When a is very small, so that may be taken as unity, then M.
a

reduces to

Pr
M., = (2— jrsin6^), . . . . (11. 170)

271

which agrees with (11. 150) when allow-

ance is made for the different position

of the line from which is measured.

Let us next suppose that a uniform

pressure p acts over an angle 2^ and

a balancing force P at A, as shown in

fig. 107. We can write down the bending

moments in this case by merely writing

(71— 6) for 6 in the previous results. Thus
if Mj.and Mg denote the bending moments
in the regions A'N and NA respectively,

M;= ";
[71-p- sin/5 + {(jr - fi)

cos^ -I- sin^} cos<9]
j

'""''p; {II. '71)

2= ^-^ r(sin;5+^)+ (^cosi5— sin^)cos^— TT sin^ sin^l
271 smp^ •

The bending moments due to both sets of forces in figs. 106 and 107

are obtained by adding together the bending moments due to each set

separately. Moreover, if the force P in fig. 107 is equal to the force

m:
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P in fig. io6 then the distributed pressure p would balance the

distributed pressure p' if the two forces P were removed. The bending

moment at any point due to these distributed pressures without fhe

two forces P is obtained by adding the bending moments given by

( 1 1. 169) and (11. 171), and subtracting the bending moment given by

(11. 170). This will give three different expressions for the bending

moment, one in the region where p acts, another in the region where

p' acts, and the third in the region between = a and 9= n —
fi

where no pressure acts. For example, the bending moment in the

region where p acts is

PrM=— [{ji— a) coseca—pcosGC^—{{7t—a) cot a -{-^ cot fi}
cos 0] (i 1.172)

206. Oscillations of a ring in its own plane.

A ring can execute oscillations under the. action of no forces. Such

oscillations are given by equation (11.71) if we put p and q each zero.

Let us then put p and q zero, and let us also assume that

Tj = i sinct (II. 1 73)

in that equation, | being a function of only. Then the equation

reduces to

The factor sinc^ divides out leaving an equation for | in terms of 0.

Next put

^= Asinw^ + Bcos'w^; (11. 174)

then the last equation gives

- 7l^n'^~ 1)2 = ^f^'(_ ^2_ i^

or n'^{n^ i)2 _ _^(,^2^ i) (11.175)

ak^ having been written for I.

For a complete ring n must be an integer, for this gives n complete

waves in the circle, and rj must certainly be a function whose values

recur as increases by 271. Moreover n cannot be equal to unity

because this corresponds to an oscillation of the whole ring without

any alteration of shape. Then n may have any of the values 2, 3, 4, . .

.

The value of c- corresponding to any value of n is

271
and the period is— . Thus the normal modes of oscillation for a

c

complete ring are given by
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rj =^H sind sm{nd+ K) \ , .

where w = 2, 3, 4, j ' ' ' ' ^ -
il)

and c is given by (11. 176)

Incomplete ring.

The normal modes for an incomplete ring, or one with open ends,

are also given by (11. 173) and (11. 174), but now n is not necessarily

an integer. In fact n has to be found from (11. 175). This is a cubic

in n^ giving usually three values of n^. Let these values be n^, n^, nf.
Then

^ == Aj sin/Zj ^ + Bj cosn^ Q -\- K.^ sin/ig ^ + Bg cos n.^

+ A.^ sinWg^-j-Bg cos%^ . . . . . (11. 178)

The conditions at the ends will give five linear relations between the

six constants and one equation to determine the possible values of c,

and therefore of the corresponding values of n^, n^, %. The problem

is a very awkward one owing to the fact that the equation for n^ is a

cubic. We shall apply our equation to solve the following easier

problem.

Suppose § is a given function of what pressure will produce the

displacement given by the equation

Y} = ^smct} (I I.I 79)

It is clear that the pressure p must have the same period as rj. Then let

p = %smct, (11. 1 80)

z being a function of ^, Now making the substitutions in (11.71) and

also putting q= o, we get, after dividing by sinc^,

Therefore by integration

The function ^ cannot be chosen arbitrarily, for it must be such as

will satisfy the end-conditions of the open ring. Suppose, for example,

that we apply our result to a ring which has a small gap at one point.

From our investigation on the piston ring we know that the bending

moment and shearing force are zero at the free ends provided

§= A(2 + ^sin^),

being measured from the point diametrically opposite the centre of

gap. The value of ^ from this last equation is

^=A(2e-ecose-\-sm0) .... (11.182)

No constant is needed since § must be zero when^ is zero. Substituting

this in (11. 181) we find
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^ + B = A{2 + 20 sinO + 2 cos^ - O'^} (i 1.183)

Now the bending moment and shearing force are not affected by the

acceleration but depend only on the actual form of the curve at any

instant. The tension does, however, vary with the acceleration. There

are, in fact, inertia forces in the tension hut none in F or M. Thus
equation (11.58) corrected for the inertia, becomes

dF ^ / ,

wad^u\

( warc'^d^ .

I g dO

d^\ware

But

^rsmet^z +^~j (11.184)

dF _ I a^M

EI . id^Bd^^l

El= —-sinc^x (— 2Acos^) . . . . (11. 185)

Now one end-condition is that T = o at the free end vhere = 7t.

Putting ^^TT in (11. 184), and making use of (11. 185), we get, after

dividing by sin ct^^

2EI I . warc^
—r-A iwarc^ \

^J^2A
1 (II. 186)

Also putting = 71 in (11. 183) we find

^+ B = '^A(-;^2) ..... (Ii.l»7)

The last two equations give, when 2 is eliminated,

9
' r^

Therefore the general value of z given by (11. 183) is

^ = *^A{2^sin^+2cos^+ 7r2-^2l+i^A. (11. 189)
^ I yd
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The value of z steadily decreases from ^ == o to 6 = tz and its values

at these points are

,, warc^ 2 EI
^^=(2 + ^2) A+--A

^^^ warc^ ^ 2 EI
z. = — 2 A + —-A

g r

(1 1. 190)

If the oscillations are rapid, in which case c is large, it is possible

for z^ to be negative. If that were so there would be two regions, near

the free ends of the ring where the pressure would be acting outwards

while the pressure op. the rest acted inwards and vice versa.

207. Application to a piston ring in its cylinder.

Let us modify the last problem by assuming, instead of (11. 179),

the following equation for ly :
—

7/ = B^^-L isind, (11.191)

where B, still has the value given by (11. 182). Now each term in the

value of Y) gives rise to its own pressure, and the total pressure is the

sum of the pressures due to the two terms B^^ and £ sin ct. But we
know from the piston ring problem that the displacement ?; = B^^

corresponds to a uniform pressure p^^. The substitution of — rB^ —
dO

for u in (11.85) gives

2EI
^ ^ , ^

^o = ^ABi (II. 192)

Since the pressure corresponding to 1; = ^ sin c^ is p=^z sin ci it

follows that the total pressure corresponding to the value of r) in

(11. 191) is

V"^'Po~\~^ sin ct

2E

I

IjUCLTC= -^-A(B.+sind)-l A{2^sin^+ 2cos6>+^-— 6>^|sincj! (11.193)
r^ g

Let us suppose that the cylinder is slightly out of shape, and let us

assume that the form of the cylinder is such that the ring whose shape

varies in the way we have assumed in equation (11. 191) always fits the

cylinder. This will be possible only if p is positive at every point of

the ring at all times, When sin ct ==— i then

and this will be negative at the point where ^ = o if it is negative

anywhere. Then the condition that the ring should actually have the

oscillations we have assumed is that p^ should be greater than the

value of z at the point where = o, that is,

2 EI 2EI ^warc'^
-;^AB,>—A+ ,2+^-^)—-A. . . (.1.194)

Now in following any reasonable deformation of the cyhnder the

change of form of the ring must be very much less than its change
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I

when it is pressed into the cylinder; that is, the coefficient B^ in

equation (11.191) must be very much greater that the coefficient i of

^sin ct. But (11. 194) gives

2 EI

,

, „ warc^

or, neglecting unity compared with B^,

2 EI _ , „, ivarc^-— Bi>(2+:^2) .

When ak- written for I this becomes

.4^2

B
^^V + YJ^m^': <"'95)

Suppose the ring has a rectangular section of radial thickness b; and

let n be written for the frequency of the oscillations, that is, for the

number of oscillations per second. Thus

27t

and k^ = tS ^!

;

therefore ^ »,,.-,. wr^n'^

This gives the relation between the frequency n and the quantity B^,

which is the ratio of the deformation produced by the constant pressure

pQ to the maximum additional deformation due to the oscillations.

Suppose the engine is running at N revolutions per second, and

suppose also that there are s complete undulations on the cylinder in

the length of the stroke. Then the ring has to make 2 N^ complete

oscillations per second. This is the 7nean frequency; but since the

motion of the piston is approximately simple harmonic its maximum
speed is approximately ^71 times its mean speed. Therefore the

maximum frequency of the ring is tisN. Substituting this for n in the

last equation we get

Bi>247rM2+^2^--^ . . . . (11.196)

Let us apply this to a cast iron ring and assume that

E = 16 X lo** Ibs/sq. inch,

t<; = 0'2 6 lb/cub inch,

r = 3 inches,

6 = 0*15 inch,

^=32x12 in inch units :

Also let us suppose that

N = 30.

Then the condition that the ring should always follow the undulations

of the cylinder is
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0-26 X 3^ X 302
B^>2 47l^(2-\-Jl^}

(32 X 12) X 16 X 10^ X 015^

or > 4-0 s^ approximately.

If there are six complete undulations in the stroke then the

maximum amplitude of the oscillations must be less than y^^ of the

deformation that the ring undergoes when it is squeezed into the

cylinder. If the gap in the free ring is 24 millimetres it is possible for

the ring to oscillate so that the gap varies between o and 0*35 millimetre

If there were more than six undulations of this magnitude the

resilience of the ring would not be sufficient to keep it in contact with

the cylinder. If there were twelve undulations per stroke contact would

be maintained only if the gap kept within the range from zero to one

twelfth of a millimetre.

208. The extension of a ring.

We have thus far assumed that the rings we have been dealing with

had no extension. Wherever there is a tension, there must, however,

be an extension, but this will affect the deformation of a closed

ring only in adding a constant to u everywhere. The addition

of a constant to u everywhere is accompanied by a constant

addition to the bending moment also. This does not, however,

disturb the equilibrium of any element of the ring, for it merely adds

a pair of balancing couples to the ends of the element. The shearing

force remains unchanged by the addition to u. It follows then that

the increase of length of a ring due to the tension, even when this

tension is variable, must be distributed so as to add the same amount

to every radius vector, for in this way the equilibrium is undisturbed.

Suppose T is the tension at any point of a ring, and let s denote

the extension of the middle line of the arc which extends from o to 0.

ds
Then the extensional strain at 6 is —-, and therefore, if a denotes

rdO

the area of the cross-section,

r^ ^ ds

rdO

whence ^^V 1^^^ •

The whole extension of a closed ring is

.271

TdO,

and the consequent increase in the radius is

u,= —— f TdO (II. 198)

r r^
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209. Stresses in a rotating wheel.

Suppose a rotating wheel has a number of straight uniform spokes

separated by equal angles 2a. We shall regard the rim as a thin ring,

and we shall make the assumption (which cannot possibly be quite true)

that the spokes extend to the centre. The problem is to determine the

deformation and stresses in the rim and spokes due to a given angular

velocity co. Let a and a^ denote the cross-

sections of the rim and of a spoke respectively.

Each spoke apphes a pull P to the rim, and

the extension of each spoke is due to the

reaction P of the ring on the spoke and to

the tension set up by the centrifugal force in

the spoke itself. Equation (11.58) can be

used to get the tension in the rim provided

i^a .
Fig- 108

we use rco" for p. The actual p is zero

and the expression we propose to substitute for p is really the cor-

rection for the acceleration in the radial direction. Thus we get

_ dF wa ^ •

Now let) u^ denote the increase of the radius vector due to the extension

of the rim, and Wg the increase due to bending. Then, since u.^ is due

to the forces P only when Uj^ is supposed to be zero, its value, taken

from equation (11. 145), is

I Pr^ (2 OsiiiO sina4-acosa
u^ = —— <?—

Therefore

4 EI \a sina

dF _ EI (d^u^

dO~~^'^\de^
cosO

cos e\
sm^a

d^Uc

(II. 199)

dO^f

= -iP
sma

(11.200)

Then the equation for T is

. T = - 1 P
cosO war'^co^

. (11.201)
sma g

To get u^ we use an equation similar to (11. 198) but instead of inte-

grating from o to 271 we may integrate from o to a. Then

ni=—— / <^ IF-— \
F.aaJn \ Q smaj

de

wv^w

%

9

Fr

2Eaa
11.202)
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When 6 = a the value of Wg is

I Pr^ (2 a \
u.f = — —— { r—, cota>

Therefore at the same point

w -= Wi + Wa

tor^co^ Pr I Fr^iz a \ . ^= — h — TT^i r-^ cotal .(11.203)
E^ 2Eaa 4 EI \a sin2a / ^ ^^

Again let v denote the extension of a length ic of a spoke, the length

X being measured from the centre. The tension in a spoke at x is the

tension P applied by the rim plus the tension due to the acceleration of

the portion of the spoke between the rim and x. Let T^ be the

tension at x, (T^^-^-dT^) the tension at {x-\-dx). Then —dT^ is the

force which gives the acceleration xco'^ to the element of length dx

and mass —- dx. Therefore

--.=(?*) X(0'

2 g

The constant K is determined by the fact that T^ = P where x = r.

Then Ti = P4-^^^^(r2— ic2) .... (11.204)

dv
Now Ea, -—

- = T.
dx

whence Ea. t; = Px -f

—

-— ir'^x — \x^)

.

No constant need be added because v = o where x = o.

The value of v where x=^r must be equal to the displacement u
of the rim. Equating the values of Ez; and Ew at the end of a spoke

we get

Pr lor^co^ wr^co^ Pr

3^ 9 2aa

iFr^(2 a ]

4 I i^a sm^a j

whence, writing k^a for I,

P
14a 2 r^/ a 2\\ Swar^co^ .

a^ a k^\ sm^a aj] 3 g
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This equation determines P. Then the bending moment is

EI /d^u
"=

r^-ue

/i cos^\ Fk^ wrak^co^

\a sma/ zra g

The value of M at one of the spokes is probably negative and its value

is M' given by

M = l̂Vr[ cota h • . (11.206)

The value of the tension at the same point is

T =— ^Pcota (11.207)

The maximum stress across a section of the rim near the end of a

spoke is, assuming M' to be negative, and assuming that the section

is rectangular and has a radial width h,

T' hW
' ~~a~"2ak^

( I + —
)
+— U^ (- - cot a ) 2 cot a

I (11 .208)
g \ 2rJ ^a\k^\a J ra J

Again the maximum stress across a section half way between two

spokes, where ^ = 0, provided that the bending moment is positive, is

' a
"^

zak'^

= I ]-\ {7^ ^ H :— } (11.209)
g \ zrj 4a[k^\sma a) ra smaj

The maximum stress in a spoke occurs at the hub where a; = o and
its value is

P , wr^co^
A =- + -—— (II.210

jt

If a is not greater than — our equations can be simplified by expanding

the functions of a in powers of a. Thus

a 2 2a^ ( , a^ . \
cota + ^- == i-f -I-.,.

sm^a a 45 \ 84 /

2a^ . ," -— approximately
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Also

cot a = —
- +—
2 24

1 «2 1 a^..)13

Therefore

Again

cot a = ^a approximately

1

sin a

= -Ja approximately

Consequently equations (11.205), (11.208), and (11.209) ^^Y t>e written

2a . I . r^a^\

3a 45*^4

4 war^co^

9

r
wr^m( , ,

P irha h1+— H -7-0 2 cot a

f":

v)r^(0'

wr^w

4,)-3

rha

13^
h

ra
2 cot a

2a I r'a

rfea 2

(4,)
I 6A;^ ra sina

2^3^ 2a I

ttt a

r^a

(11.211)

ri.212)

Suppose a = 3aj , r=']h, a = ^7i, corresponding to six spokes, then

the last two equations give, for a rectangular cross -section,

^, wr^co^
f = 1*44

= 1-05
wr'oj'

If the accurate values of the functions of a are used instead of the

approximate values obtained from the expansions the values of /' and

/" are each increased by less than one per cent.

a
If a is very great compared with a., so that we may regard — as

ijifinity and regard the spokes as having no effect on the rim, then the

stresses are independent of 0, and the maximum stress in the rim is
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the stress at the inner edge. Its value is the value of /' when—

:

which value is

wr^co^f . b

f = (1 +

00,

9

= I'oy

(-^)

9
(11-213)

It is rather remarkable that the effect of the spokes on the rim is to

increase, instead of decreasing, the maximum stress in the rim.

Let us take the other extreme case and suppose that the rim is

very thin in comparison with the spokes. We assume that — , — , —

,

are all zero. Then

f'= 107

r=o-93

9
. (11. 214)

• (11-215)
9

The greatest stress that can possibly occur in a spoke will occur when
P a— has its greatest value, and this happens when— = 00. The equa-
^1 %
tions (11.205) ^iid (i 1.2 10) give

A 1-"
wr^co^ 7 wr^co^

69 ^9
210. Thin curved rod bent in one plane.

(11.216)

The assumptions we make are that the central line of the rod lies

in one plane before and diiring the strain, and that all the forces acting

on the rod are also in that plane.

Let a small piece AB (fig. 109) of the central line of the rod be

bent into A'B'. Let the length of AB be ds and its radius of curvature

Qq, and let the corresponding quantities for A'B' be ds' and g. Let (p^

denote the inclination of AB to a q
line passing through any two particles

on the unstrained central line and (p

the inclination of A'B' to the line

passing through the same two particles

in the strained state.

The bending moment and the

shearing force at A' are denoted by

M and F, and the resultant tension

across the section at A' is denoted

by T; the' corresponding quantities

at B' are M + c^M, F + c^F, T+<^T,

T+dT
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as shown in fig". 109. In this figure CA', CB', are normals to the cen-

tral line, and consequently the limiting value of CA' as A' approaches

B' is the radius of curvature q. Moreover, the angle A'CB' is cUp.

Let external forces qds, pds, act parallel and perpendicular to A'B',

the pressure p being reckoned positive when it acts towards the centre

of curvature.

Now if the forces on A'B' are in equilibrium we get, by resolving

parallel to the tangent at B',

(T -f- ^T) — T cosdcp — F smdxp -{- qds = o ,

which becomes, when higher powers of d/p than the first are neglected,

(T + c?T) — T — ¥d(p \-qds = o,

whence dT Y , ,
.

;7---+9 = o
• • • •

11-217)
as Q

Similarly, by resolving along B'C we find

(F -j- d¥) — F cosdcp + T sinc^r^p -\-pds = o
,

whence ^
,
T

, /ox
-J--] hi? = o 11.218)
as Q

Again, by taking moments about B' and neglecting small quantities of

the second order, we get

dM-]-Fds = o,

whence dM „ , .^+^=° •"•^9)

The shearing force F can be eliminated from the equations (11.217),

(1 1.2 18), (i 1.2 19). The two equations resulting from this elimination

are dT i dM
, ,

^+^^+ ^ = ^ ("-^^^^

d^M T
-p = o (11.221)

as^ Q

211, The strain energy in a curved rod.

It has been pointed out by Lord' Rayleigh * that the strain energy

of a thin curved plate cannot be accurately expressed in terms of the

strains and changes of curvature of the middle surface. It is just as

true that the energy in a curved rod cannot be expressed in terms of

the strain and change of curvature of the central line. The real diffi-

culty is that, when the energy is expressed in powers of the thickness,

the term containing the third power is different according to the way
in which the straining forces are applied. Since that part of the

energy which is ^e to the bending moment is proportional to the

third! power of the thickness it might seem that energy principles could

* Proceedings ofthe London Mathematical Soe. XX, 1889. Also, Scientific

Papers^ Vol III, page 162.
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not be used for a thin curved rod or plate. This, however, is not true;

although we do not get a unique expression for the strain energy in

a thin rod, we do, nevertheless, get unique equations of equilibrium,

and there must be a form of energy equation consistent with these

equations. This expression for the energy, whether it is correct or

not, is just as accurate as the equations of equilibrium. We shall find

this expression far the energy in a thin curved rod; in a state of strain,

and we shall then show that the result we get is consistent with the

equations of equilibrium. The difficulties to which Lord Rayleigh called

attention resulted from the taking of too close a view of the stresses

in a plate or rod. If we take the stress resultants to be the couple M
and the forces T and F these difficulties disappear.

Let us find the work done in straining the element A'B' in fig. 109

by actions that are capable of producing its strains. We may regard

dM and dT as zero since the actual state of strain could be produced

by equal couples M and equal tensions T at A' and B', and a suitable

pressure p, which must act in the direction away from C if T is positive.

While the element of rod is being strained we may suppose that

the ends A' and B' remain on a fixed straight line. This ensures that

the shearing forces F and F + rfF do no work.

Let the longitudinal strain of A'B' be a, so that

ds'= (i -\- a) ds.

Also let (p === (p^ -\- fj

^

(11.222)

whence d(p dcp^ drj

ds ds ds ' ' '

. .(11.223)

Let the element A'B' take additional infinitesimal strains represented

by da and Si]. Then the increase of length of A'B' is da ds, and
therefore the work done by T acting at the two ends is

TSads.

Also, one end of A'B' rotates relatively to the other through the angle

d{df}). Consebuently thework done by the two couples M in this

rotation is

Ud(drj)=:M^ds
CLS

Therefore the total work done by T and M on the element is

TSa + M^^ds. ..... (11.224)

Now ds— = d(pQ

Qo

and {i + a)ds
, , , ,= a(p = aq)Q -}- drj.
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Therefore

\^ ^0 Ql ^s

Let c be written for the change of curvature. Then the last equation

becomes
drj a

, ,

-T7 = ^+ - 11-225)
db Q

An equation similar to this will also hold between the increments drj,

dc, etc. Thus

?-*+*© - (11.226;

Thus the whole work done on the rod in the infinitesimal displace-

ments is pi / a\\
dY= iTda + Mdc+MSi-jUs, . .(11.227)

the integral being taken over the whole length of the rod.

In nearly every actual problem d\^] will be much smaller than dc.

In those rare cases where it is not so M<5 ( — 1 will be much smaller

than TSa. Consequently there are very few cases in which it is

necessary to take account of M^[ — ).

Now our stress-strain relations are

T = EAa,
M = EIc,

A and I being respectively the area and moment of inertia of the cross

section of the rod. Therefore

Thus the total strain energy in the rod is

lb, i„„|,„l

y^^Q
being taken over the range from the beginning to the end of the strain

at any point of the rod, and the other integrals from end to end of

the rod. If the second integral in (11.228) can be neglected the

remaining expression for the energy has exactly the same form as for

a rod originally straight.
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212. Energy expression deduced from equations of equi-

librium.

Let us suppose that, owing to very slight changes in p and q, the

whole rod takes a small additional strain from*, the equilibrium position.

Let the component displacements of the infinitesimal element A'B'

be du in the direction of qds and dv in the direction of pds. Then
the work done by the applied forces pds and qds in this displacement is

pdsdv-\-qdsdu,

and this, by equations (11.220) and (11.221) is equal to

I
—7

—

]dsdv— l---\ —
I
dsdu.

\ ds^ q) \ds Q ds J

The total work done on the whole rod in these additional displace-

ments is

'-/l("->-(S+iS)-h <""
This must be the additional strain energy put into the rod when the

state of strain is slightly altered. We have to show that this new
expression for ^V is identical with the one in (11.227). I^ order to

show this we need to get the relations connecting du and ^i; with dc

and da.

Let coordinate axes AX, AY, be taken along the tangent and
principal normal to the curve of the unstrained central line at a point

A of its length. Let B be any other particle on the unstrained central

line, and let its coordinates be x, y ; let the length of the arc AB be s.

Let B' be the strained position of the' particle B and let its coordinates

relative to AX, AY, be x, y. Let yj denote

the inclination to OX of the tangent at B
before strain, and yj' the inclination of the

tangent at B' to the same axis. Let q and
q' be the radii of curvature of the central

line at B before and after strain. Suppose

the displacement from B to B' has compo-
nents V parallel to the principal normal at B
and u parallel to the tangent at B. These

displacements are assumed to be infinitesimal

since we are going to make them finally identical with Sv and du.

The equations connecting the coordinates and displacements are

ic'=a; + **cosi/;— vsin?/; .... (11.230)

y'=y -\-usmyj -\-v cosy) .... (11.231)

As before, a denotes the longitudinal strain and ds' is the strained

length of ds.
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Now sin ip = -j-^
QiS

/ dy' I dy'

-\- a ds

dy du dv

-{-(ucosxp—vsmip)
dip

I ( (dv u\ ( du v\\=
.

{COST/^ — + — H-Sml/^ 1 + -;^ } (11.2^2)

Also

and

dx' dx du dv

ds ds ds ds

(usmip-\-v cos ip)

ds' ds' \dx'

ds dx ds

,dx
== sec \i)

—— ....
^ ds

(^1-233)

(11-234)

Now let B be made to coincide with A. Then y)=o, and t/;' is a small

angle determined by (11.232). Thus, putting- 1/; = o in (11.232),

, , dv u
(! + „),;,=_+ _ (j,.235)

Again putting ip= o and sec t/;'=i in (11.233) and (11.234) we get

ds' dx'

whence

a =

ds' ds

d,u V
== 1 + 'ds~ Q

du V
<Y = .^

ds Q

(11.236)

11-237)

a being the longitudinal strain at the point where u and v are the

displacements.

Now returning to (11.232) and assuming that B is near A, but not

coincident with A, we get, by using (11.236),

(j +a)(smip — sm !/;)*= cos t/;( — H—

i

or, approximately,

dv u(i+„)(^_^)=_+_

Now {y}'— tp) is the rotation of the tangent at B, and is the angle we
have previously called ?y, or differs from it by a constant. Therefore

dv u
(: + «), = - + - (11.238)
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Equations (11.237) ^^^ (^ 1-238) will clearly remain true if we replace

the whole strains and displacements by increments of these quantities.

That is, if ^a and Srj are increments of a and rj corresponding to dis-

placements du and dv, then

. d(du) dv

''«=^r-7 ("-^39)

and (, +i„)^^m + ^.
as Q

When the second order quantity dadrj is neglected this last equation

becomes

d(dv) du
^^=—5 (11.240)

ds Q
We are now in a position to transform the right hand side of (11.2^).

Thus, if s be zero at one end of the rod and' / at the other, integration

by parts gives

Therefore

:^— \Tdu\-j- l*TSads

Again

r^d^M _pM^ 1^ r^dMd(Sv)

Jo ds^ ' ids Jo Jo ds ds

Therefore

Jo \ds^ Q ds J Ids Jo

p^dMid{dv)
,
du\

Jo ds \ ds ^ Q i

Then finally equation (11.229) becomes

dM ""^— Sv—Mdrj— TSul

+/'JT<5«+M^|rf.. . .(11.241)

^V =

21



324 APPLIED ELASTICITY

The terms at the boundary are zero in consequence of the boundary
conditions. Take, for example, the term T(5wat the boundary. If either

end is free then T is zero at that end ; but if either end is fixed so that

u cannot change there then du is zero. Thus the product Tdu is zero

in any case at both ends. Again each end is clamped or not clamped.

At a clamped end M is not zero but dr] must be zero. At an undamped
end M must be zero, and therefore the product Mdr] is zero. The other

term is — Fdv, which is zero at both ends for similar reasons. Thus

«"^"^
SV=£'\TSa + u'^\4s . . . .(.U2,2)

which is identical with (11.227).

Some idea of the error introduced by neglecting the term

/-Ki)
ds (11.243)

in equation (11.227) ^^^ t)€ got by observing that errors of the same

magnitude exist already owing to taking slightly inaccurate expressions

for the curvature.

Consider for example, the curvature of the rod in fig. no at the

point A. It is usual to take the curvature at A as correctly given by

the equation

I ^ d-^y'

whereas actually the curvature is

I d^y'

But dx' ==(i + «) dx, and therefore the correct expression for curvature

is I I d / I dy'\

Q i-^a dx\i-^ a dxj

=(7T^^ •
•

("-^44'

at the point where x^o.
If therefore M is proportional to the change of curvature we ought

to take the equation

M _ I d'^y' d^y

EI^(i + a)2"^~^ • • • •
(^^•245)

instead of the usual equation

M _ d^y' d'hj

EI~~~dx^~'dx^

The difference between these two expressions for M introduces

errors into the energy expression of just the same order as the term in
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(11.243). Unless therefore we make use of a precise expression for

the curvature it is useless to retain the term in (11.243) i" the expres-

sion for the energy. We may therefore use, in all cases, the

approximate equation

dY=J\Tda~\-Udc)ds
and assume

whence we find

and therefore

T = EAa

,

M = EIc

;

(5V= /(EAa (5a + Elcdc)ds

=/{ JEA^(a^) -f- 1 EId{c^)}ds

Y=J\^EAa^- + ^Elc^)ds

=J\^-Ta^}Mc)ds (11,246)

just as for a naturally straight rod.



CHAPTER XII.

SPHERES AND CYLINDERS.

213. Sphere with radial displacement only.

Suppose a uniform sphere or spherical shell is subjected to radial

forces only, such as internal or external pressures. It is required to

find the strain in terms of the displacement.

Let the forces alter the distance of a particle from the centre of

the sphere from r to {r -\- u). Then clearly the radial strain is

du
"-^ ('^'>

The circumference of any great circle on the surface of the sphere of

radius (r -\- u) has been changed from 27ir to 27i(r-\-u). Therefore

the circumferential strain is

271U U
[i = - 12.2

27ir r

This is the strain in every direction perpendicular to the radius r. If

then we take two perpendicular axes in a plane touching the sphere of

radius (r-f-w), and denote the strains in the directions of these axes

by ^ and y, we have

P = 7 = - (12.3)

Thus the three extensional strains in the directions of three perpen-

dicular axes are

du u u

dr' r ' r

Relative to the same set of axes the shear

strains are obviously zero.

Instead of using the general equations

of equilibrium it is more instructive to work
out the equations of equilibrium afresh for

the case of the sphere. Let P, Q, denote

the radial and circumferential tensions in

the sphere. Then let us consider the equi-

librium of a small circular portion of a

P+dP
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shell of radius r and thickness dr. Let the diameter of this circle

subtend 26 ait the centre of the sphere. Then the radius of the

circle is approximately rd, and its circumference zjirO, A force Qdr
acts on each unit length of this circumference and it is everywhere

inclined at 6 to the middle radius OA (Fig. iii). Therefore the

resultant of all these forces is

Qdrx 27irO cos I ^]^ ZTirO^Qdr approximately .

Again a force P acts on each unit of the inner surface, giving a total

force 7i(rO}^F on this inner surface. Although all the elements of this

total force are not quite parallel the resultant d'lfiers horn. Tir^O^P by
a quantity of smaller order than 6^. Consequently we may take this

as the resultant. Likewise the resultant pull on the outer curved

surface may he taken as ji6^(r-\-dr)^{F+ rfP), or, as it may be written,

7i6^{r^F -\- d(r^F}\. Thus the difference of the pulls on the two faces

is 7i0^d{7'^T*) acting along the outward radius, and this must balance

the force zjirO^Q which acts along the inward radius, Hence

7teH(r^F) = 27irO^Qdr,

d(r'^V)
whence —3

—

- = 2rQ (12.4)
dr

We may write this if we choose,

V=^ ^"-'^

Since the stresses in the directions of the strains a, p, y, are P, Q, Q,
the relations between stresses and strains are, by equation (2.14),

Ea= P — a(Q + Q)
==P-2(7Q,

E^=Q-a(P + Q);
that is,

duE— =P— 2aQ, ....... (12.6)
dr

E^=(i-a)Q-aP' (12.7)

We can solve equations (12.4), (12.6), (12.7), for u, P, Q.
To eliminate u from (12.6) and (12.7). we multiply (12.7) by r and

differentiate. Thus we get

du #Q) d(rP)

^*^=<'-°'-d7

—

"-^ <''-^^

Now subtracting (12.6) from (12.8) we find



i(i-^-i-H-^-^--^ + "^x^ = o
• (12.10)

328 APPLIED ELASTICITY

Then the elimination of Q from (12.4) and (12.9) gives

d^r'^F) d{rF) o d{r^F)

dr'^
'

dr r dr

Let r2p = y/. Then

^
( T>\ ^ (y\ ^ ^y ^

Jr^^ ^^d^\^)^Vdr~'V^^'
Therefore (12.10) becomes

, d^y o dy
, oy y , o dij

^ i-a -f--/ + -|-^ + -y' = o, . . 12. II
dr^ r dr r^ r^ r dr

whence 2—--=0 (12.12)
dr'^ r'^

This is a homogeneous linear equation whose solution is

R
2/-A?'^ + -; . . . . . ,. • (12.13)

from which P = A + -j (12.14)

Equation (12.4) now gives

Q = li-fA,- + ?)==A-A . ...(,..,5)
2r dr \ r) 2?-^

214. Thick sphere.

The preceding solution can be applied to the problem of a homo-

geneous body whose boundaries are two concentric spherical surfaces,

these surfaces being subjected to pressures which are uniform over

each surface. Let the inner and outer radii be a and b, and the pressures

on the inner and outer surfaces p and q. Then our conditions are

P = -7? whenv^r/j
P = — ^ when r = b f

^

'
*

Therefore, on substituting these values of P in (12.14), we get

-^ = A +^ ('2-'7)

-? = A + |, • -(i^.iS)

whence a^b^ ,
^ ,

.

B = -—— (^-i?) (12.19)
0**— a^

b^q — a^p .

,A =-—^ f 12.20
b^ — a^

Thus the general expressions for P and Q are
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-.{-b'l + a'p-^il-P)} (12.22)

It is worth while to notice that, iiq=p, then P= —p for all values of r.

This we could easily foresee because the material is in that case under

a hydrostatic thrust.

If the sphere is subject to an internal pressure p only, q being zero,

then a^p (b^ \
^ ^

Q=*i{'+^) -(--4)

If a is very small compared with b we get the approximate equations

At points in the material where — i is small these reduce to©'

p ^
«3_

2r»

(12.27)

These may be regarded as the stresses in a body of any shape at

points near a spherical hole inside which there is a pressure p, provided

that the outer surface of the body is free from pressure, and provided

that every point of this outer surface is at a greater distance from

the centre of the hole than four or five diameters of the hole.

215. Thick cylinder.

This problem is similar to the problem of the thick sphere. The
assumptions we now make are that the strain in the direction of the

axis is either zero or constant, and that the displacement perpendicular

to the axis is radial and depends only on the radius. The first of these

assumptions implies that plane sections perpendicular to the axis

remain plane during the strain.

Taking the ^-axis along the axis of the cylinder and denoting the

unstrained distance of a particle from the axis by r and the strained

distance by r -{- u, the radial strain is

a = — (12.28)
dr

Also the strain in the direction perpendicular to r and to the axis is,

as for the sphere,
i,

^= - (I2-29)
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The strain parallel to the axis is

7 = constant (12.30)

From the conditions of the problem there are no shear strains relative

to the axes of a, ^, y. Let the tensional strains in the directions of

cc, p, r,
be P, Q, R. Then, by (2.14),

di/L

E-=P-<,(Q + R) (12.31)

E-=Q-a(R + P) (12.32)
r

Ej. = R-a(P + Q) (12.33)

For the equilibrium of an element of dimensions

Fig. 112 ^^' ^^' ^^' ^^ S^*' ^y resolving parallel to the

middle radius and assuming that is small,

(P + d?) X (r4- dr)ed%-Vredz = i2Qdrdz)sm-
2

^QdrdzO; . . . (12.34)
that is,

Odzd(Pr) = Qdrdze,
whence

i-=Q' ('^-35)

From equations (12.31), (12.32), and (12.35) ^e can eliminate P and

Q. Thus, from (12.31) and (12.32)

P_„(q + r,.e|

= ^^Q-ar(R + P)} . . . (12.36)

from which we get, using (12.35) ^"^ writing y for Fr,

f-ll+->hll'f-—

'

that is,

d^y dy d(rR) dy= r-^^ Q— _ a-—;
dr^ dr dr dr

^dhj dy i/^Jrf(rR) ^
dr'^ dr r \ dr

dR

-""'dr
(''-37)

We have not yet made use of (12.33). This gives, since y is constant,

dR dCP + Q)

dr dr
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dR_ {dP dQ\

dr \dr dr \

^-^+^1 (ia.38)
r dr r^ dr^

Eliminating^ R from (12.37) and (12.38) we find

This is a homogeneous linear equation whose solution is

p
y= Ar-{— ; (12.40)

T

whence P=-A +— (12.41)
r^

If the cylinder is subjected to internal and external pressures p and q
at radii a and h we find, in the same way as for the sphere,.

P=p:^j-**9 + «'i'+^(?-p)| • • (2.43)

Also Q =
d̂r

It will be seen from the actual values of P and Q that

P+ Q l.La^
('^-45)

which is independent of r as well as of z. It now follows from (12.33)

that R = constant, (12.46)

an assumption which is often illegitimately made in books on strength

of materials in order to shorten the investigation.

The result in (12.46) follows also from (12.37) ^"<i (12.38), for

it happens that y can be eliminated at once from these equations,

giving

whence R = constant . . . . . (12.48)
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The constant value of R depends on the value of y, which is at present

quite arbitrary. But suppose that we are dealing with a long cylinder

closed at both ends and subjected to the internal and external

pressures p and q; then on each end there is a pressure p over a circle

of radius a and a pressure q over a circle of radius b. Thus the total

axial pull at each end is

Jta^p — Tib^q

and this must equal the total tension across a section of the cylinder.

Therefore

7i(b^ — a^)R = 7t{a^p — b^q), .... (12.49)

a^p — b^q
whence r = _^___^ (12.50)

This happens to be the common constant term in the expressions for

P and Q.

Also P + Q = 2R (12.51)

216. Rotating cylinder.

A homogeneous circular cylinder, either solid or hollow, rotates

with constant angular velocity o) about its axis. The problem before

us is to find the stresses due to this rotation

The exact solution to the problem of a finite rotating cylinder with

free ends has never yet been worked out, but there are three distinct

solutions to the rotating cylinder problem each of which, however,

leaves some stress at the surface of the cylinder. Of the three solutions

given below the first and simplest is the most unreal; the second gives

a good approximation to the stresses in a long cylinder at points not

too near the ends; and the third, which is Chree's solution, gives a

good approximation to the stresses in a rotating disk, that is, a cylinder

whose length is much shorter than its diameter.

For every case of the rotating cylinder equations (12.31), (12.32),

(12.33), are true. Equation (12.34) has to be modified to allow for

the centrifugal force. Thus the centrifugal force on the element

shown^ in fig. 112 is

{or6drdz)rco^

,

Q being the mass per unit volume of the material of the disk. Since

this acts in the direction of (P -|- dP) it has to be added to the left

hand side of (12.34). Then equation (12.35) becomes

-^ = Q-^r2co2 ...... (12.52)

217. First solution; purely radial strain.

In this case we assume that y= o in (12.33). Eliminating u from

(12.31) and (12.32) we get
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P-cr(Q + R) = |;.r{Q-a(R+ P)},

which becomes, by the aid of (12.33),

Dividing this by (i -j- o) we get

(i_o)P_oQ = |-r{(i-a)Q-aP} . . .(12.53)

Now (12.52) and (12.53) give, when 3; is written for Fr,

that is, r2^+ r^-2/=.-^j^^r3a)2 . . .(12.54)

The complete solution of this equation is

2'-=^^+ 7-|-Tz:~ Qr^co^;
. . . (12.55)

whence P = A +—— — pr^co'^j ... . (12.56)
r2 8 I —

a

and Qc= -3^ 4-^r2co2
dr

= ^-;;:?-8l

—

-^Hco^ ... .(12.57)
r^ o I — o

Also R = a(P + Q)

= a|2A--—^^r2co4 ..... (12.58)

Now suppose the cylinder is hollow, and that its inner and outer radii

are a and b. Then, putting

P =;= o where r= a

and where r= b

we get, on writing C for the constant — Qco^,81 — o

o = A+ --Ca2,
a'

o = A+ 5-C.6^;
(12-59)

whence A =^ {b^+ a^) C ,\ , , >

and B = -a»62C. j
• • • • •

I'^.oo;
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Thus P = Ci62 + a2

r

^^(,.._..)(,.„H)
^^^^^^^

Q = c{62+ «. + ^_i±if^,.j . .,,,6.)
.•2 3— 2a

The greatest value of Q occurs at the inner boundary where ?"=a,

and this value of Q is

Qo = c{262+ a2_i±i^^2| .... (12.63)
(

—3 — 2a J

a2
If now — is very small, we find that

Qo = 2C62 nearly (12.64)

The only boundary condition in a solid cylinder is

P=o where r= b (12.65)

There is, however, one other condition which is equivalent to a

boundary condition, namely, that P is finite at the centre where r = o.

Thus the constant B is zero, and this makes both P and Q finite at

r=o. When B is zero equation (12.59) gives

It is worth while to notice that the correct values of the constants A
and B for this case could have been got merely by putting zero for a^

in the values given by (12.60). It follows then that the stresses in a

solid cylinder can be got by putting zero for a^ in (12.61) and (12.62).

These stresses are

P=C(^)2_r2) (11.66)

Q = c|fe2_i±-i^r4 (12.67)

Here the maximum value of Q, as well as of P, is

Qo = cb^ (12.68)

This is just half the value of Q^ in equation (12.64), which was obtained

on the assumption that the cylinder had a very small cylindrical hole

coaxial with the outer boundary.

Since the stress Q at the inner boundary of a hollow cylinder or

at the centre of a solid one is the greatest stress in the cylinder we
see how much the small central hole weakens the cylinder. It is

advisable then to avoid central holes, or even holes that are not very

near the centre, in rapidly rotating cylinders and disks.
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The axial stress in a hollow cylinder is

^
eft)2{(3-2(j)(a2-f 62)_2r2} . . (12.69)

4 i-a
Therefore the total axial pull across a section is

F-= / R27trdr
a

I TIO

O a

Trn

Qco' {i-(3
- 2a) (b^ - a*) - i(fe* - «*)}

2 I —

a

= |7ra^a>2 (i>4 — a*) (12.70)

The mean axial stress across a normal section is

R
F__

^ 7r(^>2_a2)

= |a^a>2(^)2 4-a2) (12.71)

It is clear then why the preceding solution is very unreal. It gives

a variable axial stress which gives rise to a resultant axial force that

is not zero. In the next solution we make this resultant axial pull

zero.

218. Second solution; resultant axial pull vanishes.

This solution, as we have previously remarked', applies very well

to all except the parts near the ends of a cylinder whose length is

much greater than its diameter.

We need only superpose on the last solution a uniform axial compres-

sive stress R^ given by (12.71). This stress, uniformly distributed over

the ends, produces a uniform longitudinal strain y and a strain oy in

all perpendicular directions, but does not affect the stresses P and Q.
Thus P and Q are exactly as for the first solution and R is diminished

by Rj. In this case then

R = o{P + Q}-Ri

= a
{
2 (62 -I- a2) c - i-—i- gr^coA

==-—^00)2 {62-1- a2_ 27-2} . . . .(12.72)

219. Third solution, applicable to a thin disk.

For this solution we satisfy the equations of internal equilibrium

and make all the stresses zero at the surface of the cylinder except

the radial stress P over the curved surface. There is certainly a solution

in which this last stress also vanishes, but this solution probably in-
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volves very complicated functions, and possibly functions that are still

unknown. The solution we are about to deduce involves only simple

algebraic expressions, and has the merit of being very nearly true for

a thin disk at all points except near the curved surface, and here the

error is not important since the stresses have certainly not their

maximum values in this neighbourhood.

In deducing equation (12.52) we tacitly assumed, what was certainly

true for the first two cases, that the shear stress was zero over a section

perpendicular to the j-axis. In the present case, where R is to be zero

at all points of the end sections, this shear stress may not be zero at

points inside the material. There may, in fact, be a radial shear stress

on the sections perpendicular to the 2-axis, accompanied by shear stress

parallel to the xr-axis on cylindrical surfaces coaxial with the boundary

cylinders.

Let S denote the shear stress at (r, 2) inside the material; and let

u, w denote the radial and axial displacements of the particle originally

at*(r, z). It is understood that ^ is measured from the middle section

of the cylinder.

Fig. 113a Fig. n3b

Now all our stresses and displacements are functions of 2 as well

as of r. Instead of (12.52) we must now use an equation in which

account is taken of the shear force on the two surfaces of the element

shown in fig. 112 which are perpendicular to the z-^xis. All the stresses

acting perpendicular to the ^-axis are shown in fig. 113 a. Resolving

radially for the equilibrium of this element we get

6dz— (Fr) dr -f rOdr -^dx= 2 Qdrdz sin
(
grOdrdz) ro) ^

,

u • . .06
that IS, smce sm — = — nearly,22

o(Pr)
,

dS ^ , , ,-^-^r—-Q = -Qrco^ 12.73)
6r dz

This equation takes the place of (12.52), and it involves a new un-

known. We therefore need a new equation.

We can get our new equation by resolving the forces on the same

element in the direction parallel to the axis of the cylimd'er.
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The stresses in the ;j;-direction are shown in fig. 114. gg
The equation expressing equilibrium is

4 S

dr 0%

d{Sr) dR .

whence — [-r-—--=0 . . . (12.74) e
dr dz R

If we had no new unknowns except S in our equa- pj„ jj

.

tions this one new equation would be enough. But

we have to remember that the strain y in (12.33) is

also unknown now, whereas in the first solution it was assumed to

be constant. We still need then another equation. The required

equation is the one expressing S in terms of displacements. Thus,

if tr denotes the axial displacement of a particle,

fdw ,
du\

^
.

We have also to remember that

y--jZ (12.76)

Let us now try to get a solution by assuming that R is zero every-

where. Then equation (12.74) gives

from which it follows that Sr is not a function of r. Let us further

assume that S is zero, and leave the justification of this step till a

later stage. These assumptions are, at any rate, consistent with equation

(12.74).

With our new assumptions the four unknowns u, w, P, Q, must
satisfy the five equations

E|i = P-aQ {12.78)

uE-^=Q — oP . (12.79)

E^=-o(P+Q) (12.80)

= -^+ — . 12.81
cr d^.

il_! = Q^^r2co2 ...... (12.82)

Since the number of equations exceeds the number of unknowns we
shall have to show that these equations are consistent.

22
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Eliminating u from (12.78) and (12.79) we get '

F-oQ = ~[r(Q-of)} (12.83)

From (12.82) and (12.83) we now get

whence
.

P == -Ap- + o^coV2 (12.84)

Multiplying through this last equation by r and then differentiating

with respect to r we find

-e^^e-rV-Srl-^oogco-r- . . . .(12.85)

Whenjv is written for rQ the equation obtained by eliminating rP
from (12.82) and (12.85) ^s

^-QO>'r^ = i[r^) + 30QCoh-^,
r

^"^ ' -dr^

whence ,-0+ -^- 1 = - (i + 3a)^co^r2 . . . (12.86)

The solution of this is

7y= Ar+ ?-i(i + 3(7)^a>-^rS . . . .(12.87)

where A and B are not functions of r, but may be functions of 2.

For a disk without a central hole B must be zero or Q would be

infinite at the centre. We shall first deal with a disk with no central

hole and assume therefore that B is zero. Then we get

Q = |^-=A^i(i + 3a)^a)-V2 (12.88)

and equation (12.84) gives

P = A-^(3 +a)^co2r2 (12.89)

In order to complete the solution we must find the value of A.

Differentiating through (12.81) with respect to 2 we get

]2,cj'-w cu
o

dzdr dz"^

that is.

By means of equations (12.79) and (12.80) this last equation becomes

^{r(Q-oP)} = <7|:(P+Q) . . . .(12.90)
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This equation gives a relation between quantities that have already

been found. It may or may not be true. This equation can, in fact,

be regarded as the criterion which tests whether the four unknowns
we started with can satisfy the five equations (12.78) to (12.82). If

equation (12190) can be satisfied our equations are consistent.

Now substituting for P and' Q in (12.90) we get

{i — a)r-^=r.-~o(i-Jro)Q(oh',. . . .(12.91)

d^A 0(1 + 0)

'

^
-

whence -nr== ^ QO^ .... (12.92)
dx^ I — a

Because r has disappeared from the last equation it agrees with what

we already knew, namely, that A is a function of 2 only. If r could

not be removed from the equation our original five equations would

have been inconsistent. The disappearance of r justifies, in fact, the

assumptions that a solution was possible in which R and S were

both zero.

Suppose 2 is measured from the middle section of the disk, so that

P and Q are even functions of 2. Then A is an even function of 2,

and therefore (12.92) gives

A^L^Sl±^-Q(o^K-z^}, (12.93)
2 I —

a

K being a constant.

thus F^Llil±^Qco^K-z^)-i(i + o)Qco^r^, . (12.94)

and Q = i^^i±_?)^ft,2(K-«2)- ^(r + 3a)^o>2r2 . (12.95)

At the curved surface of the disk, where 7'=-= a, the value of P is P^^

given by

^1=7^-—re«>MK-»^)-i(3 + o)e(»v . (12.96)
2 I — O

Now let the constant K be determined so that the resultant effect of P^

is zero over a thin rectangular strip of the curved surface with the

long sides parallel to the axis and the other sides in the plane ends

of the disk; that is, if the length of the disk is 2 h, K is determined

by the equation

Fidz=o

,

h

the factor representing the width of the strip being omitted.

The last equation gives

^1^^ Qoy^ (Kh- IW) - 1 (3 -f. a) Qco^a^h = o ,

22*

/
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whence ^*i±^ K = iii^ °J I,' + > (3 + o) «^.
I — a 3 I — a

Thus we get finally

P = ^ °['^^\a'Hi'^'-^'')+i(i+ o)QOj'(a'-r^}, (12.97)

Q = J^Y^^e<"Hih^-^')+ieo^H(i+ o)cc'—U+io)r^\. (12.98)

The solution we have now arrived at satisfies all the conditions of

the probkm of the rotating cylinder except one; it does not make P
zero at the curved surface of the cylinder, although it does make the

mean value of P zero over every thin strip parallel to the axis. It

is clear therefore that, in the case of a thin disk, the effect of the

surface force P^ must be negligible at points whose distance from the

curved edge is more than three or four times the thickness of the disk;

that is, the stresses given by (12.97) ^"^ (12.98) must be very

accurate at points not near the edge. We may therefore regard this

as a satisfactory solution to the problem of a thin rotating disk.

It has been worth while to work out Chree's solution in full because

we can see precisely to what extent it fails to satisfy the conditions

of the problem. It is, as we have pointed out, a very accurate solution

for a thin disk. But for such a disk the terms involving h and 2 are

certainly small in comparison with those involving a and r. If then

we drop the terms containing h and 2 we get an approximate solution

to the rotating disk problem, although it is a worse approximation

than Chree's solution. Dropping the terms in h and 2 we get

^-U3 + o)QCO^a^-r^) (12.99)

Q = i^a>^{(3 + a)a2_(i-f3a)r2} . . .(12.100)

Since the maximum stresses occur at the centre of the disk, and since

the error at the centre in neglecting h and 2 is less than one per cent

if a is greater than 6 h and a is
-J

, it is clear that we may take these last

expressions for the stresses in any disk whose diameter is greater

than about five times the thickness. Moreover, since the terms in h
and 2 represent a first approximation to the errors in (12.99) and

(12.100), we may be fairly sure that the whole error is something of

the same order as this approximation.

220. Thin disk again.

The final results in (12.99) ^"^ (12.100) could have been obtained

very much more easily than by going through Chree's solution. These

final results give P and Q as functions of r only. If we had started by

assuming that P and Q were functions of r only we could have got

their values from equations (12.78), (12.79), ^^^ (12.82). We have, in

fact, used these equations to get (12.87), (12.88), (12.89), ^"^ the only
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difiference between the method now suggested and! the one actually used

is that A and B would be constants and not functions of 2. These
constants could then be found by assuming that P is zero at the

curved boundaries.

The method suggested here amounts, in effect, to using P and Q,
not for the actual stresses in th-e disk, but for the ^-means of these

stresses. If we introduce P' and Q' for these ^-means, which are

defined by the equations

F=_ / Vd%, (12.101)
2hJ_k '

<2'=4/;v. ^
. . . . . (12.102)

then equations (12.78), (12.79), (12.82), are all that we need to

determine their values. Thus let

ud% (12.103)«'=iZ
Then from (12.78) we get

T f*"" rH I P^

2hJ_h^r 2hJ_h

= F-oQ' (12.104)

But —r I -;:-dz = ^{—- udz >

2hJ_hBr dr[2hj_h )

du

since the operators — and fdz are independent. Therefore (12.104)

becomes du -p., ^, / a\E—- = P— oQ, (12.10O)
dr

exactly the same form of equation as (12.78), the only difference being

that the functions involved are functions of r only.

In the same way we can deduce from (12.79) ^"^ (12.82) two

exactly similar equations with dashed letters. The solution- of these

three equations is then expressed by (12.87). The mean stresses are

therefore

Q'=f =A+^-i(i + 3a)eco'^' . . .(12.107)

dr

-^-y,-iii + ^)Q^'''' (12.108)
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It is clear now that, in dealing with thin disks, we may regard P and Q
as functions of r only and treat R and S as zero. Although the values

of P and Q that we get in this way are the 2-means of the stresses

there is no doubt that, at points not near the edge, the actual stresses

vary so little across the thickness that these ^-means differ by

insignificant amounts from the actual stresses at the middle section

of the disk.

221. Disk with a central hole.

Let the inner and outer radii of the hole be b and a respectively.

The mean stresses are given by (12.107) and (12.108). We have only

only to determine A and B so as to satisfy the conditions

{where r

and r

These conditions give

B
o = A -i{^^o)Qco^a^,

D
o = A-— -i(3 + a)^ft>2

whence

A= i^ft>2(3-fa)(a2+62)

B = ie«)2(3 + (y)a2^,2 !

. (12.109)

. ( I 2 . 1 I O)

an^
. (I2.II1)

Then finally

Q = l^«>-(3 + a)ja2 + 624.^'|_i^e^2(i + 3^)^2 (12.1,2)

The mean circumferential or hoop stress at the edge of the hole, where

7-«=fe, is

Q'= |^a>2(3 + a)|a2 4-62 + ^|-J^G,2(i_,_3^)52

-iQCom3 + o)a^^(i-a)b^}, . . . .(12.113)

which becomes, when —r is negligible,
a'

Q'==-l{3+a)^a>V (12.114)

This is the maximum stress in the disk, and it is twice as great as the

maximum stress when there is no central hole.

It is worth while to notice that, although the conditions by which

the constants are determined are not the same in the two cases, the

stresses in a solid disk, that is, the stresses given by (12.99) and (12.100),

can be got from (i2.in) and (12.112) by putting b= o in the last pair
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of equations. In order to find the stresses at the centre of a solid disk

it is necessary to put b = o before putting r = o.

We see again here, as in Art. 217, that the effect of a small circular

hole at the. centre is to double the stress at that point. It is shown in

Art. 231 in the next chapter that this is a particular case of a general

theorem. It is there shown that, if a small circular hole is made at a

point in a plate .where the principal stresses would be equal if there

were no hole, the maximum stress is thereby doubled.

222. Rotating disk of variable thickness.

We may use the method of the last article to deal with a rotating

disk the thickness of which is a function of the distance r from the axis.

Let P' and Q' denote the mean radial and hoop stresses at r, and

let u' denote the mean radial displacement across the thickness of the

plate. Let zh he the thickness at r,

and 2(h-\-dh) at (r+ ^Zr).

Let us consider the motion of a

small element of dimensions drxrO,
the angle 6 being infinitesimal. The
inward radial pull on the cylindrical

surface at r is 2 hr6F\ and the outward

radial pull on the cylindrical surface

at (r-\-dr) is 2 {hrr-}-d(hrF')].

Therefore, since the mass is zghrOdr

and its acceleration ro)^, the equation

of motion is

n

2 hdrQ'x 2 sin 20d(hrV) = 2 QhrOdr x rco^,

whence, on putting ^0 for sin ^6 and dividing by zOdr, we get

. . .
(i 2.1 15)

P+tiP

^^._djh^)_^^^,^.
dr

We may also assume that there is the same relation between mean
stresses and mean strains as between actual stresses and actual strains.

Thus ^„^ ^, ^, . ,.

(12. 116)E*=P'-^-

E — =Q — aP (12. 117)

The elimination of u' from the last two equations gives

P-oQ'=^(rQ-(7rP') .... (i 2.1 18)

Equations (12. 115) and (12. 118) determine P' and Q' when h is

given as a function of r. Thus from (12. 115) we get, on multi-

pl)dng by — and differentiating

,
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When the values of Q' and —-— from (12. 115) and {12.119) are

substituted in (12. 118) the last equation becomes

. o dihrF) ^ ,P----^-— -ogr^co"
h dr

r dihrF')]
^, ^ d{rF')

dr \h dr
)

dr

When 3; is written for /irP' the last equation can be put in the form

dhj dy f r dh\ [ r dh \
. , , „

from which y can be found when h is given.

If

h = c7
—^ (i 2.1 21)

equation (12.120) reduces to

'''^+i'+^^''''£-('+''^^y--(^-^'')Q^'''''^' (12.122)

This is a homogenous-linear equation whose solution is

y = Ai^.^B?-^'^-—^f^^-~Qcri-^co^, . (12.123)
» — (3 + 0)//

where q^, q^, are the roots of the equation

q--\-Pq-i — op=^o .... .(12.124)
Therefore

hr c

= ^,-?i+/5-i + _9^2-f/?-i_^ 3^:0__^^^2^2 (12.125)
c c o — (3 + <?)P

Also, by (12.115),

Q'=r^^-r?i+^-t + ^.,_rV.+/?-t_^+l^ ^,.2^2 .(12.126)
c c ^ — (3 + cr)/>

If ^2 is the smaller root of (12.124) and if (i + o^) is positive then

{q.j,-\-p) is negative; for (12.124) can be written in the form:

—

(q + ^)'-^{q + P)-l-o^ = 0,

from which.it follows that

(?i+ ^) (?2 + ^) = - ( I + op) = negative.

Therefore (g^-f/^) and (^.2 -[-/?) have opposite signs, and thus the smaller

of the two must be negative. Consequently, if B were not zero, the term
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containing B in the stresses P' and Q' would be infinite where r=o. Since

the stresses must be finite at the centre of a complete disk it is necessary

that B be zero for such a disk. The other constant A is then determined

by the conditions at the outer boundary of the disk. For a disk with

a sentral hole the constants A and B are determined by the conditions

at the two circular boundaries.

Suppose P'=o where r= a for a complete disk of radius a. Then
since B is zero,

whence —==-—^ -Qco^a^~^^~P .

Therefore

8-(3 + a)^^ \\a) a^ ^

223. Disk with uniform stress.

We may put P' = Q' in the equations for the disk with variable

thickness provided we regard the thickness 2 /j as an unknown quantity

which has to be determined from the equations. If we put P' = Q'= aT

in equations (12.116), (12. 117), these equations give

du u

dr

r dr r" ' dr \

I du u d (u\
whence ;

:i
= Oj o^^~ —= 0'

and therefore

u— = constant = C (12.129)
r

Now (12.117) gives

. . E i^' EC
, ^P=Q= =— , . . . .(12.130)

I — o r I — a

which shows that the two stresses are not only equal but constant

throughout the disk.

Again equation (12. 11 5) gives

dihr)
, ^ ^hp—p——= Qnr^o)^j

or —pr -r = Q hr^co-^

,

dr

I dh Q

hdr p

idh Q ^whence — -— = — — rco^.
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Integrating this we get

Therefore

h-= He ~
2p (12.131)

It should be observed that h vanishes only when r is infinite. Conse-

quently the disk with uniform stress is really impossible in practice.

Nevertheless if a finite disk were constructed with the thickness given

by (12.131) we could be sure that the stresses would be everywhere

less than if the disk were infinite.



CHAPTER XIII.

STRETCHING OF THIN PLATES.

224. Equations of equilibrium.

In this book a flat plate will be understood to mean a body bounded

by two surfaces symmetrically situated on opposite sides of a plane,

the distance between these surfaces, measured perpendicular to the

plane, being- small in comparison with the dimensions of the body

parallel to the plane. The distance from boundary to boundary

measured perpendicular to the middle plane is called the thickness,

and will be denoted by 2 h. When the plate is strained the surface

containing the same particles as were originally in the middle plane

will be called the middle surface. When h is constant the plate is

a uniform plate. In all cases except where the contrary is specially

stated the plates with which we deal will be assumed to be uniform.

In this chapter we shall deal only with problems in which the

middle surface remains plane during strain.

Let the origin be taken at some point of the middle surface, and

let the ^-axis be the normal to the middle surface at this point ; so

that the xy pjane is the middle surface itself.

Our assumptions are that the mean values of the stresses S^ and S^

across the thickness of the plate are zero ; that is.

I
.A T nh

I S^dz = 0] -— S.^dz = o . . . . (13. i)
J-h 2hJ_h'

Now let us suppose that equations (2.24) and (2.25) are both multiplied

dz
by — and then integrated from —hio-\-h. In this way S^ and 8.3 disappear

2lh

from the equations, and the other stresses and forces will then be

represented by their mean values across the thickness. Thus if P^, V^,

S, now denote the mean values of the stresses P^, P,, S3, equations

(2.24) and (2.25) give

dx ciy

• {'5-2)
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In these equations the accelerations
f^, f.,,

and the body forces X, Y,

have also their mean values with respect to ^, and are therefore func-

tions of .r and y only.

Let a function of (p be now introduced such that

d-w

'--""ei <'^-3)

Then equations (13.2) become

From these we sret

P2 = Ejf+/«)(/;-Y)rf;,

(130

Let us write

fQ{f,-X)dx=-F\; fQ(f,-Y)d!/ = F', . . .(13.7)

Then Pj = E "^ + P'

P. = E -^ + p;,

. (13.8)

Again another assumption we make is that P3 is zero at each surface

of the plate. This means that no pressures or tensions are applied at

the surface in the direction of the normal to the middle surface. Since

P3 is zero 3.1 z^ — h and a.t z= -\- h it must be very small for inter-

mediate values of 2. We may then assume that it is negligible in

comparison with the stresses P.^, P.,, and S. If, therefore, u and v
denote the displacements of a particle in the middle surface, equations

(2.14), (2.15), (2.19), give

*»> ^<-V+i„. <,F,,, . , (,3.,)
dif^ dx-' ' E

cv c^q) 0^99 I

By cx'^ cij'^ E

dy dx )i E

(P'2-oFi). . . (13.10)

--^(^+^)7i/
(^-^^
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Operating on these three equations by
^2

and re-

spectively, and adding the results, so as to eliminate u and v, we get,

S^(p d^cp

E cy^

f 2
ay

52

or,) . . (13.12)

Since we write Vi ^ for the operator —— -|- —— , and since
dx^ dy^

dx^ dx'^dy^

we may write equation (13,12) in the form

Sy'
. (13-13)

EVi*^= -j5(P'i-oF,)-^JF,^oP\) . (13.14)

If /"j, /g, X, Y, are given functions of x and jv then the expression on
the right hand side of this last equation is a known function of x
and y. In that case the function q) is determined by (13.14), and

therefore all the stresses are known.

It is usually convenient to divide (p into two terms, a particular

integral and a complementary function, just as for an ordinary linear

differential equation. Thus let (p^ be any function of x and 3; such -that

)2 P2

b'^^
oF,)

CX'
(p'j-op'i; (1.3-

1

5)

(13.16)

(13-17)

and let us put

9^ = 9^1-1-9^2 • • • •

in (13.14). With this substitution (13.14) reduces to

EVi^s^o ....
The general value of (p^ satisfying this equation must be added to the

particular integral ^^ to complete the solution of (13.14).

It might appear that, unless an arbitrary function of y is added on

the right of the first of equations (13.6) and an arbitrary function

of X on the right of the second of equations (13.6), we shall not get

the complete solution of our equations. We shall show that it makes

no difference whether these arbitrary functions are added or not.

Let P\ and V\ still represent the simplest integrals we can find to

satisfy equations (13.7). Then let (13.6) be written

dy^
P'i +

cx^ dx^

. (13.18)
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ipi and ip2 being arbitrary functions of y and x respectively. If

now we put

l-=9^+t/'i-f-i/'2 (13.19)

then the two equations (13.18) become

c)2f
Pi

dy'

Moreover

P, = E

S =

ax'

P\,

+ P'2.

(13-20)

because
eii>,

oxdy

dxdy

dtp.

>3.2i)

= 0, -Tr^ = o (13.22)
cJx oy

Thus ^ has taken the place of 9? in the expressions for the stresses;

consequently equation (13.14) becomes

P,2 ^2

F^A/^ = ,-^(P\ oP'
ex

:,{^\-or. 13.23)

This has the same particular integral as before since the expression

on the right is exactly the same as in (13.14). Let

^ = 9^1 + 9^2

be the complete solution of (13.23), (p<^ being the complete solution

of (13.17). When this value of f is substituted in (13.20) and (13.21)

the expressions for the stresses are exactly the same as if ip^ and xp2

were taken as zero. It follows then that any particular integrals will

serve in equations (13.7).

Thus we find that the stresses are completely determined by (13.3)

and (13.8), (p being the most general function of x and y which

satisfies (13.14). The arbitrary functions that occur in this complete

value of q) are determined by the boundary conditions. The simplest

boundary conditions are that u and v are given at all points of the

edge of the plate. A different possible set of bound'ary conditions is

fixed if given forces act on the edge of the plate parallel to the plane

of the middle surface. These forces on the edge can be resolved at

every point into a tension perpendicular to the edge and a shear stress

parallel to the edge. Thus we see that two conditions are enough to

settle the state of the edge, and since each condition requires an

arbitrary function we should expect two arbitrary functions in the

complete expression for <p. There are, as we shall show, two arbitrary

functions in the solution of (13.17).



