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ABSTRACT

:

The behavior of sand in one - dimensional compression is investigatedwith

both theoretical and experimental studies . The phenomenological aspects of

one- dimensional behavior are discussed , such as stress- strain characteris-

tics , energy absorption capacity , and coefficient of earth pressure atrest..

The analytical study deals with the stress- strain relations of an idealized

granular medium composed of elastic , equi- radii spheres in a face-centered

cubic array . A new solution is derived for the behavior of the array winem

subjected to a monotonically increasing axial compressive stress for the con-

dition of zero radial strain.

An experimental device is described which is capable of measuring the

radial stresses developed in high-pressure , one- dimensional tests. Measure-

ments of both the coefficient of earth pressure at rest and the stress-straim.

properties are presented for four sands tested to an axial stress of 1,290 psi.

Correlations are presented which compare the actual behavior of = mundedd,

uniform , quartz sand in one- dimensional and triaxial compression with the

behavior.uggested by the theoretical analysis .
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CHAPTER 1

INTRODUCTION

1.1 Statement of Problem

The design of underground structures to resist the effects of nuclear detonations

requires a knowledge of the free- field forces and ground motions transmitted through

the soil to the structure . An evaluation of the interaction of the structure and surround-

ing soil in response to the free- field input is then required. The solution ofboth the

free- field wave propagation problems and soil- structure interaction problems requires

a knowledge of the stress- strain properties of soil subjected to various states of stress.

At present, however, a systematic description of the stress- strain behavior of

even a dry granular material is not available for static or dynamic loads. The colexity

of the stress- strain relations for soil is a consequence of its particulate nature. The

stiffness of a granular material is dependent upon the shape, size distribution, and

packing arrangement of the particles; the stiffness is also a non-linear function of the

applied state of stress.

a r

The dependence of the stress- strain relation on the applied state of stress can be

illustrated by considering various states of stress on the cylindrical sample of soil

shown in Fig. 1.1 . Curve 1 shows an axial stress- strain curve for a sample of soil

compressed hydrostatically with σ = q The concave upward stress- strain relation-

ship is exhibited because the resistance to volume change increases as the soil becomes

denser. Curve 3 illustrates an axia stress- strain curve for a sample under constant

radial stress which is deformed by increasing the axial stress. The resulting stress-

strain curve is concave downward indicating that the primary resistance to deformation

is a shearing resistance rather than a resistance to volume change . Curve 2 is a

one- dimensional compression curve obtained by increasing the axial stress under the
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conditions of zero radial strain . In this situation, the lateral stresses are not

controlled and are statically indeterminate. The concave upward stress- strain curve

shows that the resistance to deformation in one-dimensional compression is primarily

a resistance to a change in volume. These examples illustrate the complex, non-linear

behavior of soil and point out the difficulties in obtaining a generalized stress- strain

relationship.

Auseful approximation to many of the problems in protective construction can

be obtained by assuming one-dimensional wave propagation. The strata are assumed

to be laterally confined such that the only displacement that can occur is in the direction

of stress wave propagation. It appears worthwhile, therefore, to investigate the stress-

strain behavior and energy absorption mechanisms of soil in one-dimensional compression.

The study should prove ofvalue in providing parameters to be used in one-dimensional

wavepropagation studies. In addition, stress- strain characteristics in one-dimensional

compression maybe compared with the behavior-under other states of stress leading to

a more general understanding of the stress- strain relationships of soil.

1.2 Objectives of Study

The objective of this investigation was to study analytically and experimentally

the behavior ofgranular materials in one-dimensional compression. An experimental

study was conducted with the purpose of measuring the stress- strain properties and

energy absorption characteristics of four sands at various relative densities . The tests

were conducted with axial stresses up to 3290 psi in a special one-dimensional

compression device; the apparatus allowed the radial stresses necessary to maintain

the condition of zero radial strain to be measured. The lateral stress measurements

enabled the coefficient of earth pressure at rest to be determined as a function of the

type of sand, relative density, and stress history .
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An analytical study of a granular medium of equi- radii spheres was conducted

in conjunction with the one-dimensional tests . The idealized granular medium was

analyzed in one-dimensional compression, hydrostatic compression, and at failure in

triaxial compression. The objective of the theoretical analysis was to indicate the

significant experimental measurements which should be made, to suggest correlations

between the phenomenon exhibitedby granular materials subjected to various states of

stress, and to contribute to the general understanding of the behavior of granular

materials .

1.3 Scope

In the following chapter a survey of the existing literature on the theories of

granular media is presented. Previous experimental work on high pressure one-

dimensional tests is reviewed and earlier measurements of the coefficient of earth

pressure at rest are discussed.

Chapter 3 deals with the analysis of a face- centered cubic array of uniform

spheres . The basic framework of the analysis is given and a new solution for the

behavior of a face- centered cubic array in one-dimensional compression is presented.

The solution gives theoretical relationships for the coefficient ofearth pressure at rest,

the axial stress- strain relationship, and the energy absorbed inhysteresis. Existing

solutions for a face- centered cubic array in hydrostatic compression and in triaxial

compression are compared with the one-dimensional solution obtained in this study.

The comparison has established relationships among the apparent angle of internal

friction, the coefficient ofearth pressure at rest, and the coefficient of friction between

spheres ; a correlation betweenthe hydrostatic and one-dimensional suess- strain

relationships has also been developed.

3





In Chapter 4 the special one-dimensional compression device is described and

considerations which affected the design are discussed. Special attention is given to

the components of the apparatus which enable a measurement of the radial stresses

built up in one-dimensional compression.

In Chapter 5 a description is given of the four sands tested. The method of

sample preparation and the testing procedure are discussed. A detailed explanation

of the pretest calibration procedure necessary for measuring the radial stresses is

also given. Finally, the results of one-dimensional compression tests on four sands

at various relative densities are presented.

The test results are summarized and interpreted in Chapter 6. Relationships

are presentedwhich show the effect of initial relative density on the constrained tangent

modulus, the coefficient ofearth pressure at rest, and the energy absorption capacity

of the four sands studied. The coefficient of earth pressure is correlated with the angle

of internal friction measured in triaxial tests and the effect of stress history on the

coefficient of earth pressure at rest is evaluated. Correlations are also presented

which qualitatively and quantitatively compare the actual behavior of a rounded,

uniform quartz sand in one-dimensional and triaxial compression with the behavior

suggested by the theory presented in Chapter 3 .

In the final chapter, the summary and conclusions are presented. Future

research which appears warranted as a result of this study is also suggested.

4





CHAPTER 2

ان

SUMMARY OF PREVIOUS WORK

2.1 General

The purpose of this chapter is to present the background for the theory ofgranular

media used in this study and to review some of the significant experimental work on the

one-dimensional compression characteristics of sands. All of the work which has con-

tributed to the understanding of the stress - strain relationships in soils is not included;

only those investigations which seemed pertinent to this study are reviewed.

2.2 Theories of Granular Media

The idea of using arrays of spheres to model the behavior of sands is not new.

In fact, Reynolds (1885) considered a mediurn of smooth, rigid particles in formulating

his concept of"dilatancy" . Jenkin (1931) considered rigid circular disks to examine the

pressure distribution on the bottom and vertical sides of a container filled with such disks .

It was concluded that the center of pressure was indeterminate and couldbe considerably

higher than one-third the height of the wall above the base. An analysis ofa uniform

array of rigid spheres is cited by Kögler and Scheidig (1928) as a method for qualitatively

determining the stress distribution beneath footings on sand. More recently, studies have

been conducted on regular and imperfect stackings of rigid cylinders by Trollope (1957),

Trollope and Morgan (1959), and Laszlo (1962) to investigate arching and stability in

embankments and stress systems in slopes of granular materials. Regular stackings of

rigid spheres have also been analyzed by Idel (1960) and Wittke (1962) in an effort to

evaluate the effects of porosity, structural arrangement, and the coefficient of friction

between spheres on the apparent angle of internal friction. An evaluation of the

differences of the angle of internal friction in ordinary triaxial compression and in plane

strain for a given array is also given by Wittke.
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Arrays of rigid spheres as described above are not satisfactory for the analysis

of vibration and wave propagation problems which require stress- strain relationships

for the medium. These problems have been handledby the analysis of regular arrays of

equi- radii elastic spheres . The object ofthis type of analysis is to relate the overall

stress- strain behavior ofthe medium to the elastic properties of the spheres . The

origin for these theoretical studies dates back to the work of Hertz (1881) . Hertz

derived a mathematical relationship which relates the normal force compressing two

spheres of equal radius with the relative approach of the sphere centers in terms of the

radius and elastic constants ofthe spheres. The radius of the contact area and the

distribution of stress over the contact area are also given as a function of the radius

and elastic constants of the spheres .

Oneof the first attempts to use anelastic array of spheres along with the Hertz

theory to predict the behavior of soil was given by Iida (1938). Iida predicted that the

compressional wave velocity should be proportional to the 1/6 power of the confining

pressure on a granular material and independent ofthe grain size . Vibration tests

were conducted on sands by lida which confirmed the 1/6 power relationship, but

indicated a slight increase in velocity with grain size. The Hertz theory was also the

basis for the theories developed byGassman (1953) and Brandt (1955) for studying the

propagation of seismic waves through bothdry and saturated granular materials .

The shearing forces at the points of contact were neglected in the studies on

elastic spheres mentioned above . Cattaneo (1938) and Mindlin (1949) have developed a

contact theory for spheres subjected to both normal and shearing forces at a point of

contact. These solutions have made possible theories of granular media which take

account ofboth the shearing and normal forces at the points of contact. Therefore,

the stress- strain relations for the medium are also a function of the coefficient of

friction between spheres as well as the elastic constants of the spheres. If the
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shearing forces are accounted for it is found that energy is lost in a load cycle as a

result of tangential slip at the contacts. Professor R. D Mindlin and his students at

Columbia University have formulated theories for the incremental stress- strain

relationships of regular arrays of spheres which take into account the shearing forces

at the contacts. The development of these theories are givenby Mindlin et al. (1951),

Mindlin and Deresiewicz (1953), Mindlin (1954), Duffy and Mindlin (1957), Deresiewicz

(1957), and Thurston and Deresiewicz (1959). A very comprehensive review of previous

studies of the mechanics of granular media is given by Deresiewicz (1958) .

2.3 Experimental Results

Many investigators have studied sand in one-dimensional compression in the low

pressure ranges, but the available experimental data for high pressure one-dimensional

tests on sand is rather scarce . Tests have been conducted on sands in one-dimensional

compression for the purpose of measuring the one-dimensional stress- strain properties

and the coefficient of earth pressure at rest. Some of the previous attempts to measure

the coefficient of earth pressure at rest are reviewed herein, and the stress- strain

measurements pertinent to this study are discussed.

Coefficient of Earth Pressure at Rest Measurements. The term "earth pressure

at rest" was introduced by Donath (1891) who made the first attempts to measure its

value . The ratio of the horizontal and vertical effective stresses corresponding to the

condition of zero lateral strain is termed the coefficient of earth pressure at rest by

most soil mechanics investigators, and is represented by the symbol Ko.

Experiments were conductedby Terzaghi (1920) which yielded a K value of

0.42 for three different sands at porosities from 42 percent to 44 percent. The sand

was prepared in a rigid frame , covered with a rigid slab, and subjected to vertical

pressure in a testing machine. The lateral pressure was transmitted to a steel tape
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resting against a rigid wall through a piece of paper. The coefficient of friction between

the tape and paper was known by calibration and the lateral pressure in the sand was

calculated from the force required to overcome the friction of the tape. The coefficient

ofearth pressure at rest was measured on a sand by Kjellman (1936) in an apparatus

whichenabled the three principal stresses to be varied on a cube of soil . The metal

surfaces enclosing the cubical specimen were divided into small sections separatedby

gaps which enabled normal stresses and normal strains to be controlled on faces which

were free from shear stresses. The significant observation from Kjellman's tests was

thatthe value ofK was found to increase with increasing over- consolidation ratio for

asandand that it approached a value of 1.5 when the sand was practically unloaded .

The lateral earth pressure meter designed by Bayliss (1948) was used to make

measurements of the coefficient ofearth pressure at rest at Princeton University and

is described in detail by Tschebotarioff (1951). On the basis of these measurements

Tschebotarioff claimed that the value ofK for sands was very close to 0.50which was

somewhat contradictory to the results of previous investigations . Because of the varia-

tionofpressure from the top to the bottom of the earth pressure meter, and the dish

shaped pattern of settlement which resulted at the top of the sample, it is probable that

Tschebotarioff's results are in error,

More recently, an apparatus has been used by Kjellman and Jacobson (1955)

which contained a cylindrical sample of soil 50 cm in diameter by 100 cm high. The

granular soil was enclosed by a series of steel rings separated by small gaps which

allowed axial strain to occur without significant shear due to friction. The lateral

deformations resulting from the elastic extension of the rings were measured and the

lateral stresses calculated from these measurements . Tests conducted on pebbles

and Macadam indicated that K was nearly constant during loading and ranged between

the values of 0.38 and 0.48 for the materials tested. The value of Ko increased during
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unloading for all materials and approached a value of approximately 1.5 as the samples

were almost completely unloaded.

Avery complete description of the test requirements for the measurement of

the coefficient of earth pressure at rest is given by Bishop (1958). Bishop concludes

that the only two pieces ofexperimental apparatus, in addition to the triaxial apparatus,

which are suitable for Ko measurements are the devices used by Kjellman (1936) and

Kjellman and Jacobson (1955) . Two methods of conducting triaxial tests with zero

lateral strain are discussedby Bishop; these were originally published by Bishop (1950)

and Bishop and Henkel (1957). Bishop gives results obtained by Fraser (1957) from Ko

tests conducted on sand in a triaxial apparatus to an axial stress of 310 psi . These

results give a constantK value of0.41 during loading for a dry Brasted sandwhich has

a porosity of 40 percent. The value ofKo increases and eventually becomes greater

than unity during unloading. Bishop (1958) also presents data which show good agree-

ment between the semi-empirical relationship, K = 1 sin $, suggested by Jaky (1944)

and available test results on sands and clays. Valuable discussions to Bishop's paper

are also given by Rowe (1958), Schmid and Tschebotarioff (1958), Jakobson (1958), and

Simons (1958) .

-

The coefficient of earth pressure at rest has also been determined for sands in

a triaxial apparatus at the Norwegian Geotechnical Institute . Results are presentedby

Bjerrum, Kringstad, and Kummeneje (1961) which indicate that the value ofK increases

asthe initial porosity increases . The values ranged from 0.25 for dense sand to 0.65

for very loose sand. A similar variation in K with porosity is also reported by Chi- in

(1958) .

One- Dimensional Stress- Strain Measurements . A fairly complete study of the

factors which influence the compressibility of sand in one-dimensional compression

below an axial stress of 10 kg/cm² is given by Schultze and Moussa (1961) . Twenty-

five different sands are investigated for the purpose of studying the effect of grain

2.
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shape , grain size distribution, initial relative density, and the addition of a small

amount of cohesive soil on the one - dimensional stress - strain characteristics .

Results of high pressure tests on sands in one-dimensional compression are

given by Terzaghi and Peck (1948) ; these tests were conducted by Urul (1945) in

conjunction with another study . Data are given for a loose sand and adense sand

compressed to 100 kg/cm and 2000 kg/cm respectively. These data show that

crushing of the grains begins around 100 kg/cm² and that even up to considerable

pressures the void ratio for the loose sand is greater than the void ratio of the dense

2 2

2

2

sand before loading. Tests were also conducted up to 100 kg/cm for two samples of

sand, one with 10 percent mica and the other with 20 percent mica. The experimental

results demonstrated that the compressibility increases greatly with increasing

percentages of mica.

2

The results of a single high pressure one-dimensional test on sand is given by

Jaky (1948) . The test was conducted up to a maximum pressure of 200 kg/cm and a

mathematical formulation of the test results were then used to compute geostatic

pressures to a depth of 1300 meters .

A series of high pressure tests conducted at the Massachusetts Institute of

Technology were reported by Roberts and DeSouza (1958) and Roberts (1959). The tests

were carried to pressures as high as 20,000 psi in one-dimensional compression on

sampl s 1.13 and 2.75 inches in diameter and 0.35 to 0.75 inches in initial height.

Two different sands and a ground quartz were tested at various initial void ratios ,

From these tests it was concluded that at sufficiently high pressures sand may be more

compressible than clay. The high compressibility of the sand is due to crushing and

fracturing of individual grains; the most important factor which influences the pressure

at which breakdown occurs for a given sand is the initial void ratio . An angular sand

is also shown to be more compressible than a well-rounded sand.
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Afairly complete treatment ofthe behavior of sands in one-dimensional

compression is given by Whitman (1962); summaries are given of both high pressure

and low pressure work of other investigators. A very interesting study conducted by

Roberts (1961) on the one-dimensional energy absorption characteristics of Ottawa

sand is summarized by Whitman. The significant aspect of this study is the evaluation

of energy absorption in cycles of loading which do not include any permanent deformation .
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CHAPTER3

THEORETICAL APPROACH FOR PREDICTING THE STRESS-STRAIN BEHAVIOR

3.1 General

OF AN IDEALIZED GRANULAR MEDIUM

The stress-strain relations for a granular medium cannot be described by two

independent elastic constants as in the case of elastic, isotropic, homogeneous materials

because the stress-strain relations are extremely dependent upon the stress level, the

state of stress, and the displacement conditions at the boundaries of the medium. This

complex behavior of a granular medium isdue primarily to its particulate nature . An

analytical treatment which assumes any form ofcontinuum equations to describe the

stress- strain relations ofagranular medium circumvents the real problem inthe first

step, because in reality all that remains is a mathematical exercise after the continuum

equations are assumed.

A mechanics approach for predicting the stress-strain relations of a regular

stacking of equi-radii spheres is presented in this chapter which accounts for the

particulate nature ofthe medium. The basic elements which must be considered in

such an analysis are:

1. The equilibrium of each particle and the medium as a whole .

2. The relationship between the forces at points of contact and the average

stresses in the medium.

3. The geometrically admissi conditions on the deformations of the particles

(i.e. , a set of compatibility equations) .

4. The relationship between the normal forces and normal displacements and

the relationship between the shearing forces and tangential displacements

at each contact point on a particle.

5. The boundary conditions on the medium .
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The resulting differential equations which describe the stress- strain behavior of even a

regular array of equi- radii spheres by the above approach are extremely complex and

closed- form solutions can be obtained for only a few cases . Because some of the tract-

able problems are important cases, e.g. the hydrostatic, one-dimensional, and triaxial

states of stress, this approach has a great deal of merit in that it contributes to the

understanding of the behavior of granular materials , It is recognized that the analytical

model selected is an oversimplification of a real sand, but it is a useful tool in correlat-

ing some of the stress-deformation and strength properties of sand. The model still

maintains a particulate nature, however, which is the most important characteristic.

which distinguishes the behavior of sand from other materials.

The basic framework of this mechanics approach is not original; it is presented

as background for a solution describing the behavior ofa granular medium in one-

dimensional compression which is originally developedby the writer in this thesis .

3.2 The Duffy- Mindlin Theory ofGranularMedia

Basic Theory. The theory developed here follows that formulated by Duffy and

Mindlin (1957), Deresiewicz (1958), and Thurston and Deresiewicz (1959). The granular

medium is restricted to a face- centered array of equi- radii spheres as shown in Fig.

3.1. This array has the maximum density for a uniform material and should simulate

the behavior of a dense, uniform, well- rounded sand .

Consider the behavior of two spheres pressed together by a normal force.

According to Hertz (1881), if two elastic spheres, each having radius R, shear

modulus u, and Poisson's ratio v , are mutually compressed by a normal force N, the

resulting surface of contact is a plane bounded by a circle of radius a, where

a =

3(1 - ν )RN

8μ

1/3

(3.1)

The rate of change of the relative approach of the sphere centers, a, with respect to
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the normal force N, is

C =

ν

da = 1-
2μαdN

(3.2)

where C is defined as the normal compliance. Two spheres in normal contact are

shown in Fig. 3.2; Fig. 3.3 shows the distribution of the normal stress across the area

of contact. A complete derivation of the Hertz compliance and the assumptions and

limitations of the Hertz theory in regard to this study are given in Appendix A.

Suppose now that the two like spheres, initially compressed by a constant

normal force N, are subjected to a tangential force T which acts in the plane of contact

and whose magnitude increases monotonically from zero to a given value. Because of

symmetry, the distribution of normal pressure remains unchanged. If it is assumed that

there is no slip* on the contact, then, because of symmetry, the displacement of the

contact surface in its plane is that of a rigid body. The solution of the appropriate

boundary-value problem, due to Cattaneo (1938) and Mindlin (1949), yields the tangential

component of stress, T, on the contact surface and the tangential displacement, 6, of

points in one sphere remote from the contact with respect to similarly situated points in

the other sphere. The tangential stress is parallel to the applied force T, axially

symmetric in magnitude, and increases to infinity on the bounding curve of the contact

area (Fig. 3.3). It is reasonable to suppose that slip is initiated at the edge of the

contact because it is there that the shearing stress is infinite in the absence of slip.

Since this tangential stress is symmetric without slip, the slip is assumed to progress

radially inward, covering an annular area . On this annulus it is assumed, as a first

approximation, that the tangential component of stress is in the direction of the applied

force and is related to the normal (Hertz) component of stress, o, in accordance with

Coulomb's Law of sliding friction. Hence,

T = fo (3.3)

The term " slip" is reserved to denote the relative displacement of contiguous points

on a portion of the contact surface. The term "sliding" is reserved to denote relative

displacement of the entire area of contact.
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where f is the coefficient of static friction and o is given by

σ =

3N

3
2πα

22-31/2(a (3.3a)

Here p is the distance from the center of the contact circle . The distribution of

T with slip is also shown in Fig. 3.3 . Both Cattaneo and Mindlin predicted the relation

between the radius of the adhered portion and the applied tangential force as

b = a( 1 + 1 /3 (3.4)

where b is as shown in Fig. 3.3 and where the tangential compliance at the contact is

givenby

S == (1-2)4μα

-1/3

(3.5)

Equation (3.5) holds only for the case of an increasing T with a constantNat the

contact. In the problems considered in this chapter, T and N are both increasing so the

tangential compliances appropriate for this problem are (Mindlin and Deresiewicz 1953)

dN T

+ (1-1 ) ( 1-1/23] , 0≤≤1/8Ss =

2 - ν

4μα

dN

f + (1 f dN1/f
dT

(3.6)

or

-4μα
S = 1/£ (3.7)

Consider a face-centered cubic array of uniform spheres as shown in Fig. 3.1,

where each sphere is in contact with 12 other spheres . A typical element of this packing

is shown in Fig. 3.4. If the coordinate system shown in Fig. 3.4 is translated to the

center of any sphere, Fig. 3.5, the 12 contact points would have the following coordinates

in terms of the radius of the sphere .
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X ZY YZ ✗
--

0 +R/√2 +R/√2 2. +R/√2 -R/√2 0

0 -R/√2 +R/√2 8. -R/√2 +R/√2 0

0ة -RN2 - R/√2 9. +R/√2 0 +R/√2

4.
0 +R/√2 - R/√2 10. R/√2 0 - R/√2

5. + R/√2 + R/√2 0
11. - R/√2 0 +R/√2

6. - R/√2 - R/√2 0 12. +R/√2 0 -R/√2

There are two shearing forces and one normal force at each contact point as

shown on Fig. 3.5. In index notation it is convenient to identify the various components

ij'
of normal forces by the symbol, N., where the subscripts correspond to the planes in

which the components lie. The two tangential force components at each contact are

chosen to lie in and normal to the co-ordinate planes, and are identified byTij

respectively. At all contacts where the normal has direction cosines of unlike sign the

force components are further distinguished by primes . Thus the components at the

and T.

kk'

contact points 1 through 12 are:

1.
Nyz Tyz Txx 7.

XX Nxy Txy
Τ'

ZZ

2.
Nyz Tyz

T' 8.
XX Nxy Txy

Τ'

ZZ

3.
Nyz Tyz

T 9.
N

Tz
XX XZ XZ Tyy

4. Nyz Tyz
Τ' 10. N T
XX XZ XZ Tyy

5. Nxy Txy
T 11. N' Τ'

ZZ XZ XZ Tyy

6.
Nxy Txy

T 12. N'

ZZ XZ Txz
T

yy

2

The equilibrium equations of a representative cube (Fig. 3.4) may now be

considered. If an increment in stress is added to an initial state of stress, the forces

on the faces of the cube will be increased by corresponding increments dP The

unknown increments of force at the contacts between the spheres within the cube which

result from the force increments dP.. can be determined. If the stress increment in

ij

ij
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the medium is homogeneous, then the contact forces will be equal at contacts having

corresponding positions on the surfaces of the spheres . The contact forces diametrically

opposed on each sphere are equal, thus only 18 of 36 contact forces on each sphere are

independent. Not only must the cube as a whole remain in equilibrium under the action

of the increments in applied force, dp , but each sphere and each portion of a sphere
ij

within the cube must also remain in equilibrium. Since the portions of spheres in the

cube are acted on both by applied forces and by contact forces, the equations of equili-

brium relate the increments in applied forces to the increments in contact forces . By

writing equilibrium equations for various octants of spheres in the cube as shown in

Fig. 3.6 it may be shown, (Duffy and Mindlin, 1957), that there are nine independent

equations of equilibrium. These equations are the following:

1. 4dT + 2√2 (dN + dN
xy

XX

2. 4dT
yy

3.

4.

