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Abstract

This technical report documents the second of a two-phase research and
development (R&D) study in support of the development of a combined
Load and Resistance Factor Design (LRFD) methodology that
accommodates geotechnical as well as structural design limit states for
design of the U.S. Army Corps of Engineers (USACE) reinforced concrete,
hydraulic navigation structures. To this end, this R&D effort extends
reliability procedures that have been developed for other non-USACE
structural systems to encompass USACE hydraulic structures. Many of
these reinforced concrete, hydraulic structures are founded on and/or
retain earth or are buttressed by an earthen feature. Consequently, the
design of many of these hydraulic structures involves significant soil
structure interaction. Development of the required reliability and
corresponding LRFD procedures has been lagging in the geotechnical
topic area as compared to those for structural limit state considerations
and have therefore been the focus of this second-phase R&D effort. Design
of an example T-Wall hydraulic structure involves consideration of five
geotechnical and structural limit states. New numerical procedures have
been developed for precise multiple limit state reliability calculations and
for complete LRFD analysis of this example T-Wall reinforced concrete,
hydraulic structure.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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1.1

Introduction

Background

The U.S. Army Corps of Engineers (USACE) has been relying on an
allowable stress design (ASD) methodology for design of the various
structural features comprising its hydraulic navigation structures. In ASD,
also referred to as working stress design, factors of safety (FS) are implied
through the use of allowable stresses during the structural design process.
Allowable stresses are specified for use in the various design limit state
conditions (flexural failure of a structural member, etc.) for the USACE
three categories of design load cases of Usual, Unusual, and Extreme.* In
the USACE design guidance for geotechnical-dominated limit states and
engineering issues, the use of FS against Ultimate Limit States (ULS) is
more straightforward than in the Structural design guidance. The
appropriate values for the FS are explicitly stated in this portion of the
USACE guidance.

The USACE is currently transitioning to a structural design methodology
based on Load and Resistance Factor Design (LRFD). The advantage for
LRFD is that it formally takes into consideration the variability in the loads
and the resistances separately. LRFD has become an accepted mode of
implementation of probability-based limit state design in structural steel
and reinforced concrete design. Three of the most recently developed and
prominent examples of the LRFD-based building and bridge design criteria
are

« American Society of Civil Engineers (2010), ASCE/SEI 7-10 Minimum
Design Loads for Buildings and Other Structures

« Canadian Standards Association (CSA 2014), Canadian Highway Bridge
Design Code, CAN/CSA-S6-14

« American Association of State Highway and Transportation Officials
(AASHTO 2010), AASHTO LRFD Bridge Design Specifications.

1 One definition of a limit state is as a structural condition beyond which it no longer fulfills the specified
design criteria.
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1.3

Development of these three LRFD-based design criteria have been led by
the Structural engineering community within the civil engineering
profession. In recent years, researchers have been proposing means for
extending LRFD into Geotechnical ULS designs. However, to date, there
are no LRFD-based Geotechnical design criteria.

Many of the USACE hydraulic structures are founded on and/or retain
earth or are buttressed by an earthen feature. Consequently, the designs of
many of the USACE hydraulic structures involve significant soil structure
interaction (SSI). Generally speaking, SSI is a specialized topic associated
with foundation features for the structure and with a structure’s ability to
retain earth and/or to be buttressed by an earthen mass. Currently, no
LRFD methodology exists for SSI analysis of the USACE-type of hydraulic
structures.

Objective

This technical report discusses research in support of the development of a
Combined LRFD methodology that accommodates Structural as well as
Geotechnical design limit states (especially the ULSs) as used in the design
of the USACE hydraulic navigation structures. To this end, this research
and development (R&D) effort intends to extend, to the extent possible,
reliability procedures that have been developed for other non-USACE
structural systems to encompass USACE hydraulic structures. Additionally,
procedural methods for reliability analysis are examined and evaluated as
possible means for accurate estimation of reliability for application to the
to-be-developed combined LRFD methodology.

Approach

The authors of this technical report have gathered applicable reliability
methodologies and supporting data from the civil engineering LRFD
technical community. These methodologies and data come from many
structural and geotechnical fields and are interpreted for ultimate use in a
combined LRFD application to the USACE hydraulic structures. Numerical
procedures to facilitate accurate reliability calculations are also devised to
accommodate reliability analysis of the USACE hydraulic structures’
multiple limit states.

This technical report builds on the basic research into this topic as
summarized in the Ebeling and White (2019) Phase 1 R&D study.
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Specifically, this Phase 2 R&D study fills in the technical gaps left out of the
Phase 1 study as well as provides for a step-by-step approach to Reliability
analysis of a reinforced concrete, hydraulic structure, including the
supporting engineering analysis details, and translation into load factors.
An evaluation of Reliability procedures will be performed in support of a
methodology specification.

Overview of the translation from Reliability Index into a Load
Factor

To statistically determine the capacity of a structural system, in general, the
loads and resistances of the system need to be examined to find where the
system will exceed the limitations for acceptable use. The probability for
the exceedance of limitations is called the Probability of Unsatisfactory
Performance (PUP), which is measured using Reliability methods. The use
of specific Reliability methodology (advanced second moment [ASM]
methods) allows for the determination of a reliability index S (a scalar
value) and the corresponding directional cosine ar(a vector value) for the
normally distributed loads in a multivariate space (Ebeling and White
2019). The definition of the load factor sz (a vector value) for a single linear
limit state can be determined directly from £ and ar values in the following
fashion:

where COVL is the coefficient of variation (COV) (= o/ w) of the load L. In
the case of multiple limit states, # and ar values can be determined for each
limit state. Similarly, the definition of the resistance factor ¢r (a vector
value) for a single linear limit state can be determined directly from g and
ar values using

pr =1 —agr*p xCOV) (1.2)

where COVr is the coefficient of variation (=o/p) of the resistance R.
Describing L with a lognormal distribution, Equation 1.1 becomes

yL = et Freon (1.3)
and with a lognormal distribution for R, Equation 1.2 becomes

(pR — e—(ZR*ﬁ*COVR (1.4)
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The PUP value can be determined for non-linear or multiple limit states as
a holistic system. This paper discusses a procedure to determine an
appropriate set of values for # and ar given a system PUP value so that a
corresponding holistic load factor s can be determined. In a Reliability
analysis of piles in spatially varying soils and considering multiple limit
states, Fan et al. (2014) demonstrated that the system PUP value may be
underestimated if multiple limit states are considered separately. They
conclude that this aspect of multiple limit states is one of the limitations of
the current LRFD approach.

This application is in support of the design of USACE soil-founded,
reinforced concrete hydraulic structures. Because these are soil-founded
systems, variability in soil strength and earth loads can be extremely high
requiring more precise calculation of the holistic system PUP value.
Procedures for more precise calculation of the PUP for the multiple limit
state system response are introduced. This technical report details the
concluding R&D with an application of the Reliability and SSI engineering
methodologies devised during Phase 1 R&D study to an example earth
retaining structure.

Seven limit states

Soil-founded or rock-founded reinforced concrete hydraulic structures can
possess up to seven limit states (Ebeling and White 2019). These limit
states are

1. flexural failure of individual structural members

2. shear failure of individual structural members

buckling failure of individual structural members subjected to axial
compressive loading

excessive displacement of the structural system in its entirety

global sliding failure of the structural system in its entirety

bearing failure of the foundation to the structural system in its entirety
overturning or rotational failure of the structural system about its
foundation in its entirety.

@

N oo

The first three limit states are concerned with the reinforced concrete
structural features. The fourth limit state is concerned with system
performance. The latter three limit states are concerned with geotechnical
effects on system response.
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Report contents

Chapter 2 discusses the hydraulic structure example problem, identifies the
independent shear strength variables and their statistical distributions, and
summarizes the engineering methodologies and equations needed for the
engineering calculations used in the Reliability analysis.

Chapter 3 starts out by identifying the five limit states considered in the
analysis. This chapter then proceeds to outline the step-by-step engineering
methodologies for determining limit state conditions given interaction
between the reinforced concrete hydraulic structures, the geotechnical
features about the structure, and the loads acting on the structure.

Chapter 4 describes a Reliability-based procedural method for computing
individual limit state PUP and Resistance and Load factors for the Chapter 2
example T-Wall model problem with soil shear-strength variability. A
procedure will be introduced to compute load factors based on these
Reliability calculations.

Chapter 5 outlines the step-by-step procedures for calculation of the PUP
for soil-founded reinforced concrete hydraulic structures from a T-Wall
system, point of view considering the five limit state methodologies of
Chapter 3.

Chapter 6 gives the summary and conclusions of this research study as well
as recommendations on further research.

Appendix A discusses individual and multiple Limit States and the
computation of the PUP using numerical procedures.

Appendix B describes the computation of earth and water pressure
distributions, their resultant forces, and their points of application along
the left and right faces of the Structural Wedge.

Appendix C describes numerical methods used for calibrating partial load
and resistance safety factors given a target S value. These numerical
procedures require a mathematically defined, continuous probability
density function (PDF) distributions for load and resistance as well as that
they be non-correlated. The loads and resistances are modeled with
distributions with at most two unknown means. Typically, the resistance
variable accounts for one unknown mean with the other unknown mean
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corresponding to one of the load terms. Load ratios set the relationships of
the mean values of the defined loads to the load with the unknown mean
value. With these relationships, the ratio of the unknown mean value to the
unknown resistance value allows for the definition of the load and
resistance factors for the given target . A supplemental procedure is
derived for the calculation of the partial load safety factor given a specified
partial resistance safety factor and the procedurally defined partial safety
factor ratio. This supplemental procedure is valid for the condition where a
single load and resistance variable are used. A second numerical procedure
to calculate g given variable load and resistance with distributions, which
may have partial load and resistance safety factors applied is also
presented. This second numerical procedure can be used as a verification
step for the results from the first numerical procedure. An example for each
of these procedures is included. The examples are taken from a 2016
USACE LRF! study. Important details in the Reliability-based
computational processes for load and resistance factor computations to
provide for consistent results from the Appendix C numerical procedure
and from the 2016 unpublished LRFD study* are identified and explained.

Appendix D lists the equations required for establishing the limit state
bearing capacity of a T-Wall founded on soil.

1 Kent D. Hokens. 2016 (Oct). Unpublished. USACE Load Factor Development for Design of Hydraulic
Concrete Structures. St. Paul District.
NOTE: From this point forward, the document will be referred to or cited as “Hokens.”
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Building an Example Soil-Structure
Interaction Model with Material Variability

Three-wedge T-Wall SSI example problem

Because uncertainty in the model is dominated by the geotechnical
response of the system, an example problem will be developed that focuses
on this response. It is convenient to devise an example retaining wall
structural problem containing the three limit state features of interest: a
global sliding failure, a foundation bearing failure, and an overturning or
rotational failure of the structural system about its foundation. This
example should not be so complex as to impede the analysis with geologic
details such as those stemming from patterns of rock jointing, etc. This
example retaining structure selected for study is shown in Figure 2-1 and
consists of a T-wall retaining a soil backfill behind its heel, founded on a
geologically formed soil and with a soil buttress in front of its toe that is
also geologically formed.

Figure 2-1. Diagram of an example soil-founded, reinforced concrete hydraulic
structure for analysis.
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It possesses a pool of water to the left-hand side of the T-Wall and above
the soil buttress. A water table is contained within the retained soil on the
right-hand side of the T-Wall. A differential head condition exists for this
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T-Wall due to the existence of a higher head on the retained side of the wall
relative to the pool elevation on the left-hand side of the wall. There are
three soil regions identified in this figure, designated as soil regions 1, 2,
and 3. Soil regions 1 (yellow) and 3 (gold) are engineer-selected backfill
material placed by earth-moving equipment and compacted to engineering
specification after construction of the T-Wall. Soil region 2 (tan) is
naturally occurring soil and is assumed to be undisturbed by the
construction of the T-Wall and backfill placement above it. Soil backfill is
placed and compacted in front, behind, and above the T-Wall shortly after
T-Wall construction and (reinforced) concrete curing concluded.

The engineering soil properties and their statistical distributions are
summarized in Table 2-1. Effective stress engineering soil parameters are
specified for each of the three soil regions. In this table, the mean value is
represented using the Greek symbol x# while its coefficient of variation is
designated by Mid-Range COV. Mean values for the Mohr-Coulomb shear
strength, effective angle of internal soil friction values are provided, along
with its Mid-Range point estimate COV value (in percent). Note that these
are point estimate values and based upon the data summarized in Chapter
3 and Appendix D of Ebeling and White (2019). The soil strength
parameter ¢ for the three soil regions is assumed to be normally
distributed with a lower bound at # minus 3* cand an upper bound at
plus 5% o, where ois the standard deviation (= COV times ). An additional
requirement is that the lower bound is never less than zero deg. The soils of
the three regions are assumed to be cohesionless (i.e., ¢’ equal to zero).
Interface friction values are specified between the Driving and Structural
Wedges (reported in the row labeled Soil region 1); between the base of the
Structural Wedge and its foundation soil (reported in the row labeled Soil
region 2); and between the Resisting and Structural Wedges (reported in
the row labeled Soil region 3). Interface friction & values are expressed as a
fraction of the ¢’ value in Table 2-1, assuming a very high degree of
correlation between 6’ and ¢’. In all probabilistic simulation analyses
discussed in this report, ¢’ values are varied according to the bounded
normal PDF distribution while each & value per ¢ value simulation is based
upon the ratio of & to ¢ as prescribed in this table. Mean hydraulic
conductivity values are also reported along with its applicable direction of
flow: vertical (V) or horizontal (H).
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Table 2-1. Engineering properties for the three soil regions of the example T-Wall problem.

. . Soil Friction, Interface . ..
Unit Weights pr Friction, & Hydraulic Conductivity
Mid-
Soil ; ymoist | Ysat | Mg |Range| Ratio | s Lk _
Region | S°1P® | (5o | (pof) | (deg) | COVy | s74 | (deg) | (cm/sec) | Decton
(%)
1 Corggggted 123 126 | 35 | 10 | 04 | 14 | 2x10° | Vertical
o [WSIEESE 123 | 30 | 20 | 1.0 | 30 | 4x104 | Horizontal
foundation
3 Conggggted 126 | 37 | 12 | 1.0 | 37 | 1x103 | Vertical

The height of the retained soil relative to the left-hand soil and pool
elevation dictates the right-hand side to be the driving-load side. The right-
hand side retained soil attempts to move the retaining structure towards
the pool. A potential sliding plane is depicted in red in the Figure 2-1 cross
section. This postulated retaining structure possesses all but one (i.e.,
buckling failure) of the seven limit states.

In preparation for engineering evaluation, the Figure 2-1 retaining wall
system is divided into the Driving Wedge, the Structural Wedge, and the
Resisting Wedge. This division of the soil features into three global wedges
is consistent with the USACE EM 1110-2-2502 (HQUSACE 1989) design
procedure of retaining wall analysis.

On the right-hand side of the retaining structure is the Driving Wedge, as
labeled in Figure 2-1. Gravity causes the soil mass located above the
potential slip plane in this wedge to slide downward along the (red)
potential slip surface. This, in turn, generates lateral movement of the
Structural Wedge towards the pool and results in “mobilized active” earth
pressures acting against the Driving Wedge to Structural Wedge interface.

In the center of this figure is the Structural Wedge. The Structural Wedge
consists of the retaining structure and any other soil fill material that lies
contained within an area defined by the width of the structure. For this
example, the potential slip plane is contained within the foundation soil
(region 2) below the reinforced concrete structure.

On the left-hand side of the structure is the Resisting Wedge. In this wedge,
the weight of the soil and other (i.e., pool of water) loads/weights are
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providing “mobilized passive” earth pressure against the structural wedge,
therefore resisting sliding of the structural wedge. The Pool region
extending above the top of the Resisting Wedge’s ground surface also exerts
a hydrostatic water pressure force acting horizontally on the Structural
Wedge’s left-hand side interface. This triangular hydrostatic water pressure
distribution is not depicted in this figure. The slip plane in this region is
typically more complicated than in the active pressure region. In the case of
Figure 2-1, the slip plane of the resisting wedge is modeled using a
logarithmic spiral curve. This is in contrast to the planar surface of the
mobilized active driving wedge. Earth pressures are determined from a
logarithmic spiral based slip plane solution and using resulting passive
earth pressure coefficient, Kpassive, tabulated by NAVFAC 7.2 (Department
of the Navy 1982).

Due to its contact with retained earth, the majority of the USACE hydraulic
structures face SSI issues. SSI is sometimes described in general terms as
the process in which the response of the soil influences the structural
movement, and this structural movement, in turn, influences the soil’s
response.

A CTWall (Pace 1994) analysis for the normal load case following EM 1110-
2-2502 (HQUSACE 1989) design criteria (using Allowable Stress Design
criteria) was conducted to develop preliminary T-Wall geometry using the
mean values for the engineering soil properties given in Table 2-1.

Figure 2-2 summarizes the resulting T-Wall geometry.
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Figure 2-2. Preliminary T-Wall geometry resulting from a CTWall design for a normal

load case.
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2.2 Key reliability methodology relationships

Ebeling and White (2019) devised three means for computing the Figure 2-1
statistical distributions for resultant earth pressure forces of the Figure 2-3
left-hand side (Pr) and right-hand side (Pr) resultant forces imposed on the
Structural Wedge. These forces, P and Pr, correspond to the reactions of the
Resisting and Driving Wedges, respectively.
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Figure 2-3. Driving Wedge and Resisting Wedge forces imposed on a Structural
Wedge, Prand P.
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This T-Wall example uses two devised geostatistical variance methods
methodologies, one for the Driving Wedge and the second for the Resisting
Wedge. The two applied methodologies are as follows:

1. A sliding stability assessment using a wedge solution method that
accounts for the reduction of correlation due to distances greater than
the Scale of Fluctuation () within the Driving Wedge combined with a
simulation methodology to transfer uncertainty in the Mohr-Coulomb
soil shear strength parameters (of ¢ and ¢) to the Figure 2-3 P and Pr
resultant forces acting on the Structural Wedge. This procedure
minimizes the number of wedges in the solution by using the Variance
Reduction Factor 7?(Lactive) in a method described later in this paper.
Lpassive is the length of the slip plane that defines the base of the Driving
Wedge. The application of this procedure requires homogenous
material within the Driving Wedge. This procedure is applied to the
foundation soil below the Structural Wedge as well since it is also
homogenous. Each of these two (Wedge) regions is comprised of
different soil types at the location of the potential slip plane.

2. An earth pressure coefficient-based method of analysis combined with a
simulation methodology to transfer uncertainty in the Mohr-Coulomb
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soil shear strength parameters directly to the Figure 2-3 Pr resultant
force Pr acting on the Structural Wedge. This procedure is also
restricted to homogenous soil in the area of the Resisting Wedge. The
orientation of the slip planes is estimated using the Mohr-Coulomb soil
shear strength parameters for determining the magnitude of the
Variance Reduction Factor, 7Z(Lpassive), where Lpassive is the length of the
slip plane that defines the base of the Resisting Wedge.

El-Ramly et al. (2002a,b) and others observe that by taking the spatial
average of the geotechnical design property (e.g., strength) variable over
the whole area of interest, such as along the slip surface in a limit
equilibrium sliding stability analysis, positive and negative random errors
at different locations within the averaging domain tend to cancel out. As a
result, the random error variance associated with the averaged soil strength
quantity is largely reduced over point estimates (Vanmarcke 1977a,b,
1980). This reduction in variance over a point estimate’s variance is why it
is so important to account for variance reduction due to spatial correlation
of soil properties in probabilistic geotechnical engineering analyses. The
Variance Reduction Function 7%(L) developed by Vanmarcke (1977a,b) is a
fundamental part of this approach.

5 1 L<6
I (L)={g L>6 (2.1)

where L is the length of the potential slip plane and &1is the scale of
fluctuation of the soil region. This function is plotted in Figure 2-4. The
spatial variability is described by the scale of fluctuation, which gives the
distance at which soil engineering properties have changed enough to no
longer be highly correlated.
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Figure 2-4. Variance reduction function 72(L).
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Variance Reduction Factor, (L)
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& is the Scale of Fluctuation |

The coefficient of variation for COVspatial of the spatial average variable of
the soil Geotechnical design property as

COVszpatial = FZ(L) * COszoint estimate + COVr%Leasurement error (2-2)
Recall that the COV is equal to the standard deviation for the variable
divided by its mean value (=o/ ). Values for the inherent variability of
strength properties for COVpoint estimates (about trend lines) are gathered for
different soil types using laboratory and in situ strength tests while
COVineasurement error reflects the variability in test results used to define the

soil (strength) property. Historical data on both are given in Chapter 3 of
Ebeling and White (2019).

The application of a variance reduction factor applied to COVpoint estimates for
soil strength is an important aspect of a Reliability analysis that includes
Geotechnical limit state(s). Resulting values for COVipatial estimates are less
than COVpoint estimates due to spatial averaging of the engineering strength
parameters of the soil along specific planes, especially when the plane
lengths are greater than the scale of fluctuation. These planes are usually
selected by the engineer to be coincident with likely potential slip planes
within the soil mass during a Reliability analysis considering Geotechnical
Limit States.

The Geotechnical strength data for natural soil deposits formed over
geologic time clearly demonstrate anisotropic scale of fluctuation values in
the horizontal and vertical directions; év and du. Appendix D of Ebeling and
White (2019) provides a data base of values for v and 6w, as well as the
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ratio of on/dv. These data were obtained from the statistical processing of
shear strength data with (vertical and horizontal) distance in various soil
types. Over the last 20 years, engineers researching the spatial correlation
of engineering soil properties have collected and studied the vertical and
horizontal scale of fluctuation (or autocorrelation) engineering soil
property data and some have made generalized observations. Several of
these generalizations that have been published in the technical literature
have been collected in Appendix D of Ebeling and White (2019) as well.

The Figure 2-1 T-Wall of interest envisions three regions of soil types, as
discussed previously. For soil regions 1 (in yellow) and 3 (in gold) that
consists of select engineered compacted soil, isotropic scales of fluctuation in
the vertical and horizontal directions are hypothesized for the backfill. This is
because during excavation of borrow material and its subsequent
compaction as an engineered backfill destroys the original structural makeup
of the soil due to the original geologic process and creates a new intermixed
soil structure. This contrasts with the soil region 2 (in tan), which is assumed
to be a naturally occurring soil deposit that has been formed through
geologic means and on a geologic time scale. For soil region 2, 6 is assumed
to be greater than 6v. According to the strength data in Appendix D of
Ebeling and White (2019), the trend may be on the order of a factor of
between 9 to 13 times greater. & is assumed to be 9 times & for soil region
2 in this T-Wall example. The data collected in Ebeling and White (2019)
indicate that & generally falls within a range of 0.5 to 2 m.%2 In this T-Wall
example, & is assumed to be equal to 0.5 m for all three soil regions. These
ov and ok data are summarized in Table 2-2 for the three soil regions.

1 For a full list of the spelled-out forms of the units of measure used in this document, please refer to US
Government Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing
Office 2016), 248-52, https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-
STYLEMANUAL-2016.pdf.

2 For a full list of the unit conversions used in this document, please refer to US Government Publishing
Office Style Manual, 31st ed. (Washington, DC: US Government Publishing Office 2016), 345-7,

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf.


https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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2.3

Table 2-2. Vertical and horizontal scales of fluctuation for the three soil regions
of the example T-Wall problem.

S5 S /5
Soil .
Region Soil Type (m) (ft) (m) (ft)

1 Compacted 1 33 1 3.3 1
sand

2 sl Sz 1 3.3 9 20.5 9

foundation

3 Compacted 1 3.3 1 3.3 1

sand

As aresult of the geologic process within a given layer for naturally
deposited soils, soil properties tend to be anisotropic and, specifically, more
variable in the vertical direction than in the horizontal direction. For these
layers, a single scale of fluctuation value is needed for use along the
potential slip plane when its orientation is neither horizontal nor vertical.
Vanmarcke (1980) suggested an elliptical representation for estimation of
an equivalent scale of fluctuation, Jk, given a slip plane along the angle «
from horizontal.