STRETCHING OF THIN PLATES 351

225. Plate with no accelerations and no body forces.

When the plate is at rest and acted on by no body forces then

equation (13.14) reduces to

Vi*9? = o (13-24)
the same form as (13.17).

To solve this equation put

Vi299 = i/i (13.25)
Then equation (13.24) becomes

Vi2?/^ = o, ...... . (13.26)

the same equation as (7.19), which we had to solve in the torsion

problem. We there found that the solution of the equation is

t//= real part of f{x-{-iy),

f(x -\- iy) denoting any function of (x -f- iy). It is worth while to

give another proof of this result. For this purpose let

« =«+%,
w = x— iy.

Then, regarding 1^ as a function of 2 and w,

. dip.
,
dip,

dip == -T— dz+ —- dw
^ dx ow

Therefore, putting c?^ = o and dividing by dx, we get

dip_ dip dip

dx dz dw
Likewise, by putting cte= o we get

dy \ Sz dw)

Again, by a repetition of these operations,

e^\p_ c /eip\

dx^ dx\dx)

\dz dw) dx

d% \d%
"^ dw)

"•"
dw \dz

"*"
dw)

d^ip
,

d^\p
,

d^'ip

2--£+—J (13.27)

In the same way
dz^ d%dw dw^

d^ip _ ./J_j^\ '(^_^\
dy^ \dz dw) \dz dw)

(d^-ip d^xp
,
d^xp\ . ..
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Consequently equation (13.26) becomes

\c^^ ~ dzcw dw^l xdz"^ ~ dzdw cw-J

or :^—- = o.

Integrating with respect to ^, the other variable w being a constant

in this operation, we get

-r- = a constant when w is constant
CIV

F(tc/) being any function of w whatever.

Again, integrating this last equation with respect to w find

i^) = fF{w)dw + f{z)

= F,{w) + f{z), (13.29)

Fj(«;) being the arbitrary function of w obtained on integrating the

arbitrary function F(w).

Thus the complete solution of (13.26) is

rp = Fi{x — iy) + f{x+ iy).

Now since ib must be a real quantity the imaginary part of the right

hand side of this last equation must be zero. By expanding the func-

tions F^ and / in powers oi iy it is easily seen that the imaginary

terms in their sum cannot vanish unless the two functions are identical,

that is, unless

Fi(3:) = /-(rr);

in that case the real parts of F^ (x — iy) and f[x + iy) are identical,

also. Therefore

ff' = f(x — iy)-i-f{x-{-iy)

= twice the real part of f{x -{- iy).

If we had written ^ f(z) instead of f{2) in (13.29) we should have lost

none of the generaHty of our result and should have finally got

il>
= the real part of f{x -\- iy).

Then we may wTite the solution of (13.26) in the form

ih= f{x + i7j) (13-30)

on the assumption that the imaginary terms have to be rejected in

order that xji should be real. It should be noticed, however, that

equation (13.30) as it stands is a correct integral of (13.26). It is only

because a complex value of yj has no meaning that we reject the

imaginary part. This imaginary part need not be rejected till the final

integral is reached.

Substituting in (13.25) for Jp we get

V,'(p^f(x + iy) ...... (13-31)
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It is easy to verify that a particular integral of this is

This means that

Vi'{Wi^ + w)}-f(^^ + iy) .... (13.32)

Subtracting corresponding sides of (13.32) and (13.31) we find

Vi'''{9^ — Y^f(x + iy)\ = o

The solution of this is, by the same argument as for xp
,

(p — ^xf(x -\- iy) = F {x -{- iy)

F{x-\-iy) being a new arbitrary function of {x-\-iy). Therefore-

finally
cp= Y{x-\-iy)-{-ixf{x-{-iy). .... (13.33)

the real part only of the right hand side being admissible since (p has

to be real.

The functions / and F in (13.33) ^^^ arbitrary ahd independent of

each other. They are the two functions needed to satisfy the two

boundary conditions.

It is possible to express the solution in (13.33) in many different

forms, all of which are, of course, equivalent. For example

if ==F(x -\-iy) -\- \{x-]riy — w) f{x + iy)

= ¥{x -{-iy)-\-Ux-\- iy) f(x + iy) — | iyf(x + iy).

This is equivalent to

(p = F^(x-\-iy)^yf^ix-\-iij) .... (i3-34)

Fj and f^ being arbitrary functions.

Still another form is

(p = ¥^{X'{- iy) -\-(x — iy) f^ (x+ iy)

==Y^(x-riy)-\-(x-'iy)(X'\-iy)
fiix+ iy)

{x-\-iy)

= F,(x^-iy)-\-(x^ + y^)U{x-{-iy) . . . .(13.35)

226. The expression for q? in polar coordinates.

If r and 6 be polar coordinates with the origin of the x-y coor-

dinates as pole we get

X + iy = r cos 6+ ir sin 6

^re^ (13-36)

Therefore equation (13.35) ^'^" ^^ written

(p^F,(re*0)^r^f^(reie) _ ... • (i3.37)

Whatever forms we give to the functions F^ and f^ we shall get the

solution to some problem concerning a stretched plate. Suppose we
take

F2 {rp*Q) = A„rV»»^ + Bn»*-"e-*"^

=5= A„r'»(cosw^ -f i sinw^) -|- B„r-**(cosn^—isinn^

= (Anr«4-B„r-«)cos»0+ i(A„r'»-~B„r-»»)sinn(9 . (1338)
23
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In this equation A,i and B,i ma}- be any constants real or complex.

Suppose then that

An-=an— ibn,

Bn= Cn + idn.

Then the real part of Fg (re*^) is

(anr^ + Cnr^"^) cos 7iO-]-{bnr^-\-dnr-'^)smnO . . (13.39)

The function f^ (re^) can contain similar terms. Then the most com-
plete expression for cp contains the factor cos nO is

9^n= K'-''+Cn'*~''+ Pn^"+^+^n^^"")cOS72^ . . (1340)

There is a similar expression with a factor s,in«^.

There is one exceptional case, namely the case where w=i. It

should be noticed that, for this case, r^—n-^^n^ which reduces two

terms in the bracket in (13.40) to one term. To compensate for the

term thus lost we can find another term. It is best to return to the

form given in (13.33). If here we take

f {x -\- iy) ^= 2q logrt^

= 2q{logr-{-iO} .... (13.41)

we get

^xf(x-\-iy) = qi' cos 0[\ogr-{-iO} . . . (13.42)

The terms in ^ corresponding to this are

^rlogr cos^-l-/:r^cos^ . . . . (13.43)

Therefore the complete expression for (p which has the form /"(r) cos 6 is

(p^ = (ar-{-a-~^-\-pi'^-{-q7'\oger)cos6 . . (1344)

Moreover another possible value of cp is

(^o
= (A + Br2)logr4-(C + Dr2)6?+Kr2 + H. . (13.45)

A more general value of 99 is obtained by adding together all the

partial expressions for 99. Thus if n is an integer and if

C«=an^"-f 6«r-« + c„r«+2 4.^^,.2-«, . , . (13.46)

Sn = Kr^-\-k^r-^+Pnr''-^^ + qnr'-~\ • • (i347)

with the condition that, when n= i , the factor r^-" is to be replaced

by rloge?*, then _^
(p = (pQ-\-rO(Hcose \-KsmO)-{-i:(CnCosnO + Snsmne) (1348)

n= i

gives an expression for 99 which is complete enough to satisfy the

conditions of most practical problems. In many problems a few terms

only are enough.. In exceptional cases fractional values of n would

be needed.
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227. The stresses in terms of polar coordinates.

In dealing with a plate with a circular boundary it is canvenient

to use polar coordinates throughout with the pole at the centre of

the circle. It is necessary therefore to express the stresses on radial

and circular sections in terms of polar coordinates. Let R and T
denote the mean tensional stresses across sections perpendicular to r

and along r respectively. Also let F denote the mean shear stress on

the sections on which R and T act, as

shown in fig. 116.

If the 2/-axis be taken along the radius

vector r then T is the value of E ^-— in
c>2

this position. Again if the «/-axis be put

perpendicular to r the stress R is the value

of E —-^ in the new position.

dw
Now dw^-~ar

cr

But

6q)

SO
dO

Fig. 116

y==xt2in0;

consequently

rdr= xdx -\- ydy ,

dy= dx i2Ji6 -\- X sec^ QdO

,

the last of which gives, since ic = r cos ^

,

rdO= dy cos 6— dxsin. 6.

Therefore

, d(p(x.
, y.\ ,

d<p(cos6 sin^

= -^lcos6dx-{-sm6dy\ -{--^l COS Ody— sin 6dx\ (13.49)

Putting dy= o in this, thus keeping y constant, we get, after division

"y "•^' ^09 ^dw sinO dw
-z: = cos^-^
dx cr

Also by putting c^a:; == o we find'

=)

Thus we find that

Sep . d(p
-^ = smO ^

dy cr

—-— cos 6 —

-

ex dr

d

r ee

cos^ d(p

' 7~ee

sinO d

• (13-50)

dy dr

r dO

cos 6 d

dO

(13.51)

(13.52)

23
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Consequently

c>\ _ cj (c>cp\ _ .

f.
cj fcq)\ ,cosO c fc(p\

dy^ dy\dy/ dr\cy) r dO\dy)

. ^i . ^<^^V .
cos^ oV cos6dw\= sm(9 {sin^—^ -\ —^ —^ \

COSO( . ^^2,

r dOdr dr^ r tO^- r f^|

= sin^ty—-^+ cos-*
/I dq) I e^-(p\

\r dr
"^

r2 dOy

Putting ^ = — in this, thus taking the v-axis along r, we get

^ = ^a^='^ft? (3.54)

Next putting ^ = o we get

R =E—=E(^--+-—j . . . .(13.55)

The shear stress F is the value of — E T when the a: - axis is along

r. But ^^^^

c^(p

dxdy dx Key)

^ 6 (d(p\ sinO d (e(p\

dr\dy/ r c6\dyl

^i . ^c'V cosO d^w cosddw\

n^ r . ^ ^V .
^^w

,
cosOd^w sinOcwX— {sin^^ + cos^— H —^ -^J,r [ cOdr cr r dO^ r dO)

cos

sin^

which becomes , when ^ = o

,

o^(p I d^cp I cJq)

:i3.56)
dxdy r dree r^-dO" ' ' ' '

whence

^=KiS-7S) <'3.57)

228. The strains in terms of polar coordinates.

Let the particle which was at (r, 6) in the unstrained state be

displaced to (r -f- U, 6^+ rj). Then the radial strain is clearly

evai=^ , (13-58)
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The element rdO on the circle of radius r is extended to (r -|- U) x
d{6 -{-f]) on a circle of radius (r -f- U). Consequently the circum-

ferential strain is

(r~{-V)(dO+ df})— rde
A rdO

-i-UdO

rdO

dO'^ r
(13-59)

Again to get the shear strain consider

the relative displacements of the corners

of a small rectangle bounded in the

unstrained state by r, r -j- dr, 0, 6-\- dO.

Thus, in fig. 117, A'B'CD' is the dis-

placed and distorted rectangle, circles ^Q^Q^^Q
being shown dotted for reference. The
radial displacements of A' and D' are

U and V -{• ^r^dd. Therefore the rela-
cu

tive radial displacement, which is repre-

sented by KD' in the figure, is

Fig. 117

whence the small angle KA'D' is

I d\J I c'U

Cfj
Again r] and y} -{-^dr are the angular displacements of OA' and OB'.

Therefore the angle A' OB' is —dr^ and consequently the angle HA' B'

is approximately

A'H dr\ ^ )dr dr

Now the sum of the angles KA'D' and HA'B' is the shear strain of

the element; thus the shear strain is

1_ r —-

r Se ^ dr
(13-60)

229. Expression for the displacements when the accelera-

tions and body forces are zero.

When the accelerations and body forces are zero the quantities

P\ and P'2 in (13.7) may be taken to be zero. Then (13.9), (13.10),

(13.11), become
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^^=_(,+„)^+^(.+i,).

(i3-6i;
cv c^(p d'cp

dy dx^ dy^

ey+e-x—'^' + ''^e^j
^''-''^

Morover the differential equation for (p is

Vi*(p=-o (13-63)

Now take, as in (13.31),

Vi'(p = f{x + iy); (13-64)

then ||=__g + ^(^ + ^2,) .... .(13.65)

Consequently the first of equations (13.61) becomes

CU

dx

Integrating this we find

u^-(i+o)^£+ A(x+ iy) + F(y) . .(13.66)

where f^ (z) =ff(z) dz

and F(y) is an arbitrary function of -y.

In the same way we get

whence v= — (i + o)^-{-ff(x-[-iy)dy-^Gix), . . (13-67)
cy

G(x) being an arbitrary function of x.

Now let z='X-i-iy;

then, since x is constant in the integral in equation (13.67),

dz^idy;
consequently

Therefore

v^-(i + o)^-if,{x + iy) + G{x) . . (13.68)
cy

We have now found values of u and v; but these contain two new

arbitrary functions. We can now show that these functions, since

they satisfy equation (13.62), add nothing to the strains. Thus, using

the values of u and v from (13.66) and (13.68), we get
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^^ + ^=-2{i + o)^\+inx+ iy)-if(x + iy)

<jy ex dxdyi

+ r(y)-\-G'(x) (1369)

By comparing this with (13.62) we find that

r(2/) + G'(x) = o.

Since a function of x cannot by identically equal to a function of y,

the only possible values for the functions in the last equation are

F'(2/) = -A,
G'(x) = A,

A being a constant. Therefore

F(2/) = ^A2/ + B,

G(a?) = Aic + C.

Thus the complete expressions for the displacements are

^, = _(x + a)^ + /i(a; + ^2/)-A2/+B, . .(13.70}

v==-(i + o)^J^-if,{x-{-iy) + Ax + C. . .(13.71)
cy

The terms involving A, B, C, add nothing to the strains. The terms

B and C represent merely components of a displacement without

rotation or strain, and the terms containing A represent a rigid-body

rotation of the whole plate through an angle A, which must naturally

be a small fraction.

The polar displacements can easily be got from u and v . Thus it

is easy to see from a figure that, assuming u and v are small,

U = wcos^-|-t;sin^ I , .

rr] ==vcos6— wsin^ | \ o-/ )

With the values of -^— and —- from (13.50) and (13.51) these become
ex cy

U = — ( I + a) -7^+ (cos ^— t sin 6) f^ (x + iy)

+ Ao? sin^ — A2/ cos ^+ B cos ^ + C sin

^

= - (I + a) -^ + e-»^/i (re'^) + B cos(9 + C sin^ . . . (13.73)
CT

ny =— (I 4- a) - T^— (*cos e+ sin (9)/; (re^^

-\- K(xcos6-\-ysm6)-\-Ccos6— Bsin^

= — (i + o)--^ — ie-^fJre^^) + Ar-f Ccos^— B sin^ (13.74)



360 APPLIED ELASTICIIY

The last two equations show clearly that the only effect of A is to

add a constant to rj, and this ind'ica,tes a rotation such as a rigid body

could have.

It is to be understood, of course, that the actual displacements

are the real parts of the expressions on the right hand sides of

equations (1370). (i37i), (i373), (i374).

230. The strain energy in a stretched plate.

We shall find the work done in straining a small element of

dimensions dx x dy by the forces on the edges of the element. The
exiensional strains being a and /? it follows that the actual extensions

of the element are adx and ^dy. The forces in the directions of these

extensions are zhdyP^ and zhdxF.y- Conse-

quently the work done by these forces is

^{zhdyF^adx-^- zhdxF^^dy)

= hdxdy{F^a-\-F^P\.

Again the shear forces on the faces are zhdyS
and zhdxS. Since, in fig. 118, the component

rZhSdxo'

2hScly

cu

Fig 118
of CC in the direction of the x-axis is ~- dy

and the component of BB' in the direction of

cv
the «/-axis is ~ dx the work done by these forces in the relative dis-

c'x

placements is

zhdxSi -i-zhdyS{^dx
I

= /«S
cu

SII

(V
-\- -:^\ (l.cdy --= hScdxdy,

(X\

c being the shear strain of the element. Thus the total work done on

the element by the faces on its edges is

h[V^a-\-V.^P-{-Sc]dxdy;

therefore the work per unit area is

W=/i(P,a + P,/^ + Sc), {13.75)

and when the strains are expressed in terms of the stresses this work
becomes

W=/jE-i{Pi2-fP22_2aPiP2 + 2(i-l-a)S2}

= /.E-i{(Pi+P2)'±2(i + a)(S2-P,P,)}

= E/i (ViV)'^+2(l +-im
d^(pc^^(p]

ex 2 ^:y2
(13-76)

The total strain energy in any plate is

Y=^fWdA, (1377)

dA being an element of area of the plate and the integral being taken

over the whole plate.
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231. The effect of a small circular hole in a strained plate.

The presence of a small hole in a plate will make the state of

stress very different in its immediate neighbourhood from the state

that would exist if the hole were not there and if other conditions

were the same. Moreover, the effect of the hole is not likely to be

appreciable at a distance of a few diameters from the edge of the

hole. Consequently a distance of only a few diameters from the centre

of the hole may reasonably be regarded as an infinite distance. We
shall solve therefore the following exact problem and from the result

it will be clear what distance may be regarded as infinite.

Let O be the centre of a small hole of radius a in an infinite plate,

and let the principal stresses in the plate at an infinite distance from O
in any direction be P and Q, these being constant and in the same
direction at all infinitely distant points. Let the axes OX, OY, be

parallel to the principal stresses. Thus our conditions are

^i — 'I
P2 = Q, \ where r = 00 . .' . (13.78)

S =0,
I

r being the distance from the centre of the hole. Moreover, the

conditions at the circular boundary are

R= o, F= o, where r= a . . . . . (13.79)

Let us put

E9? = E(p,H-^P2/2-f |-Qa^2

= E971 + ^Pr2sin2(9+ ^Qr^-cos^O

Then the conditions at infinity are

= 0, E o, E
cJ^cpi

o,
oy^ dx^ dxcy

which m^ans that the stress system due to ^j is zero where

The conditions at the circular boundary are

I cw—^ = o

(13.80)

(13.81)

r = 00.

(13.82)

ree\dr r)~^' ^^^'83)

which become, when expressed in terms of ^Pj
,

d^(pi
I

I dcpA

r2 QQt

I d

dr
Pcos2^-Qsin2^

rdO
|^_^_.|=_l,P_Q,.„.,

where

r ^=a (13-84)

Now the differential equation for cp, namely,

EVi*9^ = o
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becomes

which reduces to

EVi'cp.^o (13.85)

The solution of this is

E(p^ = F(re^^)-{-ixfi(re'^) (13.86)

Now the conditions at infinity suggest that only negative powers of

r can appear in the stresses. Moreover, the conditions at the circular

boundary suggest that only periodic functions oi 26 occur in (p^. If

we take

F(re^) = A\og(re'^) + Br-^e-^^,

and put ^j equal to the real part of the right hand side of (13.86) it

will be found that all the conditions can be satisfied. Thus

E9?i = Aloger + Br-2cos2^ + Ccos2^ . . . (13.87)

Then
(i ^Vi ic)<r, 1 A 6B ^ 2C

r ^^\ di' r J
?•* r2

The stress T involves similar powers of r, and it is clear therefore that

the conditions (13.81) at the outer boundary are satisfied.

In order that the conditions at the circular boundary may be

Scltisfied the following equations must hold:

—

cos 2 ^— ?- cos 2 ^ = — P cos2 — Q sin2 6

= -i(P+ Q)-|(P-Q)cos2(9

Since these are identities the coefficients of cos 2 6 and sin 2 6 must
be equal on each side of the equations. Therefore

A = -i(P+ Q)«^

whence

C = (P-Q)a2
6B = - |(P-Q)a*.

The circumferential stress is
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c)Vi

^-^er^

= Psin2^+ Qcos2<9 + E
dr'^

A B= Psin2^+ Qcos2^— -+ 6-cos2^. . . (13.90)

At the edge of the hole where r = a, this becomes

T = Psin26l + Qcos2^+ |(P-}-Q)-|(P-Q)cos2 6>,

= P + Q— 2(P— Q)cos2^ (13-90

Suppose P is greater than Q in magnitude. The maximum value of T
at the edge of the hole is the greatest stress in the plat€. This maximum

occurs where ^ = H and its magnitude is

2

T = P + Q + 2(P-Q)
= 3P-Q (13.92)

Thus the ratio of the maximum stress to the greatest stress at an

infinite distance from the hole is

T_ Q ^p-3-p-

When Q is negative and equal to P this has its greatest value, and

when Q is positive and' equal to P it has its least value, since it has

been postulated that the magnitude of Q must be less than the magnitude

of P. Thus.

^ = 4whenQ = -PJ ..... (13.93)

= 2whenQ = +p)
These are the maximum and minimiim ratios of the greatest stress at

the hole to the greatest stress at infinity. This is true whether the

greatest stress is a tension or a thrust, since the result for a thrust

can be got from the result for a tension by a change of signs throughout

the equations. In the particular case where Q is zero the maximum
stress is 3 P.

The final value of T at any point of an infinite plate is

T = Psin2^ + Qcos26/ + i(P+Q)^'-|(P-Q)^cos2^ (13.94)

At a distance of 10 a from the centre of the hole the terms containing

r in the value of T, which are the stresses due to the hole, have only

about Yoj^ of their value at the edge of the hole. Thus we may quite

reasonably regard a distance of five diameters from the centre of a

hole as practically an infinite distance away.
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232. A wrench, or couple, applied to a small element of

plate, about the normal to the plate.

An interesting problem arises out of the solution

E(p = —m log re^9

= HO-iU\ogr.

Taking the real part we get

K<P = H^ (13-95)

The three polar stresses in this case are

R
/ I d'^(p I ^<^\

nC^VEt^ -=o»

2'

(13-96)

r dO \r cjr
,

This stress system is indicated in figure 119.

This is the stress set up by forces gripping the

plate over a circular area and giving it a twist

about the normal. The stress would be produced

by tightening up a nut on a bolt passing through

the plate if the plate resisted the applied couple.

The moment of the twisting couple is

= 2jrH ...... (13.97)Fig. 119

233. Strains symmetrical about a normal to the plate.

The most general value of (p which is a function of r only is, by

(i345)>

99 = (A+ Br2)logr + Kr2 + H .' . . . (13.98)

We can show however, that the term Br^logr is not an admissible

value of (p for strains symmetrical about the pole because it does not

satisfy the stress-strain relations

d\J R— aT idcp d'^g?

dr

U
E

T— aR

7' dr dr^

d^cp o dq)

r dr-r E dr^

Although this particular term gives stresses that are symmetrical

about the pole it nevertheless requires that the angular displacement r]

should not be zero. Then neglecting this term, as well as the constant

H, which gives no stresses, we get

99 = Alogr+ Kr2 (i3-99)
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The stresses due to this value of (p are

4- 2K-(?=

-="•5='=^+--)^

. (13.100)

. (13.IOI)

F = o.

Suppose the radial stress is given over the edges of two concentric

circles. Thus suppose

R = R^ where r= a,

R = R2 where r = b.

Then

whence

Ri

EA =

- 2EK
b^-R^-a^R^

b^^^~

(R2-R1),

Therefore, in general,

R
b''—J— a^ \ r

I (a252

^(R,-R2) + fe2R^_^,2R^ (I3;10-

(R,-Ri) + ^>^R2-«^Ri} . (13-103)
52_a2( ,.

The stresses are exactly the same as we got in the last chapter in

the problem of the thick cylinder. The present problem is, in fact,

identical with the problem of the thick cylinder with no resultant

force across any section perpendicular to the axis of the cylinder.

234. Circular strip under the action of couples at its ends.

The problem we now propose to solve is to find! the state of stress

in a sector of a hollow cylinder when couples are applied at the ends

of the sector. It is practically the same problem as that of a rod of

uniform rectangular section, whose middle line

is a circle, bent by couples at its ends, the outer

and inner radii having any ratio whatever.

Let r^, r^, be the inner and outer radii in the

unstrained state. The conditions of the problem

are that

R==o where r = rj and r= r2, (13.104)

Fig. 120 and
'1

. (13.105)
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These reduce the forces on the body to couples at the ends.

The stresses, but not necessarily the strains, must be functions of

r only. Therefore, taking the most general value of (p that is a
function of r only, we have

E95 = (A4-Br2)logr+Kr2 + H; . . . (13.106)

whence

r dr

- + 2Blogr+C, {13-107)

T = E ,

r

where C-=B + 2K.

--2+2Blogr + C + 2B, . . . (13.108)

Now the conditions that R should be zero at r == r^ and r= r^ give

.... (13.109)

o =— + 2BIogri + C
T-i

o =— + 2Blogr2 + C
ft

whence

1 '2 1
^'2

A = 2B-^—^log-^ (13-no)

2B
^==-rr-7l{^2'l0g^2-^l'l0grJ . . . (13.III)

Substituting these values of A and C in the expression for T we get

2B
T = In' n' ni- 2/11' 2 T \

^2'-^-i' + '2'log--ri2log---^-^log-? (13. 1 12)
'2 '1 ' ^1'

If we write mr^ for ^2 this becomes

2B ( r r r 2
]T= -—

{ m^—i +m21og log m^-^-logw*
[

; i + log _^_ 1 + 4
[ r^ m^— I \ r

2B\i + \oe---^^-^~{i + -4]\ {13-113)

The condition expressed by (13.105) is satisfied as a consequence of

the two conditions (13.104) ; for

/Trfr=/E^^r = E^ = rR . . . (13. 114)
J J dr'^ dr

which is zero at both limits because R is zero at both limits
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To find the neutral axis, that is, the radius at which the stress T
T

is zero, write j for — . Then we have to find s from the equation
r

o=i-log5 ^_ 1+^2)

or loge^:-i-
^^_2^

(i+^') (13-115)

When m is given this can be solved by plotting the two curves

m2—

I

and finding their point of intersection.

When m= 2 the equation for j is

loge5= 1—0-9242(1 +S2)
= 0-0758— 0-924252 .... (13.117)

Since .$ is a proper fraction it is convenient for calculations to add

loge 10 to both sides of the last equation. Then

logeios= 2-3784— 0-924252 .... (13-118)

The approximate value of the root of this equation is

5 = 0-693,

T
whence r=—-—= 1*443 r,.

ot>93

Thus ^ = ^=0-443 (13*119)

Therefore when the thickness is equal to the inner radius the neutral

axis divides the thickness into two parts having the ratio 0-443 to

0*557 to each other, this neutral axis being nearer the concave side.

It is easy to show that, if m is nearly equal to unity, the ratio in

equation (13.119) would be nearly a half. The position of the neutral

axis depends, as the preceding equations show, on the ratio of the

thickness to r^.

The displacements must satisfy the equations

E— =R-aT (13.120)

2(

Integrating the first of these we get
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EU = — (i + a) - 4- 2(1 — o)B(rlogr— r)

+ (C-oC-2aB)r + /"(^).

Consequently equation (13.121) gives

cO r

= -(i+a)^,+ 2(i-a)Blogr+ C+2B-aC

+ (i+a)^,-2(i-a)B(logr-i)

-(C-aC-2aB)-^

whence

=4B-m

Er] = 4B0-^-^-\-F{r).

(13.124)

Substituting these values of U and j^ in (13.122) we get

m +m^rnr,^o (.3...3

which is satisfied if

f{e)= o, F(r)==o.

Equation (13.123) is also satisfied if

/•"(^) + /(^) == N (a constant),

r2F'(r) = -N,
from which

/(^) = Lcos(9+ Msin^+

N

F(r)=- + G
r

The displacements due to these last values of f(0) and F(r) are,

however, only rigid-body displacements, and can therefore be neglected.

We may thus take

EU^-(i+o)^+2(i-a)Brlogr4-2Br4-(i-a)Cr,|
(13.125)

Since B ist not zero the angular displacement tj ist not zero, from

which it follows that the displacement is not purely radial.

235. Pressure applied at the edge of an infinite plate.

One possible value of <p for a plate with no accelerations and no

body forces is given by

E(p = Hye= HresiRe (13.126)
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The corresponding polar stresses are

[r^du^ r dr

HJ~(-^sin^+2cos^)+-^sin^|

= — cos6l (13.127)
?•

T = Eg^ = o .(.3.128)

F=54p-^)=o ...... .(13.1.9)
r dO\r cr /

The displacements must satisfy the three equations

^c\J ^ ^ 2HE—-=R-aT =— cosO . . .(13.130)
dr r

Integrating (13.130) we get

EU = 2H cos 6^1og?- + f\e).

Now (13. 131) becomes

whence

6>7 20H logr n^)E^ = -- cos^— 2Hcos^—^ —^—

,

cU r r r

Er] = -—smO{\ogr-i-o)~^-{' Fir),
r r

Substituting for U and rj in (13.132) we get

-2(1- o) - sin^+ -{r(<9) +/(^)} + rr(r) = o,

which is satisfied only if

r(^) + A^i = 2(i-o)Hsin^4-C,l ,_.
J-

.

rir(r)= -C ]
'

' '
^^^^^^

The solutions of these two equations are

f(e).^ (i-a)H^cos^+ Acos^+Bsin^+C,|

F(r) = ^ + G j.
(13.134)

If we omit the terms involving A, B, G, which represent the rigid-

body displacements, we get

24
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E\J = 2ncosO\ogr-]-(i-o)U{OsinO-cosO),\ .

Er7y = -2Hsin^(logr-|-a)4-(i-a)H6>cos6>
J

'

(^3-i35j

7'

The results would look more rational if they contained log — instead
a

of log r. It is only necessary to put B = — 2H loga in order to get

EU==2Hcos^log- + (i
Cli

Errj = — 2Hsin^

a)H(6>sin^-cos^),

Aog ~ + oj-{- {i-o)HOcosO.

(13.136)

Now since the expressions representing the displacements are not single-

valued functions of the coordinates, that is, since their values are not

repeated when 6 increases by 271, it must mean that these displacements

are not possible for a plate which is continuous from ^= to 0=27t.
We see, however, that the stresses are zero on the

edge where 0-
n n— or—.
2 2

Then clearly the equa-

Fig. 121

the direction OX is

tions could all apply to the half-infinite plate

extending from x= o \.o x= cxd, and from ly=— cxd

to ,^= + 00. The edge a; — o is free from stress,

but equations (13.136) show that its particles are

displaced.

The state of stress represented by equations

(13.127), (13.128), (13.129), is shown on a

semicircle in fig. 121, H being assumed to be

negative so as to make R into a thrust.

The resultant force acting on the semicircle in

W =2ur. R COS OrdO —f\hH
J n

cos^ OdO

=^ — 27lhR . (13-137)

Thus the force is constant whatever be the radius of the semicircle.

Since there is no stress on the straight part of the edge x = o, and
since the stress is zero at infinity, it follows that the stress given by

(13.127) is the stress in the semi-infinite plate due to forces over a

semicircular notch such as are shown in fig. 121. Moreover, since the

radius of this semicircle may be as small as we please, we may regard

th€ force distributed over the semicircle as a concentrated force of

magnitude W applied at O. We conclude then that equations (13.127),

(13.128), (13.129), give the state of stress in a semi-infinite plate due

to a concentrated force of magnitude 27r/iHappHed to the edge in the

direction perpendicular to the edge.
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If the length of edge over which W is distributed is very small

compared with the dimensions of the plate we may regard the force

as concentrated at a point. Although the actual distribution of stress

very near the place where W is applied will depend on the way in

which W is distributed, yet the state of stress at a short distance

away will be that given by (13.127).

In terms of W the radial stress is

WR= —cosO
Tihr

(13.138)

Since the axis of x makes an angle — with the radius vector r

equations (1.22), (1.23), (1.24), give, as the stresses on sections

perpendicular to OX, OY,

WR = R cos2(- ^) = cos3^
Tihr

W
P., = Rsin2(- 0)^ cos(9sin2^,

^ ^
'

Tihr

S = Fcos(- 2^)--1 Rsin(- 2^)

W= —-cos^^sin^.
nhr

(13.139)

If the force W were applied at the point of the edge where x == o,

2
a^'^ + (2/ — 2/l)^

then the expressions for the stresses at {x, y) become

^~
7lhl\^

Po = W x{y-y,Y
Tih i\^

Wx^iy—y^)

nh 7\ *

(13.140)

236. Stresses in semi -infinite plate due to any distribution

of pressure on one edge.

Suppose there is a distribution of pressure on the edge x = o of

the semi-infinite plate we have just been dealing with, the thrust on a

length dy^ being w dy^. Then the stresses due to w dy^ are got by
substituting this expression for W in equations (13.140). Then,

because the total stress due to the sum of several forces is the sum
of the stresses d'ue to the separate forces, we get, as the stresses due

to the distributed force,

24*
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I rwx'^dy^

7ih^

•3

P2 =

/WX'^

jzhj

I
x_ r w(y-y^Ydy^

nhj {x^-V(y'-y^YY

nhJ {x^-]-{y—y^)'^Y^

(i3-i4iy

(13.142)

(13.143)

Since x is constant in these integrals we may-

put, as in fig. 122,

y—yi = cctan^^;
]

whence dy^ = — xsec^0^d6^,\ . (13.144)

?\=icsec^i.
J

Then the stresses become

Fig. 122

^^ = —r wcos^O. dO. . . . .

TihJ

F.^^~ fwsinWj^de^ . . . .

S =
I
wsin Oi cos Oj^dO^.

. (13.145)

. (13.146)

. (13.147)

wherein w must be expressed as a function of O^.

As a particular case suppose w is constant from yi = — a

to y^= ~\-a, and zero over the rest of the edge. Then the stresses

at any point C are (fig. 123)

I /*/'

v/.
• P, = -— / |m;(i H-cos2^,)c?^,

Y V r ' nhJa

2jih L

1^ sin 2 6^

w

Fig. 123

-=^{i^-a + isin2;5-|sin2a}, (13.148)

X a and ^ being the values of 6^ at the

limits where «/ = — a and y=-\-a. These

values are functions of x and y satisfying

the equations
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Also
'^ 27zhJa

{i— COS 20i)d6i

= ^{/^-«-isin2^+ism2a]

w
S =-- —r {cos 2a — cos 28}

.

47ih * '^'

(13-150)

(13. 151)

These results can be written thus

w
^i--—A»-l^+^M«-^)<'<'^(<^+^)}

27lh

10

w
S = —- sm{a— B)sm{a-\-P).

27lh>

('3-152)

237. Circular plate with two concentrated forces at the

opposite ends of a diameter.

Let poles O.^, Og, be taken at the two points where the concen-

trated forces, each of magnitude W, are applied.

/

Y

\ yog X

Fig. 124

We have to find a stress system that gives no surface forces on the

boundary of the circle. If we take

(p= (p^-\.(p^, (13-153)

where
W

E«?, =^ r^i^i sin^i , . .

2nh

E9?2 =

the only stress due to (p^ is

w
27lh

w

r26=^^1x162 y . .

- (13.154)

- (13.155)

cos^i (13.156)
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Now let d denote the diameter of the circular plate. Then, from fig. 124

cos(9i = '^. (13.157)

Therefore at the edge of the plate

^^—1 <'^-'5«>

Likewise the stress at the same point due to W at O2 is

W
Tihd

R2 = r- (13.159)

Thus across sections perpendicular to r^ and r^ at a point K on the

edge of the plate there are equal normal stresses, both of which are

thrusts, and no shear stresses. Since r^ and r.^ are at right angles it

follows that Rj^ and R2 are principal stresses at K, and these being

equal the stress on any other section at K is also purely normal and

has the same magnitude as R^ or R.^. Thus the normal stress across

the edge itself is

N = —^ (13.160)

Now the stress function

W
=^^ = i^rf(^'+-"^'

('^••'>

gives

^ Tihd

(13.162)

W
jhd

p, =—
jihd

S= o,

and the origin for x and y may be anywhere in the plane of the middle

surface. This system of stresses exactly neutralises the stresses R^^

and R2 at any point on the edge of the plate.

If then we take

99 = 991+9^2 + 9^3 (13-163)

it follows that the normal stress and the shear stress on the edge of

the circular plate are both zero. Thus the edge of the plate is free

from stress except at the points O^ and' O^ and here the applied forces

are each W. It follows then that equation (13.163) gives the solution

to the problem we set out to solve.

With reference to rectangular axes OOgX, OY, through the centre

of the circle, the stresses are, by (13.139), or by differentiating 99,
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^^' = -^1
;^^

+
7, i+M •(3-165)

The difference of signs in the brackets in the last equation is due to

the fact that the ,r-axis is in contrary directions relative to the two

concentrated forces, and therefore the shear force due to Rg, which

would be negative if the positive ;r-axis were taken in the direction

from O2 to Oj, is positive when this axis is taken in the contrary

direction. It comes to the same thing if we regard the stress Rg as

being inclined at —0.y to the ;ir-axis, and therefore the jr-axis inclined

at -f 62 to R2. Then the shear stress due to R2 is

W— R2 sin O2 cos ^2 = H 1
— sin 6.2 cos^ 0,

7ihr»
'2

2

238. Finite force applied to a point in a plate at a great

distance from any part of the boundary.

The problem, stated in mathematical terms, is to find the stresses in

an infinite plate dtie to a force applied, in the plane of the middle

surface, at a point at an infinite distance from any part of the boundary.

We have already found that the function

E9?i = Hr^sin^

gives a system of stresses due to a force at a point, but it fails to apply

to a plate completely surrounding the point because the displacements

due to these stresses are not single valued functions of the coordinates.

To get over this difficulty we need to add another value of (p which

will remove the troublesome terms from the displacements. For

this purpose consider the function

E^2 = -^^cos^logr (13.167)

From this we get, using the suffix 2 to indicate quantities derived

from <p2,

'
\ r* SO^ r Sr ] r

rdu\r dr J r

The equations for the displacements are

. (13.168)
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aUo R-oT , ,A ^
^ ^

The first oj! these gives, on integration,

U2 = (i— a)Acos^logr + /*'(^),

f(6) being any arbitrary function of 0.

Then (13.170) becomes

whence

^(:-o)A(i->^)cos.

Substituting these values of U and rj in (13. 171) we get

A 102f7* I

2(i + a)-sin^ = -(ii-a)Asin^—^ + -/'"(^)

-(i-a)Asin^(i-^^) + i/(^)+rF».

This is satisfied if

rF'(r) = o,

and

r(6') + r(^j = 4Asina
Particular integrals of these are

F(r) = o,

f^0) = -2A0cose.

Thus the stress-system in equations (13.168) gives rise to displacements

Ug = (i — a)Acos^logr+ 2A(^sin^— cos^), I

r?y2 = (i-a)Asin^(i-logr)-f 2A^cosa I
'

^^^'^'^^'

Now the function K(pi gives displacements

Ui = 2Hcosmogr + (i-a)H(^sin(9— cos^),

r»^j = _2Hsin/9(logr-fa) + (i - a)H^cos^),

and stresses

2H
Ri =— cos^, Ti=o, Fi = o, (13-174)

r

Let us now put

2A = -(i-a)H,. ..... (13.175)

. (13.173)



STRETCHING OF THIN PLATES 377

and take

E99 = £99^ + £99.2

Then the displacements due to (p are

U=|2-|(i-a)^)Hcos^logr

= i(i+a)(3-a)Hcos6>logr

rrj = — \2[\ogr-\-o)—^{i — o)2(logr— i)}Hsin^

== _i(i + a)Hsin6/ {(3-a)logr -f (i + o)} .

Also the stresses are

(13-176)

(13-177)

(13.178)

T = Ti + T2 =
TT

( I — a)— cos
r

F=FiH-F2 = -i(i-a) — sina

• (13.179)

It will be noticed that the displacements due to cp are single-valued

functions of the coordinates x and y, the troublesome terms of the

form 6 sin and cos which occur

in the displacements due to 99^ and 9^2

having disappeared. It follows that 99

is a possible function at any point

inside a plate. It is, in fact, the correct

function for the stresses due to a force

at the origin in the direction of the

axis of a:;.

We shall now find the force at O
to which the system of stresses due

to 99 are equivalent by finding the resul-

tant of the stresses on the edge of a circle of radius r.

The sum of the components in the a:;-direction of the forces due

to R and F on a length rdO of the circle is

{RcosO—Fsme)rdO.

Hence the force at the centre of the circle which balances the total

.r-component force on the edge is

Fig. 125

W cos^— Fsin^)r6^^

p2TC

>h (R
«^ o

^r\H{(3 + a)cos2^ + (i -a)sin2^}6^^

==-ji/^H{(3 + a) + (i-o)} --4:7r/jH . .

The component force at the centre in the ;y-direction is

(13.180)
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- 2hr \RsmO-{-¥ cos e)rdO
*Jo

-/iHr'{(3+o)-(i-a
^ o

] sin. COS OdO

It is worth while to notice that (p,^ contributes nothing to the force

W, this force being wholly due to 99^; the part played by 9^2 ^^ to

modify the displacements due to 9?^ so that they are possible when the

origin is inside the plate instead of being restricted' to the edge. Of
course 993 "modifies the stresses at the same time.

Since the force W has the same magnitude whatever be the radius

of the circle over which we find the resultant it follows that the whole

force W is concentrated at the origin O.

239. Shear stress zero at the edge of a circle.

It is possible to modify the stresses in (13.179) so as to reduce F
to zero at the rim of a circle of given radius a, without affecting the

magnitude of the force W. For this purpose we need the stress function

E993 = — cos 0.

The stresses due to this are

2A 2A
Rg = cos^, Tjj =—- cos 0, F.

2A

(13.181)

sin^. . (13.182)
7'^ r^

Now let

2A=-i(i-o)Ha2 ..... (13.183)

and let these stresses be added to the stresses in (13.179). Then the

new total stresses are

{:

iH(^-±-% COS0

-|H{i

(13-184)

Over the rim of the circle r = a the stress F is zero.

It is easy to show that the additional displacements due to 973 are

given by

a-) -r cos

^rr], = (I + a) -sin (9 = -^(i -o'')-smO,

EU3 = (i+a)-cos^=-Hi
. (13185)
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240. The resultant force on any piece of a plate bounded
by a closed curve.

Consider the forces on the

edges of a rectangle ABCD
(fig. 126) whose sides are

parallel to the coordinate axes,

the body force and acceleration

being supposed to be zero along

every side.

It is to be understood that

the stress represented by P^

in the figure is not constant

but variable along each side

and from one side to the opposite side. Similar remarks apply to the

other stresses.

Now the whole ;ir-component farce acting on the edge AB is

Y \S
P,
-<

D C

A B
p.

^k
X

Fig. 126

EfXdx
dxcy

-ik-(ki
Again the ;r-component force on BC is

X,^f V.dy^f E'^^dy
Jb Jb cy^

-i(i)c-(ai . (13.186)

By proceeding along the sides CD and DA in the same way and adding

all the four forces we gtt, as the total ;ir-component force on the

rectangle,

-H(a-(I)J '-">

the quantity in large brackets
{ } being understood to mean the increase

in ^r- in tracing out the contour of the figure ABCDA. Likewise
cy

the ^/-component force is

Y =
Sx/a^ \cxJ,

. (13.188)

the contour being supposed traced out in the same direction as before

Now the only possible value of 99, at a point inside a plate where
no body force acts, which has a different value after tracing a contour
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and yet gives single valued functions for the stresses and displacements

is one involving log (re^O); that is, such terms as

(A-{-Bx-\-Cy)\ogre'9 (13.189)

Such functions have already been dealt with, and the stresses are

given in (13.96) and (13.179). These can be extended only by taking

the origin at any point, and the a;-axis in any direction ; and also by
summing the stresses due to any number of poles, or centres of force.

241. Stresses proportional to cos nO.

The stress function having a factor cos nO is

Ecpn = {Ar^' + Br--" + Cr"+ D?-"+-)cos^ia

Taking only those terms that decrease as the distance from the origin

increases we get

E<pn---(Anr-^+B„r2-«)cosw^ (i3-i9o)

The stresses due to 99^ are

= — {w(w+ i)A„+(w— i)(n+ 2)B^?'2|^-n-2cosw6/ . (13. 191)

= {n{n-\- i)An^{n—i){n— 2)'Bnr^}r-^~^cosnO . ,(13.192)

I d
F„ =

\r cr I

(13-194)

==—[n{n-{-i)An-{-n(n—i)By^r^]r~''-'^smn6.. . .(13.193)

The corresponding displacements are given by

EUn= {(i+a)wA„+ (i+a)'/^B,,r2+ 2(i-a)Bnr2}r-^^-icos7i(9l

E?•»;„={(I+a)?^A„+ (/^+ a^^-4)B„r2}r-"-lsin?^a I

The resultant of the stresses R„ and F„ over the circumference of

a circle of radius r with pole at O is zero.

242. Stresses vanishing at infinity and satisfying any pos-

sible conditions over the edge of a given circle.

If all powers of r higher than the first are omitted from the value

of (p given in (13.48) the resulting stresses will all contain only

negative powers of r, and will therefore vanish at infinity. Moreover

it is possible to satisfy given boundary conditions over any circle

r = a hy means of this restricted value of cp, provided that the plate

is continuous round the circle. In order that the displacements shall

be continuous functions of it is necessary to take a particular

combination of terms involving and log r such as we got in equation

(13.176). There is a similar combination to the one in (13.176) with
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sin and — cos interchanged. The stress system which is sym-

metrical about the x-axis and involves cos and sin is derived by

adding- the values of cp in (13.176) and (13.182). Thus

E(p^ = B^^rOsinO—Ki — a)rcos^logr} -| ^cos^ . (13.195)

Now let

n— 00

E9? = E990 + £9^1 + E^ 99„ (13.196)

n=2
where

9^0 = Alogr + 06^ , (13.197)

(p^ is the function given by (13.195), and (p^ is given by (13.190).

Then this function 9? gives stresses which are symmetrical about the

,r-axis, vanish at infinity, and can be made to satisfy any possible

boundary conditions over the edge of a given circle r= a.

If a pull W were applied to a plate by means of a rivet it is quite

possible that the whole of the force exerted by the rivet may be

applied by pressure on one side only of the hole through which it

passes. The stress system near the hole must therefore differ from

the stresses in (13.179) because the stress R in these equations is

applied partly as a thrust on one semicircle and a tension on the other;

and also because F is not zero.

Let us then find the stress-system which satisfies the following

conditions

R = o, T = o, F= o, where r = oo; . . (13.198)

F-o,
IR = — Kcos^ where cos^ is positive, > where r= a . (13.199)

=-

o

where cos^ is negative.
J

The term C^ in (pQ can be omitted in this case because there is clearly

no wrench about the normal at O. Then the stress system given by

(13.196) is

R = -o + ^"(3 4- a) ?^ cos6> -^ cos6>

— ^S]{n(n-{- i)An-{-{n—i){n-{- 2)BnV^}r-''-^cosne . (13.200)

~-\{i-o)-' cose~\-^cose
r r^

-f'V{?2(w-f i)An+(w-i)(w-2)B„r2}r-'»-2cosw^ . (13.201)

i(i_o)?lsin^-^sin^

_2{72(w + i)An + w(?i-i)Bnr2}r-^-2sinw^ • • (13-202)
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Now when r = a the stresses are each represented by a simple Fourier

series with constant coefficients. We have to determine these

coefficients so as to make R and F satisfy the conditions (13.199).

Now the problem before us is to represent the function shown in

fig. 127 as a series of cosines of 0.

"It 2

Fig. 127

TT

d

The given function of is defined between — Ji and n by the

equations

/• (^) = — K cos e when - > ^ > — -
2 2

f{0)=-
7t 71

when ^> — and when ^<
2 2

(13-203)

Now assuming that

f{Q) = ^0 + ^1 cos^ + ^2 cos 2 ^ -f + bnCosnO +
we get, if n> I,

r f(0)cosnOde ^bnT coshiOdO,
J— 71 ' —71

whence 71

/2 —KcosOcosnOd6 = 7tbn,

71

or 7ihn = — \Kr- {cos(w— i)^+ cos(n-f i)^} dO

k\ sin(n— i)\n—i ^

- -\ — sin (n -f i) ->
2 n-\-i ^ ' 2]

= — K< J•sin(/^— i)\n—i n-{-i}

= K sm (?^— I )
—

If w is odd hn is zero, whereas if n is even

7rfe„= + K
n^— I
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The particular case n=^ i gives

fci rcos^OdO= Tf^O) cos OdO,

whence

Also

7f 5, = - K r ^cos'^OdO = - - K.
J_^ 2

2

P\dO = - K Z' ' cos^c?6> = - 2 K,

that is.

2jrfeo = -2K
Thus the series is

m=- H cos6> +
2

22_i
COS2^— 2

4^--I
cos4^+ .i (13.204)

This series must be identical with (13.200) when r = a. Therefore,

when n is odd and greater than 2,

n{nJri)K+{n-i){n+2)Bna^=T-^ a^+2. (13.205)

Also

2Ai-J(3 + ^)Bia2= |K«3, .... (13.206)

K
A = a"^ . . . . (13.207)

71

Moreover, because F is zero over the whole circle r = a the coefficents

of the sines in the expression for F must be all zero. That is,

n(n-\-i)Kn-\-n{n— i)BnCt^= o (n^i) . . (13.208)

2Ai + |(i-o)Bia2==o (13-209)

Solving- equations (13.205) and (13.208) we find, when n>i,
I K

w(n + i)A„= + — a^+2
n^— I 71

(13.210)

n^— I TT

Also, from (13.206) and (13.207),

Bi = -|Ka, \

(13. 211)
Ai=3-V(i-^)K«^-1

The substitution of these values in equations (13.200), (13.201),

(13.202), gives the complete expression for the stresses.

If we denote the resultant force on the plate by W we can express

K in terms of W. Thus, since W is the resultant of the forces on

the edge of the holer = a, we get
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11 n.

W = 2hr-— RcosOade =
f'^

zhaKcos^OdO

= hjiaK (13.212;

In terms of W the stress R is

W a2 Wcos(91 a, ^ a^
R = - -^ -2 - -^—r- 3 + - + I -a -

w— 00w ";^
(

^ <!27?2(-| —(2m4-2)(-j \cos2inO. (13.213]
71 -ah j^md 4w '^—

m=l

243. Rotating disk.

We propose here to solve again the problem of the rotating disk,

which has already been solved in Chapter 12, Art. 220

When the origin is on the axis of rotation the component accelera-

tions at X, y, are — oj-x, — co'^/y. Therefore equations (13.2) become

dx ay

—- + ^ = - Q(D^y
dy c'x

(13.214)

Since the strains are symmetrical about the axis of rotation we shall

first find a particular solution of these equations satisfying the con-

dition of symmetry.

With the notation of (13.7) we find

P'l =J-QO)^xdx = -lQa)^X^\ (1-12 1^)
F',= -igco^y^ j ^ ^^ ^^

Therefore (13.15) becomes

= — 2oQa)^. (13.216)

Since the value of q?^ we are seeking is clearly an even function of x
and y, and since it contains terms of the fourth degree in x and y, we
may assume

E(p^=^—Q(o^{cx^-{-cy^^dx^y^). . . .(13.217)

Substituting this value in (13.216) we get

48c+8c?=2a (13.218)

The stresses corresponding to (p^ are

P F ^'^1
-J- P'
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= —iQco'^{4d-\-i)X"+24cy^ . . .(13.219)

F, = ~iQcom4d+i)y^i-24CX^} . . .(13.220)

S =-E^ = 4^^a>2^2y (13.221)

The radial stress derived from these is, by (1.22),

R = PlCOS'''^ + P2Sill2^+2Ssin^COS^

= -^{i4d-^ i){x'-{-y') + (4Sc-i6d)xV} (13.222)

The condition of symmetry about the axis of rotation requires

that this last should be a function of (ic^ + ^/'^j. Therefore

{^d+i)(x'-{-y^)-{-(4Sc-i6d)x'y^ = (4d-{-i){x^ + y'y,. (13-223)

whence

48c—i6d=z{4d-\-i) (13.224)

Equations (13.218) and (13.224) determine c and d, their values being

^^-T3V(i+3a), c? = -J^(i-a);. . . .(13.225)

whence

Pi = -J^^M(i+3a)?y- + (3+a)a^2},

^2--iQcoH(^+3o)x^-\-(i-j-o)y^l
S = -l-{i—o)Q(o^xy,

R = -i(3+ 0)^0)2^2 (13.226)

Also, writing 6' for \- and T for R in (13.222), we get
2

T = PiCos2^'+ Pgsin^^' -f 2Ssin(9'cos^'

= Pisin2^-}-P2COs2^--2Ssin^cos^

= -i(l +30)^0)2^2 (13.227)

It remains to find cp.^ satisfying the equation

EViV2 = o (13.228)

and to add the stresses due to (p.^ to those already found It is clear

that rp^y must be a function of r only. Thus, we get, as in (13.99),

E(^2 - Alogr 4- Kr2, (13.229)

which gives stresses

T, = -^+.K^- <'^-^^°>

F, = o.
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Adding these to the stresses already found we get the complete stress

system, which is given by the equations:

—

F-=o.

• (13.231)

These are the same as in (12.107) and (12.108), and the rest of the

procedure is exactly as in Chapter 12.



CHAPTER XIV

THE BENDING OF THIN PLATES UNDER
NORMAL PRESSURES.

244. Statement of the problem.

The problem of the loaded plate with which we are about to deal in

this chapter is exactly analogous to the problem of the loaded beam.

The final equation (14.21) for the deflexion of the middle surface

has generally been considered to be as widely applicable to plates as

equation (6.14) is to beams. There is, however, a very big difference

between the ranges within which the two equations may be applied.

The equation for the deflexion of the plate is approximately true

only so long as the deflexion of the middle surface of the plate,

measured either from a plane or from some developable surface, is

small in comparison with the thickness of the plate, whereas the equa-

tion for the deflexion of a beam is approximately true for deflexions

such that the slope of the beam is everywhere small in comparison

with unity. While it is impossible to bend a thin plate into any form

but that of a developable surface without stretching or contracting

some part of the middle surface yet the middle line of a thin rod may
remain unstretched whatever curvature it has.

Thomson and Tait, in their 'Natural Philosophy^', and Fopp], in his

"Mechanik'\ appear to be the only writers who have hitherto pointed

out this limitation of the usual theory of thin plates. In the next chapter

equations are worked out which can be used so long as the tangent planes

at any two points of the bent middle surface make small angles with each

other. These equations have as wide application to the plate as equation

(6. 14) has to beams. Unfortunately, however, these improved equations

are usually too difficult to solve exactly for to when the pressure p is

given. They can, however, be lised to find p from a given value of il\

as the problems worked out in the next chapter will show. Moreover,

very accurate approximate methods are explained in that chapter.

245. Development of the theory.

We shall now develop the usually accepted theory in the form in which
Poisson and Kirchhoff left it. This theory, it is necessary to repeat,

25*
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is valid only when the deflexion tv is a small fraction of the

thickness.

In order to deduce the necessary equations for thin plates we shall

have to make use of the fundamental theory of this subject which is

given in Chapter II.

Let the thickness of the plate be constant and be denoted by 2 h.

By the middle surface of the bent plate we mean the surface containing

the particles which, in the unstrained state of the plate, lay in the

plane at distance h from each face of the plate.

Let the origin of coordinates be taken at some point in the middle

surface of the bent plate, and let the .s-axis be the normal to this

surface at the origin. Let the component displacements of any particle

of the plate be ti, v, w, as in Chapter II. Then we shall show that

the following expressions are sufficiently good approximations to

these displacements for a plate bent without any appreciable stretching

of the middle surface.

ta == f-\-%^(p

^f
,

c^'
n =— /v h^ +\vx vx^

l^f

.

e^'
v == — % "^ +

Vv c'lh

' dx , . . . (14.IJ

where f, q), ^, \p, are functions of x and y or constants, but not func-

tions of z. From the above equations we find that the three longitudinal

and the three shear strains are

+

cu

dx \dx'^ dxV

cy \cy^- SyV
+

cx^

,cj-yj

dx^
Wi

cy- cy'

cw= 2 ,cp

cz

cy
i + 3 «2,^ _|_ 3:^^\

dw

cz
= -{- i + 3-V + -V(

cu

cy ex cxoy '

— 2X-(/+«+;Ap]

(14.2)

(14-3)

The two shear strains a and h have to be zero at the faces of the

plate where %= ^h. These conditions will be satisfied provided

| = /^2(3,^_|_,^). (14.4)
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Therefore

c'x

The shear stresses to which a und b

are due act on sections of the plate

perpendicular to OY and OX re-

spectively.

Let the resultant of these shear

stresses acting on the sections of

lengths dx and dij be denoted by

F2dx and F^dy respectively. Thus
since the shear stresses are na and n&,

the shear forces per unit length are

,/i nh

(14.5)

(14.6)

Fig. 128

dx..

4 dm
3 ^^

and K =-l«^
3 (^y

Again, assuming that the plate is in equihbrium, and writing

Vi^ for
'

(1.4.7)

(14.8)

dx^
equations (2.28), (2.29), (2.30), give

— pX =m— \-7iS7^u
dx

cyV'

-qZ

d

dx

dr]

dx

drj

dy

-\- 2mz(p-{-6nzyj

say (14.9)

(14.10)

+ ^^ViH3»iW+n<p) . . (14-11)
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Now X and Y will each be zero or negligible for all values of z

provided that

{m-i-tt)\7i-(f-{-^) = 27n(p + 6mp, . . .(14.12)

and provided that^^Vi V' ^^ either zero or negligible. We shall assume

that this is negligible on account of the factor 2*^, We shall also assume

that equation (14.12) holds. Let us next assume that Z is zero at the

middle surface of the plate. This gives

(w — w)ViY=2(m + w)99 -mVr*^l . • .(14.13)

and therefore

~QZ=^z^\/^^7,myj+ n(p) (i4-i4)

The tensional stress parallel to the <?-axis is, by (2.22),

^^=(m — n)/\-\-2n—
^-{m- n) ViM-(/'+ ^) - -V} + 2 (m-\-n)zcp.

The values of Pg at the two faces of the plate are

(P3),, = - (m - n){/iVi-(/'+^) - /^^ViV} -{ 2(m-^n)h(p

{^'6)-h ==-\-(m-n) {h\7^{f-\-^) - h'\7^2^\ _ 2 (m-\-n)hcp.

The whole external force on the plate in the ^-direction, reckoned

per unit area of the middle surface, is

h

—ft

— P^V,2{3"«V^+^9^) {14-15)

The elimination of / between (14.13) and (14.15) gives

p=^2nh\7i-^-inh^ViH5y^+ <p) . . .(14.16)

Equation (14.4) further reduces this to

l)
= inhVi'^ (14-17)

Now by eliminating xp from equation (14.4) and (14.12) we get

(m+w)ViY=2(m — w)99+ 2np— (m+w)Vi^f

Again, on eliminating (p from (14.13) and this last equation we get

Now we may neglect h'^S/ \^^ ^^^ comparison with,^, since this amounts

to neglecting h' in comparison with x"^ or y^, that is, neglecting the

square of the thickness in comparison with the squares of the lateral

dimensions of the plate. Then equation (14.18) becomes

2 W)},
n^ = --}t'\7iV (14-19)
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Therefore, by (14.17),

3 m-{-n

EI
V,Y

where I denotes the moment of inertia of unit length of a normal

section of the plate about the line where the middle surface meets this

section ; that is, I is the moment of inertia of a rectan,gle of depth 2 h
and length unity, about the line midway between the sides of unit

length.

The displacement, in the ^-direction, of a particle in the middle

surface is

w=^ f.

We shall, in the rest of this chapter, use w for this displacement.

Then the equation for p can be written

EI
i^^Y-Zy^V/*^" (M.21)

This corresponds to the equation for the load per unit length on a

beam, namely.

It is important, however, to notice that equation (14.21) does not

reduce exactly to (14.22) when the displacement w is a function of x
only. If the plate has a small wid'th h, and if its displacement is

independent of y, equation (14.21) becomes

EI d^w
^==1-117^^' ^'^'"'^

from which

Elfe dhv

P'-T-^^d^ ('4.24)

Here pb is the load per unit length, and is therefore the same quantity

as w in (14.22). Also lb in this equation is the same as I in (14.22),

and w is the same as ?y. Thus the difference between the two equations

(14.23) and (14.24) is the factor — . This is due to the fact that
I — o'^

the displacement in the beam is not really a function of .v only. It was
shown in Art. 39 that the cross-section of a rectangular beam is
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distorted, the sides perpendicular to the load becoming circles with

curvature a—-. Thus the beam theory is not derived from the plate

theory merely by assuming that the displacement is a function of x
only.

We have yet to get expressions for the remaining stresses in the

plate. The most important stresses are P^, F^, and S3.

It is now evident from the preceding work that the functions

ViY, 95, V^,
are quantities of the same order, and that V 1 ^ ^ is a quantity

of smaller order. We shall therefore neglect the last in comparison

with the former in the expressions for the stresses. We shall also

neglect terms containing powers of ;j beyond the first in the three

stresses we are seeking.

Now ^ , X A ,
^^

= — (7n — n) {^Vi2(/'+^) — 2Z(p — z'^Vi^w]

f cJ^f ]= — z Ujn — 7i)\7 ^^ f-\- 2n TTT, — 2(m — w)99 (14.25)

approximately.

By means of equations (14.13) and (14.19) this last equation

becomes, when the small term with -coefficient hF' is neglected,

^
[^ dx^ m-\-n

\

[ 2m .d'^f m — n c^f]= — 2nz\—-——--[ — --\

^z
f

I ay o d'^f\

i-{-o\i — o dx'^ I — a dif\

' +O^J (14-26)
1 — O^ [CJX''

Likewise

Again

1 — o^ydx^ dy

Ez {B^f ,
Sm ,

,

Ss
(Bu

,
dv\

dxdy

approximately

= nJ^{-2z{f+^)-\-x^y;}

=— 2?l^^ ' (14.28)
dxdy
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E
The factor occurs so often that we shall write E' for it in

i-a2
the rest of this chapter.

In terms of the displacement w of a point in the middle surface

we can now write

s«
d^^w

271Z . _ =
dxdy

3 f^-^

I + a dxdy

8 mn , ^ 6 , „ ,-— h^— iVi^iv)
3 m -f- n ex

(14.29)

(14.30)

(14-31)

cy
Each of the first three of these stresses is zero at the middle surface

and has different signs on opposite sides of this surface. The stresses

P^, like the tensional stresses in a bent beam, are equivalent to a

couple Mj per unit length of a section perpendicular to the ;r-axis,

the moment of this couple being given by

Ml = — / V^^dz
J-h

= 3'''A^"^"^J

=^^-&;^+''^j <'«^)

The stresses P, are equivalent to a similar couple M2 on the sections

perpendicular to the 3; -axis. Thus

Again the shear stresses So are equivalent to couples acting on the

same two sections, the axes of the couples being the normals to the

sections.

The shear forces are shown in fig. 130 on the assumption that

^ is positive. The couple, Q per unit length, due to these shecir
C/Jcoy

stresses,. is given by

Mo • (14-33)
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z

Fig. 129 Fig, 130

/_

X
h

= |('i-o)E'/^3

(i~a)El

dxdy

dxdy
' (14.34)

The couples M^, M^, Q, are represented in fig. 129 by vectors on the

right-handed screw system. The couples M^ and M^ are the elastic

resistances to bending, and the couples Q are the resistances to torsion.

We shall call them bending moments and torques.

246. Plate of variable thickness.

It is not easy to adapt the preceding theory to a plate in which

the thickness is variable, but if we make some reasonable assumptions

It is not difficult to deduce the correct results for plates in which the

thickness varies so slowly that the faces of the plate are everywhere

nearly parallel. Suppose we borrow from the preceding results the

equations

(F,.|Ed.)d,('".*f*''

f and

n^

Fi
__4

3 ex

F2 __4
3

em
ey

2imi
J9.2X7.2//

'^F,

m-\-n

h being now a function of x and y.

Then, by resolving in the direction of the

;:5;-axis the forces acting on the element of

area dxdy of the plate, we get

^F \

+^ j dxdy -\-pdxdy = o
;

dx cy I
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that is, p = ^nViHH}

^E'ViMIVi^i^) (14.35)

Iq terms of w the equations for F^, F^, are

dx
• (14.36)

Equations (14.32), (14.33), ^^^ ( 14-34) >
giving the couples M^, M^,

and' Q, remain unaltered.

247. The boundary conditions.

Suppose w^ is any particular integral of (14.21) ; that is, suppose

that Wj^ is a function of x and y such that

p=E'lVi^^i , . (14.37)

Then, by subtraction of (14.37) f^^om (14.21), we get

E'I(Vi^w;— Vi'*'^'!)
= o,

that is,

for it is easy to see, from the meaning of Vi*, that

Thus, writing^ for (w— Wj), we find that the complete solution of

(14.21) is

w-=w^^-\- cp,

where cp is the complete solution of

ViV==o (14.3B)

We have already shown (Chap. 13) that the complete solution of

(14.38) contains two arbitrary functions. By means of two such

functions we can satisfy two, and only two, independent conditions

at the boundary of a plate. But in order to satisfy completely the

boundary conditions at the edge of a plate where no external forces

are applied it would be necessary to make the bending moment M,
the shearing force F, and the torque Q, all vanish along the edge.

That is, if the boundary is perpendicular to the axis of x, it would

be necessary to satisfy the following conditions along the edge:

d /c^w . c

dx\ex'' ^cr'*' ^'

dhv\

cxcy
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But to satisfy three such conditions all round the boundary of a plate

we should require three arbitrary functions in w and we have only two
at our disposal. Thus there is something incomplete in our solution.

Poisson, who attacked the problem of the thin plate by a method
resembling the one used in this chapter, imagined that it was possible

to satisfy all three boundary conditions. He did not discover the

difficulty because it did not arise in the particular problems he worked
out. Kirchhoff, however, by attacking the problem in a different way,

arrived at the correct number of boundary conditions. Kirchhoff's

method was to make the potential energy of the bent plate and the

applied forces a minimum, and his boundary conditions, as well as the

differential equation (14.21), arise from the conditions for a minimum.
Thus his boundary conditions were at least consistent with his initial

assumptions concerning the energy in the bent plate.

