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SIMPLIFIED COMPUTATION OF VERTICAL PRESSURES 
IN ELASTIC FOUNDATIONS 

l. INTRODUCTION 

1. Introductory.- ln estimating the probable settlement under a 
loaded area, as under a building, it is necessary to determine the 
pressure distribution at various points in the foundation. It is sug­
gested in the "Progress Report of the Special Committee on Earths 
and Foundations," Proc. A.S.C.E., May, 1933, pp. 777-820, that the 
distribution of vertical stresses on horizontal planes in soil is given to 
a sufficiently close approximation for practical purposes by Boussi­
nesq's formula for the stress distribution in a homogeneous, elastic, 
isotropic body of semi-infinite extent bounded by a plane and loaded 
by forces perpendicular to that plane. Settlements predicted on the 
basis of pressures so computed are said to have agreed fairly well 
with observed settlements.* 

The general procedure for computing pressure due to a given load 
is to divide the loaded area into elements sufficiently small to permit 
the assumption that the load on the element of area is concentrated 
at a point. Then by use of Boussinesq's formula for the vertical 
stress due to a concentrated load, the total stresses are computed as 
the sum of the individual stresses due to the separate concentrations. 
This process becomes rather tedious and involves considerable time, 
but cannot be avoided when the loads are irregular. 

However, it is possible to integrate Boussinesq's formula to ob­
tain the stress distribution due to a load uniformly distributed over a 
rectangle. The result is fairly simple, but more important, can readily 
be tabulated in such a way that the stress due to loads distributed 
over any combination of rectangular areas can quickly and easily 
be determined. 

Integrations of Boussinesq's formula to obtain vertical stress dis­
tributions for a load distributed along a line of infinite extent, for a 
load uniformly distributed on a strip of constant width and infinite 
length, and for a load uniformly distributed over a circular area, as 
well as other more complicated cases of loading, have appeared in 
the literature,t but so far as the writer can determine, the solution 

•Proc. A.S.C.E., May, 1933, p. 798, p. 808. 
tFor example, see Timoshenko, "Theory of Elasticity," McGraw-Hill, 1934, p . 82, 333; T erzaghi, 

"Erdbaumechanik," Franz Deuticke, Vienna, 1925, p . 226; A. and L. FOppl, "Drang und Zwang," 
R. Oldenbourg, Berlin, 2nd edition, 1924, Vol. II, p. 230; and for a r esume of a number of cases, 
"The Application of Theories of E lasticity and Plasticity to Foundation Problems/' Leo JUrgenson, 
Journal of the Boston Society of Civil Engineers, July, 1934, p. 229. 
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6 ILLINOIS ENGINEERING EXPERIMENT STATION 

Fro. 1. DIVISION OF AREA ABCD INTO COMPONENTS FOR 
COMPUTATION OF STRESS AT p AND Q 

for the case of a load distributed over a rectangle has not previously 
been published. 

By use of the formulas derived, a table has been computed giving 
the pressure in terms of the intensity of load at a point a unit depth 
be1ow the corner of a rectangular area uniformly loaded. Various 
examples illustrating the use of t he table are given herein. 

In view of the fact that computations of this nature can at best 
be only approximate it seems reasonable, in general, that the loads 
to be treated may be taken as uniformly distributed over rectangular 
areas. Then by combining various cases the pressure at any point 
in the foundation, for practically any loading, can be obtained from 
the values given in the table. 

2. Acknowledgment.-The investigation herein described was con­
ducted as part of the work of the Engineering Experiment Station 
of t he University of Illinois, under the general administrative direc­
t ion of DEAN M. L. ENGER, Director of t he E ngineering Experiment 
Station, and of PROF. W. C. HUNTINGTON, Head of t he Department 
of Civil Engineering. 