8p = /62 sin2 a + 87 cos? a (2.3)

Other proposed Jk approximations are given in Appendix E of Ebeling and
White (2019).

Key Geotechnical relationships being used to compute Pr and P,
forces acting on the Structural Wedge

2.3.1 Driving Wedge Force Pr

For a homogenous cohesionless retained soil, the thrust force that the
Driving Wedge imposes on the Structural Wedge (designated Pr in Figure
2-3) is computed using the active earth pressure force (Pa) relationship

1
Py = Kyctive * Py *Ve * (Hheel)2 (2.4)
Hheel is the vertical height of the Structural to Driving wedge interface as

measured from the heel of the T-Wall. Kactive is the active earth pressure
coefficient by the Coulomb’s active earth pressure coefficient (Ebeling and
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Morrison 1992) for an effective stress designated soil region, Kmob-active 1S
computed as

2( s .
c0s*(@'mob-Active) (25)

Kmob—-active = Z

c0S(8"mob—active) |1+ Sin(@/mob—Activet® mob— Active) *Sin(®"mob—Active—0)
cos(8/mob—Active)*cos(®)

where ¢’mob-Active is the mobilized effective angle of internal friction of the
soil and 6 mob-active is the mobilized interface angle of friction. The use of
Equation 2.5 is restricted to cases in which the value of ¢"mob-active is greater
than 6. In an effective stress analysis, the mobilized effective angle of
internal friction @¢'mob-active is given by

tan(¢’)

FSactive

tan(¢,mob—Active) = (2.6)

The mobilized effective angle of interface friction for the Structural to
Driving active wedges interface is given by

tan(s’)

FS active

tan(5,mob—Active) = (2.7)

An equivalent unit weight e is used in Equation 2.4 to accommodate a
water table within the retained soil of the Driving Wedge. In an effective
stress analysis, a moist soil unit weight is assigned above the water table,
and a saturated unit weight is assigned to the soil below the water table.
Ebeling and White (2019) define the equivalent unit weight . as

_ hy hq - e ha
Ye =V1 * [(h1+h2)+h3 * (h1+h2)] T Ve-3* [1 (hi+hy)+hs * (hq+hy)

] (2.8)

for the Figure 2-1 Driving Wedge possessing a planar slip plane oriented at
an angle « from horizontal, with a saturated unit weight jsa: assigned to y
for soil area 1 below the water table and a moist unit weight ymoist assigned
to y2-3for soil area 2-3 above the water table (Figure 2-5). The ground
surface is oriented at an angle of #from horizontal.
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Figure 2-5. Geometrical relationships used to define the height terms in the equivalent
unit weight relationship for a partially submerged soil wedge delineated by a planar

slip surface.
H = hy + h, . "
h, | A
U+ h) =8 cosf@ -cosa . ‘
( 3) - Sln(a _ 9) ana hZ YZ—?;
h3 = (H + h3) —H H 1B =
Y1
b= H cosf - cosa . 1 h,
3 sin(a — 0) aha | Yo
C

A moist unit weight ymoist was assigned to j=-3 for soil area 2-3 above the
water table. When there is a differential head of water existing from one
side of the Structural Wedge to the other, there will be flow of water within
the soil regime. For the differential head example shown later in Figure 2-6,
water will flow from the high-head side of the Driving Wedge side, through
the foundation and up into the low-head side of the Resisting Wedge. To
account for the effect of steady state seepage acting downward on the
saturated volume of soil contained within the Driving Wedge, y for soil
area 1is

Y1 = Vbouy + Ywater * iy—DW (2.9)
with iy-pw being the downward, vertical gradient of steady-state seepage
through the saturated soil volume of the Driving Wedge. The buoyant unit
weight yuy is defined as

Ybuy = Vsat — Ywater (2.10)

with yvater designating the unit weight of water.

The orientation of a planar Driving Wedge slip plane (Ebeling and
Morrison 1992), as measured from horizontal, is

—fan(¢’mob—Active_9)+CE1] (211)

— ! -1
Xmob-Active = P mob—active T tan [ s
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where
1
Cg1 = { [tan(d) mob—Active 6)] * }2 (2.12)
[tan(¢,mob—Active - 9) + COt(¢,mob—Active)] * termEl

with

termgq = [1 + tan(almob—Active) * COt(¢,mob—Active)] (2.13)
and

Cqgr =1+ { [tan(5,mob—Active)] * }
k2 [tan(¢,mob—Active - 9) + COt(¢,mob—Active)]

(2.14)

The use of Equation 2.11 is restricted to cases in which the value of ¢#mob-
Active 1S greater than 6. cimob-active is used to compute the value of hs (Figure
2-5) so that an equivalent unit weight may be determined using Equation
2.8. Computations made using Equation 2.11 in support of Equation 2.8
have restricted the minimum value of ¢’mob-active to be equal to &plus 2 deg.
amob-Active 18 also used to compute the length of the Figure 2-1 slip plane
Lactive for the Driving Wedge when determining the value of the Variance
Reduction Factor 72(L=Lactive). Computations made using Equation 2.11 in
support of Lactive for the Driving Wedge have also restricted the minimum
value of dimob-Active to @ plus 2 deg. The equivalent unit weight Equation 2.8
is sensitive to the Figure 2-5 hs height, which can be excessively large for
values of « that approach the value for 6 because of the infinite length
shear plane issue (refer to Figure 2-5).

2.3.2 Resisting Wedge force P,

For a homogenous cohesionless butressing soil, the Pp thrust force that the
Resisting Wedge imposes on the Structural Wedge (designated PL in Figure
2-3) is computed using

1
Pp = Kpassive * Py * Ve * (Htoe)z (2.15)
Hioe is the vertical height of the Structural to Resisting Wedge soil interface

as measured from the toe of the T-Wall. The passive earth pressure
coefficient Kpassive is obtained from Table 5-1 in Ebeling and White (2019)
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for level ground and Resisting to Structural Wedge interface friction value
of dint. This table is reproduced as Table 2-3 below. The values of passive
earth pressure coefficient were computed using Logarithmic Spiral slip
surface-based relationships for level ground and 6=d,: and equal to ¢.

Kpassive (5) = Kpassive R(& ¢) (2.16)

Values for R are provided in Ebeling and White (2019) Table 5-2 as a
function of the value of ¢ and the value of the ratio &/ ¢. This table is

reproduced as Table 2-4.

Table 2-3. Passive earth pressure coefficient Arassive
(Kp) values for -0 equal to ¢ and a solution based on
assuming a failure surface composed of logarithmic
spiral portion and a planar surface
portion - level ground.

o KpCe=4)
0 1

5 1.28
10 1.64
15 2.19
20 3.01
25 4.29
30 6.42
35 10.2
40 17.5
45 33.5
50 74.3
51 90
52 110
53 130
54 160
55 204
60 782
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Table 2-4. Reduction factor, A, values for various ratios of -d/ ¢.
5/
de
¢ (99 T e [ 08 [ 07 ] 06 ] 05 ] 04 ] o3 -0.2 -0.1 0
0 1 1 1 1 1 1 1 1 1 1 1
5 1 |0.996 | 0.995] 0.989 | 0.981 [ 0.973 [0.9645| 0.956 | 0.949 | 0.9405 | 0.932
10 1| 0.991]0.989] 0.978 [ 0.962 | 0.946 [ 0.929 | 0.912 | 0.898 | 0.881 | 0.864
15 1 |0.986 | 0.979] 0.961 [ 0.934 [ 0.907 | 0.881 | 0.854 | 0.83 | 0.803 | 0.775
20 1| 0.983]0.968 0.939 [ 0.901 | 0.862 | 0.824 | 0.787 | 0.752 | 0.716 | 0.678
25 1 |0.980 | 0.954] 0.912 | 0.86 | 0.808 | 0.759 | 0.711 | 0.666 | 0.62 | 0.574
30 1 |0.980]0.937 | 0.878 [ 0.811 | 0.746 | 0.686 | 0.627 | 0.574 | 0.52 | 0.467
35 1_|0.980 | 0.916 ] 0.836 | 0.752 | 0.674 | 0.603 | 0.536 | 0.475 | 0.417 | 0.362
40 1 |0.980 | 0.886 ] 0.783 | 0.682 | 0.592 | 0.5612 | 0.439 | 0.375 | 0.316 | 0.262
45 109790848 0.718 | 0.6 | 05 | 0414 | 0339 | 0.276 | 0.221 | 0.174
50 1 |0.975|0.797] 0.638 | 0.506 | 0.399 | 0.313 | 0.242 | 0.185 | 0.138 | 0.102
55 1] 0.966 | 0.731 0.543 [ 0.401 | 0.295 [ 0.215 | 0.153 | 0.108 | 0.0737 | 0.0492
60 10948 0.647] 0.434 [ 0.29 | 0.193 | 0.127 | 0.0809 | 0.0505 | 0.0301 | 0.0178
The mobilized effective angle of soil friction within the Resisting Wedge is
given by
' _ tan(¢1)
tan(¢ mob—Passive) - - (2-17)
FSpassive
and the mobilized effective angle of interface friction for the wedge
interface between Structural to Resisting passive wedges is
, _ tan(8')
tan(5 mob—Passive) - - (2-18)
FSpassive
The following computation in this procedure is specific to the Example
Problem of this report, where the Resisting Wedge has a level ground
surface that is submerged (Figure 2-1). For the saturated volume of soil
contained within the Resisting Wedge, the equivalent unit weight . for its
soil area below the water table is
Ye = VY1 = Vbuy — Ywater * iy—RW (2.19)

with iy-rw being the upward, vertical gradient of steady-state seepage

through the saturated soil volume of the Resisting Wedge. Note the sign

change on the gradient terms between Equations 2.9 and 2.19, reflecting
the influence of the downward and upward seepage, respectively.

The orientation of a planar slip plane (Ebeling and Morrison 1992), as
measured from horizontal, is
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_¢,mob—Passive +
Xmob—Passive — tan~1 [tan(¢’mob—Passive+9)+CE3] (2.20)
CEa
where
1/
' 2
— [tan(¢ mob—Passive + 9)] *
F3 = , 0 f (2.21)
[tan(d) mob—Passive + ) + COt(¢ mob—Passive)] * termpg;
with
termg, = [1 + tan(5,mob—Passive) * COt(¢,mob—Passive)] (2.22)
and

[tan(5’mob—Passive)] *
e =14 {[tan(d)’mob—Passive +0) + COt(¢’mob—Passive)]} (2:23)
The exact geometry of the logarithmic spiral slip planes for the Table 2-3
data is not known. This amob-passive relationship is used to compute an
approximate length of the Passive Resisting Wedge slip plane Lpassive for the
Resisting Wedge when determining the value of the Variance Reduction
Factor 72(L). It is recognized that a planar slip surface approximation is
more accurate for soils with Smob-passive less than or equal to ¢gmob-prassive/2, as
discussed in Subsection 3.3.4.1 of Ebeling and Morrison (1992) or
Section 4.6 of Chen and Liu (1990).

Computations made using Equation 2.20 in support of an approximate
length computation of the Passive Resisting Wedge slip plane Lpassive for the
Resisting Wedge have restricted the minimum value of amob-passive to be
equal to 5 deg for this level ground problem of a fully submerged Resisting
Wedge. In this case, the computation of the equivalent unit weight by
Equation 2.19 is not influenced by amob-passive, as was the case for the
Driving Wedge (with amob-active).

2.3.3 Line of Seepage - no gap

Water will travel from high (total) head (i.e., Hp in Figure 2-6) to low (total)
head (HE), dictating the direction of flow within the soil regions.
Consequently, the side with the highest (total) head dictates that the
direction of flow is downward along that side of the T-Wall. In a Line of
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Seepage analysis (aka, Line of Creep), a vertical streamline, or flow line, is
assumed within the soil and adjacent to the Structural Wedge (Ebeling and
White 2019). Full contact along the base of the Structural Wedge with its
foundation is assumed in Figure 2-6. The transformation procedure for the
line of seepage method is for one-dimensional (1-D) flow along a singular
path consisting of 1-D flow paths connected in series from one soil region
on into the next soil region that are aligned along the three faces of the
Structural Wedge of a T-Wall. These flow paths contained within the soil
regions may possess different values for the saturated hydraulic
conductivity of the soil. The transformed lengths for each of the three faces
are determined using the relationships given in Figure 2-7. Assigning the
total head boundary conditions of Hs at point B and Hc point C and with a
linear head drop along the transformed section in Figure 2-7(a) allows for
the determination of total heads Hc at point C and Hp at point D, as
described in detail in Appendix G of Ebeling and White (2019).

Figure 2-6. Seepage path for gradient determination assuming full contact along the
base of the Structural Wedge with its foundation.
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Figure 2-7. 1-D seepage path. (a) Constant slope in total head with distance along the
transformed length of line of seepage in a homogenous, 1-D seepage path through all
Az material. (b) Variation of slope in total head with distance along the three soil
regions of the line of seepage.
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(b)

Observe that the transformed Figure 2-7(a) is required to compute the head
values for Hc and Hp from Hp and Hk at the transformed position points of
B, C'and D', respectively. Figure 2-7(b) shows these computed heads of Hc
and Hp and actual heads Hp and He are mapped back to their actual
position points B, C, D, and E. Here, the hydraulic gradient is constant
along the segment of the 1-D flow line contained within each of the three
Figure 2-6 soil regions and Figure 2-7(b) segments. The seepage gradients
are then computed as equal to the change in total head divided by the
actual length of the streamline segment. The actual gradients for each of
the three regions are designated as iv-1, in-2 and iv-3, respectively, in Figure
2-7(b). 1v is substituted for iy-ow in Equation 2.9 and i.-3 is substituted for
iy-rw in Equation 2.19 when computing the equivalent unit weights y for
the Driving soil and Resisting soil Wedges, respectively.

The pressure head hp is computed at any point along each of the three
Figure 2-7 streamline segments using Bernoulli’s equation for total head
(H) and assuming the velocity head is negligible.
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h, = H—h, (2.24)
where he is the elevation head for the point.

This modified relationship allows for the computation of the corres-
ponding pore water pressure (u) at the selected point by

u=h,*y, (2.25)

2.3.4 Line of Seepage - gap

There are slight changes for the case in which there is partial separation
between the Structural Wedge and its foundation. This may occur when the
effective resultant normal force N’ between the base of the T-Wall and its
foundation is outside the kern (i.e., middle third region of the base). The
modified Line of Seepage analysis is idealized in Figure 2-8 for this special
case. When the distance to the effective normal force N’ as measured from
the Toe of the T-Wall, designated Xn-toe , is less than one-third the width of
the base, a gap will develop starting at the heel point of the base. The length
of the gap, Lgap, is calculated as

Lgap = Base — 3 * Xy_¢oe (2.26)

By the geometry in Figure 2-8, the effective base area in compression, Be, is
given by

B, = Base — Lyqp (2.27)
or, equivalently, as
B, = 3 * Xn_toe (2.28)

with the geometric restriction that the value for Be is less than or equal to
the base width, Base.
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Figure 2-8. Seepage path for gradient determination assuming base separation along
a portion of the base of the Structural Wedge with its foundation, starting at the heel.
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To account for the gap of length Lgqp extending from the Toe (point C) to the
tip of the compressive base pressure o’» distribution (at point C’) in a Line of
Seepage analysis, the 1-D line segment C-C’ is inserted into the Figure 2-7
1-D seepage path analysis, resulting in Figure 2-9. This path now consists of
four segments: Bto C, Cto C, C to D, and D to E. For the gap zone, a high
hydraulic conductivity value is assigned. The hydraulic conductivity assigned
to the horizontal gap segment C to C in Figure 2-8 is 1 cm/sec. It is three
orders of magnitude larger than those listed in Table 2-1. This high hydraulic
conductivity value ensures that there will be virtually no total head loss along
the Figure 2-8 Lgap length in the 1-D Line of Seepage computation. The total
head transformation equation graphically depicted in Figures 2-9(a) and
2-9(b) are applied to all four 1-D segments in the analysis in the usual
manor. The transformed segment from point C to C’ in the Figure 2-9(a)
transformed figure should show the same or nearly the same total head
values at these two points. Again, virtually no head loss occurs during water
seepage within a gap. Equation 2.24 for pressure head hp and Equation 2.25
for pore water pressure are also applied in the usual manor.
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Figure 2-9. 1-D seepage path with base gap. (a) Constant slope in total head with
distance along the transformed length of line of seepage in a homogenous, 1-D
seepage path through all Kv.1 material. (b) Variation of slope in total head with
distance along the three soil regions (and 1 region of gap) of the line of seepage.
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2.4 Shear force, resultant normal force N' and its location along the

base of the Structural Wedge

The forces applied to the Structural Wedge are depicted in Figure 2-10. The
Resisting Wedge and Driving Wedge impose forces Pr and Pr, respectively,

upon this wedge.
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Figure 2-10. Free body diagram of forces acting on the Structural Wedge, including the
left- and right-hand side forces resulting from the Resisting Wedge and Driving Wedge,
P and P, respectively.
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The symbols used in this Structural Wedge are defined as follows:

» Base is the base width of the Structural Wedge.

« ELis the horizontal shear force component of PL acting on the left side
of the wedge.

« Eristhe horizontal shear force component of Pr acting on the right side
of the wedge.

» hiis the height from point D to the topmost point on the left side of the
Structural Wedge free body diagram (point F).

» h:is the height from point C to the topmost point on the right side of
the Structural Wedge free body diagram (point A).

» hgzis the height from point D to the top of the buttressing soil on the left
side of the Structural Wedge (point E).

» hyis the height from point C to the top of the retained soil on the right
side of the Structural Wedge (point A).

» hsis the height from point D to the top of the top of pool on the left side
of the Structural Wedge (point F).

» heis the height from point C to the top of the top of the piezometric
surface on the right side of the Structural Wedge (point B).
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« hyis the height from point D to H.

» hgis the height from point C to Hr.

e hgis the height from point D to EI.

» hiois the height from point C to Er.

« Hiis the horizontal resultant force exerted by the distribution of pool
and pore water pressure acting on the left side of the wedge.

» Hris the horizontal resultant force exerted by the distribution of pore
water pressure acting on the right side of the wedge.

« N’is the effective force acting normal to the base of the wedge.

» Pristhe resultant interslice force acting on the left side of the wedge.

« Pris the resultant interslice force acting on the right side of the wedge.

» Tmob is the mobilized shear resistance force acting along the base of the
wedge.

»  Ubase is the resultant water pressure force acting normal to the base
calculated using the average of the pore water pressures at points C and
D. Uprase acts normal to the base of the wedge.

« W:is the (total) weight of the wedge.

« X1 is the vertical shear force component of P acting on the left side of
the wedge.

« Xris the vertical shear force component of Pr acting on the right side of
the wedge.

*  XN-toe is the distance from the Toe (point D) to the effective resultant
normal force N".

*  XN-base is the distance from the Toe (point D) to the resultant uplift force
Ubase acting normal to wedge base.

»  Xw-toe is the distance from the Toe (point D) to the weight of the
structural wedge W.

The Greek character symbols are defined as follows:

» «ais the angle the base of the planar wedge as measured from horizontal.
a = 0 deg in this example and is therefore not included in this figure.

« oLis the angle of interslice friction on the left side of the wedge.

« oristhe angle of interslice friction on the right side of the wedge.

The resultant mobilized active earth pressure force labeled Pr in Figure 2-
10 is imposed on the right-hand side of the Structural Wedge by the Driving
Wedge. Similarly, the resultant mobilized passive earth pressure force
labeled Pr in Figure 2-10 is imposed on the left-hand side of the Structural
Wedge by the Resisting Wedge.
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The summation of vertical forces acting on the Figure 2-10 T-Wall results in
the expression for the effective vertical force normal to the base of the T-
Wall,

N' =W — Upgse+Xg — X,, (2.29)
The summation of horizontal forces acting on the Figure 2-10 T-Wall
results in the mobilized shear resistance force acting along the base of the
wedge,

Tmob = ER + HR - EL - HL (230)

It is the shear force required for horizontal equilibrium of the Structural
Wedge. The ultimate horizontal force is given by

Tyt = ¢’ * B, + N tan(¢") (2.31)

where c’is the effective cohesion and ¢’is the effective angle of internal
friction.

The FS at the foundation is then given by

Tu
FSfoundation = —Hit (2.32)

Tmob

Summation of moments about the Toe of the Figure 2-10 T-Wall results in

1 W Xw—toe — Ubase * Xy—toes + EL * h3 + HL * hl + XR * Base —
N" * Xy_toe = (2.33)
Egp x h, — Hg * hy
Solving for xn-toe,
_ Wxxw—toe—Ubase*Xu—toetEL*h3+H*h1+Xg*Base—Eg+*hy —HR*hy
XN—-toe = (2.34)

NI

Recall that for the Normal load case, the EM 1110-2-2502 (HQUSACE
1989) performance criteria stipulates that Be is required to be equal to the
base width, Base, but this in a deterministic calculation. When probabilistic
engineering soil property criteria are considered through a simulation
procedure of analysis, there are situations in which the Be value can be less
than Base. However, values of Be less than Base will violate the EM 1110-2-
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2502 (HQUSACE 1989) design criteria for Normal loads. This would be a
violation of the base area in compression limit state criteria.

In preparation for a performance function probabilistic simulation
assessment, Equation 2.33 needs to be recast. Rearranging, Equation 2.28
becomes

Be

XN-toe = 3 (2.35)

Recall that the value for Be is geometrically restricted to be less than or
equal to the base width, Base.

Introducing Equation 2.35, Equation 2.33 is recast as

’ Be) _ W Xw—toe — Ubase * Xy—toe T EL * h9 + HL * h7 + XR * Base _}

N *(3)_{ Eg x hyg — Hg * hg (2.36)
where Be is constrained geometrically to be less than or equal to Base. A
gap is formed when Be is less than Base, and the length of the gap is
determined by subtracting B. from Base.

2.4.1 Location of Driving Wedge Force Er

Figure 2-11 shows the horizontal component of the effective earth pressure
distribution and the distribution of water pressures with their corres-
ponding resultant forces acting on the right side of the Structural Wedge.
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Figure 2-11.. Horizontal component of effective earth pressures and water pressures
with their corresponding resultant forces acting on the right side
of the Structural Wedge.
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The horizontal effective earth pressure at point B in Figure B-2 is given by
O-;l—B = Kactive * Cos(almob—Active) * Ymoist * (h4 - h6) (2.37)

where
ymoist 1S the moist unit weight of the retained soil, and Kactive is mobilized
active earth pressure coefficient given by Equation 2.4 and is calculated
using @'mob-active and &'mob-Active.
The horizontal effective earth pressure at point C is

Gill—C = KActive * Cos(almob—Active) * {Vmoist * (h4 - h6) +y1* h6}(2-38)

The point of application of Er is given by

hy = MOMER_g+MomERg_¢ (2.39)

ER
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with
MomER,_p = [% * (op-p) * (hy — he)] * [% * (hy — he) + he] (2.40)
and

{[(o-p) * (he)] * [2  (Re)]} +

MomERy_, =
omete-c {{[§*<a,;_c—a,:_3>*<h6>]*[g*<h6>]}

} (2.41)

2.4.2 Location of horizontal water pressure resultant force - right side of
the Structural Wedge

The resultant pore water pressure force Hr is given by
Hp = % * (uc) * (he — hpeer) (2.42)

Recall that the pore water pressure uc may be computed using the line of
seepage (Subsection 2.3.3 or 2.3.4).

The point of application of Hr with reference to the elevation of the bottom
of the base slab at its heel (i.e., point C), is given by

hg = HomiRE-c (2.43)

HR

with the moment about the elevation of the bottom of the base of the slab,
defined as

MomHRg_; = E * (uc) * (he)] * E * (he)] (2.44)

2.4.3 Location of Resisting Wedge force E;,

Figure 2-12 shows the horizontal component of the effective earth pressure
distribution and the distribution of water pressures with their corres-
ponding resultant forces acting on the left side of the Structural Wedge.
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Figure 2-12. Horizontal component of effective earth pressures and water pressures
with their corresponding resultant forces acting on the left side
of the Structural Wedge.
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The horizontal effective earth pressure at point D is
/ _ 1
Op—p = KActive * C05(6 mob—Passive) * {Vl * h3} (2-45)

where

1 is the effective unit weight of the retained soil accounting for the upward,
vertical gradient of steady-state seepage through the saturated soil volume
of the Driving Wedge. Equation 2.19 provides for the y value.