One great weakness in the foregoing theory is the assumption that,

in dealing with strains and stresses, z is negligible in comparison with

the lateral dimensions of the plate; for this is clearly not valid at points

near the edge of the plate. In order to correct our equations we
should need one more arbitrary function in the expression for the

stresses, but the addition that this function would make to the stresses

would be negligible at all points not near the edge of the plate.

If, then, a fictitious boundary be taken parallel to the real boundary

and quite near it, the stresses at this fictitious boundary are expressed

accurately enough by our equations. But the conditions at the two

boundaries are not the same.

We shall deduce the boundary conditions at this fictitious boundary
by the method given by Professor Lamb in a paper read before the

London Mathematical Society in 1889.

Let AB be an element of the edge of length ds; and let AA', BB'
be short lengths along the normals to the edge such that A'B' is a

portion of the fictitious boundary which is parallel to the real boundary.

A A

Fig. 133

Let Fq be the shear force on unit length of the real edge, and let M^,

Q(,, denote the component couples applied to unit length of the real

edge about the tangent and the outward normal respectively, the vector

representing M^ being in the direction in which ds is positive. Now
the shear lines on such a section as AA' are as indicated in fig. 133,

just as in a thin strip under pure torsion. The shear lines which, in
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the body of the plate, are nearly parallel to the faces, turn through

1 80^ in the neighbourhood of A'A. The component shear stress per-

pendicular to the faces of the plate on the element of area A'A is of

a higher order of magnitude than the she^r stress in the same direction

in the body of the plate. Consequently the total shear force per-

pendicular to the middle surface on the small section A'A (which may
be only two or three times the thickness of the palate) is a force of

the same order as the shear force on
unit length in the body of the plate

Let R denote the total shear force in

c'R
the 2 direction on A'A, R-\- ^r-ds the

cs

corresponding shear force on B'B, and

let the length of A'A be denoted by b.

Let F, M, Q, be the actions at the fic-

titious boundary corresponding to F^,

Mq, Qq on the real boundary.

Resolving in the direction of z for

the equilibrium of the element A'ABB'

(fig. 134) we get

Fig- 134

R-ids

ds{FQ
' ds

whence

Fo-F
dR

ds
= (14-39)

Again, by taking moments about AB and A'A respectively, we get

(MQ-M)ds-¥dsb = o,

(Qo—Q)ds-Rds=o,
that is, since b is very small,

Mq—M = p (14-40)

Qo-Q = R (14.41)

Eliminating R from (14.39) ^^^ (i4-4i) we get

^Qft cQ^cR
6s 6s 6s

whence

^Qo -F.
c^Q

(14-42)

Thus when the real boundary is not fixed in any way the conditions

at the fictitious boundary, within which all our earlier equations are

valid, are the conditions expressed by (14.40) and (14.42).
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The conditions at the boundary of a plate which rests on supports

or which is clamped at the edge are similar to the conditions in a

beam similarly supported.

In order to be able to specify distinctly the boundary conditions

we shall make use of a pair of elements of length at the boundary of

the middle surface of the plate, these elements being in the tangent

plane to the middle surface at that point ; one element dr is drawn
along the outward' normal to the boundary (or edge-line) of the middle

surface, and the second ds touches the edge, and its direction is so

chosen that dr, ds, and the axis OZ form a right handed screw system

of axes.

When the plate is clamped so that the whole of the edge line is in

the xy plane, and this plane is the tangent plane to the middle surface

at every point of the edge line, then the boundary conditions are

dw

dr

at all points of the edge. These two conditions are equivalent to the

following three

dw dw
, ^^ = o, ^=o, x- = o, (1443)

Bx By

the first of which is hardly necessary since the last two make w
constant along the boundary.

If the plate is merely supported with the whole of the edge Hne

in the xy plane the boundary conditions are

B^w Bhjo .

"' = °'5^ + °a^ = °' <'4.44>

the second of these conditions expressing the fact that the bending

moment about the edge is zero.

If the boundary is subject to a given shearing force F^^ per unit

length, and given couples M^, ds and Q,, dr about ds and dr respectively,

the boundary conditions are

M-Mo
]

T,
^Q ^ ^Qo> (14.45)

In case there are no external forces on the edge the boundary condi-

tions are, of course, obtained by putting M^^, Q^, F^, all zero. Then

M = o (14-46)

F-^ = o (14.47)
Bs

248. Formulae for circular plates.

In dealing with circular plates we need to express all the stresses

and strains in terms of polar coordinates. We shall now make the

necessary transformations.

Let aj = rcos^, y = rsmO (14.48)
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and suppose

w = f{x, y) (14.49)

Then zv is also a function of r and 0. Therefore, by (13.52),

div ^8w sinOdw= cosu—

and
dx

dw

dr

dw

dy

dw

er

r BO'

cos 6 dw

~7~W

. (14.50)

. (14.51)

Again, writing ^ for -;:- , we find
dx

d'h

dX' dx

cos 6
dj sinOd^
~ ~VdOdr

cos ff{ COS 6 -T^+
d^w sinOdw sind d^w\

cr' •2 dO drdOi

mOjsin dw

r r''"V + '"^^5r^

d^w cos 6 dw sin d^w

dO dO^
(14.52)

Let Cj, C2, denote the curvatures of the sections of the surface

represented by (14.49) in the direction of the radius vector r and

perpendicular to this direction respectively.

d^w
Then c. is the value of -;—r- when the axis

dx^

of X coincides with the direction of r, as

shown in fig. 135; that is, when 6==o. Thus
d^w

c, =--

dr
. (T4-53) Fig. 135

^^1

Likewise Cg is the value of —-^ when the .x-axis is perpendicular to
dX

the radius vector; that is, when ^ = Thus

I dw I d^w

r dr r^ dO'^
(1454)

Therefore

d'^w

~d^
^1+^2=^ +-^ +

I dw

r dr

I d'^w

r^~de^'
. (14.55)

Now c-^ + ^2 ^s the value of Vi ^^ for one position of the axes of x
and «/, and it can be proved that the value of this expression is unaltered

by rotating the axes of x and y about OZ, always keeping them
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perpendicular to each other. In solid geometry this fact is included

in the theorem that the sum of the curvatures of two perpendicular

normal sections of a surface at any point is constant for all pairs of

such perpendicular sections at that point. Therefore

. • (14.56)

If Mj denotes the bending moment on a section perpendicular to r then

M> = Elj_+ a(-^ + -^,)). . . .(14.57)

Also the bending moment on the section perpendicular to this last

one is

oM.
, 1 1 o?^^ I d'^w

dr^y
' . (14.58)

The shear forces per unit length in the direction of the ^-axis on the

same two sections are

"' = -3

E'l
I B

60
(ViM •

E'l-iVi'w), . (14.59)

(1460)

To find the expression for the torque on the same sections we need

dxcy
in polar coordinates. This has already been found in Art. 227.

When 6'=o we find from (13.56)

d^w I d^w I dw

Bxdy r drdO r^ 86

S (i dw\

--A-rre}
•('^•'')

Therefore the torque on the sections respec-

tively perpendicular and parallel to the

radius vector is

Fig. i36

Q = (

249. Symmetry about the «-axis.

If everything is symmetrical about the

function of 0. In that case

d^^w I dw

. (14.62)

axis then w is not a

Vi'w
d?'^ r dr

I d f dw\

r dr\ dr J
(14.63)
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^, ^ I
d^w o dw\

, , ^

_ _,^ d \\ d ( dw\\

F2 = o (14.67)

Q = o . (14.68)

Also the equation connecting- p and 11^ is

p = E'IViMVi2«^-) ........ (14.69)
where

\ d ( d\

^ T dr\ dr)

250. Circular disk under uniform pressure.

Suppose p is uniform* and acts downwards and suppose that the

forces are such that everything is symmetrical about the axis. Let a
denote the radius of the disk. We must measure w downwards since

p and w are reckoned positive in the same direction in our theory.

When yj is written for \/^^w equation (14.69) becomes

whence

that is.

'vi('i)" '"»)

E'lr^=ii?r2 + A, ...... (14.71)

— 2hFi = lpr + - . . , . . .(14.72)

Integrating again we get

Elt/; = i-/?r2 4_Alogr+ B . . . (14.73)
that is,

E'I^|:(r^)=ii?r2-f-Alogr+B, . . .(14.74)

The steps in the integration of this are

E'I»-^ = Ai?^-* + iAr2(logr-i) + iBr2+C . . . (14.75)

Eli^; = -^Vi'H+iAr2(loger-i)+ |Br2+Cloger+D (14.76)

If the disk has no central hole C must be zero, for if it were not zero

zv would be infinite at the centre. Also A must be zero in order that

F^ may not be infinite at the centre.

26
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Thus for a complete disk

e'i«,= Vjf-' + 1B'-H-d (14.77)

The constant B depends on the method of supporting the disk and the

constant D depends on the level from which w is measured. The
constant D is not involved in the stresses, and is therefore unimportant.

We shall now complete the solution for dififerent methods of support.

• Disk with its whole rim supported at the same level.

I

1( w is measured from the level of the

P'^-LLi 1
j j I ^ iU"^ centre the boundary conditions here are

I
I

clearly

_. w^o where r= o,

Mj = o where r= a.

These give

D = o,

and

^\pa^+ i B -f oU^pa^ + i B) = o.

Thus

""—^^^r' '

-^''-''^

Then finally

E'lw = -^ipr^- — ^-t?^aV2«*^ 32 i+a^

=._i^p-2J^2_ii3_i^^2J. . . . .(1479)

Therefore

and

Mi = -TVi^(3+a)(a2-r2), .... .(14.80)

,{i dw .
d'^w

M2 = E'I-—+a—

-

'
\r dr dr^

---ihp{{i-^o)a^-(io-\-i)r^]. . .(14-81)

The maximum magnitudes of these bending moments are equal and

occur at the centre of the disk. The stresses P^ and Pg which result

in M^ and Mg are connected with the bending moments by the equations

Pr=iM.= f3M„

I
^'

2h^

The maximum tensional stress in the disk occurs at the centre of

one face and its value is
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r=Pi = P2 = |J,XTVM3+<'K

= §1^(3+0) (14.82)

t being the thickness of the plate.

Clamped Disk.

If the disk is clamped horizontally

all round the edge the conditions are

similar to those for a beam. They are

w==o where ?* = O

,

dw

dr

These give

Fig. 138

Therefore

and

= o where r= a.

D = o,

-^^pa^ + iBa-- o,

B = — Ipa^,

Klw= ^>^p(r*-2a'-r^) (14.83)

The stresses P^ and F^ can be found exactly as for the supported disk.

These are always equal at the centre of a complete disk. In this case,

however, the maximum stress is the radial stress P^ at the rim, and its

value is

p, =^V (14.84)

251. Uniform pressure over a circle concentric with the disk.

Suppose now that the constant pressure p is applied to a disk of

radius a over a circle of radius b concentric with a face of the disk,

and that the ring between the two circles is free from pressure. We
shall work out the two casfes (i) where the disk is supported at the

rim, and (11), where the disk is clamped at the riin.

Disk supported at the rim.

The form of the expression for w is

different in the two portions of the disk.

Let w denote the deflexion for the inner

circle, and w^ the deflexion for the outer

ring. For the inner portion, where jp acts,

we have, measuring w from the level of

the middle,

Elz^ = ^i>r* + -iBr2 (14.85)

26*

H —2b-H
2a

Fig. 139
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For the outer ring, where no pressure acts, the equation for w^ is

E'Iw, = iA,r^\og,r-i)-{-iB,r^-\-C,\og,r^D,. . (14.86)

The constants are determined from the boundary conditions together

with the conditions required for continuity at the junction of the two

portions of the disk. The conditions at the junction are that w, —

,

dr

Mj and F^, have the same values at the junction for the two portions.

These conditions are clearly satisfied if

w = w^^

dw dwy

dr dr

d'^w d^Wi y where r = Z>.

"^ ^ Itr^

d'^w d^w^^

dr'^ dr^

The boundary condition at the supported edge is

M^ = o where r==a,
that is^

d'^w, odw,
——^ -\ —^ = o where r= a.
dr^ r dr

These five conditions determine the five constants. The five conditions

lead to the following equations.

^i)6*+ iB62= |-Ai62(log6-i) + -iBifc2+ C,log6 + D, . (14.87)

Ai'*' + 4B6=^Ai6(log6-^) + iBii+^', (14.88)

-iV6' + iB = iA,log64-iAi + iBi-^, (14.89)

iAiloga+iAi+ Pi-^+<,(|A,(loga-|)+iB,+^|=o. (14.91)
(X \ ^ /

From (14.88) and (14.89) we get

^pbo=iA,b-^ (14.92)

Equations (14.90) and (14.92) give

Ai^ipb^, (14-93)

Ci=tV/^«>* (^4-94)

Now (14.89) gives
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Bi - B = |;)62_ A, (logi+ 1
) +^

^ipbHi-logb) (14.95)

Also from (14.91)

i(i+<')Bi= -|Ai(Ioga+ i)-ioA,(logo-i)+ (i-<7)^j

= -ipbH(^+o)\oga+ Ui--o)}+^\(i-o)pt

Therefore

B.= _|,ifga+li^}+ii^,^;. . . (:4.96)

From (14.95) ^"^ (^4-96)

^^
\ ^b^ 1 + 4 i +aW

Thus

and

E'I..= ^;...-|;,6V^{logJ+^-ii^^-;} . (14.97)

E'lw^ = Di + Jj96V2(logr— i) + iV^jfe^logr

^'^
.1 ^ ^ 2 i + o 4 i + oa2|

where K = D^ + y^^ ^^^logga (i4-99)

Disk cla^nped at the rim.

The only difference between this case and the last is that the

condition at the rim is

-— = where r = a (14.100)
ar

This replaces (14.91) in the last problem. ^^ ^^
All the equations as far as (14.95)

are true for this problem as well as for

the last. Now equation (14.100) takes Fig. 140

the form

Co

that is,
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B, = -A,{\oga-iJ-^

= —lpb^{\oga— ^)—'^p-. . , . . (14.101)

Equations (14.95) ^"^ (14.101) give

a h^
B = -^pbnog---lp~ (14-102)

Therefore

E'I?/; = ^\7jr4-^i^p6V2|4log^?+ -I (14-103)

and

E'lw^ = Di + gpb^r^logr— i) -f j^pbHogr

-^ K - ipb'-r4log,l+ i- + 1^4 - Jj pb* loge ^ ( 1 4. 1 04)

where, again,

K = Di + iVP^Mogea.

252. Load W^ on a very small area at the centre.

The total load in each of the last two problems is

W= Tipb^

W
If we write — for ph^ in the results we have just got and then make b

71

zero in the rest the new results will be true for the load W concen-

trated at the middle of the disk. For a concentrated load the deflexion

is w^, since w is the deflexion at one point only.

The results are as follows :

—

for the supported disk

and for the clamped disk

It should be noticed that the bending moments M^ and M2 are both

infinite at the centre for both the cases of the concentrated load. This,

however, is due to the assumption that a finite load can be concentrated

at a point. Since the load must always be distributed over an area of

some size more correct for values of M^^ and Mg are obtained from the

assumption that the load is distributed over a small circle of radius h.
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253. Disk under several loads.

Since the differentia] equation for w is linear it follows that the de-

flexion due to several loads acting together is equal to the sum of the

deflexions due to each load acting separately. Thus if w^, w^ are the

deflexions due to pressures jp^, ip^, acting separately,

El Vi*«^i =i?i

El Vi^«^2 =i^2-

By adding corresponding sides of these we get

ElVi*K + ^<^2)=i?i+P2- • • • • (14.107)

But if w; is the deflexion due to p^ and p.^ acting together

ElVi^*^=i?i+i?2 (14.108)

It follows from (14.107) and (14.108), and from the boundary condi-

tions, that

provided that the disk is free, or supported, or clamped' at the edge.

254. Load distributed uniformly on a ring between two
circles concentric with the disk.

The deflexion for this case can be deduced at once by taking the

difference of the deflexions dlie to uniform loads over complete circles

whose circumferences coincide with the inner and outer boundaries of

the ring. We shall denote the radii of the inner and outer boundaries

by h and c.

Supported disk. By means of equation (14.98) we find that, where

r is greater than c, the deflexion in this case vs given by the equation

If we now writeW for the total load 71 {c^— b'^)p, the preceding equation

becomes

Wr^( a I ^-\-o\

Sji { r 21^0)

Also by equation (14.97) ^^^ deflexion where r is less than b is given

by the equation
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+a 4 i+a

a I I I— afc2

-f-o 4 i + aa2

The deflexion at a point where the load is applied is a clumsy expres-

sion. It is, of course, obtained by combining equations (14.97) and

(14.98).

Clamped disk.

For a disk clamped at the edge the following are the results:

—

when r is greater than c,

Wr2| a 1

1

F/I., = K,-— jloge- + -)

(^•^+ C2)jj^+2l0ge"j; .... (14.II2)
W
32jr

when r is less than h,

255. Load on a very narrow ring.

If {c— b) is very small in comparison with b then the load is

practically concentrated over the circumference of the circle of radius

b. In this case there is very little error in putting c = b in the results

for a load distributed on a ring of finite width. The results are as

follows

:

supported disk:

where r is greater than b,

Wr2( a I 3 + o\
E liv^ = Ki — T7— {loge - -\ —

[

Sn \ r 2 i + al

Wb^(i-or^

i6ji\i4-oa^+-oa'-''°S%")' • •
•('4-"4)

and where r is less than b,

Wr2( ail I i-obn
871

I
^6 2 ^ i + a 2 i+aa2)

Wr2( a
,

I i-of b^W .

In deducing this last result the following limiting value has been used
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cnogc — bHogb , dc^ ^ ^ ^

lim T- =- hm

dc

2c\ogC-\-C= lim

C~^b 2C

= log6+ | (14.116)

Clamped disk. The corresponding results for the clamped disk are:

where r is greater than b,

E'lw, = K^ - ^ j
{^H b^) log. " + i '•' ( I + *i)} ;

,

and where r is less than b

Wr2f a I I b^\ .

E'I«,=-—jlog.--- + -^[ (14.1.7)

256. Disk with a uniform pressure over the whole of one
face and a balancing uniform pressure over a smaller circle

on the other face.

Let a be the radius of the disk, and b the radius of the circle on

which the supporting pressure acts. Let the pressures be p on the

whole face and q on the opposite face. Then

Tia-p = 7ib^q.

There is no need to work this problem out

from the beginning because it is possible

to get the result from what has already

"been worked out for a supported disk. The
deflexion for this case is the difference of Fie 141
the deflexions for the following two cases

of the supported disk.

(i) A supported disk under a uniform pressure p over the whole

area.

(ii) A supported disk under a uniform pressure — q over the circle

of radius b.

It is clear that the superposition of these two systems of loads

gives the same load as in our present problem, because the supporting

pressures at the rim neutralise each other. Thus the deflexion for the

present problem is the difference of the deflexions given by equations

(14.79) an<^^ either (i4-97) or (14-98), with -- ^ instead of p in the

last two equations. Therefore, where f is less than b, the deflexion in

the direction of the pressure p in given by
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E'lw = ^Vf'* - A 7X^i^«'**^

Ar*+k^'^*'|log|
o ¥

4 1 + a a'^

^-A^
;?r4(a2-62)

fc2 H<+4-S('-S)l=^--«'
and where r is greater than h , by

i-\-o r

( a I 3 + a I I — a 62|
+ 4ofe2r2 log- -{- -^-L

]

If h^ is infinitely small the equation giving w-^ is approximately the

same as

E'lw, = - K+ ^i,i?r4+-J^a2r2nog,-+
In this last case

4 i+o
. (14.120)

I I —

a

4iH-aJ

both of which are infinite when r == o. Thus a load concentrated on a

point— a physical impossibility of course—gives rise to infinite bending

moments. It should be observed, however, that —- is zero at the
di'

centre in spite of the fact that the curvature is infinite.

257. Bending due to punching.

Suppose a load W acts downwards over a thin ring of radius b and

an equal force W acts upwards over

another thin ring of radius b -\- s, an d

e
let us suppose that — is small. Then

the deflexion due to both forces W is

the difference of the deflexions due to

a load W on each of the two rings when
the rim is assumed to be supported.

Where r is less than b this deflexion is given by

E

Fig. 142
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E'lw '. \nor.

(I4.I2I;
8jib

If b is so much smaller than a thatj — ) is negHgible in comparison
\aj

with unity, then the last equation becomes

We
E'lw= -?-^ (14.122)

Tib

Thus the part that is being punched out takes a nearly spherical shape.

If the punch exerted only a small force this force would be

distributed as a nearly uniform pressure over a circular area ; but when
the force is big this circular area bends so much that the pressure is

concentrated near the circumference of the circle and approaches the

ideal conditions we have assumed. There are, of course, very big

shear stresses in the material just beyond the circle where the punch

applies its pressure. It must be remembered, however, that there can

be no shear stress just inside the surface without an equal shear stress

—^which would mean friction—on the surface itself. In the punching

operation no friction is applied at the surface of the ring between the

punch and the hole.

258. Disk with a central hole.

Suppose a disk of radius a, with a central hole of radius b, is su;b-

jected to a uniform pressure p, and suppose it is clamped at the outer

rim and free at the inner edge. Then, measuring w from the clamped

rim, the boundary conditions are

w = o and -r- = o where r= a,
dr

Fj^ = o and M^ = o where r= h.

Now
E'lw= -^pr^ + i Ar2(loger- i) + I Br2+ Clog,r + D .

The last three conditions give

C
-hP<^^ + iAa (loga -

I-) + 1 Ba + - == o,

i?^ + ^ = o.

3-3^^62+ 1 A(logfe + i)+|B-p

+ o[i\vh^ + i A(log6 - 1) + 1 B + p| = o.
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From these we get

A = - Ipb^ ,

+ }pb^ {(i 4- o}bnogb + (I —o)aHoga}

{(I - a)«2 _{_ (I -{_ o)h^} C ^ - iVi^«2J2|(i ^ ^)a2_^ (, _o)ft2}

Now suppose the radius of the central hole is very much smaller than

a. Then to find the stresses we can neglect powers of b in the preceding

constants except in one case. We must not neglect the terms of the

order b^ in the expression for C because

lim d^(bnogr)

r-^b dr^

is finite and not zero. Thus for a small hole, we may take

A = o,

B = - i;?a2^

C = -\^±^pa^b^.
i6 I — a

Therefore

E'lw = -Q^^p{r^— 2a^r^) — —^-^pa^bnoger . . (14.123)
lb I — o

The terms not containing logg r are, of course, the same as for a

clamped disk with no central hole. It follows that

^.l I dw d'^w\

= tV^{(i + 3o)'-^-(i +oK}-'~-^ (14.124)

On putting r= b in this, and then neglecting b^, we get

M2 = - iV (I + o)P<^'' - iV (^ + ^) P«

= -i{i + o)pa^ (14.125)

Thus the moment of the circumferential stresses at the inner edge of

a disk with an infinitesimal hole is just twice as great as if C were
zero, that is, twice as great as for the clamped di'sk with no hole. It

follows that the stresses of which M2 is the moment are also twice as

great, and since the maximum stress occurs at the edge of the hole we
conclude that the maximum is twice as great when there is a small

central hole as when there is no hole.

259. Rectangular plate supported along all its edges.

Suppose a rectangular plate is supported at the same level along

its four edges. Let the axis of x and y be taken along one pair of edges.
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and let the other pair bea;==a, y = b. In the first instance we shall

assume that the pressure on the plate at (x, y) is

p = A^„sm sin—— (14.126)
a

where m and n are positive integers. Then the equation for w is

E IVi*w7 = A„tnSin sm—— .... (14.147)
a o

One solution of this is

<i*A*sin -
a b

.... mjtx , riTiy
a*o*sin sin

Elit7 = A,

mnx . nny
a*o*sin sin—-^

a b

With this value of w we find

. (14.128)

Mi =ElU— + a-,—
\dx^ ty^j

'^~''
[d^'^^'W'

(14.129)

Likewise /_.., .. 2

Mô ^-'^ ii^^+vr '''^•'^°'

Thus the value of w that we have found satisfies the boundary condi-

tions of the problem, namely, the conditions

w= 6\ where a;= o

Mj = oj and where ic= a

w = 6\ where .'7 =
M.^ = 0/ and where y= b

We can use the result just obtained to find the deflexion for any other

value of p. For, suppose p ^ /^/x, y)

;

then it is possible to expand /) in a doubly infinite series thus :
—

'"^* **=°°
^ . mjix . njii/

p = 2 2 Amn sin sin —f-.

The coefficients are found by a process similar to that used for a

simple Fourier series. Thus

t/o t/n

p sm sin —-- axay
a

II A^^ sm*^ sin^ —— dxdy

^b
, , V= — A„,n (14-132)

4
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This is obtained by multiplying both sides of equation (14.13 1) by

7n7tx . UTiy , , , , . , , , , T-
sin sm —r^- axay and then integrating over the whole plate. Every

a

term in the integral on the right vanishes except the one having the

coefficient A,„„. Therefore

/[ r" r^ . mux .
nny

, , , / \

"^""^
ahJ J

^^^^^-^sin^^/a:(^7// \ .(14.133)

The corresponding values of the deflexion and the bending moments
are given by the equations

E'I?^; = 2'2'A,

Dijix njiy
a^b^sin sin —

—

a

^^^fm^ n^\ a^M
Ml = - 7r22'2' + a-—-——-—-- A,

\a^ h^J7i^[m^h^-\-n^a^Y

• (14.134)

mnx nnif
sin sin—,—

a b

a^b'

(m^b^-\-)i^'a'^)
A«,nsin

iiiTcx . njiy
sm

a

(14-13,

260. Uniform pressure over the whole rectangle.

Assuming p to be the constant we find that

Therefore

P =

4P n^ r^
. mnx . nnij

^ ,—
- / /sin sm —-^ axay

abj ^ J^ a b
-^

^4p />«["

abj^ L

=
/ ( I — cos 1171) Sin ax

HTiaJ^ a

b nnij— cos-—^
nn b

mnx
,

sin ax
a

4P
( I— cos nn) ( I— cos mn)

mnn^

o when either m or u is e^"^n

i6p
when both are odd

mnn'

ibp

n'

sin

. 7,nx( . ny .
3ny

\

+ etc.

Therefore by (14.134)

(14.136)

(13-137)
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. 7ZX . Jiy
sm— sin -^

ji^ ,
a b

, Tix ,
Tyjiy

sm— sin —

—

a

iba^b^p {a^-\~bY '

3 (32a=J+62)'

. :^7ix . ny
sm sm -^

I a b
sm sin —

—

I a b

+
3 (a24_32^,2)2 +32(32^2_|_32^,2)2

+

. $71X . TT?/

sm -— sm —

^

I a b

. Snx .
3Ji:«/

sm sm ——
I a b

+
5 (a2+ 52^2)2 . 15 (32,,2 4_52^2)2

+ etc. (14.138)

Putting 6 = « for a square plate we get

— \i'liv = —, sm— sm -^ -1
-^r—^ sm -

a a
-— E liv = —- sm— sm 1

-—- sm sin -— +
i6a*p 2 2 a a z^y

+
^

f,
1.3(3'+ I'H

i.5(5H-iTV

3710; , ny . Jix . 2)

sm sm -^—[- sm— sm -
a a a

ny\

a )

^Tix , ny
^

. nx . 5ny\
sm sm —^ + sm— sin )

a a Ja a

etc.

k^^i^
STtx .

5ny . 57rx . ^ny^
sm sm 4- sm sm

a a a a j3.5(52

+ etc (14.139)

At the centre of the plate, where x=l-a, y = ^a, we find

—- Ml = —— M.
i6a^p ^ iba^p ^

1-3(3^+ iT 1-5(5^+2)^

(3' + 5M + (3^o+5')
+

(i+«)

3-5(3^ + 5T

—!^ +_.^
1-3(3''+ 1') 1-5(5^1^)

3-5(5^+3') 3.7(7'+3^)

— etc.

= 0*224(1 + 0) approximately (14.140)
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"^^^"•^
^r ^r l6(l+a) ^_ M^ = — Mg -- 0-224—-^— «V

= 0-0368(1 4- a) a*? (14.14 1)

Since the curvatures of the normal sections of the middle surface

parallel to the axes of x and y at the middle of the square are principal

curvatures of the surface, and since these are equal, it follows from a

theorem of Euler's that the surface at that point is spherical, and

therefore that the bending^ moment across any section through the

middle of the plate is equal to M^^. Moreover, thi's is the maximum
bending moment in the plate.

If h = 2a and if o^ 025, we find that the maximum bending

moment, which occurs at the centre across a section parallel to the

longer sides, is

— M^ = 0604 -— a^p
71*

= 0-0992 a^j^ (14.142)

If - is very great it is easy to see, without using the preceding analysis,
a

that the influence of the supports at the short sides is negligible at some
distance from these sides. The bending moment across the middle of

a narrow strip at the centre of the plate, the longer sides of the strip

being parallel to the short sides of the plate, may be found by treating

this strip as a beam. This bending moment, which is clearly the

maximum bending moment in the plate, is

261. The problem of the clamped rectangular plate.

The problem of the clamped rectangular plate under a given normal

pressure appears to have no simple analytical solution. At any rate it

has not yet been solved. In fact in only a few cases has the exact

solution of the problem of a plate bent by normal pressures been

discovered. As we have seen, the problem of the rectangular plats is

tractable if the four edges are supported at the same level, but r.ot if

they are clamped. In the case of an elliptic plate under unifoirm

pressure the solution is very simple if its rim is clamped, but unknown
if it is supported. The solution for the clamped elliptic plate is worth

giving because it is one more precise solution.

262. Clamped elliptic plate under uniform pressure.

Let the equation to the rim of the plate be

^ + P = ' ('*••«)

Now in the equation

^; = E'lVi^M^ (14.144)
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put

This gives

^--'-(^ +^+1) . • • .
(-46)

Thus p is constant, and if we substitute the value of C in terms of p in

(14.145) we get

s)r~~3— 2 •
•••••• (^4.147)

Now it is easy to see that, with the above value of it',

dw dw

ox cy

at the rim of the plate. But these are the conditions given in (14.43)

as the boundary conditions for a clamped plate. Then (14.147) gives

the solution of the clamped elliptic plate under uniform pressure.

The two principal bending moments at the middle of the plate are

and

-M,
83

^64^a262

V a2 ^ 62

2 3

a*

-M,

a*

62^a2

^6«^a262

(14.148)

(14.149)

Moreover, the bending moments at the ends of the axes of lengths

2 a and 2 h are respectively

8

' ^1+1 +^
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= p

and

M\ = p

I

2

a^2

a^ ^ ^4
^

(14.150)

2

If b is less than a the greatest of these four bending moments is M'g

and this is the maximum bending moment in the plate, li b = a the

value of this maximum bending moment reduces, of course, to what we
have already found for the clamped circle, namely

U\ = ipa\ (14.151)

whereas if the ellipse is so long that — is negligible the result becomes
a

M'2=ii?^'. (14-152)

which is the same as for a beam of length 2 b which carries a load p
per' unit length and is clamped at the ends.

263. The strain-energy in a plate of uniform or variable

thickness bent without stretching of the middle surface.

The work done on the element dxxdy is the work done by the

couples Mj, M2, and the torque Q, acting on the edges of the element.

The work done by the shear forces F^ and F2 is negligible compared

with the work done by the couples exactly as in the case of a beam.

M.dy

Qdy
r 1—>•

O
A C

B
Mgdx Qdx

Mpdx

Q4y Fig. 143a

*M,dy

Fig. 143 b

Let A, B, C, D (fig. 143a) be the mid points of the rectangle dxxdy
in the middle surface. Let 0^ denote the inclination to the xy plane of the

tangent at A to the curve AC in the middle surface, 62 the corresponding

inclination at C. Now since the energy in the plate depends only on
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its final state and not on the intermediate states, let us assume that it

reaches its final state by a gradual application of the external forces,

these forces all starting from zero simultaneously and all keeping the

same ratio while they are increasing up to their final values. In that

case the stresses and strains and displacements all increase at the same

rate as the applied forces. It follows therefore that M^ is proportional

to 0^ and therefore the work done by Mj dy at A is — | M^ 6^ dy, the

sign being negative because the couple is turning in the direction

contrary to 0^. Likewise the work done by M.^dy at B is ^ Mj^g^^-
Thus the total work done by the two couples M^ dy is

\M,dy{e,-e,).

Now

c/j = — approximately,
ex

and therefore

0,-0,^ die,)

= —-dx:= ^— dx.
dx cix^

Thus the work done by the two couples is

Likewise the work done by the couples l^^dx is

^^2-^,dxdy.

Again let q)^ be the mean inclination to the xy plane of the element

dy which passes through A, and (p.^ the mean inclination of the element

dy that passes through C. Then the work done by the two torques

Qdy is

\^2Q.dy— \cp^Qdy=^\Q((p^-(p^)dy.

But

and

dw
"' =¥

(Y) — (77 = -^ dx -= -7-^;- dx.^^ ^^ ex dxdy

Therefore the work done by the couples Qdy is

Similarly it may be shown that the work done by the couples Qdx is

27'
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Thus the total work done by all the couples in straining the element

from its equilibrium state is

dY = 2Q

which, by equations (14.32), (14.33), (i4-34)> becomes

dxdy,. . (14-153)

G^V = |E'I

iEl

cx'^ dy^j

(Vi2w^)2-2(l

2(1.

I

dx"^ dy''

1

\cxcy]
dxdy

\dx'^ dy'^ \dxdyl
dxdy. . . (14.154)

The total energy in the plate is the integral of this over the whole area.

U Qi,Q2^3-re the principal radii of curvature of the middle surface

at the point (x, y) it is shown in books on Analytical Solid Geometry
that

- + - = Vi^^, (14.155)
^1 ^2

ci^w d'-'-w

Qj_Q2 dx- ey^ \6xcy)
. (14.156)

Since the quantities on the left of the last two equations have nothing

to do with the directions of the axes of x and y it follows that the

expressions on the right are also independent of the directions of the

axes, provided only that they are rectangular. Thus the expressions

on the right are invariants for all rectangular axes.

It is further shown that the integral

//;

dxdy

QiQ.2

taken over any closed surface is equal to what is called the whole

curvature of the closed surface; this whole curvature is the area cut

off a sphere of unit radius by radii of the sphere drawn parallel to the

normals to the surface at all points of its boundary. The whole

curvature is thus measured by a solid angle the magnitude of which

depends only on the condition of the surface at its boundary. For a

plate clamped all round the boundary, so that all the normals round

the edge are parallel, the soHd angle is zero. For such a clamped plate

the total strain energy in the plate is

y=ffh^'l{Vi''wYdxdy (14.157)

In terms of polar coordinates r, 6, we know from equations (14.53)

(14.54), (14.61), that

c^ww =
dr-

I cw I c'w
(14.^58)
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and the element of area which replaces dx dy is rdrdO.

If the bent plate is symmetrical about the 5:-axis then w is not a

function of 0, and therefore

d^w I dtv

'dF^'^rdr^' ' ' '

v:'w= (14.160)

ox^ dy^ \cxcy) r dr^ dr

If the thickness is not uniform the factor I must be treated as a func-

tion of X and y in (14.154) and (14.157).

264. W^ork done by the pressure on the plate.

The final state of the bent plate can be produced by a gradual

application of the pressure in such a way that the pressures everywhere

start simultaneously from zero and increase up to the maximum,
maintaining the same ratios throughout the process. In this case the

pressure on every element is proportional to the deflexion at that

point; therefore the work done by the pressure p on an element of

area dA is ^ pzvdA. Therefore the whole work done on the plate,

assuming that the forces at the boundary do no work, is

W = \ffpwdxdy (14.162)

Since the work done by the pressure is stored as strain energy in the

plate it follows that W must be the same as V, which is obtained by
integrating (14.154). Thus

jpwdK==fE'i\{--^~y-^^^^\dK . .(14.163)
IV^i Q2} Q1Q2 ^

the integrals being taken over the whole area of the plate.

This last equation can be deduced from the differential equation

(14.21) by integrating both sides and carrying out some transforma-

tions of the integrals.

265. Approximate methods.

In cases where the exact solution of the plate problem is not known
quite good approximate solutions can be got by means of equation

(14.163). The way to use this equation is to assume a reasonable

expression for w of the form

w = kf{x, y)

and then to determine k from equation (14.163). The most reasonable

sort of value for w is a value that satisfies both the boundary condi-

tions, and one, moreover, that gives the sort of form to the plate that

seems likely under the given pressures. In many cases there are no
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simple expressions for w that satisfy both the boundary conditions

and then we have to be content with an expression that satisfies only

one of these conditions. A certain amount of intuition helps in selecting

good values of w for a particular problem, but there should be no

great difficulty in testing, by comparison with known accurate results,

whether any selected value is a suitable one or not.

A second approximate method, of which the one just described is

a particular case, is to assume an expression for w involving more than

one unknown constant or parameter, then to write down the total

potential energy of the system, including the potential energy of the

loads applied to the plate, and finally to determine these parameters bv
making the potential energy a minimum. For this purpose the work
done by the pressures or loads is

ffpwdxdy

wherein p must be regarded as having its final value at every point

of the plate. The factor ^ which occurs in (14.162) does not appear in

our new expression. The potential energy of the loads must be taken

as the negative of this last expression for the work. Thus the present

method is to take the potential energy V, given by

V = i/El|f-+ -) -^^i=^|rfA-/^t^(/A, . (14.164)

and determine the parameters, m, n, k, etc., that occur in w, from the

^•>""''°"^
ev ev SY

, ,,

266. Examples of the first approximate method.

(a) Rectangular plate, supported at the rim.

As our first example we shall take the square plate of uniform

thickness,' with sides of length a, under uniform pressure, supported

without clamping at the rim. Let us assume that

^ , nx . ny / z^xw = ks\n— sm— , (14.100)
a a

a pair of sides being taken as axes.

This value of zv satisfies both the conditions given in (14.44) for

a supported plate.

Now with this value of w

dx^ a^

oy^ a^

27r2

a^
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d^w 71^
, Tix nu

-——- = —- A;cos— cos -^
Gxdy a^ a a

Qi Q2 dx^ dy^ \dxdy)

= —A;2 sin2—
a* \ a

nx . ny nx ny
sm-* cos-*— cos^

—

a a a

Also

and

C"" [^
. ^nx . ,n%f ^ ^ r^ .

„7ix
^

(^
. ^ny ^

\ / sin^— sin^— dxay= sm^— dxx / sm^— dy
Jo Jo o, a Jo « Jo o, '

t/ot/o

TtX TVU
cos^— cos2— dxAy= \ a^.

a a

Therefore equation (14.163) gives

(^ (^ , Tix , ny ^ ^ ^,^ 47Z
kp / sin— sm— dxdy = E I—
Jo Jo a a a

X i«2

or 4^2^kp==-mk^

whence _,_. ^a^p
Jb 1«=—— •

Thus our approximate value of w is given by

^,T 4'*V . nx . Tiy
, r X

Elw; = ^^i- sin— sm—. . . . .(14.167)
n^ a a

The maximum bending moment octurs at the middle of the plate and

its value, on our present assumption, is

n'= El(i-i-a)— w;

4a2p
— (i+a)sin— sin —

^(i+a) (.4.168)

The accurate solution to this problem gave [equation (14. 141)],

-611=3-584^(1+0).

The error in the maximum stress by the present method is therefore

about 10^. We must always expect an error of about this magnitoide

by the present method. Intuition could not have suggested a much
better type for w than the one we have used here.



424 APPLIED ELASTICITY

It is worth while to work the same problem with another value

of zv. Let us take

//' = kuv 1

where u = x'^— bx-c- -{- ^c^ > . . . . (14.169)

and v = y^-6i/^c'^-\~ sc\}

the axes being taken parallel to the sides through the centre of the

plate, and c being half the length of a side. Here u and v have not

the usual meaning of displacements.

This value of w would also satisfy both the boundary conditions

given in (14.44) i^ o were a negligible fraction. Now we found in the

last case that

m c^w d-w f c'^w\'^
dxdy= o,

cx^^ dy^ \dxdyj

the integral being taken over the whole area of the plate. We can

show^ that this result is always true for a rectangular plate if the

assumed value of w is zero all round the boundary and if

w = kf(x) X F{y) -^kuv,

as in the present and the last case. The following is a proof.

d^w d^u d~w d-v

dx^ dx^' cy'^ dy'^^'

Now

But

d^w du dv

dxdy dx dy

'

r'' r" d^w d^w , ,
,„/•« d^u

, f"" dh ,

J_c J-c dx^ cy'^ ^ J-c dx^ J-c dy^.

' r" d^u \ duy fU^^y^
J_c dx^ [ dxj-c J-c\dxJ

the integrated term being zero because u contains the factors which

make w vanish at the edges x = c and x = — c.

It follows that

/:/:ss"»-£(S)'-»/:(i)"*'

/••f(|!f)V*,J^eJ-cV^xdy)

{ (d'^uV d^udH (d^vVX
^'^ ' \dxy ^ dx^dy^^ \dyy i

which is what we had to prove.

Now , _ ,J Jd'^uV d^ud'^v
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With the present values of u and v

ax

J—c
= 2 X I2'60C^,

_^y^ = .88(1-1 + :,c^

= 288x-iS^c^

/ u—-dx^i2 (x^— yx^c^ -\- II x^&^—sc^)dx
J^c dx^ J-c

=^-24xmci
Therefore

r r (Vi^ufdxdy = 242A;''^{2 x 1 2-60 x ^% -f 2 x (? J|-)2}
c^^

== 242^:2 x26-86ci*.

Again

/ / pwdxdy= kp I udxx vdy

= /?x(f)U'cio.

Substituting all these quantities in (14.163) we get

6-42joA:cio= E'l242x 26-86/<:2ci^

whence o2t}
E1A:= ^ ^

9x13436*

The bending moment at the centre of the plate, where a; = o, y = o, is

\dx^ cyy
= 6oE'U(i + o)c6

32x60(1 + 0)

9x 1543

I 4-a

6-30

The correct result is

K (14-170)

679



426 APPLIED ELASTICITY

The error in the maximum bending moment in this case is 72 per cent,

a rather smaller error than the first assumption gave.

(b) Clamped square plate.

If the axes are taken through the middle of the plate parallel to

the sides, the deflexion given by

w^k (c2 — a;2)2 (^2 _ y^y

satisfies both boundary conditions for a clamped plate.

Putting, in this case,

W = (c2— ^2)2,

V = (c2

—

y^)^,

we find, as before.

(Vi^^^)'

Now

^— C

£
d^u

-c

Therefore

fy~^^-me^-

J—C ^—

C

2562
/c^ci

35'

Also

62
/ / pwdxdy = kp —-c^^.
J —C.J c '5

Therefore equation (14.163) gives

162 2S62

whence

Consequently

=
^.f.{4(3*'-«')('''-2'')'

+ 4<'(32/'-c')(c'-a;2)^}- (14.171)
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At the middle of the plate, where x = Oy y = o, we find that

-M, = -M, = f-^(i-}-o)pc^='-±^pa^^. . (14.172)
24 47 ^

where a is written for 2c, the whole length of a side.

At the middle of one edge of, the plate, wherea; = c, y = o, we get

M^=^^-^^pc^ = -^pa^ ...... (14-173)
24 47"o

It is worth while to compare these bending moments with the bending

moments at the centre and at the rim of a clamped circle of radius c.

These latter are

-M,.^^-^pc^ (14-174)

M, = ii?c2 (14.175)

The ratio of one of these bending moments to the other is the same

as the ratio of the corresponding two bending moments that we have

just calculated for the square plate. This is so reasonable that we may
safely assume that the approximate results just obtained for the square

plate must be accurate enough for practical purposes.

(c) Elliptic plate subject to unifo7'm pi'cssure and supported at

the edge.

Let 2 a and 2h denote the length of the principal axes of the plate,

and let

oa^- + ^2

(14.176)

n--^ .

oh' + 5^2 )

Then the deflexion given by the equation

satisfies the conditions

w = o

at the edge of the plate, and

M = o

across sections perpendicular to the principal axes at their ends.

There is no simple expression for w that will satisfy the condition

that M should be zero at all points of the edge. When the ellipse

becomes a circle the given expression for w is absolutely accurate;

and again when one of the axes is very long compared with the other

the deflexion is nearly accurate except at points near the ends of the

longer axis. The expression then must be a fairly good one for all

ellipses, and we may therefore use it in our first approximate method.



428 APPLIED ELASTICITY

Now equation (14.177) can be written in the form

Therefore

where

A —
a'

Vi''w = + B yi_A
b-'

(I4-I79)

A==
6m m-\- n

B = 6n m-\-n

C =
m -f- I w + I

(14.180)

Therefore

/

Now let

r:)-l

^= +y-s
then the integral of (Vi^^^)^ over the whole area of the plate is

Now

To integrate this put

y = bsm6,
from which we get

a:^=acos^,
and dy = b cos 6d6.

Thus Z^

r ~\dy==f^ labcos^OdO^^ab
3^

|7ra6.

It is clear from the symmetry of this last result with respect to the

two axes ihat

— dxdy^—dxdy = -l7zab, . . . (14.18 1)

the integrals being taken over the whole area of the ellipse.
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Again

/

b 5
«'

1

I ah cos^ Odd
n
2

= -J:7Tafe ...... (14.182)

Also

= / |a^)cos*^sin2
6

= -^:7ia6; (14.1^3)

and ffdxdy = 7iab (14,184)

Therefore

//(Vri^)2rfa:rf2/=jra6/c2{i(A2+B2)+|AB-2C(A+ B)+4C2} (14.185)

By means of the preceding integrals it can also be shown that

If-

= -—~{^(m-{-n)^— lmn—m—n-\- i^ (14.186)

pwdxdy ^= — kpah\i — ^{m-\-n)^ ., . . . (14.187)

Therefore equation (14.163) gives

71

8

7t

kpah\^i— ^[in-\-n)^

=-7ra6/c2El{^(A2+B2)+-iAB-2C(A+ B)+ 4C2}

jtA;2— 2(1—a)El—-{|(?/?-f?*)2— i^m—m—n+i} (14.188)

This gives the approximate value of k, and the substitution of this

value in (14.177) gives the deflexion.

267. The second approximate method.

To illustrate the second method we shall apply it to a problem that

we have already solved, namely, the problem of the circular plate

supported, without clamping at the rim, under a uniform pressure.

Let us assume that the deflexion at distance r from the centre is

w^k(a^—r^){a'^—nr'^), (14-189)

a being the radius of the plate, and k and n being constants which

have to be determined so as to make the energy a minimum.
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Here
^^

d^w i dw

ar^ r dr

/
=

/ —r^ -T- 2 7irdr
dA r^ I d'^w dw

QiQ-2 ^0 ^ ^^^ ^^

= 4J^^2a^('/^— i)-

/(Vr^w;)^c?A = -7rA:2a6(77i2_-6n+3)

fpwdA = ^jikpa^(:^ — n)

Therefore the expression for the total potential energy is, by (14.164),

V=E'l7ik^a^{^(7n^-6n+ i)- 4(1-0) (n-iy}

—^nkpa^^—n) . (14.190)

The conditions that V should be a minimum for variations of the

parameters k and n are

dY_ dY_
dk ' dn

'

that is,

2E'l7rA;a^ jf (77^2— 6w+3) —4(i— o)(n—iY} = ^npa^{i—n), (14.191)

and

E'l7ik^a^{^{i4n—6)-8{i-o)(n-i)}= — -l7ipa^k (14.192)

Dividing the sides of the first of these equations by the corresponding

sides of the second we get, after removing the common factor —

,

/c

|(7yi2_6n+3)— 4(i-o).(»i-i)2 = ^_

whence

|-(-3^4-3)-4(i-cy)(-^+i

1(7^-3) 4(^-o){n-i)

The solution of this is

= -3

. (14.193)

The substitution of this value for n in (14.192) gives

E'lk==-^ (14.194)
04W

Then the final value of w is

w
64E'r \n J

64E'I-ir^(<''-r')(^Y^^'-r'), . .(14.195)
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which differs only by a constant from the value of w given by the

direct method in equation (14.79). This constant difference is due to

the fact that w is measured from the tangent plane at the centre in

one case and from the plane of the rim in the other.

In the case that has just been taken the method used has given an

absolutely accurate result. This is, of course, a consequence of our

having assumed an expression for zv which agrees with the accurate

expression for w when particular values of the parameters are sub-

stituted; that is, the accurate expression for w is one of the possible

values of the assumed expression as the parameters are varied; this,

however, will not be true in any useful applications of the method,

because the method is useful only when the. assumed expression for

w is a fairly simple one, and if the accurate expression for w is

simple it can be found by easier and more direct methods.

268* Example of a disk with variable thickness.

When the thickness of a disk is not constant equation (14.35) must

be used to find the deflexion for a given pressure. As an example

we shall take

h= k-\-cr'^, . . . (14.196)

and assume the disk to be supported at the rim

and to carry a uniform load p per unit area in

addition to its own weight. Then, if q denotes

the weight of unit volume of the material, equa-

tion (14.35) can be written in the form

=p-i-2Q{k-\-cr^);

that is,

Fig. 144

(14.197)

where
a =

6 =

3P'}-2Qk\

E'

3^
E'

(14.198)

Since t^; is a function of r only, the equation for w becomes

dwhence

dr
{h^\/^^w)} = i-ar^i-i-br\

No constant of integration is needed in this last equation because both

sides clearly vanish at the centre of the plate.

Integrating again we get
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that is.

Therefore

Now
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(14.199)

dw /' ar

dr J [k + cr^]'^

rdr.

rdr=
c

dii

2C

Consequently

I a I h
--(h-k)-\---— {h-k)^-{-A „

dr

4bk— 8ac bk^— 4 ack-\- 16Ac^

Finally

dw\ dr
w = \r

dw\ rdr

dr j r J \ dr J r"^

dw\ dh

2J \ dr } h — k

I
+ B . (14.200)

I rf dw\ dh

2J \ dr ) h —

I n ., . Jibk— Sac bk^— Aaek A- 16Ac- \ dh

By resolving into partial fractions the fractions to be integrated we
find that

w
I2SC'^J

2b\ogh ^bk^— 4ack— 16Ac^ ( i i"

h-k k^ \h-k hj

bk^— 4ack-{- i6Ac^ i B

h^ ' h—k

Vdh

7.bk^—4ack— i6Ac2 h—k
log-

I2 8c3

k^

-{-Blogih-k)-

b rlogh

h

bk^— 4ack-h 16Ac^ i

k h

64C'

The boundary conditions are that the bending moment about the

circumference of the rim is zero, and the deflexion is zero at the rin
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on the assumption that deflexion is measured from the plane of the

rim. Moreover, it is clear from equation (14.200) that B is deter-

mined by making the right hand side of that equation zero when
r = o since the left hand side is clearly zero when r= o. Thus, if R
denotes the radius of the disk, the equations to determine the constants

are

d'^w
,
odw ] (14.202)

== o I

dr^ r dr } where ?' = R
«<? = o J (14.203)

and

2blogk+^ '^—^ + B = o.

The last equation can he written thus

„ 1 6Ac^ Aac ,'
, , ,B j^=— -sb-2blogk. . . , (14.204)

Now

Therefore

_ „ d^w I dw

d^w
,
odw _ „ I—odw

dr^ r dr r dr

It follows then that equation (14.202) is satisfied if

(i —o)h^r -r- = r%^\7^ ^w where r= R,
dr

that is, if

]p^{2kiHloghi-}- (4bk-Sac)hi'^ -{bk^—4ack-i- i6Ac'^)hi + Bk^^}
04c

^R2(iaR2-f^^6R4 + A), . . . .(14.205)

hj^ being written for the value of h at the rim.

Equations (14.204) and (14.205) determine A and B, and conse-

quently the stresses in the disk. The constant C is unimportant since

it depends only on the plane from which w is measured.

If the actual amount of the deflexion is required it will be necessary

to find the value of the integral in equation (14.201). This integral

is infinite, however, when h= k, but it is obvious that the deflexion

is not infinite. The infinite value of the integral is, in fact, neutralised

by an equal infinity of opposite sign arising from the term log {h — k)

in w. The coefficient of log (h— k) in the value of w is

I i^bk^—4ack~ 16Ac- \

28
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which, by (14.204), reduces to

blogk

64c*

Grouping together the two terms in (14.201) which may become infinite

we get, on omittmg the factor ,

f^^dh-\ogk\og{h-k)

='\ogh\og(h-k)- r^^^~^^ dh-\ogk\og(h-k)

As h approaches k the first term approaches zero and the integral

approaches a finite limit. To evaluate the integral we can expand the

k
logarithm in powers of — . Thus

J h ''' J
h

"^ dh

rilogh k

~J\ h h^

k^ k^

2h^ Zh^

When h'^-k the value of this series is

.\dh

4(iog/^)^+i+^ + ^, + ^, + ....

= 4(iog^)2+ i^^ (14.206)

The rest of the work for the solution of this problem consists only

in finding the constants A, B, C, from equations (14.203), (14.204),

(14.205). The general case is straightforward but laborious. It

becomes, however, much easier when numerical values of p, k, c, and

^, are given.



CHAPTER XV.

THE BENDING OF THIN PLATES. MORE ACCURATE
THEORY.

269. The strains in the middle surface.

We remarked in the last chapter that the theory therein given for

the bending of thin plates is accurate enough only on the assumption

that the deflexion w, measured from the developable surface which

leaves the maximum deflexion as small as possible, is much smaller

than the thickness of the plate. When this deflexion is comparable

with the thickness the inevitable strains of the middle surface itself

are no longer negligible. To complete the theory of the bent plate

we shall now take account of these strains of the middle surface, and

the equations that we finally obtain are valid wherever the slopes —
dw ^^

and — are small fractions,
cy
Let the tangent plane at some point of the bent middle surface of

a jylate be taken as the xy plane, and let a particle of this middle

surface, which would be at x, y, o, if the plate were not strained, be

displaced to ;r -)- Uq, y + Vq, w, where u^, Vq, w, are functions of x
and y only. Let dx, dy, denote the components of the line ds joining

two particles in the unstrained state, and let ds^ be the strained length

of the same line. Then

(dsy= (dxY-^(dyy

(ds^Y= {dx-{- du^f + [dy + dv^Y + [dwy.

Now we may neglect the quantities {du^Y, {dv^Y* since we shall be

retaining the more important quantities du^ and dv^. We have,

however, no such reason for neglecting {dwY- I" fact, it is easy to

conceive that, for a thin plate, {dwY might be a quantity of the same

order as dxduQ and dydv^. It will be clear from the results in the rest

of this chapter that the term (dw)^ is, in many cases, quite as im-

portant as dxduQ and dydv^. Then neglecting (du^Y ^^^ (^^0)^ "^e get

(ds^Y= {d^Y + (dyY+ zdxdvQ + idydv^ + [dwY

= {dsY -f- 2 dxduQ -{- 2 dydvQ + [dw)

K

28*



436 APPLIED ELASTICITY

The extensional strain of ds^^ is

dsy—ds {ds^y — (dsY

ds ds{ds^ -\-cls)

2 dxduQ + 2 dydvQ -f- {dwy

2(C?S)2

ds ds ds ds 2

nearly

fdwV

Now suppose ds makes an angle 6 with the ic-axis. Then

coscy=-— , sine' = -—

•

ds ds

Therefore the above strain can be written in the form

I /'dw\^duo . dvQ i(dw\
cos^- + sm^-+-(-J

Putting = and dx = ds in this we get the «^train in the ic-direction,

namely,

dUf^ I fdwY
(Jx 2 \dx I

Similarly bv putting = — and ds =
2

{'S-')

we find that the strain in

the 3;-direction is

6vq I fdwV

\8y)
(15-2)

We have next to get the shear strain of

the element which was originally a rectangle

^
with sides dx and dy. Let ABCD (fig. 145)

B be this rectangle, and A'B'C'D' the figure

into which it is strained.

Now by the definition of shear strain,

given in chapter II, the shear strain of

Fig. 145 A'B'CD' is the radian measure of the

difference of the angles at A and A'. Let

the angle at A' be ^Ji— 0. Then the shear strain is 0, which is

approximately sin^, and

sin^ = cos(|^7r — ^).

But

B'D'2 = A'B'2 + A'D'2— 2A'B'.A'D'cos(|jr-^).

Therefore

A'B'2 4-A'D'2-B'D'2
sin^

2A'B'.A'D'

2dxdy
nearly.

.

. (15-3)
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Now the coordinates of B' relative to A' are

Also the coordinates of D' relative to A' are

ht)*dy, 1+ ir-]dy, —dy.
dy ' \ dy] dy

Therefore

-'=i(-s)'+(&)*+e)'i<-)'.

-He)'+(-t)"-©l'«''

.

TX • , r ^^0 ^«^0 ^^0 d^O rr.^

Here again we may neglect squares of -— , —— , —— ,
—-. Then

dx dx dy dy

we get

-—
!-+^S+(£)l'*>'-

|2

™-|-+'t+©'l<*
Again by subtracting the coordinates of B' from those of D' and

squaring and adding the relative coordinates we get

'°--(t*-fe*-^)'+(*+S*-s*)"

When squares and products of —^, etc., are again neglected this
ex

becomes

^•'-l-+''5+©V+l-+'t+(l)l'*
, 7 l^«^o . dV(. .

cJwSw— 2dxdy{—^ -{' r-^+ T^^r-
l dy dx ex dy

Now equation (15.3) for the shear strain reduces to

• n duQ dvQ dwdwsm^=—^+ -^+— -- 154
dy dx dx dy

We shall write Cq for this last strain, in agreement with the notation

in Chapter II. Thus we have found the following three expressions

for the strains in the middle surface
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SUq I fdw\ 2

_ Bvq Suq dw 6w

The assumption in the usual theory is that these strains vanish or are

negligible when u^ and Vq are zero, but it will be clear from particular

examples in this chapter that this assumption is not always correct.

270. Mean stresses in the plate.

When we take account of the strains of the middle surface the

equation for u and v in (14.1) must be written

(Sf,8i\

dx

and w need not be altered; that is, w is approximately the same for

all the particles in a line perpendicular to the faces of the plate. It

follows from what we have proved in this chapter that the strains

in equations (14.2) should now be written

du . I /dw\^

dx

cu I /cw\'

dx 2 \dx]

and

= «0+:^3H/'+^)+^V} (15.8)

P=fio+^A^(f+S)+^M (15-9)

Also the shear strain c becomes

du dv dw dtv

By dx dx dy

_ ^Wq dvQ dw dw

dy dx dx dy

-"o+^l-^^Cr+D +^M (I5.IO)
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The additions of a^, fi^,
Cq, to the strains in the last chapter will

alter the expressions for the stresses P^, Pg, S3, as they are given

in (14.29), (14.30). (i4.30» to

h + .
(I5-II)

. (I5I2)

S,^ = ncQ— 2nx-
d-w

dx6y
(5-13)

The values of these stresses at the middle surface are obtained by

omitting the terms which have a coefficient z. Moreover, the mean
values of each of these stresses from one face to the opposite face

of the plate, that is, from z= — k to z= -\-h, is cle-arly the same
as the value of that stress at the middle surface. Thus

^J F^dz==E'(ao + opo)^

since ao, ^o» ^"^ W' ^^^ "ot functions of 2.

In the rest of the chapter we shall use dashed letters to indicate

the mean stresses across the thickness of the plate. Thus

P\ = E'(ao + a^o) (iS-M)

P'2=E'(^o + <^ao) (15-15)

146 a

S'3=WCo . . . (15.16)

271. The pressure supported by the mean stresses.

Another equation that needs modification when we take account

of the stresses in the middle surface is equation (14.15). In that

equation no allowance is

made for the mean stresses

P'l, P2, SV We shall now
find the additional terms on
the right of (14.15) due to

these mean stresses.

Let us find what pres-

sure on one face of a bent

plate can be supported by
the mean stresses. We shall

deal with the equilibrium of

an element of the plate with

sides dx, dy.

Let P and R denote the
'^ ^

mean values of P'^ over the two edges of length dy of the element
dxxdyy and let these stresses be inclined, as shown in fig. 146, at

Fig. 146 b
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angles — yj' and -j-v"with the a::-axis. Then the force on the area

zhdy due to P is zFhdy. The component of this parallel to OZ is

— 2F sinxp'hdy which is approximately — zF tan xp'hdy. Thus the

total force in the direction OZ due to P and R is

2 /j c?iy { R tan 1/;"— P tan 1/;' }

.

But

tan xp=-—, tant/; =tani/; -}-— {tsinyjjdx;
vOO cix

op

also R^F + -—dXy
dx

and, in the limit, P becomes P\.

Therefore the total force due to P and R in the direction OZ is

Likewise the force in the direction OZ due to the tensions across the

other pair of edges is

(''ih
zhdx

ty

Again let the mean values of S3 over the four edges of the element

be S, U, V, W; let S be inclined to the «/-axis at an angle — (p\ and
U inclined to the same axis at^". Then the component in the direction

OZ due to the mean stress S is — 2hdy S sin q?' or approximately

— zhSdy tsincp'. Thus the total force in the direction OZ due to S

and U is

2hdy[St3.n(p'— Utang?"}

But tan99'=-—-, tan 99"-= tan 99' + —(tan 99') t/ic;

also U = S + -— dx,
dx

and, in the limit, S becomes S'3.

Therefore the above total force due to S and U is

zhdy—- ls\ ^^]dx.

Likewise the corresponding force due to the stresses V and W is

Therefore the total force in the direction OZ due to all the mean
stresses P\, P\, S\, acting on the edges of the element dxxdy is
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This expression, divided by the area dxdy, should be subtracted from

the right hand side of equation (14.15).

272. Relations between the stresses in the middle surface.

Equations (2.24) and (2.25) are

When a plate is bent by forces perpendicular to its plane the quantities

X, Y,
/"i, f.^, are all zero. Then

^?? +^+ f. = o. .... .(15.19)
dy c)x cz

Now integrating, with respect to z, throughout the first of these

equations, between, the limits z = — h and %= -\-h, we get

j—hcx dxJ -.h ex

the

way we find

But

since F\ is the mean value of P^ between these limits. In the same

/:
Also S2 is zero at both surfaces of the plate, and therefore

[S,]* = o.

—h
Consequently, equation (15.20) becomes, after division by 2h,

= (15-21)
dv\

,
es'^

ex dy

Likewise equation (15.19) leads to the equation

Now by means of equations (15.21) and (15.22) the expression in

large brackets in (15.17) reduce^ to

cx^ cy^ dxdy
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This, multiplied by 2/1, is the expression which has to be added to p
in the last chapter. With this change, equation (14.21) becomes

By means of equations (15.21) and (15.22) the three quantities P'p

P'2, S'3, can be expressed in terms of a single function. Let 99 be a

function such that

-^^=^^ • •
•<'5-4'

Then equations (15.21) and (15.22) give

^'^=^^' (^5.26)

Finally the equation for p is

273. Relation between (p and w.

When p is given this last equation involves two unknown functions,

w and (p, which cannot be determined from a single equation. Then
we need another equation connecting these two functions, and this

other equation we shall now find.

The stress-strain equations in the middle surface are

P._,^,.E,. = Eg + i(|)-|.
. ^ .,,5.,.

Writing for n, and then eliminating Uq and Vq from these
2(1+0)

three equations, we get

which can be written in the form
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dx

C^(p
-7r-+ 2-

3y^ \dxdy)

or ('5-31)

dx'^dy^ dy^

dx'^ dy"^

'

We have now reached the necessary differential equations for the

problem we set out to solve. When p is given as a function of x
and y, equations (15.27) and (15.31), together with the boundary-

conditions, determine completely the functions w and 99, and therefore

also all the stresses in the plate.

274. Symmetry about the z-axis.

When everything is symmetrical about the i?;-axis, as when a disk

is symmetrically loaded, it was shown in the last chapter that

V...;|(.|) ,,,.3-)

where r=\x''^-\-y^. Also, when we took the .I'-axis coincident with

the radius vector r, we found

d'^w d-w

dx^
~~

dr^

d'^w I dw

cjxdy

d /i 6w\

' (15.33)

The last three equations will, of course, remain correct if we replace

w by 99, since, on account of the symmetry,^ is also a function of r

only. Therefore equations (15.27) and (15.31) become

_ / , .^iidqp d^w I dw d-w
^ ^ ^ \r dr dr'^^ r dr dr^

and

2hE d /dcp dw\

r dr\dr dr /'
'

I dw d^w
V,V= --:;-

r dr dr^
'

(15.34)

(15.35)

E' being written for

The bending moments, torque, and shearing forces, become

\d^w o dw\
M,

M,

Ei|i_ +-_r

= r.ji

Ur2
dw

drV

d^w\

. (15.36)

. (15.37)
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Q = o (15.38)

Fi = -^'l^^(V,'w) (15.39)

F.2 = o (15.40)

The stresses at the middle surface are

If u is the radial displacement of a particle of the middle surface then

the radial and circumferential strains in the middle surface are

du
,

I /dwy o ^ / \

""-dr+lWJ'^o^V <'5.42)

275. First integrals of the equations for w and (p.

Since

Vi«=Vi^(V.^)

it is easy to integrate equations (15.34) and (15.35) once. Multiplying

(15.34) by r and then integrating from o to r we get

""

. d dcp dw
prdr=EIr-{V,'w)-2hEj^-. . . (15.44)

No constant need be added to either side of this equation when we

are dealing with a disk without a central hole, because, since — = o
dr

at the centre, all the terms in the equation clearly vanish when r = o.

It is worth while to see the physical aspect of (15.44). If we
multiply both sides of the equation by 271 we can write it in the form

W = -27trFj^-27ir(2hP^)^. . , . . (15-45)

where W denotes the external force on the circle of radius r. The
two terms on the right of this last equation are the negative of the

total shearing force and the negative of the resultant of the stresses

Pj round the circumference of the circle of radius r. Thus equation

(15.45) states the very obvious fact that the forces on any circle are

supported by the actions at the rim.