IL VERTICAL STRESS DuE TO LOAD UNIFORMLY DISTRIBUTED 
OVER A RECTANGLE 

3. Stress at Any Depth Under Corner of Uniformly Loaded Rec­
tangle.-Suppose that in Fig. 1 it is desired to find the intensity of 
vertical stress (or pressure) at a point at a given distance vertically 
below the point P in the loaded rectangle. The intensity of stress at 
P may be considered as equal to the sum of the stress intensities at 
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Fm. 2. DIAGRAM SHOWING NOTATION UsEo IN FoRMULAS 

P due to the loads on the four rectangles PA +PB +PC +PD. 
For the point Q outside of the load the intensity of vertical stress at a 
given depth may be considered as due to loaded rectangles as follows: 
QA - QB - QD + QC. Thus, the pressure at any point due to a 
load uniformly distributed over a rectangle may be found by com­
bining not more than four cases of the stress under the corner of a 
loaded rectangle. 

A formula for this stress may be obtained as follows: In Fig. 2 
let the xy plane be the surface of the foundation, and let the load be 
applied over the rectangle XOY with an intensity of w per unit area. 
It is desired to find the vertical stress, O",, at a depth Z on the z axis. 
The element of area dxdy carries a load dp = wdxdy. The increment 
of pressure at Z due to this element of load is dO",. Denoting by R 
the radius vector from Z to the element of area, using Boussinesq's 
formula,* 

3P z3 

O"z =----
27r R5 

(1) 

•see, for example, Timoshenko, "Theory of Elasticity," p. 331. 
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for the intensity of vertical stress due to a load P, and considering a 
load dP = wdxdy on the element of area, the intensity of vertical 
stress at the point under consideration is 

3w Z3 

du, = ---- dxdy 
27r R5 

(2) 

Taking the summation of this expression over the entire area, and 
putting R2 = x2 + y2 + Z2, 

Z3 dx 
--------dy 

(x2 + y2 + z2)s/2 
(3) 

The integration and simplification required for the evaluation of 
this expression, although not difficult, is quite tedious, and will not 
be given here.* The resulting formula for the stress is 

u, = ~ [ 2XYZ (X2 + y 2 + ~2)1/2 . x2 + Y2 + 2v + 
4 7r v cx2 + y2 + V ) + x2p x2 + Y2 + v 

tan-1 
2XYZ (X2 + Y2 + Z2)1/2 

Z2 (X2 + y2 + Z2) _ x2p ] (4) or 
2XYZ (X2 + Y2 + Z2)1/2 

sin-1 
Z2 (X2 + Y2 + Z2) + x2p J 

The first term within the brackets is always posit ive, and has a 
value ranging between zero and about 1.2. Both forms for the second 
term have the same value. The value of t he second term is always 
positive, and ranges between 0 and 7r. When Z2 (X2 + Y2 + Z2) is 

7r 
greater than X 2 Y2, the second term is less than -, and when it is 

2 
7r 

less than X 2Y2, the second term is between - and 7r. It will be 
2 

•The following integrals obtained in the process of evaluating Equation (3) may be verified by 
clifferentiation: f dx x (2x' + 3y' + 3Z•) · 

(x' + y' + Z')•/2 = 3 (y' + Z 2) 2 (x2 + y' + z•)'/• . 

f 2zax c2x• + 3y' + 3Z2) dy 
(y' + Z')' (X2 + Y' + Z')•/ 2 = 

2XyZ (X' + y' + 2Z2) _ 1 2XyZ (X' + y' + Z 2)'/ 2 

(X' + Z') (y' + Z') (X' + y' + Z')'/ ' + tan (X' + Z') (y' + Z') - 2X'Y' 
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noted that X and Y may be interchanged without affecting the value 
of (l Z• 

The formula may be written in a more convenient form by putting 
V = ratio of the radius vector from point Z to the far corner of the 
loaded area, to the depth Z, or 

x2 + y2 + v 
v2 =-------

and putting A = ratio of the area of the loaded rectangle to the square 

XY 
of the depth Z, or A = --· then z2 , ' 

w l 2AV 
u. = 4-:;;:- I v2 + A 2 

L 

x y 

v 2 + 1 
v2 

r tan-1 
2AV 

v2 - Az 

+ l 0' 2AV 
sin-1 

v2 +AZ 

] (5) 

If - = m, and - = n be taken as the relative dimensions of the z z 
loaded area, then A = mn, and V2 = m2 + n2 + 1. The quantity in 
the brackets is a pure number, and u, and w are expressed in the 
same units. 