ZX

+ 2√2 (dN + dN

4dT + 2√2
ZZ

-dT

ZX

=

+XX

dP+ dTxy

(dNxy + dNyz - dTxy ++ dTvz)

(dNyz + dNzx - dTyz

=

dPxy

dP +dP

yy yzyz

+ dT ) = dP

ZX

4dT + 2√2 (dN + dN - dT + dT ) = dP
XX ZX

xy
ZX

xy

5. 4dTyy + 2√2 (dNxy + dNyz - dTxy + dTyż

+ dN
ZX

-

ZZ

XX

+dP

+dP

ZX

+dP

xy

+dP
ZX

yz

+dP

xy

+dP (3.8)
ZX

- dP

xy

= dP

yy

+dP

+dP

yz

dP+ dT ) =

yz
ZX

6. 4dTzz + 2√2 (dNyz dT'

7. 4dT - 2√2 (dN2x + dNxy - dTzx + dTxy) = -dP
XX

-

8. 4dT 2√2 (dN' + dN'

yy xy yz

4dT 2√2 (dN' + dN'
9.

ZZ

-

yz
ZX

ZX

- dT' + dT' ) = -dP

xy yz

- dTdTyz + dT ) = -dP
ZX

ZZ

+dP

XX

ZX

dPxy

+dP

yy yz

ZZ

+dP

ZX

-

dPyz

+dP

ZX

+dP

xy

+dP

yz

The nine equilibrium equations given above are not sufficient to uniquely

describe the behavior of the medium since the problem is statically indeterminate.

A set of compatibility conditions was formulated (Duffy and Mindlin, 1957) by giving

consideration to the admissible displacements of the medium which result from the

incremental stresses . The components of relative displacements of the centers of

spheres are designatedbydaij do d&'ij'ij' to correspond, respectively, to the
kk'
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orces dN...Nij ' dTiTij, dTkk (Fig. 3.7). It is required that the displacements of the center

of the spheres be single valued, i.e. , the vector distance around the closed path through

the center of the spheres must vanish both before and after the medium is strained.

Hence the sum of the relative displacements of the center of these spheres around the

closed path must vanish. Expressions for this condition for all possible paths connect-

ing the center of a sphere in the medium yields 9 independent equations of compatibility

as follows :

ZX

5. da

ZX

1. √2d6
ZZ

2. √2d8

3. √2d8

4. √2αδ

√2d6.

ZZ

ZZ

XX

XX

=

=

=

=

=

-da' + da

yz

dayz

-

ZX

ZX

+ do'

yz

do

yz

da'

-da + da

yz

-da + da + do'

ZX

xy

+ do

yz

-

+ do

-

do'

ZX

ZX

+ do

ZX

+ do

ZX
xy

-

da' do dδ'

xy
ZX

xy
(3.9)

6. √2d8
1

= da
-

da + do + do

XX ZX
xy

ZX
xy

7. √2d8 da' + da + αδ'

yy xy yz xy + doyz

8. √2d8yy
= da

-

xy dayz

-

do d8'

xy yz

√2d6yy
= -da + da + αδ

xy yz doxy
+

do

yz

The compatibility equations can be written in terms of force increments by

using the compliances

daij = CijdNij

do ij = SijdTij

do =kk
SkkdTkk

daij = CijdNij

do ij = SijdTij

do kk = SkkdTkk

(3.10)

ij

where the above subscripts identify the contact. Thus Eq. (3.9) together with Eq. (3.8)

yield 18 independent equations containing the applied forces dP₁, and 18 independent

components of the unknown contact forces, dNij dTijdT.,, and dTTkk. Unfortunately, these

18 equations are difficult to solve because the equations include the compliances and the

compliances are functions of the contact forces . Consequently, a solution to these

18





equations can be obtained only for a few simple cases .

The incremental extensional and shearing strains in the array, expressed in

terms of the compliances, are

1

deii = 4R (da₁) + do ij + daij + do ij)11

dy

1

dvij = 2R (daij - daij)

ij

(3.11)

Likewise the applied force increments Pij in Fig. 3.4 are related to the stress incre-

ments for a face- centered array by

dPij = 8R2doij (3.12)

Application to a Hydrostatic State of Stress . One problem of interest which can

be solved is that of a face - centered array subjected to a hydrostatic state of stress .

Under this state of stress symmetry dictates the conditions that all normal forces at

the contacts are equal and all shearing forces are equal . If it is designated that

Po

ON

= total force on the face of a differential element

= normal contact force

To
=

tangential contact force

R = radii ofspheres

the equilibrium Eqs . (3.8) reduce to

4dT + 4√2dN = dP
0 0

4dT - 4√2dN = dP
0

Adding Eqs . (3.13) and considering the initial condition of zero stress yields the

expected condition for the tangential force

T。
=

dT = 0

(3.13)
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Hence, the equilibrium equation becomes

N = dP

4√2

Ο

Ife is the hydrostatic strain in any direction, Eq. (3.11) yields

1

de = 2R2 da

where da is the normal deformation due to do and is related to dN by the normal

compliance C , and

da = CodNo

From the Hertz theory

1 - ν

Co
2μα

where a is the radius of contact defined by

3(1 - v) NR 1/3
a =

0 8μ

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

By combining Eqs. (3.15), (3.16), (3.17) and (3.18), the incremental strain may be

expressed as

deo
=

2/3

1/2 [ 12]28 [30 ]μ

-1/3

do

Integrating Eq. (3.19) and considering zero initial conditions results in

=

2/3

[312]2/3 0.228μ

σ

It should be noted that Eq. (3.20) states that the first stress invariant, I , is

proportional to the three halves power of the first strain invariant J₁.

(3.19)

(3..20)

It is of interest to compare the results of this theory with some limited

experimental results available in the literature . Kjellman (1936) carried out some

tests on dry sand subjected to hydrostatic pressure and measured the strains

associated with the pressure. Table 3.1 gives the variation of the first stress and

strain invariants taken from his experimental results . A plot of these data is shown
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in Fig. 3.8 . Also shown is a plot of the exponential relationship indicatedby the theory

discussed, which is fitted to the experimental curve at the 6 kg/cm² stress level . The

behavior of the sand is not as stiff as the theory indicates in the lower pressure regions

whereas it becomes stiffer than the theory predicts in the higher pressure regions . The

comparison does point out, however, that the results of the theory associated with the

face- centered array of spheres correlate qualitatively with the behavior ofdense sand

subjected to a hydrostatic state of stress .

3.3 One-Dimensional Theory ofGranularMedia

Monotonically Increasing Load. The theory ofDuffy and Mindlin developed in

Section 3.1 will now be extended to solve the stress- strain behavior of an array of

spheres subjected to one-dimensional compression. One-dimensional compression is

defined as that state of stress resulting from the application of a load in the vertical or

z direction when the lateral strains in the xandydirections are zero .

The radial symmetry of the one-dimensional problem greatly simplifies Eqs .

(3.8) and (3.9). The representative cube now becomes as shown in Fig. 3.9, and the

forces on a sphere reduce to those shown on Fig. 3.10. From symmetry the following

simplifications can be made for the forces anddisplacements :

N'

Nxy = xy = N₁

N'

Nzy = Nyz = Nzx = N2x = N2

-Tyz = -Tyz = Tzx = Tzx = T2

Txx = Tx = Tyy = Tyy = Tzz = Tzz = 0

Txy = Txy = 0

(3.21)

Pxy = Pxz = Pzx = Pyx = Pyz = Pzy = 0

Pxx = Pyy = PH
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axy = axy = a

41

@yz

-δ

yz

=

a

yz

= -δ '

D

=

=

ZX

=

a =

ZX

δ

ZX

= δ' =

D2

82

= 6'

ZZ ZZ

yz

,

δ
XXбух =

ZX

δ' = δ

бух = буу = SyyXX

бху = ху = 0

=

(3.22)

0

Furthermore, the associated compliances nowbecome

C'

Cxy = xy = C1

Cyz = Cyz = Czx = Czx = C2
C'

Syz = Syz = Sz
= S'

ZX ZX

=
S

$2

(3.23)

Using the above simplifications and considering symmetry reduces the equili-

brium Eqs. (3.8) to

√2

dN2 + dT2 = dPZZ

√2

dN₁dN, + dN₂ - dT₂ = dPH2

Hap

In a similar fashion the compatibility Eqs . (3.9) reduce to

=

da₁ - da₂ + d82 01

where the compliance Eqs. (3.10) now become

da₁ = C₁dN1

da2 = C2dN2

d82 = S2dT2

Substituting Eqs. (3.26) into Eq. (3.25) yields

C₁dN1 - C2dN2 + S2dT2

=

0

(3.24)

(3.25)

(3.26)

(3.27)
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Equations (3.24) and (3.27) are sufficient to describe the behavior of a granular

medium subjected to given vertical and lateral forces Pzz and PH. If, however, only

the vertical force is known and the lateral force must also be determined, a further

condition is necessary. This condition results from the relationship between the contact

displacements and lateral strain.

Due to symmetry the lateral strain en determined from Eqs. (3.11) reduces to

or

H

da1
de = 2R

CidN1
=

2R

(3.28)

force P

deH
(3.29)

Thus the behavior of a face- centered array of spheres subjected to a vertical

ZZ
and restricted to symmetrical lateral deformations canbe obtained from a

solution to the following equations:

dN2 + dT2 = dPzz

√2

√2

dN₁ + dN2dT2-4PH = 0

CI

2

$2

2

dN₁ - dN2 + dT2 = 0

(3.30)

dN1
=

2RdEH

C1

For the case of interest here , namely one-dimensional compression, en is

required to vanish for all loadings. For this particular state of stress and zero initial

conditions, one obtains N₁ = 0 and Eqs. (3.30) reduce to1

dN2 + dT2 = dPzz
(3.31a)

8

√2

2dN₂- dT₂ - dP = 0 (3.31b)

S2

dN2dT2
= 0 (3.31c)
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where the expression for

$2 dN2
=

1
2

where

is obtained from Eqs. (3,6) and (3.7) as:

+(1- f

2dN,

ar)
2

(1
12
IN

2

-1/3

2-

k₁ = 2(1- )

(3.32a)

(3.32b)

It shouldbe noted that Eqs. (3,31) are simultaneous differential equations and

are non-linear because ofthe compliances in the third equation.

The vertical strains e associated with the behavior of this medium canbe
ZZ

obtained from Eqs. (3.11) as

1

dezz = 2R (da2 + do 2)

The compatibility Eq. (3.31c) states that

da2 = do 2

Hence for the one-dimensional case Eq. (3.32) reduces to

da2 C2dN2

ZZ Rdezz = = =
R

(3.33)

(3.34)

For the solution of Eqs. (3.31), consider first the compatibility Eq. (3.31c) .

Substituting Eqs. (3.32) into Eq. (3.31c) and rearranging yields

and

1/3

dT2

dN2

1-k1f
T
2

= f+ (3.35)

Introducing the new variable

3

z = -= f

3

T2

N2

N2Z³ = N2 - T2

(3.36a)
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one obtains

or

where

or

3

zaz
dN2Z³ + 3 N₂ Z2dZ = fdN2 - dT2

dT2

dN2

N2

= 1-23-3N2
f

Z

2 dZ

AN
2

By using Eqs . (3.36), Eq. (3.35) can be transformed into the form

3ZdZ dN2
2

N2
2

Z+K2

=

=

1-k₁f

K21/3
k1

Integrating both sides results in

In N2 - In A = -3/2 In (Z2 + K2)

A
N2 = (2² + K₂)

-3/2

where A is a constant of integration.

(3.36b)

(3.37)

(3.38)

(3.39)

From Eq. (3.36a), Eq. (3.39) becomes

N2
=

A

T
2

( - )

N2

2/3
-3/2

+K2 (3,40)

Equation (3.40) is the general solution to Eq. (3.31c) and a articular solution

may be obtained by evaluating the constant of integration .

Because the initial conditions, Pzz = N2 = T2 = 0, are obvious one is inclined to

evaluate A from these conditions . Although this is a true boundary condition, a

singularity point occurs at the origin. The equation is, however, well behaved at
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other points and the following technique will be used to evaluate A.

Imagine a small hydrostatic state of stress initially holding the spheres in

contactbefore the one dimensional state is imposed. This hydrostatic stress produced

no initial tangential force at the contacts but itdoes cause a normal force of N₂ = No.

From eq. (3.40)

-3/2

No = A(£2/3 + K2)

or solving for.A, the constant of integration

No
A =

2(K₂ +£2/33-372
(3.41)

SubstitutingAuto Eq. (3.40) yields after some rearranging and taking into

account Eq. (3.38).

T2 = fN2 1-

1

K
1

N

2/3

(N)
2

+1

3/2

(3.42)

Aplot of a family ofcurves representing Eq. (3.42) with various values of the

initial hydrostatic stress N is given in Fig . 3.11 . The paths of loading are indicated by

arrows on the curves. For convenience the coefficient offriction fwas taken as 0.3 and

Poisson's ratio vas 0.2.

If an initial hydrostatic stress is imposed the value ofN₂ can be determined at

which sliding begins. For this condition Eq. (3.42) yields

N 2/3

[ 1] +1= 0
+ 1 = 0

Rewriting and taking account of (3.32b) yields

N2
=

1

ON

(2-1)

2(1-2)

3/2
(3.43)
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2The reader will recall that the problem was to define the relationbetweenN₂ and

T2 for a granular medium in one-dimensional compression whichwas loaded from an

unstressed condition. It was noted that the solution contained a singularity at the zero

stress and it was necessary to provide aninitial hydrostatic stress No to hold the spheres

in contact when loading. If No is now allowed to approach zerowe obtain the solution

desired. On investigating Fig. 3.11 or Eq, (3.42) it is clear that ifone-dimensional

loading commences from a completely unstressed condition (N = 0), the relationbetween

N₂ andT, is that of a straight line with a slope of 1/f. Thus, the relationship between

N2 and T2 for a face - centered array subjected to one- dimensional compression is

2 2

T2 = fN2

This means that sliding (differentiated from slip in Section 3.1) atthe contacts

occurs immediately on initiation ofloading. This is extremely important in that the

theory developed to date along the lines ofMindlin et al does not allow sliding at the

contacts. It will be shown herein that the stress- strain relationships in the one-

dimensional granular medium can be described mathematically even though sliding occurs

throughout the application of a monotonically increasing load.

From compatibility, even in the case of sliding, the geometrical relationship

still holds for the displacements at the contacts, i.e.

da2

-

d&

2

= 0

2

(3.44)

It must be emphasized, however, that the tangential displacement 62 is no

longer related to the tangential contact forceT₂by the tangential compliance S₂ because

of sliding at the contacts. The tangential displacement is now made up oftwo effects,

a sliding effect and a contribution due to slip. On the other hand, the normal forces

and displacements are still connectedby the compliances.

Furthermore, because Eq. (3.44) is a geometrical relationship, it also holds

for total displacements in the problem athand; hence,

a

2

= δ

2
(3.45)
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The vertical strain Eq. (3.33) is also purely geometrical and can be written as

da2 C2dN2
de =

ZZ R

=

R
(3.46)

The equilibrium Eqs. (3.31a) and (3.31b), which were originally written in

terms of differential stresses, also hold for total stresses . Hence,

√2

N₂N2 + T2T₂ = Pzz

√2

N2 - T2 - PH = 0

(3.47a)

(3.47b).

It has already been determined thatN₂ and T2 are related by the coefficient of friction2

throughout the entire loading, i.e.

fN2 - T2 = 0 (3.47c)

The behavior of the granular medium subjected to one-dimensional compression

can now be described by Eqs. (3.44, (3.54), (3.46), and (3.47).

Equations (3.47) may be combined to eliminate T2 resulting in

N₂ (1+ 1) = P8Pzz

√2

2N₂ ( 1-1) = PH

(3.48a)

(3.48b)

In theoretical soil mechanics a quantity of major interest in one-dimensional

compression is K, the ratio between the horizontal and vertical stresses at rest. From

Eqs . (3.48) this ratio is clearly

PH

P

1

K = = ( )
ZZ

2

Some indication of the variation ofK with the coefficient of friction f is shown in

Table 3.2.

(3.49)

The strains resulting from one-dimensional compression may now be investi-

gated. The substitution of Eq. (3.2) into Eq. (3.46) yields
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1+f = 2
√
2

~ f = 2
√
2

= 1

2

=
1
.
8
2
8
1

N
o
.



-1/3

dezz =ZZ

(1 - ν)

2µR

3(1 - v) RN2

8μ dN2
(3.50)

Combining Eqs. (3.50) and (3.48a) and noting from Fig. 3.9 that

P

ZZ

σ =

ZZ
2

8R

(3.51)

gives

de

ZZ

2/3

=

1

2

( 1-2 )

μ(1+f) [3 /80zz]

-1/3

do (3.52)
ZZ

Integration of Eq. (3.52) yields

(1-2) (3) √2

μ (1+1) (8)

2/3

zz = 20ZZ ZZ

2/3

(3.53)

An interesting result ofEq. (3.53) is that the stress-strain behavior is inde-

pendent of the radii of the particles . A comparison of the stress- strain curves for

hydrostatic and one-dimensional compression shows that the curves are similar in

shape, but turn up at different rates . The ratio of the one-dimensional strain to the

hydrostatic strain at the same level of stress, ozz is a ratio of Eqs, (3.53) to (3.20),

which reduces to

:

ε

ZZ 2

Ege = 275
0 (1+f)

2/3
(3.54)

Values of f of 0.1 and 0.2 give values for Ezz/60 of 1.88 and 1.77, respectively. This

indicates that the hydrostatic and one-dimensional stress- strain curves are related as

shown in Fig. 3.12.

Unloading Cycle. When the medium is loaded the tangential forces tend to

resist the sliding motion. During unloading the tangential forces tend to resist the

sliding movement which is now in the opposite direction, Hence, the tangential forces

reverse their direction on unloading. The cases of loading and unloading are illustrated
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schematically in Fig. 3.13. The normal and tangential forces are still related by the

coefficient of friction; only now the direction of the tangential force is changed.

The new equilibrium equations become

where

N₂ - T2 =

√2

8 Pzz

√2

N₂N2 + T2 = PH

fN2 - T2 = 0

(3.55)

(3.56)

Consider the medium tobe loaded from 0 to σ*
zz Fig. 3.14, according to

Ezz begins to

will decrease instantaneously from σ* to some value

Eqs. (3.53). If equilibrium Eqs. (3.55) become valid at the instant

decrease from e

ozz

zz'

then σ
ZZ

At the end of loadingN₂ and o2 ZZ
are related by

ZZ

ZZ

(1+f)

σ* = N2Ν2
2√2R2

(3.57)

whereas the stress ' is related to the contact forces by Eqs. (3.54) and Eq. (3.51)
ZZ

by

N2 (1 - f)
σ' =

ZZ 2

2R

The relation between σ * and σ'

ZZ ZZ

2

at the instant when e

σ*

O'zz = zz ( )
σ'

ZZ ZZ

(3.58)

just begins to decrease is
ZZ

(3.59)

because the value ofN₂ has essentially the same valuewhile the shearing stress has

changed directions . Combining Eqs . (3.55), (3.51) , (3.46) and (3.2) yields for unloading

√21

dezz = 1/2 [ 23/3 [3/8022/1/3 dozzμ (1-1)
(3.60)
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2/3

which by integration becomes

؟

ZZ

=
(1-ν) 3√2

μ(1-f)8

2 σ

ZZ
(3.61)

The entire stress- strain history for one cycle of loading in one-dimensional

ZZ zz

compression is shown in Fig. 3.14 in terms of o and σ' . The derivations above

arebased upon the assumption that the tangential contact forces immediately reverse

directions when unloading begins. This assumption is not quite true, however, because

each sphere must exhibit a small elastic tangential displacementbefore the tangential

forces can change direction. This effect, however, is small with respect to the tangen-

tial displacement due to sliding and was neglected in the analysis . Because ofthe above

assumption, the stress- strain curve reflects a vertical drop in stress from A to Bwith-

out any change in strain. If the small elastic tangential displacement due to slip were

accounted for, the stress- strain curve would follow a smooth relationship such as the

dotted line suggested in Fig. 3. 14.

The stress- strain behavior shown in Fig. 3.14 exhibits an energy loss after a

cycle of loading and unloading but has no residual strain. Hence, this mediurn can

absorb energy without any permanent displacements .

Energy Absorption. The amount of energy absorbed by the medium on loading

and subsequent unloading can nowbe determined..

The energy E₁ required to load up to an applied vertical stress of σ

strain of e is.

ZZ E

ZZ

σ

E₁ = S Ozzdezz

E₁ = (1+1) €zz1 ZZ

and the

ZZ

(3.62)

5/2
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The energy taken out of the medium E₂ during unloading back to zero from a

stress of σ' and strain €*
ZZ

is

ZZ

5/2

E

B2 = (1-1) €ZZ

Thus, the energy lost is

8

ΔΕ = Ε1 - Ε2

5/2

= fezzZZ

The ratio of the energy loss to the energy input is

ΔΕ

E

1

=

2f

1+f.

(3.63)

(3.64)

(3.65)

Thus, a very significant property of the one-dimensional stress- strain curve is that the

per cent of energy absorbed due to loading and unloading is always constant for a

material anddepends only on the coefficient of friction at the contacts. Hence, the ratio

of the area between the loading and unloading curves to the area under the loading curve

is a constant given by Eq. (3.65). The per cent energy absorbed for various coefficients

of friction is given in Table 3.2.

normal forces during deformation

ST2d82

The relationship between normal and tangential contact forces deterinines the

relationship between the recoverable and dissipated energies. The work done by the

N2da2
is stored in the form of recoverable strain

energy. On the other hand, the work done by the tangential forces is a non-

recoverable energy and is dissipated as heat into the medium . As seen from Table 3.2

this energy loss during one cycle can be quite significant. In fact, with a coefficient of

friction of 0.15, the dissipated energy is 26.1% of the energy put into the system.

3.4 Equivalent Discrete Mass Model for One-Dimensional Static and Dynamic Behavior

In recent years, an increasing effort has been devoted to studying the static and

dynamic behavior of soils using discrete mass-spring models. These mode's have taken

many shapes with various components from models such as the standard Voigt and

Maxwell models. These model studies have been particularly useful in wavė
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propagation studies, such as the work of Smith and Newmark (1958) . The dynamic

equations of motion can be integrated numerically with a digital computer using the

β-method (Newmark, 1959); it is a fairly straightforward approach to modify soil

parameters or spring stiffnesses as the need arises.

As might be expected from such an approach, there are certain aspects of the

soil behavior which escape the mass- spring model. Part ofthis inaccuracy is due to

the discreteness of the system and part can be attributed to choice of the model itself.

A study of the problems associated with the choice of various models for investigating

the propagation of stress waves in a one-dimensional medium has been carried out by

Murtha (1961) .

In spite of the inherent difficulties associated with the use of models, there are

some cases where the model is the only hope for obtaining even an approximate solution.

Therefore, the writer would like to suggest a one- dimensional model which seems to

exhibit the behavior expected ofdry cohesionless sand, and is basedupon the theory

presented in Section 3.2.

If a pressure on the surface of the earth extends over a large area, it may be

reasonable to consider the soil completely confined. If this condition is satisfied, and

the soil composition is similar to sand, the one-dimensional behavior discussed herein

may very well be a good approximation to the in- situ soil behavior .

Horizontal Model. Figure 3.15 gives a model representation of the granular

system described in Section 3.2. This model yields the same stress- strain curve as

the spheres for a static load as the load increases or decreases . The model consists

of non-linear spring elements and Coulomb damping elements which dissipate energy

by the same mechanism as the spheres . The reason that the model depicts horizontal

behavior is that there are no initial stresses in the model before the load is applied.

Such an assumption might be reasonable for a vertical column if the weight of the soil

is negligible compared to the applied stresses .

33



Ye

راتف



Vertical Model . The vertical model is slightly more complex than the horizontal

one in that the weight of the material produces initial stresses in the model. Since the

stress- strain curve for the material is non-linear, the stiffness is a function of the

stress, and consequently, a function of the height of overburden. The overburden

pressure increases linearly with depth and it can therefore be incorporated in the

equations of motion.

Avertical model which includes the initial stresses due to the overburden of the

material is given in Fig. 3.16. It includes a change in stiffness associated with the

increased initial stress and follows the stress- strain behavior consistent with the

analysis of the granular medium in Section 3.2.

3.5 Theoretical Relationship Between the Angle of Internal Friction, Coefficient of Earth

Pressure at Rest, and the Coefficient of Friction Between Spheres for a Face- Centered

CubicArray ofUniform Spheres .