Again, after multiplying both sides of (15.35) by r and integrating

with respect to r, we get

'l'V.V.= -i©-,. . . . .(.546.

no constant being necessary again because both sides vanish when

/
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We cannot easily carry equations (15.44) and (15.46) any further

except in special cases. Indeed it is hard to solve the equations for

w and (p in the easiest cases, although it is not particularly hard to

find p when w is given and the value of P^^ at the rim of a disk is

known. We shall now apply our equations to a few problems which

have been chosen because they make clearer the meaning of the theory,

276. Circular plate bent into a portion of a spherical sur-

face of small solid angle.

Let a be the radius of the plate, c be the radius of the sphere, and

let the 5t-axis be normal to the middle surface of the plate at its centre.

Then the deflexion is approximately

r2«^=—
• • • (1547)

zc

Now equation (15.46) gives

,,(V.»9')— -^. ..... .(15.48)

Therefore

r dr\ drj
-£)=ViV = -^(»-^-n . . .(15-49)

b^ being a constant of integration.

Integrating again, we get

no constant being necessary because both sides vanish where r = o.

Now the mean tensions are

---s-i-."'-'"'
. (15.51)

The radial tension P'j at the rim of the plate can have any value

whatever, depending on what forces are applied at the rim. Suppose

P'^= T at the rim. Then

T=^^(262-fl2), ...... (15.52)

and consequently'

P'i-T=Y^,(a2-,-2) . . . . . (15.53)

r,-'r=~{a^-ir^). .... (15.54)
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Since \7i^w is zero, equation (15.34) gives

zhE d fdw<
P = -

r dr\dr dr j

2hE d

r dr
j_^^(,._,,V^)|

=
S(^'-1«') +^T (.5.55)

If T is zero tKe mean hoop tension P'g is positive from the centre of

the plate as far as the circle where r=:

—

—a, and is negative in the

V3
rest of the plate. Moreover p is positive, which means in the same

direction as w, in the region where r is greater than —=a, and negative

V2
in the other portion.

Equations (15.36), (15-37), (15-39), give

M, = E1^ + "

c

EI

~(i-o)c' •

JVIg = Ml , . .

Fi=o.

, . . . . (15.56)

(15.57)

Thus the bending moment is constant everywhere and the shearing

forces Fj and Fg are zero. It follows that there must be a bending

couple of magnitude M^^ds acting about each element ds of the rim

of the plate.

The mean radial stress F\ is arbitrary to the extent of an added

constant, and this added constant occurs in the value of p with a

factor— . In fact the term— T in the expression for p is merely
c c

the pressure inside a non-rigid sphere of radius c and thickness 2h
when the tensional stress in the material is T.

Fig. 147 shows the^ way in which the pressure p acts across a

diametral section and the direction of the bending moment on the

lyi mj, rim. The figure is drawn
'

'f'T'T'TT^T'^- A"—X ^^^ *^^ ^^^^ where the ten-

^
, .^-f I 1 1 1 1 1 1 ^-:.. ^ sion T at the rim is zero.

^'
^"xj^ The usual Poisson-Kirch-

Fig. 147 hoff method, that is, the
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method of the last chapter, would make jt?, F\, P'g, all zero, but would
give the same values of M^ and M2.

If the plate is held so that there is no displacement of the particles

at the edge of the middle surface, in which case the radial displacement

u is zero where r= a, we get

u = r^Q = rE (P '2— aP'i ) = o where r= a,

whence 2(i—o^)b^ = (^— o)a^y

277. Disk supported without clamping at the rim, with
deflexion the same as Poisson's theory gives for uniform
pressure.

By equation (1479) the deflexion for a disk supported at the rim

under a uniform pressure p^ is

w = ~H(2b^r^-r^), . (15.58)

^here h =^V=^ ^-^^7^ , (15-59)

and ^2== 3_+f^2 (15.60)
I +a

Now equation (15.46) gives

V)
= -8H2(feV-r3)2.

Integrating this we get

Vi^^? 8H2(i Mr2—I &2^4^ 1 ^6) ^ B;

that is.

r— (ViV) = -I H2(4fe2r_4r3)2

dr\ dr

Therefore

/'r^)=-4H2(64r3-J2^5^i^7)_|_Br.

r^=-4H2(iMr*-i62r6 + ^V') + iBr2 . . (15.6;

Consequently the mean radial tension is

^ r dr

= -EH2(i4r2_|J2^4^1.^6^_}_|B.

1 tension iLet us write P^ for the mean tension at the centre. Then

and therefore

P\ = Po-EH2(64r2_|i2^4 4_^y.6) ...... (15.62)
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Since F\ is zero at the rim of the disk, where r=^a, we get

Po = H2a2(fc4-|6V_|_ia4, (15.6.3)

Now equation (15.34) gives

. , zhE d (dw dw\

zhE d fdw d'q)

^ r dr\d7- dr

= ^1 + i6HEPo/i(62-^2r2)

—|/jEH3r2(i2fe6-3oMr2 4-2o62r4-5r6)

= Jt?i+|/iEH3a2(ft2_2r2)(6fe4-4^)2tt2^a4)

-|/jEH3r2(i266_3o?)4r2+20&2r4_5r6) . (15.64)

Now let u\ denote the magnitude of the deflexion at the rim. Then

For convenience let sa^ be written for b"^ ; that is,

-Hi c^^
Then

w^ = Ha^(2s—i) (15-66)

By means of equations (15.59) sind (15.66) we find that

^^'^'^i^dSjif^y^^ ('5.67)

Now the pressure at the centre of the disk, where r = o, is

2i — a2 6s3_452_|_5

If (7 = 0*25 this becomes

{zs—iy

;,=^i + ro8gy} . . .(15.68)

Also the pressure at the rim, where r==«, is

fwA^i—o^ 6.53—14524-115— 3
P-P^-Pr(j) -^ ^^7)5

=i'i|i-o-484(^J} (15-69)

Thus equations (15.68) and (15.69) show that, if w^ is equal to

the thickness of the plate, the pressures at the centre and at the rim

are 2-08 /)^ and 0-516 p^, whereas the Poisson-Kirchhoff theory gives

pj^ as the pressure at every point of the disk. This plainly shows that

the latter theory cannot be used when, the greatest deflexion of a plate

is comparable with the thickness. But if w^ is one-tenth of the
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thickness the pressures at the centre and rim are i-oi p^ and 0-995 /)^.

For this case the errors are certainly negligible. It will probably be

safe, in every conceivable case, to use the Poisson-Kirchhoff theory

whenever the maximum deflexion is not greater than one-fifth of .the

thickness, for the error in p will probably not be greater than about

five per cent, which is certainly less than the errors due to ignorance

of the elastic constants.

When w^ is several times as great as the thickness the Poisson-

Kirchhoff theory does not give a pressure of the right order even.

For example, if w^ is five times the thickness, the pressure at the centre

and the rim are respectively 2y p^ and — ^'^
Pi> which are vastly

different from a uniform pressure p^ !

It is easy to see that the middle surface of a plate may be bent

into a developable surface, a cylindrical form, for example, without

the slightest stretching or shrinking of the middle surface. It follows

that the maximum deflexion may be many times as great as the

thickness and yet the Poisson-Kirchhoff theory may give absolutely

accurate pressures and stresses in the plate. In fact if q? is zero the

equations of the present chapter are the same as those of the last

chapter. But if

taiJ?~[e^y)
==°' "''^•^°'

and if the mean stresses P', , P',, S'^^, are all zero at the boundary of

the plate, then q? is certainly zero. Now (15.70) is the condition that

the middle surface should be a developable surface. Thus our equations

tell us, what is quite clear from a physical point of view, namely, that

the middle surface may be unstrained if a plate is bent into a

developable surface.

The condition expressed by (15.70) is not, of course, a sufficient

condition that the value of (p given by (15.31) should be zero. If,

however, 99 is not zero when (15.70) is. satisfied the strain in the

middle surface which this value of q? indicates is due to the mean
stresses applied at the boundary of the plate and not at all to the

deflexion w. When the stresses P'^ , P'gjS'^, are due to boundary

conditions only, then equation (15.23) is just as consistent with

Poisson's theory as with the theory of this chapter.

It has been shown in a particular example that Poisson's theory is

accurate enough for all practical purposes when the deflexion w,

measured from a plane, is small in comparison with the thickness of

the plate. Moreover Poisson's theory is quite accurate when the middle

surface is a developable surface. It is not diffixult to see then that

the same theory will be accurate enough when the deflexion, measured
from any developable surface, is small in comparison with the

thickness.

29
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278. Rigidity of disk negligible.

Poisson's solution of the plate problem is the solution obtained

when the stresses in the middle surface produce a negligible effect on

thfe pressure, that is, when the terms involving q? in equation (15.27)

are neglected. We now intend to solve the problem of the plate bent

by pressure when the contrary assumption is made, namely that the

term due to the stresses in the middle surface are the most important

on the right hand of (15.27). This means that the rigidity effect on

the pressure is negligible in comparison with the effect of the mean
stresses. The term containing Vi^'^^ ^^ {^5-^7) represents the rigidity

effect, and the other terms on the right of that equation represent the

effect of the mean stresses. If S'^ is zero the mean stresses are like

the stresses in a membrane.

The present problem is to find the form of a disk in which the

flexural rigidity is negligible when the action at the rim is a uniform

radial tension and the pressure is constant over the disk.

Since the flexural rigidity is neghgible equation (15,44) becomes

dcp dw
.^H = _2M-.- (.5.71)

It is necessary to use also equation (15.46), which we rewrite here,

d\i d

dr

Now putting

\i d ( dcp\\ Udwy
\r dr \ dr ji 2 \dr )

f.
dcp ^ 1 dw „ . .

dr r dr

the last two equations become

4/^E

ds^
^

When 6 is eliminated the equation for ^ is

(15-73)

^52 I28/i2E2g2

Now let us take two new variables s^ and ^^ such that

(15.74)

^1^ = J92

i28/i«E2i (15.75)

and h% = |. J

These two new variables are mere numbers, that is, quantities with

no physical dimensions. In terms of the new variables equation

(15.74) becomes

d^^ s,

ds^ ^1
(1576)
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Although the complete solution of this equation involves two arbitrary

constants the solution for the complete disk involves only one such

constant. It is easy to see how this constant appears in the solution;

for, with the substitutions

ii = (^% Si_=c''x, (1577)
equation (15.76) gives

-A = --i ^'5.78)

Thus c is one of the constants in the solution, and we shall see that

it is the only constant necessary for a complete disk.

Equation (15.78) has a solution in the form of an infinite series

of positive powers of .r. To solve the equation it is best to write it

in the form

d^y

and then assume

y=^aQ-\- a^x -\-a.^x'^ -\-

This gives

{a^ -\- a^x -\- a^x'^ -\- . . .Y{2a^ + 6^3 ic+ i2a^x'^-\- ) = — rr^.

Equating coefficients of powers of x and making! a,, which is arbitrary,

equal to i, we get

«.,^ = o, «! = I , ^2 = — ^-, ag = _ i, a^ = — yV\ , etc.

,

and the expression for y is

y = X-^X^-lX^-^^iiX^-,\\x^-il^X^-ii^%%X-^- (15.79)

We have here got a value of y for which -^ is unity v^hen x is zero.
'

dy
^^

Now equation (15.78) show that -^ decreases as x increases for all

dx
values of x and y. Moreover, the curve connecting x and y cannot

have an asymptote with a finite slope because, along such an asymptote,

d '^1/ 11
-— approaches zero and —approaches a finite quantity, and equation
dx^ X
(15.78) shows that both these limits cannot be approached at the same

time. Then it is clear that -^ goes on decreasing till y becomes zero,
dx

and this occurs for a finite value of 3:.

In the immediate neighbourhood of the point where y vanishes

and x is finite we may regard x as a constant. Let this constant value

of X be x^. Then equation (15.78) becomes, in this neighbourhood,

dh) x^ 2

dx"^ y^

a. first integral of which is

29*
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2 \dx) y

2

This last equation shows that -^ approaches infinity as y approaches

zero. Therefore the curve connecting y and x meets the .x-axis

perpendicularly at the point where y vanishes and x is finite.

Now if all the remaining terms of the series in (15.79) are negative

it is clear that there is some finite value of x. which makes the sum of

the negative terms of the series equal in magnitude to the one positive

term x. For all values of x up to this value of x, which we have

called a:,, the series in (15.79) is certainly convergent, and therefore

it represents accurately the value of y.

It is a laborious business to find x^ by equating to zero the series

in (15.79). It is easier to make comparisons with other series. There

are two simple functions the expansions for which are very similar to

the series in (15.79). These are

y = -{i—x)\o%^{\-x)

==or.-ix^-ix^-^\x'-^\x^-J'^x^-^\x'^- . . . (15.80)

and

y=x{l—lx)7
^x-ix^-ix^--,Y,x^-iir^^-^^^\x^--,U^-x''-...{i5.Si)

By comparing the terms in the three series we see that the value of

the series (15.79), at least as far as the term containing x'^, lies between

the two series in (15.80) and (15.81). Moreover the curves represented

by these last two equations are similar to the curve (15.79) in that

they both have the same value of y and the same slope at x = o, and
they both meet the ic-axis perpendicularly at a point where x is finite.

It is safe to conclude that the value of y v/e are seeking lies between

the two values in (15.80) and (15.81), and therefore that it vanishes

for some value of x between x= i and x= -ij-, which are the values

for which the series in (15.80) and (15.81) vanish.

By substituting for y, on the right of equation (15.78), the value

given by (15.81), we can get a still better approximation to the true y.

With this substitution equation (15.78) becomes

dx

Integrating this, and adjusting the constants so as to satisfy the

conditions

^^^-(i-lx) ^ (15.82)

y= o and -r- = i where x = o

,

dx

we find
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"l-l(-W-=
= ^_i^2_^^3_i3_^4_17i^5_^^6_J3^^7.... (15.83)

2 6 144 288 864 36288

This differs so little from (15.79) that there can only be an insigni-

ficant error in taking one series for the other. Assuming then that

this last equation gives the correct value of ij then the value of x
for which y vanishes is the root of the equation

I—|(i-,lx/-5Xi=o.
This root is approximately

^1 = 0-883. . (15-^4)

The mean radial tension in the disk is

1 r di' r^ s

= i(2jo2E2)rc^

==V,{i-^x~ix^-^\\x^-i^\x^-...l. .(15.85)

the constant factor P^ being clearly the mean tension at the centre

of the disk. In terms of the constant c its value is

Po = i(2j,2E2)fc= (^'j*c (15.86)

In our equations we can use the constant P^ instead of c since the

former has the advantage of having a clear physical meaning. Thus

^ s (p'Ey/ p^ \i

Po3\i28; \i28h^Ey

J.2 p2]^

and therefore

Let a denote the radius of the plate and let F\ = T at the rim. Then

I Ha' I H2a* 13 H%6
=p.(

2 P„3 t P„» 144 Po-
(15-89)
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If P,j were given this equation would determine T directly, but if T
is given it determines P^ indirectly. By inverting the series we can

express P^, in terms of T. The equation for P^^ is

[ I Ha^ I H%* 5 5 H3a6
\

The first approximation is

Po = T,

which is the usual assumption in dealing with stretched membranes.
In getting this approximation it is assumed that Hct- is negligible in

comparison with T-^ or with P^-^ The assumption also means that P\
is constant over the whole of the disk.

The second approximation to the value of Pq is

I Ha2

and the corresponding approximation to F\ is

P'i = Po(i-l-»-)

I Hr^
"° 2V

/ I Ha2\ 1 Hr2

2 Po^

=T+iii(«--r2).

The third approximations are

Po
I Ha2 I H2a*

+ 2 T2 3 T^
• •

and P'l-+ific-)4? (a^-r^

.... (15.91)

r^)(2a2-r2). . (15.92)

Although equations (15.85) and (15.89) are true for any disk in which
the flexural rigidity is negligible yet the inverted equations from

(15.90) to (15.92) are true only on the assumption that P^ is nearly

equal to T. If P^ and T are not nearly equal then it is necessary to

retain equation (15.88), or the nearly equivalent equation

P'l=5{f-f('-i^.)^-5:^}

P0M9 9/ 7Hr2\| Hr2|
= H74a-^i'-6iv) -5iri|- • -(^5.93)

To get the deflexion w we must return to equation (15.73). Thus
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I dw p s p I

' r dr 4/iE| 4^^ P'l

4fePo

4ftPo

Therefore, measuring w from the level of the middle of the plate in

the direction of the pressure p, we get

n i I H s H2 SS H^ 7 H* 1

8/.Po| ' 4P0' 36Po« ' 57^Po^ 9^Po''

279. Deflexion of a disk due to a given symmetrical load.

Approximate solution.

We have now found the deflexion of a disk under uniform pressure

in the two extreme cases

(i) when the tension in the middle surface can be neglected;

(ii) when the flexural rigidity can be neglected.

There are, however, many intermediate cases where neither of

these assumptions can be made, and it is our present object to get an

approximate method of dealing with these intermediate cases. The
labour required to get an accurate solution is so great that it is not

worth while, particularly as the solution can only be expressed in the

form of an infinite series in the end.

The method we shall use here is similar to that used in Chapter VI
for a beam whose ends are held at a fixed distance apart. The present

problem is similar to the beam problem. The method consists in

assuming a reasonable expression for w and then deducing from the

accurate equations of equilibrium an equation closely akin to an energy

equation. This pseudo-energy equation, as we shall call it, determines

the maximum deflexion, which is left undetermined in the assumed

expression for w.
The equations of equilibrium for a load symmetrical about the

centre are (15.34) and (15.35), which are rewritten here

I d (dw dw\
^= E'IV/— ^/^E--(^^), . . .(15.96)

I div d^w

r ar d7'^

I d (dw^

(^ (^5.97
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Now if w were proportional to p (and it is proportional to p when
the tension in the middle surface is neglected) the work that would be
done by p on an area, dA of the plate, assuming that p gradually

increases from zero up to its maximum value, would be \ywdK. The
integral of this would, on these assumptions, give the total energy in

the plate. Now, although this integral does not give the total energy

in the plate when the tension is taken into account, nevertheless we
do get an accurate equation by multiplying both sides of (15.96) by

^wdK and integrating both sides. But

\2vdK == \w(27irdr) = nwrdr.

Then multiplying both sides of (15.96) hywrdr, omitting the factor 71,

and then integrating over the whole disk, we get

nO> nO. nd ^ fdw dw\
/ pwrdr = E'I wr\/ ^^ wdr— zhE ^y I

"7^ "t~ I
^^- • (i5-9^)

t'o «/o «^o UT \(lf dV J

But since

^ r dr\ dr

it follows that

/ wr\/i^wdr= '^-fy —j— )"^

[d 1" r^ dS/^^wdw

dr dr

Let w be measured from the rim of the plate, so that w is zero at the

rim. Then the integrated term in the last equation is zero at the upper

limit because w is zero there, and it is zer© at the lower limit because

r is zero at that limit. Therefore

r^
,

r^ dSJ.^wdw
,

/ wr\7 . *wdr == — / r — dr
Jo J dr dr

r „ dwY r'^ c d f dw\
,

= - ^'Vl2^^-^ +y (\7x^wYrdr. . . (15.99)

The integrated term is again zero at the centre but not at the rim

except for a clamped disk.

Again, by integration by parts,

r^ d /d(p dw\ r dipdwl^ rH(p Idwy

Jo dr\dr dr J dr drjo Jo dr \dr J
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The integrated term is zero because w is zero at the rim, and
dw

because -— is zero at the centre. Therefore
ar

lyimy-Bm-- (15.100)

Now by multiplying through equation (15.97) by rdr and integrating

from o to r we get

'^,<'.>l-iCT)' ''<">

Therefore equation (15.100) becomes

'"*

Since the radial tension is

r dr

and since we are assuming that this tension is zero at the rim, it

follows that the integrated term is again zero at both limits. Thus we
get finally

We can now write equation (15.98) in either of the forms

j pwrdr= E'lf {\/^^wYrdr+ 2}iEf ^(jt) ^^

-rifr^Vi^J , . . . . (15.104a)
I dr Jr= a

or

pwrdr =E'l (\/\^^wY-rdr -\- /^hEJ (\/^'^(pYrdr

-E'l[.J;v.^-]_ ,. . . .(i5.:o4b)

and \7i^<p is given in terms of w by equation (15.101). The second

of these equations can be used only when P'^ is zero at the rim.

For a disk free at the rim, or supported at the rim without clamping,

one of the boundary conditions is

d'^w odw
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But dhxj I dw ^ ^ ,
• .X

-ri4-- :r-= Vi'?^ .15.106
dr^ r dr

Therefore, at the rim,

I — o div = V7 2

r dr

and consequently

V^w,

,.^V,^«' = (.-a)(^) (.5.-7)

This expression can be used in the integrated term in (15.104 a) and

(15.104b).

If, however, the plate is clamped at the rim the boundary condition

which replaces (15.105) is

dw—— = o where r = a.
dr

Consequently, at the rim,

div _ ^ , r>.

•r— Vi^w^ = o (15-108)

Thus, for a plate free or supported at the rim, equation (15.104 b)

becomes

pa pa pa

/ pwrdr = ¥!l (\/ ^^w^rdr -\- 4J1E {SJ ^"^cpYrdr
Jo tJ o Jo

and this is still true for a plate clamped at the rim because the last

term is zero in that case.

If we put

5 = —
a

equation (15.109) can be put in the rather more convenient form

and the equation for <p is

d ii d ( dw\\ I fdw\ 2
^ ^

Equation (15.110) is the pseudo-energy equation.
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280. Plate supported at the rim under uniform pressure.

We shall illustrate the approximate method by using a simple

expression for w, namely,

(i-J)=6(.-.^), . . . (15.112)

which is the deflexion for a small portion of a spherical surface. This

makes w zero at the rim, but makes the bending moment constant

across every section of the plate. It is therefore very far from

satisfying the boundary condition that the bending moment across the

rim is zero, but it will do to illustrate the method.

We have

dw-—= — 208.
as

Therefore, by (15.111)

s ds\ ds J ^

Integrating again after multiplying by s

s^ = ~i-b^s^ + iHs^+K . . . ,(15.113)

Now we know that

and consequently

d?'

ds dr E ^'

which vanishes at the centre because r= o, and at the rim because

F\ = o. Therefore

_^&2_j_iH = o} (^>"4)

These give H and K. Substituting their values in (15. 113) we get

Therefore

4hET^l-^ (s^\\sds ^ hEb^ f\i-4s^ + 4si)sds

Also

= ihEb\

rifV-'-isP^fsds^EJrieb^^sds
Jo \ s ds\ ds I) Jo

= 8E'Ife2
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a^
I

pwsds= a^pb
I

( i

—

s^) sds
Jo 'Jo

On substituting these values in (15.no) we get

= 4E'lfe2(i + a) + i/iE6* (15-115)

Let d be written for the thickness of the plate. Then

l^^^d^ h = id.

ia^pb = -i Ed^b^i + a) + -j^^dEb^
,

Therefore

whence

a^p 4 b I b^ . , .

e5-* = 3-(I^^ + 3^ ^'^-"'^^

which equation determines h, and therefore also w.

One of the conditions used in determining (p in the problem just

solved was that P'^ is zero at the rim. But it is possible in many cases

that the rim is attached to a body which does not yield to the radial

tension set up by the load. In that case the radial displacement u is

zero at the rim. That is, since the circumferential strain is

A = ^'

the condition at the rim is that ^^ is zero, whence

or d'^cp o dw
^—

—

r- == o where 5=1.
di>^ s ds

Thus instead of the second of equations (15. 114) we get

whence a^lflZ^V^

Since P'^ is not zero at the rim we must use (15.104 a). The only

difference is the integral involving cp. This integral is

Jo dr \dr

)

Jo ds \ds

J

6(1-0)
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1

Instead of equation (15.116 a) we now get

a^p 4 b y—ah^
(r5.ii6b)

Ec?* ^[i— o)d 3(1— a)rf3

This result could be applied to the case of a disk attached to the end

of a cylinder whose walls are much thicker than the disk provided that

the pressure is so great that the deflexion at the middle is greater than

the thickness of the disk.

A second form for w. I^et us now take a more general expression

for "w, namely,

IV = h(i.-\-ms'^-\-ns^) . . . . . (15. 11 7)

By the same method as was used for the last value of w we get

7,3

+ -{m*4-4m%+fwV+|wi^3_|_i?yj4|(i5 118)
ft

Since w must be zero at the rim, where s — i , we find that

i-fm-fn==o (15. 119)

Eliminating m from the last two equations we get

^(3-»)=74;,^{i-«)Hi+<')+M

By putting w =^ o in this we repeat the result in (15.116a). By giving

other values to 71 we can make the deflexion satisfy any other con-

dition we choose. We may, for example, choose n so as to make

—-— zero at the rim. This makes the bending moment at the rim small,
dr^

but not zero. The value of n which satisfies this condition, as well as

the condition expressed in (15. 119), is w= 5. Then we get, taking

-^{i+lnHA^'} . . • (15.120)

o ^' a^p 136 46 b'^

,.^ / . . -\- ^'^001 X—- . . (15. 121)
d^E 175 3(i-a)^^ 3C/3 ^ ^^

^

A third form for w. Let us next take the actual expression for

the deflexion when the tension is neglected. This expression is obtained

from equation ( 14-79) by measuring the deflexion from the rim
instead of from the centre.

Thus we take

/ _6-f-2(7

which becomes, if a = 0*25

64-20" l-\-G
^

W = b[\ ^S2_| ^4
j .... (15.122)

5 +
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w = b{i-ris'+-iT^') (15-123)

Now equation (15.120) gives, with /\ for n,

It should be remarked that the coefficients of h and b^ in (15.124)
are respectively two per cent less and two and a half per cent greater

than the corresponding coefficients in (15. 121). The difference is so

small then that one of these equations is -as good as the other. Both
equations differ considerably from (15. [ i6a); but this is to be expected

because the spherical form from which (15.116a) was derived is very

different from the forms assumed for the other two. Moreover the

plate would approach the spherical form only if the tension were very

great, and therefore consequently the term containing
(
— large

b \^^
compared with the term containing—. It should be recognised that

d
the term containing h in the pseudo-energy equation represents the

effect of the rigidity of the plate, and the term containing b^ represents

the effect of the tension in the middle surface. Now in all cases where
the rigidity is more important than the tension in the middle surface

equation (15.124) is very accurate, and its accuracy increases as the

ratio oi h to d decreases. Since the coefficient of b^ does not alter

very greatly as the assumed form of the surface changes from that

given by equation (15.122) to that of a segment of a sphere it follows

that equation (15.124) must still remain fairly good even when the

ratio oi h to d is large. Moreover, in finding h from such an equation

as (15.124) when the ^^-term is much larger than the fe-term, the resulting

error in h is approximately proportional to the error in the cube root

of its coefficient, and there is only a four per cent difference between

the cube roots of the coefficients of h^ in equations {15.116a) and

(15.124). It follows then that quite good results will be given by

(15.124) in every case where a plate is supported at the rim without

clamping on the assumption that or= 0'25. Since the coefficients are

only approximate we may take, for the supported disk,

^=i-35^ + o-375j,rf<^ = i; • • -(15.125)

||=r5o} + o-38o|ifa = ^. . .(15.126)

If it is required to find b for a given pressure the curve connecting the

ci^v b
two quantities —— and — should be plotted, and then the value of the

cZ^E d
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latter quantity can be read off from the curve. Such a curve is shown
for (15.125) ill fig. 148. The straight line touching this curve at the

origin shows the relation

between the same quan- a^P

titles when the tension

of the middle surface is

neglected. It will be ob-

served that the pressure

given by the curve when
b = 2d is roughly twice

the pressure given by the

straight line. It should

be recalled that b is the

maximum deflexion in

the disk and d is the

thickness.

d^E /
/
r

/
/

y
/ B

yy ^^ --'

-^

^ ^
h

^^
,=^^

d

Fig. I.

An experimental confirmation of the preceding theory is supplied

in a paper published in ''Engineering'' wherein Mr P. T. Steinthal* gives

60 H

/

50 //
Si

c /
40

(U

cr
10

B

30 ^^/
s:i

/

/ /-^
Q- /

20 /

p//
y

10
A

y b =deflect ion at clie centre

0-05 0-10 0-15

Fig. 149

0-20 0-25 0-30

* Some experimental data on the flexure of flat circular plates
within the elastic limits, by P. T. Steinthal, M.Sc. . Engineering, Vol. 91,
page 677.
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the results of his experiments on the deflexions of thin disks under

uniform pressures. Two of these curves are shown in figs 149 and 150.

For fig. 149 the thickness of the disk is given as 0-142 of an inch, and

the diameter as 12 inches. For fig. 150 the thickness is 0-268" and the

70
H

/

/

60 /
/
/

/ B /
SO /

c

y

40
0)
L. /
(0

^ A

30

t-

/
a. /

20 /y
y^

10 X
y^/ b

1

1

=cieflection at t\>e centre

0-(35 0- 10 0- 15 0- 20 0-«25 0- 30 0-:J5

Fig. 150

diameter 18". The general character of these two curves is precisely

the same as that of the curve in fig. 148.

To make a numerical comparison between the theoretical results in

(15.125), (15.126), and the results given by Mr Steinthal, let p^ be

written for the pressure on the assumption that this pressure is pro-

portional to h. Thus for (15.125)

^o = ^-35^x^ (^5.127)

Therefore (15.125) and (15.126) can be written thus

375 ^'^1

^^-^M^+1350^^
. (15.128)
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and r 38 fc2j

It will be seen that p^^ is the ordinate measured to the line OB in each

figure, this line touching the p-cuvve at the origin. Thus p^ would be

the pressure if the effect of the stretching of the plate were always

negligible: that is, the pressure on Poisson's theory.

Now at the point H in fig. 149

b 0-242= _-2__ 1.70
a 0*142

^^d
p 60
- = r^ = 2'io. ...... (15.130)
Po 2 8-0

But equation (15.129) gives

^==173, . . (15-131)

when — = 170.
a

Also for the same value of— equation (15.128) gives
a

f=i-8o (15.132)
Po

The agreement between the result in (15.130) obtained from the

experiments and the two results in (15. 131) and (15.132) obtained by

theory is good enough to give some support to the present theory.

We give another comparison, this time between the results shown
in fig. 150 and those given by theory. From the figure we get

P 7^
/ N

jrvA^'""' •/'^'^^^

h 0-320
^'^^2'68^ ^*^^'

For the same value of — equations (15.128) and (15.129) give
d .

respectively

— =1*39 (15-134)
Po

and
-=1-36 (15-135)
Po

Thus according to Steinthal's experiments the ratio of pressure to

maximum deflexion increases at an even greater rate than according

to the theory of this chapter.

30

when
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The maximum stress.

The mean radial tension is

^, Edw E I dap
, ^.

Therefore the total radial tension at the convex surface of the plate is,

by such equations as (15. ii),

,
Eh (d'^w o dw'\

Pi = p 1
I— o^\dr^ r dr

Ei I dq) h /d^w o dw\\ ,

^aH'~s'ds~"i^^\~ds^'^'^~d^)] ' ' '
(^5-i37)

For a plate not clamped at the rim this has usually its maximum value

at the centre of the plate. Now taking

w= b(i -[-ms^-\-ns^) (15.138)

and using the conditions that

d(p \ where .s = o

ds (and 5=1
we find that, at the centre of the plate,

I d(p
(-^m^-\-^mn-\-^n^)b^.

Since

this becomes

Also, at the centre,

Therefore

whence

d-W Odw 7/ , X t ^ \, ^ \U-^-\--~ = 2mh{i-{-o)==—2(n-{-i){i'\-o)b.

F i ihh \

a^P,

The stress given by this equation will be generally the maximum stress

in the disk. If the pressure p is constant equation (15.120) determines

— , and then this last equation gives P.^.

d

Taking the same values of the constants as in (15.123), namely,

^ = -2^, o = i} we find
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a2Pj 104 b 779 fc2

^-E 63 d 2b^6d'^

= 1-65 - + 0-294,-, (15141)

By giving values to — the values of p and P^ can be calculated from

(15.125) and (15. 141), and from these calculated values a curve showing

the relation between ~ and — can be drawn. A table is given

here

b

d
0-4 I 1-5 1-8 2

d'E
0-564 1725 3-29 462 570

d^E
0707 194 3-14 3-92 4-48

a^R

The curve is shown in fig. 151.

When the stretching of

the middle surface is neglect-

ed the terms containing b'^

and b^ are missing from equa-

tions (15.125) and (15.141)-

Consequently Pj is in that

case proportional to p, and
the relation between them is

shown by the straight line

OA which touches at the

origin the curve showing the

relation on the present theory.

It is to be observed that, for

high pressures, the maximum
stress corresponding to a given

pressure is much smaller on
the present theory than on Poisson's theory. It follows therefore that

thin plates will bear much greater loads than Poisson's theory indicates.

281. Disk Clamped at the rim under uniform pressure.

When the maximum deflexion is not more than about equal to the

thickness of the plate the most suitable expression for w is the one

given by Poisson's theory for a clamped disk under uniform pressure.

30*
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Measured from the plane of the rim this deflexion is, by equation

(1483),
W; = 5(I_S2)2 (15.142)

This comes under the form (15. 117), and, although the integrated

term on the right hand side of equation (15. no) can be omitted for

the clamped disk, nevertheless it makes no difference because — is
ds

actually zero at the rim for the expression given in (15.142). It follows

that (15.120) is correct for the clamped disk as well as for the sun-

ported disk. In the present case n= i, and therefore (15.120) gives

a'^p 16 I b 6b^

Also, by equation (15.140), the stress at the centre is given by the

equation

a^F, 2 fc ife2

¥E==7^a^-^-2l^ ^^5.144)

But this is not the maximum stress for small deflexions. When the

deflexion is so small that the tension in the middle surface is negligible

the maximum stress occurs at the rim of the ciarnped disk, and its

value is given by equation (14.84). On the present theory the maximum
tension at the rim is, since the mean tension is zero there,

Eh (d'^w o dw\
^^ a^i— o'^jX'd^'^'s'dsls^i

Eh

so that

x(86).

d-^E i37^I (^5.145)

The stress given by this last equation will be greater than that given

by (15.144) as long as

46 2 b

i— o^^d i~od ' 2

that is, as long as

b 4
(15-146)

d i~{-o

If a is
-J

the stress at the middle will exceed the stress at the rim only

when the maximum deflexion b exceeds 3 d. For most plates this

would be a very big deflexion, greater, in fact, than what is likely to

occur. Usually then the maximum stress in a clamped' disk is given
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by ( 1
5"

1 45) and this equation has the same form as when the mean
tension is not taken into account. It must be borne in mind, however,

that the value of b corresponding to a given pressure p is less than

when the mean tension is not taken into account.

Substituting the value of b from (15.145) in (15.143) we find

4a2Pi 6/i-o2a.^Pi

whence
3^'E

+ (' d'^E

30? p=T,
2\39(1-0')

896 d^.1
(15-147)

which gives the relation between p and the stress at the rim.

When the mean tension is not taken into account the term

containing Pi'^.is missing from this last equation. It is clear then that,

for a clamped disk, as well as for a supported disk, the Inaximum
stress for a given pressure is less than on Poisson's theory.

282. Elliptic plate under uniform pressure and supported
at the rim

For the supported elliptic plate, with principal axes 2 a and 2 b,

let us assume that

w = fc[i z — ~-] (15.148)

This deflexion is a reasonable one for pressures so large that the

maximum deflexion is of the same order as the thickness, but is not

so good for smaller pressures. The equation for (p is

\dxdyj 6x^ cy^
ViV

a^b^
. (15.149)

Let P^ denote the msean tensional stress in the middle surface at the

edge of the plate in the direction normal to the rim. Then, if denote
the inclination of the stress

Fn to the ar-axis,Y

—*v.

/i'>
/

J '

Fig. 152 a Fig. 152b
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,,
dtj

cotO=—-^
ax

Now by equation (1.22) the stress P^ is given by

P„ = P 'j cos2 (9 + P '2 sin2 ^ + 2 S'3 sin 6 cos 6.

The condition that P"==o at the rim can therefore be put in the

form

(15-150)

Again the shear stress S at the edge in the direction shown in

fig. 152 a is

S = (P'i— P'2)sin6>cos^ + S'3(sin2^— cos2/9).

The condition that this should be zero at the rim is

,2 ^2\

(i5i5>)

Now if the only forces acting on the rim of the plate are forces

perpendicular to the plate then conditions (15.150) and (15.151) must

be true at the boundary of the ellipse. Thus to find 99 we have to solve

(15.149) subject to these two conditions.

It is clear from (15.149) that ^ must be of at least the fourth degree

n X and y. Moreover, it is clear that the final expression for 99 must

be such that it will remain unaltered if a and b are interchanged, and

if at the same time x and y are interchanged ; then it follows that q?

X y
is a symmetrical function of— and — . Let us therefore assume that

a b

-*(S+S) + B
x'^y'^

With this value of 99

ay
dy^

dx

a^b^

y2
Ei2A^^ + 2Bp;

P; = E-^ = E^i2A— + 2B

(x^ y^\

[a^'^by'

x^ ,2C\

_^ 2C|

a2fe2~T"a2/

(15.152)

^ Sxdy ^ a^^

(15-153)

Conditions (15.150) and (15. 151) therefore become

and

+ (:.A-4B)5f-: +cg (15.154)
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Jl|-(i;-3;'f*"+"=(i-i-.)l

-"$-'^)Mr'-''- '"^-Mi

This last equation becomes, after the removal of a factor which is

clearly not zero,

Now equations (15.154) and (15.156) must be true all round the

boundary of the ellipse whose equation is

^ +P=' <-'5-'57)

By means of (15.157) equation (15.154) can be put into the form

Since this must be identically true for all values of xy we get

12A— 4B— 2B = o,

B-t-C = o;

whence

B = 2A,

C«=-2A.
These values of the constants make the left hand side of (15.156)

equal to

which is zero at the rim in consequence of (15.157).

Thus the solution

=K'-S-9-^ <'5.58)

satisfies both boundary conditions. We have to determine A so as to

make q? satisfy also the differential equation (15.149). On substituting

for (p in this equation we get

whence
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The expressions for the mean stresses are now
.2^d-w 4AE/.T2 3V^ \

^e\ 4AE/3a;2 y^ \
, ,

^2,

The equation for the pressure is

^
{cy^dx^ dxJ^ dy'^ dxdydx6y\

In order to determine the constant k we must multiply through this

equation by ivdxdy and then integrate over the whole area of the

plate. If, however, we substituted at once the value oi w inSJ y^w we
should find that this expression is zero for the particular value of w
that we have assumed. Consequently the integral oiw\/ ^^wdxdy would
be zero, and thus the term due to the rigidity would contribute nothing

to' the integrad of pwdxdy. But this rigidity term should clearly

contribute an amount equal to twice the strain energy in the plate due

to the bending of the plate on the assumption that the middle surface

is unstretched', because it is clear that, on Poisson's theory, the integral

of pdxdy is twice the work done by the pressure p as the plate is

gradually bent into its final state. This error arises through our

assuming an expression for w which does not make the bending

moment about the edge zero. But, of course, if we knew the correct

expression we should not need an approximate method. The proper

way to use the approximate method is to substitute for

ffE'lw\/i^wdxdy

twice the energy in the plate on Poisson's theory, which, by (14.154), is

//E.4,v,-,.-.,.-.)(|isj-(S)}]-*
Then equation (15.163) gives

-2kE \-^—^+ -^^-—-2-;r^-;—-\wdxdy 15.164
J J \dy- dx^ dx^ dy^ cxdydxdy)

With the values of w and w that we have now got the last equation

becomes

i6EAhk^ rrf4x^ ,42/2 \/ x^ y^\ ^ ^ , . x



THE BENDING OF THIN PLATES. MOBE ACCUBATE THEOBY 473

But it was shown in (14.181) that, over the area of the ellipse,

'—:2dxdy=='—dxdt/==^7iab.

Also

fP~dxdy^ffpxdy = inab.

Therefore (15.165) gives, for a uniform pressure p,

... ,,,,,( I I 20 \ i6E\hk^
,

-kpkjiab = Ak^E Ijiab i
—

, + 77 H—rr-: \ rrr- nab.

Consequently, since I = ^h^,

a^b^p _ 16 ka^ + b^-}-2oa^b^ 32 A/k

Eh^ ^Y^ (i-o^)a^b'' ~Y~h'^'

or, if we write d for 2h,

a'^b^p _2ka^-\-b^ ^loa'^b^ 16 AJc

Ed^ ~~i~d (i-a2)a2&2 ^rf?

2 A;a* + fe*+2aa2fe2 g A;^ a^b'^

^d (i-a2)a262 ' 3rf3 3(a4-|_54^4.2a262 •
(i5-io6)

which is the equation for k. When b = a this becomes, of course,

the same equation as (15.116a), k here being the same as b in- the

earlier equation.

The two principal bending moments are

-M, = E'Ifc(i + |-f)
{15..67)

-M, = E'Ifc(j^+ i°). ..... (15.168)

The tensional stresses at the surface of the plate parallel to the axes

OX, OY, are

and
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Since A is negative the stresses P'^ and P'g are positive in parts of

the plate near the centre, and negative nearer the rim. The greatest

values of f^ and f^ occur at the centre and these values are

. .^..,., -
. - .

4AE
h 62

. /I o\ 2EA:262
^2-E^/.^- + -j+ ^^^^_^^^^_^^^, . .{15.172)

Which of these is greater can only be determined when the ratio of b

to a is given.

It may be useful to repeat here that the results just worked out for

the elliptic plate should only be used for large deflexions, that is, when
equations (14.177) and (14.188) make the maximum deflexion greater

than the thickness of the plate.

283. Rectangular plate the edges of which have no dis-

placement when the plate is loaded.

Let the equations to the edges of the middle surface be

x = o .

We are making the assumption that these edges are not displaced by

the load. In earlier problems we have assumed that the mean tension

normal to the edge was zero. The present alternative assumptions are

that

Wo==o where a:;=± a, . . . . . (i 5-173)

Vq = o where y = +h (15.174)

Let uis assume that

za lb

This makes w zero at the edges of the plate.

nx ny . .

A;cos— cos-— (15-175)

Then

dxdy) "Ix^'d^

~
iba^b^l

. ^nx . Tcy nx ny \

sm^— sm'^ —-- — cos^— cos^—- >

2a 2b 2a 2b )

n^k'^ [ nx ny\
,

,.

^2a^^\ a hj

A particular integral of this equation, and moreover, one that suits our

problem, is
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<p = -^4:-|a^cos— +6*cos^Uax2-|-B2/2 . (15.177)

With this value of (p

P,=E-r-^= -C0S-/+2EB . . .15.178)
^

c'2/2 32^2 b ^ V c
/ ;

^'^=-^S=°- • •

• *''^-"°'

The strains in the middle surface are, by (15.14), (15.15), (15.16),

«o=^(P\-<^P'2)
E
k'^Ti^ 1 1 jiy O 7tX\

32

k^ji^ / 1 nx o 7iy\
, . ^ / ^ x

^0=— = (15-183)
n

Therefore, by (15.5),

cv

ex

o k^Ji^ / 1 ny G 7ix\
. ,„

- = (-cos-f--cos— +2 B-tfA
: :^2 \a^ b b^ a j

Ti^k^ nx ny

8a2 2a 2b

In order to have the stressed plate symmetrical about the ^/-axis we
must make ^i^ zero along that axis. That is, we must integrate the last

equation and use the condition that Uq = o where x = o. This gives

k^n^fx ny oa . nx\
. ,^

Uq = -i^^^l Tism— +2(B-aA)a;
32 \a2 b nb^ a J

n'^k'^ ( a , nx\ ^ny
, ^ v—

:. hr sm— cos^-f. . . . .(15.184)
iba^V n a J 2b \ ^ t,

From the conditions that Uq= o where x=+a it follows now that

k^n^ ny ,^ ., n^k^ „ny= cos-^ + 2(B— aA)a — cos^-f
32a b i6a 2b

whence

k-n^
1-2(B— aA)a,

32a

* ^^^^B-aA =—-.
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Likewise the conditions that Vq = o along the edges y = +h leads

to the equation

From the last two equations we find that

n^lc^ ( I o
+ -7 • . . .(15.185)

64(1— a^JV^'-^ a

Tl^li^ /I o\
^ = 6^773--^ b + ^j • • •

-''S-'So)

The displacements u^ and v^^ have been found from P'^ and V\. We
ought to verify that these values of m^ and v^ are consistent with

equation (15.183)- Thus, by {\^.j),

But
oy ' dx ex By

Suq n^k^ . Tix . ny
-^— = sm— sm —

^

cjy ^zab a

dwdw n^k^ . Jia:^ Ji?/ yric . ny
and -—;— = sm— cos -^ cos— sin -—

dx cy 4ab 2a 2b 2a 2b

Ti'^k^ . Tix . ny
sm— sm

ibab a b

Therefore

Moreover

b o = W -—— = O.
cjxay

Consequently equation (15.183) is satisfied.

The solution we have now got makes Uq zero along one pair of

edges, and Vq zero along the other pair, but it does not make Uq

and Vq zero along all the four edges. We have not therefore, solved

the problem of a plate in which the particles of the edges of the

^niddle surface are immovable. In our solution the particles slide

along the edge but do not move in the direction perpendicular to

the edge. It is very unlikely that these conditions would be realised

in a practical problem, but nevertheless the stresses in our present

solution at points not near the edge must be very nearly the same

as if the edge particles were absolutely fixed.

The actual pressure corresponding to the present values of w and cp

can be found by means of equation (15.27). This pressure is positive

over the whole of the plate. We can, however, treat the pressure as
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constant and use equation (15.164) to give the value of k, and thence

the value of the stresses.

When, as in the present case, the bending moment about the edge

of the plate is zero, then the same result is obtained by multiplying

(15.163) by w dx dy and integrating as in equation (15.164). Thus, in

the present case, the approximate method gives

fjpwdxdy = E'lffw\/^'^wdxdy

Now

iv\7.^wdxdy= 4. / —r- -7+ 7:7 cos^— cos^ ^dxdy
J J Jo Jo 16 \a^ ^V 2a 2b

n^k^n^ ^nx ^TiyizB , 2A) , ,
cos^— cos^-^{—- 4- —-) dxdy

r^r^k^Ti^ jix ^7iy\i ny ,
i nx\ , ,

-f 4 / /
—- cos^— cos^ -— {

—
- cos -^ + — cos— \ dxdy

Jo Jo 128 2a 2b\a^ b ^ b^ a] "^

k^n^ab
|

i
,

i ^^ 1 1

^^^^^^ ( ^ \^\
^ i2^i-o^)W'^¥'^d^']'^ 2S^\a^ VV

k^n^ab \ 40
<3-»'«(>^)|256(1— a2)la2fe2

Also, assuming p to be uniform over the plate,

pwdxdy = 4pk / cos— cos— dxdy

i6ab
^

Therefore (15.187) becomes

\^ab, n^E'lk^abfi . iV '

kp =
16 W^ by

whence

hk^Tl^abE
i 40 , , ,,/! , iM r o ^
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i6 E'lk/i i\2 E%kU4o
,

. .^ /I
, i\1

which is the equation for k.

The principal bending moments are

ji'^AE'l/i , (t\ Tix ny=—:— -^+ T^ r^^s— cos ^,

-M2 = /l . a\ TTX 711/

4

These couples are clearly greatest at the centre of the plate, and their

values at this point are

nVcE'l

W^ ay
-M2 = ji^kE'l

4

Now if a is less than b then —M^ is greater than —Mg. Again the

mean tensions at the centre of the plate, where they have their greatest

values, are

'"
7,2(1- o')\~^'^ '^b^f

, n^Ek^ (a 2-o'i
\

2 32(i-o2)\a2+ b2 f

If a is less than b the greatest of these is F\. Thus the greatest stress

in the plate is

This result can be used for a rectangular plate the edges of which are

fastened to supports which do not yield except to let the plate turn

about the edge so that there is no couple applied about 'the edge. This

means that sufficient tensions are applied to the edges to prevent each

edge from moving towards the opposite edge.



CHAPTER XVI.

STABILITY OF THIN PLATES.

284. Rectangular plate with thrusts parallel to the sides.

Suppose forces are applied to the edges of a rectangular plate, as

shown in fig. 153, the force acting on each pair of edges Toeing parallel

to the other pair of edges. Let the

thickness of the plate be zh, and let

the edges be at x = o, x = a, y = o,

y = b. Let the forces be 2hF per

unit length on the edges of length b,

and 2hQ per unit length on the edges

of length a, both these forces being

assumed to act towards the plate.

Then it is clear that there are parti-

cular values of P and Q that will cause

the plate to buckle just as a strut buckles

under a thrust. It is required to find what values of P and Q will

cause an infinitesimal buckling.

Equation (15.23) applies to this problem. We need only put

o, S'3 = o, P'i = — P, P'2 = — Q. The resulting equation isP
EI _ , ^/r.c'^w;

,

^d^w\
-oVi*W? = — 2/j P-^^^+Q-TT^ . .

Suppose the edges are all supported but not clamped,

boundary conditions are

w = o along all the edges;

52?/;

o along the edges iC = o, x = a;
ex

cy^ GX

All these conditions are satisfied by

+ o ^—r = o along the edges y= o, y = b.

. . (.6.1)

Then the

. (16.2]

^ . mjix nny
w = Asm sin —

^

a b
(16.3)

provided m and n are integers. This will also satisfy the differential

equation if
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EI

that is, if

Thus for the given shape of plate P and Q are not separately deter-

mined; only 'the combination of P and Q occurring on the left hand

side of the last equation is determined. If, for example, Q were given,

then the equation would determine P.

If m= I, n=iy then each of the median lines of the plate takes

the form of half a sine wave, and the equation for P and Q is

Q
fe2

iTl^Eh^/l I\2

3 i-a2 \^~^Yy '

Suppose Q = o ; then

in'^EhV (i ^ r
~3 i-o^\a^^V\

(16.6)

(ib.7)

This is the least value of P that will buckle the plate when Q is zero.

Again suppose Q=:P; then, still assuming m=i, n= i,

P =
whence

2h?

+i)'- • •
•

T^'a^X^^'^Yy

(16.8)

(16.9)

This is the least thrust per unit length, applied to all edges of the

plate, that will cause the plate to buckle.

There is no reason why one of the stresses P or Q should not be

negative, in which case the stress would "bie a tension ; but if, for

example, Q be a given tension, then, according to (16.6), P must be

a still greater thrust to cause buckling than if Q' were a thrust or

zero.

285. Rectangular plate used
as a strut.

Suppose that Q is zero and that

the edges of length a are free and

those of length h are supported.

For this case let the axes be taken

through the middle of one side of

the plate as in figure 154. Th^n the

boundary conditions are
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1

w = o

d-w ^c'^^^^ > where x = o and x^a, .(16.10)

dx^ dy- J

dy- cix^

dy\dx^ dy-J

where y=:^\h . . . (i6.li)

The set of conditions along the edges ic= o and x=^a are satisfied by

. mjix
, ^

i6? = vsin ; (16.12)
a

where v is any function of y and m is an integer. Substituting this

value of w in the differential equation (16.1) we get

i-o-^\dy^ a' dy^^ a^ f a^ '

that is,

d^v ji^m^ d^v Ti^m^

,4 3^Mi-<'')«'-P
, . .

a^ dy^ a^

c

To solve this put

v^Keiy ........ (16.15)

This gives

r2rr,.2\ 2

(,.---5-7=..,

from which we get four roots of the form jh^^, +^2 satisfying the

equations

..^-^=*^

Ti^ynr = - ]^'

. (16.16)

Thus we find

v = A cosh q{y-\- Bsinhgii/4- C cosh^gZ/H" ^ sm^aq^y (16.17)

It is easy to see that the boundary conditions (16.11) can be satisfied

by taking v to be an even function of y, the form corresponding to

symmetry about the axis of x. Thus we may take

«;= Acosh ^^2/ + Ccoshg,?/ • • • . (16.18)

The boundary conditions (16.11) give

^i2_a—^jAcoshJg'ife+ (52^—0 -^)Ccosh|g2^=o (16.19)
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and

^i(?i^--^lAsinh|^i6+^2U2^-—^jCsinh|^2^ = o (16.20)

By means of equation (16.16) these last two equations can be reduced

to the forms

A;2-f-(i— o)

—

—A}s^ cosh \qyh—\k'^— (i— a)—^ Ccosh^^2^= o (16.21)

^1 AsinhY^^ft— ^2Csinh^^2^ = o .... (16.22)

The elimination of the ratio A : C from these last two equations gives

^'+ (i-^)-^jta^hi^2^=-^i|^'-(i-<')-^jtanhi5,6 (i^-'o)

This equation gives the buckling stress P corresponding to the form
assumed for the shape of the plate. The smallest value of P is ob-

tained by taking w == i.

To solve equation (16.23) it is probably best to express /c^ in terms

of q^] then the equation becomes

qA(2-o)
Ti^m^

^2 2Uanh^^2^= ^i{o

2'ij? 2n'^m — ^2(72^}tanh|^i6 (16.24)
a^ -

}
— " \ a'

By means of (16.16) q^ can be expressed in terms of q^ thus

q^^ = 2
a'

% (16.25)

Now-^(/2^ ^a" ^^ taken as variable and two curves can be plotted, with

this as abscissa, the ordinates of which represent the values of the two
sides of (16.24). The point of intersection of these curves determines

q^, and then (16.16) gives k'^.

It is easy to see that there is one positive real value of q^ satisfying

(16.24). For when q^ is zero the left hand side is zero and the right

hand side positive; again when ^2"^^^ = ^^^^^ ^^^ ^^^* hand side is

positive and the right hand side zero. Consequently there is a value

of q^a lying between zero andl/aTiw; there is a second value of q^a

lying between '^{2—o)7im dixxd'^znm, but this second root is merely the

value of q^a corresponding to the first root. Thus we can see, without

going into detailed calculation, that

k^ = q,J->
Ti^rn^ Ti^m^— o

and

whence

P>
3(i-a^)a2(^ ap

and P<
3(1— (72)a'

(16.26)
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If o is zero the equations for the plate agree with those for a beam,

and therefore by putting = in our result we ought to get the same

value as Euler's theory of struts gives. When = the two values

between which P lies coincide, and when this common value is multi-

plied by the area of the section of the plate it becomes exactly Euler's

critical thrust for a pinned-pinned beam of the same length and cross

section, the« smallest thrust arising by putting m= 1.

The equations suggest that there is a possible solution in which v
is an odd function of y, involving only the sinh functions; but since,

in this cajse, the median of the plate y = o would be straight, there

can be no serious buckling of this type.

286. Buckling of a uniform circular

plate under radial thrusts.

Let the uniform radial thrust be P per

unit area of the nm surface, and let a denote

the radius of the plate. In equation (15 23)

we must now put

p'l P, P'o P, s; O.

The equation then becomes

EI
-,Vi^w -2hF\7i IV,

whence

where

Vi*w;=-^2Vi' w.

A:2

3(i-(^-^)P

/z2E

Since w is a function of r only

r dr

(16.27)

(16.28)

Consequently two integrations of (16.27) give

S/^^^^-k^w + Bloger+ C .... (16.29)

Now if the disk has no central hole Vi^*^ "^"st certainly be finite at

the centre. This requires that B should be zero. Then

\y^^w=~k^w-b),. .... .(16.30)

k^b being written for C.

Now let

u = w — b;

then

= — k^u; (16.31)

31*
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that is,

id/ diA

whence

If we now put

this last equation becomes

I d ( du\

r dr\ dr)

id/ du\

kr kdr \ kdrj

s = kr (16.32)

id/ du\

This can be solved by means of a series of the form

W= «() + «! 5 + «2 *^+ «3 S^ + ...

Substituting this in (16.33) we get

Equating coefficients of like powers of s on both sides we find

.... (16.34)n^an= - ««-2,

whence «n= — «n-2

Therefore, starting with a^,

^4 = -

etc.

«2

42 ' 22.42

If we put w= I in (16.34) we should find

a_-i= --»!,
and thus the series would contain negative powers of r, which become
infinite at the centre. To avoid this we must make

a^ = o

,

and consequently the coefficients of all the odd powers of r must be

zero. Therefore finally

the series in the brackets being convergent for all values of s. The
series should be compared with the series for cos s, namely

o2 o4 06

cos s= I
\

1.2 1.2.3.4 1.2.3.4.5.6
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The function of 5 represented by the infinite series in (16.35 is

known as the Bessel function of zero order of the first kind, and is

denoted by ]o(s}. Thus

Jo(«)=I-fi+ j^,-^^;^+. . . .(16.36)

This function has characteristics very similar to those of the cosine

function. It is a periodic function, but, whereas coss has a constant

period and a constant amplitude, ]q{s) has a variable period and a

variable amplitude. The period, however, approaches the constant

value 271 as s increases, but the amplitude is proportional to 5 when
s is great.

On differentiating Jq(s) we get

s s s

Now there is another Bessel function, called a Bessel function of the

first order, which is defined by the equation

J'(*)=7-^+iMir6- •
• •

•('^•3«)

Thus we see that

j'o(s) = -Ji(«) (16.39)

These are the only Bessel functions we shall use in the present problem,

but we shall later use functions of other orders.

Returning now to equation (16.28), we have found a solution of

the form

w — b = aQ](^(kr) ...... (16.40)

Since (16.31) is a differential equation of the second order and (16.40)

contains only one new constant of integration this latter does not give

the complete solution of (16.30). It does, however, give the solution

appropriate to a complete disk, that is, a disk with no central hole.

If the disk had a central circular hole we should have needed to

retain the term Blog^r in equation (16.29), ^^^ we should have needed
the second solution of (16.30). We should thus have had two new
constants in the expression for w by means of which we could have

satisfied the boundary conditions at the edge of the hole in the disk.

287. Disk clamped at the rim.

If the disk is clamped at the rim the boundary conditions are

where r= a; . . (16.41)

dr ^)

that is,
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6 + aoJo(M = o
• (16.42)

ao^J'o(M==o (16.43)

This last equation is equivalent to

Ji(A:a) = o, (16.44)

which has an infinite number of roots, since Ji(.y), like Jo(«y)» is a

periodic function of s. Tables of roots J„ (x) = o for several values

of n are given in the appendix. The smallest root of (16.44) is

^i« = 3'832 (16.45)

This determines P, and equation (16.42) determines only the constant

b. Thus from (16.28) and (16.45) we find

_ 3-832^ h^E

3 {i-o')a'

=1^J^1^
3 (i-a2)a2 ^ ^ ^

The thrust per unit length of the rim is

^'^P = 979(^j^. ,

(16.47)

The second root of (16.44) is

k2a='j'Oi6

,

(16.48)

w^hich gives

2x7-0162 h'^E

h^E
= 3^-'3(T=^^

'''-49'

This last thrust arises when the shape of the disk is such that there

is one circle, as well as the rim, where w = 0. The radius of this circle

is given by putting

w = o
,

that is, by putting

^ + «oJo(^2^) = 0-

Substituting the value of b from (16.42) this becomes

«o{Jo(^2^)—Jo(^2«)} = o,

whence

Jo(^^2^)
= Jo(^^2«^ = Jo(7-oi6) (16.50)

From tables of Bessel functions we find

Jo(7-oi6) = 0-29992

= 0*300 nearly.

Also

Jo(i-869) = 0.300.
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Therefore, for the smaller value of r,

k2r= 1-869.

But k2a= yoit.

r^. r ^ I -869
Therefore ~== 7

a 7'oi6

= 0-265. ........ (16.51)

Fig. 156a and 156b show roughly the shape of a diameter of the

disk for the first and second cases.

Fig. 156a

Fig. 156b

The second shape is just as unlikely in practice as the second form

of a strut in Euler's theory. Only the first and smallest thrust has any
useful application.

288. Plate not clamped at the rim.

In this case the bending moment is zero at the rim. Therefore the

boundary conditions are

w = o\

d^w o dw \ where r= a

,

] = o|
dr^ r dr }

. . (16.52)

that is, since w is still correctly given by (16.40),

^ + «oJo(^) = o» • (16.53)

k^]\(ka)-\-o^y,{ka)==o (16.54)

By (16.39) this last equation is equivalent to the following

ka]\{ka) + o]i(ka) = o . , . . . (16.55)

or, with s for ka

,

sri(^)+o],(s)^o (16.56)
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Now from the definition of Ji(s) in (16.38) we get

^^^ ^ 2 22.4^2^.42.6 22.42.62.8^

whence, by differentiating both sides we get

= sJo(s).

Consequently

s]\{s) = s]o(s)-]i(s) (16.57)

By means of this last equation (16.56) can be written

SJ0(S) = (I-<7)J.M (16.58)

This is the equation which determines s, and therefore k. To get a

numerical value we must assume a value for a. If we assume that

o = 0.25, then we have to solve

s]o{s) = 0'7s]i(s) (16.59)

From tables of Bessel functions we find

2jo(2) = 0-4478)

075ji(2) = o-4325|

2'iJo(2-i) = o-3499l

o75ji(2-i)= o'4262
)

Thus the root of (16.59) ^i^s between 2 and 2-i, and by interpolation

we find that it is approximately

ka = s-= z-oiy (16.60)

and this is the smallest root, giving therefore the smallest value of k.

Consequently the stress P which buckles the disk is

_ 2-0172 h^E
~ "Y' (i-(72)a2

h^E
= 1*441 -T-'

a2

and the thrust per unit length of the rim is

2/iP = 2-88—- (16.61)

The corresponding thrust for a square plate with sides of length 2a,

equal to the diameter of the circle, is, by (16.9),

,^ 2 nVi^E 2
2hF =

3{i-o^)(2ar

h^E= 3-40—^ (16.62)
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If we assume that (7 =
-J-

the smallest root of (16.58) is

S=207,
whence

(16.63)

and the result for a square of side 2a, with the same value of o, is

zhP = 370 (1.6.64)

289. Approximate method for disks.

Very good approximate values of k^, and therefore of P, can be

obtained from (16.27) by the same method as was used in the last

chapter to find the deflexion due to a given pressure. The method

consists, as before, in assuming a reasonable form for w and then

deriving an energy equation which gives k^. When P is constant over

the disk the derived equation is, in this case, a true energy equation.

Multiplying (16.27) by urdr and integrating over the whole disk,

we get

/ w\/i^wrdr = — k^ I wS/^'^ivrdr . . . (16.65)

But we have already shown, in proving equation (15.109), that, for

a supported or clamped disk,

Xa
na [ /div\^

wVi^wrdr== [\y^2^)2rdr— (i—o)\l— ] (16.66)

Moreover, by integration by parts,

/ w\/ .'^wrdr •= \ w —-[r -—Adr
Jo J o dr\ drj

r dw^"' r" (dwY^

-r^i-J.'b^)'"

-°-r©"*- • •
<"»

the integrated term being zero because w = o at the rim and r = o at

the centre.

Therefore (16.65) becomes

_f(V.^«')^.-^-(i-a)[(5)]_=>ff^)Vi. (:6.68)

An approximate value of w used in this last form of equation gives

a very good value of k^, and therefore of P.

Suppose

= c{a^— (n-\-i)a^r^-{-nr^}. . . . (16.69)
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Then

dr

dw .
,— = 2c\—{n-\- i)a-r-\- 2nr'^\

= 2c(n— i)a^ when r = a,

Vi-«^ = 4c{—(n+ i)a2 + 4wr2},/a
{S7^^wy-rdr== i6c^a^mn-\- 1)^— 2n(n -\-i)-{- ^n^}

= ^c-a^{yn-— 6n-{- 3),

r^/dw\-

= |c2a8(w2_2n4-3).

Therefore (16.68) gives

whence

;^2,2^56^^'^-48n + 24-i2(i-o)(n--i)2

n2-2?i -1-3
^ '^

The only suitable value of n for a disk with a clamped rim is w= i,

for this is the only value that makes — zero at the rim. With this
dr

value the last equation gives

A;2a2=i6, (16.71)

whence ka~ 4

,

which is the approximate result corresponding to 3-832 given in

(16-45) by the accurate method, the error being about four per cent

For the disk not clamped at the rim we need only allow n to vary

and find the minimum value of k^a^ given by (16.70). The justification

for this is as follows.

In the equilibrium state the total potential energy is a minimum.

Now the potential energy due to the strain of the plate and the work
done by P is proportional to the excess of the left hand side of (16.68)

over the right hand side. That is

YDCc^^-i]k^a^}, ...... (16.72)

where

^=56n2—48w-f-24— i2(i-a)(w— 1)2

7^ = n2— 2W-I-3.

The conditions for a minimum value of V for variations in both c

and n are

oV _
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1

that is,

i-rjk^a'^ = o, (16.73)

and

f=i^«^J5 = o (16.74)
an an

Eliminating k^a^ from these we get

1 d^ I drj

^dn fj dn
whence

dn

This last equation gives n,, and then (16.73) gives k^a^. Thus the

method amounts to taking k^a^ as the minimum value of the fraction

on the right hand side of (16.70).

If we put (T = ^ in (16.70) we get

k^a^^,6'^'+ ^^+l, (,6.76)

where m==n — i

.

On putting

3w24-4m+2

we find that

(3 —y)m^+ 4?w 4- 2 (i — ?/)= o.

The extreme values of y that make m real are given by

4(3—2/)x2(i-«/) = 42;

that is,

whence 2/= 2 + V3

.

Thus the minimum value of k^(f is

/c2a2= i6(2-y^
= 4*2872

from which

A;a = 2-0705, (16.77)

which agrees excellently with 2*07 found from Bessel functions.

Let = 0*25. Then (16.70) becomes

n^— 2r^+ 3

Taking the minimum value of the expression on the right we get
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k'^a^ = 4-072,

whence ka= roi^, (16.78)

which is also remarkably near the 2-017 we got in (16.60) by accurate

methods.