Kpassive is mobilized passive earth pressure coefficient given by Equation
2.16 and is calculated using @¢'mob-active and &'mob-active.

The point of application of EL, relative to the bottom of the base slab below
the toe (point D), is given by

hg = MomELp-g (2.46)

Ej
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2.5

with
MomELp_g = [% * (Op—p) * (h3)] * E * (hs)] (2.47)

The value for height hg by Equation 2.46 should be equal to one-third of hs.

2.4.4 Location of horizontal water pressure resultant force - right side of
the Structural Wedge

The computation of the pore water pressures acting normal to the
Structural Wedge using the Line of Seepage procedure of analysis is
discussed in Subsection B.2.2. The resultant pore water pressure force Hi-1
is given by

Hy = 3% (ug) = (hs — hg) + 5 * (ug + up) * (hs) (2.48)

The point of application of Hi, relative to the toe of the base slab (point D),
is given by
__ MomHLp_g+MomHLE_p

h, = (2.49)

Hy,

with
MomHLg_p = [2* (ug) * (hs — hg)] * [2* (hs — h3) + h3]  (2.50)

and

{[(ug) * (ha)] * [3* (ha)]} + } (2.51)

iy 1007 O L

Performance function

As discussed in Subsection 2.4 of Ebeling and White (2019), each limit state
boundary is represented mathematically by a performance function that is
positive for satisfactory performance of the structure, negative for
unsatisfactory, and 0.0 at the transition point of the limit state being
investigated. As an example, the performance function can be defined with
respect to the capacity of the structure, R, and the demand on the structure,
L. With respect to the capacity and demand, the performance function
becomes

gX)=R-1L (2.52)
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The Equation 2.52 difference is sometimes referred to as the margin of
safety. Using this definition of the performance function, satisfactory
performance occurs when the capacity (R) exceeds the demand (L), and
unsatisfactory performance occurs when the demand (L) meets or exceeds
the capacity (R). The limit state occurs when the demand is balanced by the
capacity. This can be related to the probabilities of whether the system
performance is satisfactory or unsatisfactory (Figure 2-13). Given that the
two variables R and L are each defined by a mean, a variance (equal to the
square of the standard deviation), and a distribution (e.g., normal,
lognormal), the PUP is the portion of the resulting distribution of (R-L)
that falls below zero, as depicted and labeled in Figure 2-13. Since it is a
ULS, the PUP is also referred to as probability of failure, Py, in the civil
engineering literature. Note that since this is a PDF, the area under the (R-
L) distribution is equal to 1.0, as are each of the PDF areas under the R and
L distributions.

Figure 2-13. Capacity vs. demand related to the probability of unsatisfactory
performance (after Nowak and Collins 2000, 2013).
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The interrelationship between Reliability theory and Load and Resistance
factors used in an LRFD methodology is derived by returning to the simple
ULS example of Figure 2-13 and Equation 2.52. The single limit state
response surface is defined by setting Equation 2.52 equal to zero,

gX)=R-L)=0 (2.53)

where R is the capacity (i.e., X- = R) and L is demand (i.e., X; = L). Recall
that when (R-L) < o, failure occurs.
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3.1

3.2

The Five Limit States Being Considered for
the Example Soil-Structure Interaction of
the T-Wall Model with Material Variability

Five limit states

In general, soil-founded (or rock-founded) reinforced concrete hydraulic
structures can possess up to seven limit states. These limit states are
summarized in Chapter 1. For the three wedge T-Wall SSI example problem
introduced in Chapter 2, five of the seven limit states are being considered
in the example problem. These five limit states are

1. Overturning or rotational failure of the structural system about its
foundation in its entirety

Global sliding failure of the structural system in its entirety

Bearing failure of the foundation to the structural system in its entirety
Flexural failure of individual structural members

Shear failure of individual structural members.

AN S

The first three limit states are concerned with geotechnical effects on
system response. The latter two limit states are concerned with the
reinforced concrete structural features.

Initial structural system design considerations

The full system that will be modeled for these limit states is a T-Wall as
shown in Figure 2-1. The primary design feature for this structure that will
determine satisfactory or unsatisfactory performance is the base width of
the T-Wall. To perform a preliminary deterministic design, assign mean
values from Table 2-1 for all shear strength variables of a T-Wall under
normal loadings (as defined by EM 1110-2-2502 [HQUSACE 1989]) to
obtain an initial estimate of the minimum required base width of the
Chapter 2 example T-Wall. This preliminary deterministic design is
facilitated by using the CASE software CTWall-R. CTWall-R is an updated
version of CTWall (Pace 1994). Note that CTWall-R makes limiting
assumptions in its wedge solution scheme so its results will be different
from that of the solution made using the engineering relationships given in
Chapter 2 of this report. This analysis is used solely to generate an initial,
approximate estimate for the minimum T-Wall base width value, Base.



ERDC/ITL TR-21-1

38

3.3

Once the design of the T-Wall structural system has been defined, the
weight of the Structural Wedge can be determined from geometry, soil
properties, and water levels. Note that total soil unit weight(s) (e.g., jsat
below the water table) are used to compute W in this effective stress
analysis.

These two initial Structural Wedge properties of Base and W are used as
constants in the following limit state iterative procedural methods.

Base area in compression of the Structural Wedge limit state

In Subsection 3.1, the first limit state deals with overturning or rotational
failure of the structural system about its foundation in its entirety. In the
USACE design process for hydraulic structures, this limit state is assessed
through control of the amount of base area in compression for the
Structural Wedge. This subsection summarizes the required steps: (1) a
deterministic analysis to convert COVpoint estimates to COVspatial for the
effective angle of internal soil friction of the retained soil of the active
wedge and for the buttressing soil of the Resisting Wedge, (2) a procedural
method to compute the performance of a structural system for the base
area in compression limit state.

3.3.1 Iterative method for determining interactions between Driving,
Resisting, and Structural Wedges for at-rest equilibrium conditions
for Base Area in Compression limit state

Table 3-1 outlines an iterative procedure used to determine the forces and
their point of application between the wedges (as shown in Figure 2-3)
under at-rest conditions, enforced by steps 4 and 5. Because the system is
defined in moment equilibrium and peak moments are defined by at-rest
conditions, a solution that iterates through Driving and Resisting wedge
slip-plane angles and foundation gap formation must be iterated through to
determine the equilibrium state of the model. This iterative procedure
returns (1) the forces and their point of application, (2) the length of the
Driving and Resisting Wedge slip planes, (3) line of seepage information,
and (4) the effective structural base width B. taking the effect of gap
formation due to uplift and interaction moments.
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Table 3-1. Iterative at-rest procedure to calculate Soil Wedge interactions.

Step | Driving, Description
Resisting
or
Structural
Wedge(s)

1 D,R Assign at-rest earth pressures: Assign a FS equal to 1.5 to the Driving
Wedge and the Resisting Wedge so as to obtain at-rest earth pressures
according to EM 1110-2-2502 (HQUSACE 1989) and their resulting
forces Pr and Py, respectively, acting on either side of the Structural
Wedge.

2 D,R Assign soil properties ¢’ and &: Assign the appropriate soil properties ¢’
and ¢ for the procedure being followed. For a deterministic solution,
apply mean values. For simulations, apply the current simulation run
values X.

3 D,SR Line of Seepage: Perform a Line of Seepage analysis using the geometry
determined during the preliminary design with mean hydraulic
conductivity values for the three soil regions. Assume no gap develops
under Normal loading in the initial analysis. Two sets of results are
provided by this analysis: (a) the vertical seepage gradients acting within
the Driving and Resisting Wedges (iyow and iy-rw, respectively) and (b)
distributions of total heads, H, pressure heads hp, and pore water
pressures, u, along the three faces of the wetted perimeter for the
Structural Wedge.

4 D Pr: Compute the Pmob-active force imposed on the Structural Wedge using

the mean value for the soil strength parameters of the Driving Wedge soil
region with FSmob-active = 1.5 and using the Chapter 2 engineering
relationships.

(a) Compute the mobilized active soil wedge strength values of @'mob-active
and &' mob-active USING the mean value for ¢’ with & equal to a constant
times ¢' and FSmob-active = 1.5.

(b) Compute the mobilized active earth pressure coefficient Kmob-active.

(c) Compute the orientation of the planar active wedge slip plane angle
amob-active and the length of the slip plane Lactive, and the Figure 2-5 Active
Wedge geometry heights hi, h> and hs.

The next sequence of computations is required to compute the
equivalent unit weight s for the Driving Wedge:

(d) Using the buoyant unit weight »uy and vertical seepage gradient iy-ow,
from the Line of Seepage calculation, compute the unit weight 71,
followed by the unit weight 7.

(e) Compute Pr = Pmop-active USINg all the data generated in this
computational step. It acts at an angle &mob-active from the normal to the
Driving to Structural Wedge interface. This wedge solution for Pr with FS
= 1.5 approximates the at-rest earth pressure force.
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Step

Driving,
Resisting
or
Structural
Wedge(s)

Description

R

P.: Compute the Pmob-rassive force imposed on the Structural Wedge using
the mean value for the soil strength parameters of the Resisting Wedge
soil region with FSmob-rassive = 1.5 and using the Chapter 2 engineering
relationships.

(a) Compute the mobilized passive soil wedge strength values of @¢'mob-
passive aNd &'mob-rassive USIiNG the mean value for ¢’ with & equal to a
constant times ¢’ and FSmob-passive = 1.5.

(b) Compute the mobilized passive earth pressure coefficient Kmob-passive.
(c) Compute the orientation of an “equivalent” planar passive wedge slip
plane angle amob-rassive and the length of the slip plane Leassive.

The next sequence of computations is required to compute the
equivalent unit weight s for the Resisting Wedge:

(d) Compute the buoyant unit weight yuy followed by the unit weight 1.
Use iy.rw from the Line of Seepage computation in this calculation. For
the submerged Resisting Wedge, y equals y1. Note that this j value
differs from that computed for the Driving Wedge.

(e) Compute PL = Pmob-rassive USIing all the data generated in this
computational step. It acts at an angle &mov-rassive from the normal to the
Resisting to Structural Wedge interface. This wedge solution for P. with
FS = 1.5 approximates the at-rest earth pressure force.

Boundary Water pressures, u: Using the results from the Line of Seepage
analysis: (a) compute the distribution of boundary water pressures acting
normal to the left, base and side faces of the structural wedge.

(b) Using this distribution of u, compute the resultant boundary water
pressure forces acting normal to the three faces of the Structural Wedge:
HL, Upase, and Hk.

Check for gap:

(a) Use the vertical force equilibrium Equation (2.29) given in Chapter 2
to solve for the magnitude of the effective normal force N’ acting normal
to the base of the Structural Wedge.

(b) Solve for the location of N’ as measured from the Toe of the
Structural Wedge, Xn-base.

(c) Compute the length of gap Lgap, (if any).

D,S,R

If a gap is computed in the previous step, repeat the analysis starting
with the Line of Seepage analysis and include this gap length: If the
previous step results in a nonzero gap length, repeat steps (3) through
(7) until convergence or a minimum tolerance in Lgap is met.

3.3.2

Engineering steps in the calculation of COVspatial for the Driving
and Resisting Wedges and Foundation Soil

The normal load case (EM 1110-2-2502) (HQSUACE 1989) of the T-Wall
design for the base area in compression limit state centers on the
application of at-rest earth pressures by the Resisting Wedge and Driving
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Wedge (when present) against the Structural Wedge. The lengths of the slip
planes of the Resisting, Driving, and Structural wedges are necessary to
determine the geospatial coefficient of variation for Reliability analysis
from the point estimate coefficient of variation. The calculation steps of this
COVspatial for the three soil wedges is described in Table 3-2. The step-by-
step base area in compression limit state procedure of analysis of the
Structural Wedge is summarized in Table 3-1, as well as the method to
determine the slip planes for the wedges. These calculations make use of
mean values for ¢’and & in each of the three soil regions in Table 3-2 to
compute the length of the Driving Wedge slip plane Lactive and the length of
the Resisting Wedge slip plane Lpassive.

Table 3-2 shows the procedure to calculate the coefficient of variation for
the soil properties of the three soil wedges of Figure 2-1.

Table 3-2. Procedural method to calculate COVspara for the Driving and

Resisting Wedges.
Step | Driving, Description
Resisting or
Structural
Wedge(s)
1 D,SR Determine soil wedge interactions: iterate through Table 3-1,

assigning mean values to ¢’ and ¢ for each soil region.

2 D I2(L) Driving Wedge: Compute the Variance Reduction Factor for the
retained soil.

(a) Using the vertical and horizontal scales of fluctuation (& and 6n)
for the retained soil (Table 2-2), compute the equivalent scale of
fluctuation &k along the planar slip plane of length L = Lactive at angle
Aamob-Active (Equation 2.3).

(b) Using Equation 2.1 with L = Lactive, compute the Variance
Reduction Factor for the retained soil.

3 D COVspatiai Driving Wedge: Compute COVspatiar USing Equation 2.2 of the
effective angle of internal friction for the active wedge using the
COVpoint estimate Value given in Table 2-1.

4 R I2(L) Resisting Wedge: Compute the Variance Reduction Factor for the
buttressing soil.

(a) Using the vertical and horizontal scales of fluctuation (& and on)
for the buttressing soil (Table 2-2), compute the equivalent scale of
fluctuation ok along the approximate planar slip plane of length L =
Lpassive at angle amob-Passive.

(b) Using Equation 2.1 with L = Lpassive, cOMpute the Variance
Reduction Factor for the buttressing soil.

5 R COVspatial Resisting Wedge: Compute COVspatial Using Equation 2.2 of
the effective angle of internal friction for the passive wedge using the
COVpoint estimate Value given in Table 2-1.
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Step [ Driving, Description
Resisting or
Structural
Wedge(s)
6 S I2(L) Structural Wedge: Compute the Variance Reduction Factor for

the foundation soil.

(a) Set the equivalent scale of fluctuation to the horizontal scale of
fluctuation for the foundation soil (ot = o). The example assumes a
horizontal base.

(b) Using Equation 2.1 with L=Base, compute the Variance Reduction
Factor for the foundation soil.

7 S COVspatial Structural Wedge: Compute COVspatiai Using Equation 2.2 of
the effective angle of internal friction for the foundation soil using the
COVpoint estimate Value given in Table 2-1.

3.3.3 Engineering steps to assess the performance
(satisfactory/unsatisfactory) of the Structural Wedge for the base
area in compression limit state

For a Reliability analysis of the base area in compression limit state of the
Figure 2-3 Structural Wedge, variability in the soil shear strength
parameters are considered. Table 2-1 lists the mean and point estimate
COV values for the effective angle of internal friction and interface friction
for the three soil regions of the Figure 2-1 T-Wall example problem model.
Performing the series of computations outlined in Subsection 3.3.2 results
in the transformation of these Table 2-1 point estimate COV values into
spatial COV values for each soil region, as required for use in Geotechnical
limit state analyses (Ebeling and White 2019). Table 3-3 establishes the
steps to compute the performance of a designed T-Wall given a vector of
random variables (X). For reliability purposes, this function is called the
g(X) function, as will be discussed in Chapter 4. For the sample T-Wall
example, this vector is comprised of the ¢ and & values for the soil
properties in the Driving, Resisting, and beneath the Structural Wedges.
For a reliability analysis, a set of vectors will be created, and this function
will be used with each of these vectors to determine PUP. In simulation
methods, the vector X is created by drawing the values of ¢’ and & from
their appropriate distributions.
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Table 3-3. Base area in compression limit state procedure of Reliability analysis
computing g(X) per simulation value X.

Step [ Driving, Description
Resisting or
Structural
Wedge(s)
1 D,SR Determine soil wedge interactions: iterate through Table 3-1,

assigning values to ¢’ and ¢ from Xfor each soil region.

2 D,SR Resisting moment R: Compute the Resisting moment R for simulation
i using Equation 3.1.

3 D, SR Driving moment L: Compute the Driving moment L for simulation i
using Equation 3.2.

4 D,S,R Assessing g(X): Compute the value of the performance function g(X)
for this simulation i using Equation 2.52. Note that if g(X) is positive
then the performance of the structure is counted as satisfactory
against the base area in compression limit state for variable vector X.
However, if g(X) is negative then the performance of the structure is
counted as unsatisfactory against the base area in compression limit
state for variable vector X.

The Equation 2.36 Resisting moments of Figure 2-10 are combined into a
single moment term and the Driving moments of Equation 2.36 are
combined into a second term for the Reliability analysis. The Equation 2.36
resisting moments, designated as R, are given as

R=W*xw_toe+EL*h9+HL*h7+XR*Base (31)

In the probabilistic simulation process discussed in the next chapter, the
moments due to forces W, and Hr. are deterministic. The other two
moments due to forces Er and Xk are variable and will change in value
during each simulation.

The Equation 2.36 driving moments, designated as L, are
L = Upgse * Xy-toe + Er * h1o + Hg * hg (3.2)

Observe that the moment due to force N’is not included because when the
Structural Wedge is verged on moment equilibrium, its point of action is
located at the heel. In the probabilistic simulation process discussed in the
next chapter, the moment due to force Hr is deterministic as well as that
due to force Upase, S0 long as Be = Base. The other two moments due to
forces N’ and Er are variable and will change in value during each
simulation.
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Note that the mobilized values for ¢’and & are being used in conjunction
with this Pr value to compute the Er and Xz forces the Driving Wedge
imposes on the Structural Wedge and not their ultimate strength values.
The horizontal force component of mobilized force Pr is given as

Er = Pg * COS(almob—Active) (3.3)

The vertical component of the mobilized right-hand side driving (wedge)
force is given by

Xgp = Pg * Sin(5,mob—Active) (3.4)

Similarly, the mobilized values for ¢’ and & are being used in conjunction
with this Pz value to compute the Er and X1, forces the Resisting Wedge
imposes on the Structural Wedge and not their ultimate strength values.
The horizontal force component of mobilized force Pr is given as

E, =P * COS(‘S,mob—Passive) (3.5)

The vertical component of the mobilized left-hand side resisting (wedge)
force is given by

X, =P * Sin(5,mob—Passive) (3.6)

Recall from Chapter 2 that the summation of vertical forces acting on the
Figure 2-10 T-Wall results in the expression for the effective vertical force
normal to the base of the T-Wall,

N' =W — Upgse+Xg — X,, (2.29 bis)

With Er and X&, now defined, the resultant resisting moment R may be
computed using Equation 3.1 in Step 2 of Table 3-3. And with Er, X1, and N’
established, the resultant driving moment L may be computed using
Equation 3.2 in Step 3 of Table 3-3.

The value of the performance function g(X) for simulation i is computed in
Step 3 using Equation 2.52. Table 3-3 is repeated for simulations i+1
through n simulations with the current simulation X values.
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3.4

The step-by-step engineering computations, used in the base area in the

probabilistic compression limit state procedure of Reliability analysis of the

Structural Wedge, are summarized in Table 3-2.

Global sliding failure of the Driving, Structural, and Resisting
Wedge limit state

In Subsection 3.1, the second limit state deals with global sliding failure of
the structural system in its entirety. This equates to a limit state of the
Driving, Structural and Resisting Wedges sliding in unison. In the USACE
design process for hydraulic structures, this limit state is assessed through
control of the amount of shear resistance mobilized within the soils
comprising the Driving, Wedge, foundation soil, and the soil comprising
the Resisting Wedge. The USACE guidance document EM 1110-2-2502
(HQUSACE 1989) expresses the required minimum factor of safety, FS,
value through a Shear Mobilization Factor (SMF). The SMF is defined as
the inverse of the minimum FS value. This subsection summarizes the
required steps: (1) a deterministic analysis to convert COVpoint estimates t0
COVspatial for the effective angle of internal soil friction of the retained soil
of the active wedge and for the buttressing soil of the Resisting Wedge and

(2) a procedural method to compute the performance of a structural system

for the global sliding failure limit state. By EM 1110-2502 guidance, the
minimum FS value for any Load case (i.e., Usual, Unusual, or Extreme) is
specified to be the same value within the Driving, Structural, and Resisting
Wedges.

3.4.1 Iterative method for determining interactions between Driving,
Resisting, and Structural Wedges for force equilibrium conditions
for Sliding limit state

Table 3-4 outlines an iterative procedure used to determine the forces and
their point of application between the wedges (as shown in Figure 2-3) in
equilibrium altering the FS, enforced by steps 4 and 5. Because the system
is not defined in force equilibrium, a solution that iterates through Driving
and Resisting wedge slip-plane angles and foundation gap formation must
be iterated through to determine the equilibrium state of the model, where
the factors of safety of the three soil wedges are the same. This iterative
procedure returns (1) the forces and their point of application, (2) the
length of the Driving and Resisting Wedge slip planes, (3) line of seepage
information, and (4) the effective structural base width B. taking the effect
of gap formation due to uplift and interaction moments.
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Table 3-4. Iterative procedure to calculate equilibrium force Soil Wedge interactions.

Step

Driving,
Resisting or
Structural
Wedge(s)

Description

D,R

Assign at-rest earth pressures: Assign an initial FS equal to 1.5 to the
Driving Wedge and the Resisting Wedge to obtain at-rest earth
pressures according to EM 1110-2-2502 (HQUSACE 1989) and their
resulting forces Pr and Py, respectively, acting on either side of the
Structural Wedge.

D,R

Assign soil properties ¢’ and &’: Assign the appropriate soil properties
¢ and ¢ for the procedure being followed. For a deterministic
solution, apply mean values. For simulations, apply the current
simulation run values X.

D,S,R

Line of Seepage: Perform a Line of Seepage analysis using the
geometry determined during the preliminary design with mean
hydraulic conductivity values for the three soil regions. Assume no gap
develops under Normal loading in the initial analysis. Two sets of
results are provided by this analysis: (a) the vertical seepage
gradients acting within the Driving and Resisting Wedges (iy-ow and iy-
rRw, respectively) and distributions of (b) total heads, H, pressure
heads hp, and pore water pressures, u, along the three faces of the
wetted perimeter for the Structural Wedge.

Pr: Compute the Pmob-active force imposed on the Structural Wedge
using the mean value for the soil strength parameters of the Driving
Wedge soil region with the assigned value for FSmop-active and using the
Chapter 2 engineering relationships.

(a) Compute the mobilized active soil wedge strength values of ¢'mop-
Active AN O mob-active USING the mean value for ¢’ with & equal to a
constant times ¢’ and the assigned value for FSmob-active-

(b) Compute the mobilized active earth pressure coefficient Kmob-active.
(c) Compute the orientation of the planar active wedge slip plane
angle amob-active and the length of the slip plane Lactive, and the Figure
2-5 Active Wedge geometry heights hi, hz, and hs.

The next sequence of computations is required to compute the
equivalent unit weight s for the Driving Wedge:

(d) Using the buoyant unit weight uy and vertical seepage gradient iy-
ow, from the Line of Seepage calculation, compute the unit weight 71,
followed by the unit weight 7.

(e) Compute Pr = Pmop-active USINg all the data generated in this
computational step. It acts at an angle &' mob-active from the normal to
the Driving to Structural Wedge interface.
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Step

Driving,
Resisting or
Structural
Wedge(s)

Description

R

P.: Compute the Pmob-rassive force imposed on the Structural Wedge
using the mean value for the soil strength parameters of the Resisting
Wedge soil region with the assigned value for FSmop-passive and using
the Chapter 2 engineering relationships.

(@) Compute the mobilized passive soil wedge strength values of ¢'mob-
passive and &’mob-rassive USING the mean values for ¢’ with & equal to a
constant times ¢’ and with the assigned value for FSmob-passive.

(b) Compute the mobilized passive earth pressure coefficient Kmob-
Passive-

(c) Compute the orientation of an “equivalent” planar passive wedge
slip plane angle amob-rassive and the length of the slip plane Lpassive.