ZZ

The relationship between the principal stresses at failure for a face centered

cubic array has been investigated by Thurston and Deresiewicz (1959) . The analysis

applies to an array as shown in Fig. 3.9 which is initially under an isotropic confining

pressure , o , and subsequently subjected to a uniaxial stress difference, σ as shown
zz'

in Fig. 3.17 . When σ approaches the ultimate value, failure planes are formed by a

series of shearing displacements of individual layers of spheres. The failure is initiated

in layers containing planes in which the density of sphere centers is greatest, i.e. , the

(111) planes or octahedral planes win respect to the co-ordinate axis in Fig. 3.9. It is

also interesting to note that Smith (1961) reports exactly the same phenomena for yielding

in steel crystals which have a crystal arrangement such that the atoms have exactly the

same location as the centers of the spheres in Fig. 3.9. A single relative shearing

displacement of parallel (111) layers would translate sphere A, Fig. 3.9, from the

hollow between spheres B, C, and E to the hollow between spheres B, C, and D. The

translation of sphere Awould be a distance of R √4/3 in the [112] direction. The
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expression given by Thurston and Deresiewicz for the maximum stress difference that

can be maintained without failure between octahedral layers of spheres is

σ

ZZ

=

σ

0

√6+ 8f

√6-4f

Since the major principal stress, 61, is given by

σι
= σ

ZZ

°+

(3.66)

(3.67)

and the minor principal stress, 03 , is equal to o , then equation 3.66maybe writtenο

as

σ

13 √6 + 8f
=

√6-4f

(3.68)

If Eq. 3.68 is examined for the limiting condition of f= 0, then it is found that a stress

difference equal to the confining stress can be maintained in this array even if the spheres

are frictionless . The writer was initially disturbed by this result and analyzed several

simple geometrical arrangements of frictionless spheres . It was found by the method of

virtual displacements that the stress difference that could be maintained with a given

confining stress was a function of the structural arrangement of the frictionless spheres .

At the point of failure, the principal stresses and the kinematically possible virtual

displacements in the principal directions are such that the change in potential energy is

zero . Because the structural arrangement controls the displacements which are kinema-

tically possible, then it follows that the structure also controls the principal stress ratio

at failure in a frictionless array of spheres. For a given structural arrangement the

stress difference at failure is governed by the boundary displacement conditions, such

as the boundary restrictions in plane strain. The change in kinematically possible

displacements imposedby the condition of plane strain accounts for the increased

apparent angle of internal friction observed for granular materials sheared in plane

strain.
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The ratio of the principal stresses at failure for a dry granular material is

definedby

=

σα

1+ sin

1- sin
3

(3.69)

where is the angle of internal friction of the material. The elimination of σ, and σ
1

from equation 3.68 and 3.69 yields

sin$ =

8f+ √6

3√6

Eq. (3.70) is more meaningful if it is written in the form

1

sin$ =

8.

3+
3 √6

f

3

(3.70)

(3.71)

Eq. (3.71) clearly shows that part of the angle of internal friction is due to friction and

the remainder is due to the structural arrangement. Eqs. (3.70) and (3.68) are correct

only for a face- centered array ofuniform spheres but the relationships suggest that the

following relation should apply to any granular medium

sin $ = K3 + C₁f
(3.72)

where K3 is a portion of sin o due only to structure (relative density) and C₁ is a constant

determinedby the structural arrangement(relative density) which governs how efficiently

the coefficient of friction is in increasing sin d. It should be pointed out that the

conclusions drawn above by the writer are contradictory to equations published by

Bishop (1954) and Caquot (1934). The equation published for triaxial stress conditions,

where 02 = 3< 1, by A. W. Bishop was

د

sin$ =

15f

10+3f
(3.73)

and the equations published by Caquot (1934) andBishop (1954) for plane strain were

respectively

and

tan $ = π/2f

sin $ = 3/2 f

(3.73)
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All of the relationships suggestedby Bishop and Caquot show that & reduces to zero when

f reduces to zero . Thus the equations do not include a term which shows a component of

the angle of internal friction which is a function only of structure, (relative density), and

independent of the coefficient of friction between grains. It is therefore concluded that

the equations givenby Bishop and Caquot cannot explain the variation of& with relative

density.

Studies of the strength characteristics of uniform spheres in various packings

arepresented by Idel (1960) and Wittke (1962) which support the opinion of the writer.

In fact, relationships between porosity and tan & are presented in each study for the

special case of the coefficient of friction between spheres equal to zero. Therefore the

studies of Idel and Wittke also point out thatpartof the shear strength ofagranular

medium is due to structural arrangement, (relative density), and is independent of the

coefficient of frictionbetween particles. For the case of triaxial compression of a

medium of frictionless spheres in the densest packing, Idel (1960) gives avalue of 0.38

for tan & whereas the value tan & calculated from Eq. (3.71) for f = 0 is 0.35. The

agreement is very good and the difference isdue to the fact that the densest packing

considered in this study was a face-centered cubic arraywhereas the densest stacking

consideredby Idel was a closed-packed hexagonal array.

The coefficient ofearth pressure at rest and the angle of internal friction for a

face-centered array can be relatedby combining Eqs. (3.49) and (3.70) to give

1

2KoK = ½
1 + √6/8 - 3√6/8 sin

1 - √6/8 + 3√6/8√6/8 + 3√6/8 sin

(3.76)

A plot of Eq. (3.76) is shown in Fig. 3. 18 and a relationship between K and sin ?

as suggested by Jaky (1944) is shown for comparison. The relationship given inEq.

(3.76) suggests that Ko decreases as $ increases, which is similar qualitatively to

Jaky's relationship but not numerically identical. The coefficient of friction f was

37





eliminated between Eqs. (3.49) and (3.70) to obtain Eq. (3.76) because, although the

coefficient of friction is a useful tool in relating and Ko, it cannot be measured

reliably for grains with roughness and small radii of curvature . Eq. (3.76) canbe

checked, however, in the above formby measuring Ko and $ for a granular material.
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CHAPTER 4

THE DEVELOPMENT OF A SPECIAL, HIGH PRESSURE,

ONE-DIMENSIONAL COMPRESSION APPARATUS

4.1 General

Adevice was designed andbuilt to investigate the one-dimensional behavior of

sand in the high pressure regions. The apparatus can measure the lateral stress under

conditions of zero lateral strain, and provides one of the best means yet developed for

attaining the condition of "zero" lateral strain. Previous investigators have generally

assumed that the effects of small lateral strains are negligible, particularly when the

sample is enclosed in steel rings . Researchby Speer (1944), which was recently pointed

out by Fulton and Hendron (1962) shows that lateral motion significantly affects the ratio

of H/ The results of Speer's research is presented in graphical form in Fig. 4.1

and shows that a lateral displacement of 4 x 10 inches will cause a 10% reduction in the

-6

value of 0 /0y. Since Speer's work was with a sand sample 7 5/8 inches in diameter,

the above diameter change corresponds to a unit strain of approximately .5 x 10-6 in./in .

H

-6

It is doubtful to the writer that Speer really achieved an accuracy of+ 1 x 10 in./in .

since slight electrical instabilities in the circuit would cause minor variations of at least

that magnitude in the strain gage readings. However, his work does in general point out

that the ratio of σμ/σy is very sensitive to lateral movements . This phenomenon had

alreadybeen observed by Terzaghi (1934) in connection with his "Large Retaining Wall

Tests" at MIT. Terzaghi concluded that an outward movement of the wall of .0007 h in

the case of awell compacted dense sand was enough to fully mobilize the shear strength

or, in other words, reduce the ratio of Hσπ/σν to the coefficient of active earth pressure .

This outward movement corresponds approximately to a lateral strain of about 12x 104

in./in. Thus for a truly one-dimensional test, whereby one also wishes to measure the
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magnitude of the lateral stresses which are concomitant with the vertical load, it is

extremely important to closely control the lateral displacements. In fact, preliminary

calculations revealed that an extremely thick walled cylinder subjected to an internal

pressure of 7,500 psi (which is an approximation to the lateral soil pressure due to a

vertical load of 15,000 psi) would experience a radial strain of 3.25 x 10 in./in. if the

-4

specimen were 7 inches in diameter and the containing cylinder were assumed to have an

infinite external radius . This strain is of the same order ofmagnitude as the tolerable

strains listed by Speer and Terzaghi , Thus, in order to study one-dimensional com-

pression, a new experimental apparatushad to be designed which would restrict the

lateral deformations. The apparatus developed in this study is discussed in the following

sections .

4.2 Experimental Apparatus

General Description of the Apparatus. An experimental apparatus designed to

determine the stress- strain relations for soil under one-dimensional compression and to

measure the lateral stress necessary to completely restrain the sample is shown

schematically in Fig. 4.2. The apparatus consists essentially ofa thin steel ring, which

contains a soil sample, surrounded by an annular space. The annular space is filled with

oil which communicates freely with hydraulic jacks . The flexible ring and oil space are

enclosed in a thick hollow cylinder bolted to abaseplate in order to withstand the high

fluid pressures . The vertical load is applied to the sample by the testing head shown in

Fig. 4.2 which is mounted ina 120,000 lb Baldwin testing machine.

The principle uponwhich the device is based is relatively simple . As the vertical

load is appliedby the testing head there are lateral pressures built up in the sand which

tend to increase the diameter of the thin steel ring. Any slight increase in the diameter

ofthe ring is immediately indicated by the strain gages mounted on the flexible ring as

shown in Figs. 4.2 and 4.3a. In order to keep the lateral strains zero, the oil pressure

40



bela



is modified with changes in the vertical load in such a manner that the strain indicator

remains balanced at all times during the test. When the strain indicator remains bal-

anced, there are no lateral strains and the oil pressure is equal to the lateral soil

pressure acting against the inside of the container .

The apparatus consists of the following four basic elements:

(1) A thin steel ring monitored with strain gages, Fig. 4.3a.

(2) A testing head, Fig. 4.3b.

(3) Abaseplate, Fig. 4.4a.

(4) A thick walled cylinder, Fig. 4.4b.

A detailed assembly drawing of the test cell is shown drawn to full scale inFig. 4.5 .

The three component parts of the cell are drawn to full scale inFigs. 4.6, 4.7, and 4.8.

The apparatus setup for testing in a 120, 000 lb. hydraulic testing machine is shown in

Fig. 4.9a.

Design ofthe Thin Steel Ring. The key sensing device, upon which the measure-

ment ofthe coefficient of earth pressure at rest is dependent, is the instrumented steel

ring. The steel ring is essentially a thin tube which has an internal diameter of 6.812

inches and an external diameter of 7.000 inches over most of its length, except at the

upper and lower ends where special provisions are made to accommodate "O" ring seals.

Four Budd Metalfilm Strain Gages (Type C6-1161) are mounted at the mid-height of the

soil sample at 90° intervals and connected in series as shown in Fig. 4.3a. In this

arrangement, the strains sensed by the four gages are averaged since the change in

resistance balancedby the indicator is the sum of the changes in all fourgages.

The strain gages are "foil" gages with a gage length ofone inch and a grid width

of 0.09 inches . The backing of the gages is epoxy and the gages are temperature com-

pensated for steel. Tatnall G-5 adhesive was used for cementing the gages to the ring.

The gages were baked on for 2 hours at 175°F and cured for an additional 2 hours at 170°F .

The specific reasons for the choice of gages, backing, and cementare givenbelow:
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1. The metalfilm gages were chosen because the foil grid is constructed so that

the strands parallel to the axis of the gage have a very small cross- sectional area

whereas the end loops transverse to the axis of the gage have a large cross-sectional

area . This type of construction renders the gage practically insensitive to strains

transverse to the axis of the gage . Transverse sensitivity is of paramount importance

in this study because the purpose of the gages is to measure only the strains in a circum-

ferential direction. Since there are axial strains in the ring arising from friction

between the soil and the ring, it is mandatory that the effect of the axial strains on the

output of the gages be minimized.

2. The foil gages were also desirable because the experimental apparatus is

constructed such that the gages are required to function in oil up to pressures approaching

2000 psi . This type of gage is relatively insensitive to ambient stresses perpendicular to

the plane of the gage.

•

3. A gage length of one inch was selected for two reasons . First, averaging

the circumferential strain over one inch reduces the probability ofobtaining an erroneous

reading because of a flaw. Secondly, the gage length of 1 inch and a grid width of . 09

inches were chosen because this proportion tends to minimize the sensitivity to transverse

strains . A study of transverse sensitivity of bonded strain gages is presentedbyWu

(1962) which supports this choice . One definite conclusion of the study was that the

transverse sensitivity decreased from 1% to 0.1%for epoxy-backed foil gages as the gage

length increased from 0.1 inch to 1 inch. The writer would like to point out, however,

that the gages used in the study cited above were Baldwin gages rather than the Budd

gages used on the thin steel ring; therefore, the exact numerical values do not apply.

The evidence, however, does point out that transverse sensitivity canbe greatly

reducedby increasing the gage length.
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4. The epoxy backing was selected because it was thought that this backing would

be competent enough to perform satisfactorily under the high oil pressures .

5. Tatnall G- 5 adhesive was used because it is a competent epoxy cement

which was thought to be superior to other cements for functioning under oil pressure .

This cement has the additional advantage that it can tolerate strains as large as 15%

without unbonding. The cement was baked and cured at around 175°F . If adhesives

are not cured at temperatures well above the temperature they are used, it is possible

that a rise in temperature during the life of the gages will start a new curing cycle which

will cause the gages to record an apparent strain.

The dimensions of the thin steel ring were determined by three considerations :

ring friction effects, sensitivity of the ring for measuring the coefficient of earth

pressure at rest, and accuracy in vertical strain measurement. The overall dimensions

of the ring selected are such that a soil sample approximately 7 inches in diameter by

2 inches high can be accommodated. These proportions were selected in an effort to

minimize ring friction. The theoretical basis for the above statement is presented in

the following analysis from Taylor (1942) .

Consider a confining ring of radius R and height H as shown in Fig. 4. 10. At

any arbitrary depth z below the surface loadedby the force P, the vertical force

supported by the soil is designated as Q7. The force Q7 may be expressed in terms of

the shearing stress Tz and the applied load Pas:

Qz = P

Z

The shearing stress is also related to Qz by

Tz

2RTzdz
(4.1)

=

Qz

A Kof
(4.2)
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where A is the area of the sample, Ko is the ratio of the horizontal to vertical stress ,

and f is the coefficient of friction between the soil and the ring.

Substituting Eq. (4.2) into Eq. (4.1) yields

Qz
= P -

j

Z

2πR

Qz
Z

A
fdz

(4.3)
0

Differentiating both sides of Eq. (4.3) and rearranging gives

dQz
-2ㅠRK f

0 dz
A

Integrating the above equation between the appropriate limits yields

H

P

H

-2RKfz

[enez] = " [ =2*RK ]=A

= In

QH -2RKfh

앹=P A

. =

Rearranging Eq. (4.5) gives

(4.4)

(4.5)

-2RKH

A

-2KfH

R

QH = Ρε = Ρε

-

(4.6)

2KfH

R
where e is the base of Napierian logarithms . Equation (4.6) implies that if e

approaches 1 , then QH = P, and the frictional effects become negligible . This relation-

ship shows that the R/H ratio should be as large as possible to reduce the effect of

friction. In fact, increasing the R/H ratio by a factor of 2 has the same effect as

reducing the coefficient of friction by 50%.

It is obvious that the R/H ratio maybe increased by either increasing the

diameter or decreasing the height of the ring. There are practical considerations,

however, which limit both of these alternatives. The diameter becomes limited by the
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capacity of loading machines available if one desires to attain pressures up to 3000 psi or

more . A practical limit is also reached in reducing the height of the sample since the

height of the sample influences the accuracy of the vertical strain measurement. If the

sample becomes too thin, the increments in vertical displacement can become too small

for the Ames dials to sense, especially in the 2000-3000 psi pressure ranges where the

constrained modulus of one of the sands tested approaches 250,000 psi. A sample height

of 2 inches was selected for giving the required vertical strain sensitivity and a diameter

of 7 inches was selected because that is the largest diameter that couldbe used to obtain

at least 3000 psi on the sample with a 120,000 lb. Baldwin testing machine. This combina-

tion also gives a desirable diameter to height ratio of3.5 .

The wall thickness of the ring was also determined by compromising two conflicting

considerations . The accuracy of the lateral pressure measurement is enhanced by making

the ring thin since very small differential pressures across the ring can be detected by

the circumferential strain gages. The ring wall, however, cannot be designed too thin

since the ring friction could possibly cause a permanent set in the ring or could cause

high enough axial strains that the circumferential gage readings would be affected by

axial strains even though they are relatively insensitive to transverse strains . A thick-

ness of . 094 inches was selected for the design, but the overall design ofthe apparatus

wasmade so that the wall thickness of the ring couldbe changed if the .094 thickness

proved to be unsatisfactory. The final dimensions of the ring are shown in Fig. 4.6.

A pressure differential across this ring of .80 psi produces a calculated circumferential

strain of 1 microinch on the outside of the ring. Since the Baldwin strain indicator can

onlybe read accurately to the nearest 5 microinches, the ring is accurate in measuring

the lateral stress to 4 psi. This degree of accuracy was thought to be satisfactory for

of lateral pressures from 50 2000 psi, but is not accurate enough for

determining the lateral pressures with less than 10% error for lateral pressures below

measurement

50psi.

-
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The dimensions of the ring were also selected so thatwhen the oil in the annular

space is under pressure there is a net upward oil pressure on the ring which holds the

ring in a position as shown in the assembled'drawing inFig. 4.5. The purpose of this

feature is to keep the ring suspended from the top so that ring friction will put a tensile

axial stress rather than a compressive axial stress in the ring. This arrangement also

limits the friction because when the frictional force exceeds a certain value the ring will

start to move downward, which in turn tends to decrease the friction because the ring

begins to act like a floating ring rather than a fixed ring. The net area over which the

oil pressure acts upward is 2.32 square inches. Since the oil pressure is equal to the

lateral earth pressure, the pressure in the oil is given by:

Ρο = σν Κο

V

(4.7)

where p is the pressure in the oil, σ is the average vertical stress on the soil sample,

and K is the coefficient of earth pressure at rest. The fraction of the total vertical load

in friction needed to make the ring of internal radius, R, move down is:

σκο(2.32)in . 2

2

σπρ

V

=

(K )(2.32)in.

(36.5)in.

2

2

=

0.064 Κο

A sandwith a
K of0.4 would then move the ring downward with only 2.55% of the

vertical load arched into the ring. This movementwould in turn tend to reduce the

frictional effects by causing the ring to act like a flo ting ring.

(4.8)

Calibration of the Thin Steel Ring. The effect of the high oil pressure on the

strain gages could not be assumed to be negligible even though the gages were selected

to minimize these effects . Calibration of the strain gages was accomplished with the

apparatus assembled as shown in Fig. 4.11 . The significant feature of this assembly is

that the lower "O" ring between the bottom of the steel ring and the baseplate has been

removed so that the oil in the annular space can communicate freely with the oil inside

the sample chamber. A steel plug 1- inch thick is also inserted into the sample chamber
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to confine the oil and a testing head is lowered flush with the top ofthe plug to supply a

reaction of sufficient magnitude to keep the plug inplace during calibration.

The gages were calibrated by increasing the oil pressure in increments up to

2,500 psi. Since the "O" ring at the bottom of the steel ring was omitted, the oil

pressure in the annular space was equal to the pressure in the sample chamber, thus

giving zero net pressure differential across the ring. Hence any change in gage reading

is due to the effects of the all around oil pressure on the gages. This calibration

procedure was conducted several times and the calibration curve obtained is shown in

Fig. 4.12. The curve was reproducible within + 4 x 10 in./in. and the pressure effect

-6

amounts to 7 x 106 in. /in. per 500 psi of oil pressure. Compensation for these pressure

effects was made when the tests were conducted on sands .

The ringwas calibrated several times during the testing period and no change in

the calibration curve could be detected. Since the first calibration described above,

however, a better procedure has been developed which eliminates the necessity of

removing the lower "O" ring for calibration. This is important because the cell then

does nothave to be dismantled for calibration. A steel plug with a hydraulic fitting as

shown in Fig. 4.9b is employed in the improved method. The hydraulic jack is then

connected to both the hydraulic fitting leading to the annular space around the ring and

the hydraulic fitting leading into the sample chamber filled with oil. Since both the

inside and outside of the ring are connected to the same pressure source, there is no

pressure differential across the ring. This procedure proved to give the same results

as the first procedure described above with the advantage ofgreater efficiency.

Technique for Getting the Gage Wires Out of the Cell . One of the most

challengingproblems in the design of the cell was devising a method ofbringing the

strain gage wires out of the cell without cutting the wires or getting an oil leak. The

wires also had to be taken out of the cell so that the cell could be taken apart and put
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back together without requiring a new seal each time . The final design of the outlet for

the gage wires provided an outlet through a 1/8" tapered hole in the base plate as shown

in Fig. 4.5. The wires are sealed in the hole with an epoxy cement with a shear strength

_ of 3000 psi which was an excellent dialectric material. The hole was tapered so that the

seal wouldbecome even tighter at high pressures . In the first stages of the assembly of

the cell the wires are fed through the hole in the baseplate . The wires are then sealed in

the epoxy cement and about 6 inches of slack wire is left between the point where the

wires enter the baseplate to where the wires hook onto the thin steel ring. This slack

wire is necessary in order to prevent the wires from being broken when the cell is

dismantled. The slack wire is then taped to the outside of the thin steel ring and the thick

walled cylinder is lowered around the ring and baseplate andbolted in place. The cell is

then ready for use . This method has proven very satisfactory in the pressure ranges

of current testing, but it is expected that for extremely high pressures the insu'ation will

have to be stripped from the wires where they pass through the epoxy seal or oil may leak

through past the insulation on the wires. This should be no problem, however, if an

epoxy is used which is also an excellent dialectric.

Description of the Testing Head. The load was applied to the soil sample by means

of a heavy, internally stiffened piston, mounted in a 120,000-lb. hydraulic testing machine

as shown in Fig. 4.3. The testing head is 6.800 inches in diameter and 8.125 inches high.

The device consists of two rigid steel plates which are welded on two concentric steel

cylinders . Figure 4.13 also shows the manner in which a dynamometer is incorporated

into the device to measure the pressure over the center square inch ofthe loaded area.

This feature enables one to check the load on the center square inch against the average

load over the entire area. The piston and the dynamometer were designed with approxi-

mately the same relative stiffness in order to maintain a uniform deflection of the specimen

across the face of the loading device as the sample is compressed.
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The vertical displacement of the sand during compression was measured by two

Ames Dials mounted at 180° to each other on the loading piston as shown in Fig. 4.14.

The dials measure the relative displacement between the moving piston and the thick

walled cylinder designated as Part A in Fig. 4.5. This measured relative displacement

is actually the sum of the vertical displacement of the soil plus the strain in the testing

head from the surface of loading to the point where the dials are connected. The strains

in the head were so small compared to the strains in the soil that they were neglected

and the measurement was taken to represent the vertical displacement of the soil sample .

The dials are accurate to 1/10,000 of an inch and have a 0.4 inch travel . When the two

dials read differently, the average reading of the two diais was taken as the vertical

displacement of the soil.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 General

One-dimensional compression tests were conducted on four different sands up to

a maximum vertical stress of 3290 psi with the apparatus discussed in Chapter 4. Axial

stress - strain properties and the coefficient of earth pressure at rest K were measured

on all tests . The energy absorption capacity of the sands was also measured by means of

cyclic loading.

Each sand was tested at a variety of initial void ratios in order to cover the

complete range ofbehavior for each sand. The four sands selected for this studywere

chosen because they are extremely dissimilar with respect to grain shape and grain-size

distribution characteristics. It was hoped that the sands selected would manifest awide

range of one-dimensional properties so that the extreme limits of the various measured

quantities couldbe defined. Descriptions of the sands are given in subsequent sections

ofthis chapter.

Triaxial tests were also conducted on the four sands to document fully the

engineering description of the sands and to determine if any of the properties measured

in one-dimensional compression couldbe correlated with index properties definedby

well established routine tests . The triaxial test procedure and results are presented in

AppendixB.

5.2 Description of Sands

Minnesota Sand. One sand used in this investigation was a uniform, rounded,

silica sand obtained from the Gopher State Silica Co. in LeSeur, Minnesota . The sand is

a coarse fraction obtained from the St. Peter Formation, a marine sand of Ordovician

age. Because of the frosted nature of the sand it is thought to be of eolian origin. The

transportation of this sand by wind and the additional working of this sand under marine
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forces dN.. , dT.

Nij' dTij' dTkk (Fig. 3.7) . It is required that the displacements of the center

ofthe spheres be single valued, i.e., the vector distance around the closedpath through

the center of the spheres must vanish both before and after the medium is strained.

Hence the sum of the relative displacements of the center of these spheres around the

closed path must vanish. Expressions for this condition for all possible paths connect-

ingthe center of a sphere in the medium yields 9 independent equations of compatibility

as follows:

1.

2. √2d8

√2d6
ZZ

ZZ

=

=

-da' + da + do' + dó

yz
ZX

yz
ZX

da da' do
-

do'

yz
ZX

yz
ZX

3. √2d8
= -da + da + do + do

ZZ
yz

ZX
yz

ZX

4. √206.
= -da' + da + dδ' + dó

XX ZX
xy

ZX
xy

5. √2d6.
XX

6. √2d8

=

=

da do
-

dδ'
ZX

xy
(3.9)

da
XX doxy

7. √2d6yy

=

ZX

ZX

-

-

daxy

da

xy

-

+ dô + dô

daxy + dayz +

-

8. √2d6yy daxy dayz -

ZX

doxy + doyz

doxy - doyz

√2d6' = -da + da + dô +

yy xy yz
xy do

yz

The compatibility equations can be written in terms of force increments by

using the
compliances

daij = CijdNij

do ij = SijdTij

do =kk
SkkdTkk

daij = CijdNij

do ij = SijdTij

do kk = SkkdTkk

(3.10)

where the above subscripts identify the contact. Thus Eq. (3.9) together with Eq. (3.8)

yield 18 independent equations containing the applied forces dPij, and 18 independent

components of the unknown contact forces, dij, dTdTij and dTkk Unfortunately, these

18 equations are difficult to solve because the equations include the compliances and the

compliances are functions of the contact forces . Consequently, a solution to these
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equations can be obtained only for a few simple cases.