290. The approximate method for plates of other shapes.

The equation (16.65) merely expresses the fact that the energy in

the disk due to the bending is equal to the work done by the constant

force zhV acting on each unit length of the rim, the radial displace-

ment of the rim being assumed to be due to the buckling of the plate

and not at all to the shortening of the radial lines ; that is, the work
done by the constant force 2/iP is calculated on the assumption that

the curved radial lines in the middle surface have the same length as

when they were straight, the displacement of the rim being therefore

due to the bending of the radii alone. Thus the equation for the

buckling load is correctly attained by assuming that the middle surface

itself is inextensible. The reason for this is that the strain energy due

to the compression of the middle surface up to the point when
buckling begins is separately equal to the work done by the rim forces

up to that time, and the two terms cancel out of the energy equation.

We can now get similar equations for plates of other shapes if we
make the assumption that the middle surface is incompressible.

291. Rectangular plate.

Let us return to the problem with which we began this chapter, for

which the equation of equilibrium is (16.1). Instead of this equation

we must now use the corresponding energy equation. To get this we
may multiply both sides by \ wdxdy and integrate over the area of the

plate. Thus

-jJriwVi^iodxdy = -hJJh^— + Q—\wdxdy . (16.79)

Now we have already found, in the case of the disk, that the left hand

side of this equation is the total energy due to the bending of the disk.

The proof for a plate of any shape requires a form of Green's

theorem, but for the rectangular plate this theorem is easy to prove.

Thus let

and let the sides be along the lines x = o, x = a, y= o, y= h.

Then

ffwV.^wdxdy =ffu,(^ + g') dxdy.

Now, by integration by parts,

Jo dx'^ '

L ^^Jo Jo c)x dx
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The integrated term is zero because w is zero at both edges. Therefore,

integrating by parts again,

consequently

JJ^
— dxdy =

-J^ ^y,-^dy+JJy.
— dxdy.

and therefore

//"^''""'^'^=-/['^£]?^-r^
dw

dx
dx\o

+ ffyj^dxdy. .... (16.80)

If the plate is clamped at the rim the two single integrals are zero,

whereas if the rim is fixed without clamping, then, along the sides

X= Oj x = a, since the bending moment is zero,

whence

°^&^+"e^

6^w d^w

cy~

and along the other pair of sides

Now since w= o along all the sides it follows that

Bf-
= 0,

along the two sides x= o, x = a. Consequently

yj

dw

dx
(I-O)

d^w dw

dy^ dx

Likewise

yj

dw

dy_

=

= 0.

Then finally

ffw\/-^^wdxdy=ffxp^dxdy

whether the plate is clamped or not.

(16.81)

;i6.82)
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Again, dealing with the other side of equation (16.79), we get

Jo ox- I dxjo Jo \dxj

=-7„y '^*' <'^-«3)

P being constant over the plate.

Therefore

y/p.g</..., = -p//(g)^^.,. . .•.(:6.84)

Finally equation (16.79) becomes, for a rectangular plate,

je'i//,v.^u,)^<^.,..=///Jp(£)%-q(|)]<^.<^.. . (16.85)

The left hand side of this last equation is identical with the strain

energy V given by (14.154) for a plate whose boundary is formed of

straight lines which are all held so that w has the same value over the

whole boundary. If we were dealing with a plate with a curved

boundary the correct form of the left hand side of this last equation

should, in every case, be the value of V given by (14.154). The
simpler form for the case of the rectangular plate is due to the fact that

the whole curvature is zero for a rectangular plate, or indeed for any

plate with a rectilinear boundary. We can quickly put equation

(16.85) to the test by using

, . 7ix . Tiy . _^
t^; = Asm— sm-— , . . . . . . (16.86)

a

the form that we have already found to be correct for the undamped
plate. Then

Vi^«'= -^^A(i^+ i)sin^sin^; .(16.87)

^^ I
= -r^ A'^cos^ — sin'^-—

;

(jxj a^ a

/r(£)"-*-s-
Therefore (16.85) gives

, , , /I ly ah 7i'^A^-abh/F Q\
, ^ „o,

4E'I-'A-^t + ^) ><7 =-7-(^+ S)- •
('6.88)

ahX —
4

ahX —

.

4
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whence

^. +| = i-^E'.^(i + i)^ • • i^<^-'9)

which is the same equation as (16.7).

292. Rectangular plate clamped at all the edges.

Let the origin be taken at the middle of the plate, and let the sides

be x= +|a, y= -jzi^' Then there are two simple forms for w
that satisfy the boundary conditions, either of which may be used to

give the approximate values of the smallest buckling thrusts. These

forms are

w = ccos^ — cos'^-7-, (10.90)

and w = c{a^ — /^x^)'^{b'^—^y'^y^ (16.91)

From ( 1 6 90) we find that

dw 71 nx . TIX ^TlU
-— = — 2C— COS— sm— cos- -—,
dx a a a

d'^W 71^ 271X nij—— =— 2C— COS cos---,
c)x^ a^ a

I I 2jlX ^TUI
,

I 271U ^71X\
\7 .^w = — 2 cjr^i— cos—— cos^ -^ + — cos —^ cos^— J (16.92)

\a^ a 0^ a \

Also, taking the integrals over quarter of the plate instead of the

whole plate, which only amounts to omitting a factor 4, we get
a b

Therefore (16.85) becomes

whence

For a square plate

^ +Q=V^ = 35-i-^ (16.94)
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The corresponding result for an undamped square plate, obtained by
putting b-=a in (16.6), is

the factor | corresponding to
J

for struts.

Again, when the expression for w given in (16.91) is used, the

equation corresponding to (16.93) ^s

which gives, for a clamped square plate,

P+ Q =36^ (16.97)

The difference between the results expressed in (16.93) ^"^ (16.96)

is so small that we may be sure they are both very near the truth. We
may adopt, as a reliable equation for the clamped plate,

l+l-Hi^'i+U <''»'

293. Finite deflexions.
The buckling thrusts already found in this chapter are the thrusts

at which buckling begins. In order to produce deflexions that are

not infinitesimal the thrusts have to be increased, and when the

maximum deflexion of a plate is of the same order as the thickness

the increase in the thrusts is usually of the same order as the buckling

thrusts themselves. The reason for this is because, as we have already

found in the last chapter, the energy in the plate due to the stretching

of the middle surface is usually of the same order as the energy due

to bending when the deflexion is the same order as the thickness. In

the case of a thin rod also it was found that the thrust which will

produce a finite deflexion is greater than the buckling thrust; yet the

increase in the thrust does not become appreciable until the maximum
deflexion becomes appreciable in comparison with the radius of

curvature; the ratio of the deflexion to the thickness of the rod does

not affect the thrust at all. Now since it is possible that the deflexion

of a thin plate may be much greater than the thickness while the

stresses are still not dangerous it follows that there is no buckling

thrust for a plate in quite the same sense as there is for a thin rod.

For a rod the buckling thrust is usually very near the thrust that

causes collapse, whereas the buckling thrust for a plate may be but

a small fraction of the thrust that causes collapse.

294. Finite deflexion of clamped disk.

It is worth while to get an approximate solution for one case of

buckling with a finite deflexion. The clamped disk is probably the

easiest case to deal with.
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The problem of finding the deflexion of a plate under the action

of boundary forces alone consists in solving the equations

EIVi w; = 2/jE !—^ 1
— 2

—

}. (ib.Qo)
[dy^dx^ dx^ dy- dxdydxdy)

e^I^ ('^-'^^

and adjusting the boundary conditions to suit the data of the problem.

If the deflexion w is everywhere infinitesimal compared with h the

equations simplify because we can neglect the terms on the right of

equation (16.100), since these are of the second order in w. In that

case the appropriate solution of this equation for a plate under thrusts

at the edges is expressed by

dy^

cxdy

P and Q being constants over the plate. In the earlier part of this

chapter we have assumed these as obvious without any argument. The
profblem. becomes, clearly, much more complicated when the mean
stresses are not constant over the plate, and they cannot be constant

when the right hand side of (16.100) is not negligible.

For a clamped disk of radius a under a uniform radial thrust at

the rim let us assume that

w^c{a^—r^-f- . . . . . . (16.101)

which, as we know, satisfies the conditions that

dw
w=^o, —- = 0,

dr

at the rim.

Now the equations corresponding to (16.99) and (16.100) for a

disk are

, , r I c?Q9 d^w I dw d^^qp\
, ^e'iv,^«^=2;.k{-^-+-^^}. . . .(.6.10a)

I dw d'^w
, ,

ViV =— ~r-r^ (16.103)
r dr dr^

The second of these can be written

I d I fl?ViV\ ^ dwd^w

r dr\ dr J r dr dr^

32
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which gives, after one integration.

7^-^(p) I (dwY

To get the energy equation from (16.102) we multiply by wrdr
(omitting the factor 71) and integrate over the whole area. Thus

^/x /"*
. , ,T. r* ^ d(pdw\

,EI/ w\/.^wrdr= zhE w;— —^-— ar,

Jo Jo dr \dr dr J

which becomes

E-,_C,V,-)-*-l.-.)ffl[(^)']_

the integrated term on the right vanishing because 2V = o at the rim

dw
and — = at the centre.

dr

Now with the value of w from (16.101) equation (16.104) becomes

dr

Therefore, integrating again,

ViV = - 8 c-^(-Ja4r2 - ^aV* + ^r^) -\-[A ,

that is,

r dr\ dr J
4c2(«V2- a-V^ _|_ |,.6) _|_ A

r-f = — c2(a4H— |a2r6 + -ir8)-f-JAr2, . . . (16.106)

Integrating again

d(p

dr

no new constant being necessary because both sides vanish where

r= o. •

Now, since —-= o where r = a in this case, equation (16.105)

becomes

E'lf 64c^a^--2r^yrdr

= — ^2hEc^f {^Ar— c^ah'^— ^a^r'^-^^r^}}r^a^-— r^ydr,
Jo

whence
^^E'la^ = —7,2hE{^\Aa^—^\c^a^^} . . (16.107)
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Now the radial stress is

E dw
P' = 7^= ('^-'^S)

consequently, if P is the radial compressive stress at the rim, we
find that

P = -(P\),=« = E(~|A + ic2a6) . . . (16.109)

Therefore equation (16.107) gives

/ 2 Pa2
E'l = 2hE (- -^ - ic2a» + ^\c^a''

whence

(16.110)
3 a^ 14 a^

where Wq indicates the maximum deflexion of the disk.

If the deflexion Wq is infinitesimal the term involving Wq^ is

negligible in this last equation, and when this term is omitted the

equation agrees with (16.71).

If ioq = ^h, twice the thickness of the plate, then

P = t5-'{'+A('-<'^)}' • • • •
('6.11')

in which case the second term in the bracket is about 0-6 of the first.

This means that the thrust at the rim required to produce a maximum
deflexion equal to twice the thickness of the plate is about 1-6 of the

buckling thrust. A plate whose radius is very much greater than its

thickness might be well within the elastic limit if the maximum
deflexion were twice the thickness. It follows therefore that the

buckling thrust may quite easily be but a small fraction of the thrust

that would cause a plate to collapse utterly.

295. The buckling of deep beams.

The following theory applies to beams whose cross-sections have

one principal axis parallel to the applied loads. We shall always assume

that the loads are vertical so that we can easily distinguish between

the two principal axes. The expression deep applied to these beams

is to be understood to mean that the moment of inertia of the section

about the vertical principal axis is very much smaller than the moment
of inertia about the horizontal principal axis.

The central axis of the beam in the unstrained state, that is, the

line passing through the centres of gravity of the sections, is under-

stood to be straight. Moreover, unless the contrary is distinctly stated,

the beams are supposed to have uniform sections.

32*
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Fig. 157

Let OX be taken through two points of the strained central axis,

and let OY be a horizontal axis perpendicular to OX. The horizontal

deflexion of a point on the central axis is denoted by y.

When loads are applied to a deep beam the vertical principal axis

remains vertical if the loads are not too big. But there are critical

systems of loading for which the untwisted state of the beam becomes

unstable. In the buckled state the beams are twisted and bent side-

ways. There is thus no deflexion y until a critical state of loading

is reached, whereas there is a vertical deflexion of the central axis

for the smallest loads. Nevertheless, owing to the great difference

between the two principal moments of inertia, the vertical deflexion

will be small even when buckling begins.

Let ODD'B (fig. 157) be a plan of the central line of a buckled

beam. The point D has coordinates x, y, and the point D' has

coordinates x-\-dx,y-\- dy. The
beam is so twisted in the buckled

state that the upper part of the

beam is further from the ver-

tical plane containing OX than

the central line itself at all points

except possibly at the ends of

the beam; that is, if the twist

of the beam at D is represented

by a vector on the right-handed screw system, this vector points towards

O when y is positive, and away from O when y is negative.

Let I denote the moment of inertia of the section of the beam
about is vertical principal axis, and let K denote the torsion coefficient

of the beam. If t denotes the twist per unit length at any point of

the beam the relation between twist and torque Q is

n being the modulus of rigidity. The constant K is calculated for .a

number of dififerent sections in Chapter VII.

The action across the section at

D of one portion of the beam on
the other is a couple and a vertical

force, the latter being the usual

shearing force in beams. The couple

can be resolved into three components,

M about a vertical line, G in the vertical

plane which touches the central line at

D, and Q in a plane perpendicular

to the other two. The vectors repre-

senting Q and G are horizontal vec-

tors, and they are respectively along

Fig. 158. and perpendicular to the plan of the

Q+diQ
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central line at D. Fig. 158 shows the plan of the element DD' of

the beam, and also the couples which have horizontal vectors. Taking

moments about the vector representing {Q -\- dQ) for the equilibrium

of the element DD' we get, to first order in dq?.

(Q-\-dQ)— Qcosd(p + Gsmd(p = o, . . .(16.112)

whence

dQ + Gdcp = o

,

or

But

Therefore

dx dx

dy
(p= ta,n(p = — nearly.

CLX

dx dx^
(I6.II3)

The moment of the shearing force at D and the load on DD' were

neglected in forming equation (16.112) because these are quantities

of smaller order than dQ or Gd(p when the load is applied to the

central line of the beam.

The couples M and G can each be resolved into components having

vectors along the two principal axes of the twisted section at D;
Suppose AA' is the principal

axis which is vertical in the

unstrained state. Then the

component of G about AA' is

Gsin^, or approximately GO,

where 6 is the inclination of

A'A to the vertical. Also the

component ofM about the same
axis is M cos 6, which is ap-

proximately M. Thus the total

couple about AA' is approximately G^ + M.
The component curvature of the beam in the direction perpendi-

cular to the principal axis AA' is approximately

I _d^y

Q dx^

Since the couple producing this curvature is (G^-j-M) we get, by
equation (14.33).

Gsln^

(16.114)

E'I^,= Gfl+M, . (16.H5)

where E'
I — (72
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Now since the only forces acting on the beam are vertical forces, we
find, by taking moments about a vertical axis for the equiHbrium of

an element of beam, that M is constant.

Again the component couple about the central axis of the beam
at D is approximately Q. This, then, is the torque at D, and the

corresponding twist per unit length is

^=2 <'^-"^)

Therefore, from the relation between torque and twist,

dO
Q = Km=Kn— (16.117)

ax

We can make our results a little more general by assuming that

there is a thrust P applied to the beam along the axis of ,v. In that

case the couple M is not constant, but has the form given by the

equation

M = N - P?/

,

exactly as for a strut. Then equation (16.115) can be written thus

E1^ = G^+N-P.v, .... (16,118)

N and P being constants.

By means of (16.117) equation (16.113) becomes

-S'-og (.-«
if K is constant.

When the loads on the beam are given G can be found. Then the

two last equations determine y and 6 as functions of x.

If P is zero y can be eliminated immediately from the last two

equations. The eliminant is

ElKw^= -G(G(9+ N) . . . (16.120)

The couple N is the couple applied about a vertical axis at each end

of the beam. This couple does not come into action until the beam
is buckled, and, moreover, it must remain zero when the beam is

buckled unless the ends are clamped so that they cannot rotate about

vertical axes. It is, of course, possible for a beam which has dis-

placements in two planes to have totally different end conditions for

displacements in the two planes. For example, if one end of the beam
is free to rotate about a well -fitting hinge with a horizontal axis, the

hinge itself being attached to a rigid body, then at that end the beam
is pinned for displacements in the vertical plane, but clamped for dis-

placements in the horizontal plane.
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296. Beam of length I under a pair of balancing couples

at the ends and a thrust P and no other forces.

Elevation

Plan of Central Line X
Fig. 160.

It is understood that the ends are held so that is zero at both

ends. It is very easy to see that no torque is necessary to maintain

this state of the ends. Thus the end conditions for 6 are

^==0 where x = o and where x = l . . . (16.12 1)

Also, the X'2iK\s being taken through the ends of the middle line,

the following end conditions hold:

—

iy = o where x = o and where x = L . . (16.122)

Now integrating (16. 119) twice we get, since G is constant,

Kne=-Gy + AiX-\-Bi^ . . , . (16.123)

In consequence of the conditions in (16.121) and (16.122) it follows

that Ai and B^ are both zero.

Therefore

KnO= — Gy (16.124)

On substituting the value of 6 given by the last equation in (16.118)

we get

whence

dx^ E'llVK^^^ )^
1

N= -^'2/ + ^, (16.125)

where

Since we are assuming that there is no couple in a horizontal plane

at either end of the beam the couple N is zero. Consequently

-^2==-'^y (16.127)
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This equation has exactly the same form as the equation for the de-

flexion of a strut with pinned ends. Moreover the end conditions

for y/ are exactly the same as for the strut. For a discussion of the

solution of the equation we need only refer to Chapter VI where
Euler's theory of struts is given. We dedtice, by a repetition of the

arguments used for the strut, that

y = A sin mx , (16.128)

where

*>* = y, (16.129)

s being an integer.

The smallest value of m gives, of course, the smallest buckling

force. This smallest value occurs when 5=1. In that case

|^^-|-P = Elm2 = E'I^ (16.130)

This result includes the result for the strut, since we have only to

put G zero to get the strut problem. If, however, P is zero, the last

equation gives the couple which will buckle the beam in a plane

perpendicular to the one in which the couple acts. This buckling

couple is

=11/?IKn (16.131)

Returning to the more general result in equation (16.130), we notice

that P might conceivably be negative. Suppose then that P = — T,

where T represents a tension. Then equation (16. 130) becomes

£-^=^'^S ("^•'3^»

We thus see that a thrust and a couple each tend to buckle the

beam when acting separately, and that their effects are added when
they act together. A tension, however, partly or wholly neutralises

the effect of the couple, so that it is possible to avoid buckling even

when a big couple is applied provided a big enough tension is applied

at the same time. It should be noticed that, since buckling depends

on G^, a change in the direction of G does not alter the effect of G
The couple and thrust in (16.130) are equivalent to a single force

P applied at some point not on the axis of x. Thus suppose a pair

of thrusts P are applied along the line parallel to the jr-axis at a

distance p above it; then the force at each end is equivalent to a

force P along the ,r-axis and a couple p P. This action will buckle

the beam if
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For a given value of p this last equation has two real roots for P,

one positive and one negative, and however small p is there is always

a negative root. This shows that a beam can buckle under the action

of a pair of opposing pulls applied along any line parallel to the

central axis of the beam. Moreover, if p is very small the negative

root of (16.133) has a large magnitude and it is approximately the

same as would be got by dropping the constant term. Thus the

approximate value of the negative root when p is very small is

p=--i- '6.134

It is remarkable that this depends only on the torsional rigitidy Kn
and not at all on the flexural rigitidy E'l.

From (16.124) and (16.128) we find

Q = — mGA cosmx.

When the beam is buckled A is not zero, and consequently Q is not

zero at the ends of the beam. Other writers have concluded from

this that buckling cannot take place unless couples act about OX at

the ends of the beam. But the reader is referred) to fig. 158 for the

correct meaning of the torque Q ; the torque is the component couple

about the tangent to the central line, not about OX. Since OX is

not the tangent to the central line at either end it follows that Q is

not zero at either end. The torque at either end is, in fact, the com-
ponend of the couple G about the tangent to the central line at that end.

Beam clamped at both ends.

If, in addition to the couple G and the thrust P, a couple is

dn
applied at each end in a horizontal plane so as to keep — zero, the

dx
new conditions are that N in equation (16.125) is not zero, and

dti
-—= where a; =0 and where x=l. . . (16.135)
dx

The conditions in (16.121) and; (16.122) still hold, and therefore

(16.124) is still true. We have therefore to solve (16.127) with the

du
conditions that y and — are zero at both ends. But again this is

dx Q2
exactly the strut problem with both ends clamped buit with 1- P

Kn
instead of P. Therefore, by repeating the reasoning for the clamped

strut, we find that the beam buckles when

|^ + P = 4E'lJ ..... .(r6.i36)

Again if P is zero this gives

^|/E'IKn (16.137)
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297. Beam of length / fixed at one end and free at the

other, and carrying a load R at the free end.

Since the end thrust P is zero we can use equation (16.120) at

once. Moreover the couple N is certainly zero because there is no

couple in a horizontal plane at the free end. Thus equation (16.120)

becomes

ElKn--==-G-'l9 .

dx-
(16.138)

We shall use a short symbol for the oft recurring expression E'IKw.

We shall put

c^'^E'lKn (16.139)

Then when P is zero we have to solve the equation

dx'^
e (16.140)

Let the origin be taken at the free end. Then the bending moment
at cr in a vertical plane is

G = R.x, (16.141)

and the sufficient end conditions are

^ = where x = l, (16.142)

dO
Q = o, that is, — = 0, where x = o . . (16.143)

ax

^

Rt

we find

Fig. 161

The differential equa-

tion (16.140) now be-

comes

Putting

s = --x^- (16.145)
2 c

de__de^ ^_R ^
dx ds dx c ds

d^e RdO R d (de\
— _| ^ I

dx- c ds c dx

RdO R2 d^ed

c ds ds^'

RtdO d^
c\ds ds-

Therefore (16.144) becomes
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''d^-^ds = -''^
• • •

-(^'"^a)

Next putting i

0=zs'^' (16.147)

we transform (16.146) into

Now the equation for Bessel functions* of order n is

d'^z 1 dz ( n^\

When n is not an integer the complete solution of this is

;t = AJn(s) + BJ_n(5), (16.150)

the functions ]n{s) and ]-n{s) being Bessel functions of order n and
— n respectively. . The function Jn(^) is defined by means of an in-

finite series thus

The quantity r{n~\-i) in the denominator is the gamma function.

The values of log F {x) are tabulated in Williamson's Integral Calculus.

In many problems the factor 2'^r{n-\- 1) is unimportant; it is

merged into the arbitrary constant.

Equation (16.148) is identical with (16.149) if n = \. Therefore

the solution of (16.148) is

^ = AJ^(s) + BJ_^(*).

Consequently

e= s*{AJ^(s) + BJ__j(s)}

= a;*{AJi(«)+ BJ ,(«)} . . .(16.152)
4 4

It is worth while to get this result directly from equation (16.144)

without making use of Bessel's equation. Indeed (16.144) is, in

many respects, a simpler form of equation than Bessel's equation.

Let us put

m^==^— ...... . (16.153)
c

To solve

— + ^*a;2(9 = o. ..... {16.154)

* See Byerley's Fourier Series and Spherical Harmonics (Ginn and Co);
or Watson's Theory of Bessel Functions (Cambridge University Press).

See also Appendix A.
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put

e = 2:arx' (16.155)
Then

— = 2'r(r-i)a,a;--2

Therefore our differential equation gives

i:{r(r-i)arX''-^^m^arX^+^} = o, . . . (16.156)

which is equivalent to

2'{r(r-i)a,a:^-2+m4a,_,:r^-2}==o . . . (16.157)

Since this is an identity the coefficient of x'^"'^ must be zero.

Therefore

r(r— i)a^H-m*ay_4 = o, (16.158)

whence, if r{r—i) is not zero,

^^ = -;:(^rz7)''^-^ (16.159)

If, however, r = o or r= i, then ttr-^ is zero. It follows there-

fore from (16.158) that a_^ and a_3 are zero. Next by putting

r = — 4 or r = — 3 it follows from the same equation that a_8 and

a_7 are also zero. It is clear then that ascending series may begin

at r = o or r = i . The coefficients in the series beginning with

r = o are Uq, a^, «§ , etc. The relation between these coefficients is

given by (16.159). Thus

34

Therefore one series is

34 34.7-8 3.4.7.8.1 1. 12

Likewise the series beginning with r — i is

+

a, {X
m^x^ m^x^

4-5 4.5-»-9

Therefore

r m^x"^ m^x^
I

M 34 34.7-8 I

+ aAx _ ...} .... 16.160
I 4.5 4.5-8.Q J

This last equation is identical with (16.152)

Now the condition in (16.143) gives

a^ = 0, (16.161)
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and the condition in (16.142) next gives

0=1 h ^- (16.162)
3.4 3-4.7-8

This last equation determines niH^, which in turn determines R. The
equation for m*/* has an infinite number of roots corresponding to

the infinite number of possible forms into which the beam can buckle.

The smallest root is the only one that matters in the buckling

problem.

When u is written for w*/* equation (16.162) becomes

u
. u'^ u'^0=1 h (16.163)

3.4 34.7.8 3.4.7-8.ii.i2^

Now if u is positive and not greater than 12 the series for u can

be written

which is clearly positive. Therefore the smallest root of (16.163)

must be greater than 12. Again when u=20 the series is

20 2o2 ( 20 2o2 \I-—+—-77 I -4
12 3.4-7-8 I II. 12 II. 12. 15. 16 I

2 2$
\ _ 20 _

20'^

3 42 I
1 1. 12 1 1.12.15.1b

<-^+ ^,
3 42

which is negative. Thus the series changes sign somewhere between

u=^i2 and u= 20. Now for this range of values of -m the term

containing the first power of u is the greatest term in the series.

Then let us write equation (16.163) in the form

'*='^ + 7:8-^X7IT^ + 7.8,ii.i2.i5..6
-

• •
•<'^-'^4)

We may try w= 16. Then the right hand side

7 7-3-II 7-3.II-I5

= 12 + 4-5714 — 0-5541 +0-0369 — 0-00155 + 0-00005

= 16-053.

This is nearly identical with u, and ^^t is very likely to be a better

value than the assumed value 16. Then let us next try u== 16-1.

Then the right hand side of (16,164).

= 12 +4-62874 — 0-56457 +0-03787 —0-00150 + 0-00004

= 16 1006.
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It is clear then that i6-i is very near the true value of the root.

Newton's method, which is illustrated below, may be used to get a

closer approximation to the root of such a series.

Let Uy = lb' I, the value of u that has been used in calculating

the terms in the last approximation. Also let

and let the exact root of equation (16.163) be (u^^-\-a). Then.

f{u^-{-a)= o, (16.165)

whence, neglecting higher powers of a than the first, we get

f(u,) + ar(u,) = o (16.166)

Therefore

The second form for a is much more convenient for calculation

than the first.

Now f{t(.^)= 1 6- 1 006 — 1 6' 1 000

= o*ooo6
Also

22Ui' 3M1

7.8 7.8.1 1. 12

The terms in this series are quickly obtained from the terms in

f(Ui) since the only labour necessary is to multiply the terms in

the latter series by i, 2, 3, etc., respectively. In this way we find

^irK) = -S-39-

Therefore

00006 X I 6- I ^ , . .r..a= = — o-ooii6, . .(16.168)
-8'39

and consequently

M=^w^ -fa = 16-09884 (16.169)

This determines the smallest value of G to a sufficiently good

approximation. Thus

Rl^ = cm'^P = c \/u

= 4-oi2 35yElK?2 .... (16.170)

The root of equation (16.163) could have been found in another way.

This equation is equivalent to
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Stokes' formula for the first root of this equation gives

^u^=:2-oo6, (1 6. 1 71)

which agrees with (16.170).

298. A beam of length / carries a load R at the middle
and is supported at the ends, the only couples at the ends
being such torsional couples as will keep the ends from
tTvisting.

The ends are to be regarded as pinned both for horizontal anid

vertical displacements. Also the load R must be understood to be

applied at the middle point of the section half way between the

ends.

Let X be measured from one end of the beam towards the other

end. Then, at a point between the origin and the load R, the couple

G is the moment of the supporting force i R at the origin. Thus

G= -|Rx
and therefore equation (16.120) becomes, since N is zero in this case,

e ..... . (16.172)

If we now write

R2 R2

--4C^-4E1K. • • • • • •

(^6-^73)

this last differential equation is the same as (16.154). The solution

of the equation is therefore given by (16.160). Since there is a point

of discontinuity at the middle of the beam it is best, if possible, to

find two conditions in the half of the beam to which our solution

applies by means of which the constants Gq and a^, can be determined.

Two such conditions are

^ = where x= o (16.174)

dO— = where x = \l (16.175)
QX

The second of these conditions follows from the obvious fact that

6 has either a maximum or a minimum value at the middle of the

beam.

The condition (16.174) applied to (16.160) gives

«o = o-

Then condition (16.175) gives

where

10
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The least root of (16.176) is

^= 4-482 (16.177a)

We therefore find

whence

R/2= i6-94yElKw (i6-i77b)

299. The boundary conditions for a clamped beam.

When there is no end thrust on a beam the differential equations

for and y are (16.120) and (16. 119), which are re-written here:

ElKw^^=- G(G^+N), .... (16.178)

Now the constant N in the first of these equations is an unknown
constant of the nature of a constant of integration. When, therefore,

is found as a function of x from (16 178), the expression contains

three unknown constants, and we have usually only two boundary

conditions involving alone. These are not sufficient to determine

the ratios of the constants and the buckling load involved in G. We
are thus obliged to use some of the boundary conditions foi y Now

du
one more condition is all we need, and since -^ is zero at both ends

dx
of the beam this condition can be expressed in the form

/
^d^y

,

that is,

'^KndW

£
This last condition introduces no new constant; it theref "e supplies

the extra condition that was needed to determine the bu kling load

without finding y or -^
.

dx

The limits for the integral in (16.180) are from one end to the

other of the beam, and it is obviously not necessary that the origin

should be at one end, although the limits given in the integral are

suitable for that case.

If the beam is loaded symmetrically about the middle we are

dy
entitled to assume that — = o at the middle as well as at the ends.

dx
In that case we may take the range of integration in (16.180) between
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one end and the middle of the beam. Thus, whether the origin is

at the middle or at one end, the extra condition for this case is

1

f.
. (16.181)

I

n!..

----—dx=o
o G dx^

If Kn is constant this factor may, of course, be omitted

300. A beam of length-/, supported at 'the ends, carries

a concentrated load R at the middle point and the ends are

clamped for horizontal displacements.

This case differs from the

last in that the couple N in

equation (16.120) is not zero,

dy
, , ^

and —- is zero at each end.
dx

The couple G has exactly the

some value as in the last pro- ^^ Plan
blem. Fig. 162

With the origin at one end

equation (16.120) becomes, for the present problem,

d'-e

^R Elevation

c2-- = iR^(N-iR.T^),

whence

where

dx

d'^e^

dx^
— m^x-0+ bbm^x

,

R2

4C'

mb = RN N

The solution of (16.182

= an

in a series is

6c

m*x4^4 m^x^

34 3.4-7-8
,..]

+ «i \x
m*x4^5 m^x^

4.5 4.5.8.9

^-hm^ \x^ — m*x4«.7 m^x^^

^
In

(16.182)

(16.183)

(16.184)

6.7 '6.7.10.11 -I
('^-'^5)

The conditions which must be satisfied at the ends of the half beam
to which the solution applies are

^ = where x = o, (16.186)

dO
and

dx
= o where x = ^l . (16.187)

33
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We have, in addition, the condition given in (16.181) namely

I
To satisfy the first of these conditions a^ must be zero. Also, by

means of (16.120), the last condition can be put into the form

0= (G(9+N)rfx ,

=
I

(tmhc—m ^^cxd)dx

r\i
=^cj {6b— mx0)mdx (16.189)

«/

o

Now let u be written for y'^m*/*, and let

6 6.7.10 O.7.10.11.14

U=. . (16.192)
3 4.57 4.5-8.9-II 4.5-8.9-i^-i3.i5

5^ 6.79 b.7.10.11,13

Then the condition (16.187) gives

and the condition (16.189) gives

- -^U H- I bmlY = o.
m-t

The elimination of the ratio a^ : b from the last two equations leads

to the equation

XV + YU = o . . . . (16.194)

The smallest root of this equation can be found by calculating values

of the functions X, Y, V, U, for different values of u. The arithmetic

involved is rather laborious. It will be found that this smallest root

is approximately

w= 10-47 ....... (16.195)

Therefore the smallest buckling load is R given by

R/2 = 2mH'^yKlKn -= 8 ^10-47 VETKw
= 25-89VeIK^ (16196)
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301. A beam fixed at one end and free at the other car-

ries a load W uniformly distributed along its length.

Let w be the load

per unit length, so that ,,,,,,, ,,.|, .

wl^W. The origin is q |1 1 1 1 1 1 1 M 1 j-rt
taken at the free end

and X measured towards

the fixed end. Therefore ^'^' ^^3

G = }wx^
Then the differential equation (16.120) becomes

whence

d'-6-—=— 7)1^x^0

,

(16.197)
dx'^

where m'>=-—7——- (16.198)
4E lKjh

The end conditions are that the torque is zero at x = 6 and is

zero at the other end; that is,

dO
7- = o where x = o, (16.199)
dX

= where x-=l (16.200)

The solution of equation (16.197) i^

I
7n^x^ m^'^x^'^ \

~
\ 5.6 5.6.11.12 "/

+ B^{ I - — \-- ...} . . (16.201)
t 6.7 6.7.12.13 J

Condition (16.199) makes B=o. Then the other condition gives

^6/6 ^12/12 mi8/i8
0=1 7- + -T 7 E+-'- (16.202)

5.6 5.6.II.I2 5.6.II.I2.I7.18

The smallest root of this is

772^/^=41-30, (16.203)

whence

and therefore

41-30,
4EIK?z

W/2=i2-85Ve1Kw (16.204)
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302. A beam supported, without clamping, at both ends,

carries a load W^ distributed uniformly along its length.

If we take the origin at one end the bending moment is

G = —}wx(l—x) (16.205)

Therefore the differential equation for is

E'lKnp^^ = iiv'x^il-xYO. .... (16.206)

Now it is more convenient to take the origin at the middle of the

rod. Then putting

Xi=x— ^l, (16.207)

we get

nKn^^ = -iw^x,''-irr^O . . . (16.208)

For convenience we shall use a dimensionless variable instead of Xj^.

Thus we put

Xi = l^s , (16.209)

and then our differential equation becomes

^^m^s^'-iye, (16.210)

where m-

=

-. (16.2 11)

Now there is a solution of the type

= A{i-}- a., s-^a^s^-j-aQS^ -^ ...], . . . (16.212)

a^d this satisfies the condition

-— = where x = o (16.213)
ax

We have only to satisfy the additional conditions

^= o where x= + i ^

'

that is, ^ = where s== + i (16.214)

On substituting the assumed series for in equation (16.210) and

equating the coefficients of the several powers of j- we get

2^2 = — ^^^^

4.3 a^ = —mHa.2— 2)= \m''-(m^ + 4)

6-5% = — ^-^-K— 2a2 + i)

= _ —m-(m^ + 28W- + 24).

Thus all the coefficients a^,, a ^, a^, etc, can be expressed in terms of

m^, which is a mere number. Then condition (16.214) gives

0= I +a.2+a4 + ag+ (16.215)
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If we write

/•(m2)= i-f-a^-f a^ + a6+ . . . .(16.216)

we can calculate /(i), f(2), fis), etc., and plot the curve z = f(x)
An approximate value of m^ can be found from the curve. The
smallest root is very near 3, and by successive approximations it is

found to be

m2 = 3-i3i (16.217)

Therefore

WP= i6Vy737VElK^
= 28-31VeIKw. (16.218)

303. A beam free at one end and fixed at the other car-

ries a uniformly distri-

sriJi^rdR (11 1 1 u 1 i u 11 1^ X
at the free end.

^

Writing wl forW and
taking the origin at the

free end we get
r6

^
Fig. 164

'*'\hlJ-^\-
. (16.219)

Now we are making the assumption that R is small in comparison

R2
with wl. It follows then that —r- is small in comparison with l^, and

^ / RV
therefore in comparison with [x -\

J
except in the region near

\ tvj

the end x = o, and this is the region where G is itself small. Without
serious error therefore we may take

/ R\^
G =iw[x-] (16.220)

The differential equation for is consequently

riKn^^=-lw4x + -\e.
dx^

In this put

then

whence

w

x-\- —
) (16.221)

w

——=—r,n^z^6, (16.222J
CLZ
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where

4EIKn^"'^te^if:: • (16.223)

The end conditions are

dO
-— = o where .T = o , .... (16.224)
ax

^= o where .T =-' / (16.225)

Now the sohition of (16.222) is given in equation (16.201). In the

present case

^= A I

5.6. 5.6.1 1. 12

+ Bz\i —+ - .... . .16.226
I 6.7 6.7.12. 13 I

^ ^

The boundiary condition at the free end is

dO
,

R—-= o where z = —.
az w

Since we are neglecting all except the first power of — in our equa-
w

tions this makes

B = o.

The second condition (16.225) leads to

»-{
m^z.^ m^'^z,^^^ \

I 7?-+ —7

—

...>. . .(16-227)
5.6 5.6.11.12 j

^

where

R
X =1^- (16.228)w

Thus the equation for m%i^ is the same as the equation for m^l^ in

(16.202). Therefore, by (16.203),

m
whence

M^+ -l ==41-30, (16-229)

*^M^+ -) == V4i'30 (16.230)
Wi

or, to the first power of—,
w

m

Therefore
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that is,

W/'^-}-3R/2= 12 86 VEIK/?, . . . (16.231)

This last equation is correct for values of R that are much smaller

than W; we cannot, of course, rely on the equation for other ratios

of R to W. Nevertheless, if we actually put W= o in this last equation

we find

RP= 4'2gyE'IKn,

which differs by only 7 ^ from the result in (16.170) which was
calculated on the assumption that W was zero. It seems likely there-

fore that (16.231) cannot be far from the truth even when R is not

small in comparison with W. The equation

W72 J? 72

12*86 4*012

which is correct when R=o, and correct when W=o, and is nearly

correct when — is Simall, may safely be used when R bears anyW
ratio to W. In fact, by solving this problem again with the contrary

assumption that W is small compared with R we find

R/2-f 0-291 W/2 = 4-012 VEIKw,
which is equivalent to

W/2 R/2
VElKw. (16.233)

13-8 4-OI2

This differs from (16.232) by very little, and that only in the small

term. We thus get another confirmation of (16.232) as an approximate

formula,

304. A beam, supported without clamping at the ends,

carries a load R at the middle in addition to a much smaller

load W distributed uniformly
along the length.

This can be solved by first

neglecting W— the solution for

which case is given in (16.177) -

—

and then adding a correction to

for the extra term due to W
in the bending moment G. This

problem is solved in a paper in

the Philosophical Magazine for February 1920.* The solution there

found is

T?/2 W72
l6^+^-VK'IK. (X6..34)

* The Buckling ofDeep Beams by J. Prescott; Phil. Mag. Vol. XXXIX,
February 1920.

lllllllllllHilllHWi
Fig 165.
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Now the equation

is correct when R is zero and when W is zero, and it differs so little

from (16.234) that it is very likely to be nearly correct for all values

of the ratio R:W. It is therefore safe to use (16.235) 21s a good
approximation in all cases.

305. Load not applied at the centre of the beam.
So far we have assumed that the loads acting on buckled beams

were applied at the centre of gravity of the section in every case. It

was on this assumption that equation (16.112) was obtained. Let us

now suppose that the load ivdx acting on the element dx is applied

at a point fixed relatively to the beam, this point having coordinates

X, Pj q, before the beam is strained; p is measured in the direction

of y, q is measured vertically upwards, that is, in the direction con-

trary to the load, and the ic-axis passes through the centres of gravity

of the sections of the unstrained beam. The infimitesimal element DD'
in fig. 157 is shown in fig. 166, the observer

being supposed to look in the direction from

D' to D.

This load wdx has a moment of amount
wdx{p-\-qO) about the same axis as {Q-\-dQ)

W.dX in fig. 158. This quantity should therefore be

added to the left hand side of (16. 11 2). This

would give, instead of (16. 113),

Consequently (16. 119' is changed to

K»g= -Gg-«>(p + 9e), (16.237)

and when P is zero (16.120) is changed to

d'^0EIKn-—^ -G{Ge +'N)— E'Iw(p + qOy . . (16.238)
dx^

This last equation, together with the boundary conditions, determines

the buckling load. In general jo is a given function of x, and w must

be a given function oi x^ except that it may possibly involve a con-

stant factor the magnitude of which we are seeking to determine.

Now the solution of (16.238) has the form

0=.Af,{x)-\-Bf,{x} + Nf,(x) + cp{x) . . .^(16.239)

where (p{x) is the particular integral corresponding to — E'lwp, A
and B are arbitrary constants, and N is also, in effect, an arbitrary

constant as we pointed out in Art. 299. For a beam which is not
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clampee at the ends N is zero, and therefore the number of arbitrary

constants reduces to two, the same as the number of boundary con-

ditions. When N is not zero there are three boundary conditions.

Whether there are two constants or three they can all be expressed

in terms of the values f^, f^, f^, (p, and their differential coefficients

(of first or second order) at both ends of the beam. That is, the two
boundary conditions (or three if N is not zero) determine definite

values of the arbitrary constants
,
giving a definite value of 0. Thus

the beam is in equilibrium in a strained but not unstable state, unless

it happens that the arbitrary constants have infinite values. Infinite

values of the constants give an infinite value of which is the

analytical way in which instability shows itself. Now the vanishing

of a single expression involving f^, f^, f^, and their differential

coefficients at the ends of the beam is enough to make the constants

all infinite. The equation expressing the condition that the arbitrary

constants are all infinite is exactly the same equation as we should

get to express the condition that the constants are not zero when
q)(x) is zero for all values of x. That is, the condition for instability

is just the same whether cp {x) (and therefore also p) is zero or not.

To show this in a simple case let us suppose that the beam is not

clamped, in which case N is zero. Let the end-conditions be that

^= o at x= o and x = l. These conditions give

AA(o)+ B/-,(o) + 9,(o) = o1

A/i(0+ B^(/)+ ?>(/) = o/
^"'•"^O)

From these we get

fAo)m-hm(o) ^ ^

'

.,(or/(o)-y(o)^,ffl

fmm-mfAo) ' ^ ^

Both A and B are infinite if

fx(o)m-fi(M,iP)-o .(16-243)

If we had put (p{o) = o and q)(l)=.o in equations (16.240) and then

eliminated the ratio A : B from the two equations, thus assuming that

A and B are not zero, we should have arrived at the same equation

(16.243), and this is the equation which determines the truckling load.

We thus find that the condition for instability is independent of the

function cp{x) in this case, and a similar argument can be applied

to any other case. It therefore follows that the coordinate p does

not affect stability.

Although the theoretical buckling load is independent of p it is

possible that A and B may be so big when the load is nearly, but not

quite, equal to the buckling load that the beam has greater strains
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than it should reasonably stand. That is, if p is not zero, there is a

range of values of the load, extending from a little below to a little

above the buckling load, for which the beam may be regarded as

unstable. When /> is zero there is just one critical smallest load, and

and y will remain absolutely zero for all loads smaller than this.

306. A beam of length ?, fixed at oe=l and free at a?=o,
carries a load W uniformly distributed along its length at a

constant height q above the centres of the sections.

This is the problem that was solved in Art. 301 with the modifica-

tion that the load is applied at height q above the ji'-axis.

If 7U- denotes the load per unit length equation (16.238) for this

problem becomes

E'lKn ^, == -{Ur'^x^ + E'lwq)0
,

whence

'^^^=-ni^x'0-h^O, (16.244)

where 0^ =

and m*

Kw

4E IKw J

(16.245)

Now q is supposed to be small. If q were zero the value of satisfying

the boundary conditions of this problem would be, by (16.201),

(9i=:A{i 7-+ —7 — ...}. . .16.246
I 5.6 5.5.11.12 f

Smce b^ is small the actual value of for the present problem will

differ from 6^ by a small function of x We can find a first approxima-

tion to this small function of x by using 6j for 9 in the small term in

equation (16.244). Thus we have to solve the equation

dx^

A particular integral of this equation is

^2=— A^>2x2F(m«x«), (16.248)

where

-fm«x'l9 = — 62^j (16.247)

^(^) =7^-Afe+il
+—5—+— -^Ta:^)13.14 U.2.7.8 5.6.7.8 5.
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53

19.20

+
1:2.7.8.13.14 5.6.7.8.13. 14

I I

+
5.6.1 1. 1 2. 1 3. 14 5.6.1 1. 1 2. 1 7. 1

8

etc (16.249)

Now
0^0^ + 0. (16.250)

is a solution of (16.245) which satisfies the condition that the torque

is zero at the endir==o, which is one of the conditions of the present

problem. The other condition is that

^ = where x==/ (16.251)

Let f{m^x^) denote the series in brackets in (16.246). Then the

condition that has still to be satisfied is

f{mH^)-bH^¥(m^l^) = o, .... (16252)

an equation from which m^l^ has to be found. Now since b^ is small

a first approximation to the root of this last equation is the root of

the equation

/•(m«/6)=-o,

which root is, by (16.205),

m^Z<''=^ 41-30 (16.253)

To get a second approximation to the root of (16.252) put

m«Z6= 4 1-30
-f- 17 (16.254)

Then (16.252) becomes

f(^r30 + v)-bH^FUr30-\-v)^o,
from which we get, on neglecting v^ and b^v,

/•(4r3o)-f ^r(4i-3o)-62/2F(4i-3o) = o.

Since the first term in this last equation is zero we find

F(4i'3o)
v= b^P

Now
r(4i-30)'

(16-255)

f(s)-
2S 3«=

Also

Therefore

5.6 5.6.11. 12 5.6.11.12.17.18

0*4890 ,

when s= 4i'30.
30

F(4i-3o) = 0-1888.

11.5462/2=,- 11.54
qWiP

. (16.256)
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where w^ is the value of w given by (16.253), that is, by the equation

w^'H^ = 4 X 4i'T,oE'IKn.: .... (16.257)

Thus (16.254) now becomes

m«Z6 _ 41.30—23-08 -|-V4r3oE'IKw. . . (16.258)

Therefore the buckling load is W given by the equation

WZ2 = wP = zmH^ VETKw

zyE'lKny41-^0 + v

zl/JrJoyE'lKnli-l !

I
2X4r3o)

9= i2-85yE'IKn — 23-o8|El. . . .(16.259)

Thus the correction to W/^ due to applying the load at height q above

the central line of the beam is about — 23— El. If the load were

applied at distance q below the central line the correction to WP
would be an added, instead of a subtracted, quantity. The assumption

we have made that v is small in comparison with 41*3 really amounts

to the assumption that the correction to WP is small in comparison

with the first approximation. Since Kn is equal to about 4ET for a

rectangular section we see now that our assumption is justified if

y is a small fraction.
V

307. An approximate method of finding the buckling load

of deep beams.

A method was given in Chapter VI for finding the thrust that will

buckle a given strut. The method is, in effect, an energy method.

Equation (6.265) really states that the energy expended in bending

the strut is equal to the work done by the thrust P in forcing the

ends closer together. We can find a similar equation for a buckled

beam.

The equations of equilibrium in the buckled state are (16.113) and

(16. 1 18), which are rewritten here

f-=3
'"«>

ET^ = G6>+ N— P«/ (16.261)

If there is no end thrust P, y is easily eliminated from these equations.

Thus dQ G .^ _
, ^^^ / ^ z: \
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For a beam clamped at both ends in a horizontal plane, so that

dy

we get, by (16.260),

o at both ends
ax

the ends of the rod being assumed to be at x = a and x = —h.

For a beam not clamped at both ends N is usually zero.

E'l <Z,Q
From (ib.262) we get, by multiplying by -prj-i—

>

G2 \6^:c; \^ Gjdx ^ ^'

Now integrating both sides of this last equation over the whole

length of the rod we get

/-:i(i)'-=-/:»s--/:^2- -
''-='

The last term in the preceding equation is zero for an undamped
beam because N is zero, and it is zero for a clamped beam by (16.263).

Also

0^dx= Oq\ - Q^dx, . . . (16.266)
-b dx L 1-b ^-b dx

Now at an end where the beam is so held that it cannot twist from

the upright position the angle is zero; and at a free end the torque

Q is zero. Therefore the integrated term in the last equation vanishes.

Thus (16,266) becomes

rE'l/dQY^ Cr^dO ^

Jg^[^)'^-J'^Tx'^

=f^Jx, . . . .(16.267)

the range of integration being from one end to the other of the beam.

The last equation is, of course, an accurate equation if the correct

value of Q is used in the integrals. But even when approximate values

of Q are used the proportional error in the buckling load is usually

very much smaller than the error in Q. Moreover, the equation is

just as good for beams with variable sections as for beams with

constant sections.

For beams with constant sections, for which ET and K.n are

constants, equation (16.267) can be put into either of the forms
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or

Just as the buckling thrust of a strut is the least value of P that

can be got from equation (6.265) so here the true buckling load of

a beam is the smallest load given by (16.267). It will be seen from

the examples worked out below that this approximate method can be

made to give results in which the errors of calculation are insignificant

in comparison with the probable errors in the elastic constants.

308. Illustrative examples.

(a) The same problem as in Art. 298.

For this case

and therefore equation (16.268) becomes

Let 2a be written for the length of the beam, and let the integrals

in this last equation be taken from the endcc=o to the middle x= a.

This will be quite safe provided we choose a value for Q which is

zero at the middle, as it clearly is in the actual problem. Now the

differential equation for 6 or for Q shows that each is expressible

in powers of x^. Moreover Q is not zero at the end x=^o, from

which it follows that the expression for Q begins with a constant term.

Then let us take as the approximate value of the torque

The condition that Q is zero at the centre gives

o^i-^p + q (16.272)

This relation between p and q reduces the two constants in Q to one

independent constant. Of course it would be more correct to write

kQ instead of Q in equation (16.271), but as this factor k would

appear as — in each side of (16.270) it would make no difference to

the result. It is therefore omitted.

Now (16.270) gives

R2

/^ I / x'^ ^ x'^Y.

4E'lKn f^l x^ x'^yW x^ a;^\2
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Wo r a*

or 'ir^^\

16.17 ii7jo2-|- 260^3'+ 180^2
~ a* 9945+ 3Q78jo+iio5(p2-|_2g)+i53o/?^+5B59^'

By means of (16.272) this reduces to

R^a* 37«2+ ioo«+ 180
, ^

34EIKW 5j52_|_44^_|.26o ^
^^'

The minimum value of R^a* for different values of p given by the

last equation is

R2a* = 4X4-482E'lKw, . . . . (16.274)

which agrees with (16.177a) to the last figure.

(b) The same problem as in Art. 300.

Let the origin be taken at one end and let the integrals be taken

over half the beam as in the last example. Assume
/Y'2 /2*4 /v>6

Since y is zero at the end ./: = o and at the middle .t = a it

follows from (16.260) that

--^dx = o (16.276)/.0 G dx

which gives, since G=— |^Rr

2p-\-iq-V-t'=- (16.277)

Also, because the torque is zero at the middle of the beam,

I +p-\-q-\-r = o (16.278)

From the last tv/o equations we get

P-\{^—<i)^ (16.279)

'^•=-i(i54-59)> ..... (16.280)

which leaves one undetermined constant in the expression for Q.

Equation (16.268) gives, for this case,

^-^^^^{p'-\-iP^ + W'\-ipr-\-fqr^r^}

-^^-lp + \p'' + lq-^\vq-\-^r

+ i9'-MF-+Ar+ -iV. . • .(16.281)
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By means of (16.279) and (16.280) this last equation can be reduced to

R2a* 70 + 40^ + 24^-

32E'IKw 48-410+ i2-6oi^-l-2*28759-*
(16.282)

The minimum value of the right hand side for variations in q is 1-310.

Therefore this method gfivesis'

4E'IK» '"-^^ <'^-^^^^

which exceeds the value shown in (16.195) by only one per thousand.

309. Approximate method when the load is not applied

to the central line.

When the load is at height q above the central line of the beam
equation (16.260) is changed to

Then (16.262) is changed to

Consequently, instead of (16.267), we get

/g(S)*-/£--/"?«S-- '-»^'

In dealing with this last equation the term involving q must be treated

as small. A first approximation to w must be got by neglecting q.

The first approximation to must then be used in the integral in-

volving q in (16.284). As aji example we take the problem worked
out in Art. 306. Let us assume that

/Jr»12 /V»6

^= 71?+" 7^-*'+'') ('^-^85)

This satisfies the boundary conditions

^ = where x = l
\ , . o^\^ , (16.286

Q = o where x= o\ ^

The equation for w is

w
Neglecting q we find

484

w^-V° 17

4E'IK7i ^^
,
4C 4

II 17 21

(16.288)
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The fraction on the right side of this last equation has a minimum
value when

c=i=- 4*108, . . . . . . (16.289)

and this value of c gives

wH^ . . .

^e1k;^
= 4^-^9, (16.290)

which differs by about 0-2 per cent from the more correct result 41-30.

Now substituting in equation (16.284) the value of c we have just

1

2

found, that equation gives, after division by —

,

i

4EIKW E'l^
92-1 —-=2-225 4- 2 X 50-3 —-^

= 2-2 2^1 I _i_
^ ^ 50-3 El?
2-225 wl^

4E'lK?z I /
.

, El?
'1+2X22-6

whence

On substituting the approximate value for w from (16.290) in the

term involving q in the last equation we get

4E'lKn _ I / ^ 22-6 1|/E1^
wH^ 41-39 \ 1/41-39 ^ |/k^.

Therefore, finallyj

16?/^ -M'-mnryKIKn

=
2y^7:^-22.6f ]/p.

The coefficient 22*6 in the small term is near enough to 23-08 obtained

from the exact expression for 6 in Art. 306 to justify the use of the

approximate method.



CHAPTER XVII.

CYLINDERS WITH THIN WALLS.

310. Equilibrium of a cylinder which is strained into

another cylinder with a cross-section of different shape.

The general theory of the bending of a ckcular cylinder with thin

walls is so complicated that it is not worth while to deduce the simpler

cases from the more general theory. In spite of the fact that it will

result in a certain amount of repetition we shall not therefore attack

the general problem until we have solved some of the simpler problems.

We shall start with the problem of a cyHnder bent into another cylinder

with a different cross section.

We are assuming that no forces act on the cylinder in the direction

of the generating lines.

Let 2h denote the thickness. Just as in dealing with flat plates

the surface at distance h from both faces is called the middle surface

of the cylinder. Let two sections of the strained cylinder be taken

perpendicular to the middle surface, each containing a generating line

of that surface. The points A and B in fig. 167 are on these gene-

rating lines, and the plane of the figure is perpendicular to the

generating lines. Let the length of the arc AB be infinitesimal and
equal to ds. Let Q denote the mean
compressive stress across the section at A.

Let M denote the bending moment at A,

this bending moment being a couple in a

plane parallel to the plane of the figure.

F is the shearing force per unit length

across the section, its direction being

perpendicular to the middle surface. A
pressure p is supposed to act on the

convex side of the cylinder. The lines

OA, OB, are normals to the strained

middle surface and contain an angle d(p.

The forces and couple at B are Q+ rfQ,

F-{-dF, and M+dU
By taking moments about B and neglecting small quantities of the

second order we get

dM + Fds = o (17.1)

F+dF
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whence dM „

-d^=-^ "^•^)

Again by resolving along the normal BO we get

(F -^ dF)-\-pds— F cos d(p — 2hQsmd(p = o

,

or, again neglecting quantities of the second and higher orders, and
consequently writing i for cos d(p and dqD for sin dcp,

dF+pds— 2hQd(p= o, (i7-3)

whence

__,,Q^+^==o (.7-4)

Next resolving in the direction of {Q-\-dQ) at B we get

2h{Q-{-dQ) — 2hQcosd(p-\-F sind(p= o

from which, with the same approximations as before, we get

-'f+^^-° '-.i

From (17.2) we find, by differentiating with respect to s,

dF_ d^M

ds ds^

This last equation enables us to put (17.4) into the form

d^M ^^dw

Now in dealing with flat plates we proved that the bending

moment M across any section is related to the radius of curvature q
of the perpendicular section by the equation

.. ElM=
Q

If the radius of curvature of the originally flat plate changes from

^0 to Q and the bending moment from Mq to M, then clearly the change

of bending moment is

M-Mo = E'l(---) (17.8)

Now if the plate had originally a radius of curvature ^0 the changes

in the strains, and therefore also in the stresses, are clearly just the

same as if the plate had been originally flat. Therefore the change

of bending moment is still proportional to the change of curvature

even though the original bending moment M^ is zero. Consequently

M^Elf---) (17.9)

34*
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is the relation between the bending moment and the curvature when
the natural radius of curvature is Qq.

The curvature of the section in fig. 167 is

dw

Let Cq denote the natural curvature of this element. Then,

M = El(c — Co) (17-10)

Writing ^ for the change of curvature (c— Cq), equation (17.7) can now
be written in the form

E'I-^+2hQ{co + S)=p .... (17.11)

Also equation (17.5) can be written

2^^ = -F(«o+a (17-12)

Moreover (17.2) enables us to express F in terms of | thus

In the cases that are of most use in practice ^ is a small fraction

of Cq and can be neglected in comparison with Cq. Then (17.12)

becomes approximately

2h-^ = -Fco (17-14)

311. Collapse of a long tube under external pressure.

Let us now apply the equations we have found to a cylinder

which is circular in the unstrained state with a curvature

I

Ca = — = constant.
r

Then, by means of (17.13) and (17.14), we get

Qo being a constant.

Now neglecting ^ in (17. 11) we find

d^+ 2hQ,Co + 2/^Qol + Elco^^ =p ,

or

d^^
F:ij^^(2hQ, + E'Ico')^==p-2hQ,Co . . (17.16)

If p is constant we might expect that the cylinder remains circular

when it is strained, but with a siightiy diminished radius. This is true

as long as p does not exceed a definite pressure, which we can easily
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discover, but at that particular pressure the circular form becomes

unstable, just as at strut becomes unstable for a particular thrust. To
find this pressure we must solve (17.16). The solution is clearly

where

^^^£^+ri^
^^^^g^

E I

Now I must clearly be such that its value is repeated when s increases

by znVf the circumference of the cylinder. Thus

mx 27tr= znji , , (17.19)

n being an integer; that is,

2kQ, + E'W .^

E'l

whence ^^Qo = —^('^^— ^) • • • (^7-20)

The relation between Qq and p can be got from our equations by

assuming that the strained cylinder is circular, since these quantities

must have the same value just before and just after the cylinder

becomes unstable. Thus in equation (17.4) we may assume that F
does not vary with s and that Q = Q^^. Then we get approximately

a=^ ....... . „,..„

Therefore

E'l
p=---{n^-i), .... (17.22)

and, moreover, equation (17.17) becomes

^ = Hcos{ne-{-k), . . . (17.23)

6 being the angle subtended by the arc s of the section of the middle

surface of the cylinder at its axis.

Now n must be an integer and it must be greater than unity

because, if w is equal to unity, equation (17.20) makes Qq zero, and
therefore makes the corresponding value of p zero. But the ring

could not collapse with a zero pressure. In fact, n= i can only

apply to a split cylinder and not to a closed one. Then the least

value of p occurs when n = 2, and this value is

3E'I

(.-aV •

^'^•''*^
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The corresponding shape of the strained cross-section is elliptical.

The pressure given in (17.24) is the external pressure which would
cause the collapse of a long cylindrical tube such as a boiler-flue.

For short tubes the end-conditions must be taken into account. The
investigation of the stability of such short tubes will have to be post-

poned till we have worked out the theory of the tube with changes

in both its principal curvatures.

312. Stability of thin ring under external pressure.

The foregoing- reasoning that has been used for a tube would

apply equally well to a thin ring if E' were replaced by E, and if I

were regarded as the moment of inertia of the cross-section of the

ring and p the external thrust per unit length applied to the ring.

The thrust that would cause collapse of the ring is therefore

3E1
(17-25)

F,+dF,

M,+dM,

313. Hollow circular cylinder with thin walls having its

strains symmetrical about its axis.

Let the jr-axis be taken along the axis of the cyHnder itself,

X being measured from any convenient plane of particles which

lie in a circular section of the middle surface of the tube. Let r be

the radius of the middle surface of the cylinder before strain ; and

let the ring of particles which was

at X before strain be at {x-\-u)

after strain and have a radius

(r-\-w).

Let Pj, Pg, be the tensional

stresses in the middle surface of

an element of the cylinder. The
stress P^ is not exactly parallel

to the a:-axis except at points of

the tube where the tangent plane

to the strained middle surface is

parallel to that axis. Just as in a

fiat plate these stresses P^ and Pg

are the mean stresses across the sections on which they act.

Let Ml and Mg denote the bending moments per unit length across

the sections on which P^ and Pg act; that is, M^dx and M^dy are

the moments of the tensional stresses about elements of length dx

and dy in the middle surface. On account of the symmetry about the

axis the torque across these sections is zero. Let F^ be the mean

shear force per unit length of the section across which P^ acts, the

direction of F^ being radial as shown in fig. 168. The shear force F^

across the perpendicular section is zero from symmetry.

Fig. i(
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Let the element we are dealing with subtend an angle dO at the

axis of the cylinder, so that dy = rdO.

Suppose that a pressure p per unit area acts on the convex surface

of the cylinder; or if a pressure acts on both sides let p denote the

excess of the external over the internal pressure.

Now let us find the equations of equihbrium of the element with

dimensions dx and rdO. Before we write down equations it had
better be made clear that P^ has a radial component. The inward

radial component force due to P^ acting on an area 2 hrdO is aooroxi-

mately

dw\
R -— X 2hrd6

ax '

The outward radial component of (Pj+^Pi) ^t the other end of the

element is

, .r^i^ dw d [^ dw\ ,

I

Thus the excess outward radial force due to Pj and (P^-\-dF^) is

2hrdO—-\V,^\dx.
dx\ ^ dx I

Now resolving in the direction of (F^ + rfFj ) , and neglecting quantities

of smaller order than those retained, we get

{dF,)xrde-ir2hrde-^(T^^]dx
ax \ ax I

— (PgC?^) X 2hdx —prdOdx = o

,

whence

Again, resolving parallel to the axis of ic, we find

2hrd6dV^ - rde-^ (f, ^]dx==o,
ax \ ax I

from which

, c?P, d /_ dw\
,

.

^'^-^(^•^)=° • • • •
•<'7-^7)

Next taking moments about the element rdO where P^ acts we get

rdddyi^ + rdQY^dx = o,

whence

f^+ '. = » !'->

We have now arrived at the three equations of equilibrium, and we
have next to express the stresses in terms of the displacements u
and w.
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The strains in the middle surface in the directions of Pj^ and P^

are du
" = dJ •

• • ('7-^9)

„ {r + w)de— rde w
/?
= ^^ = -.

. . .(.7.30)

Therefore the expression for the stresses in terms of u and w are

w
f'-«= S+Tl <"

'(7
du\

dx)
P2 = r(- + a— I, (17.32)

where ,
E

Also the changes in the principal curvatures of the middle surface are

"^

and
I I w

r-\-iv r r-

the changes of curvature being reckoned positive v^hen they are in

the directions of M^ and M^. Thus the expressions for M^ and M2 are

, Id'^w w\
, ^

^•=^H^+''^^) •
• •

-^''''^

(w d-^u'\

M2=E'I TT-^o— ,. .... .(17.34)

I being |/j3.
^ "^ ^

We have now got all the equations we need for the case of strain

symmetrical about the axis. One of the equations, namely (17.27), can

be integrated at once, and a simple result deduced from it. Thus we
get, by integrating with respect to x

,

,^ ^ dw
2^Pj^ — Fi—- = a constant .... (17.35)

dx

Now equations (17.28) and (17.33) show that Fj^ is of the same order

dw
as w, and consequently Fj —- is of the order w^, and therefore

dx

negUgible in our equations. Consequently (17.35) gives, to this degree

of approximation,

Pj = constant.

This enables us to write (17.26) thus

d¥i
, , ^ d^w
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Moreover, on eliminating —from (17.31) and (17.32) we get F^ ^^

terms of w thus

w
P2=aPi+E- ....... (17.37)

By means of (17.28), (17.33), (17.37), equation (17.36) can now
be written

from which we get

Suppose p is constant, and let us put

^=«^+^+^ .... .(17.39)

Then equation (17.38) becomes

314. Stability of a long tube under an axial thrust.

It is clear that there is a possibility, under favourable circumstances,

of the crumpling of a tube under an axial thrust, the crumpling taking

place in such a way that the axis remains straight and the strain is

symmetrical about the axis. In this state of strain the longitudinal

!hat these waves can be purely sine-waves. Thus (17.40) is satisfied by

section of the middle surface has a wave form, and (17.40) shows

that these waves can be pure sine-waves. Thus (17.40) is satisfied by

v==Fi sin (mx-\-k) ...... (17.41)

provided that

that is, provided that

^2_l__ -^=

__==i;,2^2+_____.

Since P^ is a tension we may write P for the thrust —Pi- Then

|,= i/j2^2_|.ii:_^_?^ (17.42)

There is a particular value of m for which P is a minimum, and this

minimum P will obviously be the thrust at which this type of instability

begins. The minimum value of P occurs when
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f/i~m- = —-—

Y^-

"rViC-"') '7-43)

This minimum value is then

P = r -i/i^m
I — a- oh'

2;jEi/ I

r Fi(7^ ^''-''^

approximately, since — is negligible in comparison with — •

The total thrust on one end of the tube is

^jirhV = -=:^ 1745)

This is the total thrust that would cause this kind of instability of a

tube whose length is such that the end conditions have a negligible

effect at the middle section of the tube.

We have yet to discover whether the tube

would collapse in some other way under

a still smaller thrust, and this we can only

discover when we have solved the problem

of the collapse of a tube in the most
Fig. 169 general way, that is, with w a.s 3i function

of both X and 0. We shall deal with the

latter problem later in this chapter.