The next sequence of computations is required to compute the
equivalent unit weight s for the Resisting Wedge:

(d) Compute the buoyant unit weight yuy followed by the unit weight
y1. Use iy-rw from the Line of Seepage computation in this calculation.
For the submerged Resisting Wedge, 7 equals y1. Note that this je
value differs from that computed for the Driving Wedge.

(e) Compute PL = Pmob-rassive USing all the data generated in this
computational step. It acts at an angle &’mob-passive from the normal to
the Resisting to Structural Wedge interface.

Boundary Water pressures, u: Using the results from the Line of
Seepage analysis: (a) compute the distribution of boundary water
pressures acting normal to the left side, base and right side faces of
the structural wedge.

(b) Using this distribution of u, compute the resultant boundary water

pressure forces acting normal to the three faces of the Structural
Wedge, HL, Ubase and Hg.

Check for gap:

(a) Use the vertical force equilibrium equation given in Chapter 2 to
solve for the magnitude of the effective normal force N’ acting normal
to the base of the Structural Wedge.

(b) Solve for the location of N’ as measured from the Toe of the
Structural Wedge, Xn-base.

(c) Compute the length of gap Lgap, (if any).

(d) Compute the base within compression, Be. Note that Be is always
less than or equal to Base.

D,S,R

If a gap is computed in the previous step, repeat the analysis starting
with the Line of Seepage analysis and include this gap length: If the
previous step results in a nonzero gap length, repeat steps (3)
through (7) until convergence or a minimum tolerance in Lgap is met.
For the example problem, the tolerance for convergence on gap length
is given as 0.1 ft.
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Step [ Driving, Description
Resisting or
Structural
Wedge(s)

9 S Compute FStoundation:

(a) With all the forces acting on the Structural Wedge defined, solve
for the shear force Tmob required for equilibrium along the base of the
Structural Wedge using Equation 2.30.

(b) Compute the factor of safety against sliding along the base of the
structural wedge. Calculate FSroundation USing Equation 2.32 with the
ultimate shear force capacity Tur given by Equation 2.31.

10 D,S,R Iterate on factor of safety: If the computed value for FSfoundation does
not match that assumed for FSmob-active aNd FSmob-passive, repeat steps
(3) through (9) using an adjusted factor of safety value. This iterative
process continues until convergence within a minimum tolerance in
factor of safety is met. For the example problem, convergence is
determined when the newly generated Factor of Safety varies by a
tolerance value less than 0.01 Recall that for the Normal load case a
minimum value of 1.5 is required for factor of safety against sliding.

Step 10 is complicated because Equation 2.32 will go to infinity as Tmob
approaches a zero value for the numerical modeling in the simulation
process. This occurs because the mobilized Resisting Wedge force
sufficiently counters the mobilized Driving Wedge force. It is further
complicated because values for the soil strength properties can cause the
Sliding Limit State to occur in the opposite direction than intended, toward
the Driving Wedge. These conditions mean that it is important to choose a
range to search for the maximum value of FSfoundation equivalent to FSactive
and FSpassive (Within the tolerance of 0.01). This range can be obtained by
finding two bounding values of FSactive, with FSpassive being set equal to
FSactive. The first bounding value is the FSactive value that generates (using
Steps 3-9) a value of FSfoundation, which is greater FSactive. The second
bounding value has to be chosen such that the computed value of FSfoundation
is less than FSactive and greater than zero. When the bounds have been
chosen, the iteration step, Step 10, can be accomplished using a numerical
search algorithm within the bounds.

3.4.2 Engineering steps in the calculation of COVspatial for the Driving
and Resisting Wedges and the Foundation Soil under the sliding
limit state

In the normal load case (EM 1110-2-2502) (HQUSACE 1989), the T-Wall
design for the sliding limit state centers on the application of earth
pressures by the Resisting Wedge and Driving Wedge (when present) to the
Structural Wedge. The calculation steps of this COVspatial for the three soil
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wedges is described in Table 3-5. The sliding limit state procedure of
analysis of the Driving, Structural, and Resisting Wedges is summarized in
Table 3-4. These calculations make use of mean values for ¢’ and & in each
of the three soil regions in Table 3-5 to compute the length of the Driving
Wedge slip plane Lactive and the length of the Resisting Wedge slip plane
Lpassive. The objective of these computations is to define COVspatial values for
each of the three soil regions for use in the Reliability analysis of the
subsequent subsection.

Table 3-5. Procedure to calculate COVsparias for the Driving and Resisting Wedges and

for the foundation soil.

Step

Driving,
Resisting or
Structural
Wedge(s)

Description

D,S,R

Determine soil wedge interactions: iterate through Table 3-4,
assigning mean values to ¢’ and ¢ for each soil region.

I2(L) Driving Wedge: Compute the Variance Reduction Factor for the
retained soil.

(a) Using the vertical and horizontal scales of fluctuation (& and 6n)
for the retained soil (Table 2-2), compute the equivalent scale of
fluctuation ok along the planar slip plane of length L = Lactive at angle
Omob-Active-

(b) Compute the distance factor n using the Figure 2-4 relationship of
n =LActive/ o3

(c) Determine the value for the Variance Reduction Factor using Figure
2-4.

COVspatial Driving Wedge: Compute COVspatial Of the effective angle of
internal friction for the active wedge using the COVpoint estimate Value
given in Table 2-1.

I2(L) Resisting Wedge: Compute the Variance Reduction Factor for the
buttressing soil.

(a) Using the vertical and horizontal scales of fluctuation (& and 6n)
for the buttressing soil (Table 2-2), compute the equivalent scale of
fluctuation ok along the “approximate” planar slip plane of length L =
Lpassive @t angle amob-passive.

(b) Compute the distance factor n using the Figure 2-4 relationship of
n =LPassive/ o3

(c) Determine the value for the Variance Reduction Factor using Figure
2-4.

COVspatial Resisting Wedge: Compute COVspatial Of the effective angle of
internal friction for the passive wedge using the COVjpoint estimate Value
given in Table 2-1.
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Step [ Driving, Description
Resisting or
Structural
Wedge(s)
6 S I2(L) Structural Wedge: Compute the Variance Reduction Factor for

the foundation soil.

(a) Using the horizontal scale of fluctuation (on) for the foundation soil
(Table 2-2) and base width L = Base, compute the distance factor n
using the Figure 2-4 relationship of n = Base / 6n

(b) Determine the value for the Variance Reduction Factor using
Figure 2-4.

7 S COVspatial Structural Wedge: Compute COVspatial Of the effective angle of
internal friction for the foundation using the COVjpoint estimate Value given
in Table 2-1.

3.4.3 Engineering steps in the Reliability analysis of the Structural
Wedge for the sliding limit state

In a Reliability analysis of the sliding limit state of the Figure 2-3 Structural
Wedge, the variability in the soil shear strength parameters is considered.
Table 2-1 lists the mean and point estimate COV values for the effective
angle of internal friction and interface friction for the three soil regions of
the Figure 2-1 T-Wall example problem model. Performing the series of
computations outlined in Subsection 3.3.1 results in the transformation of
these Table 2-1 point estimate COV values into spatial COV values for each
soil region, as required for use in Geotechnical limit state analyses (Ebeling
and White 2019). The engineering computations, used in the probabilistic
sliding limit state procedure of Reliability analysis of the Structural Wedge,
are summarized in Table 3-6.
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Table 3-6. Step-by-step sliding limit state procedure of Reliability analysis of the

Structural Wedge.

Step

Driving,
Resisting or
Structural
Wedge(s)

Description

D,S,R

Determine soil wedge interactions: iterate through Table 3-4,
assigning mean values to ¢’ and ¢ for each soil region.

Driving force L: Compute the Driving force L for simulation i using
Equation 3.7.

P.: Compute the ultimate Ppassive force imposed on the Structural
Wedge using the simulated value for the soil strength parameters of
the Resisting Wedge soil region using the Chapter 2 engineering
relationships.

(a) Define the ultimate passive soil wedge strength values of @'rassive
and J'rassive Using the simulation generated value for ¢, with & equal
to a constant times ¢'.

(b) Compute the ultimate passive earth pressure coefficient Kpassive.
(c) Compute the orientation of an “equivalent” planar passive wedge
slip plane angle arassive and the length of the slip plane Lpassive.

The next sequence of computations is required to compute the
equivalent unit weight s for the Resisting Wedge:

(d) Compute the buoyant unit weight muy followed by the unit weight
71. Use iy-rw from the Line of Seepage computation in this calculation.
For the submerged Resisting Wedge, 7% equals y1. Note that this j
value differs from that computed for the Driving Wedge.

(e) Compute P = Prassive Using all the data generated in this
computational step. It acts at an angle J&passive from the normal to the
Resisting to Structural Wedge interface.

Tur: Compute the ultimate horizontal shear force along the base of the
structural Wedge using Equation 2.31 with ultimate shear strength
soil parameters for the foundation soil. The computation of the
effective normal force N’ is given by Equation 2.29.

S,R

Resisting force R: Compute the Resisting force R for simulation i using
Equation 3.8.

D,S,R

Assessing g(X): Compute the value of the performance function g(X)
for this simulation i using Equation 2.52. Note that if g(X) is positive,
then the performance of the structure is counted as satisfactory
against the base area in compression limit state for variable vector X.
However, if g(X) is negative, then the performance of the structure is
counted as unsatisfactory against the base area in compression limit
state for variable vector X.
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Step 1 follows the procedure of Table 3-4, assigning the simulation values of
X for the variable soil properties of the wedges. The next step is to collect
the Figure 2-10 Driving forces into a single force term and then do the same
for the horizontal Resisting forces of Equation 2.30. The following
relationship is used in Step 2 to compute the horizontal resultant driving
force L imposed on the Structural Wedge by the Driving Wedge after the
iterative computational procedure of Table 3-4 has been completed. The
Equation 2.30 driving forces summed and designated as L, are

L = Hyp + Ej (3.7)

In the probabilistic simulation process, the force Hr is deterministic. The
other horizontal effective earth pressure force Er is variable and will change
in value during each simulation. Its value is determined from the Pr value.
Pris set equal to P4 from Equation 2.4 and is computed using the
mobilized effective angle of internal friction of the soil, ¢’mob-active, and the
mobilized interface angle of friction, 6" mob-active for the last FS iteration.
Note that the mobilized values for ¢’ and & are being used in conjunction
with this Pr value to compute the Er and Xz forces the Driving Wedge
imposes on the Structural Wedge and not their ultimate strength values.
The horizontal force component of mobilized force Pr is given as

Er = Pg * COS(almob—Active) (3.3 bis)

The vertical component of the mobilized right-hand side driving (wedge)
force is given by

Xp = Pp* Sin(5’mob—Active) (3.4 Dbis)
The horizontal resisting forces, designated as R, are given as
R=H, +E, + Ty, (3.8)

In the probabilistic simulation process used in Table 3-6, the force HL is
deterministic. The other two forces Er and Tur are variable and will change
in value during each simulation. The horizontal component of the ultimate
left-hand side ultimate resisting force P provided by the Resisting Wedge
to the Structural Wedge given by

E;, = P, x cos(8') (3.9)
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In this equation, Py is set equal to Pp from Equation 2.15 and is computed
using the effective angle of internal friction of the soil, ¢’passive, and the
interface angle of friction, ¢"passive (Step 3). Observe that the ultimate values
for ¢’and ¢ are being used and not their mobilized values to compute Er.

The vertical component of the ultimate left-hand side resisting force PL
provided by the Resisting Wedge is given by

X, = P, *sin(8") (3.10)

Recall from Chapter 2 that the summation of vertical forces acting on the
Figure 2-10 T-Wall results in the expression for the effective vertical force
normal to the base of the T-Wall,

N' =W — Upgsoe+Xg — X, (2.29 bis)

The ultimate horizontal force (i.e., capacity) along the base of the structural
wedge is computed in Step 4 using the relationship

Ty = ¢’ * B, + N'tan(¢") (2.31 bis)

where c’is the effective cohesion, Be is the base length of the Structural
Wedge in compression, and ¢’is the effective angle of internal friction. The
Step 4 computation of the effective normal force N’ is given by Equation
2.29. With Er and Tuir now defined, R may be computed using Equation 3.7
in Step 5 of Table 3-6.

The value of the performance function g(X) for simulation i is computed in
Step 5 using Equation 2.52. Table 3-6 is repeated for simulations i+1
through n simulations. In Figure 3-1, all of the computed forces that are
acting against the two-dimensional (2-D) cross section of the wall and its
components are shown.
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3.5

Figure 3-1. Free body diagram of resultant forces acting on the stem and base slab
of the Structural Wedge.
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Bearing failure of the Structural Wedge limit state

In Subsection 3.1, the third limit state deals with bearing failure of the
structural system beneath its foundation. In the USACE design process for
hydraulic structures, this limit state is assessed based on several factors for
the Driving, Structural, and Resisting Wedges. This subsection summarizes
the required steps: (1) a deterministic analysis to convert COVpoint estimates to
COVspatial for the effective angle of internal soil friction of the retained soil
of the Structural Wedge and for the buttressing soil around the Structural
Wedge and (2) a procedural method to compute the performance of a
structural system for the bearing limit state.

3.5.1 Iterative method for determining interactions between Driving,
Resisting, and Structural Wedges for force equilibrium conditions
for bearing limit state

For the bearing limit state, the force configuration acting on the Structural
Wedge has the equivalence constraints for FS as the sliding limit state.
Therefore, the same procedure for interaction of the wedges (Table 3-4)
applies for this limit state and the calculation of the effective base width Be
and the vertical shear forces, which act at the interfaces of the Structural
Wedge.
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3.5.2 Engineering steps in the calculation of COVspatia for the foundation
soil

The normal load case (EM 1110-2-2502) (HQUSACE 1989) of the T-Wall
design for the bearing limit state centers on the application of the vertical
pressure created by the weight of and shear forces applied to the Structural
Wedges along the base of the structure. Because shear forces and the
effective base length are required to determine the pressures acting at the
base, a full analysis using the iterative method must be performed as shown
in Table 3-5. This means that the spatial variance in the Driving and the
Resisting Wedge must be determined as before. The lengths of the slip
planes of the Resisting and Driving Wedges are necessary to determine the
geospatial coefficient of variation for Reliability analysis from the point
estimate coefficient of variation and are calculated according to the same
procedure as before.

For bearing, the variance of the soil beneath the structure is determined in
a different fashion, instead of using a slip plane defining a linear wedge. In
this circumstance, the soil is being pushed downward and, because of
resistance below, outward to the sides of the structure. Figure 3-2 shows
the zones of shear for the strip footing Structural Wedge being punched
into the soil (Vesic 1967).

Vanmarcke (1977a) suggested a fitting of the space with a theoretical
triangular function on one side or the other of the structure. For example,
the triangular region would be Regions I, I, and III on either the left or
right of the structure in Figure 3-2, which is not to scale. He also suggested
that an approximate simplified variance reduction factor for the base soil
could be calculated as the product of the variance reduction factors for the
vertical and horizontal scale of fluctuation directions. This approximation
is followed by Baker and Calle (2002), Schneider and Schneider (2013),
Babu and Dasaka (2007).

2 =T2xT? (3.11)

Babu and Dasaka (2007) suggested that, for cohesionless soils, the depth
for vertical load regions could be approximated by 2B, where B is the length
of the footing base, and the horizontal region distance for spatial
approximation would be 2.5B along the horizontal axis. Extending the
approximation for soil that can move to both sides of the structure implies
that the horizontal soil region spatial distance should be 2 x 2.5B, or 5B.
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Babu (2014) changed this horizontal spatial dimension for shallow
foundations to 3.5B for a single side or 7B for the entire horizontal
component, and these are the values the authors adopted for the shallow
embedment of the T-Wall example problem.

Figure 3-2. Idealizations of shear zones at failure of an earth-supported strip footing
Structural Wedge. Zone I: Rankine Active zone; Zone II: Rankine Passive zone; and
Zone lll: Radial Shear zone.

|4_ Structural _’|
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The step-by-step calculation of COVspatial for the bearing limit state
procedure of analysis of the Structural Wedge is summarized in Table 3-7,
as well as the method to determine the slip planes for the wedges and the
soil beneath the base of the structure. The bearing limit state procedure of
analysis of the Driving, Structural, and Resisting Wedges is summarized in
Table 3-4.These calculations make use of mean values for ¢’and & in each
of the three soil regions to compute the length of the Driving Wedge slip
plane Lactive , the length of the Resisting Wedge slip plane Lpassive and Lv and
Lu for the foundation soil below the Structural Wedge.
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Table 3-7. Step-by-step base area in compression limit state procedure of analysis of
the Structural Wedge to calculate COVsparias fOr the Driving and Resisting Wedges.

Step | Driving,
Resisting or
Structural
Wedge(s)

Description

1 D,S,R

Determine soil wedge interactions: iterate through Table 3-4,
assigning mean values to ¢’ and ¢ for each soil region.

I2(L) Driving Wedge: Compute the Variance Reduction Factor for the
retained soil.

(a) Using the vertical and horizontal scales of fluctuation (& and 6n)
for the retained soil (Table 2-2), compute the equivalent scale of
fluctuation Je along the planar slip plane of length L = Lactive at angle
Omob-Active-

(b) Using Equation 2.1 with L=Lactive, cOmpute the Variance Reduction
Factor for the retained soil.

COVspatial Driving Wedge: Compute COVspatiar Using Equation 2.2 of the
effective angle of internal friction for the active wedge using the
COVpoint estimate Value given in Table 2-1.

I2(L) Resisting Wedge: Compute the Variance Reduction Factor for the
buttressing soil.

(a) Using the vertical and horizontal scales of fluctuation (& and 6n)
for the buttressing soil (Table 2-2), compute the equivalent scale of
fluctuation ok along the “approximate” planar slip plane of length L =
Lpassive @t angle amob-passive.

(b) Using Equation 2.1 with L=Lpassive, cOMpute the Variance Reduction
Factor for the buttressing soil.

COVspatiai Resisting Wedge: Compute COVspatiar using Equation 2.2 of
the effective angle of internal friction for the passive wedge using the
COVpoint estimate Value given in Table 2-1.

I2(L) Structural Wedge: Compute the Variance Reduction Factor for
the foundation soil. The base distance is measured as Be = Base -
Lgap. The Variance reduction factor is computed using Equation 2.1 for
horizontal and vertical values of L.

(a) Set the vertical spatial distance Lv = 2Be. Using Equation 2.1 with
the vertical scale of fluctuation gives I}2.

(b) Set the horizontal spatial distance Ly = 7Be. Using Equation 2.1
with the horizontal scale of fluctuation gives I'2.

(c) Using Equation 3.11, compute the approximate Variance Reduction
factor for the base soil.

COVspatial Structural Wedge: Compute COVspatiai Using Equation 2.2 of
the effective angle of internal friction for the foundation soil using the
COVpoint estimate Value given in Table 2-1.
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3.5.3 Engineering steps to assess the performance
(satisfactory/unsatisfactory) of the Structural Wedge for the
bearing limit state

For a Reliability analysis of the bearing limit state of the Figure 2-3
structural wedge, variability in the soil shear strength parameters are
considered. Table 2-1 lists the mean and point estimate COV values for the
effective angle of internal friction and interface friction for the three soil
regions of the Figure 2-1 T-Wall example problem model. Performing the
series of computations outlined in Subsection 3.4.1 results in the
transformation of these Table 2-1 point estimate COV values into spatial
COV values for each soil region, as required for use in Geotechnical limit
state analyses (Ebeling and White 2019). Table 3-8 establishes the steps to
compute the performance of a designed T-Wall given a vector of random
variables (X) determined using the COVspatial values from Table 3-7. For
reliability purposes, this function is called the g(X) function, as will be
discussed in Chapter 4. For the sample T-Wall example, this vector is
comprised of the ¢’and & values for the soil properties in the Driving,
Resisting, and beneath the Structural Wedges. For a reliability analysis, a
set of vectors will be created, and this function will be used with each of
these vectors to determine PUP.

Table 3-8. Step-by step-base area in compression limit state procedure of Reliability
analysis of the Structural Wedge.

Step | Driving, Description
Resisting or
Structural
Wedge(s)
1 D, SR Determine soil wedge interactions: iterate through Table 3-4,

assigning mean values to ¢’ and ¢ for each soil region.

2 D,S, R Resisting force R: Compute the resisting force using Equations D.1
and D.2, which implement uniform base pressure capacity.

3 D,S,R Load force L: Compute the vertical load L for simulation i using
Equation 3.12.

4 D,S,R Assessing g(X): Compute the value of the performance function g(X)
for this simulation i using Equation 2.52. Note that if g(X) is positive
then the performance of the structure is counted as satisfactory
against the base area in compression limit state for variable vector X.
However, if g(X) is negative then the performance of the structure is
counted as unsatisfactory against the base area in compression limit
state for variable vector X.
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The equations for calculating the resistance base pressure and the
subsequent resisting force, assuming that the pressure is applied uniformly,
are Equation D.1 and Equation D.2 of Appendix D in this report. The
pressures are assumed to be applied uniformly across the base because the
failure constraint is that foundation soil has developed a fully plastic state
with the full mobilization of the shear strength. This allows the entire
structure to punch into the foundation soil as idealized in Figure 3-2.

SySyalyiSytSygBYN .
q= (c(cd(ci(ct{chNc + (q(qd(qi(qt(ngONq +-t rey ;t = Y(D-l bis)
where

g = vertical component of the ultimate unit bearing capacity of the
foundation (pressure)
N¢, Nq, N,= base bearing capacity factors
e, Cg, ¢y = shape factors
Ced, Cqd, $d= embedment factors
Cei, Lqi, r= inclination factors
ety Sat, S= base tilt factors
eg, Cag, $y= ground slope factors
C = cohesion
y = unit weight of the soil
Be = effective base width
L = effective base length (for a 2D section evaluation, a value of 1.0
is used)
qo = effective overburden pressure on a plane passing through the
base of the footing.

Notice that each of the factor terms is defined based on the variable
properties of the foundation soil, the effective base width, and the geometry
of the structure. These definitions are in Appendix D. The effective base
width is altered by the variable soil properties in the Driving and Resisting
Wedges.

Because the computations used for Sliding and Base Area in Compression
(Overturning) limit states already provide the effective vertical force
exhibited by the structural wedge, which acts directly against the base, the
bearing capacity is converted to an ultimate resisting force for the effective
base width (for the 2-D slice), which is the width of the base in contact with
the foundation soil. This width will be affected by uplift and overturning
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forces that cause a gap to form between the foundation soil and the
foundation.

Rpearing = Be€q (D.2 bis)
The Equation 2.36 vertical driving load, designated as L, is
L=W — Ubase + XR - XL (3.12)

Observe that the vertical demand L is the only force that can cause a
bearing failure below the structural wedge base. Because of the
assumptions of uniform pressures, the position of this force does not
matter. The g(X) condition is only concerned that the total vertical forces
on the structure exceed the resultant resistance bearing force computed in
Equation D.2. The forces vary as the soil material properties ¢’ and & vary
for both the load (in the Xr and X1 terms) and the bearing resistance.

Step 1 follows the procedure of Table 3-4, assigning the simulation values of
X for the variable soil properties of the wedges. Note that the mobilized
values for ¢’ and & are being used in conjunction with this Pr value to
compute the Xz forces the Driving Wedge imposes on the Structural Wedge
and not their ultimate strength values. The vertical component of the
mobilized right-hand side driving (wedge) force is given by

Xgp = Pp* Sin(5’mob—Active) (3.13)

Similarly, the mobilized values for ¢’and & are being used in conjunction
with this Pr value to compute the X1, forces the Resisting Wedge imposes on
the Structural Wedge and not their ultimate strength values. The vertical
component of the mobilized left-hand side resisting (wedge) force is given
by

X, =P * Sin(5,mob—Passive) (3.14)

The value of the performance function g(X) for simulation i is computed in
Step 4 using Equation 2.52. The procedure of Table 3-8 is repeated for
simulations i+1 through n simulations to determine reliability of the
structure under the bearing limit state.
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3.6

The step-by-step engineering computations, used in the base area in the
probabilistic compression limit state procedure of Reliability analysis of the
Structural Wedge, is summarized in Table 3-8.