The incremental extensional and shearing strains in the array, expressed in

terms of the compliances, are

1

deii = R (dai + doij + da + do jj)

1

dy

dYij = 2R

ij ij

2R (daij - daij)

(3.11)

Likewise the applied force increments Pij in Fig. 3.4 are related to the stress incre-

ments for a face - centered array by

dPij = 8R2doij
(3.12)

Application to a Hydrostatic State of Stress . One problem of interest which can

be solved is that of a face-centered array subjected to a hydrostatic state of stress .

Under this state of stress symmetry dictates the conditions that all normal forces at

the contacts are equal and all shearing forces are equal . If it is designated that

Po
= total force on the face ofa differential element

=No normal contact force

To
=

R =

tangential contact force

radii ofspheres

the equilibrium Eqs . (3.8) reduce to

4dT + 4√2dN = dP

4dT - 4√2dN = dP
0

Adding Eqs . (3.13) and considering the initial condition of zero stress yields the

expected condition for the tangential force

=

To = dTo 0

(3.13)
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Hence, the equilibrium equation becomes

JN = dP
-

4√2

Ife is the hydrostatic strain in any direction, Eq. (3.11) yields
0

de = da
0

1

2R 0

where da is the normal deformation due to do and is related to dN by the normal

compliance Co, and

dao = CodNo

From the Hertz theory

Co
=

1 - ν

2μα

where a is the radius of contact definedby

(3.14)

(3.15)

(3.16)

(3.17)

ao

3 (1 - v) NR 1/3
=

8μ

By combining Eqs. (3.15), (3.16), (3.17) and (3.18), the incremental strain may be

expressed as

deo

(1 - ν) √2

1/2 [ 12] 2/3 [ 30 ]μ

-1/3

ασο

Integrating Eq. (3.19) and considering zero initial conditions results in

=
3 (1 -

[32202/38μ σο

It should be notedthat Eq. (3.20) states that the first stress invariant, I , is

proportional to the three halves power of the first strain invariant J₁.

(3.18)

(3.19)

(3..20)

It is of interest to compare the results of this theory with some limited

experimental results available in the literature. Kjellman (1936) carried out some

tests on dry sand subjected to hydrostatic pressure and measured the strains

associated with the pressure. Table 3.1 gives the variation of the first stress and

strain invariants taken from his experimental results. Aplot of these data is shown
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in Fig. 3.8 . Also shown is a plot of the exponential relationship indicated by the theory

discussed, which is fitted to the experimental curve at the 6 kg/cm² stress level. The

behavior of the sand is not as stiff as the theory indicates in the lower pressure regions

whereas it becomes stiffer than the theory predicts in the higher pressure regions . The

comparison does point out, however, that the results of the theory associated with the

face-centered array of spheres correlate qualitatively with the behavior of dense sand

subjected to a hydrostatic state of stress.

3.3 One-Dimensional Theory ofGranular Media

Monotonically Increasing Load. The theory of Duffy and Mindlin developed in

Section 3.1 will now be extended to solve the stress- strain behavior of an array of

spheres subjected to one-dimensional compression. One- dimensional compression is

defined as that state of stress resulting from the application of a load in the vertical or

z direction when the lateral strains in the x and y directions are zero .

♡

The radial symmetry of the one-dimensional problem greatly simplifies Eqs .

(3.8) and (3.9). The representative cube now becomes as shown in Fig. 3.9, and the

forces on a sphere reduce to those shown on Fig. 3.10. From symmetry the following

simplifications can be made for the forces and displacements:

N' N.

Nxy = xy = N₁1

Nzy = Nyz = Nzx =
N'

Nzx = N2ZX

-Tyz = -Tyz = Tzx = Tzx = T2

Txx = Tx = Tyy = Tyy = Tzz = Tzz = 0XX X

Txy = Txy
= Τ' = 0

Pxy = Pxz = Pzx = Pyx = Pyz = Pzy = 0

Pxx = Pyy = PH

(3.21)
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axy = axy = a1

D

yz

-буг

δ

yz

= a'

yz

= -δ '

бух =XX

D
=

ZX

=

= δ =

ZX

a'

D

=

ZX

δ' =

yz
ZX

δ'

δ

2

2

8 '

хх = буу = 8yy = 8zz = zz = 0XX

δ ' = 0

бху - бхуxy

Furthermore , the associated compliances now become

C

Cxy = xy = C1

Cyz = Cyz = Czx = Czx = C2

Syz = Syz = Szx = Szx = $2
S' S

(3.22)

(3.23)

Using the above simplifications and considering symmetry reduces the equili-

brium Eqs. (3.8) to

dN₂ + dT2 = dP
ZZ

√2

1dN₁ + d2 - dT2 = 4 dPH

Ina similar fashion the compatibility Eqs. (3.9) reduce to

=

da₁ - da₂ + d82 0

where the compliance Eqs. (3.10) now become

da₁ = C₁dN1

da2 = C2dN2

d82 = S2dT2

Substituting Eqs. (3.26) into Eq. (3.25) yields

(3.24)

(3.25)

(3.26)

C₁dN1 - C2dN2 + S2dT2
= 0 (3.27)
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Equations (3.24) and (3.27) are sufficient to describe the behavior of a granular

ZZmedium subjected to given vertical and lateral forces P, and Pu. If, however, only

the vertical force is known and the lateral force must also be determined, a further

condition is necessary. This condition results from the relationship between the contact

displacements and lateral strain.

Due to symmetry the lateral strain 6 determined from Eqs. (3.11) reduces to

or

de =

H

da1

2R

C₁dN1

deH
=

2R

(3.28)

(3.29)

Thus the behavior of a face- centered array of spheres subjected to a vertical

force P and restricted to symmetrical lateral deformations can be obtained from a
ZZ

solution to the following equations:

५

dN2 + CT2 = √2dPzzZZ

dN₁ + d2 - d2 - dPH = 0

C1

2

dN1

S2

= 0 .dN₁ - dN2 + dT2

=

2RdeH

C1

(3.30)

For the case of interest here, namely one-dimensional compression, exis

required to vanish for all loadings. For this particular state of stress and zero initial

conditions, one obtains N₁ =
1

0 and Eqs . (3.30) reduce to

√2

dN2 + dT2 = dPzz8

√2

dN₂ - dT₂ - dPH = 02 2

S2

dN2dT2
= 0

(3.31a)

(3.31b)

(3.31c)
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where the expression for
2

S2

C2

where

H

K1

is obtained from Eqs. (3.6) and (3.7) as:

dN2

far
+

dN2
T
2

(1-1 ) (1- N)

2 -

*1 = 212(1 - ν)

2

-1/3

(3.32a)

(3.32b)

It should be noted that Eqs. (3.31) are simultaneous differential equations and

are non-linear because of the compliances in the third equation.

The vertical strains E associated with the behavior of this medium canbe
ZZ

obtained from Eqs. (3.11) as

1

ZZdezz = 2 (da₂ + do 2)

The compatibility Eq. (3.31c) states that

da₂ = do 2

(3.33)

Hence for the one-dimensional case Eq..(3.32) reduces to

da2 C2dN2

dezz = =R R
(3.34)

For the solution of Eqs. (3.31), consider first the compatibility Eq. (3.31c).

Substituting Eqs . (3.32) into Eq. (3.31c) and rearranging yields

dT2

dN2

T2

= + (1-2)f

1/3

(3.35)

and

Introducing the new variable

3

Z =

73

f -

T2

N2

N2Z³ = N2 - T2

(3.36a)
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one obtains

or

where

or

3

dN2Z³ + 3 N₂ Z2dZ = fdN2 - dT22

dT2

dN2

3

= f - Z° - 3N2 Z

2 dZ

dN
2

By using Eqs. (3,36), Eq. (3.35) can be transformed into the form

3ZdZ

2

=

dN

2

N
2

Z +K2

=

1-k₁f

1/3K2

Integratingboth sides results in

In N2 - In A = -3/2 In (Z2 + K2)

2

N2 = (z² + K2)-3/2
A

where A is a constant of integration.

From Eq. (3.36a), Eq. (3.39) becomes

-3/2
2/3

N2
T.2

=

(f
A N +K2

2

(3.36b)

(3.37)

(3.38)

(3.39)

(3,40)

Equation (3.40) is the general solution to Eq. (3.31c) and a articular solution

may be obtainedby evaluating the constant of integration.

Because the initial conditions, Pzz = N2 = T2 = 0, are obvious one is inclined to

evaluate A from these conditions. Although this is a true boundary condition, a

singularity point occurs at the origin. The equation is, however, well behaved at
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other points and the following technique will be used to evaluate A.

Imagine a small hydrostatic state of stress initially holding the spheres in

contact before the one dimensional state is imposed. This hydrostatic stress produced

no initial tangential force at the contacts but it does cause a normal force of N₂ = No.2

From eq. (3.40)

-3/2

NoN = A(12/3 + K₂)

or solving for A, the constant of integration

N

A =

(K2 +12/3-3/2

SubstitutingA into Eq. (3.40) yields after some rearranging and taking into

account Eq. (3.38) .

T2 = fN2 1-

1

EK,
1

N 2/3

(N)
2

1

]
+1

3/2

(3.41)

(3.42)

Aplot of a family of curves representing Eq. (3.42) with various values of the

initial hydrostatic stress No is given in Fig. 3. 11. The paths of loading are indicated by

arrows on the curves. For convenience the coefficient of friction fwas taken as 0.3 and

Poisson's ratio vas 0.2.

If an initial hydrostatic stress is imposed the value ofN₂ can be determined at

which sliding begins. For this condition Eq. (3.42) yields

N 2/3

[ 1] +1 =0
+ 1 = 0

2

Rewriting and taking account of (3.32b) yields

N2
=

1
•

°N

(2- )

2(1-1)

3/2
(3,43)
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The reader will recall that the problem was to define the relation betweenN₂ and2

T2for a granular medium inone-dimensional compression which was loaded from an

unstressed condition. It was noted that the solution contained a singularity at the zero

stress and it was necessary to provide an initial hydrostatic stress No to hold the spheres

in contactwhen loading. IfNo is now allowed to approach zero we obtain the solution

desired. On investigating Fig. 3. 11 or Eq. (3.42) it is clear that if one-dimensional

loading commences from a completely unstressed condition (N = 0), the relation between

N2 and T₂ is that of a straight line with a slope of 1/f. Thus, the relationship between

N2 andT2 for a face- centered array subjected to one-dimensional compression is

2

T2 = fN2

This means that sliding (differentiated from slip in Section 3.1) at the contacts

occurs immediately on initiation of loading. This is extremely important in that the

theory developed to date along the lines of Mindlin et al does not allow sliding at the

contacts . It will be shown herein that the stress- strain relationships in the one-

dimensional granular medium can be described mathematically even though sliding occurs

throughout the application of a monotonically increasing load.

3

From compatibility, even in the case of sliding, the geometrical relationship

still holds for the displacements at the contacts, i.e.

da₂- do22

= 0

tangential displacement 62 is no

2

(3.44)

It must be emphasized, however, that the

longer related to the tangential contact force T2by the tangential compliance S₂ because

of sliding at the contacts. The tangential displacement is now made up of two effects,

a sliding effect and a contribution due to slip. On the other hand, the normal forces

and displacements are still connected by the compliances .

Furthermore, because Eq. (3.44) is a geometrical relationship, it also holds

for total displacements in the problem at hand; hence,

a 8=

2 2

(3.45)
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The vertical strain Eq. (3.33) is also purely geometrical and can be written as

dezz = 2
da2 C2dN2

=

ZZ R R
(3.46)

The equilibrium Eqs. (3.31a) and (3.31b), which were originally written in

terms of differential stresses, also hold for total stresses . Hence,

N2 + T2I2 = Pzz

√2

N2 - T2 - PH = 0

(3.47a)

(3.47b)

It has already been determined that N₂ and T₂ are relatedby the coefficient of friction2

throughout the entire loading, i . e .

fN2 - T2 = 0
(3.47c)

The behavior of the granular medium subjected to one-dimensional compression

cannow be described by Eqs. (3.44, (3.54), (3.46), and (3.47) .

Equations (3.47) may be combined to eliminate T₂ resulting in

N₂ (1+1) = Pzz

√2

N₂ (1-1) = PH

(3.48a)

(3.48b)

In theoretical soil mechanics a quantity of major interest in one-dimensional

compression is K , the ratio between the horizontal and vertical stresses at rest. From

Eqs . (3.48) this ratio is clearly

P

H

P
K ==

ZZ

1

2

Some indication of the variation ofK with the coefficient of friction f is shown in

Table 3.2.

(3.49)

The strains resulting from one-dimensional compression maynowbe investi-

gated. The substitution of Eq. (3.2) into Eq. (3.46) yields
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-1/3

de =

ZZ

(1 - ν)

2µR

3 (1 - v) RN2

8μ dN2 (3.50)

Combining Eqs. (3.50) and (3.48a) and noting from Fig. 3.9 that

σ

ZZ

P

ZZ

=

2

8R

(3.51)

gives

de

ZZ

=

1

2

Integration of Eq. (3.52) yields

[
) √27

μ(1+1)

2/3

[3/8ozz]

-1/3

do (3.52)
ZZ

2/3

(1 - ν) (3) √27
zz = 2022μ (1+1) (8)ZZ

2/3

(3.53)

An interesting result ofEq. (3.53) is that the stress- strain behavior is inde-

pendent ofthe radii of the particles. A comparison of the stress- strain curves for

hydrostatic and one-dimensional compression shows that the curves are similar in

shape, but turn up at different rates . The ratio of the one-dimensional strain to the

hydrostatic strain at the same level of stress, Ozz' is a ratio of Eqs, (3.53) to (3.20),

which reduces to

の

Ezz 2

ε

= (1+1)2/3
(3.54)

zz

Values of f of0.1 and 0.2 give values for ez/6 of 1.88 and 1.77, respectively. This

indicates that the hydrostatic and one-dimensional stress- strain curves are related as

shown in Fig. 3.12.

1

Unloading Cycle. When the medium is loaded the tangential forces tend to

resist the sliding motion. During unloading the tangential forces tend to resist the

sliding movement which is now in the opposite direction, Hence, the tangential forces

reverse their direction on unloading. The cases of loading and unloading are illustrated
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schematically in Fig. 3.13 . The normal and tangential forces are still related by the

coefficient of friction; only now the direction of the tangential force is changed .

The new equilibrium equations become

√2

N₂ - T2 = Pzz

where

√2

N₂ + T2 = PH

fN2 - T2 = 0

(3.55)

(3.56)

Consider the medium to be loaded from 0 to σ*,zz Fig. 3.14, according to

ZZ

Eqs. (3.53). If equilibrium Eqs . (3.55) become valid at the instant €, begins to

decreasefrom e* then σ
zz'

σ'

zz

ZZ

ZZ

will decrease instantaneously from σ to some value

At the end of loading N₂ and *2 ZZ

ZZ

are related by

σε =

ZZ

(1+f)

N2
2√2R2

(3.57)

whereas the stress σ' is related to the contact forces by Eqs . (3.54) and Eq. (3.51)

by

ZZ

N2 (1 - f)
σ' = (3.58)
ZZ 2

2R

The relation between σ *
and σ' at the instant when e just begins to decrease is

ZZ ZZ ZZ

σ'

ZZ

(3.59)

2

= ( )

because the value ofN₂ has essentially the same value while the shearing stress has

changed directions . Combining Eqs . (3.55), (3.51), (3.46) and (3.2) yields for unloading

dezz

=

1/2 [ 233 [3 /8oz dozz

-1/3

(1-1)
μ(1-1)

σ (3.60)
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2/3
2/3

which by integration becomes

=

ZZ

(1 - ν ) 3√2

μ(1-1)8

2 σ

ZZ
(3.61)

The entire stress- strain history for one cycle of loading in one -dimensional

ZZ zz
compression is shown in Fig. 3.14 in terms of σ* and σ' . The derivations above

are based upon the assumption that the tangential contact forces immediately reverse

directions when unloading begins . This assumption is not quite true, however, because

each sphere must exhibit a small elastic tangential displacementbefore the tangential

forces can change direction. This effect, however, is small with respect to the tangen-

tial displacement due to sliding and was neglected in the analysis . Because of the above

assumption, the stress- strain curve reflects a vertical drop in stress from A to B with-

out any change in strain. If the small elastic tangential displacement due to slip were

accounted for, the stress- strain curve would follow a smooth relationship such as the

dotted line suggested in Fig. 3.14.

The stress- strain behavior shown in Fig. 3.14 exhibits an energy loss after a

cycle of loading and unloading but has no residual strain . Hence, this mediurn can

absorb energy without any permanent displacements .

Energy Absorption. The amount of energy absorbed by the medium on loading

and subsequent unloading can now be determined .

The energy E₁ required to load up to an applied vertical stress of
and the

ZZ

P

strain of e is

ZZ

E1
=

0

E

ZZ

σ de

ZZ ZZ

4

E₁ = (1+1) Ezz1 ZZ

5/2

(3.62)
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The energy taken out of the mediumE, during unloading back to zero from a

stress of σ ' and strain e* is
ZZ ZZ

Thus, the energy lost is

4

E2 = (1-1) €zzZZ

5/2

8

ΔΕ = Ε1 - Ε2 = feड
ZZ

5/2

The ratio of the energy loss to the energy input is

ΔΕ

E

1

=

2f

1+f

(3.63)

(3.64)

(3.65)

Thus, a very significant property of the one-dimensional stress- strain curve is that the

per cent of energy absorbed due to loading and unloading is always constant for a

material and depends only on the coefficient of friction at the contacts. Hence, the ratio

ofthe area between the loading and unloading curves to the area under the loading curve

is a constant given by Eq. (3.65). The per cent energy absorbed for various coefficients

of friction is given in Table 3.2.

The relationship between normal and tangential contact forces deterinines the

*relationship between the recoverable and dissipated energies. The work done by the

normal forces during deformation is stored in the form of recoverable strain

N2da2

energy. On the other hand, the work done by the tangential forces ST2d62 is a non-

recoverable energy and is dissipated as heat into the medium. As seen from Table 3.2

this energy loss during one cycle can be quite significant. In fact, with a coefficient of

friction of 0. 15, the dissipated energy is 26.1% of the energy put into the system .

3.4 Equivalent Discrete Mass Model for One - Dimensional Static and Dynamic Behavior

اذ

In recent years, an increasing effort has been devoted to studying the static and

dynamic behavior of soils using discrete mass- spring models . These mode's have taken

many shapes with various components from models such as the standard Voigt and

Maxwell models , These model studies have been particularly useful in wavė

32



di



propagation studies, such as the work of Smith and Newmark (1958) . The dynamic

equations of motion can be integrated numerically with a digital computer using the

β-method (Newmark, 1959); it is a fairly straightforward approach to modify soil

parameters or spring stiffnesses as the need arises .

As might be expected from such an approach, there are certain aspects of the

soil behavior which escape the mass- spring model . Part of this inaccuracy is due to

the discreteness of the system and part can be attributed to choice of the model itself.

A study of the problems associated with the choice of various models for investigating

the propagation of stress waves in a one-dimensional medium has been carried outby

Murtha (1961).

In spite of the inherent difficulties associated with the use of models, there are

some cases where the model is the only hope for obtaining even an approximate solution.

Therefore, the writer would 'ike to suggest a one-dimensional model which seems to

5

exhibit the behavior expected of dry cohesionless sand, and is based upon the theory

presented in Section 3.2.

If a pressure on the surface of the earth extends over a large area, it may be

reasonable to consider the soil completely confined. If this condition is satisfied, and

the soil composition is similar to sand, the one-dimensional behavior discussed herein

may very well be a good approximation to the in-situ soil behavior.

Horizontal Model . Figure 3.15 gives a model representation of the granular

system described in Section 3.2. This model yields the same stress- strain curve as

the spheres for a static load as the load increases or decreases. The model consists

of non- linear spring elements and Coulomb damping elements which dissipate energy

by the same mechanism as the spheres . The reason that the model depicts horizontal

behavior is that there are no initial stresses in the model before the load is applied.

Such an assumption might be reasonable for a vertical column if the weight of the soil

is negligible compared to the applied stresses .

6

4
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Vertical Model . The vertical model is slightly more complex than the horizontal

one in that the weight of the material produces initial stresses in the model. Since the

stress- strain curve for the material is non- linear, the stiffness is a function of the

stress, and consequently, a function of the height of overburden. The overburden

pressure increases linearly with depth and it can therefore be incorporated in the

equations of motion.

A vertical model which includes the initial stresses due to the overburden of the

material is given in Fig. 3.16. It includes a change in stiffness associated with the

increased initial stress and follows the stress- strain behavior consistent with the

analysis of the granular medium in Section 3.2.

3.5 Theoretical Relationship Between the Angle of Internal Friction, Coefficient of Earth

Pressure at Rest, and the Coefficient of Friction Between Spheres for a Face- Centered

Cubic Array of Uniform Spheres .

の

The relationship between the principal stresses at failure for a face centered

cubic array has been investigated by Thurston and Deresiewicz (1959) . The analysis

applies to an array as shown in Fig. 3.9 which is initially under an isotropic confining

pressure , o , and subsequently subjected to a uniaxial stress difference, ozz' as shown

in Fig. 3.17 . When σ approaches the ultimate value, failure planes are formed by a

series of shearing displacements of individual layers of spheres. The failure is initiated

in layers containing planes in which the density of sphere centers is greatest, i.e. , the

(111) planes or octahedral planes win respect to the co- ordinate axis in Fig. 3.9. It is

also interesting to note that Smith (1961) reports exactly the same phenomena for yielding

ZZ

in steel crystals which have a crystal arrangement such that the atoms have exactly the

same location as the centers of the spheres in Fig. 3.9. A single relative shearing

displacement of parallel (111) layers would translate sphere A, Fig. 3.9, from the

hollowbetween spheres B, C, and E to the hollow between spheres B, C, and D. The

translation of sphere Awould be a distance ofR√4/3 in the [112] direction . The
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expression givenby Thurston and Deresiewicz for the maximum stress difference that

can be maintained without failure between octahedral layers of spheres is

σ

ZZ

=

σ

0

√6+ 8f

√6 - 4f

(3.66)

Since the major principal stress, 01, is given by

σι = σ
ZZ

1'

+ σο (3.67)

and the minor principal stress, 83 , is equal to o , then equation 3.66may be written

as

σ σ

√6 8f

01-03-16 +8
03
σ

=

√6-4f

(3.68)

If Eq. 3.68 is examined for the limiting condition of f= 0, then it is found that a stress

difference equal to the confining stress canbe maintained in this array even if the spheres

are frictionless . The writer was initially disturbed by this result and analyzed several

simple geometrical arrangements of frictionless spheres. It was found by the method of

virtual displacements that the stress difference that could be maintainedwith a given

confining stress was a function of the structural arrangement of the frictionless spheres.

At the point of failure, the principal stresses and the kinematically possible virtual

displacements in the principal directions are such thatthe change inpotential energy is

zero . Because the structural arrangement controls the displacements which are kinema-

tically possible, then it follows that the structure also controls the principal stress ratio

at failure in a frictionless array of spheres . For a given structural arrangement the

stress difference at failure is governed by the boundary displacement conditions, such

as the boundary restrictions in plane strain. The change in kinematically possible

displacements imposed by the condition of plane strain accounts for the increased

apparent angle of internal friction observed for granular materials sheared in plane

strain.
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The ratio of the principal stresses at failure for a dry granular material is

definedby

σ

1

σ

3

=

1+ sin

1- sin
(3.69)

where is the angle of internal friction of the material. The elimination of 01 and 03

from equation 3.68 and 3.69 yields

8f+ √6

sin$ =

3√6

Eq. (3.70) is more meaningful ifit is written in the form

1 8

sin$ =
3+

- f

3√6

(3.70)

(3.71)

Eq. (3.71) clearly shows that part of the angle of internal friction is due to friction and

the remainder is due to the structural arrangement. Eqs. (3.70) and (3.68) are correct

only for a face-centered array ofuniform spheres but the relationships suggest that the

following relation should apply to any granular medium

sin$ =
K3 + C₁f (3.72)

1where K3 is a portion of sin &due only to structure (relative density) and C₁ is a constant

determined by the structural arrangement(relative density) which governs how efficiently

the coefficient of friction is in increasing sin $. It should be pointed out that the

conclusions drawn above by the writer are contradictory to equations published by

Bishop (1954) and Caquot (1934). The equation published for triaxial stress conditions,

where 02 = 03< 1, by A. W, Bishopwas

sin$ =

15f

10+31
(3.73)

and the equations published by Caquot (1934) and Bishop (1954) for plane strain were

respectively

and

tan$ = π/2 f

sin$ = 3/2 f

(3.73)
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Allof the relationships suggestedby Bishop and Caquot show that & reduces to zero when

f reduces to zero. Thus the equations do not include a term which shows a component of

the angle of internal friction which is a function only of structure, (relative density), and

independent of the coefficient of friction between grains. It is therefore concluded that

the equations givenby Bishop and Caquot cannot explain the variation of$ with relative

density.

Studies of the strength characteristics of uniform spheres in various packings

are presented by Idel (1960) and Wittke (1962) which support the opinion of the writer.

In fact, relationships between porosity and tan & are presented in each study for the

special case of the coefficient of friction between spheres equal to zero . Therefore the

studies of Idel and Wittke also point out that partof the shear strength of agranular

medium is due to structural arrangement, (relative density), and is independent of the

coefficient of friction between particles . For the case of triaxial compression of a

medium of frictionless spheres in the densest packing, Idel (1960) gives a value of 0.38

for tan & whereas the value tan & calculated from Eq. (3.71) for f = 0 is 0.35. The

agreement is very good and the difference isdue to the fact that the densest packing

considered in this studywas a face-centered cubic array whereas the densest stacking

considered by Idel was a closed-packed hexagonal array.