The wave-length of the corrugations on the tube is

ni

271 fhr

= 4*8 ]//i?' approximately,. . . (17.46)

which will usually be a small fraction of the radius. Fig. 169 gives an

idea of the appearance of the tube when it collapses.
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315. Stresses at the ends of a closed cylinder containing

gas under pressure.

To find the stresses in a closed cylinder we must solve equation

(17.40) and introduce the boundary conditions. The assumption has

already been made in arriving at (1740) that p is constant. To solve

this equation put «^

v = Ae'' (1747)
Then the equation gives

whence

Now if the stress Pj^ is due merely to the internal pressure the total

tension across a circular section of the cylinder must be equal to the

thrust due to p across the same area; that is,

zhx 27i7'Fi=7zr^p

,

(1749)
and therefore

o^^Pj __ _3 _^

Thus the equation for n is

Let us write

3 '*'^P

J-'—,¥e- (^7.51)

3(i-a2)r2
4^4^ P ' ....... (17.52)

so that the equation for n can be written

n^ + qn^ + 4m^ = o. ...... (17.53)

From this

^^
-J- (17-54)

In all practical cases i6m* would be muqh greater than q^. We
shall therefore consider only the case where ^^ is negligible in com-
parison with i6m*. Then

—q±4im^
2

= + 2 im nearly

^=±(1 ±*)w^ ...... (17-55)
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Therefore

which can be written in the real form

mx
Hcos— mx\ , 1^ mx , mx+ Ksin-— +e »• Hicos— +Kisin—

) (17.56)

The constants H, K, H^, K^, are determined by the end conditions.

At a clamped end, that is, an end where the tube is attached to a very

rigid disk, the conditions are

dw
"'=°' d^=° ('7.57)

The effects of the conditions at one end at a considerable distance

from that end must obviously be negligible. Let us suppose that

x = o at one end and that the other end is at x = /, the assumption

being that I is positive and very much greater than yhr. Now the
mx

terms having the factor e ^ increase in magnitude as x increases, and

since the effect of the conditions at ic= decreases as x increases
mx

it follows that the terms involving e *" must be almost wholly due

to the conditions at the end x = 1. But the effect of these conditions

is negligible at x = o, whence it follows that H and K must be so

small that the terms in which they occur have no importance except

near the end x= l. Therefore, near x = o, we get

mx
I

\

j, = e-~ H.cos^+ Kisin'^ , . . . .(17.58)

the importance of which decreases as x increases.

Now suppose the end at x = o is rigidly fixed to a disk. Then
the conditions (17.57) must be satisfied.

By means of equation (17.39) ^^*^ these conditions we get

Hi

and

whence

E 2/2E

-(Hi-Ki) = o,

orP. r^p
H. = K, =^ +^= .say . . .(17.59)
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1

/ mx , mx
w == ce ^ cos h sin—

V ^ ^

_mx
_

/^g. ^\
, ^ ,= y2ce r sinl -—- +—— c . . . . (17.60)

The greatest bending moment is M^ at a?= o and its value is

dx'
M.-K-l£+ ?-

which becomes , when x = o,

m"^
Mi = -2E'lc—

-E'lJ3(.-a--)
hr

The maximum longitudinal stress at a;= o is

which becomes, with the value of P^ given by (17.49),

=—— approximately (17.63)
4*^

The maximum value of the other principal stress differs very little

from the value of Pg in the region where the end-conditions have

no effect. This value of P2 can be obtained without using the equa-

tions of elasticity, and its magnitude is —. It follows therefore that

the greatest stress in a cylinder with clamped ends which contains

gas under pressure, occurs at the clamped ends, and its magnitude

is given by (17.63).

316. Decay of the end conditions with distance from
that end.

mx

The index in the factor e *"
, which occurs in (17.60), falls

from zero to — 1/ -^ as x increases from zero Xo'^hr. Consequently
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the exponential quantity itself falls from unity to about e~^'^, that is

to 041, in the same distance. As x increases by z^hr the expo
nential factor drops to (o'4i)''^— roughly one sixth of its value at

X = o. This shows how quickly the effects of the end conditions decay
as the distance from the end increases.

A tube whose length is not less than i o ^hr could quite reasonably

be regarded as a long tube in this theory because the effect of the

conditions at the ends falls to something not much more than i %
half way between the ends.

317. Split tube.

The preceding analysis cannot be applied, without modification, to

a split tube which is acted on by forces that bend it into a portion

of a surface of revolution which is nearly another cylinder with a

very different radius. In dealing with closed tubes we made the quite

legitimate assumption that the increase in the radius was a small

fraction of the radius itself. This increase must be small to keep the

strains in the middle surface small. But when we come to deal with

a split tube, or a plane sheet bent into a split tube, the change in the

radius may be quite a big fraction of the initial or final radius while

yet the strains are all small. We shall now find the equations suitable

for the split tube.

A piece of a circular tube, the middle surface of which is bounded

by two straight lines and two circular arcs, is bent into a surface of
revolution by an external pressure p and by couples and forces applied

to the edges that were straight in the unstrained state; to find the strain.

Let the axis of revolution of the strained sheet be taken as

X-axis, and let the planes of the circular arcs at the ends be at iC= o

and x=l. Let a denote the unstradned radius of the circular arcs,

and Q the strained radius at x. Clearly the middle surface is very

nearly a circular cylinder in the strained state. Then let us put

[r-^w] for ^, w being a quantity which is small compared with either

a or r. Then the changes in the principal curvatures of the middle

surface are approximately

d-w
I c. \

(17.64)""^
dx^ ' '

III I

^ a ^ a r-{-iv

I I w
a r r-

(17.65)

If we now assume that every circular arc in the strained middle surface

subtends the same angle at the axis of revolution it follows that the

length of the arc at x is
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If the original length was / then the circumferential strain is

^ s— l rO — l+ wO
^^-r=—i

—
Since the magnitude of r has not yet been definitely fixed let us now
make it satisfy the equaftion

then

i8
=
J
........ (17.66)

Now equations (17.26), and (17.28) are still true, and P^ is zero.

The expressions for Pg and M^ are

w
P2 = E^= E- (17.67)

Mi=E'l(Ci + ac2) . . . . . .(17.68)

The elimination of Fj, Mj, Pg, from (17.26), (17.28), (17.67),

(17.68) gives

, (d^w a d^w\ 2hEw

\dx^^r'^dx^l r
^

whence

d^w ad^w 3(i-c72) 3(1-^7^);^
, ..

dx^ ^r^dx^^ h^r^ 2Eh^ ' ' ^ ^' "^'

This equation diflfers from (17.38) only in having P^ equal to zero,

and the method of solution used in art. 3 15 gives, near the end iC=o,

w= WQ+Wy^ (I7-.70)

where

• (17-72)

mx I \

and w,=e '^IHcos hKsm—

I

\ ^ ^/
Since the end a;= o is free the bending moment M^ and shearing

force Fj are zero there; that is,

d^w

«l?+(j-7)l-dx

and

d^w o dw

dx^ r^ dx
These conditions give

where iC= o. . (17.73)

O ^^ ,
2m2 [Wq I 1

1

, .

--1H + -— K = (y{-|H 5. . .. 17.74)
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and
tn ^ CSTH

^73(H+ K) + 7^(K-H) = o .... (17.75)

When o is neglected in comparison with zm^ this last equation gives

H = — K,
and then (17.74) becomes

2 w^-f-a itVQ I 1

1

r^ a 'r

Again neglecting o in comparison with 2^2- we now get

.2

_H = K =fl!^ + i-'l (.7.76)

Thus finally

]/2"m2W^ a r
w= WQ — —^-\-^^- — -\e ''cos(^- + -). .(17.77)

The maximum amplitude of the corrugations is

^zm^V'^^ a rj y^(i_<72)|a r 2/iEj

The results we have just obtained remain true if the final radius r is

less than the initial radius a. If p is zero and a is infinite the results

apply to a naturally flat plate bent into a portion of a nearly circular

cylinder by couples M2 and small forces Pg acting on one pair of

edges. In that case the maximum amplitude of the corrugations is

^zoh

a quantity independent of the filial radius r; and the magnitude is

about O'zih or O'zgh according as (7 is |- or ^ .

Since w is measured in the direction away firom the axis, and

since w is negative when p = o and a= 00 , it is seen that one effect

of bending a flat plate into a cylinder is to cause a sort of lip curl

at the free edges, the curl being away from the axis of the cylinder.

When the bent strip becomes narrow enough to be treated as a

beam the two curling edges are so close together that they form

one curve which is approximately a circle whose curvature we found

in Art. 39 to bear the ratio a to the curvature of the central line

of the beam.

318. Thin complete cylinder with any state of strain.

So far we have assumed that the radial displacement w of the

middle surface of a cylinder was a function of the distance x alone;

or of the polar angle 9 alone. We shall now generalise our equations

by allowing w to be a function of both x and 0.
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Let the axis of x be taken along the axis of the strained cylinder.

If there is any uncertainty about which is the axis of the strained

cyHnder it is sufficient to take as jr-axis any line relative to which

the displacement w, mentioned below, is small for every particle of

the middle surface.

Let cylindrical-polar cooTdinates be taken about the ;j;-axis, and

let the position of a particle in the middle surface when the cylinder

is unstrained be x, r, 6; and let the position of the same particle when

the cylinder is strained be x-\-tiQ-]-u, r-]-WQ-\-w, 6-]-r]. It is con-

venient to split up the whole displacements into Uq-\-Uj and Wq-\- w
for reasons that will be seen later.

Let the compressive stresses in the middle surface in the directions

parallel and perpendicular to the axis of the cylinder be (P©+ P) and

(Qo + Q) respectively. Also let the bending moments per unit length

across the sections over which these Stresses act be M,^ and Mg re-

spectively, these couples being positive when they tend to curve the

surface away from the axis of the cylinder. Again let S denote the

shear stress in the middle surface, and let H denote th-e torque. The
quantities S and H were denoted by S3 and Q in Chapter 14.

On the faces where M^ and Mg act there are shearing forces which

we shall denote <by Fj^ and Fg per unit length of the middle surface,

just as we did in dealing with the flat plate in Chapter 14.

A small element of the cylinder may be treated in the same way
as a small element of a flat plate; we have only to allow for the initial

curvature of the cylinder when expressing the bending moments in

terms of the curvature. For a naturally curved plate the bending

moments are proportional to tKe changes of curvature, since the

stresses giving rise to the bending moments are proportional to these

changes of curvature.

Suppose a uniform pressure p acts on the convex surface of the

cylinder, and a force 47irhFQ acts on the ends of the cylinder in the

direction parallel to the axis. Since the thickness is 2h this latter force

gives rise to the stress P^. Moreover, the pressure p gives rise to a

constant circumferential stress which we have denoted by Q^. Thus
Fq and Qq are stresses that exist while the cylinder rem?iins a cylinder

but with slightly altered radius. The partial displacements Uq and Wq
are assumed to be due entirely to P^ and Q^. Therefore, since the

circumferential strain due to Wq is —

,

—E^ = (Po— aQo) = constant . . . . (17.79)

_E-^= (Qo-aPo) = constant . . . . (17.80)

Thus Uq is a linear function of x, and Wq is a constant.

35
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Let us write w^ and w^^ for {uq + u) and (wq-{- w). Then the

longitudinal strains in the middle surface in the directions of x and
6 are

^='''"
n^

Also the shear strain in the middle surface is, by analogy with (13.60)

since Uq is not a function of 6.

The formula for the curvature of a curve in terms of polar co-

ordinates (r, 6) is

2 /dry I ^V

Now if the curve is nearly a circle, so that r differs very little from

a constant, we may neglect squares of the differential coefficients of n
In that case the formula becomes

I _ I / I d^r\

6
Writing (a -\- v) for r in this, we find, carrying the approximation

as far as the first order in v and its differential coefficients,

I _ I / I d^v\

1/ V id^v\ , ^ ,

~^\^—a—aW) ('7.85)

We can now write down the changes of curvature of the sections

We can now write down the changes of curvature of the sections

of the tube on which M^ and Mg act. These changes, reckoned positive

when MjL and Mg are positive, are
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w. 1^2^
^2 = -7ii

-^,(..+

ee^
i\ + l by (17.85),

'W
I / , ,

d^w) (17.87)

The twist per unit length of an element of the middle surface whose
sides are approximately dx and rdO is the angle through which the

element rdO at one end is twisted relative to the corresponding element

at the other, divided by dx. Now, at the point x, r, 6, the inclination

Fig. 170b

4>

Fig. 170 a

of the tangent at the middle of the element rdO to the radius through

that point is (y^t— 99), and (p is given by the equation

dw— == tan 99 = 9? nearly. . (17.88)

But the radius through the element at a: is turned through an

angle 1] in the contrary direction to (p. Consequently the whole
rotation of the element at x is (99

—

t]), and the rotation of the cor-

responding element at x~{-dx is (p—i]-\-d(p—df]. That is, the twist

per unit length about dx is

ccp

dx dx

Cf]

dx

I d'^w

r dxdO

drj

dx
(17.89)

to the first order in w and its differential coefficients.

35*
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The relations between the stresses and strains are

-Ea = Po+P-a(Qo+ Q)| , ,

nc=^S (17-91)

By means of (17.79), (17.80), (17.81), (17.82), these give

^'5- '-''"3 <"<"!

-=("+!)=«-- '™.

•('I+tI)-= ('«•

The equations connecting- the couples with the changes of curvature

and the twist are, just as for flat plates (Chap. 14),

Mi = E'I(q+ ac,) (17.95)

U, = E'l{c,+ oc,) (17.96)

H=^ 2?zIt = (i— a)E'lT (17-97)

319. Equations of equilibrium.

We have now to find the equations of equilibrium of an element

of the cylinder of dimensions dxxds, the dimension ds being

originally the same as rdO.

It is to be understood that the stresses (P^ -|- P) and (Q^ -f- Q)
act in the directions of the strained elements whose original lengths

were dx and rdO. If we took these stresses parallel to the unstrained

directions of the elements they would not be stresses in the middle

surface, but would be slightly in-

P4>p4.Q?H clined to this surface. The difference

® / Ox does not matter except when one

5.#.2=#ix^ of the stresses becomes very big, as

» Jq Pq ^oes when the tube is buckled

O+n // // ^^^^^S ^^ ^^ end -thrust. It has to be
^ ^// // ^-. remembered that the theory of a

Q -fQ^j^y^^ thin plate, as also of a thin rod,

^^ was originally worked out only for a

small element. The axes of reference

for the plate were fixed relatively to

the normal to the middle surface of

the element. By taking the stresses

to be always in the middle surface

we are, in effect, shifting our axes of reference to suit the element

we are dealing with.
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Fig. 171 gives a view from the convex side of the element. Re-

solving in the direction of the a: -axis we get

zhds -~dx— zhdx -r- ds - 2h(QQ+ Q)^^ tt-^ ds
(j iC CIS CIS

(17-98)

the quantity ^r^ds being the difference of the inclinations of (Qo+ Q)
ds^

and (Q0 + Q +
dQ
ds

to the axis of x.

The correct form of the last term actually given in equation

(17.98) is

Fig^ 172

2MX 1[{Q, + Q) fj^ds.

But this differs from the last term

actually given in that equation by

zhdx -^r- ^r- ds

,

OS ds

which is a quantity of lower order

than the other terms in the equation

because Q itself is of the same order

as u and w. This is not the case

with Qo, since this can have a finite

value while u and w are zero. By
a similar argument we ought to drop the term Q in the sum (Qq + Q).

Then neglecting Q and dividing through (17.98) by zhdxds we get

dx ds

Next resolving the forces in the direction of the normal through the

middle of the element and neglecting P in comparison with Pq, we get

zhds^Q —- dx — dx -^ ds — ds-— dx
dx ds dx

— 2hdx(QQ-{-Q)d(p-{'pdsdx = o, . . . (17.100)

p being the external pressure per unit area on the element, and xp the

angle which (P^, -(- P) makes with the ;ir-axis. But

dw

(17.99)

^ dx
Therefore, on dividing equation (17.100) by dxds, we get

d^w dF.,
2/iPn-T-r r-'

dq)

2/i(Qo+Q)-^+i? = o. (I7.IOI)^
^ dx^ ds dx

The reason why Q is not neglected in this last equation is be-
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dw
cause it is multiplied by the quantity —, which is not of the same

order as the displacements.

We have still to resolve along the unstrained direction of ds. This

gives, again neglecting P in comparison with Pq,

zhdx —— ds + 2hPods —^-f- dx—zhds —- dx—F^ dxdw = o\
ds dx^ dx

whence 2h~^-\- 2hrPQ-^^— 2h- F,^ = o . .(17.102)
ds ox^ dx " ds

OH The couples acting on the element are re-

H+jr— dx presented by vectors in Fig. 1 73, which is again

a view from the convex side of the element.

Taking moments about one of the edges

dx we get

^ c)Mo ^ , , aH , , ^ , ,dx—^ ds + ds —— dx + Fodxds = o;
cs dx

^-I'dx

^*5S^^ from which

>^*W^ t+S+'— <'->

Fig. 173
Similarly, by taking moments about one of

the elements ds, we arrive at the equation

dx ds
Fi=o (1Z.104)

r r^\

The expression — occurs twice in the equations of equilibrium, and
ds

where it occurs it clearly means the curvature of the strained .circular

element; that is, by (17.87),

d(p I i Wy \ d^w^

ds r\ r r dO^

d^w
+ "+^,

I I /
,
d^w\ . .= —,— ---iK'+-^^ • • • • 17-105)

approximately, the terms in brackets on the last line being small when
the form of the tube differs but slightly from that of a circular cylinder.

These terms are, in fact, of the same order as Q and Fg. Consequently

quantities of the second order in w being neglected. Also, to the same

degree of approximation.
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^^I'-^r^ "'"''' •''''°'^

Wherever else ds occurs in the equations of equilibrium it can be

replaced by 7'dO without affecting the accuracy.

Since Q^ is the circumferential stress while the tube is a circular

cylinder of radius (r-^-Wo), that is, while w, F^, Fg, are all zero,

and since equation (17.101) must remain true for this particular con-

dition of the tube, it follows from that equation and from (17.107)

4?-= . (x;.o8)

When the difference between r and (r -j- ^o) ^^ neglected equation

(17.101) therefore reduces to

,^ o^w I SF^ 6F1 2hQ
,
2hQj

.
d^w\

The other equations of equilibrium, namely, (17.99), i^7-^02),

(17.103), (17.104), can be written thus

^P I ^S Qo d^u

Yx—r^-V^W^''^ ' ' •
•
(^7.110)

ihdQ
^ , ^ d^Yj

' as Fg

I c^M, aH
r ee ^ dx

^M, I en

F-5i: + F2 = o, (17.112)

+ Fi = o. ..... (17.113)
ex r 89

The last' five equations, together with the equations expressing the

stresses and couples in terms of the displacements, are .sufficient to

solve any problem in which the displacements are small quantities. The
important equations are the last five and equations (17.92) to (17.97).

Since the shear forces F^ and F2 occur only in the equations of equi-

librium it is worth while to eliminate them. We can do this by taking

their values from (17. 112) and (17. 113) and substituting in the other

equations of equilibrium. This process transforms (17.109) and

(17.111) into

,^ e^w
,

I d^M^
,

2 e^H
.
d^M.

^ dx'' ^ r2 dd^ ^ r dOdx^ dx'

2kQ 2/iQo/
,
e^w

and

«^+ ^l==o (17.114)

2^^Q
, X- T. c'^w , c;S I ^M. I aH

r dd cx^ dx r^ c6 r dx
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The three equations of equilibrium not containing F^ and F2 are now

(17.110), (17.114), (I7-II5)-

320. Stability of a circular tube.

When the tube begins to buckle, due either to a pressure jt? on the

outside of the tube or to an axial thrust applied at the ends, the dis-

placements are small oscillatory functions of x and which can be

expressed by the equations

kx
u= AcosmOcos

r

lex

rri = B sin wi sin —
r

n Q ^^
IV = Lcosrndsm—

r

(17. 116)

With these expressions for the displacements equations (17.92) to

(17.97) give

F IcoCf

P =-- — ikK— oC— oniB) cosmOsm — .

r r

E k/ir

= — [ohK— C— ??iB)cosm^sin —

.

r r

S = — (A;B— mA)sinw^cos—
r r

E' kx= \(i — a) — (/cB— ^?^A)sinm^cos-—

-

E'l

• (17-117)

. (17.118)

: (17.119)

kx E'l
My = —-^\- k'--\- o[i—'ni-)^CcosmOsm 1 -oWq . (17.120)

E'I,,
,, 7,1^ ^ . kx E'l

M2 =—^{(i— w'^)— aA:-}Ccosm^sm j -iv^ . . (i 7.1 21)

E'l kx
H = (I —a) —- { — mkC — kB\smm6cos —

.

r- ^
' r

• (17-122)

On substituting these values in (17.110), (17.114), (17.115), and

dividing each equation by a suitable factor we arrive at the following

equations :

—

|w2|? + /c2-f-^(i-a)w4A-^(i + a)m/i:B-aA;C = o . (17.123)

-aA:A + { 2 (i -o)mk-'f-{- m} B- j/c-' ^, + [m' _ i)^^ _ i|

c

+ /'{(w2 + A;-V^-w-^-a/j-'}C = o . . . (17.124)
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-i(i4-a)wA;A + |-A:2?^ + m2+i(i-a)(i + 2/')A:2|B

+ mC+/'{m(?7i2— i) + mA;2|C = o, . . . (17.125)

where f is written for —-•

From the last three equations the two ratios A : B : C can be eliminated,

the resulting equation giving a relation between P^,, Q^, m, k, f,
and

the elastic constants. If Q^ is zero then the equation gives P^ ; and

if Pq is zero it gives Q^, and therefore the pressure p. The constant

k is something that depends on the end-conditions of the tube, whereas

m must be an integer since w must have the same value when ^=0
and when ^=271. The eliminant of the last three equations contains,

as particular cases, the two results given in (17.20) and (17.42).

The equation obtained by eliminating A, B, C, from (17.123),

(17.124), (17.125), is expressed by equating to zero the determinant

p Q
^~^V~*'^'~"^^r m+2(i-a)w^V ^^

p
w + M/'(m2 + A;2-i) rn'^-\-\{i-o)(i + 2f)k^-k-^-:^, ^{i-^o)mk

xL

ok ^(i-\-o)mk ^2^ + A;2

+ |(i-a)m2

P
Now —^ and —^ are certainly small fractions in any practical case.

E E
Moreover / is also a small fraction. Then, in expanding the deter-

minant, we may safely neglect squares and products of these three

small quantities. Expanding the determinant under these conditions

we get, as the eliminant,

- |(i - a) A;2 1? {(m2+ k^f + m^ + zk'^ + 20^2}

-
2
(i -^J) §? {(^^- i)(^2 + A;2)2_m2A;2}

. w .JK4-A;2)* + m* + 3w'A;2+2(i-a)A:4
\+ ¥U— ^)/| -.2m'^—ym^r~— (7^o— 2o^)m^k^—ok^

-fi(i-a)(i-a2)/b* = o • .(17.126)

In order to find the pressure that will cause the tube to collapse

when no axial force is applied we must putPo = o in the last equation.
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Then, if the terms containing the small fraction / can be neglected,

we get as a first approximation,

^^ (w'-^-i)(w2+A:^)2-m2A;2

Now the smallest value of m that is possible for a tube collapsing

under an external pressure is w = 2, which corresponds to an elliptical

form of the section of the tube. Consequently, since Q^ must be very

much smaller than E, it follows from the approximate expression

for Qq in the last equation that k must be a small fraction. Then
regarding k as much smaller than m, and therefore taking only the

terms independent of k in the coefficient of /, we get a more correct

value of Qo from the following equation

Qo._ {i-o')k^ mHm^-ir^f
E' K^-i)(m2+ A;2)2_^22A;2"^(m2-i)(w2+ A:2)2 -7^2/^2 ^ 7- )

which becomes, when k is neglected in the denominators,

If the tube has a length /, and if the end conditions are such that

w = o ^X both ends, then

^^=--=y (17-130)

These end conditions would be reaHsed if a thin circular plug of

radius {r-\-WQ) were inserted at the ends of the tube; for it is clear

that w and M^ are both zero at points where kx is equal to zero or

Tir, and these are precisely the end conditions when the thin plugs

are in position. In such a case therefore the pressure is given by

P ^ ^ Qo ^ I Qo ^^^^j
2hK' r-\-WQ E' r E'

^^^^^

Now the tube collapses when p has the least value consistent with

this last equation, m being some integer greater than unity. But if

m were not restricted to integral values we could find the minimum
value of p consistent with (17.131) for variations in m^. The con-

dition that the expression for p should be a minimum is

I dp

2hE' d{m^]
= 0;



CYLINDERS WITH THIN WALLS 555

that is,

2 I _ I hH^

m^(m-—i)'^ m^{m^^— i)^
~"

3 (i —^^^ * *
^^'^'^^^f

Now as 771 increases from i to 00 the left hand side of this last

equation steadily decreases from 00 to o, and consequently there is

one, and only one, value of m satisfying the equation for any given

values of h, .1, and r. If this value of m is an integer the corre-

sponding value of p is the collapsing pressure. But if the value of

m satisfying (17.132) lies between the two integers m^ and (mj^+i)

then the true collapsing pressure is the smaller of the two values

of p obtained by putting m^ and (Wj^+i) for m in (17. 131).

Equation (17.132) shows that, for given values of h and r, m
decreases as / increases, and for very big values of / the value of m
given by that equation is less than 2. For such big values of / the

collapsing pressure is given by m= 2. Moreover, when / is infinite,

equation (17.131) gives

2, ^ E'h^ zE'h^

just as in (17.24).

Thus we see that the section of a tube may collapse under an

external pressure into a two-lobed or elliptical form, or a three-lobed

form, or into a form having a greater number of lobes, according to

the value of the fraction on the right hand side of (17.132). This

explanation of the behaviour of tubes under pressure was first given

by Mr. R. V. Southwell* in 1913. In the Royal Society paper Mr.

Southw^ell also gave the theory of collapse of tubes under axial thrust.

There is a slight difference between Mr. Southwell's equations of

equilibrium and those given in this chapter, but the difference is in

terms that have no importance.

The type of solution we have assumed in (17.116) cannot be made

to satisfy the conditions that w and — are both zero at the same point,

and these are the conditions at a clamped end. This type of solution

does, however, make —- zero where kx= -\- — r. If these two planes
dx ~ 2

be taken as the ends of the tube, and if the tube has a length I, we get

kl= —r—
\

r\ = Tir .

2 \ 2 I

*) " On the General Theory of Elastic Stahility, '^ by R. V. Southwell
B.A., Phil. Trans. Royal Society, Series A, Vol.213, pp 187 — 244; and
"O/i the Collapse of Tubes under External Pressure^', by R. V. Southwell
B.A., Phil. Mag. May 1913.

mm.
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This gives the same value of k as we got for the plugged ends. It will

be noticed, however, that neither w nor rj is zero at the ends in this

case, so that it would be very difficult to realise these end- conditions

in practice.

In order to satisfy any other conditions except those at the plugged

ends it would be necessary to get the general solution of our differential

equations and then make this satisfy the given conditions. But the

analysis is so cumbersome that it is doubtful if it is worth while in

any case. The general value of w would have the form

w = 2!Ce^^cosmOsmn2X, .... (17.134)

the number of terms in the sum indicated by 2 being eight.

321. Collapse of tube under axial thrust.

If the pressure p is zero, and therefore also Q^ zero then equation

(17.126) gives the axial stress P^ at which the tube begins to buckle.

Now m may be zero or an integer. In any case we get

Po (i-o2)P
^
N ^

^ ^

p
L and N being the respective coefficients of —^{i — o)k'- :^, and

E
^(i

—

o)f in. (17.126). Now if m is not zero this last equation shows

that k^ must be small, since we know that Pq is very much smaller

than E'. In that case all powers of k^ can be neglected in L and N.
But if m is zero L contains a factor k^, and therefore k'^ occurs in

the denominator instead of in the numerator of the first term on the

right of (17.135). The known fact that P^ is much smaller than E'

now requires that k^ should be big, and in this case we can neglect

all except the highest powers of k. Then, retaining only the highest

powers of k in the coefficient of f and in the term independent of f
when m is zero , we get, as the approximate equations for Pq

,

Po_ (i-a2)A;2 m^m^-i)^f
£"""^2(^2 4-1)^ (m2+i)A;2 ' * * *

(^7.i3
)

when m>-o;

|=^+*v (17-137)

when 171 = 0.

The case where m= i is peculiar because the term containing f
in (17.136) vanishes. The equation for this case is

|? = i(i-a2)/c2 (17.138)

The radial displacement for m == i is

kx
2^= Ccos^sin— (17.139)

r
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This indicates that the' whole circular section at x is displaced in

kx
the direction ^ = o through a distance C sin — , the section under-

r

going no change of shape or size. But this is precisely the displace-

ment in Euler's theory of struts. It follows from (17.138) that the

whole thrust on one end of the tube in this case is

47trhFQ == 27irhk^E , (17.140)

Now if w = o at the ends of the tube where x = o and x = l, it

follows that kl
- = ^ (17.141)

Consequently the whole thrust is

2 TTV3/iE
47ir/iPo =

EIjr2= -^» (17.142)

where I is the moment of inertia of the section of the tube about a

diameter. This agrees exactly with Euler's theory of struts.

When m is not equal to unity k depends somehow on the end

conditions of the tube and on the length of the tube. Usually these

end conditions will be such that there must necessarily be a whole

number of halfwave lengths on the tube. This means that k must
usually not be less than the value determined by (17. 141), and, if the

present theory were strictly true in practice, kl would have to be an

exact multiple of nr. But it is easily possible in practice, owing to

slight irregularities not taken into account in this theory, for the tube

to buckle so that kl is not an exact multiple oinr. The greater the

number of waves on the curve the more easily could this happen.

Then all that we can safely say is that kl cannot be less than nr and
it may be very much greater. The more the ends of a given tube are

constrained the bigger k is likely to be. Now regarding /i: as a variable,

the least value of P^ given by (17.136) is determined by

E ) m''»(w2+i) (w2-f \)k'^

zhm^— I

-iii'-o') . (17-143)

The corresponding value of k is the solution of the equation

(i—o^)k^ __w2(m2-i)2/-

m2(w2(+ 1)
~ (w2+ i)F '

from which we get

m*(m2— 1)2/- m^(m^~ i^h^
*^* =—7—72— = -n-—ner,-- • • • (17.144)
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Similarly the least value of Pq given by (17.137) is determined by

|=y»'iu=^. 07.145)

and the corresponding value of k is given by

..^l^^^iL^ (,,.,6)

The value of P^ given by (17.145) is greater than that given by

(17.143) for all values of m, but as m approaches infinity the two
values approach equality. Moreover, the smaller m is, the smaller is

the value of P^, in (17.143). The least permissible value of m in

(17.143) is 2, and this gives

6 h

i = --iW-o'} (17.147)

p
If this happens to be less than the value of ~ satisfying (17.138)

E
then the tube will collapse at this stress provided the end conditions

are suitable. But if the end conditions are not suitable, or if kl is less

than Jtr, k being obtained from (17.144) by putting m^2, then the

tube will not buckle at this stress and m will have some value greater

than 2. If it has the value 3, in which case the section is a three

lobed curve, the least possible value of P^ is given by

Po ^h
^

r=57Vi(^-^') (^7.148)

Thus we see that the shorter the tube is, the greater the value oi m
is likely to be, unless it becomes equal to zero, which gives the same

value of Pq as m= oo gives. The case m=-o is, of course, the case

where the strain is symmetrical about the axis, which case has been

dealt with separately earlier in this chapter. For a very short tube

therefore the collapsing thrust is given by (17.145).

It should be recalled that we decided that k must always be small

when m is not zero. Then as the length of the tube decreases k must

get greater, but it can never be anything but a rather small fraction

when m is not zero. Consequently m cannot get very big if it is

connected with k by equation (17.144) ; that is, in practical cases m is

never likely to be more than three or four. Unless the length is greater

than twice the circumference it is impossible for k"^ to be treated as

a small fraction. For such short tubes then k is not small, but big,

and m is zero, and the collapsing thrust is still small. Thus if different

lengths of the same tubing were tested the very long lengths would

fail as Euler struts. Then, as the tubes were shortened, there would

come a length which would fail by crumpling with m= 2. Again a
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still shorter length might fail by crumpling with m= ^- Still shorter

length's might possibly go on to w= 4 and m= 5, but there would come
a stage at which the tube would fail at m= o. That is, after m had

been increasing as the tube were gradually shortened there would come
a critical length at which m would jump to zero from some number,

such as three or four, and for all shorter tubes m would be zero.

322. Collapse of tube under combined pressure and axial

thrust.

If m is not zero k must be small and therefore the important terms

in equation (17.126) are given in the following equation

k^m^ + m 2)?^ + W2.4 (m-^- i)% = (i -o^)k^ + m^rn^— iff.

whence

^
^ -t-K-i)/- .,.,L, A J. .(17.149)

Thus the existence of the thrust Pq causes the tube to collapse for a

smaller value of Q^ than if P^ were zero. If P^ is negative, thus

representing a tension, the pressure that will cause collapse will be

greater than if P^ were zero.

When k has been determined from the end conditions of the tube

the collapsing value of Q^ is the smallest value given by (17.149) when
m is any integer above unity. When P,, is fairly big the term containing

Pq in (17.149) is so important that m will be a small integer. But

the only way to discover the smallest value of Q^ is to substitute in

turn m== 2, 3, 4, . . . etc. in this equation and pick out the smallest value

of Qq. For given values of k, f,
and P^, it is easy to see that Q^ has

only one minimum value, and consequently it is easy to pick out the

smallest value of Q^.

323. Strain energy in a curved plate.

It has been already mentioned in Art. 211 that when we try to

express the energy in a curved plate or rod in powers of the thickness

and the curvatures of the middle surface we get into difficulties with

the terms involving the cube of the thickness. Nevertheless we can

get an expression which is a good enough approximation in nearly

all cases.

Let Qi,Q2f denote the strained radii of curvature of two perpendicular

sections at any point O of the middle surface, both sections containing

the normal to the surface at that point. Let q\, q\, denote the un-

strained radii of curvature of the same two sections, and let M^^, Mj,

denote the bending moments across the sections. Also let j; denote the

twist of the surface per unit length in the directions perpendicular

to the two sections, and let Tq be the unstrained twist, and Q the
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torque in the strained state. Then the following are the approximate

equations connecting the curvatures and twist with the couples.

Mi = E'I(Ci + oc2), (17150)

M2 = E'I(c2 + 0Ci), (17.151)

Q = 2nI(T— To)

= (i-a)E'l(T— To), .... (I7-I52)

where

Ci=---4-, (17-153)

02= r (17.154)

Again let P^, Pg, denote the tensional stress in the middle surface

across the sections where M^, and M^ act. Also let S denote the shear

stress on the same sections in the plane of the middle surface. Denoting

the strains corresponding to P^, Pg, S, by a, ^, c, we have, by (15.14),

(15.15), (15.16),

Pi = E'(a + a^), (17.155)

P2 = E'(^+ aa),. ...... (17.156)

S = 7^c = ^(I-a)Ec (i7-i57)

Equations (17,150), (17,151), (17,152), are consistent with the cor-

responding equations for a naturally flat plate. Take, for example

(14.32). We may write this in the form

Mi = El{-+ -!. ..... (17.158)

If M\ denotes the bending moment in the naturally flat plate cor-

responding to principal radii of curvature q\ and ^'2' ^^ S^^

m; = e'i(^+ -^) (17.159)

Therefore by subtracting (17.159) from (17.158) we find

Mi-M\ = E'l(ci+ ac2).

This agrees exactly with the expressions for the curved plate because

M'j is zero in that case.

By the method used in Art. 263 we can show that the energy in

unit area of the bent surface due to the changes of curvature and

twist is

j{MiCi4- M2C2 + 2Q(t-To)} .... (17.160)

Also the energy due to strains in the middle surface is, by (13,75),

ix2/j{PiaH-P2/?-l-Sc} (17.161)
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Thus the total energy per unit area is

+ |E'l{Ci2+C22+2aCiC2+2(l-a)(T-To)2}. . (17.162)

Since I contains a factor k^ it might appear that the terms in the

expression for V that contain I would become less and less important

as h decreased in magnitude. Actually, however, the smaller h is, the

more easily does the surface bend under given forces, and therefore

the greater are the magnitudes of c^ and c.^- It turns out then that

the terms containing I really grow in importance as h decreases instead

of waning as we might have expected in our first hasty judgment.

In the problem of the buckling tube under an axial thrust the terms

containing h and h^ have equal importance.

324. The buckling tube problem by the minimum energy

method.

The method consists in assuming reasonable expressions for the

displacements — these expressions containing adaptable constants —
and determining these constants by making the total potential energy

of the internal and applied forces a minimum or maximum. In finding

the strain energy we may, by the reasoning in Art. 146, neglect Uq and

Wq, because these are the displacements in an equilibrium position.

Consequently, in the notation of Art. 318, we may calculate the

strains in equation (17.162) by taking the displacements to be u, t], w,

and not u-\-u^y t), w -{- Wq.

We shall here deal only with the collapse of a tube under an axial

thrust Pq. We have then to find the work done by P^ due to the

displacements u, rj, w. To do this we have to find by how much the

tube shortens in consequence of the strains ; that is, we have to find

the contraction of a line of particles which lie on a generating line

of the cylinder in its unstrained state.

Let dx denote the distance between two particles m and m^ in the

middle surface of the cylinder just before buckling occurs. If we take

—- to be the strain in the middle surface we may regard du as a
ex
displacement measured in this middle surface. Consequently the new
length of the element which was dx in the unstrained state is

[dx. + ^w)- Now if dx^ is the projection of [dx + du) on the axis

the relative coordinates of the particles di and v\ in the buckled

state are

dx. , r^dx, -7- dx.
ex ex

36
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Therefore

(dx+ duy= (6te,)2+(r^ dxX+
(^£

dxj,

whence

i-.)-((-9"-|)"+(£)'l<*''

-(+l)'l-+"(i)'+(l')'l'*''
•-*»•»"

Consequently, by obvious approximations,

--(+s)i'+-;"(S)"-i(S)>'
and therefore

*.-*-|s+HS)"+t(£)>- •'''='

Thus the work done by P^ on a cylinder of length / is—
^.r/i£+l"(s)'+K£)l"'- ''•'''

Now let us take the same values of w, t], w, as in equations (17.116).

Then
du k

^ ^ . ^^
a = -7- = Acosmt^ sm—

,

dx r r

cfi w I kx
3= ~z7i-]— = — (mB4-C)cosm^sin— ,
' dd r r r

df] I du

I kor= — (kB—wA)sinm^cos —

,

r r

d^w k^ ^ /. . ^^
Ci = -T-;= C cos wi ^ sm —

,

I ky= — (i — m2)Ccosw^sin
r^ r

I d^w drj

r dxdO dx

k kx= (mC+ B)sin?72^cos —
r'^ r

Ta = 0.
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If Vj denotes the strain energy per unit area of the tube the total

potential energy of the internal and external forces is

V=/ / Y^dxrde-W (17.165)

Now
,27C r*27i

71.

/» en pin
/ sin2m(9£?^=/ cos^mOde
' o Jo

Also, if the length / of the tube contains a whole number of half

wave lengths; in short, if

kl

r

n being an integer, we find that

/sin^— dx=
I

cos^— dx= \l.

Moreover, even if n is not an integer provided only that it is a big

number, then the last equation is stiU approximately true. For a long

tu!be therefore with a large number of waves alortg a generating line

equation (17.165) gives

-—^= A;2A2+ (wB+C)2-2aA;A(mB+C)+ ^(i -o)(k&^mKY

4-/'[{^*+ K-i)2+2aA;2(m2-i)}C2+2(i-o)A;2(B + wC)2]

^(B2+C2), (17.166)

I 7^2

f being used, as in equation (17.123), to denote ^.

Now the conditions that V should have a minimum or maximum
value for variations in A, B, C, are

^A~°' 6B °' dC'^^'

which can be written in the forms

{A;2+i(i—a)m2}A— i(i + a)mA;B— ffA;C = o . (17.167)

*w^+ i(i-a)A;2 + 2(i-a)A'--^ B

+ {w+ 2(i— a)/ywA;2}C==o .... (17.168)

(A;2p \
I -7^

+ /'{*5*+ (^^— i)^+ 2A;2(m2—cr)}C==o . . . (17.169)

On eliminating the ratios A:B:C from these equations we find that

the following determinant must be zero:

—

36*
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A;2+ i(i_a)?«2 _|(i4-a)wA;

4(i+a)mA:

ak

m2 4-4(i— a)A;2

+2(i-a)A^-^

m+ 2(i— o)fmk^

— ok

m-}- 2(1— a)fmk^

_k^Jo

+ /'{A:*+(m2-i)2

Neglecting squares and products of f and :=S this gives , after division

by the factor i(i— o),

j
(m2 + A;2)4 -f- m* + (4- 2a)m2 A;2+ (5- 402) A:*

"^
' I

— 2m«— (8— 2o)m^k^— (10 - 2a2)m2A;*- 2aA;6

+ (i — a2)A:* = o (17.170)

Although the coefficient of f in this equation differs from the

corresponding coefficient in equation (17.126) this difference is in

terms that do not matter.

Equations (17.136) and (17.137) could be deduced from this last

equation by exacdy the same arguments as were used to deduce

them from (i 7.1 20).

It is worth while to notice here that, in spite" of the great difficulty,

mentioned in Art. 211, in getting an accurate expression for the strain

energy in a bent plate, the energy method has, nevertheless, given a

result essentially the same as the equations of equilibrium gave.

Moreover, this particular problem is, a good test case for the validity

of the energy method because the energy due to bending, which

gives rise to the terms containing /*, and the energy due to the

strains in the middle surface, to which the term (i

—

a'^)k* in (17.170)

is due, have about equal importance in the final equation for P.

It seems safe then in every case to use the expression for the energy

given in (17.162).



CHAPTER XVIII

VIBRATIONS OF ROTATING DISKS.

325. The forces controlling the transverse vibrations of a
rotating disk.

The problem before us in this chapter is to find the periods and

modes of transverse vibrations of disks when they are rotating about

their axes and when they are not rotating. We shall deal with disks

of uniform thickness and also with disks whose thicknesses at radius

r are proportional to r~^. We shall first use accurate methods, and

later, we shall give approximate methods of great simplicity which give

results that are quite as good for practical problems as the very

cumbersome accurate methods. By these approximate methods the

periods of vibration of "a turbine disk can be easily calculated.

When a rigid disk is not rotating it hais definite modes of vibration

due to its stiffness, the controlling force in these vibrations being the

same as that which controls the vibrations of thin rods, which are

investigated in Chapter 9. Moreover, just as a tightly stretched flexible

string— a fiddle string for instance— can vibrate with the tension

in the string as the controlling factor, so also can a tightly stretched

membrane, such as a drum top, vibrate under the action of the tension.

Again a flexible disk in rotation is in tension, and this tension is

capable of producing vibrations when the disk has been disturbed from

the plane state. When a rigid disk in rotation vibrates it is controlled

both by the tensions and the stiffness. Since the tensions in the disk

are proportional to the square of the angular velocity it is clear that,

at low speeds, the main controlling force is the rigidity, whereas, at

very high speeds, the main controlling force may be mainly the tensions

due to rotation. We shall first find the periods of vibration of a disk

which has a negligible rigidity. Afterwards, when the periods of

vibration due to rigidity alone have also been found, a method wiU be

given for finding the period of the rotating disk in' which both rigidity

and tensions are taken into account.

326. The equations of motion of a uniform disk/

In equation (15.17) is given the expression which represents the

transverse force, due to the stresses in the middle surface of a plate,
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on an element dxdy. A simplified form of this expression is used in

(15.23), the simplification being due to the fact that the stresses in

the middle surface are assumed in Chapter 15 to be in equilibrium.

In a rotating disk these stresses are not in equilibrium and consequently

w€ are not justified in using the simplified form. The more general

form of (15.23) is, after division by 2h,

d_

dx
( . dw\ d ( , dw\ d / , dw\ e

( , ew\

Since I-=|/i*.

In this equation P'^, F\, are tensions in the middle surface across

sections perpendicular respectively to OX and OY, and S'3 is the shear

stress in the middle surface on the same sections ; w is the displacement

m the direction OZ ; p is the pressure acting on unit area of the plate

reckoned positive in the same direction as w; 2h is the thickness of

the plate. Now in the vibration problem we piropose here to solve

there is no actual pressure p but there is an acceleration —— ; the

inertia force per unit mass—that is, the product of mass per unit area

and the reversed acceleration—^which is the equivalent of a pressure

in the equations of motion, is

Q being the mass per unit volume of the plate. This expression re-

places /> in (18.1).

Let P, Q, denote the mean radial and circumferential tensions in a

rotating disk. These are called P' and Q' in (12.101) and (12.102).

To adapt equation (18.1) to polar

coordinates it is best to find the

.p^-dp component force in the A;-direction

on an element drxrdO due to the

tensions P and Q. Thus the force on
the section AB (fig. 174) is FxzhrdO.
The incUnation of this force to the

^ negative direction along the ^-axis is

Fig. 174 Thus the component force in

the direction OZ due to the tension on AB is

^2hrP^-^dO.
dr

If we express this in the form —Z^dOj then the component force on

CD due to (V-\-dP) is clearly
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Thus the resultant of the tensions across AB and CD is

^-^drde=^(2hrvPldrde.
dr dr\ drj

Again the force across AD due to Q is zhdrQ, and the component

of this in the direction of OZ is

dw— zhdrQ -— = — Zg c?r say.

The corresponding component force on BC is

Thus the resultant of the two forces Q on AD and BC is

If Q and h are functions of r only this can be written thus

2Qhdhv

Therefore the total force in the ;5;-direction on the small element,

due to the tensions P and Q, is

Since the area is rdrdO the force per unit area due to P and Q is

-rSr[ Trr-r^W^ ^'^''^

This expression, when divided by zh, is the equivalent of the left

hand side of (18.1). Therefore, equation (18.1), when expressed in

polar coordinates, becomes

where

c)2 I c) I 6)2

The right hand side of (18.3) applies only to a uniform disk where h
is not a function of r. The right hand side simplifies also in this case,

the resulting equation being

I d I ^dw\
,

Qd^w E/i2 d^w
, „ ,
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327. The vibrations due to the tensions set up by rotation

in a uniform disk. *

The term involving Vi"* •" (18.5) represents the restoring force

due to the rigidity of the disk. If this term is negligible we get

This is the equation which determines the modes of vibration due

to the tensions P and Q. To find the normal modes let us first assume

that

w = iv^^smpit . (18.7)

Then (18.6) becomes, after division by sinp^^,

I d ( ^dw^\
^

Q c/%'i

It is easy to see that this has solutions of form

u\ = z s\ii {nO -\- a)

,

(18.9)

where <? is a function of r only. With this substitution (18.8) becomes,

after division by sin [nO + a)

,

-— (rP-?) — -??.2^ + ^p.2;t; = o . (18.10)
r dr \ dr I r'^

Now let us suppose that we are dealing with a complete disk rotating

with angular velocity co in which case we have, from (12.99) and

(12.100),

P = A(a2_r2)^co2, Q = (Aa2-Br2)^co2, . . (18.11)

where

A-if3+a), -R = l(i+:,a) (18.12)

The substitution of the values of P and Q from (18.11) in (18.10)

gives

-^\(a^-r^)/^\-U---&\nH + ^-^^x = o. (18.13)
r dr\ dr] \ r^ J (o^

This equation can easily be integrated by a series of powers of r.

Putting

^-Ql-l (18.14)

in (18.13) we get

2^-^© [AJfc^^-^(i+2)j-A«^^ + B«^ o. (18.15)

* The substance of this article, as well as of most of the work in

this chapter on uniform disks, was first given in a paper by Lamb
and Southwell, The Vibrations of a Spinning Disk. Proc. Roy. Soc. A,

Vol. 99, 1921.
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/rY-2
Equating to zero the coefficient oM - ) in the sum on the left of

the last equation we get

Cjk_2|Bw2 +—^ — A:(A:-2)a14-AQ(A;2— n2) = o (18.16)
I CO" J

If we take k = n then (18.16) gives

Cn-2= o (18.17)

Next, by putting {n— 2) for k in (18.16), we find

Likewise C„_6, Cn-s, ^n-io, etc., are all zero. Moreover, for any

value of k except A:=+w, equation (18.16) gives

^' ""-,... .(18.18)
Cic-2 {k-^— n^)A

It is now clear that there is a value of z satisfying (18,13) which

is expressible in a series of ascending powers of ?• starting with r".

This series is

jc,,+ Cn+2^ + Cn+4-^+ -..} • •
(18.I9)

I
CL CI \

There is another series starting withr~", but as this is infinite at the

centre of the disk it does not apply to our problem. Equation (18.18)

shows that the coefficient C^ in this series vanishes (and consequently

all the succeeding coefficients vanish also) provided that

^ = m(m— 2)A— B?i2 (18.20)

For example, the coefficient C„_}-2 vanishes provided that

?i- = n(w+2)A—^23
co^

= in{(^+2)(5+a)-n(i+3o)}
= in{{n+ ^)-o(n-i)} .... (18.21)

For this value of p^~ the expression for 2 reduces to one term.

In the same way we can make C^-^-i vanish and find the cor-

respondingValue of p^^. It is clear then that, by putting m successively

equal to (n-\-2), (n^^.), (w+6), etc., in (18.20), we find a succession

of values of j^^ which make the series in (18.19) reduce to one, two,

three, etc., terms respectively; that is, there is an infinite succession

of values oi p^'^ corresponding to each of which there is a value of w
which satisfies equation (18.6) and is finite over the whole disk. These

values of p^^ must therefore give the normal modes of vibration of the

disk.
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To show more clearly the form of the solution let {n-\-2s-\-2) be

written for m in (18.20). Since m and n are integers j must also be

an integer. Thus

%^^n^B = {n+ 2s+2)(n+ 2s)A . . .(18.22)

Substituting in (18.18) the value of p^^ from (18.22) the former

equation becomes

C/c _k{k—2) — {n-\-2s-{-2){n-\-2s)

Ca;_2 k^—n^

{n— k-{-2s-\-2) {n-{-k-{-2s)

~ ~
(k—n){k-]-7i)

Putting (n+2), (w+ 4), in succession for k in this we find

C„_|_2__ 25(2n-|-2S+2)

Cn ~~
2(2W-f-2)

i(n+i) '

Cn+4 (s—l){n-i-S-\-2)

(18.23)

Therefore

Cn+ 2 2(n-i-2)

3''\ _s(w+s+i) r2

i^ i.(w+i) a2

(s— i)5(w-|-5-f i)(yi4-5+2) r*
18.24)

i.2(w-f i)(yi+2) a*

This series contains (s+l) terms, which are alternately positive

and negative. The sum of the series vanishes for s different values

of r between o and a, as well as for r=o. It follows therefore that

w is zero over the circumferences of .y different circles for all values

of t. These circles that have no motion are called nodal circles. More-
over, because w contains the factor sin(w^-f-a), which vanishes along

n different diameters of the disk, it follows that there are also n nodal

diameters.

The following are particular solutions included in the general solu-

tion. The value of p^^ corresponding to w is given in each case.

w= C (
-

j
sin (nd-{-a) sinp^tj

Pi
^- = \n{(n-\-i)-o(n-i)},

giving n nodal diameters

and no nodal circle;

(18.25)
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w
0w/ • ^_1_2\ ^2

—2= iK+9^+i2-a(^2.
(O

w

3^-4)}

(18.26)

giving n nodal diameters

and one nodal circle;

C — sin (0-\-a) sin/?i t.

co'

{18.27)

w

giving one nodal diameter

and no nodal circle;

= C— sin (2^-j-a) sin^i t

,

(18.28)

-o),

giving two nodal diameters

and no nodal circle.

w= c(i-.^)sisinpi t
,

a,'-

= 3+
(18.29)

giving no nodal diameter

and one nodal circle.

The displacement represented by win (18. zj) is that due to the rotation

of the middle plane of the disk about a diameter without any bending

of that surface. Moreover the period of oscillation is the same as that

of rotation. Thus every particle returns to the same position after

one revolution of the disk. This means that the axis of the disk is

slightly inclined to the <2r-axis. If the disk is mounted on a shaft which

constrains its axis to stay along the <?-axis this vibration is not possible.

In any case it is not a vibration in any real sense.

In the modes with no nodal diameters the centre of the disk is not

at rest. This follows from the fact that z is not

zero where r= o. These modes again are not

possible for a disk mounted on a shaft. They
would be possible only for a free disk. When there

are no nodal diameters there must be at least one

nodal circle. The case of one nodal circle is given

in (18.29), the radius of this circle being 0707 a.

For the case of two nodal diameters and one

nodal circle the nodal lines are shown in fig. 175. Fig. 175
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The radius of the nodal circle is obtained by putting n = 2 in (18.26)

and equating w to zero. This gives

r = ]/la = o-866a (18.30)

\ 4

328. The rotation of the nodal diameters.

Since ^—- is used in equation (18.3) for the acceleration of a particle

of the disk it follows that w is the displacement of a particle which
rotates with the disk; it is not the displacement of the particle which
happens to be at the point whose coordinates are r, 0, referred to fixed

axes. The angle must, in fact, be measured from a line which
rotates with the disk. The nodal diameters are diameters passing

through the same set of particles of the disk which have no motion

parallel to OZ throughout the vibration. These nodal diameters rotate

therefore with angular velocity co in the same direction as the disk.

We shall now show that it is possible for the nodal diameters to rotate

with an angular velocity different form co.

Instead of putting

w = xsin{nO-\-a)smp^t (18.31)

we might have put

w = zsm{nO ±Pit-{-a) (18.32)

in equation (18.6). We should then have arrived at the same equation

(18.10) for s. Therefore the same values of 2 and the same values

of jt?i
can be used in (18.31) and (18.32). In the latter equation is

still an angle measured from a diameter which rotates with the disk.

The nodal diameters corresponding to (18.32) are those diameters

for which

n6±p^t-\-a = m7t, (18.33)

that is, for which

dt n

Thus the nodal diameters may rotate in either direction with an

P\
angular velocity — relative to the disk. The actual angular velocities

""

Pi
of the nodal diameters given by (18.32) are caHr — . There are thus

three possible angular velocities of the nodal diameters, namely,

7) 10

CO -, CO, CO-}-—. In the case given in (18.27), when Pi=co,

these possible angular velocities are o, co, 2oy. Thus it is possible

for the single nodal diameter to be at rest. The three values of w
for this case are
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w = C-sm{e-\-coi-\-a) (18.34)

T
W'=C—sm{0-^a)smoyt (18.35)

w = C-sm(e—cot-\-a) (18.36)
a

When the single nodal diameter is at rest the disk rotates in a plane

slightly inclined to the ay plane, in which case there is no real vibra-

tion at all.

In the general case it is possible for n nodal diameters to be at rest

provided

0. = ^. ....'... {18.37)

This last equation, combined with (18.22), gives

w2(i + B) = (n + 2 s + 2){« + 2s) A,

or w2(9 + 3a) = (yi + 25+ 2)(n + 2s) (3 + 0),

whence '
(71 + 25+1)2-3^2=1 (18.38)

We know that one pair of integral solutions of this is

n = I , s = O]

and it is shown in works on Algebra that the integral solutions of the

equation

ir2—%2=i
can be written down when one pair of such integral values of x and y
is known. In our case

\(n + 25 + 1) ^i^n]{{n+ 2s + 1)- f^n]

= (2+}^)(2-l/^J|=I = I?

= (2 + y3)?(2-y3)? (1839)

Now sets of integral values of (w + 2j+i) and n are obtained by

equating the factors of the first and last members of the preceding

equation provided that q is an integer. Thus we may take

n+25+ i+y3n = (2 + /3")?
,

n + 25 + I — yjw= (2 — i^)9 ;

whence , ., r— , /—. ^

..+ 25+I = |{(2+y^)?+ (2-|^)?},

and
^=-^{(2+y3")'-(2-y3)n^

(18.40)

Corresponding pairs of values of n and s derived from these equations

are given in the following table
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n I 4 15 56

s o I 5 20

(18.41)

Thus if there are four nodal diameters and one nodal circle the nodal

diameters may be at rest and the period of vibration is

271 271 71

Pi nco 2CO
'

which is a quarter of the period of rotation of the disk. In fact, while

the disk makes one revolution the nodal diameters rotate relatively to

the disk through an angle equal to twice the angle between two con-

secutive nodal diameters.

329. The condition of convergence for the series for z.

It might seem as if there were no necessity that m in equation

(18.20) should be an integer. If, however, m were not an integer

then ^ would not be an integer and the series (18.24) would not

terminate, and it can be shown that the series is divergent when r = a

if it does not terminate. Thus m must be an integer in order that the

series for s should be convergent.

Let

A.

Then (18.18) becomes

Q Mk-2)-

+
Aco'

Cfc-s ^2

—

^2

k{k—2)

-f etc,) • (18.42)

'-¥

k— 2
f

C^— 7l'

^
k y~ k^

Because there is no term containing k~^ inside the brackets in the last

line in this equation it can be shown that

I

Therefore the series

= a finite quantity

for all values of k.

Cn + Cn_j-2+ • • • + Q. + Q-j.;

is divergent because the series
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is divergent.

It follows therefore that 2 would be infinite at the rim of the disk

if J were not an integer. Consequently p^ can have no values except

those derived from integral values of s.

330. The vibrations due to tensions set up by rotation in

a disk of variable thickness.

When the rigidity is negligible equation (18.3) becomes

With the same substitution as for the uniform disk, namely,

w = zsmp^tsm{n6 -^ a), (18.44)

this becomes, after division by smpitsm(n6-\- a),

This is the correct equation when h is a, function of r but not of 0,

in which case P and Q are also functions of r.

Now let us take

^^'G)"'
^'^'"^^^

which is the usual form for a turbine disk. We found in Art. 222 that

the mean tensions for this shape of disk are, for a complete disk,

P=e«>^a^H{Q'^'^-'-Q| . . .(,8.47)

Q =e«,wj,gp"-iQ],. . .(X8.48)

and q is the greater root of the equation

q2J^^q-i-o^==o; (18.50)

that is.

g = yi+a^+ i^2_i^ (18.51)

Now let

v = ^- • • • (18-52)

so that dr= adrj;
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then equation (18.45) becomes

Substituting for P, Q, and h, in this last equation we get

-n^QCO^Hziqrji-^^-^ —b) -\- Qp^H= o,

whence

The method of solution of this equation in series is exactly the same

as that used for equation (18.13). Thus putting

in (18.54) and writing y for (3— q—fi) we get

which shows that 2 is expressible in powers of rjY if y is positive.

If y is negative 2 is expressible in powers of rj^Y. For a turbine disk

y is more likely to be positive than negative. We shall first work on

the assumption that y is positive and refer later to the other case.

By equating to zero the coefficient of j;*"/ in (18.55) we get

{k(k-{-q-i)-n^q\Ck=-l^{k-y){k+2-y-P)-n%-^^Cy (18.56)

whence

-^= 5f!L. . .(18.57)
Ck-y k(k-i-q—i)-n^q

Equation (18.56) shows that Ck^—y is zero if

k,(k,+ q-l)-n^q = 0, (18.58)

which equation gives the possible values of k at which the series can

begin. Now the equation for k^ has one negative and one positive

root, and the negative root is inadmissible because this would make 2

infinite at the centre of the disk. Therefore, taking the positive root,

y,n^,+ U-g)^+r-g
(,3.59)

2

The solution we have now got is

^ = V'^{Ck, + rjYCk,^y-hr]'yC,^+2Y-\- }• • . (18.60)
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This series has ^ -|- i terms provided Ck^^sy-\-Y vanishes, and equation

(18.57) shows that this coefficient vanishes if the numerator of the

fraction in that equation is zero when ^1 + ^7 + 7 ^^ subsituted for k;

that is, if

(k^^sy){k, + sy+2-^)-nn-^^ = o,

that is, if

^,-(K-hsy)(k,-\-sy+2-P)-n^b. . . .(18.61)

Now by (18.57)

(k, + my){k,+ my+ 2-^^)-n^b-P^^
Ck,-^my+Y ^ f^. . (18.62)

When the value of p^^ from (18.61) is substituted in this equation the

numerator on the right becomes

{k^-^my){k^-{-my-\-2-P)-{k,-\-sy){ki-\-sy+2-p}

= —{s-m}y{2ki-i-2-fi-i-{s-{-m)y\.

Also, by means of (18.58), the denominator becomes

(k^ + my+ y){k^+ my-}- yJ^ q- i)-k^(kj^^q— i).

= {m+ i)y{2ki+ q-i-\-my+y}.

Therefore

Ck^^my-\- y _ _ {s- m){2k^ -{- 2— fi + my -}- sy)

Cic^+my {m-{-i)(2k^-]-q—i-^my-Jry)

^ {s-m)(2ki-\-2-^+ my-j- sy)

(m + i)(2k,-{-2-^+ my) ' ' ^ '
^^

It is easy to see from this form of the ratio of the coefficients that

the terms in the series for 2 are alternately positive and negative,

Moreover 2 vanishes for .y different values of rj between o and i as

well as when rj = o Consequently there are j nodal circles ; and the

factor sin(w^+ a) introduces n nodal diameters.

Equation (18.61), giving jo^ for the mode with .y nodal circles and n
nodal diameters, can be written thus:

—

where y denotes (3 — ?— /5), and q and k^ are given by (18.51) and

(18.59).

As a particular example we take the case of two nodal diameters

and no nodal circle, assuming a = J and ^=1. Here

S7



57^ APPLIED ELASTICITY

? = y|—4=07247,

Therefore

^' = ||{(i-846)(2-846)-|f}

= 2*121 (18-65)

whence -!-= 1-456 (18.66)
CO

The corresponding result for a uniform disk is, by (18,28),

^=1-541 (18.67)

These two values of pj^ do not differ so much as might be expected

from the great difference in the forms of the disks.

Let us next take the case of two nodal diameters and one nodal

circle with 0=^ and ^=1 as before. Now
n = 2 , s= I

,

? = 07247,
k^=^ 1-846,

;/= 1-2753.

Therefore

^=i|{(3-i2i)(4-i2i)-f|} = 7-327,

whence

^= 2706 (18.68)
CO

Also the series for 2 contains two terms, the ratio of the coefficients

being obtained by putting m = o in (18.63). Thus

C^^__2k+2-p-^y_S:p^
Cc, 2ki-{-q-l+y 4-692

Thus the value of 2 is

^_C»y 1-816
(I _ 1-272 »yi-275) (18.70)

The radius of the nodal circle is given by
1-275 T

^1-275 ^
1-272

whence ^ ^ / o \

r= o-828a (18.71)

This should be compared with (18.30).
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331. The case where y is negative.

The preceding work is all based on the assumption that y is posi-

tive. Let us now find what happens when y is negative.

If

8-(3 + a)^<o, (18.72)

the coefficient H which occurs in P and Q in (18.47) ^ind (18.48) is

negative. But this does not make P and Q negative because the other

factors in P and Q change sign at the same time as H changes sign.

Suppose ^ is given by the equation

8-(3+ a)/9=o.

Then
]/i + a^+ i^2-J/? (18.73)

5+ 50 4

3+a 3+0

3+a
Also, for this value of ^,

y = 3—^—q=^o.
The general value of y is given by

=ft. • (1874)

y=i-i^-ii+ op+ifiK .... (18.75)

which clearly decreases as ^ increases. Then for all values of p greater
o

than both and H are negative.
3+

When y is negative we may still assume, as the solution of {18.54),

z=2:Ck^K (18.76)

and we shall get the same equation (18.56) for the relation between

the coefficients. Now just as when y was positive the normal modes
of vibration are represented by a terminating series of powers of rjY

or r]~y. When y is negative (k— y) is greater than k and conse-

quently Cjc—Y is the coefficient of a higher power of 7] than Q. Let

t]^ be the highest power of rj in the series for z. Then, since Ck^—y

is the coefficient of a higher power than C^^ the former coefficient

must be zero. Thus (18.56) gives, since C^ is not zero,

k,{k^ + q-i)-n^q = o (18.77)

Now suppose the series arranged in powers of rjy, which is now a

descending series. This series is identical in form with (18.60). Also

suppose the series has (.y-j-^) terms, which, as we can prove, cor-

responds to s nodal circles. Then the coefficient of ^^^i+^y+y must

vanish, while the coefficient of ?;*»+*y does not vanish. That is,

putting (ki-\~sy-{-y) for k in (18.56), we get, since Ck^^sy^y is zero,

{k,-\-sy){k,-\-2-\-sy-P)-n^b-^==^o. . . (18.78)
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Equations (18.77) ^"<i (18.78), which determine k^ and /)j, are identical

with the corresponding equations that we found when y was positive.

There is. however, one very important difference between the two cases

when y is positive and when y is negative. When y is negative the

series (18.60) is a series arranged in descending powers of rj, and the

condition that 2 must contain no negative powers of r puts a limit to

the number of terms in the series. Thus if there are j nodal circles

the index of the last power in the series is (^i + Jy), and this must

be a positive quantity. That is,

k^-\-sy>o, (18.79)

whence it follows that the number of nodal circles cannot exceed the

k
greatest integer in — . When y is positive there is no limit to the

-y
,

,

possible number of nodal circles. It is therefore rather surprising to
o

find that, when R exceeds the value -, there is a definite upper
3 +

limit—depending on the values of n and ^—to the number of possible

nodal circles. There is still another condition that may limit the num^

ber of nodal circles, namely the condition that />^ must be real.