Shear failure of the wall stem limit state

The previous limit states have been concerned with only the geotechnical
portion of the Structural System. To that end, all of the forces have only
been affecting the full Structural Wedge, which incorporates the actual
structural feature of the T-Wall and any soil or water regions that lie
directly above the base of the reinforced structural slab. The structural
feature consists of a reinforced concrete base slab and a vertical reinforced
concrete wall (referred to as the stem), which geometrically forms the
T-shape of the T-Wall structure, as illustrated in Figure 2-3. The base slab
bears the weight of the overburden, which helps prevent overturning and
sliding, as discussed in Subsections 3.3 and 3.4, respectively. The vertical
stem portion of the T-Wall bears the brunt of the horizontal earth and
water pressures on the structural system. The bottom of the stem where it
meets the base slab has the greatest load because the earth and water
pressures increase with depth.

Determining the horizontal forces acting at the bottom of the stem wall
requires a few steps: First, a geotechnical Wedge equilibrium analysis must
be run converging to a common FS value for the three wedges. This allows
for the determination of the forces acting horizontally against the
Structural Wedge imposed by the adjacent Driving and Resisting Wedges.
This step follows the same procedure as Tables 3-4 and 3-6. These forces
are combined with the model of the full Structural Wedge (with soils and
water) to pass the forces to the base of the wall stem using the equations of
Appendix B. Equation B.75 computes the geotechnical shear force at the
wall stem, which is the load on the stem, based on the ¢’ variables and the
directly correlated & values.

The structure’s shear strength resistance is determined using the properties
of the concrete used in the reinforced concrete structure. Reinforced
concrete design of walls have been studied and typically have a variable
strength using a lognormal distribution about the biased design strength of
the structure, as given in Table 3-9. A bias factor is applied to the nominal
design strength to account for conservatism in design. A bias factor of 1.15
is applied for shear strength calculations. Studies also reveal that the
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3.7

coefficient of variation for these structures is properly estimated to be 0.18
for concrete shear strength calculations.

Table 3-9. Design resistance model for the concrete Shear limit state
(after Ellingwood?).

.. e Mean bias Coefficient of Standard
Limit State Distribution factor Variation Deviation
shear Capacity |} (N ormal 1.15 0.18 0.207
(beams)

According to EM 1110-2-2104 (HQUSACE 2016), the load factor that
should be applied to determine the design capacity of the structure under
the usual case lateral earth loading is 2.2 (Table 3-1 of EM 1110-2-2104)
(HQUSACE 2016). The required (minimum) reinforced concrete shear
force value is computed for the lateral earth shear force imposed under the
usual load case with mean values for the three ¢’ and the correlated &
values for the soil wedges. The Table 3-9 load factor times the bias factor is
applied to the mean concrete shear resistance capacity to arrive at the shear
strength value used in the Ultimate limit state design.

The design resistance capacity and distribution (Table 3-9) are used to
form a limit state g(X) function with an analysis of the Structure under the
Extreme load case using Tables 3-4 and 3-6 and Equation B.75. This
equation has 4 variables: the previously existing variables ¢'pw, ¢’sw, and
¢’rw, and now the new resistance variable sR. The soil friction angle
computations combined with Equation B.75 give the load acting on the wall
stem, and sR gives the true resistance. This new g(X) function (where g(X)
= L-sR) can be used with the ASM, Monte Carlo, and simulation methods
to determine the fitness of the structure using a PUP calculation.

Flexural failure of the wall stem limit state

In the same spirit as the shear failure of the wall stem, flexural failure also
occurs near the base of the wall stem. This is especially true for the flexural
limit state because the greatest moment arm occurs about the bottom of the

1 Ellingwood, B. R. 2015. Procedures for Developing Reliability-Based Load Criteria for Hydraulic Steel
and Concrete Structures. Final letter report submitted to the URS Group, Inc. U.S. Army Corps of
Engineers.

NOTE: From this point forward, the document will be referred to or cited as “Ellingwood.”
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stem. A very similar procedure is used to calculate the resistance capacity
against flexural failure.

Determining the flexural forces acting at the bottom of the stem wall
requires a few steps: First, a geotechnical wedge equilibrium analysis must
be run converging to a common FS value for the three wedges. This allows
for the determination of the forces acting horizontally against the
Structural Wedge imposed by the adjacent Driving and Resisting Wedges
and the height that the forces are applied, for moment arm computation.
This step follows the same procedure as Tables 3-4 and 3-6. These forces
and moment arms are combined with the model of the full Structural
Wedge (with soils and water) to pass the forces and moments to the base of
the wall stem using the equations of Appendix B. Equation B.76 computes
the (geotechnical based) moment applied at the wall stem, which is the load
on the stem, based on the ¢ variables and the directly correlated & values.

The structure’s flexural resistance is determined using the properties of the
concrete and reinforcement steel used in the reinforced concrete structure.
Reinforced concrete design of walls have been studied and typically have a
variable strength using a lognormal distribution about the biased design
strength of the structure, as given in Table 3-10. A bias factor is applied to
the nominal design strength to account for conservatism in design. A bias
factor of 1.12 is applied for moment strength calculations. Studies also
reveal that the coefficient of variation for these structures is properly
estimated to be 0.14 for moment strength calculations.

Table 3-10. Design resistance model for the flexural limit state (after Ellingwood).

Limit State Distribution Mean Bias Cogfflplent of Star]da)rd
Factor Variation Deviation

Flexural

Capacity (one- LogNormal 1.12 0.14 0.157

way slabs)
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According to EM 1110-2-2104 (HQUSACE 2016), the load factor that
should be applied to determine the design capacity of the structure under
the Usual case lateral earth loading (which is used to compute moments) is
2.2 (Table 3-1 of the EM 1110-2-2104) (HQUSACE 2016). This required
(minimum) reinforced flexural capacity value is computed for the lateral
earth force and force application height imposed under the Usual load case
with mean values for the three ¢’ and the correlated & values for the soil
wedges. The Table 3-10 load factor times the bias factor is applied to the
mean flexural resistance capacity to arrive at the flexural capacity value
used in the Ultimate limit states design.

The design flexural resistance capacity and distribution (Table 3-10) are used
to form a limit state g(X) function with an analysis of the structure under the
Extreme load case using Tables 3-4 and 3-6 and Equation B.76. This
equation has four variables; the previously existing variables ¢'pw, ¢’sw, and
¢’rw, and now the new resistance variable fR. The soil friction angle
computations combined with Equation B.76 give the load acting on the wall
stem, and fR gives the true resistance. This new g(X) function (where g(X) =
L-fR) can be used with the ASM, Monte Carlo, and simulation methods to
determine the fitness of the structure using a PUP calculation.
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4.1

A Procedural Method for Computing
Individual Limit State Probability of
Unsatisfactory Performance (PUP) and
Load Factors for the Example Soil-
Structure Interaction of the T-Wall Model
with Material Variability

Introduction and research

Numerical Reliability-based methodologies beyond those discussed in
Chapter 2 were also investigated as part of this research effort. Several
numerical methods that may be used for calculating Load and Resistance
scale factors for a single limit state are described in Appendix C. It is
important to recognize the principal limitations for these numerical
procedures:

1. They all require a mathematically defined, continuous PDF
distributions for load and for resistance.

2. These procedures also require that load and resistance be uncorrelated.
Independent load and resistance variables satisfy this requirement.

The first numerical method discussed in Section C.2 was developed by
Nowak and Collins (2013) and was restricted to single limit states, as the
Load and Resistance units and distributions vary between limit states. The
procedure was based on the Rackwitz and Fiessler (1976, 1978) procedure
for mapping a non-normal distribution to a normal distribution with unit
area. This procedure works well with continuous data and less well with
histogram data because the routine requires computation of matching
cumulative distribution function (CDF) and PDF data for the distribution
with the normal distribution. This procedure allows for the scaling of the
resistance distribution with respect to a fixed load distribution, adjusting
the (R-L) distribution for a target value of £ and its associated PUP.

This Nowak and Collins (2013) numerical procedure was adapted for use in
solving problems discussed in this report. It stands in contrast with the
ASM procedure in that ASM determines a g value that corresponds to the
probability of unsatisfactory performance given fixed load and resistance
distributions. Load and resistance factors are computed in the ASM
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approach from a design point that resides on the limit state response
surface. These load and resistance factors guarantee the probability of
unsatisfactory performance for the computed value for 5.

To summarize, the ASM method takes resistance and load distributions and
calculates a g value for a limit state to compute load and resistance factors.
In contrast, the Nowak and Collins (2013) numerical procedure iteratively
scales the resistance distribution while constraining the load distribution as
fixed in reliability space allowing for calculation of load and resistance
factors for a specified g value.

A supplemental procedure is discussed in Section C.3 that recognizes the
fact that load and resistance factors are constants and therefore their ratio
is constant. It is simpler to solve for this ratio of these two factors and then
to calculate the partial load safety factor given a specified partial resistance
safety factor. This safety factor ratio may be computed using the numerical
procedure outlined in Section C.2.

Section C.5 summarizes a reliability-based numerical procedure for
computing a value for Reliability Index g following the steps outlined in
Nowak (1999). Professor Nowak originally developed this procedure over
a number of years with a focus on its application to LRFD-based bridge
design (Nowak and Lind 1979; Nowak 1999; Nowak and Collins 2000,
2013).

Section C.6 describes a Gaussian function superposition approach of
numerically fitting normalized normal distribution functions to a non-
normal PDF and computing a value for Reliability index g. This approach
uses a number of summed Gaussian distribution values for each PDF value.
The error between the non-normal distribution PDF and the summed
Gaussian distributions PDF is minimized. The attractiveness of this
analysis procedure is that it may be used on any form of PDF yet be able to
determine a value for g that may be used in a Reliability analysis for
determination of load and resistance factors.

Chapter 2 describes the geotechnical example problem that can be solved
with SSI analysis using the equations of Chapter 3 for a T-Wall. This
solution method depends on the design of the structural system, with a
standard design defining the normal operating conditions and therefore the
Usual load conditions and the three variable geotechnical material
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4.2

properties of Mohr-Coulomb effective angle of internal friction for the
retained soil wedge, the foundation and the resisting soil wedge, ¢’1, ¢’> and
¢’s, respectively. The three strength parameter variables for the three
Figure 2-1 soil regions are assumed to be normally distributed,
independent variables. Their statistical parameters are summarized in
Table 2-1. The base width was varied, and the design was conducted with
the USACE Computer-Aided Structural Engineering (CASE) CTWall
software using allowable stress design (ASD) method applying the
traditional engineering safety factors of EM 1110-2-2502 (HQUSACE 1989)
for the Usual load case for each of the three Section 3.1 geotechnical limit
states. The maximum base width that met the allowable stress design was
for the sliding limit state (FS against sliding equal to 1.5 for the Normal
load case). The sliding limit state was found to be critical among the three
limit states, with the other two being bearing and base area in compression.
Recall from Table 3-1 in EM 1110-2-2104 (HQUSACE 2016) that LRFD
factors are applied for the Extreme load case and are not used in the design
for the Usual and Unusual load cases. The limit states for this geotechnical-
structural system are described in Section 1.5.

Given the design geometry as established using CTWall software for the
Normal load case and the geotechnical material properties, the resulting
limit state load and resistance are computed for the Extreme load case, and
those values can be used to assess the performance of the structure in a
probabilistic framework. A set of samples can be created by varying the
material properties in a Monte Carlo style simulation. These sample points
can be used to create a PDF histogram of load and resistance. It has been
observed for this example T-Wall that the resulting distributions can be
very different from a normal distribution. Recall ¢’1, $’> and ¢’ 3 are each
normally distributed. Because the load L and resistance R (defined in
Chapter 3), are computed from the same three wedge EM 1110-2-2502
(HQUSACE 1989) based analysis formulation and geotechnical material
properties, the load and resistance distributions have a great likelihood to
be correlated.

Individual limit state procedure for computing load and
resistance distributions from material properties and
determining load factors

The following procedure provides a method based on Monte Carlo
simulations with material variables for determination of LRFD load factors.
This procedure was devised by Ebeling and White (2019) for the reliability
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analysis of a T-Wall retains earth and is buttressed by earth, analytically
modeled as an EM 1110-2-2502 (HQUSACE 1989) three-wedge retaining
structure, with driving, structural, and resisting wedges. The Mohr-
Coulomb shear strength parameters of effective angles of internal friction
(¢’1, ¢, and ¢’3) for the soils of the three respective wedges were assumed to
be normally distributed, independent variables. A traditional Reliability-
based (Resistance-Load, or R-L) formulation of loads applied to the
structural wedge containing the T-Wall was devised. Monte Carlo
simulations were conducted to develop a database of corresponding
resistance and load values which were then binned into a histogram to form
PDF distributions. The resulting R and L distributions were observed to be
non-normal because of the limit state computation method to calculate R
and L from the three-wedge solution. Furthermore, because the three-
wedge solution method was used to compute load and resistance relative to
each other, the distributions exhibited correlation. Rather than attempt to
sample the load and resistance distributions and try to match the Pearson
(1895) correlation coefficient, the original captured samples of
corresponding L and R are used to calculate a Load Scale Factor (Lsr) from
a Resistance Scale Factor (Rsr). The Rsr is the scale factor that must be
applied to the resistance distribution determined from the base structural
design in order to achieve a target PUP value (PUPrarget). Rsr times the
mean Resistance (uresistance) determines the resistance required to
counteract the design load, and so it is equivalent to the design load. The
mean Load (uLoad) must be scaled by Lsr to get the design load value.
Designing the new resistance to meet this design load means the newly
designed structure will achieve PUPrarget. This means that Lsr is equivalent
to the ratio of the load and resistance factors (y./¢r). From this ratio, and
given a specified Rsr value, an Lsr value can be computed using the routine
described in Appendix C, Section C.3. This procedure will be referred to as
the Single Limit State Simulation Fixed Load Procedure because the load
distribution remains fixed while the resistance distribution is scaled.

1. Create Gz() function for the limit state(s) that returns total Resistance
(R), total Load (L), and conditional value of unsatisfactory performance
(where unsatisfactory performance occurs when R-L < 0.0).

2. For geotechnical design, calculate the slip plane angle for the current
design conditions and determine the geo-statistical variability of soil
properties (e.g., Mohr-Coulomb effective angle of internal friction) for
each soil wedge (Driving, Structural, Resisting).
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3.

o

For a certain number of samples (Nsamples), generate simulation soil
properties and collect Gz() results, maintaining the order of the results
so that R/index] corresponds to L/index]. Maintaining the order
means that the distributions and any correlations are included in the
sample data.

Calculate gresistance and piroad for the R[] and L[] simulation results.

For verification, calculate the PUPmitial for the full simulation taking the
number of simulations with unsatisfactory performance and dividing by
the total number of simulations. This PUPnitial can be run through the
inverse CDF function for a Normal Distribution to arrive at a somewhat
arbitrary Smitial value.

. A Prarger value for a normal distribution is given that can be used to

determine PUPtarget.
Generate a function given R[], L[], PUPtarget, as well as a scale factor for
Resistance Rsr. This function calculates the unsatisfactory performance

0:>0.0

1:<0.0 (41)

Nsamples

%, amPLS((R[i] * Rgp)~LIiT}

Nsamples

PUPRSF =

To judge how close PUPrsr is to PUPtarget, the function returns a value

|PUPggr — PUP;4y ger|- This value is 0.0 when PUPrsr is equal to

PUPtarget and greater than 0.0 otherwise.
Use a numerical procedure to find a value of Rsr that minimizes the
Step 7 function. Because the function returns a minimal value of 0.0
when PUPrsr is equal to PUPtarget, the resulting value of Rsris the scale
factor from the original Resistance distribution R/] to the Resistance
distribution that, combined with the original Load distribution L[] has
the same PUP as PUPiarget.

. The Rsrvalue is a scale factor for the current design’s Resistance

Distribution that satisfies the PUPtarget goal. The piresistance and iroad
values are the means of the distributions that may be correlated;
therefore, their values have the same level of correlation. This means
that Lsr, which is the scale factor for the mean load that requires the
scaled resistance, or

Rgp * Ugesistance — Lsr * Upoaa = 0.0 (4.2)

— UResistance*RsF (4 3)

LSF
HLoad
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10. According to the Limit State equation, the mean Resistance to be
designed for (prpesign) is therefore

URpesign 2 LSF * ULoad (4-4)

The product of the load scale factor times the mean load value (i.e., the
right-hand side in this equation) is viewed as the value of minimum mean
capacity required to achieve the PUP:arget value. Thus, this minimal design
resistance Rpesign is the exact minimum mean resistance required to achieve
the PUPrarget capacity. Figures 4-1 and 4-2 show the effect of scaling the
Resistance Distribution by a computed Rsr for a specified PUPsystem. Notice
that the Load Distribution is held constant as Rsr is applied.

Figure 4-1. Unscaled Load and Resistance Distributions and the resulting Gz()
distribution for the Sliding Limit State.
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Figure 4-2. An Rs-Scale Factor of 1.734 is applied to the Resistance Distributions and
a new GZz()distribution is computed with PUPrg: for the Sliding Limit State.
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This procedure can be used for traditional LRFD, where the load and
resistance distributions can be readily defined, although this is typically a
trivial case that can be solved by basic analytical Reliability methods. This
procedure becomes more important for issues where the resistance
distribution can be calculated but is highly non-linear and/or is correlated
to the load distribution. In this case, the procedure based on samples more
accurately captures the behavior in the tails of the distributions, assuming
that the design does not change the shape and dispersion rate of the
distribution.

A full LRFD, with soil structure interaction, has more assumptions. In this
case, the load distribution is not fixed but is a result of analysis of a design.
The resistance distribution has these same characteristics and for the same
reason. Each design case makes a difference in the mean loads and
resistances because it also changes the forces acting on the structural wedge
and therefore the T-Wall structure. Because the load conditions change the
elevation of water and the slip planes of the driving and resisting Wedges,
the mean Load and Resistance on the structure changes with the design.
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For the example problem, the Normal load case is described, with sloping
backfill with an elevated internal water table within the retained soil,
partial pool side fill, and a pool elevation. Three other load cases were
considered (in order of severity). These cases may be considered as the
Extreme design load case and two beyond-Extreme load cases for the
structural system. The three cases are for the same T-wall but (1) dewatered
on the pool side (Extreme), (2) dewatered with pool side fill being lowered
to the top of the T-Wall foundation (beyond Extreme), and (3) dewatered
with no fill on the former pool side (beyond Extreme). In each sequential
case, there is less resisting soil and water to the backfill soil on the land side
of the T-wall than existed in the prior case. These four load cases are

illustrated in Figure 4-3.

Figure 4-3. Representations of the four design cases: (a) Normal Load Case, (b)
Dewatered Load Case, (¢) Dewatered with Reduced Fill for the Resisting Wedge, and
(d) Dewatered with No Fill for the Resisting Wedge.
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4.3

Sliding Limit State results for mid-range COVs

Tables 4-1 through 4-4 show the results of computing Rsr and Lsr for the
Sliding Limit State load conditions (computed as forces) for a T-Wall
designed with a 25 ft base for different PUPtarget values based on specified
normal distribution Starget values. It was determined through a trial-and-
error progression that setting nsamptes to 1,000,000 simulations would give
sufficiently accurate results. Notice that each design load condition has a
different ur and u because the design load case affects the load and
resistance. The Lsrvalue is based on the current load condition’s mean
values, urand .

Table 4-1 is for the standard Normal load case of Figure 4-3a. This case is
not traditionally solved for load factors for LRFD because the goal of LRFD
for the USACE Navigation structures is to reduce the probability of
Extreme load events causing unsatisfactory performance for the structural
system as per EM 1110-2-2104 (HQUSACE 2016). This case is solved for the
resistance and load factors here to provide insight into the full story of how
load factors are developed for the Sliding geotechnical limit state problem.
Solving this case also establishes the value of the Reliability Index, 3, that
the traditional EM 1110-2-2502 (HQUSACE 1989) allowable stress design
procedure achieves given the Normal load case, which resulted in a 25 ft
wide base with an FS against sliding equal to 1.5. EM 1110-2-2100
(HQUSACE 2005) requires that the FS for sliding of a Normal structure
using the Ordinary Site Information Category must meet or exceed 1.5 for
the Usual load case. Monte Carlo simulation with material variables
possessing Normal distributions was used to determine the PUP value for
the normal load case design, resulting in a PUP of 0.00025, which equates
to a S value of 3.48 (approximated with a Normal Gaussian Distribution).
Using the Single Limit State Simulation Fixed Load Procedure (Subsection
4.1), the Table 4-1 values were produced. It is possible to interpolate the
design S using the target #’s and Rsr factors from Table 4-1, because the
design S occurs when Rsr= 1.0 where the scale factor results in the values
of the simulation being unchanged. Interpolating between the values of the
last two rows gives a design £ of 3.48, which matches the simulation value.
This defines the performance of the 25 ft wide T-Wall designed with a sliding
factor of safety of 1.5 for the Usual load case in a probabilistic framework.
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Table 4-1. For the 25 ft wide base with Normal (watered) operating conditions:

Mr=54,042.96 |b, u: = 38,963.16 b, Binwiar= 3.48, PUPunitiar = 0.00025, R//to L[]
correlation = 0.976556.

Scale Factors
Pharget PUPraget

Rsr Lsr
1.0 0.15866 0.779 1.08
1.5 0.06681 0.811 1.125
2.0 0.02275 0.847 1.175
25 0.00621 0.889 1.233
3.0 0.00135 0.939 1.303
3.5 0.00023 1.002 1.390

Table 4-2. For the 25 ft wide base with Extreme (dewatered) operating conditions:

Hr=51,763.52 Ib, . = 37,574.50 Ib, Bintiar = 2.92, PUPnivar= 0.00175, R[]to L[]
correlation = 0.978495.

Scale Factors
P target PUP;zget

Rsr Lsr
1.0 0.15866 0.779 1.101
1.5 0.06681 0.837 1.156
2.0 0.02275 0.886 1.220
25 0.00621 0.940 1.295
3.0 0.00135 1.016 1.400
3.5 0.00023 1.187 1.635

Table 4-3. For the 25 ft wide base with beyond-Extreme soil to top of base (dewatered)
operating conditions:
ur=43,459.34 Ib, ur = 34,874.95 Ib, Binttier= 1.39, PUPni=r= 0.08229, Rfjto L[]
correlation = 0.973397.

Scale Factors
P iarget PUPiarget

Rsr Lsr
1.0 0.15866 0.938 1.169
1.5 0.06681 1.025 1.277
2.0 0.02275 1.191 1.484
25 0.00621 1.437 1.790
3.0 0.00135 1.810 2.255
35 0.00023 2.246 2.798
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Table 4-4. For the 25 ft wide base with beyond-Extreme scoured soil to the toe of the
structure (dewatered) operating conditions:

Mr=42,775.71 |b, ur = 34,427.89 b, Binwier= 1.251, PUPnivasr= 0.10551, Rf]to L[]
correlation = 0.971258.

Scale Factors

P et AT Rsr Lsr

1.0 0.15866 0.956 1.187
1.5 0.06681 1.072 1.331
2.0 0.02275 1.283 1.594
25 0.00621 1.574 1.956
3.0 0.00135 2.061 2.561
35 0.00023 2.747 3.413

For the example problem, Extreme conditions are met when the structure
is dewatered, as depicted in Figure 4-3b. Flood-side soil erosion, as
depicted in Figure 4-3c and d, are special beyond extreme load cases that
are outside of the acceptable bounds for the structure. They are included to
show scale factor growth as conditions change.

For the dewatered case using the design with a 25 ft base width, the
program CTWALL-R (Pace 1994) returned an FS for sliding of 1.43. The
EM 1110-2-2100 (HQUSACE 2005) requires that the FS for sliding of a
Normal structure using the Ordinary Site Information Category must meet
or exceed 1.1 for the Extreme load case. Therefore, the designed structure
has met the requirement by a significant amount, even exceeding the
minimum Unusual load case safety factor of 1.3. Monte Carlo simulations
of this design under the Extreme load case yields a Binitiat of 2.92, with a
PUPinitial of 0.00175. Table 4-2 gives the scale factors for the Extreme load
case of Figure 4-3b. To achieve a PUPtarget 0f 0.00023 corresponding to a
normal distribution Starget of 3.5, the load scale factor Lsris 1.635 giving a
value of Rpesign equal to 61,434 1b (= 37,574.5 times 1.635 by Equation 4.4).
This 61,434 1b is viewed as the value of minimum mean capacity required to
achieve the PUP:arget value, which should be designed for. Therefore, this
value is also the minimal design resistance Rpesign. This procedure works if
the load distribution is constant.