4. Limiting Cases.-It is of interest to examine the formulas for 
several limiting cases. Consider the stress at depth Z under the 
center of a rectangle of sides 2X by 2Y. This will be four times the 
values given in Equations (4) and (5). 

Case I. When Z approaches zero, from Equation (4), the stress 
becomes 

w w 
u, = - [O + tan-1 (-Z·C)] = - ( 7r) = w. 

7r 7r 

That is, the stress directly under the load is equal to the load. 

From Equation (5), if X and Y approach infinite values, the 
effect is the same as if Z approaches zero. Hence u, = w at all 
finite depths under a load distributed over an infinite area, as would 
be expected. 

Case II. When m and n are very small, that is, when Z becomes 



m 

0 . 1 

0.1 0.00470 
0.2 0.00917 
0.3 0.01323 
0.4 0.01678 
0.5 0.01978 

0.6 0 .02223 
0.7 0.02420 
0.8 0.02576 
0.9 0.02698 
1.0 0.02794 

1.2 0.02926 
1.4 0.03007 
1.6 0.03058 
1.8 0.03090 
2.0 0.03111 

2.5 0.03138 
3 . 0 0.03150 
4.0 0 .03158 
5.0 0.03160 

6.0 0.03161 
8.0 0.03162 

10.0 0.03162 
00 0 . 03162 

TABLE 1 
VERTICAL PRESSURE AT UNIT DEPTH UNDER CORNER OF REC'l'ANGLE OF DIMENSIONS m by n, LOADED UNIFORMLY 

Values are for !.... 
w 

n 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 

0.00917 0.01323 0.01678 0.01978 0.02223 0.02420 0.02576 0.02698 0.02794 0.02926 0.03007 
0.01790 0.02585 0.03280 0.03866 0 .04348 0.04735 0.05042 0.05283 0.05471 0.05733 0.05894 
0.02585 0.03735 0.04742 0.05593 0.06294 0.06858 0.07308 0.07661 0.07938 0.08323 0.08561 
0.03280 0.04742 0.06024 0.07111 0.08009 0.08734 0.09314 0.09770 0.10129 0.10631 0.10941 
0.03866 0.05593 0.07111 0.08403 0.09473 0.10340 0.11035 0.11584 0.12018 0.12626 0.13003 

0.04348 0.06294 0.08009 0.09473 0.10688 0.11679 0.12474 0.13105 0.13605 0.14309 0 . 14749 
0.04735 0.06858 0.08734 0.10340 0.11679 0.12772 0 . 13653 0.14356 0.14914 0.15703 0 . 16199 
0.05042 0.07308 0.09314 0.11035 0.12474 0.13653 0.14607 0.15371 0.15978 0.16843 0 . 17389 
0.05283 0.07661 0.09770 0.11584 0.13105 0.14356 0.15371 0.16185 0.16835 0.17766 0 . 18357 
0.05471 0.07938 0.10129 0 . 12018 0 . 13605 0 . 14914 0.15978 0.16835 0.17522 0.18508 0 . 19139 

0.05733 0.08323 0 . 10631 0.12626 0.14309 0.15703 0.16843 0.17766 0.18508 0.19584 0.20278 
0 . 05894 0.08561 0.10941 0.13003 0.14749 0.16199 0.17389 0.18357 0.19139 0.20278 0.21020 
0.05994 0.08709 0.11135 0.13241 0.15028 0.16515 0.17739 0.18737 0.19546 0.20731 0.21510 
0.06058 0.08804 0.11260 0.13395 0 . 15207 0.16720 0.17967 0.18986 0.19814 0.21032 0.21836 
0.06100 0.08867 0.11342 0.13496 0.15326 0.16856 0.18119 0.19152 0.19994 0.21235 0.22058 

0.06155 0.08948 0 . 11450 0.13628 0.15483 0.17036 0.18321 0.19375 0.20236 0.21512 0.22364 
0.06178 0.08982 0 . 11495 0.13684 0.15550 0.17113 0 . 18407 0.19470 0.20341 0.21633 0.22499 
0 . 06194 0.09007 0.11527 0.13724 0. 15598 0.17168 0.18469 0.19540 0.20417 0 . 21722 0.22600 
0.06199 0.09014 0.11537 0.13737 0.15612 0.17185 0.18488 0.19561 0 . 20440 0.21749 0.22632 