The value of /)^ for no nodal circle is given by

Uco'

^n^b-k,{k,-]-y-^q-l)

= n^b— k^y-k^(k^ + q-i) (18.80)

By means of (18.77) this reduces to

^^^ =n^b-q)-k,y (18.81)
Hco

Now by (18.74) we know that q = b when y is zero. Moreover

dq _ I (^-\-i^ I

d^~ ^ii+o^ + ip-'
2,

that is, <i — i-

Thus -fz is negative, and consequently q decreases as B increases. It
dp

follows that b is greater than q when y is negative. This shows that

the right hand side of equation (18.81) is positive, and since H is

negative p^ is consequently real. The only power of rj occurring in z is

T]^, and there is certainly one positive value of /q satisfying {18.77).

We see then that both conditions for the possibility of vibrations with

no nodal circle are satisfied.
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The following sums up our results:

—

If (jtj -|- sy) is positive, and if the value of p^, given by the

equation

271 ...
is real, then '^— is the period of vibration of the disk' with n nodal

meters and ^ nodal circles; q is found from (18.51), k^ from (18.59),

and y from (18.75).

332. Vibrations of a uniform disk controlled by rigidity.

When P and Q are zero or negligible equation (18.5) becomes

^ViH^ + ^^7^=o (18.83)
3(1 -a2) ' ' ' ^ 6^^2

Assuming, for a normal mode,

It' = t^2 sin;?.^ ^ (18.84)

equation (18.83) becomes, after division by sinjt?.;^.

or

X7^Ur., = kHv^, . (18.85)

where

7.4
3fi-o-')^;?2^

Now suppose W3 is any function of x and 2/ satisfying the equation

V^'w^ = k^nY, (18.87)

then

Therefore

«^2 == ^^3

is a solution of (18.85).

Likewise, if ii\ is any solution of

Vi2w^4 = -^'''-4. (18.88)

then

Consequently

u\ = h:^

is a solution of (18.85).

The complete solution of (18.85) ^s

W'2 = t^'3 + W^4
,

w^ and w^ being the complete solutions of (18.87) ^"d (18.88). Thus
any solution of
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-TT + --T^+-.-W=±^'^'2 • . .(18.89)

is a solution of (18.85).

Now in (18.89) P^t

iv.2 = ^ sin {nO -\- a) (18,90)

2 being a function of r only. Then we get

d^z I dz n^z
, , „

dr^ r dr r-
—

^+vf+(''-3'=<> • • •<»-.

The equation

dH . I dz

dr

is the equation for Bessel functions of order n. If we attempt to solve

this equation by means of a series we find

z=A]n(kr)-{-B]_n{kr) (18.93)

where Jn(ic) is a function defined by the equation*

jr(w4-i) being the gamma function of (/i + i), which reduces to |n

when w is a positive integer.

When n is an integer it can be shown that

j_„(x) = (-irjnU) (18.95)

In the disk problem n is certainly an integer and consequently (18.93)

really only contains one function J„ {kr). The reason why the series

method fails to give the second function when n is an integer is

because this second function involves loge'r, which cannot be expressed

in powers of r.

When n is an integer one form of the second function which re-

places J _„ (A;?-) in (18.93) is Zn{kr) , this function being defined by

the equation

»"^i|w—w—

I

i2w

-i(i^)"Sl *,
'*"!

(i'^)-'"(««+^n+«) . . (18.96)

where t

sm = i + i + i-f ... + -; ^0 = 0; . . . (18.97)
TVh

lo==i (18.98)

* For the necessary theory of Bessel functions see Appendix A.
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When n = o it is to be understood that there are no terms in the sum

from m= o to m= n— i; and when n= i there is one term , namely —

.

X
The function defined by (18.96) is Neumann's* form of the Bessel

function of the n^^ oder of the second kind. This form is the most

convenient for our present problem. Nevertheless, in order to make
use of published tables, another function Y„ (a;)— Weber's f form of

the second function—is defined by the following equation:

—

~Y^{X) = Z„(X) - (loge 2-y)]nix)

where y denotes Euler's constant 0-577216. .......
We shall in future write I for the constant (loge2— y). Then

Yn{x)^-Zn(x)-^]n{x) • (18.99)
71 71

Thus when n is an integer the complete solution of (18.88) is

;5 = AJn(^r) + BZ„(A;r) (18.100)

The equation

obtained by taking the lower sign on the right of (18.91), differs from

(18.92) only in having ik for k, where i denotesy— i. We could there-

fore g^t the solution of (18.101) by writing ikr for kr in the solution

of (18.92); but this method has the disadvantage that it introduces

imaginary quantities into the solution of ah equation with real coeffi-

cients. To avoid this certain functions of a real variable are defined

below.

Let

Then, one solution of (18.101) is

z= AIn(kr) . (18.103)

Let us also put

* Carl Gottfried Neumann, Theorie der Besselschen Functionen
(Leipzig, 1867).

t H. Weber, TJeber die Besselschen Functionen tmd ihre Anwendtmgen
auf die der elektrisehen Strofne. Journal fiir Matkematik, LXXV, 1873.
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Hn(x) = i-''Zn(ix)-Inix)\ogi

''^^Iri \n—m— i

==ln(x)\0gX-i ^ -'

--j^^ (-ir-"(i \2m—n

m=o I '

—

Then the complete solution of (18.101) is

z^CIn{kr) + DHn{kr) (18.105)

Another form of the second solution of (i 8.1 01), the numerical

values of which have been tabulated, is

Kn{x)==(-ir^^H„{x)-{\0g2-y)In(x)}

= (-ir+^{Hn{x)-nn{x)\, . . . .(18.106)

X being written for kr.

Thus one solution of (18.83) giving a normal mode is

w = \A]n(kr) -f BZn (A:r)}sin(/2^-l-a)sin^2^

-\-{Cln{kr)+ 'Dil„{kr)}sm(7ie-\-fi)smp,t . . (18.107)

For a disk with a central hole there are two boundary conditions

at the hole, and two more at the outer rim—the usual conditions for a

bent plate (see Chap. XIV). If there is no central hole, and if the disk

is free at the centre, there are no necessary boundary conditions at the

centre, but there are two at the rim. For a complete disk whose centre

is fixed in any way there are two conditions at the centre just as when
there is a hole. In any case, however, the greatest number of boundary

conditions is four. These boundary conditions have to determine,

among other things, the yet undetermined constant p^, from which

the period of the particular mode of vibration is got. There are thus

three equations left to determine the constants of integration. If

a = ^ these three equations will determine the three ratios existing

among the four constants A, B, C, D. It follows that, in any normal

mode, a and ^ must be equal. Therefore we may write

w= {AJ„(A;r)-|-BZ„(A:r) + CI„.7.T) + DH„(A:r)}sin(w^+a)sin??.p^ (18.108)

It is clear that w is zero where sin (tfO-^ n) = o, that is, along n
different diameters of the disk. There are thus 11 nodal diameters in

the mode of vibration indicated by (18.108).

333. Oscillations symmetrical about the axis of a free disk.

If we put n = o in (18.108) and amalgamate sina in the con-

stants A, B, C, D, we get

w; = |AJo(A;r)+ BZo(A:r)+CIo(A:r) + DHo(AT)fsin;;2^ . (18.109)

This is the equation for oscillations symmetrical about the axis of

a disk.
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If the disk is free, that is, not held at any point, the conditions at

the rim are the boundary conditions for a free plate. These conditions

are given in (14.46.) and (14.47) ^^r any plate. In the case of axial

symmetry these can be reduced, by means of (14.64), (14.66), (14.68),

to the following:

—

d^^w o dw

\i d ( dw\\
where r

(18.110)

(18.111)
o

dr

a being the radius of the disk.

If the disk had a central hole of radius h the same two conditions

would have to be satisfied at the edge of the hole as well as at the

outer rim.

It is impossible to make both w and the shearing force F^ finite

at the centre of the disk unless B and D are both zero, for the im-

portant terms in w and Fj when r= o are

w = (B\o%kr-\-T>\o%kr)s\np2t , . . . (18. 11 2)

^ dr\r dr\ Sr}\

E'IA;2
(D-B)sinp2< (18.113)

If B and D are not both zero either w or Fj will be infinite where

r= o. Then for a free disk B and D must be both zero. Therefore

w= { AJo (kr) + CIq (A:?-)} sinp^t

= A{Jo(A;r)+ cIo(A;r)}sin;?.^<, . . . . (18.114)

Ac being written for C.

Now the condition (18. in) can be written

If we write

then

^ = Jo(^^)^ v= lQ{kr)

o

w= K{u -\- cv)smp2t ...... (i 8.1 16)

Therefore the boundary condition (18.111) becomes

, . d (d^u I du
,

fd^v idv\]

where r = a. . (18. 117)

Now the dififerential equation from which 11 is found is

d^U 1 du , „ . rt r^^

dr^ r dr
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and the equation from which v is found is

d^v I dv , ^

Consequently the condition (18.117) reduces to

d— {ii — cv) = o where r = a)
dr

that is,

]\{ka)—cl\{ka) = o

,

(18.120)

the dashes indicating differentiations with respect to ka.

Now it is proved in the appendix, equations (A. 26) and (A. 28),

I'M-Mx) I

"'•^'>

Therefore (18.120) becomes

]^(ka) -\- c\{ka) = o (18.122

Again condition (18.110) can be written thus

d'^w I dw I dw
-7rT + -^- = (i~c^)-^-,
dr^ r dr r or

which is equivalent to

d'^u I du (dH I dv\ , , I [du dv\
, ^

By (18.118) and (18.119) this becomes

7„/ X
^

—

o (du dv\
k^lu— cv) -j -r + '^-;- = o where r= a.

r \dr dr)

Now using (18.121) we get

ka]^ (ka) — cImIq (ka) — ( i — a) {Ji (ka) — cl^ (ka) } = o ( 1 8. 1 2 4)

Equating the two values of — c from (18.122) and (18.124) we get

Ji {ka) kajQ (ka) — ( i — a) J^ (ka)

1^ {ka) ka Iq (ka) — ( i — a) I^ [ka)

If we write b for ka this last equation gives

^'-"='liTl+!f,!
• •

<-'»'

This equation determines b, and then (18.86) gives

^_ Eh^k^ _ Eh^

and the corresponding period of vibration is

(18.125)

271 't2a^
I /:>(i_o2)^
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Equatio- (18.126) has an infinite number of roots. Corresponding

to any particular value of b given by (18.12b) there is a value of c

given by (18.122). Thus

IiW
(18.129)

For all values of b except the smallest the vibrating disk has nodal

circles. If the roots of (18.126) in ascending order of magnitude are

^i> ^2' ^3' ^*c-; ^^^" ^^ ^^^ mode of vibration corresponding to bm
the disk has m nodal circles. If c^ corresponds to b^ the radii of

the nodal circles are obtained from

w o,

that is, from

]Q(kr)-\-Cmlo(kr) = o.

U o = ^ equation (18.126) is

Mb)
,
Jo(b)

Ui(6) Ji(6)l

1-5

. (18.130)

. (18.131)

Let

" iii(*)^ji(*)/
(18.132)

From the series for the Bessel functions we find that F(&) = 4 when
b== o. The following table gives values of F(b) calculated from tables

of values of Jo, L, lo, Ir

b

F{b) 4

2

3-65

2-98

1-5082

2-982

1-4985

3-832

00

618

1-63003

6-20

1-40299

By interpolation from this table we find that the first and second roots

of (18.131) are

k^a = bi = 2'gSi6,. (18.133)

k^a = b2==6'igis (18.134)

The corresponding periods of vibration are got by substituting these

values of & in (18.128).

In the first normal mode of vibration, the mode to which b^ applies,

there is a nodal circle whose radius is the value of r determined by

the equation

Jo(V)-^Io(V) = o

that is, by
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Now

1,(2-9816) °\a/

= 0-08930 lo(^) (I8.I35J

Jo (2-04)

By interpolation

I© (2-04)

Jo(2-02)

Io(2-02)

0-08569;

0*09187 .

whence

= 2-0283,
a

L^'J^A o-tSo2 (.8-136)
a 2-9816 ^

Thus the radius of the nodal circle in the first normal mode is just

over two thirds of the radius of the disk. The nodal circle is shown

in fig. 176(a).

Again for the second normal mode the radii of the nodal circles

are given by

(b,r\_J,{b,) (bjf^

nearly

(¥)
= -0-00315 loM- . . . (18.137)

A first approximation is got by taking

whence

b r— =2-41 or 5-52 nearly . . . (18.138)
a

Assume 2-4.2 as a first approximation for the smaller nodal circle.

Then a second approximation is given by

Jo(-^) = -o"003i5lo(2-42)

= — 0-00975.
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Now

Therefore

whence

Jo(2-44)
= - 0-00785
= — o*o I 8 I 2

Kr
=^ 2'/^2 2 approximately,

2*422 2-422

h 6-19
0-391

For the second nodal circle the same method gives

— =0-842
a

(18-139)

(18.140)

First Mode Second Mode

Fig. I76ia) Fig. 176(b)

The nodal circles for the second mode are shown in fig. 176(b).

The other symmetrical modes of the free disk can be investigated

in the same way.

334. Symmetrical oscillations of a disk clamped at the centre.

In this case there are two conditions at the centre which are equi-

valent to boundary conditions. They are

w = o\ . . . .. . . . (18.141)

ciw \ where r = o

~6r^^\ (18.142)

The two conditions (18.110), (18.111), are also true. We therefore

need all the four constants A, B, C, D, in (18.109),

Let C= cA, D = dB. Then (18.109) becomes

w;=[A{Jo(A:r) + cIo(/<:r)} + B{Zo(^T) + c?Ho(A:r)}]sini?2^ (18.143)

The two conditions (18.141) and (18.142) give

A{jo(o) + cIo(o)} + B{Z,(o) + rfHo(o)}=o, . (18.144)
and

A{ro(o) + cro(o) } + B {Z'o(o) -f dK^{o)} = o. (18.145)
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Jo(o)=i, Io(o)=i,

J'o(o)=-o, ro(o)=-o.

Moreover, when kr is very small,

Zo {kr) = Jo {Jcr) log /cr = log A:r approximately
,

Hq {kr) = Iq {ki-) \ogkr = log /cr approximately .

Also

Z'o(b-) = ^, H'o(^r) = ^

(18.146)

(18.147)

(18.148)

(18.149)

Thus the coefficient of B in (18.144) and (18.145) ^s infinite unless

d= — I. These two conditions can be satisfied by taking either

B = o or rf = I .

Whichever alternative we choose the terms containing B disappear

from (18.144) and (18.145). Then equation (18.144) gives

A(i+c) = 0,
whence

c = — I .

Now we have still to satisfy two conditions at the rim, and we should

not have enough available constants if we took B = o. We must there-

fore take dr= — i . Then

w = [A
{ Jo (kr) - lo (kr) } + B { Zo (kr) - U, (kr) }] sin;?^^ ( 1 8. 1 50)

Let us now put

Then

u^jQ(kr), v^loikr),

, v,=H,(kr).]' ' •

-^^'"51)

w={A(u— v)-]-B{u^—v^)}smp2t . . .(18.152)

Now because u and u^ both satisfy (18. 118), and because v and v^

both satisfy (18.119), the two conditions (18.110) and (18.111) re-

duce to

and

, du dv\ _ /du, dv,

both to be true when r = a.

Now it is shown in the appendix that

ro(^) = -Ji(^)'

Z'o(x) = ~Zi(x),

l\(x)^\(x);

n\(x) = U,(x).

= .

= 0(18.153)

. (18.154)

(18.155)
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^

Therefore (18.153) ^"^ (i8-i54) become

Aka{],(ka) + I,{ka)}-(i-~o)A{],{ka)-i-I,(ka)}

-\-Bka{ZQ{ka)-]-H^(ka)\ - {i -o)B{Zi(ka)-\-Hi(ka)} = o
, (18.156)

and

A{l,{ka)-J,{ka)} -\-B{U,(ka)-Z,(ka)} = . . (18.157)

R
Equating the values of given by the last two equations we get,

A
writing b for (ka),

b{Zo(b)+ H,(b)\-(i-o){Z,(b) + H,{b}} H,(b)-Z,{b) ^ •= '

This equation has to be solved for b. Tables of the values of the

functions involved are needed to do this.

Since the necessary tables of the functions Y„(ic) and Kn(x) are

available we shall put the equation for b in terms of these functions.

From equation (18.99) we get

and

Z,{x)=^jY,{x) + XUx), .... (18.159)

Z,{x)=='^Y,{x)+ l],{x) (18.160)

Also, from equation (18.106), we get

Uo{x) = -K,(x) + Xlo(x), .... (18.161)

and

n^(x) = Ki{x) + ni(x) (18.162)

Now when the Z and H functions are replaced by the Y and K
functions equation (18.158) becomes [I^ being written for Io(&i) etc.],

MJo+Io)-(i-o)(J,+Ii)

*{^Yo+AJ„+AI„-K„|-(i-<,)J^y;+AJ,+ Ki+AIi}

Ii-Ji

Ki-^Yi+AIi-AJi

which can be reduced to

MJ,+io)-(i-g)(Ji+ii) _ li-Ji

*(fYo-K„j-(i-o)(jY,+ Ki) K,-^Y,
(18.163)
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If we denote the two expressions on the left and right sides of the

last equation by L(^) and R(b), we find from tables, taking a = ^,

L(i-g2) — R(i-92) = oo8o,

L(r94)— R(i-94) = -o'ii5,

whence by interpolation

L (1-9282) — R(i-9282) = o approximately.

Therefore

ka = b = i-gzS (18.164)

is the least root of (i5'i63). If = 0-3 the least root is i'937.

Corresponding to the least root that we have just found there is

no nodal circle. The whole middle surface of the disk except its centre

oscillates from one side to the other of the plane touching this sur-

face at the centre.

The period of vibration is, by (18.128),

\jz 27ia^-\j 3(1 -a-)^

E

2na' 1/45^

when o = \ .

The periods of the other normal modes—the modes with one, two,

or more nodal circles—can be got by finding the other roots of

(15.163), of which there is an infinite number, successive roots differing

by approximately n.

The shear force F^ across a circular section in the direction of

the ;i:-axis is

Fi = 5v{-—r~ • • •
18.166)

3 I — a^dr (r cr\ cr j ]

Now when r is very small the most important terms in ¥^ are the

terms involving log {kr) or negative powers of r, unless these terms

vanish ; but we shall see they do not vanish. For, taking only the

terms involving logr in (18.150), we get

w = B { Zo [kr) — Hq {kr) } smp.yt

= B I Jo {kr) — Iq [kr] } log kr sinpj

= -2B|— + -^^-^- + ...jlog/.rsm;.,^.

Thus the important term in w when r is small is

w = — ^Bk'^r^ logr sinpJ (18.167)

Now
I d

\
d(rnogr)

\

r dr\ dr J

i (18.168)
r
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Therefore

F. =
-f-^„-7

(:8..69)

is the approximate value of the shear force when r is small. But this

is infinite at the centre of the disk. This result could easily be seen

without any elaborate analysis, for it is obvious that the assumptions

in this problem mean that an infinitely small circle at the centre of

the disk is held fixed while the rest of the disk oscillates. The shear

force Fj round the rim of this infinitesimal circle supplies the action

needed to change the momentum of the rest of the disk. Thus znrF^
is the force supplying momentum to the disk, and this must be finite;

a result which is in agreement with (18.169).

Since an infinite shear force is impossible the actual conditions we
have assumed in this problem cannot exist in practice. If, however,

a disk were held fixed over a circle whose radius were much smaller

than the radius of the disk itself the results that we have worked out

would apply with fair accuracy to such a disk.

335. Free disk with nodal diameters.

In a disk which is free at the centre both w and F are clearly

finite at the centre. These two conditions require that the coefficients

B and D in (18.107) should be zero. Then

iv= \A]nilcr)^ CInikr)} sin {n6-\- a) sin p4. . . (18.170)

The boundary conditions are those given in (14.46) and (14.47). Now
for a disk the bending moment across a circumferential section is, by

(14-57),

Also the shear force across the same section is, by (14.59),

^ _,^ d id^w I cw
,

I cV| , ^Fi=-EI- -— +-— + -7-:r^ ; . . .18.172

and the torque across an element of area perpendicular to the radius

through the area is

Q=--—-- -T^ (18.173)

Therefore (14.46) and (1447) give

and

+ ^^7Tr + i7i^l=o> • • • (18.174)
dr^ \r cr r'^ 66'

dr I dr^ r dr r

I e^w\
, ^ ^ e id (i dw\\ . ^ .

both to be true when r«»a.

38
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We may write these two equations thus

I cw I chu

v.-'-c-°H,-5F+r.S9-.)-°' I"""

Now ]n{k?') sin (nO -}- a) and In{kr) sin {nO -\- a) are respectively the

solutions of the equations

'^^^w = ~k^w, (18.178)

and ^^-w = Jc^w (18.179)

Therefore, if we write cA for C, the boundary conditions (18.176) and

(18.177) can be written thus:

—

k^ {]^(ka)-cln(ka)}-{i-o) ~ {]n(ka) + cln(ka)}

-{-(i-o)-{Yn{ka)-}-crn{ka)}==o, . . . (18.180)

and

k^y^{ka)-crn(ka)} + (I- o) -^ {Ynika) + cl'n{ka)}

-{\-o)-\^n{ka)-^cl,yka)\=-o . . . (18.181)

Equating the values of c given by these two equations we get

k'^a']n[ka) J^[i ^o)\ka]\{ka)-n'']^{ka)
\ ^

k'^anr,{kn) — [\— o){kaVn{ka)— nnn{ka)\
~^

^ k'^a^ynika) + (i-o)n^ku]\,{ka)-]n(ka)
} .^y^g-)

k^an\{ka) — {i— o)n^[kaTn{ka)—In{ka)\' '
•

^^ '^
^'

But, by (A. 74) and (A. 75) in the Appendix, we have

ka]'n{ka) = njn(ka)~ka]n+i(ka) . . . . (18.183)

and kayn(ka) = —n]n{ka) ->r ka]n-i(ka) . . . (18.184)

Either of these can be substituted for /caj'„(^a) in the boundary

conditions.

Also, by putting ix for x in the last two equations and using

(A. 59) we get

kal'n{ka) -= nln(ka) -]- kaln+i(ka) , . . . (18.185)

and kal'n{ka) =— 7iln {ka) -\- kaln—i{ka) . . . (18.186)

When equations (18.183) to (18.185) have been used to eliminate

Ynika) and !'„ {ka) from (18.182) the values of ka satisfying the

resulting equation can be found by means of tables of Bessel functions.

The particular case of n= o we have already worked out. If n= i

equation (18.182) can be reduced to
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«+^!H-' '-"
b being written for ka.

If = 0-25 and if F{b) be written for the left hand side of the

last equation, we get

F(6)=i-5o.

Now from tables of Bessel functions

F(6)=i734 when 6= 4-50,

F(6)= 0-464 when 6 = 4-60.

By interpolation we find, as the first root of (18.187),

ka=^b = 4'SiS. (18.188)

When n= i the two equations (18.182) become

'-bn,(b)-(i-o){bi\(b)-i,(h)}-
-''"-'"^^

'=-bn-(b)-(i-a){bi\{b)-\(b)}-
•(''•'9°)

By combining these we get

c=

hi\{h)-\{hy

whence we get, by means of (18.183) and (18.185),

J2W hM

(18.191)

(18.192)
l,(h) \{ka)

Therefore the expression for the deflexion is

«>= A
{ Ji (to) - J-^j

I, (Ar)
j
sm(^+ a)smp,<

where

G = AJ2 {ka).

Substituting the numerical values of 12(4*518) and 12(4-518) we get

^ = G{i-^^-^^|sin(^+a)sin^2^.
• •

(i«.i94)
(0-2119 10-84] V I

/ /'2 V yt/

This value of w is zero when

^^= 3-530, ......... (18.195)

and since A;a= 4'5i8 approximately there is a nodal circle of radius

3"530
a = 0-781 a (18.196)

38*



59^ APPLIED ELASTICITY

What is remarkable in the results we have just got is the fact that

the slowest vibration of a disk with one nodal diameter is one in

which there is a nodal circle. There is no mode with one nodal dia-

meter and no nodal circle. It is easy to see the physical reason for

this. A free disk vibrating with one nodal diameter and no nodal

circle would be like a free rod vibrating in an

unsymmetrical mode with a node at the middle

point and no other nodes. This is clearly im-

possible.

The nodal lines for the first mode are shown
in fig. 177.

The mode of vibration in which the frequency

of a free disk is least is the one with two nodal

diameters and no nodal circle. When n=2 equa-

tion (18. 1 82) becomes, with b for ka

,

b'h-h(i-o)\by,-4],} _ b-sy.,Jr4{i-o){b]\-],}

bn,-(i-o){bl\-4l,} bH',-4{i-o){br,-l,\

Fig. 177

. (1B.197J

W'2 = fell

2],

2L,.

Now

and

Also

and 61.2 = ^Iq — 2!^.

Using the last four equations to eliminate ]^ and J' g from (18.197), and
putting 0-25 for o, we deduce from this equation

(llfe^-36)j,-2fe(2fe^-Q)Jo

4(64_62_i8)J,+ 4/>(2fe2+9)j^

^ 2fe(2fe^+ Q)Io-(iife^+ 36)Ii

~4(64+6-^_i8)Io-4fe(2fe^-9)Io

The two smallest roots of this equation are

^ = 2-3475,
and

(18.198)

18.199)

fe, = 5-9405 (18.200)

Kirchhoff* worked out the problem of the vibrating free uniform disk,

and he gave a table of values of \og{^lca)^. The following table of

values of (ka)^ is built up from Kirchhoff's table. It is useful to

repeat here that, for values of n greater than one, the results are the

same as for a disk clamped at the centre.

Gesammelte Abhandlungen von G. Kirchhoff, Leipzig 1882.
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Values of (ka)^ for a free uniform disk

with n nodal diameters and s nodal circles

s //=0 71=1 n= 2 w= 3

'A
O

I

2

79-030

1469*6

416-53

3567-9

30373
1245-2

162-42

2825-2

o =V
o

2

82-376

1483-3

420*96

3583-8

27-574
1241-9

149-37

2799*6

336. Disk clamped at the rim.

Since the centre is free the two Bessel functions that are infinite

at the centre are not needed. That is, an adequate solution of the

differential equation is, as for the free disk,

10 = K^]n{kr)-\-cln[krY^sm.(nO -\-a)smp2t . . (18.201)

The boundary conditions are

cw ^ ^ ,?^r=o,-- = o, where r= a (18.202)
dr ^ '

These become

J„(A:a) + cI„(A:«) = o,
]'n{]M)-^ CXn^a) = O

,

whence we get, on eliminating c,

J'„(^a) tn[ka)
(18.203)

Jn(A;a) I„(A:a)

By means of (18.184) and (18.186) this equation can be put into

the form

(18.204)
]n{ka) \n{ka)

'

If we use (18.183) and (18.185) we transform (18.203) J"to

]^lm] I.+i(/ra) _ / 1 8 20O

Either of the last two equations gives ka when n is not zero. It is

best to use (18.205) when m = o.

A few solutions of (18.203) are contained in the following table.

Values of (ka)^ for a disk

clamped at the rim vibrating

with n nodal diameters and

s nodal circles.

s n= o n = i n= 2

I

2

,04-2

1582

7902

4 50'4 1214
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337. Disk supported without clamping at the rim.

Here again

w = A{]n{kr)-\-cIn{kr)]sm(n6-]-a)smp2t . . (18.206)

The boundary conditions are now

w--=o, (18.207)

-d
a^ + ^t^^ + r^ae^^j^" • • •

-C^-^^^J

where r =^ a.

The second of the preceding conditions can be written

II
dw n"^ I

7^;^";^^ = °•
• •

<'«-2°9)

Now let

w^=]n{kr)sm(n6-[-a) , ... . . . (18.210)

W2==ln{kr)sm[n0 -\-a) (18.211)

Then
S/^'^w^^—k^w^, (18.212)

Vl'^*^2 = ^^^2- (18.213)

Therefore the condition (18.209) becomes

-\-c(i— o)l-Vn{ka) -ln(ka)y— ckn„{ka)^o. . (18.214;

Also condition (18.207) is

]n{ka)^-cln{ka) = o (18.215)

Eliminating c from the last two equations we get

which, by means of (18.183) to (18.186), can be put in either of the

forms

In-i(A:«) ]n—\(ka) ika

^n{ka) ]n(ka) i-o
or

In+i(^a)
,

Jn+i(/<^<^) 2ka

. . . (18.217)

(18.218)
ln[ka) ]n[ka) \—o

When w = o and = 0*25 the first root of (18.218) is approximately

ka= 2-204
J

from which

A;*a*= 23-60 (18.219)
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338. Vibrations of a disk of variable thickness controlled

by rigitidy.

The equation connecting pressure with deflexion in a plate of

variable thickness is (14.35), which is repeated here:

—

——,Vi'(lVi'^)=P (18.220)

Now putting, for the vibrating disk,

we get

E d^w
——^ViHlVi'w)-i-2Qh— = . . .(18.221)

Let us take, as in (18.46),

(18.222)

Then, since

I-=|/»3, ........ (18.223)

equation (18.221) gives

If we next put

w = zsin (nO -{- a) smp2t (18.225)

equation 1(18.224) becomes, after division by sin {nO -\- a) smp2t

,

/d^ I d w2\j/r\-3^/c?2^ idz_nH\\_julr\-^ _

where

Ec2

Let us next put at] for r; then the equation for x becomes

d^ I d n^\f -3b(^'^^ ^^^ ^M\

(18.226)

The solution of this equation can be expressed by means of a series

of powers of yj for nearly any value of n. There are exceptional cases

that do not yield to a mere series of powers ; this we should expect

because the simpler problem of a vibrating uniform disk led to Bessel

functions some of which involve log r.

When we put, in (18.227),

%==ZCkri^ . (18.228)
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we get, on writing / for (2 + 3^) and m for (4-^-2^),

lCkrj^-'^[(k'^-n%k-l)^-n^-)r}-"'-ju] = o. . (18.229)

Equating to zero the coefficient of fjk-f^-m j^ this we get

{k^-n%k-l)^-n'}Ck-fzCk-m = o. . . (18.230)

Now this shows that Ck-m is zero for any arbitrary value of C4
provided that

that is, provided that

k=^7i, — n, I -\-n or l~n (18.231)

Thus in general we get four series starting with the several values

of k given by (18.231). In any one of these series the indices of the

powers of ?; form an arithmetical progression with common difference

m. Moreover the ratio of successive coefficients is, by (18.230),

Ck ju

(18.232)
[k— n){k+n)[k— l— n){k— l-{-7i)

If n = o equation (18.231) gives

k = o, o, /,/...... . (18.233)

This indicates that there are only two simple power series and these

begin with i and ?*' respectively. The other two series begin with log r],

dz
and r)^\ogr]. Now, for a disk clamped at the centre, z and — must

(17]

be zero when tj is zero. This requires that the coefficients of the two

series beginning with i and log i-j respectively must vanish. This

leaves only the series beginning with ?;' and ?;' log rj. For the series

beginning with if we get, from (18.232),

Q-f-w /^

Q4-2/H ^
Ci^m (/+2W7)2(27//)-'

Therefore the series is

^'^
m-^{l-{-vi)^'^ m^2m)^l-\-my^(l+2my' +---J

(» -234)

By a method exactly like the one used in the appendix to get Zq (x)

it can be shown that a second solution of the equation (18.227) when
>/. = o is
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where

' m
I

' '
q

The solution of (18.227) applicable to a disk with a fixed centre

vibrating with no nodal diameters is therefore

z = Kz^-\-^x.^ (18.237)

For a complete disk vibrating with n nodal diameters we need only

two of the series starting with powers of rj whose indices are given

by (18,231). We have to decide which of these series apply to the

complete disk. Since the disk has an infinite thickness at the centre

we cannot now reject a solution which gives an infinite bending moment
at the centre, for an infinite bending moment is not unreasonable where

the thickness is infinite. It is, however, safe to assume that in any

possible vibrations the energy must be finite. If then two out of the

four series give vibrations with finite energy while the other two give

vibrations with infinite energy we must choose the first two series for

the complete disk.

Now suppose rj^i is the first term in one of the series for z. By
(14.154) the elastic energy in the disk is

//iE',[,V,..,= -.,.-.,p|J-(g)}]^*„..„8,
The term contributed to this integral by ?;*i is proportional to

which is proportional to

nl

I

f
Now this is finite provided

2ki— :^^-2 >o;
that is, provided

2k^>l (18.239)

If this last inequality holds the series beginning with if'i will indicate

a state of strain in which the total energy in the disk is finite. Now
ki can have any of the four values in (18.231). If we take (/ + ^)

for ki it is clear that (18.239) holds. Again if we take —n for k^ it

is clear that (18.239) does not hold. If we take n for fe^ (18,239)

becomes

2ii>l, (18.240)

whereas if we take (/

—

n) for k^ (18.239) gives

2l^2n>l;
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that is,

l> zn (18.241)

Now omitting the critical case where zn == I (which needs special

treatment) one of the two inequalities (18.240) or (18.241) must be

true. If 2n>/ the series beginning with rj"^ is applicable to a complete

disk; while if zn<^l the series beginning with ?y'~" must replace the

one beginning with rj'^. The other series applicable to a complete

disk is the one beginning with ?y'+".

Thus we may write, when n>o,
z= Az^-\-Bz2 (18.242)

where 2^ is a series beginning with ?y'+", and 22 is a series beginning

with 7]^, k^ being the larger of the two numbers n and (/

—

n). More-

over this value of k^ is the index of the lowest power of tj occur-

ring in %. Thus we get the following values of k^ for the given values

of n and p.

n /5 l-n K

2 i 1 2

2 I 3 3

3 I 2 3

3 2 5 5

The series beginning with rf-^"^ is

x^^rf-\-n

I-f
m

m(m+2w)(m+ /)(w4-^+2w)

m.zmim+zn)(zm+zn){m+l)(zm-^l){m+l+2n)(zm+l+zn)

+ etc.

(18.243)

If we write the last equation in the form

z^==rji+''F(m, n, I) (18,244)

then the two series beginning with j^"' and r)^~"' are respectively

%=?y"F(m, w, -0, .
.• . . . .(18.245)

and ZQ = rj^-^F(m-, —n, I) (18.246)

It is useful to recall here that

Z=2 + 3^; m==4 + 2^.. . . .(18.247)

It is worth while to notice that, if ^^o, (in which case I ==2 and

m= 4.) the series in (18.243) and (18.245) become

Zi = 2«+lj?Hj {lu(x)-]n{x)},

and z, = 2^-^\n{In(x)+]n(x)} ,

1

X being fAJrj.
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The case where 2n = l is more troublesome because the value of 2

contains log?^. The solution of the differential equation (18.227) for

this case is given in the appendix.

339. The boundary conditions.

The boundary conditions for a disk with variable thickness cor-

responding to (18.174) and (18.175) for the uniform disk are

d^w / 1 dw I d^w\
^rT- + cj -— + --— =0, .... (18.248)
cr^ \r dr r^ du^

/

both the be true when ?• = a.

These two conditions reduce to

drj"^ \7] dt] f]^ I

,. d ( ^JdH
,

I d% nH\\ (i - o)n' d jz\
n^p —{v~^n >— -^^ — -;- — =0 18.251)

both to be true when rj = i.

Now if % = lCkYi^ . (18.252)

these boundary conditions become

2Ck{k{k-i)-]-ok-on''}=o .... (18.253)

lCk{(k''-n^){k-l)'-{i'-o)(k~i)n^)==o . . (18.254)

If (18.252) is the same equation as (18.242) each of the last two

equations contains two infinite series of powers of ^ multiplied by the

constants A and B. The two equations determine, therefore, the ratio

A:B and the constant fx, from which the frequencies of the modes of

vibration can be calculated. Just as for a uniform disk the equation

for fjL has an infinite number of roots. The equation for jll is of the type

X_ V
Y ~ W'

where each of the symbols X, Y, V, W, represents an infinite series

of powers of /a. Although some tedious arithmetical work is involved

in the calculation of the roots it will be found, when numerical values

are substituted for the constants, that the series converge fairly quickly

for the smaller roots; and it is the smaller roots that are important

in practical applications.

340. Vibrations due to rigidity; approximate method.

Lord Rayleigh's principle, which was used in Art. 163 for a thin

rod, gives excellent results for disks. The principle consists in assuming

a reasonable form for the deflection and then calculating the frequency
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from the energy equation. The fact that the slowest frequency under

any given conditions is the minimum frequency that the energy

equation can give under the same conditions for any assumed value

for the deflection makes it easy to get a good approximation to this

frequency. The method v^e shall use in applying Rayleigh's principle

is to assume a form for ij which is reasonably like the form suggested

by theory, and to leave one parameter in j to be determined by the

condition that the frequency calculated from this assumed value of 3

is a minimum. This seldom fails to give the frequency to within one

or two per cent.*

By (14.154) the elastic energy in a plate is

(v.^«')'-.(i-a)(i^l^:-fl^yil«, (.8.55)

Also the kinetic energy is

\dx'^ dy'^ \dxdy) I

T^lffiQhi^Vdxdy

Now in polar coordinates

_ ^ d'^w
,

I CIV
,

dx^ By'^ \cxdy) cr

If we now assume that

w
we get

dr'

C^Wl I cw

r cr

I dhv

=^\~^+
r cr

I c^w \ d li dw

XjAr^

(18.256)

(18.257)

(18.258)

%sm.pJsm{n6-\-a) (18.259)

, .^ .„ I dz n-z\ ^ ,

c^wc'^w / d^wY dHii dz n-z] . „ , . «, /. . n

cx^ dy- \dxdyj dr^ \r dr r^\ ^^ \ ^ }

— w^j — l-j[ sm.'^p.^tcos'^{n6-\- a).

since

' sm"' (ne-\-a)de= cos^ [nO-]- a) dO= 7t

,

o »/

o

Therefore, since
.2/1

\vc get

= ^7cE'sm^P2t

dH I dz nH \
2

dr^ r dr r- I

-2(1-0)
IdHfi dz n^z

[di'Ar dr r^
— ^/2

d{zr- h\2

dr

hh'dr.

* The device of expressing jo' in terms of a parameter and then
making ]r a minimum is propounded by Rayleigh {Somid, Vol I,

Art. 89). The method is elaborated and its usefulness stressed in the

paper by Lamb and Southwell on Spinninu Disks.
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Also
T= 7zp2 -COS -p2 1 j

Qhz^rdr

rtCL

= np.^ 2 ( I _ sin 2^2 /
ghz-rdr.

Jo
Now the energy equation

V+ T = constant (18.260)

is satisfied if the coefficient of sin^^^^ is zero in this equation.

Putting ari for r and assuming that h is equal to cr)~'^, we find,

by equating to zero the coefficient of sin'^jo.,^ in (18.260),

'' t/ o

«/ o

Ec^

,1-3/^

'[ d'^% I dz nH
\ df]^ rj drj r]^

Now it can be verified that

2 d'^z ^ Id{z7]-^)y_ d'^ (z

d'^zdz d ldz\^

"dri'^drj dfjydr])

Therefore (18.261) can be written thus

drj (18.261)

(18.262)

Ec2 Y z^rj^-^drj

=/
I dz

dt]'^ 7] df]

id'^z

i d-i (z^\ d /dzY\
r]-^^df] (18.263)

This is the equation from which an approximate value of p^- can be

found by using a reasonable value for z.

The disk has uniform thickness if ^=0, and in this special case

the term having the coefficient (i— a),in the last equation can be

integrated. Thus putting ^= we get, for a uniform disk.

Ec2

rUd-^z I dz w2«| 2

. (18.264)
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In the rest of this chapter we shall use the short symbol ju with the

same meaning as in (18.226). For a uniform disk c is identical with

h, and ju is what we previously denoted by k*a*.

Excellent results can be got from (18.263) by assuming for s a

short series of powers of r), the lowest power being the same as the

lowest power in the theoretical value of z. The constants in the

series can be chosen so as to make £ satisfy the boundary conditions.

If all the constants are determined from these conditions the value

of ^u given by (18.263) is often very good, but better results can always

be got by leaving one of the constants undetermined until fx has been
expressed in terms of this constant, and then choosing the constant

so as to make ju have a minimum value. The following examples will

make the method clear.

341. Free uniform disk making symmetrical oscillations.

The centre of a free disk making symmetrical oscillations does

not remain at rest; consequently one term in 2 must be a constant.

Let us assume that

w = A{i-\-ff}^-i-gr}^)smp,t .... (18.265)

We have here three constants A, /, g, but the constant A is of no

use to us because it merely introduces a factor A^ into both sides

of equation (18.263). Thus it is just as good to put

s;=i + /jy2_|_^^4 (18.266)

The boundary conditions are that the bending moment and shear force

on the rim are both zero. Since the shear force is always zero at

the rim it follows that the total momentum of the disk is constant,

and may be assumed zero. Now we should expect, in using an energy

method, that the condition that the total momentum is zero would

give better results than the condition that the shear force is zero at

the rim. We shall therefore use the momentum condition. This

condition is

27rr^-^rfr= o, (18.267)
a 01J a

which becomes, in terms of z and y] ,

/ ZYjdrj^o (18.208)
Jo

This gives 1 -|- J./--f-i-^ = o (18.269)

The condition that the bending moment is zero at the rim is

d'^w adw
/ o \

-^—r H r- = o where r= a\ (18.270)

dH
^
odz ^ /ox-—+ - — = where »7= I , . . . .(18.271

dri^ r] dr}
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whence

2f-{-i2g + o(2f-{-4g)=o (18.272)

If we take o = ^ equations (18.269) ^^^ (18.272) give

f=-ih9'=ii (18.273)

Now from (18.264) and (18.266) we get

4{r + 4f9+f9'}+4o{f+2g)^

= 83-86 (18.274)

KirchhofFs result for this case, given in the table on page 597, is

^=79-03.
Let us try another expression for s; let us take

z=i-{-fr]^ + gr]'^ (18.275)

dz
The first power of w must not occur in 2 because — must be zero

'
drj

at the centre of the disk. The condition for zero momentum is now

i+iA+i^-o (18.276)

The condition for zero bending moment at the rim is

(2/-+ 6^) + 0(2/-+ 3^) = (18.277)

Taking o = \ these two equations give

/=-«. 9=n-
Then

whence

/i== 80-54 (18.279)

If we had not already worked out the value of /^ from rigorous theory

we should still know that the last result is better than the one in

1^18.274) merely because it is smaller. Rayleigh's principle tells us,

in fact, that the theoretical value of jti is always smaller than any we
can get by this method.

Let us try still another way. Let us use the principle of zero

momentum to express the constant f in terms of g, and then, without

making the bending moment zero at the rim, let us find the minimum
value of ju.

Thus, from (18.276),

f=—2 — Sx,

where x = xV^'*

Then (18.278) becomes

^^40-28ox+ 940^^
.

. . .(,8.280)
21 y — itx+i^x^
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Writing 21// for /u and clearing of fractions we get

40— 72/— (280— i62/)x-|-(940— i32/)ic-' = o. . (18.281)

The extreme values of ?/ corresponding to real values of x are there-

fore given by the equation

(28o-i62/)=^=4(40-7t/)(940-i32/), . . (18.282)

or 2 7?y2_486oi/-f 18000 = (18.283)

The smaller root of this equation, which is the one we are seeking, is

10217y=
27

The corresponding value of ju is

/^=79'45» (18.284)

and this is the minimum value of ju given by (18.280). The error in

this is only o 5 per cent, and, since the frequency is proportional to

po, the error in the frequency is less than 03 per cent.

To find the radius of the nodal circle we have to find r by equating

2 to zero. Thus if we take the expression for 2 that led to the result

in (18.279) we get, for the radius of the nodal circle,

i+fv' + gv'' = o^ (18.285)

that is,

19— 54?;2_j_ 2o»;3 = o (18.286)

The root of this equation which lies between o and i is

-=^=: 0-687, (18.287)
ct

which compares favourably with 0'68o2 obtained in (18.136).

342. Uniform disk making symmetrical oscillations with
its centre fixed.

dz
Here 2 and — are both zero at the centre of the disk. Moreover

dr

we should expect the disk to have finite curvature at the centre. Then
the expression for c should start with rj^. Therefore we take, for

the slowest mode,

z = rj^ -{- frj^+ gy]^ (18.288)

The boundary conditions are that the bending mon^ent and shear

force are both zero at the rim; that is

dH
.
odz

/ o o ^= (18.289)
dt]'^ Tj drj

\d'^z I d.

di] \drj^ T] dr]

d [d'^z id%\ re.
both where ^1=1.
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These give, assuming that a =
-J-,

2+6/'+I2^-fi-(2+3/-+45r) = 0, . . .(18.291)

and

9f-h 329 = 0; (18.292)

whence

f=-lh 9= A (18.293)

Now from (18.264)

whence

y"= 14*28= 1-944*, (18.295)

which differs by about 3 ^ from the value of (feo)* derived from

(18.164).

A slightly better result can be got by substituting the actual value

oi f OT g from (18.293) in the expression in (18.294) and then taking

fj,
as the minimum value of the fraction for variations in the other

parameter.

343. Free uniform disk vibrating with two nodal diameters.

Theory tells us that the lowest power of r in the expression for 2

for a disk vibrating with n nodal diameters is r". Then for two nodal

diameters we may take

^ = 9^2 + /jy4 (i8.29e))

With this value of^ equation (18.264) gives

_^ 24r-^+ (i-a)(8 + 24/'+i2n
^

i+ ir+iVP
^240^^+ ^'7^^^,+ y,^^^^

. . . . (18.297)

The minimum values of this fraction for variations in f are

/^ = 30-64 (a = 025) . . . . (18.298)

ju= 28'gb (0 = 0-3) (18.299)

It will be safe to extrapolate from these two to get /x when o =
-J-.

This method gives

// = 27-84 (a= |) (18.300)
These values ,of ^ differ from the values in the table on page 597 by
less than one per cent, which corresponds to one half per cent in the

frequency.

If we take z = i]^-^9r]^ (18.301)

we get

_ ^^'+ (i-a)(iiff^+ 20^+ 8)

^ i-{-y-hi9'

_ 25p^4-4(i-o)(ii^^4-20^+ 8) ,,o,^,x= 4^
2i,^+48,H-28 •

• -^^
(^^-^^^^
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The minimum values of this fraction are

/*= 30'43 (o =
-l) . (18.303)

yte= 27-64 io = ^) (18.304)

These differ by only 0*2 per cent from Kirchhoff's results, the con-

sequent error in the frequency being only o'l per cent.

If the disk were attached to a shaft of radius b it would be more
accurate to regard the disk as clamped at r^b. In that case the

integrals expressing the energy should be taken from r = 6 to 7' = a;

that is, from r] = -to r] = 1. Also we could assume as the expression
ci

for 2,

.=(,_^y+^(,_Ay.
. . . .(,8.305)

This satisfies the conditions at the inner boundary r = b. When a

numerical quantitiy is substituted for - the procedure is the same as
a

in the example we have just worked out.

344. Uniform disk vibrating with one nodal diameter.

If a disk of radius a is clamped at all points of the circumference

of a concentric circle of radius bj so that w and -;:— are both zero
cr

where r = b, it is possible for the disk to vibrate with its edge free

in a mode with one nodal diameter and no nodal circle. Mr. R. V.

Southwell* has shown that, when - is infinitely small, the period of
a 1^

this vibration becomes infinite. When - is less than about 0*04 he
a

has shown that

16
A:*a* = approximately . . . (18.306)

log,
I

From this we calculate

/c4a*== 4-969 (rt=25i), .... (18.307)

^*a'^=3'474 (a==iooi>) (18.308)

The case of a free disk with one nodal diameter and one nodal circle

yields fairly well to the approximate method. Thus let us assume

w = zsmp2ts\ii6 (18.30Q)

* On the Free Transverse Vibrations of a Uniform Circular Disk Clamped
at its Centre; and on the Effects of Rotation, by R.V.Southwell, M.A.

;

Proc. Roy. Soc, A, Vol loi, 1922.
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The nodal diameter is the one where 6 = 0. Now it is clear that the

angular momentum of the whole disk about this nodal diameter is

zero during the vibration. The condition for this is

\ —rsm0QrdOdr= o, . . . . (18.310)

which is equivalent to

gp.2Cosp2t / xr^sm^9d0dr=o

Since z is not a function of 6, and since the last equation must be

true for all values of t, the equation becomes

Jo t/o

whence
^

o o

zrj^dfj^o (18.3 11)

Now when n=i the lowest power of tj in the expression for 2 is rj

itself. Then let us assume

^-V-\-fV^ + 9t (18.312)

The condition ( 18.31 1) gives the following relation between f and g

i + if+i9= o (>8.3i3)

Equation (18.264) gives

Using (18.313), and taking o =
-J-,

we get

where x^^^g. The minimum value of this fraction is

)u^447-^, (18.316)

which differs from the value 416*53 given in the table on page 597
by 7*5 7o 7 corresponding to an error of about 3*6% in the frequency.

This is not so good a result as we got for the lowest frequency

with n = o or 71^=2. The difficulty seems to be due to the nodal

circle. A better result could be got by taking an extra term (and

therewith an extra constant) in the expression for 2 and making the

bending moment zero at the rim.

345. Uniform disk supported without clamping at the rim,

The boundary conditions for this case are

«==o \ (18.317)

d'^z /i dz n^z\ > where rj = i

d^^'^''[^d^~'^)^''} (18.318)

39*
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For the first symmetrical mode of vibration, where //=o, we may take

either of the forms

z=i+frj^-{-grj^ (18.319)

or z= I ^f^f-^grj^^ (18.320)

and find / and g from the boundary conditions. The resulting values

of ju for the two values of c are, when a = 0*25,

ju = 2y7i (18.321)

/^ = 2373 (18.322)

These are both so near the value 23.60 given in (18.219) that further

refinements are unnecessary.

346. Uniform disk clamped at the rim.

Here the boundary conditions are

dz
z= o^ — =0, where rj = i .... (18.323)

dtj

For the first symmetrical mode we may take the same expressions

for ^ as for the supported disk, that is, the expressions given in

(18.319) and (18.320).

When the constants / and g are chosen so that 2 satisfies the

boundary conditions the values we get for ju corresponding to the two

expressions for 2 are respectively

/i= 105-00, (18.324)

/x= 106-67 (18.325)

both of which are very near the value 104*2 given in the table at

the bottom of page 597.

347. Symmetrical vibrations of disk with variable section.

When the thickness of the disk is crj^f^, the lowest power of rj

that occurs in the expression for z for a disk vibrating in sym-
metrical modes was shown in (18.237) to be rj^+^t^. This is com-
plicated a little by the fact that ^y'-^+^Z^ log tj actually occurs in 2: but

we know from the corresponding problem for a uniform disk that the

omission of the factor log ri in the energy method does not seriously

afTect the accuracy of this method. Then we may assume

z=^ifr'irj'^^frj-'^Jr9V^) (18326)

Since the method is very cumbersome unless we substitute a numerical

value of /? we shall work out the value of /u when ^ = i. In this

case z=^r]'^-{-fr]^-\-gr]'^ (18.327)

Then (18.263) gives, with w = o,

i"
=

r^[ idH idxY ^
. d (dz

f z^rj^-^'dr}

7'j~^t^drj
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With the present value of c this becomes, assuming o =
J-,

We got a good result for the uniform disk vibrating in the same mode
by using values of the constants determined by the boundary condi-

tions. These boundary conditions are, for the present case,

d'^z o dt

dfj^ rj ctrj

d r .JdH .
i_d^\']

y drji\

(18.329)

where f] = i

(18.330)
df]

\_
[df]

from which

85 + 126/"+ i755r=o, . . . , .(18.331)

and 36/-+ 98^ = (18.332)
Therefore

f=-iW- 9^iU (18.333)

which are very nearly the same as

r—f, g= i (18.334)

Using these latter values we get

3^ilZ:^= ^ = .88-46 . . . .(.8.335)

It would not require a great deal of labour to test the accuracy of

this result from the exact equation (18.237), for the series for s;, and
Z2 in (18.234) and (18.235) converge very quickly for this value of ju.

348. Vibrations of a disk of variable section in modes
with nodal diameters.

For a given value of ^ equation (18.263) will give a good value

of p2^ when a suitable expression for 2 is used. The important thing

to remember for the disk whose profile is given by h = crj~^ is that

the series for z should start with 7^^ or 9^^~" according as n is greater

or less than (/— n). The reason for this is given in Art. 338. Thus
if ^ = J then / = 2 + 3 /? -= 5. Therefore /—w> w if n= 2 , and the

series starts with tj^. Then we might take such forms as

or ^3^ j^3_|_^^5

for the mode with two nodal diameters.

It will be wise in a practical example to use two or three different

expressions for 2 and calculate /u from each, and then adopt the

smallest value of ju obtained. If the values of ju thus calculated differ

but little from each other it is probable that they are all near the
correct result.
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349. The vibrations of a disk rotating ^vith uniform speed.

We require first of all the energy equation for a rotating disk.

Since the energy due to spin remains constant we need not bring this

into our equations.

cw
Multiplying equation (18.3) by 2h-^, and then replacing fe^Vi*^ by

CJt

Vi^(^'^Vi'^w;), so as to make the result applicable to a disk of variable

thickness, we get

r dr \

dw\dw 2hQ d^w dw

If we multiply this by rdrdOdt and integrate both sides, the limits

of integration for r and 6 being such as to cover the whole disk

and the integration with respect to t being from any lower limit up

to t, the last term on the right hand side of the equation is

2Qh^—--—rdrdOdt, (18.337)II' c't^ ct

,which is the same as

-JMi) rdrdO (18.338)

This last expression is clearly the kinetic energy of the disk. The
rest of the terms in equation (18.336) must therefore represent the

potential energy. We already know what form the terms having the

factor E take. We shall now put the terms containing P and Q into

more convenient forms.

Thus, if the limits of integration with respect to r are h and a,

we get

rLSLl h^v^-^— 'd-

Jb r dr\ c)r ) dt

dr ct jb Jb cr crct
. (18.339)

Now at the outer rim P = o, and for a complete disk, r = h = o
at the other limit. Therefore the integrated term vanishes at both

limits for a complete disk. If h is not zero but the disk is clamped at

cw
r= b^ then — =0 at the inner boundary; therefore in this case also

dr

the integrated term vanishes. Consequently

/ - — zhrF -— — rdr= — / 2hrF —- ,^— dr.
J r dr\ cr I dt J dr crct

Integrating both sides of this last equation with respect to t we get
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//7l(-*l)l'*"-/"'KS)'*- •
'««"

Consequently

In the same way we can prove that

Now let

/MS''**' <"''«3>

-.=//l»(S)'+'«(5)V'- (18.344)

'-1 rii//*i"=''-''-"HSS^-©'l]** '»->•

By means of (18 257) and (18.258) Vg can be expressed entirely in

terms of polar coordinates. When (18.336) is multtplied by rdrdOdt

and integrated, the resulting equation is

Vi+V2 + T = constant (18.346)

Now by the assumption

w = usmpt ....... (18.347)

equation (18.346) gives

(Ui4-U2)sin-^i?^ + p2T'cos2jo^ = const, . . {18.348)

where \]^ and Ug differ from V^ and Vg only in containing u instead

of w\ and T' differs from T in having u instead of — . From equation
(jt

(18.348) we find

p^-V = U, + U2

,

whence

P.=^-^^ (18.349)

Now suppose u is the correct function for the particular normal mode
we are dealing with; and suppose n^ is the correct function for the

same mode when the rigidity is negligible, and u.^ the correct function

for the same mode when there is no rotation. Also let U,
(?,«f)

be

written for the value of U, when u-^ is substituted for u. Then, p^
and p^ being the values of p due to centrifugal force and rigidity

respectively,



6l6 APPLIED ELASTICITY

But by Rayleigh's theorem

t^^tW)' ^ ^^' ^

and
U^)^U,(^

3

Therefore, by addition,

Pl'+P-2'<P' ('8.354)

Moreover, if any function u^ but the correct function u be used in

(18.349), the resulting value of p'^ is above the true value. That is,

p <—T>.;)
— "^-3^5)

Thus when ;;,
- and jt?^ ^ can be found exactly for any given mode we

can find two limits between which p- must lie. Lam'b and Southwell,

in the paper quoted earlier in this chapter, worked out the following

example for a uniform disk to illustrate this point. The disk is

vibrating with two nodal diameters. Also

E = 2Xioi2, ^ = 7-8, a = 00, h=i, (o =10071, (18.356)

in C. G. S. units. With these values of the constants they find

^=2-3750ox 10*, -^= 2-16485 X lo*. . (18.357)
71' 71"

Therefore

->^^^^^-^—i.e.> 213-07. . . .(18.358)
71 71

Next putting

^3 = (iH-/'^)(h sin2^sin;?^ . . . .(18.359)

in (18.355), ^^^ choosing /"by making the right hand side a minimum,

they find

-<2I374 (18.360)
71

Thus the frequency lies between two limits which differ only by 0*3 %
This shows that it is a good enough approximation in any practical

case to use the equation

.^- = 7',- + 7^./' (18.361)

where pf and p^^ are found either by approximate or exact methods,

provided only that care is taken to get somewhere near the minimum
values of the fractions from which the p's are calculated.
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350. Vibrations of a turbine disk.

In using Rayleigh's method for a turbine disk T should include

the kinetic energy of the blades as well as that of the disk itself. It

will usually be accurate enough to regard the blades as perfectly rigid

bodies, and thus assume that the kinetic energy of each blade is the

same as that of a rod oscillating through the same angle as that through

which the radial tangent to the middle surface at the point of attach-

ment oscillates. That is, if the equation assumed for the deflection

of the disk is

w= f(r) sin {nO -\-a) sinpt

the angular displacement of a radial line at the rim r=a of the disk is

(dw\

= f'{a) sin (nO -j- a) sinpt ,

and therefore the angular velocity of the blade attached to the rim

at e is

-^=pf'(a)sm(n6-}- a)cospt . . . . (18.362)
dt

If the blade is a uniform rod of mass m and length / its kinetic

energy is iw^^(-;r-) • Still more accurate results can be got by

treating the blades as part of the disk, and assuming that they take

a curvature during the vibrations, so that they contribute to both the

kinetic energy and the potential energy. It is, however, a very com-

plicated task to take proper account of the energy in a blade if we
assume that it bends, for, owing to its shape it will not bend into a

curve v/hose plane is perpendicular to the middle surface of the disk.

It is best therefore—and in all cases will probably be quite accurate

enough—to treat the blades as straight during the vibrations.

The thickness of an actual turbine disk is not usually proportional

to a single power of r from the centre to the rim. If it is not con-

sidered that a good enough approximation to the period can be got

by assuming that h = tj-^ over the whole of the disk then the actual

value of h mLj be used in (18.344) and (18.345). A value may then

be assumed for 2 such as

^ = v'i'+fV+9V')^ (18.363)

and this expression may be used, with the same values of the constants

/ and g, over the whole disk. Then p^ can be calculated by getting the

minimum value of the right hand side of (18.349) for variations in /
and g. It would probably be best to work out p^ for different values

of k. If there is a very violent change in the shape of the disk at

some particular radius it would improve the accuracy to assume two



010 APPLIED ELASTICITY

different equations for ;: in the two portions of the disk. In that case
we should take

in one part of the disk, and

z = rj-^(i+f,rj-\-g,rj^) (18,364)

dz
in the other part. It would then be necessary to make z and — have

dri

the same values at the junction of the two parts. Thus k and nt could

be chosen to suit the two parts, and /^ and g^ could be expressed in

terms of / and g by means of the conditions for the continuity of

, dz
z and —-

.

diq

351. The possibility of stationary nodal diameters.

The arguments used in Art. 328 concerning the rotation of the

nodal diameters can be applied to any of the disks with which we have
dealt in this chapter. Thus if

w = f(r)sm{nO -\- a)smpt .... (18.365)

represents a normal mode of a disk whether the controlling force is

tension, or rigidity, or both, then

w==f{r)sm(ne±pt + a) .... (18.366)

is equally a normal mode. In the vibration represented by the last

value of w the nodal diameters rotate, relatively to the. disk, with

P
angular velocities + -. It follows that the nodal diameters may be

at rest if

P— = CO.
n

In the case of the turbine disk the nodal diameters may be at rest, or

moving slowly, if

pC'-^P^-n-'cD^^ (18.367)

352. Dependence of periods of vibration on amplitude.

Throughout this chapter no account has been taken of the effect

on the periods of vibration of a disk due to the stretching of the

middle surface. The work in Chap. XV show sthat the restoring forces

due to stretching, instead of being proportional to deflexion, as the

other restoring forces are, are proportional rather to the cube of the

deflexion. If the terms due to stretching be introduced into (18.346)

it will be found that the fourth power of the amplitude occurs in

these terms and the square of the amplitude in the other terms. Thus
when the square of the amplitude is divided out there are left in

the equation terms containing the square of the amplitude, from which
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it follows that the frequency depends on the amplitude. The frequency,

in fact, increases with the amplitude.

If the maximum deflexion in any vibration is less than one fifth

of the thickness of the disk the theories of this chapter can be re-

garded as practically accurate; for a maximum deflexion equal to the

thickness the frequency might be, according to the particular mode
of vibration, lo to 25 per cent greater than we have calculated. In

fact, for large amplitudes, the motion cannot be resolved into normal

modes of vibration; and probably there are no pure vibrations at all,

but only an irregular wobbling in which amplitude and period both

change considerably from one vibration to the next.



CHAPTER XIX

. ELASTIC BODIES IN CONTACT.

353. Elastic body with no accelerations and no body forces.

The equations (2.28), (2.29), (2,30), together with the boundary

conditions, determine the displacements of an elastic body with given

body forces and given accelerations. In a region where X, Y, Z,

/j> /s' fz> ^^^ ^^^ ^^^^ these equations take the forms

^ + (i-2a)V2w = o, ...... (19.1)

^ + (i-2a)V2t^ = o, (19.2)
dy

dA
_|_(i_2a)V*'^w; = o, (19.3)

n
(i —20) being substituted for —

.

m
Also the stresses are given in terms of the displacements by such

equations as

and

{dv
.
dw\ , .

s^ =
H6-.+ a^j

<'9.5)

When zero is put for X, Y, Z, in (2.31) that equation becomes

V^A^o (1Q.6)

There are many known solutions of this last equation, which is known
as Laplace's equation. Among the simplest and most useful are the

functions called Spherical Harmonics in Thomson and Taifs Natural

Philosophy.

If r2 = a:2_|_2^2^^2 (19.7)

it is easy to verify that

VM-)=o (19-8)©-»
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Now let us write Da; for — . Then, by differentiating throughout the
dx

last equation with respect to x, we get

that is^

V^{d.(^)| = o. ...... .(19.9)

By repeating this process any number of times we get

V^JdL(:J)J
= o, (19.10)

/ being any positive integer.

In the same way it follows that

vAd',d:d:(^]\^o (19.11)

Thus we find that a solution of the equationW = o (19-12)

<P
= b',D^D:(^^^ (19.13)

/, m, n, being integers.

Again it is not necessary that /, m, or n, should be a positive

integer: for

v.(D,.(i)|=i.-v.(i)-/v(^)-.

and one possible value of this quantity is clearly zero.

Thus the value of 9? given by (19.13) is a solution of (19.12) for

all positive or negative integral values of /, m, n.

Let 95 be any solution of (19.12), and let

dw
A=2(i-2a)-5. ...... (19.15)

Then clearly A satisfies (19.6). Also (19.1) gives

A particular integral of this is

^^« = -^£l ;
• •

•<'9-6)

dw
.^; ....... .(19..7)
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for, with this value of u.

. d'^ ^ C02 d'\ dcp
^ti. = — I

1 % —!-

.dx^^Sy^^dzy Sx

~ ~ "^
\Bx^^ "^

Bz'l dx ^ dx dxdz

Bxdx

the coefficient of 2 being zero in the second line by (19.12) and (19.13).

A more general solution of (19.16) is

u=-z-;^-\-y?,, (19.19)

where yj^ is also a solution of Laplace's equation; that is,

Wi=o (19-20)

Likewise the values of v and w corresponding to the assumed value

of A are

«^ = -^^ + V^2' (19-21)

and

«^ = -^^ + V^'3» (19.22)

^2 and y'g being also solutions of Laplace's equation.

The three functions of ip^, yj^, y)'^, are not independent since

A depends on u, v, w. Thus

du dv cw

dx dy dz

^ ^ cz^ dx^ dy^ dz

cz dx dy dz

Therefore

cx cy cz cz oz

Our results will be in a slightly more convenient forms if we put

V^'3 = V'3+(3-'4o)9? (19-24)
Then (19.23) becomes

dw^
, dwn , dw-i

,
.

-f^ + -T^+-Y^=o 19.25)
dx dy dz

Also the equation for w is

^^—^^ + {o—4o)(p + y^s (19-26)
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We get a particular solution by putting

dw dw dtp
,

"f^'-ii' ^^=a^' "f'^H <'9-'7'

Since \p must satisfy (19.25) we get

VV = o, (19.28)

so that \p is another solution of Laplace's equation. Thus a set of

particular integrals of the equations of equilibrium are

c}\p. d(p

dx ^ dx'

v=

w

dip d(p

dy

dtp

dy'

d(p

A = (-4a)g.

. (19-29)

• (19.30)

• (19.31)

• (19.32)

The stresses corresponding to these displacements are

\
dip d^(p

,

d^ip

Si

S2

2n
d^ip

dz

e^(p

dydz

1 d^xp

\dxdi

83 = 2n

dydz
(1-20)

ez^

dcp

ey

dxdz

d^tp

d^(p c(p]

^e^z-^^'-^'^exl

I dxdy dxdy

f

• (19-33)

. (19-34)

• (19-35)

- (19-36)

• (19.37)

- (19.38)
cixdy dxdy

354. Pressure concentrated at a point on the

surface of an inRnite solid.

Suppose a concentrated normal

thrust W is appUed at the origin

to an infinite elastic solid which is

bounded by the plane z=o and

extends throughout the space where

z is positive. The stresses on the

surface z = o of this solid are

P3, Sj, 8-2, as shown in fi^. 178.Fig. 178
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Our object is to make these three stresses vanish except at the

origin O.