The coefficient of earth pressure at restand the angle of internal friction for a

face-centered array can be related by combining Eqs. (3.49) and (3.70) to give

ای

Ko = 1 + √6/8-3/6/8 sin $ 7
1 - √6/8 + 3√6/8 sin

(3.76)

A plot of Eq. (3.76) is shown in Fig. 3. 18 and a relationship between Ko and sin

as suggested byJaky (1944) is shown for comparison. The relationship given in Eq.

(3.76) suggests that K decreases as $ increases, which is similar qualitatively to

Jaky's relationship but not numerically identical. The coefficient of friction f was
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iminated between Eqs . (3.49) and (3.70) to obtain Eq. (3.76) because, although the

efficient of friction is a useful tool in relating & and Ko, it cannot be measured

:liably for grains with roughness and small radii of curvature . Eq . (3.76) canbe

mecked, however, inthe above form by measuring K and for a granular material.
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CHAPTER 4

THE DEVELOPMENT OF A SPECIAL, HIGH PRESSURE,

ONE-DIMENSIONAL COMPRESSION APPARATUS

4.1 General

Adevice was designed and built to investigate the one-dimensional behavior of

sand in the high pressure regions. The apparatus can measure the lateral stress under

conditions of zero lateral strain, and provides one of the best means yet developed for

attaining the condition of "zero" lateral strain. Previous investigators have generally

assumed that the effects of small lateral strains are negligible, particularly when the

sample is enclosed in steel rings . Research by Speer (1944), which was recently pointed

out by Fulton and Hendron (1962) shows that lateral motion significantly affects the ratio

ofσ,
σπ/σ.H v

The results of Speer's research is presented in graphical form in Fig. 4.1

-6

and shows that a lateral displacement of 4 x 10 inches will cause a 10% reduction in the

value of 0 /0y. Since Speer's workwas with a sand sample 7 5/8 inches in diameter,

the above diameter change corresponds to a unit strain of approximately .5 x 10-6 in . /in .

H

-6

It is doubtful to the writer that Speer really achieved an accuracy of+ 1 x 10 in./in .

since slight electrical instabilities in the circuit would cause minor variations of at least

that magnitude in the straingage readings. However, his work does in general point out

that the ratio of σμ/σy is very sensitive to lateral movements. This phenomenon had

already been observed by Terzaghi (1934) in connection with his "Large Retaining Wall

Tests " at MIT. Terzaghi concluded that an outward movement of the wall of .0007 h in

the case of a well compacted dense sand was enough to fully mobilize the shear strength

or, in other words, reduce the ratio of / v to the coefficient of active earth pressure .

This outward movement corresponds approximately to a lateral strain of about 12x 104

in./in. Thus for a truly one-dimensional test, whereby one also wishes to measure the
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magnitude of the lateral stresses which are concomitant with the vertical load, it is

extremely important to closely control the lateral displacements. In fact, preliminary

calculations revealed that an extremely thick walled cylinder subjected to an internal

pressure of 7,500 psi (which is an approximation to the lateral soil pressure due to a

vertical load of 15,000 psi) would experience a radial strain of 3.25 x 104 in./in. if the

specimen were 7 inches in diameter and the containing cylinder were assumed to have an

infinite external radius. This strain is of the same order of magnitude as the tolerable

strains listed by Speer and Terzaghi , Thus, in order to study one-dimensional com-

pression, a new experimental apparatus had to be designed which would restrict the

lateral deformations . The apparatus developed in this study is discussed in the following

sections .

4.2 Experimental Apparatus

3

General Description of the Apparatus. An experimental apparatus designed to

determine the stress- strain relations for soil under one-dimensional compression and to

measure the lateral stress necessary to completely restrain the sample is shown

schematically in Fig. 4.2. The apparatus consists essentially of a thin steel ring, which

contains a soil sample, surrounded by an annular space. The annular space is filled with

oil which communicates freely with hydraulic jacks. The flexible ring and oil space are

enclosed in a thick hollow cylinder bolted to a baseplate in order to withstand the high

fluid pressures. The vertical load is applied to the sample by the testing head shown in

Fig. 4.2 which is mounted in a 120,000 lb Baldwin testing machine .

The principle upon which the device is based is relatively simple . As the vertical

load is applied by the testing head there are lateral pressures built up in the sand which

tend to increase the diameter of the thin steel ring. Any slight increase in the diameter

of the ring is immediately indicated by the strain gages mounted on the flexible ring as

shown in Figs. 4.2 and 4.3a. In order to keep the lateral strains zero, the oil pressure
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is modified with changes in the vertical load in such a manner that the strain indicator

remains balanced at all times during the test. When the strain indicator remains bal-

anced, there are no lateral strains and the oil pressure is equal to the lateral soil

pressure acting against the inside of the container.

The apparatus consists of the following four basic elements:

(1) A thin steel ring monitored with strain gages, Fig. 4.3a.

(2) A testinghead, Fig. 4.3b.

(3) A baseplate, Fig. 4.4a.

(4) A thick walled cylinder, Fig. 4.4b.

Adetailed assembly drawing of the test cell is shown drawn to full scale in Fig. 4.5.

The three component parts of the cell are drawn to full scale in Figs . 4.6, 4.7, and 4.8 .

The apparatus setup for testing in a 120,000 lb. hydraulic testing machine is shown in

Fig. 4.9a.

Design of the Thin Steel Ring. The key sensing device, upon which the measure-

ment of the coefficient of earth pressure at rest is dependent, is the instrumented steel

ring. The steel ring is essentially a thin tube which has an internal diameter of 6.812

inches and an external diameter of 7.000 inches over most of its length, except at the

upper and lower ends where special provisions are made to accommodate "O" ring seals .

Four Budd Metalfilm Strain Gages (Type C6-1161) are mounted at the mid-height of the

soil sample at 90° intervals and connected in series as shown in Fig. 4.3a. In this

arrangement, the strains sensed by the four gages are averaged since the change in

resistance balanced by the indicator is the sum of the changes in all four gages.

The strain gages are "foil" gages with agage length of one inch and a grid width

of 0.09 inches . The backing of the gages is epoxy and the gages are temperature com-

pensated for steel. Tatnall G-5 adhesive was used for cementing the gages to the ring.

The gages were baked on for 2 hours at 175°F and cured for an additional 2 hours at 170°F

The specific reasons for the choice of gages, backing, and cement are given below:
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1. The metalfilm gages were chosen because the foil grid is constructed so that

the strands parallel to the axis of the gage have a very small cross- sectional area

whereas the end loops transverse to the axis of the gage have a large cross-sectional

area. This type of construction renders the gage practically insensitive to strains

transverse to the axis of the gage. Transverse sensitivity is of paramount importance

in this study because the purpose of the gages is to measure only the strains in a circum-

ferential direction . Since there are axial strains in the ring arising from friction

between the soil and the ring, it is mandatory that the effect of the axial strains on the

output of the gages be minimized.

2. The foil gages were also desirable because the experimental apparatus is

constructed such that the gages are required to function in oil up to pressures approaching

2000 psi . This type ofgage is relatively insensitive to ambient stresses perpendicular to

the plane of the gage.

ও

3. A gage length of one inch was selected for two reasons . First, averaging

the circumferential strain over one inch reduces the probability of obtaining an erroneous

reading because of a flaw. Secondly, the gage length of 1 inch and a grid width of .09

inches were chosen because this proportion tends to minimize the sensitivity to transverse

strains. A study of transverse sensitivity ofbonded strain gages is presented by Wu

(1962) which supports this choice . One definite conclusion of the study was that the

transverse sensitivity decreased from 1% to 0.1%for epoxy-backed foil gages as the gage

length increased from 0.1 inch to 1 inch. The writer would like to point out, however,

that the gages used in the study cited above were Baldwin gages rather than the Budd

gages used on the thin steel ring; therefore, the exact numerical values do not apply.

The evidence, however, does point out that transverse sensitivity can be greatly

reduced by increasing the gage length .

১

42



-

1



4. The epoxy backing was selected because it was thought that this backing would

be competent enough to perform satisfactorily under the high oil pressures .

5. Tatnall G-5 adhesive was used because it is a competent epoxy cement

which was thought to be superior to other cements for functioning under oil pressure .

This cement has the additional advantage that it can tolerate strains as large as 15%

without unbonding. The cement was baked and cured at around 175°F . If adhesives

are not cured at temperatures well above the temperature they are used, it is possible

that a rise in temperature during the life of the gages will start a new curing cycle which

will cause the gages to record an apparent strain.

The dimensions of the thin steel ring were determined by three considerations:

ring friction effects , sensitivity of the ring for measuring the coefficient of earth

pressure at rest, and accuracy in vertical strain measurement. The overall dimensions

of the ring selected are such that a soil sample approximately 7 inches in diameter by

2 inches high can be accommodated. These proportions were selected in an effort to

minimize ring friction. The theoretical basis for the above statement is presented in

the following analysis from Taylor (1942) .

Consider a confining ring of radius R and height H as shown in Fig. 4. 10. At

any arbitrary depth z below the surface loaded by the force P, the vertical force

supported by the scil is designated as Q7. The force Qz may be expressed in terms of

the shearing stress TZ and the applied load Pas:

Qz
= P

Z

The shearing stress is also related to Qzby

2RT dz
Z

(4.1)

T

z

=

Qz

A Kof
(4.2)
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where A is the area of the sample, Ko is the ratio of the horizontal to vertical stress ,0

and f is the coefficient of friction between the soil and the ring.

Substituting Eq. (4.2) into Eq. (4.1) yields

Qz
= P-

Z

2πR

Qz

A
K

0

fdz
(4.3)

Differentiating both sides ofEq. (4.3) and rearranging gives

doz
=

-2 RK_f

A

0

dz

Integrating the above equationbetween the appropriate limits yields

H

[enez]
=

P

Rearranging Eq. (4.5) gives

H

-2ㅠRK_fz
0

A

(4.4)

H
-2ㅠRKfh

0

= In

P A
(4.5)

-2RKH

A

-2K_fH

R

H =
Ρε = Ρε.

(4.6)

- 2K fH

R
where e is the base of Napierian logarithms. Equation (4.6) implies that if e

approaches 1, then QH = P, and the frictional effects become negligible . This relation-

ship shows that the R/H ratio shouldbe as large as possible to reduce the effect of

friction. In fact, increasing the R/H ratio by a factor of 2 has the same effect as

reducing the coefficient of friction by 50%.

It is obvious that the R/H ratio maybe increased by either increasing the

diameter or decreasing the height ofthe ring. There are practical considerations,

however, which limit both ofthese alternatives . The diameter becomes limited by the
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capacity of loading machines available if one desires to attain pressures up to 3000 psi or

more . A practical limit is also reached in reducing the height of the sample since the

height of the sample influences the accuracy of the vertical strain measurement. If the

sample becomes too thin, the increments in vertical displacement can become too small

for the Ames dials to sense , especially in the 2000-3000 psi pressure ranges where the

constrained modulus of one of the sands tested approaches 250,000 psi . A sample height

of 2 inches was selected for giving the required vertical strain sensitivity and a diameter

of 7 inches was selected because that is the largest diameter that could be used to obtain

at least 3000 psi on the sample with a 120,000 lb. Baldwin testing machine . This combina-

tion also gives a desirable diameter to height ratio of 3.5 .

The wall thickness of the ring was also determinedby compromising two conflicting

considerations . The accuracy of the lateral pressure measurement is enhanced by making

the ring thin since very small differential pressures across the ring can be detected by

the circumferential strain gages. The ring wall, however, cannot be designed too thin

since the ring friction could possibly cause a permanent set in the ring or could cause

high enough axial strains that the circumferential gage readings would be affected by

axial strains even though they are relatively insensitive to transverse strains . A thick-

ness of .094 inches was selected for the design, but the overall design of the apparatus

was made so that the wall thickness of the ring couldbe changed ifthe .094 thickness

proved to be unsatisfactory. The final dimensions of the ring are shown in Fig. 4.6 .

Apressure differential across this ring of .80 psi produces a calculated circumferential

strain of 1 microinch on the outside of the ring. Since the Baldwin strain indicator can

only be read accurately to the nearest 5 microinches, the ring is accurate in measuring

the lateral stress to 4 psi. This degree of accuracy was thought to be satisfactory for

measurement of lateral pressures from 50 - 2000 psi, but is not accurate enough for

determining the lateral pressures with less than 10% error for lateral pressures below

50 psi.
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The dimensions of the ring were also selected so that when the oil in the annular

pace is under pressure there is a net upward oil pressure on the ring which holds the

ing in a position as shown in the assembled'drawing in Fig. 4.5. The purpose of this

ature is to keep the ring suspended from the top so that ring friction will put a tensile

xial stress rather than a compressive axial stress in the ring. This arrangement also

mits the friction because when the frictional force exceeds a certain value the ring will

tart to move downward, which in turn tends to decrease the friction because the ring

egins to act like a floating ring rather than a fixed ring. The net area over which the

il pressure acts upward is 2.32 square inches . Since the oil pressure is equal to the

ateral earth pressure, the pressure in the oil is given by:

Ρο = σν Κο
(4.7)

0 Vwhere po is the pressure in the oil, o is the average vertical stress on the soil sample,

and K is the coefficient of earth pressure at rest. The fraction of the total vertical load

in friction needed to make the ring of internal radius, R, move down is:

σΚ (2.32)in .
V 0

2

σπρ

V

2

=

(K ) (2.32)in. 2

(36.5)in.

2

=

0.064 Κο

A sand with a K of 0.4would then move the ring downward with only 2.55% of the

vertical load arched into the ring. This movement would in turn tend to reduce the

frictional effects by causing the ring to act like a flo Cing ring.

(4.8)

Calibration of the Thin Steel Ring. The effect of the high oil pressure on the

strain gages could not be assumed to be negligible even though the gages were selected

to minimize these effects . Calibration of the strain gages was accomplished with the

apparatus assembled as shown in Fig. 4. 11. The significant feature of this assembly is

that the lower "O" ring between the bottom of the steel ring and the baseplate has been

removed so that the oil in the annular space can communicate freely with the oil inside

the sample chamber. A steel plug 1- inch thick is also inserted into the sample chamber

:
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to confine the oil and a testing head is lowered flush with the top ofthe plug to supply a

reaction of sufficient magnitude to keep the plug in place during calibration.

The gages were calibrated by increasing the oil pressure in increments up to

2,500 psi . Since the "O" ring at the bottom of the steel ring was omitted, the oil

pressure in the annular space was equal to the pressure in the sample chamber, thus

giving zero net pressure differential across the ring. Hence any change in gage reading

is due to the effects of the all around oil pressure on the gages. This calibration

procedure was conducted several times and the calibration curve obtained is shown in

-6

Fig. 4.12. The curve was reproducible within + 4 x 10 in./in. and the pressure effect

amounts to 7 x 10 in. /in. per 500 psi of oil pressure . Compensation for these pressure

effects was made when the tests were conducted on sands .

-6

♡

The ring was calibrated several times during the testing period and no change in

the calibration curve could be detected. Since the first calibration described above,

however , a better procedure has been developed which eliminates the necessity of

removing the lower "O" ring for calibration. This is important because the cell then

does not have to be dismantled for calibration . A steel plug with a hydraulic fitting as

shown in Fig. 4. 9b is employed in the improved method. The hydraulic jack is then

connected to both the hydraulic fitting leading to the annular space around the ring and

the hydraulic fitting leading into the sample chamber filled with oil . Since both the

inside and outside of the ring are connected to the same pressure source , there is no

pressure differential across the ring. This procedure proved to give the same results

as the first procedure described above with the advantage of greater efficiency .

2

Technique for Getting the Gage Wires Out of the Cell . One of the most

challenging problems in the design of the cell was devising a method of bringing the

strain gage wires out of the cell without cutting the wires or getting an oil leak. The

wires also had to be taken out of the cell so that the cell could be taken apart and put
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ick together without requiring a new seal each time. The final design of the outlet for

e gage wires provided an outlet through a 1/8" tapered hole in the base plate as shown

Fig. 4.5. The wires are sealed in the hole with an epoxy cement with a shear strength

f 3000 psi which was an excellent dialectric material. The hole was tapered so that the

eal would become even tighter at high pressures . In the first stages of the assembly of

ne cell the wires are fed through the hole in the baseplate . The wires are then sealed in

he epoxy cement and about 6 inches of slack wire is left between the point where the

vires enter the baseplate to where the wires hook onto the thin steel ring. This slack

vire is necessary in order to prevent the wires from being broken when the cell is

lismantled . The slack wire is then taped to the outside of the thin steel ring and the thick

walled cylinder is lowered around the ring andbaseplate and bolted in place. The cell is

then ready for use. This method has proven very satisfactory in the pressure ranges

of current testing, but it is expected that for extremely high pressures the insu'ation will

have to be stripped from the wires where they pass through the epoxy seal or oil may leak

through past the insulation on the wires. This should be no problem, however, if an

epoxy is used which is also an excellent dialectric.

Description of the Testing Head. The load was applied to the soil sample by means

of a heavy, internally stiffened piston, mounted in a 120,000- lb. hydraulic testing machine

as shown in Fig. 4.3. The testing head is 6.800 inches in diameter and 8.125 inches high.

Thedevice consists of two rigid steel plates which are welded on two concentric steel

cylinders . Figure 4.13 also shows the manner in which a dynamometer is incorporat !

into the device to measure the pressure over the center square inch of the loaded area.

This feature enables one to check the load on the center square inch against the average

load over the entire area . The piston and the dynamometer were designed with approxi-

mately the same relative stiffness in order to maintain a uniform deflection of the specimen

across the face of the loading device as the sample is compressed.
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The vertical displacement of the sand during compression was measured by two

Ames Dials mounted at 180° to each other on the loading piston as shown in Fig. 4.14.

The dials measure the relative displacement between the moving piston and the thick

walled cylinder designated as Part A in Fig. 4.5. This measured relative displacement

is actually the sum of the vertical displacement of the soil plus the strain in the testing

headfrom the surface of loading to the point where the dials are connected. The strains

in the head were so small compared to the strains in the soil that they were neglected

and the measurement was taken to represent the vertical displacement of the soil sample .

The dials are accurate to 1/10,000 of an inch and have a 0.4 inch travel . When the two

dials read differently, the average reading of the two dials was taken as the vertical

displacement of the soil.
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CHAPTER 5

EXPERIMENTAL RESULTS

1.1 General

One-dimensional compression tests were conducted on four different sands up to

a maximum vertical stress of 3290 psi with the apparatus discussed in Chapter 4. Axial

stress- strain properties and the coefficient of earth pressure at rest K were measured

on all tests . The energy absorption capacity of the sands was also measured by means of

cyclic loading.

Each sand was tested at avariety of initial void ratios in order to cover the

complete range of behavior for each sand . The four sands selected for this study were

chosenbecause they are extremely dissimilar with respect to grain shape and grain- size

distribution characteristics. Itwas hoped that the sands selected would manifest a wide

range ofone-dimensional properties so that the extreme limits of the various measured

quantities couldbe defined. Descriptions of the sands are given in subsequent sections

ofthis chapter.

Triaxial tests were also conducted on the four sands to document fully the

engineering description of the sands and to determine if any of the properties measured

in one-dimensional compression couldbe correlated with index properties defined by

well established routine tests. The triaxial test procedure and results are presented in

AppendixB.

5.2 Description of Sands

Minnesota Sand. One sand used in this investigation was a uniform, rounded,

silica sand obtained from the Gopher State Silica Co. in LeSeur, Minnesota. The sand is

a coarse fraction obtained from the St. Peter Formation, a marine sand of Ordovician

age . Because of the frosted nature of the sand it is thought to be of eolian origin. The

transportation of this sand by wind and the additional working of this sand under marine
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conditions account for the fact that it is rounded. This sand was selected primarily

because it is rounded and highly spherical; a sphericity of 0.95 has been determined for

this sand by a method suggested by Rittenhouse, (1943) . Therefore, test results on this

sand should provide an experimental check for the theory developed in Chapter 3. The

sand is 100 per cent silica and 95 per cent of the material is between the No. 10 and No.

20 U. S. Bureau of Standards sieve. The effective size, (D10), of the sand is 0.89 mm and

the uniformity coefficient is 1.18. A grain- size distribution curve for the Minnesota

Sand is shown in Fig. 5.1 . The specific gravity of the Minnesota Sand is 2.65 and the

void ratios for the loosest and densest states are e = 0.675 and e = 0.455,
min.

respectively . The procedure used for determining the maximum and minimum void

ratios was the method suggested by Bauer and Thornburn (1962). The loosest state was

obtained by placing the sand in a brass measure of known volume, 205 cc, with a glass

funnel held about 1 inch above the free surface . The excess material was then carefully

trimmed with a straight edge. The densest state was obtained by filling the measure

through the funnel while tapping the measure continuously with a wooden tamper and it

was also achieved by placing the sand in the measure in 1/2- inch layers and tapping

the sides with a mallet until the free surface was no longer settling. Both methods

yielded the same results . The relationship between the initial void ratio and the angle of

internal friction was obtained for Minnesota Sand from the drained triaxial tests

described in Appendix B and is shown in Fig. 5.2.

Pennsylvania Sand. A coarse , angular, silica sand obtained from the Pennsylvania

Glass Sand Corp. , Pittsburgh, Pennsylvania, was also used. The sand is obtained from

the Sharon Formation of Lower Pennsylvania age in a quarry near Geauga Lake, Ohio .

The sand was selected primarily because it is a pure silica sand in the same size range

as the Minnesota Sand; however, it is angular in contrast to the rounded Minnesota Sand.

It was thought that these two sands would more or less define the extreme limits of the
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behavior of coarse sands in one-dimensional compression. The sand is 99 per cent pure

silica and 93 per cent is retained between the No. 10 and No. 20 U.S. Bureau of Standards

sieves . The effective size is 0.92 mm and the uniformity coefficient, Cu, is 1.48. The

grain- size distribution for this material is shown in Fig. 5.1. The specific gravity of

the sand is 2.64 and the sphericity as defined by the method of Rittenhouse (1943) is

0.89 . Values of the void ratio for the densest and loosest states were determined by

the method described previously and were found to be 0.880 and 0.595, respectively.

The relationship between the angle of internal friction and the initial void ratio for

Pennsylvania Sand is shown in Fig. 5.2.

Sangamon River Sand. Sangamon River sand obtained from the Pontiac Stone Co. ,

Mahomet, Illinois, was also used in this investigation. Figure 5.1 gives the grain- size

distribution for this sand. The sand has an effective size (D10) of 0.18 mm and a uni-

formity coefficient, C₁ of 1.83. The sand maybe described as sub- angular; the

sphericity is 0.87, and the specific gravity is 2.67 . The maximum and minimum void

ratios are 0.875 and 0.540 respectively. The relationship between the angle of internal

friction and the initial void ratio for the Sangamon River Sand is shown in Fig. 5.2.

u

Wabash River Sand. Afairly well-graded sandwas used in this study which was

obtained from the Wabash River near Attica, Indiana . The sand may be described as sub-

angular to sub- rounded and has a sphericity of 0.85; the effective size, D10 is 0.26 mm

and the uniformity coefficient, Cu, is 3.0. The grain-size distribution curve for Wabash

River Sand is shown in Fig. 5.1. The Wabash River Sand has a specific gravity of 2.67

み

and maximum and minimum void ratios of 0.694 and 0.434, respectively . The variation

of the angle of internal friction with the initial void ratio is shown for Wabash Sand in

Fig. 5.2 ..

5.3 Preparation of Test Specimens

The accurate control and measurement of the initial void ratio of all specimens

were of extreme importance since the relative density significantly affects the stress
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deformation properties of sand . Each sample of sand used in the one dimensional tests

consisted of 2, 000 grams of oven-dry material; thus the volume of the sand solids was

constant for each test. Since the void ratio, e, is by definition

V

V

V

S

, where V is the
V

volume of the voids and Vs is the volume of the soil solids, the void ratio may also beS

written as:

e =

V

V

- 1

S

where V represents the total volume ofthe sample. Since V was constant, the void

ratio was determined by controlling the total volume, V. The Sample chamber of the

device described in Chapter 4 was cylindrically shaped so this was easily accomplished

by controlling the height of the sample.

Each test specimen was prepared by placing 2,000 grams of oven-dry sand into

the sample chamber and inserting a meta! plug into the chamber above the sand. This

steel plug fits into the chamber as shown in Fig. 4.11. A vibrator was then set on the

metal plug and the sand was vibrated until the plug settled to the desired height. The

height was measured to the nearest 0.01 inch by measuring the distance between the top

ofthe steel plug and the top surface of the cell. The sample was considered adequately

prepared only when the vertical height of the specimen was measured to be the same at

4points at 90° to each other around the periphery of the sample. This method of sample

preparation has proven to be rather simple and convenient and the test results indicate

thatvery good reproducibility has been achieved by the employmentof this technique .

E

Itwas noted throughout the tests that the maximum densities that could be

attained in the one-dimensional device were not as high as the maximum densities defined

by the relative density tests described previously. The samples were then placed in

layers in an effort to get denser samples, but higher densities than those reported could

not be obtained. The most probable reason for this phenomenon is that in a confined con-

dition in a heavy apparatus the particles were not free to rearrange as in the relative
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density mold, and due to the heavy mass of the cell (approximately 500 lbs . ) the

amplitude of vibration applied to the soil would not be as large as the amplitude of

vibration put into the light mold used in the relative density tests.