Tables 4-1 through 4-4 reveal that the mean load changes as the design is
altered, going from a mean load of 54,043 1b for the Normal load case to a
mean load of 42,776 Ib for the most Extreme load case. This implies that
any redesign that has a resistance distribution with a mean that approaches
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a desired Rpesign value is also altering the load distribution, and therefore
the PUP and g for the system. This is because the solution method given a
design computes the Load and Resistance from the mobilized soil regions
via the slip plane computation of the three-wedge system. If the engineer is
trying to achieve a design that exceeds a PUP value precisely, a few design
iterations in T-Wall base width may be required per load case. The extreme
value of Lsr given ftarget 3.5 for Table 4-2 yields a value for Rpesign of

61,434 Ib (Equation 4.4), and that value appears to be a high value, given
the other computed resistances for the 25 ft base load cases.

Tables 4-1 through 4-4 also give the initial values for # and PUP given the
original computed distributions. These values corroborate the calculations
for Rsr, as the value for Rsris less than 1.0 while Btarger is less than Binitial
and greater than 1.0 otherwise. The same holds true for the PUP values.

In the Tables 4-1 through 4-4 titles, the correlation values between the
Resistance and Load distributions are reported for the Sliding load case.
These distributions were found to have at least a 97% correlation between
the sample resistance and load values. Other statistical tests were
performed to determine the Pearson correlation coefficients between the
input variables (¢'pw, ¢’sw, and ¢’rw) to assure that the input variables were
independent after their simulation. These variables had correlation
coefficients between each (simulation) sample set with values less than
0.004, confirming each variable’s independence from each other. This
result means that any correlation introduced to the derived load and
resistance distributions is not due to the simulation procedure. Because
this procedural method works with direct simulation results, the
distribution is preserved with its correlation directly when the resistance
values are scaled. This is different than the Nowak and Collins (2013)
procedure discussed in Appendix C, which relies on Resistance and Load
distributions for its variables that are uncorrelated. The conversion of the
load and resistance distributions using the Rackwitz-Fiessler (1976, 1978)
transform is confounded by correlated variables.

In summary, the numerical Reliability simulation procedure outlined in
Section 4.2 and applied to this 25 ft base width T-Wall example is devised
for computations made using a single limit state at a time because in this
procedure the load and resistance distributions are calculated expressly for
that limit state.
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4.4

Base Area in Compression Limit State results for mid-range COVs

Tables 4-5 and 4-6 show the results of computing Rsr and Lsr for the Base
Area in Compression (i.e., Overturning) Limit State load conditions for a
T-wall designed with a 25 ft base for different PUPtarger values based on
specified normal distribution Starget values. The resistance and load
distributions are computed in units of moment, foot-pounds. Notice that
each design load condition has a different xr and w1 because the design load
case affects the load and resistance. The Lsr value is based on the current
load condition’s mean values, ur and L.

Table 4-5. For the 25 ft wide base with standard (watered) operating conditions:

ur=1,390,809.72 ft-b, y = 806,216.96 ft-Ib, B nitiar >6.0, PUPuniiar= 0.00000, R//to
L[] correlation = 0.298669.

Scale Factors
Prarget PUPrarget

Rsr LsrF
1.0 0.15866 0.586 1.010
1.5 0.06681 0.589 1.015
2.0 0.02275 0.592 1.021
2.5 0.00621 0.595 1.026
3.0 0.00135 0.598 1.031
35 0.00023 0.601 1.037

Table 4-6. For 25 ft wide base with standard (dewatered) operating conditions:

ur=1,370,070.13 ft-lb, u = 740,131.49 ft-Ib, Binitier >6.0, PUPnisas = 0.00000, F/]to
L[] correlation = 0.331293.

Scale Factors
Prarget PUPrarget

Rsr LsrF
1.0 0.15866 0.546 1.011
1.5 0.06681 0.549 1.017
2.0 0.02275 0.553 1.023
25 0.00621 0.556 1.029
3.0 0.00135 0.559 1.035
35 0.00023 0.562 1.040
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4.5

It may cause pause when observing that the Lsr values for both load cases
are greater than 1.0, when the resistance needs to be lowered to less than or
equal to 0.6 of its mean value. This is because there is so much excess
capacity for the design and ur is greater than 2 times the 1. Recall the
design of this 25 ft wide T-Wall is based on the Usual load case for the
sliding limit state. It is speculated, based on the minimal scale change of
load (Lsr) to find the Rpesign value (by Equation 4.4), that the load and
resistance distributions for this limit state possess small variance. This
causes the slope of the PUP curve for the Starget values to be steep and occur
over a short span of base width values. This interpretation is bolstered by a
series of runs varying the base width in the design between 12 and 15 ft for
the normal load case. In these runs, the approximate PUP values decreased
from 0.99 at the smaller base width of 12 ft to a PUP value of 0.066 at base
width of 13 ft, and continued to a value of 0.023 at 14 ft. At 15 ft base width,
the PUP value was essentially 0.0. Thus, for base width of 25 ft, the PUP
value for the base area in compression limit state is 0.0.

Bearing Limit State results for mid-range COVs

Tables 4-7 and 4-8 show the results of computing Rsr and Lsr for the
Bearing Limit State load conditions for a T-wall designed with a 25 ft base
for different PUPtarget values based on specified normal distribution Starget
values. The resistance and load distributions are computed in units of force,
pounds. Notice that each design load condition has a different ur and e
because the design load case affects the load and resistance. This is being
observed for all Geotechnical limit states. The Lsr value is based on the
current load condition’s mean values, ur and .

Table 4-7. For the 25 ft wide base with standard (watered) operating conditions:

ur=131,936.98 Ib, 1 = 48,736.99 Ib, Binitiar >6.0, PUPnitas = 0.00000, R/jto L[]
correlation = 0.880871.

Scale Factors

Farger L Rsr Lsr

1.0 0.15866 0.401 1.085
1.5 0.06681 0.417 1.129
2.0 0.02275 0.436 1.180
2.5 0.00621 0.460 1.245
3.0 0.00135 0.506 1.370
3.5 0.00023 0.561 1.518
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Table 4-8. For 25 ft wide base with standard (dewatered) operating conditions:

Mr=149,225.00 Ib, u = 54,808.31 Ib, Binitiar >6.0, PUPniias = 0.00000, R/jto L[]
correlation = 0.811645.

o Scale Factors
Parget Yarget
Rsr Lsr

1.0 0.15866 0.394 1.073
1.5 0.06681 0.408 1.110
2.0 0.02275 0.422 1.149
2.5 0.00621 0.438 1.192
3.0 0.00135 0.460 1.253
3.5 0.00023 0.489 1.322

The bearing capacity results have much larger resistance forces than for the
sliding limit state because the forces are acting vertically and mobilizing
more of the foundation soil. The higher resistances and smaller vertical
loads lead to excess resistance. This causes the slope of the PUP curve for
the Starget values to be steep and occur over a short span of base width
values for the T-Wall, as was observed for the Base Area in Compression
limit state.

4.6 Soil Structure Interaction (SSI)-proportioned load individual limit
state procedure for computing load and resistance distributions
from material properties and determining load factors

Subsection 4.2 introduces the first analytical simulation Reliability
procedure used for load and resistance factors computation, and it is
referred to as the Single Limit State Simulation Fixed Load Procedure
because the resulting limit state load distribution for the testing structure
remains fixed while the resistance distribution is scaled. Using simulation
generated sliding limit state R and L data for T-Walls with base widths
between 22 ft and 28 ft, Figure 4-4 is introduced, which reveals that this
Fixed Load Assumption, while valid for many engineering Reliability
analysis, is not appropriate for the Figure 2-1 geotechnical soil structure
interaction problem. The assumption breaks down because, for
geotechnical problems of this type, a change of design (in this case a change
in base width for the T-Wall) affects both the load and resistance forces
from the interacting soil wedges. The sliding limit state R and L force
simulation data are highly correlated for this T-Wall problem. An improved
procedure, called the proportioned load procedure for predicting load and
resistance factors, was then devised and applied to this same problem. This
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procedure adjusts the L distribution as the R distribution changes. The
results from this second analysis are also included in this subsection. This
procedure will be referred to as the Single Limit State Simulation
Proportioned Load Procedure.

Figure 4-4 provides a visual comparison of simulation results versus the
prediction results from using the Subsection 4.2 procedure. The orange
solid line of the plot passes through data points collected for the simulation
runs at each of the base widths from 22 ft to 28 ft. The actual values of the
simulations for these base widths return the resultant mean resisting force
and the approximated Gaussian Normal distribution S value for the
simulated PUP value. The result from the unscaled simulated data is used
to form the orange solid curved line segments and are judged to be precise.
The dashed lines represent the predicted values from each base width’s
actual distributions of the mean resistance force given a target approximate
Gaussian Normal £, or Starget. For example, with a 22 ft base width run and
a Ptarget Of 3.0, the resistance force would be approximately 50,000 Ib, by
the intersection of the light blue dashed line with a SBtarget-value of 3.0 in
this figure. The precise value for Sarger of 3.0 from the orange direct
simulated value line is a force of between 53,000 and 54,000 lb.

Figure 4-4. Predicted resistances (using the Section 4.2 procedure) for multiple wall
widths to achieve a target beta (with fixed load) versus the actual g values computed
for each wall width.
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Note that while the slopes for individual predicted values (dashed lines)
and the computed values are not linear, they do show linear tendencies,
especially for the dashed line data that plots below the solid orange line.
This suggests that it is possible to adjust the predicted values given load
and resistance distributions for a single base width using the ratio of
change of mean resistance to change of mean load as the base width
changes, so long as the distributions about the means do not change
significantly. In this way, a better prediction of Rsr and therefore Lsr can be
computed given the load and current g of a specific base width.

The following procedure provides a method based on Monte Carlo
simulations with material definitions for determination of LRFD load
factors. Rather than attempt to sample the load and resistance distributions
and try to match the Pearson (1895) correlation coefficient, the original
captured samples with computed resistance and load are used to calculate
the Load Scale Factor (Lsr) and Resistance Scale Factor (Rsr). This
procedure will be called the proportioned load procedure for predicting
load and resistance factors.

1. Create Gz() function for the limit state(s) that returns total Resistance
(R), total Load (L), and conditional value of unsatisfactory performance
(where unsatisfactory performance occurs when R-L < 0.0)

2. For geotechnical design, calculate the slip angle for the current design
conditions and determine the geo-statistical variability of soil properties
(e.g., soil friction angle) for each soil wedge (Driving, Structural,
Resisting)

3. Run a Gz() analysis for two different design cases (in this case, varying
the base width), and collect the rate of change of ziroad and giresistance
labeled Aroad and Agesistance, respectively. For greater accuracy, more runs
can be made, and the rate of change values averaged.

4. For a certain number of samples (Nsamples), generate simulation soil

properties and collect Gz() results for a base design case (e.g., single

base width), maintaining the order of the results so that R/index]
corresponds to L/index]. Maintaining the order means that the
distributions and any correlations are included in the sample data.

Calculate zresistance and piroad for the R[] and L[] simulation results.

. For verification, calculate the PUPnmitial for the full simulation taking the

number of simulations with unsatisfactory performance and dividing by
the total number of simulations. This PUPrnitial can be run through the

o ¢
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inverse CDF function for a Normal Distribution to arrive at a somewhat
arbitrary Smitial value.

7. A Prarget value for a normal distribution is given that can be used to
determine PUPtarget.

8. Generate a function given R[], L[], PUPtarget, as well as a scale factor for
Resistance Rsr. This function calculates the unsatisfactory performance

(R[i] * Rsp)-
Nsamples 0:>0.0
z:i=1 {(L[i]+((R5p—1.0)*R[i])*AALad) [1:<0.0

PUPRSF — Resistance (4.1 bIS)

Nsamples

To judge how close PUPrsF is to PUPtarget, the function returns a value
|PUPRsr — PUPy4rget |- This value is 0.0 when PUPrsr is equal to PUPrarget
and greater than 0.0 otherwise.

9. Use a numerical procedure to find a value of Rsr that minimizes the
Step 7 function. Because the function returns a minimal value of 0.0
when PUPrsr is equal to PUPtarget, the resulting value of Rsris the scale
factor from the original Resistance distribution R/] to the Resistance
distribution that, combined with the original Load distribution L[], has
the same PUP as PUPtarget.

10. The Rsrvalue is a scale factor for the current design’s Resistance
Distribution that satisfies the PUPtarget goal. The piresistance and tiLoad
values are the means of the distributions that may be correlated;
therefore, their values are have the same level of correlation. This
means that Lsr, which is the scale factor for the mean load that requires
the scaled resistance, or

Rgr * UResistance — Lsr * Uroaa = 0.0 (4.2 bis)
LSF = UResistance*RsF (43 blS)
HLoad

11. According to the Limit State equation, the mean Resistance to be
designed for (urpesign) is therefore

.uRDesign 2 LSF *ULoad (4-4 biS)

The difference between this numerical routine and the one in Section 4.2
are in Steps 3 and 8, where the relationship of the change in load to
resistance according to design changes is added to the computation in
Step 8.
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Figure 4-5 shows the results of applying the proportioned load procedure
for predicting load and resistance factors to estimate the resistance force
necessary to achieve a Brarget relating to an associated PUPtarget. Because
simulations were run given base widths from 22 to 28 ft, average values
could be computed for ALoad and Aresistance, Wwhich were calculated as
729.6717 Ibf and 1,090.048 Ibf, respectively.

Figure 4-5. Predicted resistances for multiple wall widths to achieve a target B targer
(with load adjusted to match the rate of change with the variable resistance) versus
the actual g values computed for each wall width.
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The results of using this procedure show an all-around improvement, but a
much better improvement for higher values of Starget. The predicted values
over all the base widths for Starget=3.1 range from 52,189 Ibf to 57,102 1bf
with a difference of nearly 5,000 Ibf using the fixed load procedure. The
proportional load procedure has predicted values that range from 54,580 1bf
to 56,711 Ibf with a difference of just over 2,000 Ibf. The computed actual
value was 55,742 Ibf, which nearly centers the smaller range.

For ftarget equal to 2.7, the fixed load procedure predicted forces varied from
46,463 Ib to 53,718 Ib. The proportional load predicted forces varied from
46,820 1b to 51,366 Ib. The precise value is approximately 47,158 Ib, a value
that is interpolated from the orange curve as it crosses the = 2.7 value,
which is much nearer to the predicted values using the shorter base width.

Figure 4-6 shows the relationship of the predicted Resistance, Load, and
(Resistance-Load) curves for direct simulations and simulation predictions
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using the proportioned load procedure. For the Resistance and Load
curves, the 22 ft base with T-Wall predicted histograms lie to the left of the
actual 25 ft histogram values and have a narrower range. The 28 ft
predicted Resistance and Load histograms lie to the right of the actual 25 ft
histogram values and have a wider range.

Subtracting the Loads from the Resistances, the (R-L) histogram curves
cross the 0.0 vertical axis, and PUP values are computed by integrating the
values to the left of the 0.0 vertical axis. Note that the PUP values for the
25 ft actual simulations and the 22 and 28 ft predicted simulations are
approximately the same; it is the mean values (ur-r) and standard
distributions (or-L) that change due the spread of the distribution values.
Because less earth is mobilized with a shorter model base width, the spread
of the distribution is less, and thus it is a better distribution to predict with.
Recall that the proportioned load procedure prediction is based on mean
loads and resistances.

Figure 4-6. Actual versus Predicted Resistance, Load, and R-L histograms for the Siarger
value of 2.9348 corresponding to the actual g for the 25 ft base width model.
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The proportioned load procedure yields better predictions when the L and
R distributions have less dispersion (Figure 4-6). This is revealed by the
data in Figure 4-5, as described subsequently: the 25 ft base width precise
(orange line) S value is 2.93 and occurs with gresistance €qual to 51,777 1b.
The predictions from the base widths with precise g values less than 2.93,
which are the base widths less than 25 ft for this example, are better than
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4.7

the base widths that have higher precise g values. For example, the 22 ft
base width prediction for S equal to 2.93 of the resistance force is
approximately 51,066 Ib. This has a liberal error of less than 2%. Using the
same example, the 28 ft base width prediction for S equal to 2.93 of the
resistance force is approximately 54,470 lb. This has a conservative error of
greater than 5%. This trend is shown in Figure 4-5 by the fact that the
predicted curves (in dashed lines) that are above the orange solid line
precise values more closely follow the precise line curvature, whereas the
predicted curves follow a nearly steeper curvature below the precise curve.

For the proportioned load procedure to have a more accurate slope for the
rate of change of yresistance t0 iLoad, at least a pair of design values that have
precise S values should encompass the Siarget. The difference between the
precise value piresistance t0 iLoad for the encompassing values provide the rate
of change of yLoad With respect to uresistance. Using the example of the
previous paragraph, the 28 ft base width design, with g equal to 3.17, has
UResistance €qual to 57,781 Ib and proad equal to 39,744 1b. The 22 ft base
width design, with S equal to 2.62, has presistance €qual to 45,841 Ib and proad
equal to 35,366 Ib. Using these two values, the mean load changes at a rate
of 4,378 1b for each mean resistance change of 11,940 Ib. This linear rate-of-
change slope provides the backbone for step 8 in the proportional load
procedure. This allows a search for the mean resistance while maintaining
the correlation-induced separation between giresistance and giroad. These
values are computed in Step 3 and applied in Step 8 of the proportional
load procedure.

Using Rsr and Lsr to compute load factor (y.) and resistance
factor (¢r)

Simulation values based on geospatial properties are used to determine the
PUPinitial for a single limit state of the current geotechnical design given the
example T-Wall structure, initially with a base width of 25 ft. The value for
PUPinitia establishes the base relationship of Rsrto PUPtarget, When
PUPtarget is equal to PUPinitial, Rsr is equal to 1. The statistical dispersion of
the simulation samples establishes the rate at which Rsr changes as the
current PUP is adjusted to reach PUPtarger. In statistical simulations the
population of simulated samples falling within the tails of the distribution
are a critical feature affecting the accuracy of the PUP computation.
Therefore, sufficient samples are required to achieve convergence as the
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current PUP approaches PUPtarget. @R is sometimes referred to as yr in this
report, as y is often used to reference factors for forces.

PR * UResistance = YL * Upoad (4-5)

Lsr is the ratio of scaled mean resistance to design mean load, when Rsr has
been applied to the resistance samples to obtain PUPtarget (Equation 4.5).
Multiplying the mean load times Lsr results in the amount of resistance
that must be designed for (designated Rpesign in Equation 4.4) to have a
probability of unsatisfactory performance of PUPtarget, if all conditions
remain the same.

The resulting value of Lsr times the mean load being required to be less
than or equal to Rpesign (Equation 4.4) means that Lsris equivalent to the
ratio of the load and resistance factors (y/¢Rr), according to Equation 4.3.
Equation C.19 in Appendix C.3 (which transposes yx for gr) reveals that, to
achieve PUP1arget with varying resistances and loads, Equation 4.5 must be
true for (1.0-PUPtarget), according to the Reliability Response Surface
equation Gz()=o.

4.7.1 Computing load and resistance factors from Lsr

Until this point, the load factor (yr) and resistance factor (¢r) have not
been considered separately, but as the ratio, Lsr. To determine the
individual values of the two factors, a value for one of these factors has to
be assigned and the other computed. It is important to realize that these
two factors, by definition, are defined due to the uncertainty in the
definition of the load and resistance variables combined with an acceptable
PUPrarget for the distribution of the difference in the resistance vector
minus load vector of simulated values (i.e., R[]/ minus L[]. The USACE has
traditionally specified (e.g., in ASD) acceptable resistance capacity
limitations expressed in terms of FS or its inverse, the SMF, applied to
capacity term for the Geotechnical limit states (EM 1110-2-2502)
(HQUSACE 1989). The FS/SMF terms have been tempered to allow for
conservative computation of design strength given experience in the
uncertainty of estimation. Therefore, the authors of this report suggest
specifying a value for the resistance factor ¢x.

In consideration of the previous paragraph’s discussion, it is therefore
deduced that Rpesign has the higher variability, with negative impact when
the resistance is less than that expected. This is reflected by values of gr
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less than 1.0, reducing the amount of Rpesign. A resistance factor value of ¢r
less than 1.0 is cited in the Fenton et al. (2016) description of the
Reliability-based Canadian Bridge design code that relates to geotechnical
limit states.

In EM 1110-2-2104 (HQUSACE 2016) Table 3-1, the values of ¢r applied to
resistance forces determined by lateral earth pressures are 0.9 for at-rest
conditions and 0.5 for all other conditions for the Extreme load case. The
authors of this report suspect that this reflects the dispersion in soil
strength properties for those Geotechnical limit state conditions. Recall
that lateral earth pressures are important for calculating the Sliding and
Base Area in Compression limit states. Once ¢r has been assigned,
Equation 4.6 uses the definition of Lsrto determine yr.

YL = Qg * Lsp (4.6)

Using the Example problem Extreme load case values from Table 4-2,
Lsr=1.635 when prarget=3.5 and PUPtarget=0.00023. Under Extreme Load
Case conditions, according to EM 1110-2-2104 (HQUSACE 2016), the value
for ¢r is 0.5 for the resisting force of the passive earth pressure distribution
force. Using Equation 4.6, y would result in a value of 0.818, and from this
same table, Lsr=1.4 when Starget=3.0 and PUPtarget=0.000125. Using
Equation 4.6 with a ¢r equal to 0.5 results in yz equal to 0.7. In both of
these cases, applying ¢r as 0.5 reduces the resistance distribution, which in
turn causes the value of y1to converge to a smaller value which is less than
1.0. This leads the authors of this report to question if the value of 0.5 is too
conservative for ¢r. If the philosophy is taken that the factored load case
should never be diminished, then the minimum yz would be 1.0. Applying
this value with Lsr=1.4, then the lowest value for ¢r should be 0.71 by
Equation 4.6.

Table 4-9 shows the results of performing the proportional method Monte
Carlo simulations with the Sliding Limit state to determine the
intermediate scale factors, Rsr and Lsr, and then converting them to the
load and resistance factors, y. and ¢r, for the defined Extreme load cases of
Section 4.3. The load factors in this table increase as the Extreme load case
conditions become more severe (e.g., reduction of soil). This indicates to
the authors of this report that the selection of the Extreme Load case
conditions and geometry can make a significant impact in the design of
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USACE hydraulic structures and lead to different Load (and when varied,
Resistance) Factors.

Table 4-9. Computation of Load and Resistance scale
factors with B equal to 3.5 for each of the Extreme
load conditions.

or
(EM
Extreme 1110-2-
Load Case Fr Lsr  n 2104)
(HQUSACE
2016)
Dewatered 1.17 1.607 0.804 0.5
Dewatered
Soil at 2.22 2.766 1.383 0.5
Base
Dewatered
e 274 3.406 1.703 0.5
Scoured
Soil

4.7.2 Adjusting load and resistance factors to account for bias with
nominal loads and resistances

The procedure outlined for generating load and resistance factors in
Section 4.7.1 works for the example problem, where load and resistance
distributions are created as a result of computation applied to material
variables drawn from well-defined distributions. These variables were the
effective angles of internal friction for the Driving, Structural, and Resisting
Wedges (¢'bw, ¢’sw, and ¢’rw, respectively) and the computed length of the
slip planes. Because the load and resistance distributions were computed
directly from these values, there was no estimation bias in the distributions.

Bias factors are introduced due to the conservatism or liberalism in devised
engineering computational procedures used to establish nominal resistance
and load values. Subsection 2.1.2 in Ebeling and White (2019) discusses an
example computation of a bias factor for the resistance of a pile foundation.
The reader is referred to this subsection for further details on one approach
that is used for computing a value for the bias factor.