0.06201 0.09017 0.11541 0.13741 0 . 15617 0.17191 0 . 18496 0.19569 0.20449 0.21760 0.22644 
0.06202 0.09018 0.11543 0.13744 0 . 15621 0 . 17195 0 . 18500 0 . 19574 0 . 20455 0.21767 0.·22652 
0.06202 0.09019 0.11544 0.13745 0.15622 0.17196 0.18502 0.19576 0 . 20457 0.21769 0 . 22654 
0 . 06202 0.09019 0.11544 0.13745 0.15623 0.17197 0 . 18502 0.19577 0 .20458 0.21770 0.22656 

...... 
0 
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t"' 
t"' z 
0 ..... 
Ul 

(zj 

z 
0 z 
(zj 
(zj 
~ z 
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(zj 
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~ ..... 
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TABLE 1 (Concluded) 

n 

m 

1.4 1.6 1.8 2.0 2.5 3.0 4.0 

---
0.1 0.03007 0.03058 0.03090 0.03111 0.03138 0.03150 0.03158 
0.2 0.05894 0.05994 0.06058 0.06100 0. 06155 0.06178 0.06194 
0.3 0.08561 0.08709 0.08804 0.08867 0.08948 0.08982 0.09007 
0.4 0.10941 0.11135 0.11260 0.11342 0.11450 0.11495 0.11527 
0.5 0.13003 0.13241 0.13395 0.13496 0.13628 0.13684 0.13724 

0 . 6 0.14749 0.15028 0.15207 0.15326 0.15483 0.15550 0.15598 
0 . 7 0.16199 0.16515 0.16720 0 . 16856 0.17036 0.17113 0.17168 
0.8 0.17389 0.17739 0.17967 0 .18119 0.18321 0.18407 0.18469 
0 .9 0.18357 0 . 18737 0.18986 0.19152 0 .19375 0.19470 0.19540 
1.0 0.19139 0.19546 0.19814 0.19994 0.20236 0.20341 0.20417 

1.2 0.20278 0.20731 0 .21032 0.21235 o. 21512 0.21633 0.21722 
1.4 0.21020 0.21510 0.21836 0.22058 0.22364 0.22499 0.22600 
1.6 0 .21510 0.22025 0.22372 0.22610 0.22940 0.2308~ 0.23200 
1.8 0. 21836 0 .22372 0.22736 0.22986 0.23334 0.23495 0.23698 
2.0 0.22058 0. 22610 0.22986 0.23247 0.23614 0.23782 0.23912 

2.5 0.22364 0.22940 0.23334 0.23614 0.24010 0.24196 0.24344 
3.0 0.22499 0.23088 0 .23495 0.23782 0.24196 0.24394 0.24554 
4 . 0 0.22600 0.23200 0.23698 0 .23912 0.24344 0.24554 0 .24729 
5.0 0. 22632 0.23236 0.23735 0.23954 0 .24392 0 .24608 0.24791 

6 . 0 0.22644 0.23249 0.23671 0 .23970 0.24412 0.24630 0.24817 
8.0 0.22652 0.23258 0.23681 0.23981 0.24425 0.24646 0.24836 

10.0 0.22654 0.23261 0.23684 0 .23985 0.24429 0.24650 0 .24842 

"' 0. 22656 0.23263 0.23686 0 .23987 0.24432 0 .24654 0.24846 

5.0 6.0 8.0 

o. 03160 0.03161 0.03162 
0.06199 0.06201 0.06202 
0.09014 0.09017 0 .09018 
0.11537 0.11541 0.11543 
0.13737 0.13741 0.13744 

0.15612 0.15617 0.15621 
0.17185 0.17191 0.17195 
0.18488 0 . 18496 0.18500 
0.19561 0.19569 0.19574 
0.20440 0.20449 0.20455 

0 .21749 0.21760 0.21767 
0.22632 0 .22644 0.22652 
0.23236 0.23249 0.23258 
0.23735 0.23671 0.23681 
0.23954 0.23970 0.23981 