Now clearly S^ and So will be zero over the plane z = o provided

that

cw
jZ^-i^--^'^^' (^9-39)

and provided also that — is finite over this same surface. Let us
dz

therefore assume that (19.39) ^^ true. Then

S,=—2nz-—^, S., = — 2nz -;r~- , . • . (1Q.40)
dycz cxcz

(Sep d^(p \
• • . (19-41)

It is only necessary that — should contain a factor z in order that
dz

P3 may be zero over all the surface z= o. If we take

I

^=7 . . (1942)

then

d(p z d-(p I 3^2^

dz
~

r^' dz^
~ ^3 1 ^5 ' • •

. • (19.43)

and consequently

. . (19.44)

. . (1945

These stresses are all zero at the surface x = o, except possibly at

the origin where r is also zero. Let S be written for the resultant

of the component shear stresses S, and S,. Then, since —S^ and —S,

act parallel to the axes OY and OX respectively, and since

g S r,2—^-=-^ = 6n— , .... .(19.46)
y X r^

it follows that

S2-=36»'(a;' + j-2)(jy=36»V2(^', . .(1947)

because r^ == x^ + V^ ^^ ^^e plane z = o. Therefore

S= 6n-^r (1948)
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and S acts on the surface of the body along the radius vector from

the origin to the point {x, y, o). Thus the stress system we have got

is symmetrical about the ^t-axis.

To find the resultant force at the

origin we may consider the equilibrium

of a small cylindrical portion of the solid

having the s;-axis as its axis of sym-

metry. Suppose F is this resultant. Let

the faces of the cylinder be in the planes

z=o, % = c, and let the radius of the

cylinder be a. We may assume also

that - is infinite while a itself is finite.
c

On these assumptions the resultant of

the shear stress S acting on the infini-

tesimal curved area of the cylinder is

zero

therefore equal to —F. Thus

Fig. 179

The resultant of the stresses Pej on the circle of radius a is

where

But

therefore

= -/ iTiQdgV^ (1949)
'y o

^2= ic2_j_^2

P = _ 6 W — =
^ y.5

6n

(Q^+C^f

F= I27in

= 1 2 Tin]

13(q' + o^)

47in < I

(^2 _^ c2)^

(19-50)

which becomes, since — = o
,

a

If we had taken

¥ = 47171 (19-51)

W I

9^ (19-52)
4Jtn r

instead of (19.42) we should have got finally

F = W (19.53)

The displacement w corresponding to 9? is, by (19.31) and (19.39),

(19-54)

40

w= 2{i—o)q)— z—
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whence we get, by means of (19.52),

W \2{t-o) z^\
^ ^

At the surface z = o this becomes

w=^ 19-56)
27in r

The concentrated force W is the only external force acting on the

body, and the stresses and displacements are due entirely to this force.

The stresses due to W are

^^"""^7^' -'-""^7^' ^'~~~^V^' -('9.57)

355. Distributed pressure on the face of an infinite solid.

The solid we are dealing with here, as in the last article, is supposed

to be bounded by the plane z = o and to extend throughout the

infinite space where z is positive.

Let Xi, 2/1' ^^ *^^ coordinates of a point in the plane z=o, and

let the pressure per unit area applied at this point be p, which is

supposed to be a function of x,^ and y^. Thus the force on the area

dx^dy^ is pdx^dy^. Let

R^= ix-x,Y+ {y-y,)^ ..... (19.58)

so that R is the distance of the point (.r, y, o) from the poim

(^1) 2/1 » o) where the force pdx^dy^ is applied. The displacement

dw due to this pressure is, by (19.56),

i — opdx.dy.
,

.

mn R
It follows therefore that the displacement w at (a:, y, o,) due to the

distributed pressure p on the plane « = o is

^^l^rrv^
^_^^^^

ZJinJ J R
This result can be got immediately by putting

j^^rrpdx^dy^
(,9.61)

in (19.54) and then putting z = o. It is easy to verify that this value

of (p satisfies Laplace's equation.

iWe now require to find th€ displacement w of a point (x, y) in

the plane %=^o.

Let A and B be the points (x, y) and [x^y y^) in the plane ;t = o,

(fig. 180). Also let

r2^xf + y^\ ri2 = :r,2 + y,2 .... (19.62)
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Then, taking to be the angle between

R and r, we get

ri2= ,.2_|_R2^2Rrcos(9 . (19.63)

If we use polar coordinates R, 0, in the

integral in ( 1 9.60) the element of area which

replaces dXydy^^ is ^dRdO. Therefore

w= -—- llpdRde, . (19.64)
27in J J

p being here regarded as a function of

R and 0,

Fig. 180

356. Spherical depression produced by pressure.

Equation (19.64) gives w when f is known as a function of R
and 0. It does not give p when w is known. The pressure distribution

which gives rise to a spherical or ellipsoidal depression— the types

of depression due to the squeezing together of two bodies— are

suggested by the theory of potential. In that theory it is shown that

the potential at {x, y, z) due to a distribution of mass q per unit

area at {x^
, y^ ) on the plane ;& = o is

-"ff'i
Qdx^dyi

yR^z'
. (19.65)

Thus we see that w in (19,60) is the potential in the plane s; = o due
to a mass distribution

(19-66)
2Tin

per unit area. By means of this link the known results in the theory

of potential suggest corresponding results in the theory of the elastic

solid under pressure.

The case of a spherical depression can easily be worked out without

any reference to the potential theory, and we shall confine ourselves

for the present to this case.

Let us assume that a pressure p acts over a circle of radius a
having its centre at the origin, the pressure at radius r^^ being

j9 = C(a2-»v2)Y . (19.67)

The pressure outside this circle is assumed to be zero. In this case,

since p is symmetrical about the *-axis, the deflexion w will also

be symmetrical about that axis; that is, the deflexion w oi a. point in

the plane z = o is a function of r only.

In Fig. 181, in which KLH represents the circle over which, p
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acts, let ON in the perpendicular

from the origin on the line of the

radius vector R, which is the vector

from A to B, and let the length of

ON be b. Let

t^ = NB = rcos(9 + R; (19.68)

then

rj2 = ^2_|_i2 (19.69)

Therefore the pressure at B is

p = C(a^— b^-u^)^. . (19.70)

pjg jgj In integrating the expression in

(19.64) with respect to R, both r and

6 are constants. Therefore, from (19.68), du = dR; consequently

fpdR=fC(a^-b''—u^)idu .... (19.71)

If we take this integral between the limits at H and K in Fig. 181

then the limits for are o and jz. Now

HN = NK = |/a2-62 (19.72)

Let us write p for (a^—b'^) ; then the limits for w are from —/ to -\-l.

Therefore

fpdR = f C(P—u^fdu

Finally

= |^a2 = ^7rC(a2_&2)

= -^jrC(a2-r2sin2^) . (19.73)

w -—-Tl7iC(a''-rHm^e)de
2jinJo "

I—

a

2Tin

(i— o)7iC

4?^

|7iC(a2-^r2)jr

(a2-|r2). (19.74)

This gives the displacement w in the direction of the pressure at a

point in the circle where the pressure acts. The deflexion at the centre

of the circle is

4n

We may therefore write, whenr<:a,

(1975)

(19.76)
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If Wq is small in comparison with a the displacements over the circle

of radius a form approximately a spherical dent in the surface. The
displacement at the edge of the circle is Iw^.

To find the displacement at a point outside the circle over which

the pressure is applied we must

adjust the limits of integration with

respect to 0. The limits for u are

exactly the same as before, as

fig. 182 shows. In this figure R
denotes AB and u denotes NB.
Thus the limits for u are clearly

+ (a2—&2)"2^ as before. The upper

limit for 6 is, however, the value

of at T, and the lower limit is the

negative of this. Therefore, if 0^

denotes the angle OAT, at a point

outside the circle of pressure

we get

2 7inJ-G^

Fig. 182

w

(i-o)CM
t (a^ ^r^-{-lr^cos2e)de

4n J-O,

(i-a)C

4n
|(2a2_r2)sin-i-+a(r2-a2)'^'|

M(2a2_r2)sin-i- + a(r2-a2)^l . . .(1977)

It is easy to show that

this last expression for w
is zero when r is infinite.

The displacements re-

presented by (19.76) and

(19.77) are shown in fig- 183:

The total thrust on the

face of the solid is

|Wo

— a a

Fig. 183

/'
P^ 271

pdx^dyi= 2nr^pdi\^—Ca\ . . .(19 7^)
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357. Two bodies in contact.

Although the theory in the last article applies strictly only to an

infinite solid bounded by a plane that same theory will nevertheless

apply very accurately to a body which is neither infinite nor bounded

by a plane; it is only necessary that Wq should be small in comparison

with a, and a small in comparison with the radius of curvature of the

body at the place where the pressure is applied. Both these conditions

will hold *for most cases of bodies pressed tcvgether as long as the

stresses are within the elastic limit. Thus if a sphere is squeezed

between two parallel planes the displacements in the sphere and in

the two bodies in contact with it in the neighbourhood of the areas

of contact will be very nearly the same as those given by the theory

of the last article. Making this assumption we can find approximately

the change of shape of two spherical bodies when they are pressed

together. As a particular case one of the bodies might have a plane

boundary. Moreover the theory also applies to two bodies which are

not spherical near the area of contact provided only that the area of

contact under pressure is circular. Thus, for example, the theory

applies to the case of two equal cylinders in contact with their axes

perpendicular to each other.

Suppose two solid bodies, A and B, are in contact at a point O
with no pressure between them. Let OZj be the normal to the surface

of the body A, the direction OZ, being towards the inside of the body.

If X, y, 2^, are the coordinates, referred to rectangular axes OX,
OY, OZj, of a point on the surface of A, the equation to the surface

in the immediate neighbourhood of O is shown in books on solid

geometry to be

z^^aiX^-\-biy^+2h^xy, , (i9-79)

a^, h-^, h^, being constants. This equation is called the indicatrix of

the surface of A in the neighbourhood of O.

Again if OZg be the normal to the surface of the body B, the

direction OZ, being towards the inside of B, and therefore contrary

to the direction of OZ^, the equation to the surface of B in the

immediate neighbourhood of O is

%2 = a2X^ -{- Kjy^ -\- zh^xy (19.80)

Now let

Z = Z^ -f- Z2

= {a,+ a,)x^ + ib,+ b,)y^ + 2(h,+ h,)xy. . (19.81)

This last equation is the equation to the surface of A relative to

that of B, and is called the relative indicatrix of the two surfaces

at O. The curvatures derived from the equation are the relative

curvatures of the two surfaces, that is, the difference of the curvatures
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of the two surfaces, these curvatures being both reckoned positive

when their convex sides face the same way.

We intend at present to deal only with the case where the relative

indicatrix is a circle. We shall therefore assume that

/j^+;i^=o, (19-82)

a^^a^ = b^+b,. ...... (19-83)

Writing k for the common value of (fli+fla) ^"^ (^i+^2)» ^^^ equa-

tion to the relative indicatrix is

z==k(x^ + y^) = kr^.. (19-84)

Let us now suppose that the two

bodies are pressed together and that

the surface of contact is a circle of

radius a. In that case a spherical

depression is made in each body, and

the normal displacements in the two

bodies within the area of contact

(measured in each case from the

tangent plane to the unstrained sur-

face) are, by (19,74) >

K

z.

'"Z-Str^^
•.^^^"^ ^^~~' _^-'' ^*'*'*^

B 0, H

Fig. 184

Ws =

«;,

(i-ai)C

(i-g2)C

4^2

(«^-ir^)

(a2_ir2)
(19.85)

Here w^ is measured from the plane O^H in the direction O^Z^, and

w^ is measured from the plane OgK in the opposite direction.

The constant C is the same for both bodies because the pressure

p is the same for both. The elastic constants need not, of course, be

the same for both bodies.

The distance of a point on the strained surface of A from the

plane O^H is (z^-\-w^, and the distance of a point of the strained

surface of B from OgK is {z^-\-w^. If d denote the distance between

the two planes O^H and O^K we must have, in the area of contact.

whence

^'l + «^2=^— («L+ %)

to express C in terms of W,or, using (19.78)

Since this is true for all values of r

8jia\

less than a, we get

d, . . . .

(19.86)

(19.87)

(19.88)

(19.89)
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and 3W (i— Oi i— o^\
,

. .

If the forceW between the two bodies is known then equation do.go)
gives a; and this equation shows at the same time that a'"^ is pro-

portional to W for the same two bodies in contact at the same points.

The constant k is known and is, in fact, the relative curvature of the

surfaces of the unstrained bodies at the point of contact. Thus

(19.91)

Also

k= a,-{-a^ = —
[
—

2 \(j

A: = 6i + fe,= -f^ + ^') (19.92)

By (19.67) we see that the maximum pressure is

3W

Since W is proportional to a^ it follows that p^ is proportional to W.

358. Particular examples of a sphere on a plane, and a

sphere on a sphere.

Suppose a: steel ball with a diameter of half an inch is thrust against

a plane face of a much larger steel body, the total thrust between

them being 500 pounds. We shall find the maximum stress and the

area of contact.

Let us suppose that n and o have the same values for both bodies.

We shall take

^1=^2== 6000 tons per square inch, 1 . .

Oi = o^ = 0-3

Now from (19.90)

^ 3(1-^1) w
(19.95)

Sji kn^

But k denotes half the sum of the curvatures of the sections of the two

bodies by any plane containing the common normal. In this case k

is merely half the curvature of the sphere; that is,

I
= -^ inch (19-96)

Therefore

3 3(i-<^i) 500 u • ua^ =^—; cub. mches
8ji 12000x2240

=7^ <'-"•
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whence

«=g—-inch (19.98)

Again the maximum pressure is, by (19.93),

3W
^0 = ^2' (^9.99)

which becomes, by means of (19.99),

^0'= 797 tons per sq. inch .... (19.100)

This is a very big stress, but if we reduce the load to half a pound

instead of 500 pounds the maximum stress is only thereby reduced

to 797 tons per square inch, which is still a big stress.

If two steel balls, each having a diameter of half an inch, were

pressed together with the same force W, the maximum pressure would

be 2"^^ as much as for the sphere and plane; for, in this case, since the

curvature of each sphere is 4,

^ = i(4 + 4) = 4 (19.101)

which is twice as great as for the sphere and plane, and it is found,

when a is eliminated from (19.95) ^^^,(19-99), that^^ is proportional

to k^.

359. Cylindrical depression on the plane face of an infinite

solid.

We shall assume that the pressure p is distributed over the rectangle

in the xy plane whose sides are ic=4:^» 2/ = d:^ We shall also

assume that the pressure p at {x^, y^) is an even function of a^^ and
is not a function of y^; that is,

P = f{^i^) • • (19-10^)

By equation (19.60) the displacement at {x, y, o) is

I— a r^ /"« pdx^dy^
*^=—— / /

^-^1, .... (19-103)

wherein z must be finally made to approach zero.

Since we are going to assume that h is infinite we need only find

w at a point on the x-axis. Therefore we may put y = on the ex-

pression for w, and thus we get

R'^-\.z'^===[x-x,Y-{-y,^-\-z''= Q^ + y^\ . . (19.104)

where

Q2^{x-x,y-\-z\ ..... (19.105)
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Now r^ pdy^ r^' dy^

J ^b l/n2 4-'yy "^ ^o

= 2Aa;,>ge ^^^^
. . . .(19.106)

We may now assume that h is very big in comparison with either

a or z. Then q is very small in comparison with h. Therefore we

may take, neglecting —

,

/
= 2/-(a;i2)log26-2/-(Xl2)log^ . . (19.107)

Consequently

I—

a

w =
nn

i — oW

log 2b f f(x^^)dx^ - -—- f A^r) log ^c?Xi
J—

a

^^* J—

a

\0g2h-^—^f f{x^'^)\ogQdXy, . . (19.108)
Tin 20 Tin J—a

where W denotes the total load on the rectarngle. If h is infinite this

W
load is also infinite, but — is finite. Thus the term involving W in

2b

(19.108) is infinite on account of the factor log 2??. There is nothing

very startling about this infinite displacement; it is due to the fact

that we have assumed the body to be fixed at an infinite -distance

from the plane face. If a finite load were attached at the free end of

an infinite elastic string this free end would have an infinite dis-

placement due to a finite strain in the whole string.

The change of shape of the plane surface is due entirely to the

finite term in the expression for w. We may therefore ignore the

infinite constant term and take

Now
w=' — ——~f{x^^)\ogQ^dx^. . . .(19.109)

2T171 J—d

r fi^i^^ogQ^dx, = r f(x,^) log Q^dx, + rf(x,^} logg^dx, (1 9. 1 10)
«/—a V —a «' o

Putting Xi=—i and consequently dx^=—d^ in the first integral

on the right hand side of the last equation, we get

J^ fi^i ') \og{{x~x,y + ^'} dx, = -£f{^') log {{X + ^)2 + z^} di

Jo



ELASTIC BODIES IN CONTACT 635

which becomes, on replacing | by x^
,

r f(Xi^)\og{(x-x,Y+z^}dx^= rf(x,^)log{{x-JrX,)^-{-z^\dx, (19.112)
J—a «^o

Therefore

r f(x,^)logQ^dx,
J —a

-fn^i^) \^og{(x - x,Y-\-z'^} + log {(a; -f x^Y + ^^\]dx,

^rf{x^'^)\og{(x^'-X^^Y-\-2z'^(x'^^x{^)^%'}dx, . (19.II3)

The normal displacement of a point in the cc^ plane, where %=o, is

therefore

==-^!—^rf[x^^)\oz{x^-x^^Ydx^' ' .(19-114)
271U Jo

2nn dw /"*
4a^<^^i

1 Tzn dw C^ f{x.^)dX'i

If X lies between o and a there is a singular point at x^= x in the

function to be integrated in this last equation. There are a pair of

infinities with opposite signs in the integral. In fact, if we write

w

Therefore

that is

,

t/o 3!^ .^l
"^

V*'

o

*^x—s *Jx-\-€ } X *^i

infin

r,X-\

fJX—f.

and if we assume that s is infinitely small, the middle integral, namely

'"^-^^ f{x^^)dx^

»2 'v* 2
J?''— X

is approximately equal to

==-^—
^/ -^3— , . . . (19-117)

of which the positive and negative portions must be assumed to

balance, because, if we are dealing with real quantities only,

r^ du
, r.
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Thus we may take, assuming e infinitesimal,

I Tin I dw r'^-^f{x^^)dx /•« f{Xi^)dXi

do X X^ vf x-\-£ •^"
*^'l

"2 1 — OX dx

Now let us assume that

/*(Xi2) = ^ya2_a:^2 (19.120)
(Z

To work out the integrals we put

x^^=^ asinO

,

(19.121)

whence
dx^ = acos0d6 (19.122)

Let the limits for corresponding to o and {x—e) be o and O^;

and let the limits corresponding to (x-\-e) and a be 62 and—. Then,

as e approaches zero, 0^ and O2 approach a common finite limit.

This common limit is a such that

X
sina = - (19.123)

€1

Now

x^ — x^^ x^ — a^siTi^d

a^i — sin^ 0)dO

==dO

==de

x^ — a^sin^O

(a^-x^)dO

x^ — a-sin^^

(a^-x^)dO

x'^cos^^— {a^ — x^jsin^O

sec^edO
dO^-——^ (19-124)

-A~;-tan2^
a^ — x'

But

Therefore

a^ — x^ x"^

tan^a (19.125)

l»x-€ y^g— x^'^dx^ _ A

(

secWdO \

Jo x^-x,^ ~Jo I^"^tan2a-tan2^/

'^^°^x d(tan^)

'.+X tan^a — tan^^

, tana + tan^i . ,.— ^i-f4cotalog ^. (19.126)
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Also

f ^(tan^)

-I-".-/ tan^^— tan^a

TT _ , r tan^ — tana
^-2 — kcoia\ log 7—

2 2
Y

I

8 tan6>-j-tana
0o

^ /I . i , tan^., — tana= ^2+YCotalog ^r^ , .(19.127)
2 ^ ' ^ ^tan^., + tana

^ ''^

the integrated term vanishing at the upper limit. Thus finally

tana -{- tan 6^ tan 0^ — tan a

I a Tin I dw 71—
-
= —+ fc'i — 6^2

2 Pq i — ox dx 2

4-|^cotalog- X (19.128)
' tan a + tan Q^ tan a — tan d^

In this result we have to make e—^o, and this makes d^ and ^2

both approach a. Therefore

\ a Tin \ dw . . tan^o— tana— ==i7r+ hm4cotalog 77-

2pQi — oxdx s^o tana — tan^i

where

. x—e . x+e . X
smt/, =- , smc/, = , sma = —

.

a ^ a a

Now let

^ and y being small. Then

sin 0^ = sin {a — ^) = sina — ^ cos a nearly,

and

sin^2 = sin(a + y) = sina4- J'cosa. .

Consequently

8cosa = sina — sin^, = — : . .^ a

£
ycosa = sin^.2 — sina = — . . .
' a

Thus p and ;/ are equal as far as the first power of s

Next

tan^i = tan(a — /?) = tana — ^sec^a .

tan ^2 == tan(a -\-y)=^ tana + ysec^a .

, (19.129)

. (19130)

. (19.131)

. (19.132)

. (19-133)

. (19.134)

. (19.135)

(19.136)

(19.137)
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„ ,
tan^., — tana ,. , vsec^a

whence lim log yr- = lim log —

-

g^o tana — tan t/i e-^o psec^a

— sec^a

-= lim log
f -A o £ «^ — sec^a

a

Therefore (19.129) gives

1 dw I— ojOo

X dx n a

from which

= (19.138)

(19-139)

w=^-C-^^^^-^x^ (19.140)
zna

Since the coefficient of x^ is small in any actual case this may he

regarded as the displacement due to a cylindrical depression, the

curvature of which depression is

d'^w ( I— o)Pq
(19.141)

dx^ na

The total thrust per unit length in the ^/-direction is

F=^ r pdx^
^Po p {a^-Xi^)Kxi

J—a ^ J—a

==\np^a. (19-142)

Therefore the curvature of the depression, expressed in terms of P, is

d'^W 2(1— (7)P

360. Two cylinders in contact with their axes parallel.

The results proved in the last article can be applied to two cylinders

pressed together with their axes parallel. The practical problem of

roller bearings is an example to which the results can be applied.

It should be noticed that the theory of the last article applies

strictly only to infinitely long bodies with plane faces. Nevertheless

there will be very little error in applying the results to a cylinder whose
radius is much greater than the width a of the rectangle of contact, but

in that case (19.143) gives the change in curvature of the cyhnder

produced by the pressure. Moreover, although the length of the

rectangle is assumed to be infinite, there will again be very little error

in using the results for a case where h is much greater than a; for

example, if- is not less than 10, the approximation in (19.107) is quite
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good for points in the plane z = o. We finally conclude that the

pressure and the displacement at a point not very near the narrow ends

of the rectangle of contact of two cylinders is approximately the same

as is given by the theory of the last article. It is to be understood that

a point is not near the ends if its distance from the nearest narrow end

is greater than 5 a

Suppose two cylinders with radii r^ and r^ are pressed together till

the width of the area of contact is 2 a. Let P be the thrust per unit

length of cyHnder, p^ the pressure at the centre of the rectangle of

contact. Then the relative curvature before the pressure was exerted,

assuming the two cylinders are convex to each other, is

II- + -.
^1 ft

This relative curvature is reduced by pressure to zero. But if w^,

Oj, ^2, (Tg* ^^^ the- elastic constants for the two cylinders, equation

(19.143) tells us that the changes in the curvatures of the two

cylinders are

d^w^ 2(1— ai)_ , .

P, (19-144)

d'^w^ 2(1— Gg)

dx^ no 7ia^
(19-145)

The total change must be equal to the original relative curvature;

that is,

If P is given, this equation given a. Thus we see that a^ is proportional

to P, and therefore proportional to the total thrust between the two
cylinders.

Again from (19.142) and (19.146)

'{},+7y*-'--l-^^-.r\-
'""'

which shows thatji^Q^is proportional to P and therefore to the total

thrust.

361. A cylinder on a plane.

Suppose a steel cylinder of length one inch and diameter half an

inch is pressed against a plane face of a large steel body with a total

thrust of 500 lbs. To find p^ and the width of the area of contact we
shall take the values of n and o to be the same as in (19.94). Then
taking r-^^==^ inch, 7*2=^00, (19.146) gives

1—04F1
- = - = 4; 19 148
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that is,

a^ = —- = ; .... (19.149)
Tin 120700

whence

^ = -^iT inch (19-150)
Also

y _ P
^i?o^= — = 4? . (19-151)

Therefore

71 r^

4PW
Po^ = -r :-, ...... 19-152

(l—o)7Z
whence

jOq = 48*9 tons per sq. inch (19.153)

If we had taken P= 1125 lbs we should have got jOo~73*3 ^^^^ P^^
square inch, which is nearly the same pressure as we found for a

sphere with the same diameter pressed against a plane with a total

thrust of only half a pound.



APPENDIX A.

BESSEL FUNCTIONS.

The equation for Bessel functions of the n*^ order is

If we put x— kr in this equation and then multiply through by k^

we get

d^z idz ( w2\

which is identical; with equation (18,92). To solve (A.i) put

then (A.i) gives

2'C^x'"-2|(^2_^2) + a;2}=:o (A. 3)

Equating to zero the coefficient of x^^~'^ in this last equation we get

{m2-r^2)G^+ C^_2 = o (A.4)

Putting m = n in this we get

Cn—2 = o
whatever value Cn has.

Thus there is a series beginning with a?**, C,i being an arbitrary

constant. Since (A.4) gives a relation between the coefficients of

powers of x whose indices differ by 2 it follows that the series ascends

in powers of x^. The relation between successive coefficients is,

by (A.4),

_ I
P

\m— n)\m-\-n)

^ 2S{2n-\-2s) ^
Thus, when A is written for C^, the series starting with x^ is,

^^''|^~2(2W+ 2)"^2.4(2w4-2)(2n + 4J~**"l * * ^ ' >

41
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If n is not an integer there is another series starting with C_n, as

equation (A. 5) shows. This series, obtained from the series in (A.6)

by putting —n for n and B for A, is

i x^ x^
] ,

Brr-" I-- r +— :-.••• • . (A.7
I 2{2— 2n) 2.4(2 — 2n)(4 — 2n)

J

If n is an integer the coefficient of x'^"' in the brackets in this last

series -contains an infinite factor, and all later terms contain this same

factor: We can avoid this infinite factor, however, by taking C as

the coefficient of a;-" in the brackets and making C finite. In that

case B will be zero, and therefore all the terms before x^^ in brackets

will vanish. Then the series begins with x'^ and is identical with the

series in (A.6), except possibly in sign.

Now let Jn{x) be a function of x defined by the equation

x^ i x^ x^ \

r[n -\- 1 ) being the gamma function defined by

r(n4-i)= li^ ]'^'^
^ k''. . . (A. 9)

The important property of the gamma function is

r{n-\- 1) = nr{n).

Also, if n is a positive integer,

r(n-^i) = \n.

Then, if n is not an integer, the complete solution of (A.i) is

Z = A]n{x)-{-B]_n{x) (A. 10)

When n is an integer it can be shown that

(-ir]^n{x) = ]nix) (A. I I)

In that case (A. 10) does not give the complete solution of (A.i)

since it contains only one arbitrary constant (A + B). One solution

is still

^ = AUx),

but we have now to find a second solution of (A.i).

A few particular cases of J^ (x) are given below.

JoW- ^ - 22+ 22.42 22.42. 62
"^ • •

*

T r ^_^l ^^ I
^* ^ I I

•'*^^^~2.4r 2^ 2.4.6.8~2.4.62.8.io"^2.4.62.82.io.T2'*l

(A. 12)
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We shall first prove some properties of Bessel functions using only

the differential equation itself. Let Zn be any solution of (A.i), and

let us put

Zn^UnX"" (A. 13)

Then (A.i) becomes

whence

&;^+-^^+""=°-
• • •

-^^-'^^

Next let

2/ = !^' (A.15)

Then i dUn dun

X dx dy
'

and d^Un d / dun\

dx^ dx\ dy

)

dun d /dun\

dy dx\dy

)

^dun ^^dhin

dy dy^

__ dUn d^Un
~ d^~^^^~dy^'

Therefore (A.14) becomes

d^Un dUn
22/^'+^(«+')^+ «n= 0.. . . .(A.16)

Differentiating through this last equation with respect to y and writing

/ . dUn
u for —— we get

d^u' , , du , . » V

^^"«^+^*"+^'^+""° ^^-'^^

A comparison of (A.16) and (A.17) shows that i*' is a function similar

to Un with the difference that (n -j- i) takes the place of n. If

therefore

;j;„+i = ti„+ia;«+i ^ (A. 18)

is a solution of the equation

-dx^^x-d^^v—^*^K^=^' •
•^''•'^^

then one possible value of w^+iis

—

u\ and therefore a possible value

of ;r„+i is

41*
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Z^,^-X''+^^^ (A.20)

Therefore

^ X dx X dx

and, putting {n — i) for n,

x-»^,« =-—-(a:-»+i;r.„_i) (A. 22)
xdx

The reason for taking the negative sign will appear when we apply

the method to J„ (x) below.

By means of this last equation a solution of Bessel's equation of the

n^ order can be deduced from a solution of the equation of the

{^n— i)''* order. In particular, if

-« = JnW . . . . . . . . {A.23)

then

/J.—n^n__ I
J

I (A 24)
2^r[n-\-l)\ 2{2n-{-2) 2.4(2n+2){2W+ 4)**J ^

^'

Therefore, by direct differentiation,

Xdx^ "^ 2»r[n-\-l)\2{2n-^2) 3.4(2W-f-2)(2W+ 4) '
"j

X^ X*
I

I

2«+i(w+ i)r{n-i- i)\
* 2(2^4-4) ^ 2.4(2w+4)(2n4-6) *

)

x/"

2^+ir(w-|-2)l^ 2(2W+ 4)"^2.4{2?i+4)(2W+6) '••j ^
' ^ ^^

But this last line differs from v~'^Zn only in having {n -{- i) instead

of n. Therefore we have found by direct differentiation that

-^{x—Jn{x)}^X-n-lJ^+^(jc).. . . . (A. 26)

The following are particular cases:

—

d ( d]„(x)

xdx[ xdx

J«(x); (A. 28)(A-Y
\xdx}
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and, in general, if n is a positive integer,

a;-"J„(x) = (-J^)"jo(x) (A.29).

Equation (A.21) suggests that we ought to be able to deduce from

the second solution of Bessel's equation of zero order the second

solution of Bessel's equation of the w^^ order; that is, we should expect

that, if the second solution of Bessel's equation of zero order were

substituted for ]q(x) on the right of (A. 29) then ]n(^) ^^ the left hand
side would be changed to the second solution of the equation of the

n^^ order. This is, in fact, tru€, as we shall show after we have found

a second solution of the equation of zero order.

When n=o equation (A.i) becomes

dH idz
/ * X

the simplest solution of which is

^•^ = AJo(:^) (A.31)

To get the general solution of (A. 30) we may first put it in the form

d { dz\ , , , ,

"^r^j=-"'" •
-(^-^^^

Now by the substitution

equation* (A.32) becomes

^—^^- . > . • -(A-Si)

Let us next put

- = «^i+«^2 + «'':-: + (A.34)

Then (A. 33) becomes, when D^ is written for -—

,

du^

D2i;,+ D2i?2+D2i;3+....=-e^^K+ ^2+ 2;3+ ..) . (A.35)

Let us now take

T^''v^ = -v,e^e, }....... (A.36)

D2t;^ = — 'y^_ie20

Therefore

= _e2e(D+ 2)-2i;^^i (A.37)
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By a repetition of this operation we get

__e60(D+ 6)-3(D+ 4)-2(D+ 2)-2t;^_3.

The general formula giving v^ in terms of v^ is

«^m=(-ir-^c2('«-l)^(D+ 2)-2(D+ 4)-2... (D-}-2m-2)~^Vi. (A.38)

Now the solution of the first of equations (A.36) is

Therefore (A.38) gives

(_l)m-lg2(m-l)6l

22.4^.62 (27)1— 2)^

(_l)m-lg2(m-l)^

{(i+iD)-2(i+iD)-2 }v,

2M^.62..M.^-.)^{^-^-^^-^^--J^-
higher powers of D than the first being neglected because

D2(A+ B^)= o. Therefore

^m= .],J
-——-(A + B^-^^_iB),. . . . (A.39)

2^4\o^ .[2m— 2)^

where

123 m—i V
/

The following are particular cases :

—

^2==-fi(A + Blog:c-B);

^3 == + -T-^ (A + Bloga:-52 B)

;

2 ".4

Collecting all the terms we get

^ =^
«^i + «^2 4- % +

= (A + Blogea;)Jo(a:)

. ^ f
^2 X^ X^ ] . . s

+ ^\Y^-''J^i+ '-'JU'76-^~
] •(^•4^*

Now writing

Zo(^)=Jo(^)log:r + ^^-^2^^+53—̂ -^-.., . (A.42)

we have got, as the complete solution of (A.29),

z^A],(x)-hBZo{x) (A. 43)
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The function Zq{x) is Neumann's form of the second solution of

(A. 30). Since the complete solution is given by (A.43) all other forms

of the second solution must be included in (A.43), Thus Weber's

form of the second function is

Y,{x)^-Z,{x)--(log2-y)],(x), .... (A.44)
71 71

y being Euler's constant defined by

7 = lim(5„j— logeW) (A.45)

When m = 00 both Sm and loge m are infinite but their difference

approaches a finite limit as m approaches 00. It is found that

7 = 0-5772156649 , . . . . (A.46)

1^{x) is convergent for all values of a:; and except when x==o^
'^^{x) is also convergent for all values of x. Also

lim ^oW^^
x—^o loge a;

Thus Zq (x) approaches — 00 as x approaches zero.

Equation (A. 2
1 ) shows that we can derive a Bessel function of the

(w+ i)'^ order from one of then^'' order by differentiation. Moreover

we showed by direct differentiation that this method, when applied

to Jn(x), gives us J„^i(a;). Also Jn(ic) is derived from J© (a?) by n suc-

cessive applications of the process. Now it is clear that n successive

applications of the same process to Zo(a;) gives a function different

from AJn(a:). Moreover this derived function is a Bessel function of

the 14^ order. Therefore it is one form of the second solution 6f

(A. i) when n is an integer. Let the function x^ derived in this way

(A. 47)

be .denoted by z„ [x). That is.

X'""^-(^)=-^^{^-"+^^n-M\
By putting w= I in this we get

x~-'Zi {X)

S,X^

2 ' 22.4 22.42.6
'

22.42.62.8

By means of (A. 2 7) and the first of equations (A. 12) the last equation

becomes

-^Z^(x) = x-'^]iix)\ogx-i
X

4 +22.4(^2-J Ji:^(*3 6j + iMA6^.8r~8)
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= x-^],{x)\ogx--

By repeating this process we get

xdx

X'

211^*^^+ ^^)
2M.6

(•^2+ «3) + (S-i + s,4)-. .|»2.242.0.8^'

from which we get, by using (A. 26) and the expression for ]^(x)

2

ix'- X
x-^Z^(x) = x-^]^ (a;) logic- —r^-~i

2 12.4 22.4.6

^-'j2(^)log:r-^^-^

^2+^3 y)'
22.4-^.6.8 (^*^8+«4-i)--

I ( So X^ X^ \

49)

By successive applications of this process we get

m—n—1

1

I "^^ \^ — W —
x-'^Zn(x) = x-^Ux)logx-jX-'' 2^ ?

\m

(-1)'

n,Tit±Il^
(Sm+ «,

2m—

n

• (A. 50)

In the sum from m = o to m = n — i there are no terms when
n = o, and one term when n=^i. It is to be understood that

= 7+ ^+ ^+ --- + z:' *o==om
. (A.50

|o=i

It is easy to see that the equations for the particular functions

ZQ(a;), x~^Zi(x)j x^^Zglx), agree with the general equation (A. 50).

Also the general formula can be proved by induction.
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The function Zn {x) defined by (A. 50) is C. G. Neumann's form

of the second Bessel function of the /^''* order. Weber's function

Yn (x), defined in the next equation, is tabulated very completely in

Watson's treatise*;

Yn(x) ^-{Zn{x)^ Xjn(x)} , (A. 52)

where X is written for (loge2 — y).

Now when n is an integer the complete solution of (A. i) can be
written in either of the forms

z==AJn(x)-{-BZn{x); ...... (A.52O

or z = AUx)+CY,,(x). ...... (A.54)

Consequently the complete soltition of (A. 2) is

z^AJn{kr) + BZn(kr), _. . . . . (A.55)

or z=A]n{kr)-{.CYn{kr) (A. 56)

It follows that the complete solution of the equation

^+77.-^+ ;^)^= °
J^-57)

which differs from (A. 2) only in having ik for k (where i = ']/—i), is

z= A]n{ikr)-^BZn(ikr) (A. 58)

In order to express the solution in terms of real quantities only we
define two more functions thus

ln(x) = i-'']n{ix)

~2«r(W+l)|[' "^2(2^+2) *^2.4(2W+2)(2n+4) "^'7'
^

'

Un{x)^i-''Zn(ix)-In(x)\ogei

=^In(x)logX-- 2J
'

. {-ir-(ixf-^-»

w—

8

m=o ' »

Another function which is sometimes used instead of Hn{x) is

Kn(x)= (-ir+^ {Hn(x) - (loge2 - y) Ux)}
= {-l)^-^^{H4x)-kln(x)} (A.61)

It is now clear that (A. 58) is equivalent to either of the following

z=^A,In(x) + B,Hn{x); (A. 62)

z= A,ln(x)+ B,Kn(x). (A. 63)

* The Theory of Bes»el Function^ by G. N. Watson (Camb. Univ.
Press. 1922).
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Very extensive tables of In (x) and K„ (x) are given in Watson's Theory

of Bessel Functions.

The following are particular cases of the functions we have just defined.

IoW = >+-.+^.+ ji;^+ .(A.64

K„(a-) = (A-log^)I„(^) + ^,+ i|^,+ -|?^-+... . (A.66)
.2 ' 72,12 ' 72 42(S2zK^Kb-

K.(a;) = -(A-Ioga-)Ii(a;) + ^

{^ + ^^K+%) +^(%+^.)+ ..] (A.67)

X-ni ix\\= ^— /-JL__J ?! L \
xdx ^' "^' '^' 2T(n~{- i)\2n-\-2^ 2(2n-{-2)(2n-\-^y " ')

X

2

Observe that

I d

=x-^-nnJ^,(x) (A.68)

Also

I <i
^-,•2 {(ix)-''Zn(ix)] - X-''-nnJ^,(x)\og'

ixd{ix)

= -i^(ix)-^-'Zn+r{ix)—X-''-nn^A<^)\ogi (A.69)

The last step follows from (A. 47).

Thus we get

-~{x-''Hn(x)}=(ix)-''~'Zn+Aix)-X-''-nn+,(x)[ogi
X uX

= a;-«-^H„4.,(a:) (A. 70)

Thus the functions H„ and Hn-j-i are connected by the same relation

as the functions In and In+x.

The recurrence formulae.

By putting UnX~^ instead of UnX'^ in (A. 13) we can prove that,

if Zn is a Bessel function of order n^ then there is a Bessel function

Zn—i, of order (?i— i), which is related to Zn by the equation

x""-^ Zn-i =--r- (x'^Zn) (A. 7 1

)

X Q/X
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This suggests a relation between J„_i and J„. Now by actual dif-

ferentiation we find that

^^{a;«W:r)}=«"-iJn-i(x) (A. 72)

and

^^{xnn{x)}^X^-nn-i{x) (A. 73)

After performing the differentiation in (A. 2 6) and multiplying up by
a;«+i we get

-yn{x) + ^W)=]n+l(x).. . . . . (A.74)

In like manner we find, from (A. 72),

71/

yn(x)-{--Ux)=Jn-l(x). . . , . . (A.75)
X

On eliminating Jn(^) from the last two equations we get

—Jnix)=]n-lix)+]n^l(x). .... (A. 76)
X

This is the recurrence formula for Bessel functions of the first kind.

By putting ix for x in (A. 76) and then using the definition of

In(^) giyen in (A. 59) it is easy to prove that

291/

-—ln(x)= In-l{x)^ln^l(x) (A. 7 7)
X

Asymptotic expansions of Bessel functimis.

It is shown in treatises on Bessel functions that these functions

can be expanded in asymptotic series, which are given below. The
series are

Jn(a^)=Y—)^{Pcos6l-Qsin6>}, . . . ... . (A.78)
\pTXJ

Yn(^) = (—)Vsin6>-f Qcos^}; . . . . . . . (A.79)

where

6='X — ^n7i — \n, (A. 80)

^-'
|2(8z)2

+•••' ^^^''

Also

\271X
In(x) = -^(Pl-Ql), . . (A.83)
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^n(x) = {^0e-^P, + Q,); (A.84)

where

^'-'+ pJF ^ ' ^'

^' = -[7(8^+ ^PJ)^
--+ ••• (A.86)

For only moderately large values of x each of the first few terms in

the series for P, Q, P^, Q^, is much smaller than the preceding one,

and a term is soon reached which is very small in comparison with

unity. The series ultimately diverge for all values of x, but it can

be shown that the actual error in any one of these quantities due to

summing as far as any particular term in the series is of the same

order of magnitude as the next term in the series.

It is not difficult to show that the asymptotic forms are solutions

of the differential equation for Bessel functions; but it is much more
difficult to show that these forms are identical with ]n(x)y Y„(.x), InW,
and Kn{x). We shall content ourselves with showing the general

character of the functions.

When (A. i) is multiplied by a; 2 that equation becomes

£+ «-*E +(-!)»* -»^ -
'-"

and if u is written for zx^ this equation becomes

U-(-"-yh_ -«)

When (n^—Vj is greater than x^ we see that -7—, has the same sign
dx'^

as u. Therefore the curve whose ordinate is u and abscissa x is

convex to the rc-axis, between a;= o and x= '^n^— ^. Where x has

the latter value the curvature changes sign, and for larger values of

X the curve is concave towards the x-axis, just like a shie or cosine

curve. Moreover, when x^ is very big in comparison with (n^—'D then

dc

The solution of this is

-T-Y = — u approximately.

i^ = AcosiC-fBsiniC, (A. 89)

_i
whence z = x ^{Acos*c+ Bsina;} (A.9a)
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Thus we see that both x^ ]n (x) and x^ Y„ (x) are oscillatory func-

tions of X somewhere beyond where x — yn^—^; but neither func-

tion can vanish more than once from x = o to x—'^n'^—i. This

latter result follows from the fact that the curves for the functions

are convex to the a:-axis in* this region. Jn(^) vanishes when a;=o,

and consequently its next zero must be greater than ^w^— |. Actually

the first zero after a? = o is somewhere in the neighbourhood of

Instead of (A. 89) we might have taken

u = Ae^"^

,

(A. Q4)

and by starting with this as a first approximation to the solution of

(A. 88) the asymptotic series in (A. 78) and (A. 79) can be derived.

While this method shows that the asymptotic series are solutions of

the differential equation it does not, of course, show the connection

between these series and the functions J„ (.t) and Y„(ar)- which have

previously been defined. It is enough for our purpose, however, to

have shown the periodic character of the functions

Roots of the equation

Jn(x)==o

!"-» W= I n= 2 ^=3 w = 4 n=5

I 2-405 3-832 5-135 6-379 7-586 8780
2 5-520 7-016 8-147 9-760 11-064 12-339

3 8-654 IO-I73 11*620 13017 14-373 15-700

4 11-792 13-323 14-796 16-224 17-616 18-982

5 14-931 16-470 17-960 19-410 20-827 22'220

6 18-071 19-616 21-117 22-583 24-018 25-431

7 21-212 22-760 24-270 25-749 27-200 28-628

8 24-353 25903 27-421 28-909 30-371 31-813

9 27-494 29-047 30-571 32050 33-512 34983
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Solution of equation (18.227) when 2n-=L

Equation (18.227) can be written in the form

/ being written for (2 4- 3^)-

Now let a new variable y be taken such that

ey = fj (B.2)

Then the equation for 2 becomes

{T)^ — n^)[e-^y(D^ — n^)z}^jLize^^-^. . . . {B.3)

D"2 being written for -p-«
ay

Now a property of the operator D is expressed by the equation

D*(e--^yw) = e-^y(D — /)*w (B.4)

Therefore (B. 3) becomes

e-^y{(D-'iy^-n^}CD^-n^)z= juze^^-^)y , . . (B.5)

whence we get, on multiplying by e^y and writing m for (4-|-2^),

{{D—iy^ — n'^}{D^^n'^)z^juze'''y, . . . . (B.6)

or

(D — l— n)(D — l+n)(D — n}('D + n)z= fize*^y. . (B.7)

Putting 2w for / in this we get

(D — 3n){D — ?^)2(D4-^^);t = /^^e"»y . . . . (B.8)

Now the direct method of solution in a series of powers of rj used

in Chapter 18 gives three series beginning with ?y", >;~", and rj^^. The
indices of these three powers of rj are n, — n, and (l-\-n), and are

identical with the first three given in (18.231). The present case is

troublesome because the last of the four indices, namely (/

—

11),

happens to be equal to one of the others. Our present problem is to

get the fourth solution which the method of integration by series fails

to give.
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Now let

-==«^i+^2 + «^3 + (B.9)

Then (B. 8) is satisfied if

(D - 3w) (D - w)2-(D + w) i^i
= o , (B.io)

(T> — in){p — nY(Ti -\-n)v^= fAV^e'^y , . . . (B.ii)

and, in general, ^

(D - sn) (D - w)2 (D + n)Vq=: juVq^.e^y , . . (B. 1 2)

provided that the series
(^-'i + ^2 + ^3 + • • • •) ^^ convergent.

Now one solution of (B. 10) is

Vi=Aye*'y . . . . . . . (B.13)

This value of v^ leads to the solution that the method in Chapter 18

failed to give.

From (B. 12) we get

Vq^(T>- 3w)-i(D + w)-MD - nyHfiVq^.e'^y) . . (B. 14)

Thus

v^ = /iA (D— 3w)-i(D + w)-i(D — w)-22/g('»+'*)y

= /iAe("»+«)2/ (D + wi — 2/i)-i(D +m + 2w)-i(D + m)-^y (B. 1 5)

By expanding the operators on the right hand side of the last equation

in ascending powers of D and neglecting all powers beyond the first

because D2«/ = o, we get

v.^=fiAe(^'^-^»)y-——^-^— -, . . . (B.I 6)

where 112
c., = +

^
^ +— B.17)

Likewise

v.^= (D— 3w)-i(D

+

n)-^ (D- n)-^jLiV^e'^y

„2Ag{2m+n)y
= -Tr^ 77—

^

:('D+ 2m-2n)-^D+ 2m+2n)-^B-^2m)-^^J-c^

J^'Aei^^+^)y(y-e,)
^ ^ ^ ^

m^(2m)^{m— 2n)(2m--2n){m-\~2n)(2m-\-2n)^

where

c = [.. _
j ^Cg (B. 19)27n—2n 2m-\-2n 2m ^

In the same way we find

^3Ae(3m+n)t,(2/_cJ

w2(2m)2(3?w)2(m—2w)(2m—2w)(3m—2w)(M-f2w)(2??^4-2w)(3m+2?^)n-^...^....^...^ .^uL .^w.^ .^w!: . .^u.^ , .^w.^ rr^ (B.20)



656 APPLIED ELASTICITY

where

^4 = ^ +
\ +—+ C.,. . . . (B.21)

Thus the solution we are seeking is

where

^? = /
TT ^ 7

^'
• • •

(^24)
^ [m — 2n) (2m — 2n) {qm — 2n)

I

(m + 2/i) (2171 -\- 2n) (qm + 2n)222 2
c, =-+— +—+ +—
H,= 7zrT-nT7rzrT-ri:^ r::.r-7-—.» • • •

(B.25)

w 2m 3m ^wi

m — 2n 2m — 2n qm—2n

+—i— +—!—+ H !— . . (B.26)
m 4- 2w 2m -\- 271 qy^'-^- 211

It should be noticed that the coefficient of log a; in (B.22) is itself

the solution of the differential equation (B. i) which begins with 'q^.

This particular solution could have been got by the present method

if we had taken i'j==A as the solution of (B. 10).
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To solve the differential equation

-^ + nm = nx), ....... (C.I)

which occurs on page 96, and again with different symbols on page 289.

When D is written for -r- equation (C. i) becomes
ax

{D^-{-?i^)M= f(x)y . . . . ... (C.2)

that is,

(D + i«){(D-m)M}=/-(x) (C.3)

Multiplying through by e*"^ we get

e^n^iD -\-in) \{T>-in)M} = e'^'^'fix) , .... (C.4)

which becomes, by the rule in (B.4),

B\e^''''{D—in)M}==€^'"'f{x) ... . . (C.5)

Integrating both sides with respect to x we get

^nx^p_in)M=f^'^f{x)dx-\-n . . . (C.6)

The lower limit of the integral on the right hand side of the last

equation can be any constant we choose. We could make it zero.

Since there is already an indefinite constant H in the equation this

indefiniteness of the lower limit does not make any difference.

The result will be the same if we write u for jp under the integral

sign provided only that we retain x as the upper limit. Thus we may
write

e^«^(D—^>^)M=/'e'"Y(w)c^w + H, (C.7)

whence

(D—in)M= c-'"'*^
/*

e»«^/'(«) du+ He" «"^

= /*e-»»(*-'*)/*(w)f/w + He-»«^, . . (C.8)

42
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Likewise, by reversing the factors (D -|- m) and (D— in) in (C. 3),

we can get

(D-f *^i)M= ^e^^<^-«)/•(w)rfw^-Ke'«•^ . . . (C.9)
Jo

By subtraction we get, from (C. 8) and (C.9),

= r 2isinM(a:— w)/'(w)c?w4-Kc*^^— He-*'"^ . . (C.io)
'Jo

= - f sinnlx— u) fiu) du-\-— \ Ke^"^— He"*"^

[

nJo 2tn^ '

Therefore

M

which can be written in the form

I r^M = — / sin?i(.r

—

u)f(u)du-\- A cosnx-\-Bsmnx . (C. 11)
^^t/ o

If one of the terms in f{u) is a constant G the corresponding term

in the expression for M is

I r^ G G— / Gsmn(x—u)du = ^,— —-cos7ix.
nj o n^ n^

The only term in this that is not already in (C. 11) is — , for the

other term merely combines with Acos^^.r.
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Approximate method applied to

beam under tension, 123

Approximate method applied to

bending of thin plates, 421, 422,

426, 427, 429
Approximate method applied to

strut, 127, 129, 130

Approximate method for bent disk

with large deflexion, 455
Approximate method for buckling

beams, 524, 526, 528
Approximate method for buckling

disks, 489

Beam attached to rigid supports at

the ends, 124, 126

Beam bent unsymmetrically, 69
buckled by couples at the

ends, 503
Beam in tension, 118

; approximate method, 123

problems, solution of, 52
under distributed load, 49
under transverse forces in dif-

ferent planes, 76
Beams of uniform strength, 67

with variable cross-sections, 64
Bending moment, 48

expressed by integral, 63
in beam expressed in

terms of deflexion, 51

Bending moment in a thin plate,

394
Bending of thin plates; usual the-

ory, 387
Bending of thin plates; more ac-

curate theory, 435
Bent plate, maximum stress in, 466
Bessel functions, 485, 507, 641

, asymptotic series for,

650

Bessel functions of the second kind,

583, 647
Bessel functions, Watson's treatise

on, 649, 650
Bessel functions, zeros of, 652
Blow at end of a rod applied along

the rod, 253
Blow at end of a rod applied per-

pendicular to the rod, 226
Boundary conditions for a bent

plate, 395
Boundary conditions for a clamped
buckled beam, 512

Buckled plate, finite deflexions, 496
Buckling of deep beams, 499

, approximate methods,

524, 528
Buckling of deep beams by loads

applied off the centre, 520, 522
Buckling of disks with radial

thrusts, 483, 485, 487
Buckling of disks with radial

thrusts, aoDroximate method, 489
Buckling of plates, approximate
method, 492, 495

Buckling thrust of strut, approxim-
ate method, 127, 129, 130

Bulk strain, 25
Byerley's Fourier Series and Sphe-

rical Harmonics, 507

Circular cylinder bent into elliptic

cylinder by uniform external

pressure, 530
Circular plate under thrusts iat rim,

373
Circular plates under normal pres-

sures, 398 to 412
Circular plates under normal pres-

sures; more accurate theory, 443,

445, 447, 450, 455, 459, 467
Circular ring, extension of, 312

, oscillations of, 307
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Circular rings, bending of, 282
•

, closed, stresses in, 301,

303, 306
Circular rings, strains in, 289

under pressure, 290
Clapeyron's theorem of three mo-

ments, 71
Component couples in a bent rod,

Collapse of thin ring under external

pressure, 534
Collapse of tube by minimum
energy method, 561

Collapse of tube under axial thrust,

556
Collapse of tube under combined
pressure and thrust, 559

Collapse of tube under external

pressure, 552
Conical springs, 279
Contact, stresses in elastic bodies

in, 630, 632, 638, 639
Couples, component, in a bent rod.

Curvature of surface in polar co-
ordinates, 399

Curved rod, action across section

of, 269
Curved rod. equations of equili-

brium, 318
Curved rod, strain energy in, 318,

321
Cylinder, clo&ed, subject to internal

pressure, 539
Cylinder, thick, 329

, rotating, 332, 335

Deep beams, buckling of, 499
Disk bent by punching action, 410

by uniform pressure, 467
to spherical curvature,

.445
Disk buckled by radial thrusts,

4S3, 485, 487
Disk of variable thickness in rota-

tion, 343
Disk, rotating, stresses in, 335, 340,

384
Disk, rotating, with uniform stress,

345
Disk under normal pressure, 398
Disk under several normal forces,

407
Disk with a central hole in rota-

tion, 342

Disk with a central hole under uni-

form pressure, 411
Disk with a load at the centre, 406

with a load on a circular ring,

408
Disk with pressures on both sides,

409

Eccentric load on strut, 86—— piston ring, 299
Elastica, the, 99
Elastic constants for isotropic body,

relations between, 15, 28

Elastic failure, theories of, 45
fatigue, 44

Elasticity, 13

, perfect, 13

Elliptic plate bent by uniform pres-
sure, 469

Energy, elastic (or strain), 179, 180

, , general case, 187
, , in a bent beam, 181

, , in a bent curved plate,

559
Energy, elastic, in a bent plate, 418

, , in a curved rod, 318, 321
, , in a rod under tension

and bending moment, 185

Energy, elastic, in a rod under
variable tension, 180, 181

Energy, elastic, in a sheared block,

186

Energy, elastic, in a stretched plate,

360
Energy, elastic, in a twisted rod,

186
Energy elastic, in terms of strains

and stresses, 188

Energy method applied to collapse

of tube, 561

Energy principle applied to strut,

196, 198

Energy test for equilibrium, 190, 195
Engineering, Steinthal's experi-
ments on thin plates in, 463

Equations of motion in terms of

displacements, 23
Equations, recapitulation of, 27
Equilibrium at minimum or maxi-
mum energy, 190, 195

Euler's theory of struts, 82

Euler's constant, 583
External forces, relations between

stresses and, 21

Extension of beam or rod due to

lateral displacements, 117
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Factor of safety, 44
Flat plate defined, 347
Frequency of oscillation, 211

Gamma function, 507, 642

Homogeneous strain, 28
Hooke's law, 14, 42

Isotropic bodies, 13

Kirchhoff on the boundary condi-

tions of a bent plate, 396
Kirchhofif on vibrating disks, 596

Lamb and Southwell on vibrations

of a spinning disk, 568
Lamb and Southwell on approxim-

ate method for periods of vibra-

tion, 604
Lamb on the boundary conditions

of a bent plate, 396
Lateral forces on a strut, 92, 94, 95,

97
Lateral forces on a tie rod, 98, 99
Lines of shear stress in the section

of a twisted rod, 162

Load suddenly applied, 189
Longitudinal oscillations of a rod

free at one end, 262
Longitudinal oscillations of a rod

with a mass at the free end, 263
Longitudinal oscillations of rods,

244
represented as

wave motion 248 to 261
Longitudinal waves in a rod passing

to a changed cross-section, 257

M
Mean stresses in a bent plate, 438
Middle surface of a plate, 347

Modes, normal, of oscillation of

disks, 565, 570, 581. 589. 596, 597,

598, 610, 612, 613
Modes, normal, of oscillation of

rods (longitudinal), 261, 262,

263, 264
Modes, normal, of oscillation of

rods (transverse), 204, 208, 211,

213, 216, 219, 222, 227
Modulus, bulk (or volume), 15—— of section of a beam, 66

, shear (or rigidity), 15

, Young's, 14

Motion, equations of, 23

N

Neumann's form of the second
Bessel function, 583, 647

Neutral axis, 35
of strut or tie rod, 81

Nodal circles and diameters of

vibrating disk, 570
Nodal diameters of spinning disk.

rotation of, 572
Nodal diameters, stationary, of

spinning disk, 573, 618
Nodes on oscillating rod, 209
Normal modes of oscillation of

disks, 565, 570, 581, 589, 596, 597.

598, 610, 612, 613
Normal modes of oscillation of

rods (longitudinal), 261, 262, 263,

264
Normal modes of oscillation of rods

(transverse), 204, 208, 211, 213,

216, 219, 222, 227

Oscillating beam acted on by
transverse forces, 228

Oscillations of rod due to a blow
at the free end, 226

Oscillations, free and forced, 218
of circular ring, 307
of piston ring, 310
of rods (longitudinal), 244 to

267
Oscillations of rods (transverse),

201 to 243
Oscillations of rods (torsional),

245, 267
Oscillations of uniform rod clamped

at both ends, 213
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Oscillations of iinifonn rod clamped-
pinned, 212

Oscillations of uniform rod with
load at free end, 213

Periods of oscillation by Rayleigh's

approximate metnod, 229
Permanent set, 42
Piston ring, 290

, circular, 294
, eccentric, 299
, maximum stress in, 294
of variable thickness, 298

Plate bent by couples at its edges,

544
Plate buckled by thrust at edges:

circular, ^7^;
rectangular, 368, 371

Plate of uniform thickness under
normal pressure, usual theory:

approximate methods, 421, 422,

426, 427, 429;
bending moments in, 394;
boundary conditions, 395;
elliptic, 416;
rectangular, 412, 414, 416;
strain energy in, 418;
torque in, 394

Plate under normal pressures, more
accurate theory:

approximate method, 455;
disk bent to spherical curva-

ture, 455;
.

disk of negligible rigidity, 450;
mean stresses in, 438;
pseudo-energy equation, 455;
relations between mean streses,

441;
strains in middle surface, 435

Plate under forces in its plane:

displacements, 357;
equations of equilibrium, 347;
forces at boundary only, 351;
forces at rim of circular hole,

378, 380;
polar expressions for strains,

356;
polar expressions for stresses,

355;
resultant force on any portioji,

379;
strain energy, 360;
stresses due to small circular

hole, 361;
stresses due to single force, 375;
stresses due to a wrench, 364

Poisson-KirchhofF theory of bent
plate:

applicable to plate bent into a
developable surface, 449;

cases of failure of, 445, 447, 465
Poisson on the boundary conditions

of a bent plate, 396
Poisson's ratio, 14
Principal axes of stress, 4, 6
Pseudo-energy equation for bent

plate, 455
Pulley oscillating at end of rotating

shaft, 267
Punching of a disk, 410

Rayleigh on energy in a stramed
curved rod, 318, 319

Rayleigh's approximate method for

finding periods of oscillation:

method applied to body carry-

ing several masses, 234
method explained, 229
proof for thin rod, 232

Rankine's formula for struts, 90
Rectangular plate as a strut, 480

under thrusts, stability

of, 479
Rectangular plate with fixed edges

under normal pressure, 474
Reflexion of waves' from a fixed

point on a rod, 251

Reflexion of waves from a free end
of a rod, 252

Ring buckled by external pressure,

534
Ring, p:ston, See Piston ring

Rings, circular, bending of, 282
, , strains m, 289
, , under radial pressure,

290
Rod, definition of, 169

hanging vertically, 31, 2>2>

Rotary inertia of vibrating rod, 203
Rotating disk, 335, 340, 384

of variable thickness, 343
having a central hole, 342
having uniform stress, 345

345
. .

Rotating disk with vibrations due
to tensions, 568, 579

St Venant's approximate formula
for torque in a twisted rod, 177
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Set, permanent, 42
Shaft, whirling of, 33/S

Shear modulus, 15

strain, 14
in beams, smallness of, 54

Shear stress in beam, 53
in twisted rod at a sharp

angle of the boundary, 156

Shear stress in twisted rod, lines

of, 162

Shear stress in twisted rod, maxi-
mum, 160

Shear stresses in twisted rod, com-
ponent, 156

Shearing force in beam, 48
Six stresses in an isotropic body,

relations between the, 24
Southwell on forms of collapsed

tulDes, 555
Southwell on vibrations of disk

clamped at centre, 610

Sphere, thick, 328
with radial displacements, 326

Spherical depression in the surface

of a solid, 627

Spherical Harmonics, 620

Spiral spring with axial pull, 270

with pull parallel to axis,

272
Spiral spring under an couple

about the axis, 274
Spiral spring under axial pull and

twisting couple, 275
Split circular tube bent by normal

pressures and couples at edges,

542

Split circular tube in torsion, 171

Spring, conical, 279
of any form with coils nearly

perpendicular to the axis, 281

Stability of rectangular plate under
thrusts, 479

Stability of thin tube under axial

thrust, 537, 556
Stability of thin tu'be under combi-
ned pressure and axial thrust, 559

Stability of thin tube under external

pressure, 553
Stability of vertical rod under distri-

buted load, 112

Steinthal's experiments on the ben-
ding of thin plates, 463

Straight rod bent into a circular

arc, 34
Strain, 13

, bulk (or volume), 15

Strain energy, 179, 180

, shear 14
Strains in terms of displacements,

17, 18, 19
Stress, component, 2

, definition of, i

due to suddenly starting or
stopping a rod, 253

Stress function 7- for a bent plate,

442
Stress function (f for a stretched

plate, 348
Stress, mean, 2

, normal, 2

, principal axis of, 4, 6
, shear, 2
, tensional, 2

relations at a pointy 11

strain relations, 20
Stresses due to pressure on the

surface of a solid, 623, 626
Stresses in elastic bodies in con-

tact, 63o, 632, 638, 639
Stresses on oblique plane, 6

ijj terms of

.principal stresses, 8, 9
Stresses, principal, 8

, simultaneous, 15

Strut clamped at both ends, 85
one end, 87, 88

eccentrically loaded, 86—— , Euler's theory of, 82
with distributed lateral force,

94, 95, 97
Strut with single lateral force, 92

with variable cross - section,

los, 107, III

Sudden change of cross-section,

efifect on longitudinal waves in

rod, 257
Suddenly applied load, 189

Tension effect on rods vibrating
transversely, 239

Tensional stresses in terms of

strains, 20
Thin tube, torque in terms of twist,

165
Thin tube, torsion of, 164
Thomson and Tait on bending of

thin plates, 387
Thomson and Tait on Spherical

Harmonics, 620
Three moments, theorem of, 71
Tie-rod under lateral forces, 98, 99

43
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Torque, approximate, in rod with
rectangular section, 153

Torque in a thin plate, 394
in a twisted rod, 141

in rod with given hollow sec-

tions, 174, 175
Torque in rod with I section, 173

Torsion of thin tubes, 164
of rod, 134 ^

Torsional oscillations of pulley on
shaft, 267

Torsional oscillations of rods, 245
Transverse forces in diflferent planes

acting on a beam, 76
Transverse oscillations of thin rods,

201

Tube buckled by axial thrust, 537,

556
Tube buckled by external pressure,

Tube, circular, in any state of strain,

544
Tube, split, bent by normal pres-

sures and couples at the edges,

542
Tube, split, in torsion, 171

Turbine disk, vibrations of, 617
Twisted rod:

boundary conditions for, 135;
couple on section of, 140;

equations of internal equilibrium

position of axis of twist, 159;
solution of equations of equili-

brium, 138;

with circular section, 144;
with elliptic section, 144;
with rectangular section, 148;

with triangular section, 146;

with tubular section, 142.

Twisted thin tube:

circular, 167;

unclosed, 168;

with section a hollow rectangle,

166

Uniform beam clamped at both
ends, 54, 60, 61, 63

Uniform beam clamped at ends
under uniform load, 54

Uniform beam clamped at one end
and supported at the other, 56

Uniform beam carrying a concen-
trated load, 59, 60

Uniform beam under several loads,

Uniform beam with load and couple
at one end, 57

Ultimate stress, 44

Variational method for finding the

energy in a curved rod, 321
Vibrations of disk of variable thick-

ness due to rigidity:

approximate method, 603;
equation of motion, 599;
in symmetrical modes, 612;

with nodal diameters, 613
Vibrations of disk of variable thick-

ness due to tensions set up by
rotation:

equation of motion, 575;
particular cases, 578

Vibrations of a turbine disk, 617
of disk rotating with uniform

speed, 614
Vibrations of free uniform disk:

approximate method, 606;

in symmetrical modes, 584;
with nodal diameters, 593;
with two nodal diameters, 609

Vibrations of uniform disk due to

rigidity:

approximate method, 603;
clamped at the centre, 589;
clamped at the rim, 597, 612;

supported at the rim, 589, 611;

with one nodal diameter, 610;

with nodal diameters and circles,

597
Vibrations of uniform disk due to

tensions set up by rotation:

equation of motion, 568;

particular cases, 570
Viscosity in solid bodies, 44
Volume strain, defined, 15

, equation for, 25.

W
Watson's Bessel Functions, 507
Waves travelling along a rod, 248

to 261

Weber's form of second solution of

Bessel's equation, 583, 647
Wheel, stresses in rotating, 313
Whirling of shafts, 22)6

Yield point, 43
Young's modulus, 14
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