Nominal distributions based on devised engineering design methodologies
have two governing statistical components, a nominal mean value (tmominai)
and the COV, from which the standard deviation (Gnhominal) can be obtained.
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The bias scale factor (1) is applied to zmominal to create the base mean value
(1). The COV is not changed and maintains the same relationship between
the imominal and cnominal as between x and o. This applies for both load and
resistance distributions. From this point forward, the distribution with
nominal values will be referred to in this report as the nominal distribution
and the distribution with bias factors applied will be referred to as the
mean distribution. Therefore, the means of the load and resistance
distributions are

U = AL * UnominalL (4.7)

and

UR = AR * HnominalR (4.8)

Applying these equations to the performance function inequality implied by
Equation 4.2, which works with mean values:

PR * AR * UnominalR = YL * /1L * Unominall (4-9)

The procedures that have been developed to find the Lsr that guarantees a
PUPrarget works with the mean distributions according to the Gz() functional
Equations 4.2 and 4.3. Equation 4.4 gives the equation for the mean design
resistance from Lsr and zr. These leads to the following derivations:

Ur = Lsp * py, (4.10)
AR * Mnominair = Lsr * AL * Unominair (4.11)

and
Hnominatk = 2% Ynominai (4.12)

This suggests that a nominal load scale factor Lsrnominal can be introduced
that scales zmominaiL to the design value of zmominalr.

UnominalR = LSFnominal * Unominall (4-13)
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4.8

where

Lgp*A
Lsrnominat = SER - (4.14)

Since the bias factors must be defined for the problem and the Lsr value can
be computed procedurally, Lsrrominal can be found for the system.

From Equation 4.6,

Lsp = ﬁ (4.15)
Substituting into 4.14,
Lsenominal = 223t (4.16)
Solving for yi,
YL = Lsrnominal * (p}ZAR (4.17)

Using the EM 1110-2-2104 (HQUSACE 2016) Table 3-1 values as an
unbiased ¢r in the same manner mentioned at the beginning of Section 4.7,
the value of the unbiased y1 can be determined. This is the generalized form
of the load and resistance factors for nominal values with bias. If A. and Ar
are both 1, then the equations revert to the form discussed in the previous
sections.

Using upper range point estimate coefficient of variation (COV)
values for material properties

Increasing the COV of the input material variables (e.g., effective angle of
internal friction) for this system should increase the variability of the load
and resistance for the model. These load and resistance variabilities acting
on the Structural Wedge, in turn, will affect the generation of load and
resistance factors. The values from Table 2-1 do not use the Upper Range
values for COV for the effective angle of internal friction for example
problem displayed in Figure 2-1.

The Upper Range point-estimate COV values for the effective angle of
internal friction of the three soil regions are listed in Table 4-10 and based on
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the soils strength data contained in Appendix D of Ebeling and White (2019).
These point-estimate COV values were converted to spatial COV values using
the procedure outlined in Ebeling and White (2019) for use in the analysis
summarized in this section. Table 4-10 lists these Upper Range COV values
along with the original, Mid-Range COV values for comparison purposes.

Table 4-10. Engineering properties with Upper Range COV values for the three soil
regions of the example T-Wall problem.

Unit Soil Friction. ¢’ Interface Hydraulic
Weights oil Friction, ¢ Friction, &’ Conductivity
Mid- | Upper
Soil ; ymoist| ysat | Mg | R@NEE | Range | Ratio | 45 Lk L
. Soil Type Direction
Region P (pcf) | (pcf) | (deg) | covy | COVy | 5/p° | (deg) | (cm/sec) rect
(%) (%)
1 Cor;‘gggted 1231126 35 | 10 | 20 | 04 | 14 | 2x10® | Vertical
2 [Nk 123 30 | 20 | 30 | 1.0 | 30 | 4x10%4 | Horizontal
foundation
3 Conggsgted 126 | 37 | 12 | 24 | 1.0 | 37 | 1x103 | Vertical

To measure the effect of changing the COVs for the material variables (¢ pw,
¢@’sw, and ¢’rw), simulations were performed as the COVs were linearly
changed from the original, Mid-Range COVs to the Upper Range COVs as
characterized by the parameter t. The parameter t is 0.0 for the original,
Mid-Range COVs, 1.0 for the Upper Range COVs, and at select, linear
interpolation for values for t greater than 0.0 and less than 1.0. The
procedure of Section 4.6 was performed with differing values of Srarget.

The relationship of Sliding Limit State Lsr values to the change of COVs is
given in Figure 4-7 for different values of Srarget. The value of Brarget,
designated B in this figure, range in value from a low of 1.0 to a high of 3.5.
Because an increasing COV can be construed as increasing uncertainty
about the mean values for the soil strength variables, the results indicate
that the ratio of Load Factor to Resistance Factor increases as the
dispersion increases. This makes sense, as the Load and Resistance Factors
are generated to address uncertainty.
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Figure 4-7. Computed values for Sliding Limit State Ls-with the same target g
(designated B) as the COVs go from the original, Mid-Range value (#=0.0) to the Upper
Range values (#=1.0).

=-B=1.0
B=1.5
B=2.0
-4-B=2.5
--B=3.0
--B=3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t from standard COV to Upper Range COVs

For the Figure 4-7 family of curves with different Srarget values, the rate of
change in Lsr values with increasing Upper Range COV values distances
between consecutive curves increases and is observed to be increasingly
non-linear for the largest COV values region (i.e., near t = 1.0). This is to be
expected as higher fSrarget values approach the tails of the distributions,
where sample density decreases.

The increase in the Lsr values is not linear for any SBrarget value. The authors
speculate that this non-linearity results because the computed Load
distribution sees a greater increase in COV than the computed Resistance
distribution.

Using Equation 4.6 with a Resistance Factor of 0.5, from EM 1110-2-2104
(HQUSACE 2016) Table 3-1 Extreme load case lateral earth pressures, with
the results in Figure 4-7 gives the Load Factor to uncertainty plot of Figure
4-8. The relationship of Equation 4.6 demonstrates that for a Resistance
Factor held constant, the Load Factor increases in value as
dispersion/uncertainty increases.
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Figure 4-8. Computed values for Sliding Limit State Load Factor (based on a
resistance factor of 0.5) with the same target £ (B) as the COVs go from the original,
Mid-Range value (£=0.0) to the Upper Range values (£#1.0).

1.3

--B=1.0
B=1.5
B=2.0

-=B=2.5

-9-B=3.0

--B=3.5

Load Factor (for 0.5 Resistance Factor)

0 01 0.2 03 0.4 05 06 0.7 08 0.9 1
t from standard COV to Upper Range COVs

For a single load case, it is possible to map how the load factor changes as a
function of Brarget. Figure 4-9 shows how load factors increase as Srarget
increases for the system with Upper Range COVs for the Sliding Limit
State. The relationship resulting from the simulations is non-linear due to
the probability densities decreasing at distances further from the mean.
The curve is smooth for £s from 1 to 3.5 because there is an adequate
number of samples in those regions to make fairly accurate predictions.
The curve begins to show some irregularity in results for f values of 3.5 to 4
because the number of simulation samples in that region, due to low
probability density, are likely smaller than required. However, the authors
feel that the trend is adequately captured in these results and no further
simulation analyses with larger sample sizes are warranted. Computing
load factors for higher g values would require performing a much greater
number of simulations. The form of the curve is apparent in Figure 4-9,
even with the recognized instabilities in the tail of the distribution.
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4.9

Figure 4-9. Upper Range COV value based computed Sliding Limit State Load Factors
for increasing Sz, all for a Resistance Factor of 0.5.
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Conclusions

4.9.1 Results from Original, Mid-Range COV values for effective angles of
friction

Section 4.1 presents an assessment of existing limit state computations with
respect to geotechnical problems, specifically the example problem described
in Chapter 2. The traditional Reliability-based methods rely on defined (e.g.,
Gaussian) and uncorrelated distributions with continuity of slope for load
and resistance (e.g., Nowak and Collins 2013). The Example 2 geotechnical
problem creates load and resistance distributions that are not well-defined,
continuous, and non-correlated because the loads and resistances are
computed from normal distribution soil properties with conditional
equations where all of the soil properties are used for load and resistance.

Section 4.2 introduces another procedure for determining load scale factors
for individual limit states that relies on direct Monte Carlo simulation given
values recovered from distributions of the material properties (i.e., ¢4, ¢,
and ¢’3). Recall that these three shear strength parameters are defined as
independent, normally distributed variables in the Chapter 2 T-Wall
problem. From these simulation runs, correlated resistance and load
samples are computed in the units consistent with each limit state. A scale
factor for the existing resistance samples can be searched for numerically to
find the value such that the scaled values compared to the corresponding
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load samples yields the probability of unsatisfactory performance desired.
This resulting Resistance Scale Factor is then converted to a Load Scale
Factor in the devised analytical procedure. Given the correlation, and
changes of load and resistance values as the design changes, this process may
need to be iterated to achieve the desired accuracy for the desired PUP.

Using the Example 2 design of a T-wall with a base of 25 ft under the Usual
load condition and Extreme load condition, each of the three geotechnical
limit states were assessed for the Load Scale Factor determined by the
Section 4.2 procedure. The biggest indicator that a limit state is more likely
to occur than another is the Resistance Scale Factor. The greater the value
of Rsr, and especially if it exceeds 1.0, indicates the greater PUP values.
Because the range between load and resistance distribution means can vary
by large amounts between limit states, the Lsr value does not reveal the
PUP status between limit states.

In traditional steel structure LRFD design, the variation in both the
nominal load and resistance can be estimated with more certainty than the
resistance and load in a Geotechnical limit state involving soil structure
interaction. Soil strength properties are measured sparsely and are spatially
correlated. Generally speaking, the dispersion in Geotechnical strength
properties are greater than for structural steel and concrete strength
properties. In addition, the dispersion in Geotechnical strength properties
contribute to the dispersion of the resisting and load forces applied to the
structural wedge by the driving wedge and by the resisting wedge of the
three wedge system formulation that are used in the three Geotechnical
limit state evaluations of Sliding, Base Area in Compression, and Bearing.

Note that using USACE criteria for allowable stress design (EM 1110-2-
2100) (HQUSACE 2005) resulted in a base width for the example T-Wall
being 25 ft. Under Normal Load conditions, the PUPinitia for this structure
is 0.00025, and the resulting Binitial is over 3.5. However, LRFD is about
improving reliability under Extreme load conditions, which by definition,
happen infrequently. According to Figure 4-5, extending the base width of
the wall to 26 ft will provide satisfactory performance corresponding to a
value of 3 greater than 3.0. To approach a Starget of 3.5, the computations
show that the base width would have to be extended to 32 ft.

However, extending the base width to 32 ft may be unnecessary, at least
according to traditional USACE guidance. The Base width design is based
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on FS according to design using the CTWALL (Pace 1994) software. This
design meets the standards of EM 1110-2-2502 (HQUSACE 1989) and,
therefore, the EM 1110-2-2100 (HQUSACE 2005) guidance for the FS for
sliding of a structure under Normal loading using the Ordinary Site
Information Category. This FS under ASD of 1.5 yields a design S of 3.48
under the Normal Load case, using Monte Carlo simulations.

Using the EM 1110-2-2100 (HQUSACE 2005) guidance for the FS for
sliding of a structure under Extreme loading using the Ordinary Site
Information Category, the FS should have a minimum value of 1.1. The
lowered safety factor reflects the fact that Extreme loading is an infrequent
and short duration occurrence, so the PUP value is affected by how often
these events occur as well as their duration. CTWALL software executions
with the Extreme Load case yielded a FS of 1.43, which exceeds this ASD
guidance limit of EM 1110-2-2100 (HQUSACE 2005). Monte Carlo
simulations give this limit state a yield g of 2.92. This value affirms the
selection of lower S values in the work of Fenton et al. (2016), where a g of
2.5 was used for soil-structure interaction for bridges but also reveals that
the new proportioned load procedure allows for greater accuracy in Starget
calculation over the Fenton approximations. The authors suggest that Srarget
values for the SSI limit states can approach values of 3.0, resulting in safer
PUP values.

This leads the authors to conclude that for this example problem in which
the sliding limit state controls the T-Wall geometry, a SBtarget for the
Extreme load case can be defined to be less than the Starge: for the normal
load case. Using the proportioned load procedure with an appropriate limit
state model and correctly conditioned Extreme Load cases, greater
accuracy can be obtained resulting in lower PUP values.

4.9.2 Results from Upper Range COV values for effective angles of
friction

LRFD results are based on Extreme events, where limit state boundaries
are exceeded. To achieve those conditions, the most severe conditions that
the designed T-Wall will be put under were used (Figure 4-3 b). However,
to adequately understand the variability in the model, Upper Range COV
values for known distributions of the independent variables ¢'pw, ¢’sw, and
¢’rwshould be used. The greater variability leads to higher Load Factors.
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In Table 6.3 of his unpublished 2015 letter report to the USACE on the
topic of Procedures for Developing Reliability-Based Load Criteria for
Hydraulic Steel and Concrete Structures, Professor Bruce Ellingwood
recommended 100-year service life target S values of 3.5 and 4.0 for non-
critical and critical structures, respectively. This recommendation of
reliability targets for LRFD is for hydraulic structures possessing a single
load path.

In the Barker et al. (1991) LRFD study, resistance factors were developed
using statistical data gathered from case studies obtained from published
literature. Small scale-model tests provide the primary source of data for
the Reliability assessment of footings in their study. The Load and
Resistance factors were calibrated by fitting to ASD for different foundation
systems. Allen (2005) observed that calibration by fitting to ASD influenced
and frequently controlled the final value selected for the resistance factor in
the Barker R&D team’s study.

Allen (2005) observes that resistance factors in general for (US) bridge and
other structural designs have been derived to produce a g value of 3.5,
corresponding to an approximate probability of failure of 1/5,000. In
Allen’s summary and interpretation of the Barker et al. (1991) R&D team’s
landmark study of the reliability of different types of foundations, Barker et
al. (1991) concluded that a target reliability index value of 3.5 should be
used for footings and other non-redundant systems. This recommendation
is not universal to all foundation types. For example, separate target
value recommendations were made by Allen and other engineers that he
cited for individual and group pile foundations. Driven piles were
distinguished from bored piles in these target S-value recommendations.

Fenton et al. (2016) observe that according to the probabilistic based
Canadian Bridge Design Code (CSA 2014), a typical geotechnical system
might have a target maximum lifetime failure probability, pf, of 1/5,000
(2.0 x 1074) for an Ultimate Limit State with a typical consequence level.
Canadian bridges are designed for a 75-year design life. A value for prof
1/5,000 for a 75-year design life structure has to be adjusted to account for
the fact that USACE hydraulic structures have a design life of 100 years.
This adjusted value, given the longer structural design life, is reported in
Table 2-8 of Ebeling and White (2019) and corresponds to a PUP value of
1/3,475 (2.67 x 104). This PUP value is equivalent to a S value of 3.46.
Again, according to Fenton et al. (2016), the Canadian Bridge Design Code
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(CSA 2014) provides guidance for a target maximum lifetime failure
probability, ps, of 1/10,000 for an Ultimate Limit State with a high
consequence level. Ebeling and White (2019) in their Table 2-8 report for a
100-year design life, a corresponding PUP value of 1/7,519 (1.33 x 104) and
its equivalent g value of 3.65. Summarizing, the probabilistic Canadian
Bridge Design Code data would infer a range in 8 between 3.46 and 3.65
for typical to high consequence levels in a 100-year design life structure.

Table 3-1 in EM 1110-2-2104 (HQUSACE 2016) guidance for the Extreme
load case for lateral earth pressures provides values for a Resistance Factor
of 0.5 and a Load Factor of 1.4. A Load Factor value of 1.4 corresponds to a
Reliability Index value of approximately 3.8 by the data given in Figure 4-9
for Upper Range COV values for effective angles of internal friction. The S
value of 3.8 for a USACE Navigation Structure falls approximately midway
between the Ellingwood reliability index recommendation for normal and
critical structures. This computed S value of 3.8 exceeds the historical ASD
foundation design g experience (Allen 2005) as well as the guidance for the
Canadian Bridge Design Code as described by Fenton et al. (2016). Thus,
the EM 1110-2-2104 (HQUSACE 2016) guidance LRFD values for load and
resistance factors for the driving and resisting earth pressure loads applied
to the Structural Wedge in the sliding limit state are deemed slightly
conservative but not excessive by the authors of this report when a g of 3.8
value for the dominant limit state of sliding is compared to the target S
values given by Allen (2005) and Fenton et al. (2016). This assessment may
be improved by making a Reliability assessment of other earth-retaining
USACE hydraulic structures following the procedure of analysis outlined in
this technical report.

Using Figure 4-9, a load factor of 1.2 is sufficient to achieve a target S equal
to 3.5 for the dominant limit state of sliding, which is required according to
Ellingwood for a noncritical structure with a single load path, given a
specified resistance factor of 0.5 according EM 1110-2-2104 (HQUSACE
2016) guidance. This Load Factor value is 14% lower than the reported EM
1110-2-2104 (HQUSACE 2016) load factor of 1.4 with the same specified
resistance factor.
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A Numerical Method for Computing
Multiple Limit States Probability of
Unsatisfactory Performance (PUP) and
Load Factors for the Example Soil-
Structure Interaction of the T-Wall Model
with Material Variability

Combining multiple limit states

Chapter 3 introduced procedures for calculating the g(X) functions for each
of the individual limit states that can occur for the T-Wall example problem
specified in Chapter 2. Each g(X) function is created based on the
computed loads and resistances, with failure happening when the load
exceeds the resistance, a natural conclusion of Equation 2.52. The loads
and resistances are computed from the variable soil properties of vector X
and expected water levels in the geotechnical three wedge solution method,
using Driving, Resisting, and Structural Wedges. Chapter 2 concluded by
stating that lower values of g(X) are not desired, with values less than the
response surface (where g(X)=0.0) indicating failure or unsatisfactory
performance.

To compute the combined PUP for all of the limit states for the T-Wall
example problem, there needs to be an overarching performance function
that accounts for all the limit states at once. Because lower values are not
desired, this performance function can be computed as

Iurs(X) = min(g; (X), g2(X), g3(X), g+(X), g5(X), g6(X)) (5.1)

where

gmrs(X) = the Multiple Limit State performance function,

g:1(X) = the overturning limit state,

g=(X) = the sliding limit state,

g3(X) = the bearing limit state,

g4(X) = the stem shear limit state,

g5(X) = the stem moment limit state,

gs(X) = any additional limit state (e.g., based upon limiting
deformation for the T-Wall).
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For PUP calculations, the exact value of a performance function is not
necessary. It is only necessary to report if the performance function exceeds
0.0 or not, which determines if the performance is satisfactory or not. This
leads to a response surface indicator function, given as

ans (X) = {1: Ias(X) < 0.0

For this multiple limit state indicator function a value of 0 indicates
satisfactory performance while a value of 1 indicates unsatisfactory
performance.

Figure 5-1 shows a probability-based two-variable space with multiple limit
states. The two variables X’; and X’> shown in this figure are presented in
the transformed basic variable space, as described in Section 2.4 of Ebeling
and White (2019). The concentric, blue circles shown in this figure represent
the radially symmetric, normalized, Normal-Gaussian PDF distribution.
Observe that the PDF is isotropic in this transformed, 2-D space. The
Reliability Index £ shown in this figure represents the number of standard
deviations from the means of X’; and X’ variables of this figure’s origin to
the Design Point. The Design Point is the closest distance from either limit
state response surface to the mean center. The response surfaces for the
two limit states are identified in this figure. The area beyond the red
combined response surface line (where the areas are shaded) is the region
where the indicator function would return 1, with the unshaded regions
returning o.
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5.2

Figure 5-1. A 2-D example of multiple limit states with closest approach of length | £ |
in the transformed basic variable space.

Limit State

Limit State 1

X1

Response Surface,
| where
£ G(X) = Capacity-Demand = 0.0

The multivariate space for the response function

For the Chapter 2 Example T-Wall problem, the variable vector is described
as

_ /; ! /; ! /; !
X = {¢ Driving» 6 Driving» ¢ Structural» 6 Structurals ¢ Resisting» 6 Resisting}(5-3)

Where the values are drawn from the distributions determined from the
mean values (x) given in Table 2-1 and using the spatial COVs calculated
according to the procedures of Chapter 3 to obtain the needed value of
standard deviation (o= COV times p). Recall from Chapter 2 that the soil
strength parameters ¢’ and ¢ for all three soil regions are assumed to be
normally distributed with a lower bound at # minus 5*cand an upper
bound at x plus 5% . For simplicity in the example problem, these
respective distributions are assumed to have no correlation and are drawn
from Gaussian distribution. Because the distributions are not correlated,
they can form orthogonal axes of a probability distribution space. Using the
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5.3

means as the origin and normalizing each distribution by its standard
deviation, the variable distributions form a normalized Gaussian
distribution space.

The vector X describes a point in the space, where the probability of that
point is

hMLs(X) = Hn h(Xy) (5.4)

where h() is the probability density function for the normal Gaussian
distribution and X is the nth variable of vector X.

The normalized Gaussian distribution space has several simplifying
properties. For instance, given a hypersphere with radius £ from the mean
origin in the normalized Gaussian distribution space, every point on the
surface of the hypersphere has the same probability. Another useful
property is that given the same hypersphere of radius f, integrating the
area of the half-space behind any hyperplane tangent to the hypersphere
has the same probability as the area behind a point at that distance for an
individual normal distribution.

Calculation methods for PUP
5.3.1 Advanced second moment (ASM) method for a single limit state

The ASM family of procedures can find the closest point on a response
surface (where g(X)=0.0) from the origin at the mean values for the
normalized Gaussian distribution space. This closest point is called the
design point (Figure 5-2). The vector from the mean origin to the design
point has distance f and can be normalized to a unit vector that has the
directional cosine values for each of the axes, a. This vector is
perpendicular to the response surface if the response surface is
hyperplanar. From the description of the normalized Gaussian distribution
space, the PUP value of this single limit state is the same as one minus the
single normal distribution CDF value for g, 1-@(3) (Figure 5.3).

The ASM methods use the same procedure to find the design point. Using
the derivative to find the slope toward the response surface, the ASM
method walks along the surface to find the local minima distance between
the mean origin and the response surface.
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Although it is not a method that can be used for multiple limit states, the
ASM methods can serve a useful purpose for proposed methods to calculate
PUP. For instance, bound-finding methods combine multiple hyperplanar
equations to determine the effective range for PUP values. Another
example is the use of the design point for Importance Sampling, which will
be discussed at the end of Subsection 5.3.3.

Figure 5-2. A 2-D example of the PUPregion and the hyperplane description using o
and B determined using ASM methods.
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Figure 5-3. Transferring the hyperplanar limit state to the single normal axis.
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Performance,
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5.3.2 Numerical solutions for PUP
5.3.2.1 Direct Euler numerical integration

Given a normalized Gaussian distribution space, the PUP value can be
computed by integrating the space with the indicator function. Equation 5.5
gives an integration for PUP using Euclidean coordinates in the normalized
Gaussian distribution space. Figure 5-4 shows how this integration is
performed numerically by discretizing the probability space of 2-D vector X.

PUP,,. = dX) = ) Jxu Jx, = Dy s (Xn, X, o, Xi) >
hMLs(Xl,Xz, ...,XN)dX]_dXZ dXN

(5.5)

To find an approximate design point (the location of unsatisfactory
performance that is closest to the mean origin), the center location of the
grid point needs to be determined. A best distance measure is initialized to
infinity for the start. As the integration proceeds, if unsatisfactory
performance has been found, then the distance from the gridpoint center to
the mean origin is computed. If this distance is less than the previous best
distance, then the new design point is set to the gridpoint center and the best
distance is set to its distance to the mean origin. This design point has an
error no bigger than the distance from corner to corner of a grid cell.



ERDC/ITL TR-21-1 105

Figure 5-4. Numerical integration and computation of a PUPvalue with two variables
with Gaussian distributions given a single hyperplanar limit state
(using Euclidean coordinates).