5.4 Experimental Procedure

General. The objective of these one-dimensional tests was to obtain curves of

vertical stress versus vertical strain and to obtain measurements of the lateral stresses

which are concomitant with the vertical stress throughout the history of loading under

the conditions of zero lateral strain. The procedures described herein were intended

to accomplish this objective by utilizing the equipment described in Chapter 4 with a

120, 000-1b hydraulic testing machine for supplying a measurable controlled load.

Pretest Procedure . Immediately after a sample is prepared, the zero reading is

obtained for the circumferential strain gages on the flexible steel ring for the conditions

of atmospheric pressure in the hydraulic system. A calibration chart similar to Fig.

4. 12 is then constructed by drawing a straight line through the zero reading with a slope

of -7 microinches per 500 psi to obtain the relationship of strain indicator reading

versus oil pressure for zero circumferential strain in the ring. The strain indicator

is thenbalanced on this calibration line throughout the test. This procedure must be

followed for each test because the zero reading may change from one test set-up to

another due to temperature changes affecting the resistance of the dummy gages and

changes in the strain indicator. Since it is the slone of the straight line calibration

that accounts for the effect of the changes in oil pressure on the gages throughout the

test, the magnitude of the initial zero reading has no significance . It is important

however that the zero reading before and after any one test be the same, otherwise a

zero shift has occurred during the test and the error in the calibration curve is exactly

equal to the magnitude of the zero shift. The zero readings before and after each test

should be within 5 microinches.
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A seating load of about 5 psi is then applied to the sample and the strain dials

on the testing head are secured in approximately the correct position to give maximum

travel . The seating load is then reduced until it is almost exactly zero and the Ames

dials on the testing head are adjusted to zero . The equipment is then completely ready

for testing.

Testing Procedure . The sample is loaded by a vertical load applied at a constant

strain rate while the horizontal pressure on the flexible ring is adjusted continuously by

hydraulic jacks in order to maintain the condition of zero lateral strain. Readings of the

oil pressure and the Ames dial readings are taken simultaneously at predetermined in-

tervals of vertical stress. During unloading,however, the Baldwin hydraulic testing

machine had no provisions for maintaining a constant rate of strain. Therefore the

unloading portion of the test was conducted at a constant rate of stress . Occasional

tests were run of each sand, however, which were designated as "consolidated type"

tests . These samples were loaded and unloaded in stress increments as in ordinary

consolidation tests on clay and each increment was left on the sample until the movement

of the Ames dials became imperceptible. The horizontal pressure reading recorded in

the "consolidated" tests was the horizontal pressure at the same time the final dial

reading was recorded for each increment.

The vertical stress on the sample was taken as the total load registered on the

testing machine divided by the area of the specimen . There were no corrections for

ring friction reducing the average load on the sample. An attempt to assess the

importance of ring friction in these tests is presented in Appendix C.

The vertical strain was measured by the Ames dials mounted on the testing

head at 180° as shown in Fig. 4. 14. The two dial readings were averaged because the

testing machine allowed some tilting of the testing head. The vertical displacement

indicatedby the dials was taken as the displacement ofthe top ofthe sample because

the strain between the surface of the testing head and the point where the dials were

connected was negligible .
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.5 Test Results

The vertical stress- strain data from this series of tests has been plotted for

he entire history of loading for each test. Aplot ofthe horizontal stress versus the

ertical stress was also made for each test. These plots therefore show the relationship

wetween the three quantities measured in these tests and thus incorporate allof the

experimental data for each test into two diagrams.

The stress- strain curves for tests on Minnesota Sand, Pennsylvania Sand,

Sangamon River Sand, and Wabash River Sand are shown in Figs. 5.3 through 5.22,

Figs. 5.23 through 5.30, Figs. 5.31 through 5.37, and in Figs. 5.38 through 5.45,

respectively. The relationship of horizontal stress to vertical stress for the same tests

onMinnesota, Pennsylvania, Sangamon River, and Wabash River sands are given in

Figs. 5,46 through 5.65, Figs. 5.66 through 5.73, Figs. 5.74 through 5.80, and

Figs. 5.81 through 5.88 respectively.
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CHAPTER 6

5

INTERPRETATION AND DISCUSSION OF EXPERIMENTAL RESULTS

6.1 General

The experimental data presented in the previous chapter are summarized and

interpreted in this chapter. Generally, the stress- strain behavior is qualitatively

similar to that observed by previous investigators such as Roberts and De Souza (1958) .

Due to the sample dimensions used in this test series, however, the numerical results

are believed to be more precise than any previous one-dimensional stress- strain data

published for sands up to 3290 psi. However, many of the conclusions drawn below

concerning the coefficient of earth pressure at rest are given for the first time. The

experimental data on the coefficient of earth pressure at rest also give actual numerical

support to relationships suggested by other investigators, uch as Jaky (1944). Summary

graphs are shown for all four sands where the consolidation ofdata clearly shows the

effect of a significant variable. A special effort is made throughout to correlate the

experimental results on Minnesota Sand with the theoretical analysis presented in

Chapter3.

6.2 Axial Stress-Strain Relationships

2

4

•

The one-dimensional stress- strain measurements on all four sands are presented

in Figs . 5.3, through 5.45 in which both quantities have beenplotted to an arithmetic

scale. The stress-strain curves in general for all tests are nonlinear curves which are

concave upwardonthe loading portion of the curve unless significant crushing of the soil

grains causes the curvature to become concave downward. The unloading curves,

however, are all concave upward. If the sand sample is subjected to subsequent cycles

of load with a maximum stress well below the peak value of the first cycle, both the

loading and unloading curves are concave upward.
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Summary graphs are shown in Figs. 6.1 6.4 which show families of stress-

strain curves for samples of Minnesota, Pennsylvania, Sangamon River, and Wabash

River sands tested at various initial relative densities . All four graphs show the obvious

effect ofthe initial relative density. The denser the sand the more steeply the stress-

strain curve turns up giving less strain for a dense sample than a loose sample at a given

vertical stress. The initial relative density also affects the shape of the stress- strain

curves. Figure 6.1 shows four tests on Minnesota Sand at fourdifferent void ratios .

The tests with initial void ratios of 0.54 and 0.62 manifest stress-strain curves with a

concave upward curvature throughout the entire range of loading. The two tests with

initial void ratios of 0.66 and 0.77 have stress- strain curves which initially are concave

upward but display a concave downward curvature at higher pressures. It should also be

noted that the stress- strain curve begins to turn concave downward at a lower vertical

stress for the sample with an initial void ratio of 0.77 than for the sample with an initial

void ratio of 0.66. The family of stress- strain curves for Pennsylvania sand shown in

Fig. 6.2 are similar in shape because they are all initially concave upward butbecome

3

concavedownward at higher levels of vertical stress. The curves for the Pennsylvania

Sandalso show the trend that the higher the initial relative density, the higher is the

vertical stress at which the curvature becomes concave downward. The tests on

Sangamon River Sand given in Fig. 6.3 show that the densest sample has a stress- strain

curve which is concave upward throughout the entire range ofloading; the three looser

samples, however, display stress- strain curves which are initially concave upward and

become concave downward at higher stresses . Tests on Wabash River Sand presented

in Fig. 6.4 also show that increasing the initial relative density increases the slope of

the stress-strain curves . These test results are different than those for the other three

sandsbecause tests at all initial relative densities have stress- strain curves which are

concave upward throughout the entire range of loading.
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The non-linearity of the stress- strain curves discussed above demonstrates

the well-known phenomenon that the stiffness of a given sand is highly dependent upon

the stress level. This stiffness in the case of one-dimensional compression is usually

designated as the "constrained modulus" of deformation. The "constrained" tangent

modulus of deformation which, by definition, is the rate of change of vertical stress with

respect to vertical strain under conditions of zero lateral strain, will be used hereafter

in this discussion. Values of the constrained tangent modulus have been calculated at

intervals in the vertical stress of 275 psi for the initial loading of all tests . The variation

of the constrained tangent modulus with vertical stress is shown for all four sands at

various initial relative densities in Figs. 6.5 - 6.8.

The general trend shown in all four summary graphs is that the constrained

tangent modulus increases with pressure for a given specimen until crushing of the

grains causes the modulus to decrease with further increase in pressure . This pheno-

menon is illustrated best by the angular Pennsylvania Sand, for which the constrained

tangent modulus initially increases with vertical stress and then decreases at higher

pressures for the entire family of curves shown in Fig. 6.6. A decrease in constrained

modulys with pressure occurs only for the tests on loose samples of Minnesota and

Sangamon River Sands shown inFigs . 6.5 and 6.7, respectively. The denser samples

of Minnesota and SangamonRiver sands, however, manifested a monotonically increasing

constrained modulus with increasing stress up to the maximum pressure; therefore,

crushing of the grains in the dense samples was not significant enough to cause a

decrease in constrained modulus. The constrained modulus-vertical stress relationships

for the fairly well gradedWabash River Sand are shown for three initial void ratios in Fig.

6.8 . The constrained modulus increases with increasing vertical stress until a vertical

stress of about 2000 psi; then, the moduli for the three different curves appear to remain

constant up to the maximum vertical stress of 3290 psi . Thus significant crushing did

not occur in either the dense or loose samples of well graded Wabash River Sand because
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the constrained tangent modulus did not decrease with additional vertical stress at any

stage of the loading.

4

In summary, the families of stress- strain curves and constrained tangent

modulus vertical stress curves for the Minnesota, Pennsylvania, and Sangamon River

Sands indicate that the initial relative density of the sand governs the stress level at

: which crushing of the grains causes the constrained tangent modulus to begin to decrease

with additional vertical stress . In general, as the initial relative density increases, the

stress level at which the constrained modulus peaks also increases . Therefore the

stress level at which significant crushing occurs for a given sand also increases as the

initial relative density increases . This behavior canbe explained in the following

manner. A sand with a higher void ratio or lower relative density is free to rearrange

as a small amount of crushing takes place at points of contact, and the strains from this

rearrangement are reflected in a decreasing constrained tangent modulus. The sands

with a lower void ratio, however, are not free to rearrange to a greatdegree when

crushing initiates and thus no significant strains due to rearrangement occur. Even the

denser samples will show a decreasing modulus at some stage due to crushing but, in

general, one would expect crushing to occur at a higher average stress level in a dense

sand than in a loose sand. A dense sand has more contact points per unit volume than

a loose sand and thus for the same average applied stress, the loose sand has higher

grainto grain contact stresses than a dense sand. Therefore, the loose sand begins

crushing at a lower stress than the dense sand. The explanation above is consistent

with the experimental results presented for the Minnesota and Sangamon River sands

which showed crushing of the loose specimens but did not show crushing of the dense

sands within the range of vertical stress applied in these tests . The trend which would

be predicted from the above explanation was definitely exhibited for the Pennsylvania

Sand which showed crushing for specimens tested at both high and low initial void ratios .
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These experimental results are given in Fig. 6.6 and definitely show that the vertical

stress level at which significant crushing occurs increases for a given sand as the

relative density increases . The Wabash River Sand did not show significant crushing

for either the dense or loose samples within the pressure ranges of these tests . This

behavior canbe explained by the fact that the sand is fairly well graded which provides

many contact points per unit ofvolume . Therefore the contact stresses for a given

average stress on the medium are reduced.

The significance of relativedensity indetermining the constrained modulus for

agiven sand is definitely indicated in Figs. 6.5-6.8 . These data show that the con-

strained modulus for a given sand at a given level of vertical stress may be 8 or 9 times

higher for a dense sand than for a loose sand. This is not enough evidence, however, to

draw the conclusion that relative density is the unifying index property which determines

the stiffness of all sands at a given level of stress . Figures 6.9 and 6. 10 show con-

:

strained tangent modulus versus vertical stress curves for tests on all four sands at

approximately the same relative density. These data indicate that the constrained

modulus for the rounded Minnesota Sand may be 9 or 10 times greater than the con-

strained modulus for the angular Pennsylvania Sand at approximately the same relative

density. The rounded Minnesota Sand and the Angular Pennsylvania Sand define the

upper and lower limits of the constrained modulus while the Sangamon and Wabash River

Sands fall closely together between the two extreme limits . Thus the angularity of the

particles is just as significant in affecting the constrained modulus as the initial

relative density . A rounded sand has had most of the incompetent pieces weathered

out and consists entirely of rounded quartz grains that experience much less local

crushing and permanent deformation at points of contact than a more angular sand.

Therefore the rounded sands are stiffer during loading and exhibit a higher strain

recovery during unloading. Since the angularity is a function of the transportation
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history of the sand, the constrained modulus at a given relative density is indirectly

related to the geologic processes which acted to produce the natural sand deposit. It

is probable that the Sangamon River Sand and Wabash River Sand show almost identical

constrained tangent modulus - vertical stress curves in Figs. 6.9 and 6.10 because they

are both from recent river channels and have similar mineralogical content.

The effect of time on the one -dimensional stress strain relationships was not

part of this study. The strain rate was varied however between the limits of 0.005

inches per minute and 0.04 inches per minute on the initial test series on Minnesota

Sand. This small range of strain rate was not enough to materially effect the constrained

modulus . Values of the constrained tangent modulus in the 2,500-3,000 psi vertical

stress range are shown below for different testing rates on samples of Minnesota Sand

with an initial void ratio of 0.54.

Testing Rate,

in/min

Constrained

Modulus, psi

0.005 262,500

0.010 262,500

0.020 269,500

0.040 270,000

245,000Consolidated Type Test

The constrained modulus appears to increase slightly with increasing strain

rate; however, in the range of constant strain rates considered, this difference is only

about 8,000 psi which is not significant. There is a slightly greater difference, however,

between the consolidated type test and tests run at a constant strain rate because the

consolidated type test includes more deformation due to creep. Even this difference

is less than 10% and not significant compared with the changes in constrained moduli

causedby small changes in initial relative densities .
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6.3 The Coefficient of Earth Pressure at Rest

The results of the lateral earth pressure measurements for the first cycle of

loading on all four sands are shown in Figs. 5.46-5.88. The lateral earth pressure

required for zero lateral strain is plotted in these graphs as ordinate versus the vertical

stress as abscissa. All of the curves show the same general qualitative characteristics

even though they are quantitatively different. The relationship between the horizontal

and vertical stresses in the low pressure ranges gives a straight line through the origin

for all tests and the coefficient of earth pressure at rest, Ko, is numerically equal to

the slope of the straight line. As the pressure increases some of the tests show that

the relationship between the vertical and the horizontal stress continue on the same

straight line up to the maximum pressure. Mostof the data indicate, however, that as

the pressure increases there is a tendency for the coefficient of earth pressure at rest

to increase which is reflected in an increase in slope of the curve at higher pressures .

Throughout most of the unloading the horizontal stresses decrease at a lower rate than

the vertical stresses which gives a flatter curve located above the loading curve . In

fact, near the end of unloading the horizontal pressure exceeds the vertical pressure

which gives a coefficient of earth pressure at rest greater than 1.0.

د

Because all of the tests give a straight-line relationship between horizontal stress

and vertical stress up to about 1000 psi, the values of the coefficient of earth pressure

at rest have been computed for all tests in this range for the purposes of comparison.

Thus the values of the coefficient of earth pressure at rest discussed in this paragraph

are for normally loaded sands up to 1000 psi. The value of the coefficient of earth

pressure at rest is found to be dependent upon the type of sand and the initial relative

density of the sand. Summary graphs of the coefficient of earth pressure at rest

versus the initial void ratio are shown for the four sands in Figs . 6.11 - 6.14. These

data consistently show that the coefficient of earth pressure at rest increases as the

63



void

2

sep

se



initial void ratio increases for all four sands . This trend inthe data was expected

because previous investigators such as Jaky (1944) have reported that the coefficient

of earth pressure at rest is inversely proportional to the angle of internal friction.

Because the angle of internal friction increases as the initial relative density increases,

it follows that the coefficient of earth pressure at rest should decrease with increasing

relative density as observed. A series of drained triaxial tests was conducted onall

four of the sands at various relative densities . The object of the triaxial testing

program was to define the relationship between the angle of internal friction and the

initial void ratio . This relationship was used to establish a correlation between the

angle of internal friction and the coefficient ofearth pressure at rest. The experimental

relationships between the drained angle of internal friction and the initial void ratio for

the sands are presented in Fig. 5.2. The relationshipbetween the angle of internal

friction and the coefficient of earth pressure at rest was obtained for Minnesota Sandby

taking a value of K from Fig. 6.11 corresponding to a given initial void ratio; a value

of $ is then picked off Fig. 5.2 corresponding to the same initial void ratio. This

procedure is repeated for several values of the initial void ratio and the values of the

coefficient of earth pressure at rest are plotted against the sine ofthe angle of internai

friction as shown in Fig. 6.15. The relationships for the other sandswere obtained by

the same procedure and are also shown in Fig. 6.15. The experimental results for the

Pennsylvania, Sangamon River and Wabash River sands conform almost exactly to the

relationship suggested by Jaky (1944), whereas the experimental results for rounded

Minnesota Sand fit very closely the relationship obtained from the theoretical investiga-

tion in Chapter 3. Because the Minnesota Sand is composed of almost spherical particles

of uniform size, it's reasonable that the Minnesota Sand should fit the theoretical

relationship derived for a medium of uniform spheres more closely than the other

three sands .

64





The experimental data definitely indicate that the coefficient of earth pressure

at rest for a given sand is inversely related to the angle of internal friction . This

relationship may also explain the tendency for the coefficient of earth pressure at rest

to increase with pressure as typically illustrated by the relationship of the horizontal

and vertical pressures during loading for a sample of Sangamon River Sand (Fig. 5.77)

It is well known that the angle of internal friction of a given sand decreases as the

confining pressure increases . Thus the coefficient of earth pressure at rest should be

expected to increase with pressure because it is inversely related to the angle of in-

ternal friction. The above explanation accounts for the value of Ko increasing with

pressure, but according to this mechanism the transition should be gradual and contin-

uous . Test results are given in Figs. 5.57 and 5.58 'for loose Minnesota Sand at void

ratios of 0.64 and 0.66 which show a rather sharp break in the relationship between the

lateral and vertical pressures during loading. The curves make a transition from an

initial straight line into another straight line with a steeper slope . An abrupt change

of this type is thought to be causedby crushing of the grains . This abrupt change is

manifested by loose Minnesota Sand, Figs. 5.57 and 5.58, but dense Minnesota Sand

gives a straight- line relationship throughout loading as shown in Figs. 5.64 and 5.65.

Figure 6.5 shows that it is also the loose Minnesota Sand which gives a decrease in

constrained tangent modulus at higher pressures due to crushing and rearrangement.

D

Graphs of lateral pressure versus vertical pressure for Pennsylvania Sand are

shown in Figs . 5.66-5.73. All of the graphs show abrupt changes in the curves during

loading. Figure 6.6 also shows that the constrained tangent modulus decreases due to

crushing for tests at all initial relative densities for Pennsylvania Sand.

The lateral stress versus vertical stress plots for Wabash River Sand are

given in Figs . 5.81 - 5.88. These data indicate that the lateral stress -vertical stress

relationship for loading is almost a straight line through the origin for all tests, and no

abrupt changes in slope are shown. This phenomenon is consistent with the idea that
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crushing is important in causing an abrupt change in the o versus σ

because the constrained tangent modulus versus vertical stress graph in Fig. 6.8

indicates that significant crushing has not occurred within the pressure ranges of testing

for the Wabash River Sand.

The lateral stress measurements for Test 2 on Pennsylvania Sand are given in

Fig. 5.67 and will be used here as a specific example to illustrate the mechanism which

causes the fairly abrupt changes in the horizontal stress- vertical stress relationships .

The first break in the loading curve given in Fig. 5.67 occurs at a vertical stress of

approximately 1200 psi. The constrained tangent modulus versus vertical stress

relationship for Test 2 is given in Fig. 6.6 by the curve shown for an initial void ratio

of 0.70; it is observed that the constrained modulus begins to decrease with pressure

at approximately 1200 psi . This behavior indicates that at 1200 psi some of the contacts

have disintegrated and have transferred enough load to the remaining contacts so that a

large number of contacts are near the point of failure. Additional vertical stress causes

a sufficient number of contacts to fail which results in rearrangement and large strains .

Therefore, the constrained modulus decreases with additional vertical stress as

observed in Fig. 6.6. These contacts which are crushed were contributing to the

average shearing stresses necessary to maintain the difference between the lateral and

vertical stresses . When the rearrangement described above occurs, the value of Ko

will have a tendency to increase because the sand grains will tend to move such that

shear stresses on them are relieved rather than increased. The value of K for Test 2

on Pennsylvania Sand continues to increase up to about 2600 psi where the horizontal

stress-vertical stress curve flattens out and he value ofK begins to decrease with

pressure . Figure 6.6 indicates that the constrained modulus for Test 2 (e = 0.70), is

beginning to approach a constant value in the 2600-3000 psi range . Therefore, at a

stress of about 2600 psi the sand has rearranged until many more new contact points

have been made which permits a larger principal effective stress ratio and thus a

lower value of Ko

C
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The relationship between the lateral pressure and the vertical pressure for

unloading is shown for all tests in Figs . 5.46 - 5.88. The typical unloading curve for

all tests is a concave downward curve which is very flat at high pressures and increases

in curvature and slope as the vertical stress approaches zero . Throughout most of the

unloading portion the vertical stresses are relieved at a faster rate than the horizontal

stresses . Thus, as unloading proceeds the value of the coefficient of earth pressure at

rest increases . The test results show that for some sands the value of the coefficient

of earth pressure ranges from about 0.40 to 2.90 during unloading. Therefore,

depending upon the stress history, the coefficient of earth pressure-at rest can be very

close to either the active or passive earth pressure coefficients . The most commonly

accepted number, at least for clays, that is utilized for expressing the stress history is

the overconsolidation ratio , which will hereafter be referred to as the OCR. The OCR,

by definition, is the ratio of the maximum previous stress to which a soil has been

subjected to the present stress on the soil. The OCR is 1.0 during loading up to the

maximum pressure, but if the specimen is unloaded the OCR becomes greater than 1

and increases to infinity when the specimen is completely unloaded. A typical variation

of K with OCR is illustrated in Fig. 6. 16 for Tests 3 and 4 on Minnesota Sand. This

graph clearly shows that Ko increases at a decreasing rate with OCR and appears to be

approaching a horizontal asymptote. The K value at an OCR of 37 is almost 2.0 and

still increasing such that the curve will probably become asymptotic to a straight

horizontal line where Ko is equal to the coefficient of passive earth pressure . Curves

of K versus OCR have been plotted for all specimens loaded to the same maximum

vertical stress for purposes of comparison. Summary graphs of Ko versus OCR are

shown in Figs . 6.17 - 6.20. Each graph with the exception of Fig. 6. 17, gives a rather

narrow band within which all test results for a given sand fall regardless of the initial

relative density . This band is especially narrow for the Wabash River Sand (Fig. 6.20)

and the Sangamon River Sand (Fig. 6.19). The influence of initial relative density is
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more pronounced for the Minnesota Sand, however, since the band within which all the

data in Fig. 6. 17 fall is somewhat broader. The experimental results shown for

Pennsylvania Sand in Fig. 6.18 show a very narrow band within which five tests fall .

Because the void ratio varies only between the narrowlimits of 0.68 and 0.74 for tests

with the same maximum pressure on Pennsylvania Sand, it cannot be said that samples

tested over a wide range of initial relative densities would necessarily fall in the narrow

band shown in Fig. 6.18. The data presented inall the figures do indicate, however,

that the stress history as expressedby the overconsolidation ratio is more significant

indetermining the value ofK duringunloading than the initial relative density of the

sand. In fact the K versus OCR graphs for Sangamon River and Wabash River sands

in Fig. 6.19 and 6.20 show results of six and eight tests respectively conducted at

different relative densities which indicate that the coefficient of earth pressure at rest

during unloading is almost a unique function of stress history and nearly independent of

the initial relative density. However, the summary plots for the Minnesota, Sangamon

River, and Wabash River sands consistently indicate that the upper limit of the band is

givenby the experimental results from the loose sands and the lower limit of the band

isgivenby the data from the denser specimens.

Figures 5.55 and 5.56 show the variation of lateral earth pressure with vertical

stress for 1 1/2 cycles of loading in tests 12 and 13 on Minnesota Sand. These curves

show that cyclic loading can gradually build up the coefficient of lateral earth pressure

if the load is cycled in the range between 1650 psi and 3290 psi. The data for Test 13

in Fig. 5.56 show that the value ofK at point a is higher than at point b even though

the computedoverconsolidation ratio is identical for these two points . Thus, the value

ofK for a given sand is not only a function of the stress history as expressed by the

OCR, but it also depends on the number ofpreceding cycles.
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6.4 Energy Absorption

The energy absorption characteristics of the four dry sands were investigatedby

means of cyclic loading. In general, the procedure was to load the specimen to 3290 psi

and unload to zero on the first cycle . A second and sometimes a third cycle of loading

was then applied with a maximum stress of about one-third the maximum stress applied

in the first cycle so that the subsequent hysteresis loops would be practically recoverable .

The deformations in the first cycle are only about 10-20 percent recoverable for

tests on the Pennsylvania, Sangamon River and Wabash River sands (Figs. 5.23-5.45) .