0 . 24392 0.24412 0.24425 
0.24608 0.24630 0.24646 
0 . 24791 0.24817 0.24836 
0.24857 0.24885 0.24907 

0 .24885 0.24916 0.24939 
0 .24907 0.24939 0.24964 
0.24914 0 .24946 0.24973 
0 .24919 0 . 24952 0.24980 

10.0 

0.03162 
0.06202 
0.09019 
0.11544 
0.13745 

0.15622 
0.17196 
0.18502 
0.19576 
0.20457 

0 .21769 
0.22654 
0.23261 
0.23684 
0.23985 

0.24429 
0.24650 
0.24842 
0 .24914 

0 .24946 
0.24973 
0.24981 
0 .24989 

"' 
---

0.03162 
0.06202 
0.09019 
0.11544 
0.13745 

0.15623 
0.17197 
0.18502 
0.19577 
0.20458 

0 . 21770 
0.22656 
0.23263 
0.23686 
0.23987 

0 . 24432 
0.24654 
0.24846 
0.24919 

0.24952 
0.24980 
0.24989 
0.25000 

< 
trj 
;d 
>-3 
'"" a 
> 
t< 
"d 
;d 
l'j 
Ul 
Ul 
Ci 
;d 
l'j 
Ul 

z 
l'j 
t< 
> 
Ul 
>-3 
'"" a 

"" 0 
Ci z 
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~ 
'"" 0 z 
Ul 
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large or X and Y are very small, then A is small, and V approaches 
unity. From Equation (5) 

w 
u, = - [2A · 2 + tan-1 2A] 

w 
and tan- 1 2A approaches 2A when A is small, and u, = - (6A). 

7f 

p 
But the total load P is 2X · 2Y · w = 4AZ2w, or A Sub-

4wZ2 
stituting, 

3 p 1 
u, = -- . -

2 7f Z2 
(6) 

which checks the result from Boussinesq's formula, Equation (1), 
when R = Z, or for points under the line of action of the load. 

Case III. When m approaches infinity we have the case of a 
A 

strip of infinite length and of width 2Y. For this case = n, 
m v 1 

1,- 0, and the stress becomes 
m m 

2n 

I ] •·<[I 
tan-1 

2n 1 - n2 
+ or (7) + n2 2n 

sin-1 

1 + n2 I 

This formula checks that given by Terzaghi, "Erdbaumechanik," 
p. 226, or "Report of Committee on Earths and Foundations," 
Proc. A.S.C.E., May, 1933, p. 786. As n app_roaches zero, u, becomes 
4nw 2p 
-- or -- where p is the load per unit length. This checks the 

7f 7f z 
2p z3 

form of Boussinesq's equation for a line load, u, = ---:;;:-- R4 , when 

R = z, or for points vertically under the load. 

5. Table of Vertical Pressures.-By using Equation (5), values of 
(l z 

at the corner of a uniformly loaded rectangle for a number of 
w 
values of m and n have been computed,* and are given in Table 1. 
In the table, m and n are interchangeable. 

•The form most convenient for computations will depend on the tables of trignometric functions 
available. The writer used "Sieben- und mehrstellige Tafeln der Kreis- und Hyperbelfunktionen," 
by K. Hayashi, Julius Springer, Berlin, 1926. There are a number of typographical errors in this 
book, but by using both the sin-• and tan-• forms, the values can be checked. 
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6. Numerical Examples.-Examples of the use of the table follow. 

Example I 

("Report of Committee on Earths and Foundations," p. 784.) 
Compute the intensity of vertical stress at points 25 ft. directly below 
(a) the center and (b) the corners of a raft foundation, 20 ft. wide and 
60 ft. long, carrying a uniform load of 3 tons per sq. ft. 

(a) For vertical stress under the center, combine four equal rec­
tangles of dimensions 10 by 30 ft. 

10 30 
m = - = 0.4 n = - = 1.2 

25 ' 25 

From Table 1, the coefficient = 0.10631, 

whence u, = 4 (0.10631) X 3 = 1.276 tons per sq. ft. 

(The result obtained by Professor Gilboy by means of dividing the 
area into small elements is given in the report as 1.31 tons per sq. ft.). 