The denser samples of Minnesota sand, however, are as much as 75% recoverable; in

general, the recoverable strain becomes lower as the initial relative density of the

samples decreases . These irrecoverable strains, however, are expectedon the first

cycle of loading because energy is absorbed as the stresses do work when rearrangement

ofthe grains causes a permanent decrease in volume and energy is expended in creating

new surfaces as crushing of the grains takes place. When crushing of the grains occurs,

further rearrangement also takes place and both mechanisms are responsible for energy

absorption. The two mechanisms cannot be distinctly separated but both contribute

significantly to the area of the hysteresis loop on the first cycle.

Generally, the deformations in the second cycle are almostentirely recoverable,

but energy is still lost because the loading and unloading paths aredifferent. If the

second cycle is followed by a third cycle identical to the second (such as in Tests 3, 5, 6,

7, and 8 on Minnesota Sand) it is found that the third cycle traverses essentially the

same loop with very little irrecoverable strain. However, a significant amountof energy

is still dissipateddue to the difference between the paths of loading and unloading.

The energy lost in hysteresis for various tests on all four sands was evaluated

by computing the areas enclosed in the loops traversed in the first cycle which includes

considerable permanent deformation, and in the second and third cycles which are

essentially recoverable . The energy absorbed is then expressed as apercentage ofthe

input energy.
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The experimental data on the energy absorption characteristics of the sands are

presented in Figs. 6.21 - 6.24. Results for the Minnesota Sand in Fig. 6.21 show that

the energy absorbed on the first cycle decreases from about 60 percent for samples at

a low relative density to as low as 35 percent for relatively dense samples. The angular

Pennsylvania Sand which manifested significant crushing in the first cycle of load

dissipated about 95 percent of the energy input for all relative densities as shown in

Fig. 6.22. Tests on both the Sangamon River and Wabash River sands show that the

energy absorption in the first cycie decreases as the initial relative density increases .

Figures 6.23 and 6.24 give the experimental results for Sangamon River and Wabash

River sands which have energy absorption ratios in the first cycle of 90 to 70 percent

and 95 to 80 percent, respectively, as the relative density increases from the loosest

to the densest states. The amount of crushing and rearrangement are indirectly in-

cluded in the constrained tangent modulus because the constrained modulus decreases

ingeneral as the amount of permanent deformation increases. Therefore, the constrain-

edtargent modulus at the maximum load should be inversely related to the percent energy

absorbed in the first cycle of loading. Figure 6.25 gives a plot of constrained tangent

modulus at 3290 psi versus the percent energy absorbed on the first cycle. This graph

shows that the energy absorption is definitely a function of the constrained tangent

modulus at the maximum load in the cycle; the experimental data from all four sands

fall generally along the trend given in Fig. 6.25.

The energy dissipated in the small hysteresis loops on the second and third

cycles was also measured. The ratio of energy absorbed to input energy expressed as

a percentage is plotted against the initial relative density for the four sands in Figs .

6.21 - 6.24. Energy losses in these small hysteresis loops are considerably smaller

than the first cycle for all sands tested because most of the permanent deformation has

already takenplace in the first cycle of loading. It should also be observed that in the

Minnesota, Sangamon River, and Wabash River sands the percent energy absorbed is
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relatively independent of the initial relative density because the best straight lines

through the experimental points have very flat slopes. The experimental results given

for Pennsylvania Sand (Fig. 6.22), however, show a variation of percent energy absorbed

with initial relative density in which the energy absorption appears to increase from

about 25 to 53 percent as the initial relative density increases. The energy dissipated

in the small hysteresis loops for Minnesota Sand ranges from 33 to 27 percent of the in-

put energy whereas the Sangamon River sand and Wabash River sand absorbed 38-50

percent and 38-49 percent of the input energy respectively.

Ingeneral, the study of energy absorption from the hysteresis loops indicates

that there are three mechanisms which dissipate energy in dry sand. Energy is dissi-

pated by work which is done by the stresses in producing an irrecoverable change in

volume due to rearrangement of the grains; energy is absorbed in the form of surface

energy as crushing creates new surfaces. The third mechanism, which was manifested

inthe small hysteresis loops and which was indicated by the theory in Chapter 3, is the

absorption of energy due to a difference in loading and unloading path even though the

deformations are fully recoverable . The energy lost in the first cycle is dissipated

by all three mechanisms whereas energy is dissipated in the small hysteresis loops ,

primarily by the third mechanism. The method of cyclic loading employed in these

tests provides a means of separating the third energy absorbing mechanism from the

first two mechanisms; the effects of the first two mechanisms, however, cannot be

separated. A method has been suggested by Hendron, Fulton, and Mohraz (1963) for

separating the energy losses due to the first two mechanisms. The method involves a

statistical evaluation of the new surface area created by crushing from changes in the

grain- size distribution curve. The results of laboratory experiments which evaluate

the energy required to produce a unit area of new surface for a given mineral can then

beapplied to give the total amount of energy expended in the creation of new surfaces .

However, there is only limited laboratory data of this type available and most of the
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data is for quartz, (Axelson, 1949), (Heney, 1951), (Kenny, 1954), and (Zeleny, 1959),

The method is most severely restricted, however, by the statistical procedure which

requires that the grain-size distribution before and after crushing plot as two straight

lines on log probability paper. Unfortunately, most real sands do not satisfy these

requirements and the deviations from the straight lines can cause large errors in the

statistical evaluation of the new surface area . Therefore this method is of no use until

more experimental data are obtained on surface energies of minerals and until statisti-

cal methods are developed to the point where the assumption of such idealized grain- size

distribution curves is not required.

6.5 General High Pressure Behavior Indicated by Tests on Pennsylvania Sand

The family of curves in Fig. 6.6 define the constrained tangent modulus versus

vertical stress relationship for Pennsylvania Sand at various initial relative densities .

Allofthe curves show a decreasing constrained modulus after crushing ofthe grains

begins, but the most interesting phenomenon is the tendency for all tests to approach

the same constrained modulus, (20,000 psi), at a vertical stress of about 3200 psi.

This behavior suggests that a stress level has been reached for the angular Pennsylvania

Sandwhere the effects of the initial relative density have been completely erased.

Therefore, the physical behavior beyond this critical stress should be the same for all

specimens of Pennsylvania Sand regardless of the initial void ratio . The vertical

stress-void ratio relationships for four specimens of Pennsylvania Sand with initial void

ratios between the limits of 0.86 and 0.67 are shown in Fig. 6.26. It is apparent that

all four specimens are approaching the void ratio of approximately 0.55 at the maximum.

pressure of 3290 psi; the four pressure - void ratio curves are merging to give a single

relationship at higher stresses for all initial relative densities . These same data are

shown in Fig. 6.27 in the form of a conventional void ratio-log pressure diagram.

The specimens with different initial relative densities merge into a "virgin" slope

which is common to all four samples. These data are very much analogous to
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consolidation data published by Olson (1962) which showed a family of void ratio - log

pressure curves for samples of Calcium Illite consolidated from different initial liquidity

indices . Another interesting observation from the void ratio-log pressure plot is that

the compression index of the "virgin" portion of the curve is about 0.49, which exceeds

that of most normally loaded clays.

Further experimental evidence to support the prognostication that the physical

properties of specimens with different initial relative densities become the same at

higher pressures is given in Figs. 6.28-6.30. Fig. 6.28 shows the variation of the

coefficient of earth pressure at rest with vertical stress throughout the loading of the

first cycle for loose , medium, and dense specimens of Pennsylvania Sand. Athigher

pressures the value of the coefficient of earth pressure at rest is 0.50 for all three

tests shown. A plot ofthe stress paths ofthe top point on a Mohr circle as loading

progresses is given in Fig, 6.29 for the same three tests which indicates that the

stress trajectories of the three different specimens merge at a stress ofabout 2000 psi .

Figure 6.30 shows a continuous plot of one-third the first stress invariant as abscissa

versus the octahedral shearing stress as ordinate for the first loading in Tests 3, 5, and

7 on Pennsylvania Sand. Thedata interpreted in this manner also show that at higher

pressures all three specimens have the same physical properties even though the initial

relative densities are greatly different.

It is the opinion of the writer that all sands will reach a certain void ratio at

high pressures in one-dimensional compression at which the effects of initial relative

density will be erased and the physical properties exhibitedwith further increase in

pressure will be the same for all samples of a particular sand. This opinion is

supported by the measurements presented for Pennsylvania Sand. The other three

sands should behave in a similar fashion but the pressure range of this series of tests

was not high enough to reach these "critical" void ratios for the Minnesota, Sangamon

River and Wabash River sands.
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6.6 Correlation of Experimental Results with the Theory of Granular Media

The theory presented in Chapter 3 is applicable to a granular medium composed

of equi- radii spheres arranged in a face-centered cubic array. Since the Minnesota

Sand is a uniform, rounded, highly spherical sand, the results from the tests conducted

onMinnesota Sand will be compared with the predicted behavior from theory.

The stress - strain data from Tests 3 - on Minnesota Sand are presented on

log-log graphs in Figs. 6.31 - 6.41. The stress- strain relationship for the initial

loading plots as a straight line on these graphs which means that the axial stress may

be expressed in terms of the axial strainby

n

Ezz = mozz

The above expression may also be written

log10 €zz = log10 m + n log100ZZ

(6.1)

(6.2)

Thus, from Eq. (6.2) it is apparent that the parameter n is the reciprocal of the slope

of the straight line and m is the value of the strain at which the straight line intersects

the strain axis. The values of n ranges from 0.38 to 0.53 for these tests as compared

to the value of 0.67 which is predicted for n from the theoretical analysis presented in

Chapter 3. The results do show, however, that the relationship between stress and

strain is an exponential relationship as predicted by theory, but the value of n from

tests seems to be consistently less than 0.67.

is the continuous derivative of the
The constrained tangent modulus, Mi ,

theoretical one -dimensional stress- strain curve given in Chapter 3 and can be expressed

in terms of the vertical stress, σ
by

ZZ

Mc
=

do

de

ZZ

ZZ

=

1/3

2C₂ σ
(6.3)

ZZ
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where C₂ is a constant, Figure 6.42 gives the variation of log M versus log σ for
C ZZ

all tests with an initial void ratio of 0.54. Since the relationship is a straight line the

constrained tangent modulus may be expressed in terms of the vertical stress as

M = C3C

t

ZZ

(6.4)

where t is the slope of the line and C3 is a constant. The value of t for this set of

experiments on Minnesota Sand at an initial void ratio of 0.54 is 1/2 whereas the theory

from Chapter 3 predicted that t should be 1/3. An interesting comparison can also be

made with data compiled by Whitman (1962) for Standard Ottawa Sand. The Minnesota

Sand and Standard Ottawa Sand are both obtained from the St. Peter Sandstone formation

and are very similar in every respect except that the Minnesota Sand is comprised of

No. 10-No. 20 sieve - size material and the Ottawa Sand is composed ofthe No. 20-No. 30

size fraction. Figure 6.43 gives the variation of dilatational wave velocity with confining

pressure for Standard Ottawa Sand at a void ratio of 0.53 . The dilatational wave velocity

isgivenby

Mg
C

VD =
Y

(6.5).

where YD is the dilatational wave velocity, g is the acceleration of gravity, andy is the

unit weight of the soil . Therefore the data for Minnesota Sand at a void ratio of 0.54

presented in Fig. 6.42 can be compared with the seismic data presented by Whitman if

the seismic velocity is calculated by Eq. (6.5) for given values of the constrained

tangent modulus in Fig. 6.42. Calculated values of the seismic velocities versus

vertical stress from values of the constrained tangent modulus given in Fig. 6.42 are

shown in Fig. 6.43 by curve A; the same calculated velocities are shown plotted versus

the horizontal stress in curve B by applying a K factor of0.35 to the vertical stress .

Curves A and B are parallel to and below the band given by Whitman which rises at a

slope of 1/4. Since the theory of Chapter 3 predicts that the constrained tangent
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modulus is proportional to the cube root of the confining pressure and the dilatational

wave velocity is proportional to the square root of the constrained tangent modulus, then

it follows that the theory would predict the wave velocity to vary as the sixth root of the

confiningpressure . Therefore the theory predicts that the straight lines shown in

Fig. 6.43 should rise at a slope of 1/6 rather than the slope of 1/4 observed. One of

the most interesting aspects ofthe data presented in Fig. 6.43 is that it gives a correla-

tionbetween seismic results and stress- strain properties measured at higher stresses.

It is observed that the pseudo-wave velocities calculated from the constrained tangent

moduli measured at high pressure levels are about 1/2 to 3/4 ofthe seismic velocities

for lines A and B respectively. The result is consistent with Sauer (1959) who has

suggested that the "effective" wave velocity for use in predicting the ground motion for

high overpressures produced by a nuclear weapon should be taken as approximately

equal to 3/4 of the seismic wave velocity.

C

Anenergy absorption mechanism is predicted for a dense granular medium by

the theory given in Chapter 3 whereby energy is dissipated due to adifference between

the loading and unloading paths evenwhen the strains are fully recoverable. The energy

absorption characteristics of Minnesota Sandhave been investigated as described in

Section 6.4. It was found that the second and third hysteresis loops were essentially

completely recoverable for Minnesota Sand. Infact, the second and third cycles

traversed exactly the same path for Tests 3, 5, and 7 on Minnesota Sand given in

Figs. 5.3 , 5.5, and 5.7; the small loops shown on each stress- strain curve for these

tests actually represent both the second and third cycles . Energy was dissipated on

these recoverable hysteresis loops, however, due to a difference in loading and

unloading paths in a manner very imilar to the mechanism suggestedby the theory of

Chapter 3. The energy absorbed in the second or third hysteresis loops expressed as

a percentage of the input energy was computed for Tests 3-9 and 11 on Minnesota Sand

(Table 6.1).
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In general, it is found that the ratio of energy lost to energy input is practically

a constant regardless of the magnitude of the vertical stress range of the loop, and

varies between the narrow limits of 0.275 and 0.334. These results correlate very

wellwith the conclusions based upon the theory from Chapter 3 which indicates that the

ratio of energy absorbed to input energy for a hysteresis loop from a stress of zero to

any stress below the crushing stress should be a constant related to the coefficient of

friction between grains.

The laboratory measurements also provide another check on the theory presented

in Chapter 3. The coefficient of earth pressure at rest is predicted from the theory to

be related to the coefficient of friction by

K = 1/2 ( )

and the ratio of energy absorbed to energy input is givenas

ΔΕ

E

=

2f

I+f

(3.49)

(3.65)

e

Since K and the ratio of energy lost to energy input have been independently

measured in the laboratory tests, the coefficient of friction, or more appropriately,

the pseudo coefficient of friction can be evaluated by two independent calculations for

each test. These calculations were made for tests on Minnesota Sand with an initial

void ratio of 0.54 and 0.62 (Table 6.2). Tests 3 and 4do not show good agreement for

the two calculated values of the coefficient of friction. Tests 5-9 and 11, however, show

a very good correlation between the two independently calculated values of the coefficient

of friction. The latter group of tests were placed at an initial void ratio of 0.54 as

compared to 0.62 for Tests 3 and 4. Because the theory of Chapter 3 assumes the

granular medium in the densest possible state, it is not surprising that the tests on

sand in the denser state should give a better correlation with the theory than tests at

higher initial void ratios. The average value of the coefficient of friction calculated
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rom the denser samples was 0.18 which is not unrealistic since a value of 0.16 has

een reported for polished specimens of air equilibriated milky quartz from Wisconsin

byHorn and Deere (1962).

An expression which relates the angle of internal friction and the coefficient of

arth pressure at rest was derived in Chapter 3 and presented in Fig. 3.18. An

Experimental relationship between the coefficient of earth pressure at rest and the

ingle of internal friction has been determined from one-dimensional and triaxial tests

InMinnesota Sand. The experimental values and the theoretical curve are shown in

'ig. 6.15 for comparison and excellent agreement is observed.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

An analytical and experimental investigation has been conducted with the

objective ofexplaining and describing qualitatively and quantitatively the behavior of

granular materials in one -dimensional compression. The analytical investigation

applies only for pressures below that at which crushing of the grains begins, and deals

with the stress- strain relations of a granular medium consisting of elastic, equi- radii

spheres in a face- centered cubic array. The analysis utilizes the Hertz compliance,

which relates the normal forces to the normal displacements between centers of spheres,

andthe Mindlin compliance which relates the tangential forces to the tangential dis-

placements between centers of spheres . The basic framework of the analysis uses the

equilibrium and compatibility equations for a face - centered cubic array as developed by

Duffy and Mindlin (1957) . A new solution is presented in Chapter 3 which gives the

stress-strainbehavior of a face- centered cubic array subjected to a monotonically

increasing axial compressive stress for the conditions of zero radial strain, the case

of one-dimensional compression. The new solution gives a theoretical expression for

the axial stress- strain curve , the constrained tangent modulus as a function of pressure ,

and the coefficient of earth pressure at rest as a function of the coefficient of friction

between grains. An expression is also obtained which relates the absorbed energy to

input energy for a cycle of loading with recoverable deformations as a function of the

coefficient of friction between grains . This expression, however, is dependent upon an

approximation which was made in deriving the equation of the unloading curve. An

analysis of a face - centered cubic array at failure in a triaxial state of stress for

0301
σ

2

=

was used from Thurston and Deresiewicz (1959) in Chapter 3 to
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correlate the phenomenological behavior of the same granular medium in both one-

dimensional and triaxial states of stress. A theoretical relationship between the

coefficient of earth pressure at rest and the angle of internal friction was obtained by

this correlation . A relationship between the angle of internal friction and the coefficient

of friction between spheres was also obtained.

An experimental apparatus was designed and built which is capable of measuring

the lateral stresses built up in one-dimensional compression into the high pressure

ranges . The apparatus was used to measure the coefficient of earth pressure at rest and

the stress- strain properties of four sands up to a maximum vertical stress of 3290 psi.

Each sandwas tested at a variety of initial densities and cyclic loading was employed to

evaluate the energy absorption characteristics of each sand. The conclusions from these

test results and the correlations of the one-dimensional tests with the theoretical

analysis and triaxial test results are given in the following section,

7.2 Conclusions

The following major conclusions can be made from the test results, theoretical

analysis, and the preceding discussion of the behavior of granular material in one-

dimensional compression.

Conclusions from the Theoretical Analysis. A new solution for the stress-strain

behavior of a face- centered cubic array of uniform spheres in one-dimensional compres-

sion has been presented. The results of this solution have been compared with an

existing solution for the same array at failure in a triaxial state of stress with 02

The following conclusions have resulted from this analysis .

= 31

1) The axial stress- strain relations of a granular medium in one - dimensional

compression become stiffer as the pressure increases which gives a concave upward

curve on a conventional stress- strain plot. The equation derived for the stress- strain

relation gives the axial stress as a linear function of the three halves power of the
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xial strain; the constant of proportionality is determined by the coefficient of friction

etween spheres and the elastic properties of the spheres. The slope of the one-

limensional stress- strain curve is the constrained tangent modulus which is proportional

to the cube root ofthe vertical stress; the constant of proportionality is a function of the

coefficient of friction between spheres and the elastic properties of the spheres. The

stress- strain relationships have been compared for the face-centered array subjected

to a hydrostatic state of stress and one -dimensional compression. For a given level of

axial stress the axial strains in one-dimensional compression are greater than in the

hydrostatic case. The ratio between the axial strains for hydrostatic and one-dimensional

compression is a constant which is only dependent upon the coefficient of friction

between spheres.

2) The new one-dimensional solution also gives the lateral stress required to

givethe condition of zero lateral strain. A ratio of the lateral stress to the vertical

stress is the classical coefficient of earth pressure at rest. The coefficient of earth

pressure at restgivenby the theory is

Ko = 1/21/2 ( )(- (3.49)

which indicates that the coefficient of earth pressure at rest for the array considered is

onlyafunctionof the coefficient of friction and therefore the value ofK should be

inversly related to the strength of the granular medium.
Σ

3) The analysis given in Chapter 3 also indicates that the deformations of a face-

centered cubic array in one-dimensional compression are fully recoverable when the

medium is unloaded. Energy is dissipated, however, because the loading and unloading

paths are different. The ratio of energy lost to energy input has been derived for one cycle

of loading, assuming areasonable approximation in the derivation of the unloading curve,

which yielded

ΔΕ 2f

=

1+f
(3.65)
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hus the energy absorbed in elastic hysteresis in one-dimensional compression is only

pendent upon the coefficient of friction between spheres .

4) An analysis of the strength of a face-centered cubic array as given by

hurston and Deresiewicz (1959) was interpreted in terms ofthe angle of internal

:iction as used in soil mechanics . This strength analysis is applicable to a triaxial

tateof stress where 02= 31and the angle of internal friction for a face- centered

ubic array was related to the coefficient of friction between grains by

8

sin $ = 1/3 +376-1
(3.71)

herefore it is concluded that even when the coefficient of friction between spheres is

ero there is still a definite angle of internal friction due to the structural arrangement.

:is suggestedby the writer that the angle of internal friction for a granular medium is

elated to the coefficient of friction by a general relationship of the form,

sin $ = K3 + C₁f
(3.72)

where K3 is that fraction of sin & due only to structure and C₁ is a constant determined

y the structural arrangement which determines the efficiency of the coefficient of

riction in contributing to the angle of internal friction.

5) The angle of internal friction and the coefficient of earth pressure at rest for

face-centered cubic array were both related to the coefficient of friction between

spheres. Therefore a relationship between the coefficient of earth pressure at rest and

The angle of internal friction was derived by eliminating the coefficient of friction to give

K = 1/2 [1+ √6/8-3/6/8 sin $7
1 - √6/8 + 3√6/8 sin

(3.76)

Therefore it is concluded that the coefficient of earth pressure at rest is definitely

related to the strength parameters of a granular medium. In general, the coefficient of

earth pressure at rest decreases as the angle of internal friction increases .
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The coefficient of earth pressure at rest is a statically indeterminate quantity

which is dependent upon the stress- strain properties of the medium . Therefore the

relationship given above which theoretically relates the coefficient of earth pressure at

restwith a strength parameter emphasizes the fact that the stress-deformation and

strength properties of a particulate medium such as soil are interrelated.

Conclusions from the Experimental Program. The development of a new one-

dimensional compression device has been discussed and test data has been presented for

four sands tested up to high pressure in one-dimensional compression. These tests have

beenanalyzed in the light of triaxial test results for the four sands and the experimental

results have been compared with the one-dimensional behavior predicted from the theory

presented in Chapter 3. The following conclusions have resulted from this analysis .

1) The axial stress- strain curves for the high pressure one-dimensional tests

show a concave upward curvature; the initial relative density of the sand is the significant

variable which determines the slope of the stress- strain curve for a given sand at a

given level of vertical stress . As higher pressures are applied, however, a point is

reached where significant crushing of the grains causes the stress- strain curve to

become'concave downward. The initial relative density is also the significant variable

which determines the stress level at which significant crushing will commence in a given

sand. In general, the stress level at which crushing of the grains becomes significant

increases as the initial relative density increases . Although the initial relative density

is a significant variable in determining the behavior of a given sand in one-dimensional

compression, the relative density is not a unifying index property for relating the

behavior of different sands in one -dimensional compression. Data were presented for

four different sands at the same initial relative density from which it was concluded that

the stiffness at a given level of stress as expressed by the constrained tangent modulus

could vary by a factor of 8 or 9 for the different sands . Therefore, it was concluded

that the angularity and grain- size distribution were just as significant in determining
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the one-dimensional behavior over a large range ofpressures as the initial relative

density.

2) In general, the initial relative density is the most important variable which

affects the coefficient of earth pressure at rest for the initial loading of a given sand.

The denser the sand, the lower is the coefficient of earth pressure at rest. The

coefficient of earth pressure at rest varies inversely with the angle of internal friction

as determined from drained triaxial tests . Three of the sands tested follow very closely

the relationship

K

0

= 1 - sin ф (7.1)

as suggested by Jaky (1944), and the test results on Minnesota sand agreed very well

with the theoretical relationship between K and o as suggested by the theory for spheres

presented in Chapter 3 of this thesis . As the vertical stress became higher, the value

of the coefficient of earth pressure at rest had a tendency to increase . It was concluded

that this phenomenon was probably due to the angle of internal friction decreasing with

pressure and was also a consequence of crushing of the grains .

The coefficient of earth pressure was found to be related to stress history as

expressed by the overconsolidation ratio . As the overconsolidation ratio increases, the

coefficient of earth pressure at rest increases and was observed to be between the limits

of about 1.8 and 2.75 for an overconsolidation ratio of 48. The relationship between the

overconsolidation ratio and the coefficient of earth pressure for three sands showed that

during unloading, tests at all initial relative densities gave practically the same unique

relationship of K versus OCR within narrow limits . The Minnesota Sand however,

showed a different K versus OCR relationship for each initial relative density. Since

the value of K still appeared to be increasing at an overconsolidation ratio of 48, it is

the opinion of the writer that the coefficient of earth pressure at rest will approach the

coefficient of passive earth pressure .

0
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3) The mechanisms of energy absorption exhibited by sand loaded to high pressures

in one-dimensional compression are:

a) Work done by the stresses due to permanent volume

changes caused by rearrangement of the grains.

b) Energy absorbed in the form of surface energy in the

creation of new surfaces during crushing of the grains.

c) Energy absorbed by an elastic hysteresis mechanism

due to friction, even when the strains are recoverable .

→

Energy absorbed on the first cycle of loading in these tests is due to all three

mechanisms; the energy absorption is quite high in the first cycle because of the irre-

coverable deformations due to crushing and rearrangement. It is concluded from a

unique correlation for all four sands that the constrained tangent modulus at the maximum

stress on the first cycle is a good indication of the energy which is dissipated during the

entire first cycle . The energy absorption per unit of energy input decreases as the

constrained tangent modulus at the maximum stress in the cycle increases . The defor-

mations in the second and third cycles of loading were practically 100 percent recoverable

because the maximum stress was only one - third the maximum stress in the first cycle .

Aconsiderable amount of energy, however, was dissipated due to a difference in loading

and unloading paths. This mechanism of energy dissipation is the mechanism listed

''nder (c) above and is the type of mechanism predicted by the theory presented in

Chapter 3. The energy lost in the second and third cycles varied from about 27 percent

to 50 percent depending on the type of sand . It is concluded, therefore, that a significant

amount of energy can be dissipated in sands even when the deformations are apparently

almost 100 percent recoverable . The energy absorbed by this mechanism is dissipated

into heat by a Coulombic type of damping as indicated in the theory presented in

Chapter 3. It is suggested, therefore, that discrete lumped-mass models, which are

G
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used to study the propagation of stress waves through soil, include a type of Coulomb

dampingelement such as the one given in Section 3.4. It is obvious that an ordinary

viscous damping element does not include a major mechanism which dissipates energy

in soil because a viscous damper would notdissipate energy under a static load. It has

beenfound on this study that a considerable amount of energy is absorbed by a granular

medium loaded statically in one-dimensional compression even when the strains are

fully recoverable . Therefore, it is felt that such models would more realistically

represent a soil if Coulomb dampingelements were included inthe system.

4)The independent measurement of the coefficient ofearth pressure at rest and

the ratio of energy lost to energy absorbed for samples ofMinnesota Sand have provided

anexperimental check to the theory presented in Chapter 3. The coefficient of friction

between grains was back-calculatedby formulas from the theory fromboth the measured

energy absorption and the measured coefficientof earth pressure at rest. The theory

was found to be at least consistentbecause the back-calculated values of the coefficient

of friction between grains by both methods showed good agreement for the series of tests

run on Minnesota Sand at an initial void ratio of 0.54. The back calculated values ranged

from 0.16 to 0.20 and the average was 0.18. These values for the coefficient of friction

are not unrealistic since a value of 6. 16 has been reported for an air equilibriated

sample of polished milky quartz from Wisconsin by Horn and Deere (1962) .

5) The series of tests conducted on the angular Pennsylvania Sand showed that

specimens with different initial relative densities tended to behave as the same material

in all respects ir the high pressure ranges. This conclusion is based upon the following

observations: the pressure-void ratio curves merged into one curve at higher pressures;

the constrained tangent moduli of all samples approached the same value athigh pressures;

the coefficient of earth pressure at rest for samples at various relative densities became

the same value above the 2000 psi level; the stress paths of the top point on a Mohr circle
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were initially different paths at low pressures for different initial relative densities, but

paths for dense, loose, and medium samples merged into one path at higher pressure;

acontinuous plot of octahedral shearing stress versus one-third the first stress invariant

as the tests progressed from low to high pressures showed different curves for dense,

loose, and medium sands at low pressures which merged into one curve at higher stresses.

It is concluded from these tests that all sands will eventually manifest the same

type ofbehavior as Pennsylvania Sand if high enough pressures are reached. The pressure

level for the effects of initial relative density to be erased, however, is beyond the

stress level of crushing for the densest specimen and therefore much higher for most

sands than the stress levels investigated in these tests .

The results of the tests conducted on Pennsylvania Sand at different relative

densities give various void ratio-log pressure curves which merge on a straight line

which is usually called the "virgin" slope for clays. The compression index,

C of this slope is 0.49, which is substantiallyhigher than the value ofC. for most

clays. The family of void ratio-log pressure curves obtainedby varying the initial

relative density for sand is very similar to the family of curves obtained for clays

consolidated in one-dimensional compression from different initial liquidity indices.

These similarities between the phenomenological behavior of sands and clays cited above

emphasize the fact that clays and sands qualitatively manifest the same behavior in

many respects even though the physical make up of the particles in each is entirely

different. It is the writer's opinion, however, that they each have in common the one

main commondenominator of all soils which make the stress- strain and strength

properties of soils different from continuous elastic solids . This common denominator

isthe particulate nature of clays and sands. A particulate nature is also the most

important common property that the sands tested and the idealized theoretical model of

uniform spheres possess; it is because of this common property that the model

predicted reasonably well the qualitative behavior of the sands and it is the only
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tification for analyzing in detail such an idealized medium which is supposed to

present soil .

3 Suggestions for Further Research

The foregoing investigation appears to warrant several lines of future research.

1) High pressure triaxial and hydrostatic compression tests should be conducted

the same four sands used in this series of one-dimensional tests with lateral earth

essure measurements . The data from these three types oftests should then be inter-

eted in terms of the first, second, and third stress and strain invariants, as suggested

Newmark (1960), in an effort to define more general stress- strain relations for a

anular medium . Such an investigation was initiated for low pressure by the late

ofessor D. W. Taylor ofthe Massachusetts Institute ofTechnology and published in

finished form by Whitman (1960) .

2) After the high pressure characteristics of the four sands have been measured

der various states of stress these same four sands should be used as aggregates for

ncrete specimens. The effects of the cement paste canthenbe evaluated because the

operties of the aggregate under the same level of stress will be known. A study of this

ture should lead to a clearer understanding of the stress-strain and strengthbehavior

plain concrete.

3) The results of the tests on Pennsylvanian Sand suggest that a series of one-

mensional tests should be run at high enough pressures to define the stress level at which

e effect ofthe initial relative density is erased for a number of sands. The lateral

resses built up in these one-dimensional tests should be measured so that the stress.

ith of the top point on a Mohr circle can be defined throughout the range of testing

essures. A point of practical significance to look for is the point at which the stress

ith becomes horizontal . When the path becomes horizontal the stress difference which

inbe maintained becomes a constant. This point is important to investigators working
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onthe mechanics of cratering and direct ground shock. The classical hydrodynamic

equations used by the physicists assume that the behavior of the material is essentially

like a fluid since the level of the hydrostatic component of stress is assumed to be very

much larger than the shearing stresses. Therefore the lower limit of the pressure

range for which the hydrodynamic equations apply mustbe definedby tests on real

materials such as those outlined above .

4) Because the initial relative density of a sanu is such an important index

property, a standard method should be developed for determining the values of e

ande

min.

max:

5)A technique should be devised for using the apparatus developed on this

investigation to test undisturbed samples of soil and intact specimens of rock up to high

pressures in one-dimensional compression.

6) The model developed in Chapter 3 with the frictional damping elements should

be analyzed for several types of dynamic stress pulses. This type of energy dissipation

is probably more realistic for sand than viscous damping.

A

7) Avery extensive list of suggestions for further research in the area of the

theoretical mechanics ofgranular media is givenby Deresiewicz (1958). The writer

feels that there is further work in this area which can be used in conjunction with

experimental tests to develop a more general and systematic description of the stress-

strainand strength relationships in granular materials.
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TABLE 3.1

VARIATION OF STRESS AND STRAIN VARIANTS

11 = (01 + 02 + 03)

1
3

2

After Kjellman (1936)

Δν/ν = (€1 + €2 + €2) = J1

10-2cm/cm

J1

3
-2

10 cm/cmkg/cm

1 0.12 0.04

2 0,24 0,08

4 0.38 0.13

6 0.47 0.16

8 0.54 0.18

10 0.62 0.21

12 0.69 0.23

11
= First stress invariant

=J1 First strain invariant
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TABLE 3.2

EFFECT OF THE COEFFICIENT OF FRICTION ON

ONE- DIMENSIONAL STRESS- STRAIN BEHAVIOR

OF A FACE -CENTERED ARRAY OF SPHERES

ΔΕ/Ε₁ percent

f 1/2 ()
2f

1+f
x.100

0 0.5 0

0.05 0.45 9.5

0.10 0.41 18.2

0.15 0.37 26.1

0.20 0.33 33.3

0.25 0.30 40.0

0.30 0.27 46.2

f= coefficient of friction at contact points

Ko = coefficient of earth pressure at rest, Pu/P.
Hzz

ΔΕ΄

E
x 100% = percent energy absorbed due to loading and unloading

1
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TABLE 6.1

TestNo.

ENERGY LOSSES FOR REPEATED LOADINGS ON MINNESOTA SAND

Stress Range for

Hysteresis Loop

psi

Mean

Stress

Energy Lost

Energy Input

psi %
-

3 0-1100 550 33.4

4 0-1100 550 33.1

5 0-1100 550 32.8

6 0-1100 550

7 0-1100

8 0-1100

550

550

30.2

27.9

27.5

0

0-3290 1645 27.8

10 0-1100 550 28.7

11 0-2195 1098 28.5
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TABLE 6,2

CORRELATION OF THE COEFFICIENT OF FRICTION, THE COEFFICIENT OF EARTH

PRESSURE AT REST AND THE ENERGY ABSORPTION CAPACITY OF A GRANULAR

MEDIUM

ΔΕ

1/2
1-2K

Test e

1 = 2K+I
f=

E
I

(1-1/2 )

-

3 •

4

5

62 12

62 .09

.20

20

6

.54

.54

18 20
•

16 18

7 54 20
• 16

8 54 20
• .16

9 54 19• .17

10 .54 (no hysteresis loop on this test)

11 .54 18 17
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APPENDIX A

APPLICATION OF THE HERTZ THEORY TO THE

BEHAVIOR OF A GRANULAR MEDIUM

A question of paramount importance arises in the development of a theory of

granular media based on the Hertz theory, (Hertz, 1881). It must first be proven that

the Hertz theory is valid in the pressure regions of interest before the theory has any

usefulness. Therefore it is worthwhile to review the development of the theory here for

the convenience of the reader and note simultaneously the fundamental assumptions as

theyarise.

The derivation given in the following is a summary of the presentation given by

Timoshenko and Goodier (1951), and the assumptions are discussed by the writer in relation

to applying the results to agranular medium composed of well - rounded quartz sand.

Let us first look at the pressure between two spherical bodies held in contact by

anormal force . In the solution of this problem it is assumed that at the point of contact

these bodies have spherical surfaces with radii R₁ andR2(Fig. A. 1). If there is no

pressure between the bodies there is contact at only one point 0. The normal distances

from the tangent plane at 0 to points such asM andN, on a meridian section of the spheres

at a very small distance r from the axis z₁ and zZ2, canbe approximated in the following

manner (Fig. A. 2):

Z =

Z =

z = r

4

1/2u tan ẞ

u2/2R

u tan ẞ/2

1/2 u . u/R =

r2/2R where r

2 2

= น

(Α. 1)

Thus in (Fig. A. 1)

2

r

Z1
=

2R

1

2

I

and Z2 = 2R,

(Α. 2)
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The distance between points M and Nis

2

r²(R1 + R2)

21 + 22 =Z2 2RR
2R1R2

(Α.3)

In the particular case of contact between two spheres of equal radius, R,

equation (A.3) reduces to

Z1 + Z2
=

122R

2

2R

=

2

r /R (Α.4)

If the bodies are pressed together along the normal at 0 by a force P, there

1

will be a local deformationnearthe point of contact producing contact over a small

surface with a circular boundary, called the surface of contact , Assuming that the radil

of curvature R₁ and R2 are very large in comparison with the radius of the surface of

contact, the results obtained for a point load on a semi- infinite boundary canbe applied

for calculating local deformation. Letw₁ denote the displacementdue to the local

deformation in the direction z₁ of a point such asM onthe surface of the lowerball

(Fig. A. 1), andw₂denote the same displacement in the direction 22 for a point such as

Nof the upper ball . If it is assumed that the tangent plane at 0 remains immovable during

local compression, then, as a result of this compression, any two points of the bodies

on the axes z₁ and z₂ at large distances* from © will approach each other by a certain

amount a, and the distance between two points such as M and N will diminish by

a- (W1 +W₂). If the two spheres are of equal radius, the distance between such points

asM and N willdiminish by a 2w. If finally, as a resuit oflocal compression, the

points M andN come inside the surface of contact, the relative approach ofpoints M

andN is given by
2

r" (R1 + R2)

a- 21 + 22 =
12a - (W₁ + 2) = 2₁ + Z2= 2R,R2

Suchdistances that deformations due to the compression at these points canbe

neglected.

(Α.5)
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If the spheres have a radius R = R1 = R2 then equation (A. 5) becomes

a = 2w = 2z = r /R

Thus

2

W =

a- r/R

2
(Α. 6)

at any point a distance r from the center of the surface of contact.

Conditions of symmetry require that the intensity of pressure q between the

bodies in contact and the corresponding deformation are symmetrical with respect to

the center 0 of the surface of contact. The circle shown in Fig. A. 4 represents the

surface of contact, and Mis a point on the surface of contact of the lower ball . The

displacement ofthis point canbe found in the following manner. For a point load on the

surface of an infinite medium such as shown in Fig. A.3, the vertical deflection at a

distance r from the load P is given as

W
=

2

P(1 - ν

πΕτ
(Α.7)

where E is Young's modulus and v is Poisson's ratio for the medium .

Consider Fig. A. 4 where a distributed load q is shown over the circular area of

radius a, and it is desired to relate the vertical displacement of pointM to the distri-

buted load q. The vertical deflection w at any pointM within the loaded boundary canbe

foundby integrating equation (A. 7) over the area loadedby q to obtain

1 - 2ν

w = SadaΠΕ
(Α.8)

where

Thus

da = ds . d • S

w = Sqdwds
(1-3)
ΠΕ

(Α. 9)

(Α. 10)
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Hence if two spherical balls of equal radii R are pressed together, at some

point r the local displacement w becomes

2w =

2 ν

a - r²/R= 22-12 Sady dsΠΕ
(Α. 11)

The distribution of q must therefore be such that Eq. (A. 11) is satisfied. It will now be

shown that this requirement is satisfiedby using a pressure distribution of q over the

contact surface represented by the ordinates of a hemisphere of radius a constructed on

the surface of contact.

Ifq is the pressure at the center 0 of the surface of contact, then

k

هم
=

a
(Α. 12)

where k is a constant factor indicating the scale of the representation ofthe pressure

distribution. Along a chord mn the pressure q varies, as indicated in Fig. A. 4 by the

dotted semicircle .

Performing the integration along the chord gives

Sads = A
هم

a

whereA is the area of the semicircle indicated by the dotted line and is equal to

2 2

A = (a²- r² sin² )

)

Substituting Eq. (A. 14) into Eq. (A. 11) yields

2w = a-

2

r

R

=

2.

(1-2)
E

π

%

a

2 2

(a² - r² sin² ) d

o
r

a

r

2

R

2.

= 요금으로a

Π

(a

2
-

2 2

r sin ) d

(Α. 13)

(Α. 14)

(Α. 15)
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IntegratingEq. (A. 15) yields

- = (2a² - 12)

2

r

a-

R a E 2
r ) (Α. 16)

This equation will be satisfied for any value of r, and hence the assumed pressure

distribution is the correct one if the following relations exist for the displacement a and

the radius a of the surface of contact between two equal radii spheres:

and

απ

9 (1 - 39 (1-1)
a =

=

E 2μ

a =

ν

RT (1-3) R (1 - r)
Rㅠ ν)

=

2E 4μ

(Α. 17)

(Α. 18)

where is the shear modulus of the spheres .

Ifthe volume of the pressure diagrambetween two spheres is defined as the

normal force Nbetween the spheres, then

2 3

N = 이
N = πα

зa

•

Combining Eq. (A. 19) with Eq. (A. 17) and (A. 18) yields

3
aa =

4

Ν(1 - ν)

αμ

3

a
=

3 RN(1 - v)

8 μ

(Α.19)

(Α. 20)

(Α. 21)

The radius of contact a may be eliminated from Eq. (A. 20) and (A.21) to give

a = 2
3(1 - ν )Ν

1/2

8µR

-

1/3

(Α. 22)

Equation (A. 22) shows that the relative approach of the center of two spheres is

a function of the two -thirds power of the contact force.
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The normal compliance C is

da

C =
AN

4

3

3(1 - ) -1/3 3(1-

8MR172
1/2

8µR

C =
(1-1)

2μα

which maybe simplified to

where a is given by

1/3

3(1 - )NR
a =

8 μ[ NR]
(Α.24)

There are two key assumptions in the Hertz theory which should bediscussedto

justify its use in a theory ofgranular media.

The first of these is that describedby Eqs. (A. 1)where it was assumed that the

deviation fromatangentplane is quadratic, i.e.

z =

2

I

2R

The exact expression for the deviation from the tangentplane is

Z =

2

r 1

ZR 7.

1-2R

(Α, 25)

(Α. 26)

Z

Hence if is small, the quadratic approximation is reasonable.

The second assumption requires that the radius ofcontactbe small compared to

the sphere radius R. This assumption is associated with the use of the expression for

the deflection resulting from apoint load on an infinite medium, i,e., Equation (A.7) .

Essentiallywhat is being assumed is that the curvature of the spheres beyondthe

Contactarea does not affect the stress distributions and deflections at the contacts.

Clearly if the radius of contact is small, the curvature has little effect on the behavior.

Theproblem is to assess the validity of the Hertz theory for describing the

behavior ofagranular medium, namely sand, subjected to an average applied stress,
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ZZ

in one-dimensional compression. Therefore, it is of interest to determine the

range of stress within which the assumptions are reasonably correct.

In Section 3.1 itwas determinedthat the normal contactforceNowas relatedto

the radius of contact by Eq. (3.1)

a =

3(1 - ⅴ) RN2

8μ

1/3

(Α. 27)

The normal force, N2, was related to the applied force, Paz,in one-dimensional

compression by Eq. (3.48a)

N₂ (1 + 1)= Pzz

Furthermore it was shown that the average stress σ

σ
z

=

P

ZZ

2

8R

ZZ

ZZ

(Α. 28)

is related to P by

(Α.29)

ZZ

Equations (A. 27), (A.28) and (A. 29) may be combined to give

a

3 σ

ZZ

(음) = 21/8(1 ) 2
8(1+f) μ

(A.30)

Representative values of f, v and µ for quartz which are applicable to sandare

f = 0.15

0.20

μα 6 x 106 psi

Substitution of these values into Eq. (A.30) yields the following relation between

a/Rand ozzZZ
:

3

a

(음)
=

σ

ZZ

0.369

μ

(Α.31)
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A numerical evaluation of equation (A.31) gives

a

R

0.031

0.039

0.057

0.085

0.10

σ

zz
z psi

500

1,000

3,000

10,000

16,300

Thus for the stresses of interest (prior to crushing) where the theory is to be

applied, the radius ofcontact compared to the radius of the sphere will be less than

0.04. Not only is this fairly small but there are other assumptions involved in the

application of this theory to sard which may be far worse. In fact the assumption that

the sand particles are spheres is more questionable, even for a well rounded quartz

sand. It is also quite improbable that a uniform sand can everbe placed in the densest

state because a perfectly orderly arrangement cannot be achieved.

It is concluded from the above discussion that the Hertz theory, for its expected

use in this problem, is applicable for describing the behavior at points of contactbe-

tween uniform, well rounded grains, below the stress level at which crushing begins.

Especially if considered in the light that other assumptions used are much more at

variance with reality.

273





22
2

Z2

2

N

MI

R

Z

Fig. A.1 TWO UNSTRESSED SPHERES IN CONTACT

Fig. A.2

Fig. A.3

R
β

0

2
2

U

Z

SEGMENT OF A SPHERE TANGENT TO A

PLANE

P

POINT LOAD ON AN INFINITE SURFACE

274





m

Pressure Variation Of

q Along mn.

dō

dψ

M

S

n

Fig . A.4
PLAN VIEW OF THE CONTACT SURFACE OF

TWO. SPHERES IN HERTZ CONTACT

275





APPENDIX B

TRIAXIAL TESTS

A series of 44 triaxial tests were conducted onall four sands to define the

ariation of the drained angle of internal friction, $, with the initial void ratio. Samples

ere set up atvarious initial void ratios and were sheared at confining pressure of 45

ad 90 psi. The samples were 1-7/8 inches in diameter by 4 inches high,

Samples werepreparedby settling the sand through water into a membrane

cased in a Wykeham Farrance mold. Whenthe sample height was approximately equal

the height ofthe mold the loading capwas placed on the sample and rubberbands put

round the cap to secure the rubber membrane. A slight vacuum was then applied to the

mple by connecting thebase ofthe cell to aburette with afree surface about 2 feet

elow the center ofthe sample. The moldwas then removedandthe height ofthe sample

heasured to the nearest+ .01 inches. The cellwas thenplacedaround the sample and

confining pressure of 1.5psi was applied. The burettewas then set up at approximately

be same heightas the sampleandaninitial burette reading obtained. Aconfining pressure

45or 90 psi was then appliedand anotherburette readingwas obtained. Thedifference

etween the burette readingswas takenas the volume change due to the application of

he confining pressure ; the initialvoidratio which is referred to in reporting these

data is the void ratio computed after the full cellpressure has been applied. The samples

Were then sheared ata strain rate of0.015 inches per minute andvolume change

measurements were made throughout the testby means of a 10 c. c. burette.

Typical stress versus strainandvolume change versus strain curves are shown

fordense and loose specimens ofWabash River Sands in Fig. B.1. Figure B.2 shows

atypical variation of initial tangent modulus versus confining pressure for dense and

loose specimens ofWabash River Sand.
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Theangle of internal friction versus initial void ratio curves were determined

in the following manner. The conditions at failure for several samples with almost the

same initial void ratio were plotted on a graph of one-half the stress difference versus

one-half the sum ofthe major and minor principal stresses, Test results for tests 5,

8, and 10 onWabash River Sand with initial void ratios of.52, 51, and .51, respectively

are shown in Fig. B.3 . The best straight line was fitted through these three points as

shown and the angle of internal friction was calculated from the relationship given on

Fig. B.3 . The angle of internal friction obtained in this mannerwas plotted against the

average void ratios for all three tests . This procedure was followed for all tests and

the angle of internal friction versus initial void ratio relationships obtained are given

inFig. B.4.
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APPENDIX C

EVALUATION OF RING FRICTION

Several tests were conducted on Minnesota Sand to obtain an approximation of

the vertical load transmitted to the ringby friction. Strain gages were placed along four

axial lines at 90° intervals around the outside surface of the ring to measure axial

strains . One axial line ofgages consisted of four 1/4- inch gages; a second line was

comprised of two 1/4-inch gages, one at the top and one at the bottom of the ring; and

a one inch gage was placed at the midheight of the ring along each of the other two axial

lines. Metalfilm strain gages were used and were calibrated for the effects of oil

pressure by the method described in Chapter 4.

The ring friction tests were conducted on Minnesota Sand with an initial void

ratio of 0.54 by loading the specimens in stress increments of 30,000 lbs, up to a

maximum of 120,000 lbs. Strain gage readings were taken after a load increment was

applied while the Ames dials still indicated a slightdownward movement. After the

sample stopped compressing the load was decreased; as the sample rebounded upward

the strain gage readings were taken again. Itwas assumed in the analysis of this data

that the frictional forces on the ring were reversed by the change indirection ofmove-

ment of the testing head. The differences in the two gage readings are assumed to be

due to the reversal of the frictional forces .

The test results are shown in Fig. C. 1 in a graph of computed frictional load

versus applied machine load. Most of the data seem to fall along line A; however, two

points along line B show considerably more friction. Therefore line B will be taken as

an envelope to the experimental points . The percentage of the total vertical load

transferred to the ring by side friction along the envelope given by line B is 4.6 percent,

which seems rather low.

A measurement of ring friction is more reliable if the total frictional load in the

ring is measured. This type of measurement was made by the Norwegian Geotechnical
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Institute for one- dimensional compression tests conducted on granular materials

(Bjerrum, 1960). The tests were conducted in a cylinder 50 cm, in diameter and 25 cm.

high. The ring friction measurements from these tests showed that the total applied

vertical load hould be reduced by 10 percent to account for ring friction. The ring

friction in the Norwegian tests, however, would be a greater percentage than in the

tests conducted on this study because the diameter to height ratio in the Norwegian

tests was 2 as compared to 3.5 for tests on this investigation. A comparison between

the two sets of tests, however, can be madeby using the ring friction analysis presented

in Chapter 4. According to this analysis the percentage of load transferred to the ring

is

100 (1 - €-2K fH/R

هر

(C. 1)

where e is the base of Naperian logarithms , K is the coefficient of earth pressure at

rest, f is the coefficient of friction between the soil and the ring, and H/R is the height

to radius ratio of the ring. Since the value of H/R for the Norwegian ring is 1.0 then

eqn. C.1 becomes

.10 = 1 - €-2Kof (C. 2)

and therefore the average value of 2Kf for the granular materials tested was . 106.

If these same materials were tested in the device used on this study with an H/R = .572

thenequation C. 1 would give

percent friction = 1 - € ( 106) (.572) (C.3)

or the percent friction would be 5.8 percent . Therefore a reasonable estimate of the

error due to ring friction in the one-dimensional tests on this study is 5,8 percent,

The value of the coefficient of earth pressure at rest for the one-dimensional

tests conducted on this investigation was taken as

=

σν
K。

(C.4)
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V

where σ is the applied machine load. Therefore if the true vertical load on the soil

is reduced by 5.8 percent because of ring friction then the true value K is given by

H

(.942) σν

(C.5)

Therefore the true value of the coefficient of earth pressure at rest is about 6 percent

higher than the value computed without correcting for ring friction.
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