(b) For vertical stress under corner, 

20 60 
m = - = 0.8 n = - = 2.4 

25 ' 25 

By interpolating between values of n = 2.0 and n = 2.5, the coeffi­
cient obtained is 0.18281, 

whence er, = 0.18281 X 3 = 0.548 tons per sq. ft. 

(The result given in the report is 0.55 tons per sq. ft.) 

Example II 

Find the vertical stress 40 ft. below the corner of a loaded area 
44 ft. by 34 ft ., when w = 2 tons per sq. ft. 

44 34 
m = - = 1.1 n = - = 0.85 

40 ' 40 

It is necessary to interpolate twice to obtain the desired coefficient. 
Interpolating for m = 1.1 between m = 1.0 and 1.2, for n = 0.8, 
we get 0.16411, and for n = 0.9, 0.17301. Interpolating between 
these values for n = 0.85, we get 0.16856; whence the stress is 
0.16856 X 2 = 0.337 tons per sq. ft. 
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" . , 
7? 8 k---Z'O 

FIG. 3. LoADED AREA USED FOR NUMERI CAL EXAMPLE 

Example III 

c 

8 

1 

i 
~ 

~ 

Given a load of 1 ton per sq. ft. on an area 80 ft. by 80 ft., as in 
Fig. 3, find the vertical stress at points A, B, C, at a distance of 40 
ft . below the surface. 

Point A. The sum due to four areas, u, = w · Lfmn, as follows: 

f o.2, o.4 + f o.2, 1.6 + f i.s, o.4 + f l.8, 1.6 

= 0.03280 + 0.05994 + 0.11260 + 0.22372 = 0.42906 
u, = 0.42906 tons per sq. ft . 

Point B. 

f2_ 5, 1.6 + f2 .5, o.4 - f o.5, 1. 6 - f o.5, o.4 

= 0.22940 + 0.11450 - 0.13241 - 0.07111 = 0.14038 
u, = 0.14038 tons per sq. ft . 

Point C. 

f2.4 , 2.5 - f 2.4, o.5 - f o.4, 2.5 + f o.4, o.5 

= 0.23931 - 0.13602 - 0.11450 + 0.07111 = 0.05990 
u, = 0.05990 tons per sq. ft . 
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W= 4 Tons per sq. F~ 

(a) 

W-"'4 Tons per sq. rt: 

(b) 

W=3 Tons 
per sq. Ft: 

FIG. 4. LOADED AREAS TO WHICH METHOD OF COMPUTATION IS APPLICABLE 

Vertical PressC/re, O"z 
per C/nif or Area 

O.Zw 0.4w a6w 0.8w 1.ow l.Zw /.4w 

zz._..,_..._+-__, _ _,__..._-+-_ _.____. 

~ 
i 1i32 
~ 

w=Loacl per Voit or Area 

l=Vllrea or Sqt/t7re or C/rcle 

4l >+----+--+--+--+---+--+-----<l---I 
(a)-Eqoa/ Total Loads: 

5l 

Concentrated, 
and Oi.sfribC/fed C/nirormly­

Over a Sqoare, 
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FIG. 5. VERTICAL STRESS AT POINTS UNDER RESULTANT OF LoAD 

Applications to more complicated plans of loading, as in Fig. 4, 
follow directly along t he same lines. 

7. Error Involved in Assuming Distributed Loads as Concentrated.­
It is of some interest to compare the vertical stress at different depths 
beneath the center of several plans of loading. Fig. 5 (a) shows the 
variation in vertical stress with depth below equal total loads, con­
centrated and distributed uniformly over a square and over a circle; 
Fig. 5 (b) shows the variation in vertical stress with depth below 
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equal loads per unit length, concentrated, and distributed uiiiformly 
over a strip. 

From these diagrams it appears that at depths which are large 
relative to the size of the loaded area it makes no difference what the 
distribution of load is; the pressure is practically the same as for a 
concentrated load. Near the surface, the stress for a concentrated 
load approaches infinite values, and the stress for a uniform load 
approaches the value of the load intensity. 

It is possible to deduce expressions for the error involved by con­
sidering a distributed load as concentrated. First, consider the case 
of the vertical stress at a depth Z below the center of a circle of radius 
R, loaded with intensity w. Integration of Boussinesq's formula for 
this case yields* 

l 1 13/2 

•• ~ w [' - I+ GY l J (8) 

The total load is 1rR2w, and the stress considering the load as 
concentrated is 

u,' = ~ 1rR2w . _1_ = w. ~ (3-)2 
2 7r z~ 2 z (9) 

Expanding Equation (8) by the binomial theorem, for small 
R 

values of - , 
z 

<lz = W [ 1 - { 1 - ! ( = y + 185 ( = y -14085 ( = y + .. . }] = 

! w ( = J [ 1 - : ( = y + :: ( = y -... J 
The error, e, 

= u,' - <lz = ! W ( = Y [: ( = Y - :: ( = Y + ... J 
e 

and the relative error, --, 
(l z 

*For -example, see FOppl, "Drang und Zwang.'' Vol. II1 p. 230. 
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= : ( ~ Y-1 _-5 1(-~-7)6_, ~-~3-~·-(+-~ ·_)·4 --

4 z 24 z 

and, to a fairly close approximation, 

e _ 5 ( R )2 _ _ ,...__,_ -
O'z 4 Z 

(10) 

R 
For,-- = 1.0 the relative error by actual computation is 1.320, and z 

R 
by Equation (10) is 1.250. For smaller values of - Equation (10) z 

R 
is much more accurate. For example, if - = 0.5, the true relative z 
error is 0.3183, and the value given by the approximate formula is 
0.3125. 

Thus the error involved in the assumption that a load distributed 
uniformly over a circle of diameter D = 2R is concentrated at the 

1 
center of the circle, is, for D = -z, about 7.82 per cent; for D 

2 
1 1 
-Z, about 3.47 per cent, and for D = -Z, about 1.95 per cent. 
3 4 

By a similar process, and by comparing true and approximate 
values of the relative error for a square area of side S, the value is 
found to be, approximately, 

e _ 10 ( S ) 2 _ _ ,...__,_ -
u, 24 z (11) 

For S = 2Z, by actual computation the relative error is 1.73, and 
that given by Equation (11), 1.67. For S = Z, the true and approxi­
mate values are respectively 0.420 and 0.417. 

Thus the error involved in assuming that a load distributed uni­
formly over a square of side S is concentrated at the center, is, for 

1 1 
S = -Z, about 10.4 per cent; for S = -Z, about 4.63 per cent; 

2 3 
1 

and for S = - Z, about 2.60 per cent. 
4 
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If the loaded area is divided up into a number of squares, or into 
approximately square areas, the relative error will be less than the 
values just given, since the relative error is smaller for areas not 
directly over the point where the stress is computed, and may even 
become negative. For example, the relative error in stress under 
points A and P in Fig. 6 due to assuming the load on the square 
area of side S as concentrated at P is given in the figure plotted 

s 
against the ratio of -, where Z is the depth at which the stress is z 
computed under points A and P. 

... 
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Quoting from the "Report of the Committee on Earths and 
Foundations," p. 783: "In considering the distribution of pressures 
below a footing of average size the question arises as to the proper 
subdivision of the footing into units of such size that the load on 
each unit is sufficiently small to be considered a point concentration 
as assumed in the Boussinesq formula. Professor Gilboy has made a 
thorough investigation of this point, and he concludes that a division 
of the area into rectangular elements the longest side of which is less 
than one-half the distance from the element to the point (at which 
the stress is to be computed) will give a correct result to within 63; 
less than one-third the distance, correct to within 33; and less than 
one-fourth the distance, correct to within 23." 

These rules are approximately correct when the footing is of such 
size that there will be several elements to be considered. However, 
when the loaded area is of just such size that only one concentration 
is to be considered, the rules will be in error. But considering the 
uncertainties involved in computing pressure and settlement in soils, 
this error is probably insignificant. 

8. Concluding Remarks.-Since Boussinesq's formula is used for 
lack of a better way of determining vertical pressures in foundations, 
the writer feels that any simplification in the procedure used in apply­
ing the formula is of some value. The table given herein permits a 
rapid and simple calculation of the pressures, and is presented for 
that reason. 