Satisfactory
Performance

5.3.2.2 Adaptive hyperspherical Gaussian probability numerical integration

Another numerical method to integrate this area has properties that can
optimize algorithmic run times. This method is to use polar coordinates
instead of Euclidean coordinates. Because the probability at a certain
radius has the same probability for any angles, varying the radius first
reduces the number of times a probability has to be calculated for the
hyperspherical shells. The integration in polar coordinates is given as

PUPy s = @1, 9,0, ) = y
iyis(r,9,04,0,,...,0,) h(r)r" «
b Jo Jou < Joy {sin”-l(m)sin”-z(m_l) - sin(p1)dpyddy 1 .. d¢1d¢dr}(5'6)
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where the polar-coordinate version of function imrs() is computed by
converting the coordinates to Euclidean coordinates and solving in the
previous fashion.

To find an approximate design point (the location of unsatisfactory
performance that is closest to the mean origin), it is only necessary to store
the gridpoint centroid of the first unsatisfactory result. Since the radius
proceeds outward from the mean origin, this point is at the shortest
distance to the limit state response surface. Because of perspective effects,
the error in this method increases with the distance from the mean origin.

5.3.2.3 Hybrid adaptive hyperspherical Gaussian probability numerical
integration using ASM

Because of the number of dimensions and the necessity of high-accuracy
solutions, hyperspherical probability integration methods suffer from
exponential growth, which leads to rapid growth until the solution
computation becomes intractable. Methods that restrict the volume to be
integrated and the step size for computational summation can help
mitigate this growth restraint, as well as restricting the number of variable
dimensions. This section provides methods to restrict the volume to be
searched and the step size as the integration is performed.

Previously, there have already been provided limits on the volume to be
searched by limiting the search to g radius values less than 5.0 standard
deviations. This limitation is based on the normalized Gaussian
distribution space, which has a cumulative probability that is less than
10e-6 beyond the 5.5th standard deviation, or in the tails of the
distribution. This restriction can be further limited by recognizing that each
limit state is defined by a hyperplane that can be defined with gradius and
a vector using the ASM methods. Because the integration solves for the
PUP, the range of the solution only needs to progress from the S value for
the limit state hyperplane nearest the mean origin of the normalized
Gaussian distribution space to the maximum £ value of 5.5.

While this method can make a tremendous impact on the time to perform
the probabilistic integration, this technical report uses non-hybrid
method unless otherwise specified. This method is used to maintain the
same numerical computations throughout to prove the utility of the
complete method.
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5.33 Computing PUP using simulation

Traditional Reliability solutions rely on simulation to calculate PUP.
Simulation methods work by generating X through probabilistic sampling
of the constituent distributions. Because samples are chosen according to
the distribution, a large sample set begins to approximate the probability
density of the area of the space. Thus, for n samples, the PUP value can be
calculated as

PUPy,s = YnimLsXn) (5.7)

n

where Xn is the nth sampled point.

For a typical Monte Carlo simulation, samples are chosen completely at
random. Because so many samples are chosen in high-probability regions
of the space, it takes a large number of points to accurately map the
normalized Gaussian distribution space.

Another sampling method called Latin Hypercubes divides each probability
axis into a fixed number nry of equal probability regions. To create a set of
samples, each axis is assigned one of its probabilistic regions at random.
Once selected, that probabilistic region cannot be selected again for that
axis. A sample point is selected within the selected hyperregion. This is
done until nz samples have been selected. At this point, the process to
calculate Equation 5.7 is performed. Because the normalized Gaussian
distribution space is divided according to the distributions and points are
guaranteed to be selected from every region for every variable, fewer
samples are necessary for Latin Hypercubes than for the simple Monte
Carlo technique.

Both Latin Hypercube and Monte Carlo simulation suffer issues with
accuracy when the area of interest (in this case, the response surface and
unsatisfactory region) has very low probabilities. Importance Sampling is
the method to deal with this. In Importance Sampling, a point is chosen on
or near a transition region and then points are chosen about the
distribution at that location. The probabilities of the sample points are then
transformed back to the original distributions. Because more samples are
taken about the region of interest, the accuracy of the calculation is
improved. To find a point on the region of interest, an Advanced Second
Moment computation is performed using the g(X) function to find the



ERDC/ITL TR-21-1 108

point on the response surface nearest to the origin (the design point at the
original distribution mean values). The design point establishes a
normalized vector e and a distance to the surface g. Importance Sampling
is used in the USACE CASE program CPGA-R probabilistic solution
procedure for the Reliability analysis of pile groups and calculation of a
PUP value. Figure 5-5 depicts the governing Equations 5.8 through 5.11.
The author’s experience is that while Importance Sampling improves
accuracy locally, it can have problems with concave response surfaces that
enclose the tail ends of the distributions.

For distribution spaces P and Q, where the points will be sampled from Q
but transformed to a probability in P for Importance Sampling, the
normalized distance that a sampled point has from each distribution space
mean is given as

Xi—pp

By === (5.8)
B, = X_::‘q (5.9)

The weighting function based on these g vectors is then

P(Bp)

W(X) = 0By

(5.10)

Where the functions p() and g() represent the PDF point probabilities for
the sample point Xi in the two spaces. This leads to the calculation of the
point chosen from the distribution space Q in terms of probability in
distribution space P as

P, =23, I(g(X))W (X) where {I = g () < 0}

I = O|otherwise (6.11)



ERDC/ITL TR-21-1 109

Figure 5-5. Importance Sampling determines the ratio between two distributions Pand
Qto calculate the true p probability for the point sampled from q.

PDF:

5.34 Finding the limiting range (bounds) for PUP

Ang and Tang (1984), in an effort to reduce time to compute the value of
PUP with multiple hyperplaner response surfaces, decided to use logical
methods based on DeMorgan’s rule for the combination of logical
probabilities.

There are limited technical publications reporting on probabilistic
investigations of multiple Geotechnical limit states and multiple failure
modes. Fan et al. (2014) discuss the Reliability analysis of piles in spatially
varying soils considering multiple failure modes. Specifically, they
summarize their research into the performance state of vertical drilled shafts
under combined lateral and axial loading using a Reliability analysis. The
performance of the vertical pile is defined in terms of the displacements
induced by external loading. They consider three performance limit states:
lateral pile deflection, angular pile distortion, and axial pile movement at the
top of shaft. The unsatisfactory performance event is said to occur if the
induced displacements at the top of the pile are greater than the
corresponding allowable displacements. Lateral pile response is computed
using the p-y method of pile-to-soil interaction analysis, and vertical
displacements are computed using a t-z model for pile-to-soil interaction.!
Uncertainties in soil deformation and strength properties are considered in
their Reliability analysis. Each of the soil property variables used in the

1 Examples of the USACE CASE programs that perform lateral p-y analysis and axial t-z analysis are
COMG624G and CAXPILE, respectively.
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analytical model are characterized by values of mean, standard deviation and
distribution type (e.g., normal, lognormal). With the statistical properties
defined, a Monte-Carlo simulation method is used to conduct the Reliability
analysis. They apply a conventional Reliability methodology of computing a
PUP value for each of the three displacement limit states as well as a PUP
value for the system.

One of the important findings of the Fan et al. (2014) study is that the PUP
for the system is greater than for any of the three individual displacement
limit state modes and is less than the sum of the PUP values of the three
individual limit state modes if assuming the statistical independence
among the three limit state modes. Fan et al. (2014) emphasize that the
value for PUP will be underestimated if multiple displacement limit state
modes are not considered simultaneously while the PUP value for the
system will be overestimated if the dependence among the different
displacement limit states is not considered.

The USACE hydraulic structures are designed to resist multiple limit states,
which are listed in Section 1.5. When a hydraulic structure is viewed in
terms of a Reliability methodology, Fan’s research indicates that the
interrelationship between multiple performance limit states and a system
PUP value is an important consideration. This is one of the research tasks
investigated by the authors of this report, with the initial findings discussed
in the Phase 1 portion of the two-phase research study, in Chapter 4 and
Appendix A of Ebeling and White (2019).

Accommodating multiple limit states and/or failure modes given multiple
variables in the PUP calculation has been shown by the Fan et al. (2014)
study to be a requirement of a Reliability analysis. Therefore, Appendix A
describes different methods that have been researched and/or devised by
the authors of this report to estimate the overall PUP values for systems
with multiple limit state response surfaces.

For a single Limit State with a hyperplanar Limit State Response Surface,
as shown in Figure 5-6, the calculation of PUP is simple and accurate.
Because the variables are mapped to a normalized multivariate Gaussian
distribution space, the integration of the area of unsatisfactory
performance on one side of the hyperplane of distance S (at the design
point) from the mean origin is the same as the area for the single variable
normalized Gaussian distribution beyond the design point distance £.
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Figure 5-6. Mapping the integrated PUPfrom the multivariate hyperplane to a single
Gaussian distribution.
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This situation becomes more complicated as non-hyperplanar limit state
response surfaces are considered. Figure 5-7 shows how two hyperplanar
limit states combine to create a non-hyperplanar limit state response
surface. In this case, the integral of the point value PUP probabilities
includes the probabilities under the second limit state that does not overlap
the first limit state probabilities. This is represented by the Figure 5-7
probability distribution area that is beyond the limit state response surface
where the regions are shaded red, green, and khaki. The probabilities of the
overlap of the second limit state and the first limit state only need to be
accounted for once.
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Figure 5-7. Mapping the integrated PUPfrom the multivariate hypersphere to a single
Gaussian distribution.
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Recall from Ebeling and White (2019), the reliability of the system is
defined as the complement of the probability of unsatisfactory performance
(1-PUP) in their Equation 2.10. Because the ASM design point exists at the
point where the limit state response surface is nearest the origin of the
normalized multivariate Gaussian distribution space, a way to
conservatively estimate the compliment of the PUP value so that
satisfactory performance is guaranteed is to compute the probability of the
hypersphere of radius £, as shown in Figure 5-7. Recall that the Figure 5-7
origin corresponds to the mean values for all variables. This estimate
integrates the complement of PUP using the probabilities outside of the
hypersphere to determine PUP. This value is conservative because the
hypersphere is guaranteed to be completely in the area of satisfactory
performance but is not guaranteed to encompass all of the satisfactory
performance region.

More accurate range finding PUP estimation methods provide a minimal
range for the upper and lower bounds of the PUP using logical combination
constraints given the limit state response surfaces, their number, and
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possible overlap information. The minimal range refers to the fact that the
bounds are at the closest distance from each other based on the logical
combinations. The authors of this report suggest that by choosing a value at
the midpoint of the range will guarantee an estimate that is accurate to
within half the range width. Ang and Tang (1984) provide methods for
finding the bounds of the overlap of regions based on Bayesian logic. These
estimations are based on non-correlated variables, so they involve
perpendicular response surfaces. The overlap regions involve the
combination of comparing each limit state with respect to each other, as
shown in the two-limit state, 2-D example of Figures 5-8 and 5-9. The
upper and lower bounds for the overall PUP would be the different
summations and removals of probabilities based on the Bayesian
combinations of non-correlated values as described in Subsection A.3.1 of
Appendix A. The difference in the bounds is described by the third overlap
region between overlap regions A and B from -5.8 and 5-9. Note that the
bounds can be found for multi-variate, multi-limit state problems.

Figure 5-8. Finding the overlap region A given limit state | with respect to limit state J.
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Figure 5-9. Finding the overlap region B given limit state J with respect to limit state I.

The range-finding methods were developed at a time (e.g., Ang and Tang
1984) when computational power was not widely available to perform the
more accurate numerical integration techniques that are required to handle
correlation between limit state response surfaces. This computational
power is now available for a limited number of variables. However, range-
finding methods are still useful in that they provide valuable information
that bounds the range in PUP value with minimal computational effort.
Recalling the authors’ suggestion made earlier in this subsection, a value
assigned equal to the midpoint of the range will guarantee an estimate that
is accurate to within half the range width.

Monte Carlo simulation methods can also be used to estimate PUP.
Samples would be taken at random from the variable space according to
each variables distribution then the unsatisfactory or satisfactory result of
the sample would be computed. Many samples would be taken, and the
ratio of unsatisfactory results to the overall number of samples would give
the PUP estimate. For a full Monte Carlo simulation, a large number of
samples (>10,000) would be required. The Latin Hypercube sampling
method reduces the number of samples required by guaranteeing that
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5.4

samples are not repeatedly chosen in the same regions. Also, Importance
Sampling lowers the error in calculation of the probability, by sampling
about the design point, which is the point of the lowest f# distance for all of
the limit states (Figure 4-8), on the response surface for the combined limit
states. To perform Importance Sampling, the design point, which gives the
point on the closest limit state to the origin of the normalized Gaussian
distribution, needs to be found. This can be done using the ASM
techniques. A major concern for the simulation methods is that there are no
guarantees that sample points will be generated in all of the limit state
unsatisfactory performance regions, when multiple limit states exist. This
concern is mitigated by the fact that the limit state regions that are not
covered will typically have very low probabilities.

Numerical integration can also be used to estimate PUP. The concern is the
possibility that, in some instances, it can quickly grow to be unsolvable in a
timely manner, even on the most advanced computers. The authors believe
that for a small number of variables, this method may provide results in a
timely manner. Figure 5-4 shows an integration method for estimating the
PUP value. The space is divided into a hypergrid, and each grid cell
probability would be added to the PUP if the variable values would lead to
unsatisfactory performance. The two sources of error for this calculation
would be the resolution of the hypergrid and the range of the calculations.
By having the range vary from -5 to 5 standard deviations from the mean
for each variable, the error can be minimized. An improvement to the
integration method utilizes the fact that the probability of a normalized
Gaussian distribution stays the same at a given radius; therefore, a polar
hypergrid could be used so that the probability calculations would be
quicker. These numerical integration methods are described in Appendix A
Subsections A.3.2 and A.3.4. Because all of the variable spaces are mapped
for integration and the solution looks for any unsatisfactory performance in
any grid cell (voxel, or volume element), this solution method works for
multi-variate, multi-limit state problems.

Determining Load and Resistance Factor Design (LRFD) values
from PUP

Given a PUP value from one of the methods listed above, the goal is to
determine an equivalent g distance and a vector of directional cosines «, so
that load and resistance factors may be derived. Most of these methods
compute PUP without respect to where the probabilities lie. Only the ASM
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method attempts to locate the point with the maximum probability of
occurrence while the others can produce close estimates.

One possible method to determine g from PUP is to calculate the
probability of a hypersphere that encloses an area of probability in the
normalized Gaussian distribution space that has an integrated probability
of 1-PUP. The radius of this hypersphere is then the g distance. This is
illustrated with Figure 5-10.

Figure 5-10. Setting radius g for a hypersphere so the probability density outside the
hypersphere integrates to the same value as the integration of the area region
bounded by the limit state hyperplanes.
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This figure shows a two-variable system where X=[X";,X".]. The
Unsatisfactory Performance region is defined by two hyperplanar limit
states in Figure 5-10a. A design point is found using ASM. This design point
is the closest point on the Response Surface (which separates satisfactory
performance regions from unsatisfactory performance regions). As
described previously, the unsatisfactory performance region’s probability is
determined accurately by integrating the point probabilities on one side of
the limit state response surface (such as Equation 5.5).

For a given PUP value, Figure 5-10b shows that a hypersphere can be
created that encompasses the integrated probability of the complement of
PUP, which is 1.0-PUP. In this case, the Unsatisfactory Performance is the
integration of the point probabilities outside the hypersphere and
equivalent to the integration of probabilities to one side of the response
surface in Figure 5-10a. The hypersphere has a radius of g*. This can be
computed without knowing the directional cosines &, which reveal the
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distance to the closest point on the response surface. Notice that f*is
greater than the design point g, which means that some of the volume inside
the hypersphere (which geometry calls an n-ball) is part of the Unsatisfactory
Performance region defined by the limit state hyperplanar surfaces.

The volume of a hypersphere with dimension n of radius £ is given as

n

T2

—_—
TEuter (E"‘ 1)

(B) = B" (5.12)

Where 7Euler() is the Gamma function specified by Euler that provides a
method to calculate the factorial of complex (and therefore real) numbers.
An approximation of these functions can be found in many programming
languages. Using Equation 5.12, the cumulative probability of a
hypersphere with radius £ can be estimated by the radial integration of
concentric ring probabilities. For a single concentric ring of hypersphere
with dimension n and radius # and radius interval i, the probability of a
point being selected in the ring is approximated as

PRing(ﬂ) = (V;L(:B + ﬁl) - Vn(ﬂ - ﬁi))(PNormal(,B))n (5.13)

where Pnomai() 1s the single dimension normal PDF function.

Summing these ring probabilities from the origin to any full hypersphere
radius S gives the approximate cumulative probability of the hypersphere.
These data can be kept in a look-up table using small increments of the
radius so that an equivalent approximate value for Srypersphere can be
computed for the probability of satisfactory performance for the response
surface computed using methods that do not give g values (i.e., simulation,
integration, and bounding techniques).

System Reliability Index, fsystem - Series Model: Park et al. (2015)
studied the system reliability of a simple two-member truss with two failure
modes for optimization purposes in design, computing the probability of
failure and reliability of the truss system using a reliability simulation
based computational methodology. The main goal of their paper is to
discuss the reduction of computational complexity and error introduced by
ignoring dependence between failure modes on evaluating system
reliability, especially in the tails of the distributions, with respect to
application in system optimization problems. A series reliability model, in
contrast to a parallel reliability model, composed of two failure modes was
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postulated for their truss model. The series failure model is the union of
failures among multiple failure modes, which implies that any single failure
mechanism directly relates to system failure, as compared to the parallel
failure model which requires multiple individual failures to cause system
failure (i.e., an intersection of failures). A series model is judged by the
authors of this technical report to be a reasonable assumption for a truss
because the truss system fails if any individual truss element fails, as
pointed out by Nowak and Collins (2013), in discussion of their Figure 9.4
truss. Park observes that a series model is a common failure scenario in
structural design.

Structural failure of the Park et al. (2015) two-bar truss model is modeled
with uncertainties for each of the two limit states being considered (i.e.,
tension failure in bar elements). It was assumed that the ultimate strength
and the two external forces are uncertain inputs that can be described as
normally distributed variables using a mean and coefficient of variation.
Individual truss members are subjected to tensile force or compressive
force only, depending on specific values drawn from the input variable
distributions. The type of member force that developed depended upon (1)
the geometric configuration of the individual trusses, (2) the strength of the
individual truss members in tension and in compression, (3) the position,
the orientation, (4) magnitude of the point load(s) applied to the joints in
the truss system, and (5) the boundary conditions imposed on the truss
system joints (e.g., none, roller, or pin). A simulation procedure, consisting
of 10,000 random variable simulations, was used in their reliability
computations. The system probability of failure, Prsystem, is computed using
the union of failure space for the two limit states, as depicted in Figure 5 of
Park et al. (2015). Their figure looks similar to Figure 5-1 of this report.

Park et al. (2015) expressed the system Reliability index, Bsystem, as
.Bsystem = _cb_l(Pf—system) (5.14)

where ®( ) is the inverse CDF of standard normal distribution. This agrees
with one of the approaches suggested earlier in this subsection and
depicted in Figure 5-10 for characterizing system reliability. It was arrived
at independent of Park et al. (2015).
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5.5

Calculating PUPsystem for the Chapter 2 Geotechnical T-Wall
example problem with a 25 ft and 15 ft base widths

In Chapter 4, the geotechnical structural system described in Chapter 2 was
evaluated for individual limit states from the soil material property
distributions to determine the resistance and load distributions as well as
PUP for the specified limit state. Chapter 3 revealed in Tables 3-2, 3-5 and
3.7 that the computation of spatial COVs for the soil material values used
different procedures, given each of the three respective Geotechnical limit
state assumptions. This means that each procedure could conceivably
create very different spatial COVs for each of the three material property
distributions in the limit state set. The spread of the values is determined
by the original, Mid-Range point estimate standard deviation value
multiplied by variance reduction factor, which was created from the slip
plane length and scale of fluctuation for the soil region. Table 5-1 gives the
means, coefficient of variations, and standard deviations of the variables for
each limit state using Mid-Range COVs. The simulation sets in this section
were created using Mid-Range COVs, but later sections will evaluate this
problem set with Upper Range COVs.

Table 5-1. Mid-Range means and standard deviations for soil effective angle of
internal friction ¢’values, in degrees, for the three different limit states and their three
different soil regions along with their COV.

Driving Wedge Structural Wedge Resisting Wedge
Limit State
mean COV il mean COV e, mean  COV il
Dev. Dev. Dev.
Sliding 35 0.026 1091 30 0.2 6.00 |37 0.039 143

Base Area in
Compression 35 0.026 0.90 30 0.2 6.00 37 0.041 1.50
(Overturning)

Bearing 35 0.026 091 30 0.021 0.63 |37 0.039 1.43

Similar
(average of

Sliding and 35 0.026 090 30 0.2 6.00 |37 0.040 1.47

BAIC)
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Figures 5.11 — 5-14 show simulation values drawn from each Limit States
set of distributions for the three variables, forming a 3-D space. The three
variables are described by the three axes shown as red, green, and blue
arrows representing the orthogonal ¢'pw, ¢’sw, and ¢’rw values, respectively.
The crossing point for the three axes is at the mean value origin for the
distributions. These plots are shown in the non-normalized variable space
so that distribution values can be compared as actual distances. Sample
points are shown in either a blue color or red color representing
satisfactory or unsatisfactory performance, respectively. Additionally, a
green plane is shown that reveals the results of an ASM analysis for a given
limit state. The ASM analysis assumes a hyper-planar response surface
dividing the satisfactory response half-space from unsatisfactory response
half-space, which is normal to a design point, given as the point of greatest
probability on the surface. For these images, there is only a single plane
shown associated with the sliding limit state in Figure 5-11. Figure 5-11 was
created by overlapping the samples for all of the three Geotechnical limit
states, which were simulated separately. These mean and COV values are
the same as reported in Table 2-1. Because the standard deviation of the
Structural Wedge ¢ values are so much different between the sliding and
base area in compression limit states as compared to the bearing limit
state, the shape of the distribution sample set varies from a long ellipsoid
(Figures 5-12 and 5-13) to a vertical disk (Figure 5-14).
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Figure 5-11. Sample simulation sets of 3-D (Driving, Resisting, and Structural Wedge)
material soil friction ¢ variable data drawn from the different sets of Normal
distributions for each of the three limit states overlapped, given a T-Wall with base
width of 25 ft.

Figure 5-12. Sample set of 3-D (Driving, Resisting, and Structural Wedge) material soil
friction ¢ variable data drawn from Normal distributions for the Base Area in
Compression Limit State, given a T-Wall with base width of 25 ft.
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Figure 5-13. Sample set of 3-D (Driving, Resisting, and Structural Wedge) material soil
friction ¢ variable data drawn from Normal distributions for the Sliding Limit State with
Satisfactory and Unsatisfactory performance points and ASM limit state hyperplane,
given a T-Wall with base width of 25 ft.

Figure 5-14. Sample set of 3-D (Driving, Resisting, and Structural Wedge) material soil
friction ¢ variable data drawn from Normal distributions for the Bearing Limit State with
no Unsatisfactory performance points, given a T-Wall with base width of 25 ft.
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In practice, the calculated values of load and resistance forces in the
simulations are found to be correlated because of the force interactions
among the three wedges and the imposed force equilibrium for the three
wedges. Because the Sliding and Base Area in Compression limit state slip
plane distances are similar, the resulting set of variable distributions is
similar, as reflected in their spatial COV values from Table 5-1. These
similar distributions are further revealed in Figures 5-12 and 5-13, where
the sample point ellipsoid shapes and ranges are similar. At this stage in
the discussion, it is pointed out that the structural shear and moment limit
states for the stem of the T-Wall, by definition, use the same set of spatial
distributions as the Sliding Limit State.

The Bearing Limit State is based on vertical forces of the Structural Wedge
acting on the soil foundation, resulting in a very different spatial
distribution for the dispersion in the soil strength property along the slip
plane for bearing failure within the foundation, beneath the structural
wedge. Observe in Table 5-1 that the foundations spatial COV possesses a
value that is 90% smaller than the Structural Wedge COVspatial from the
other two Geotechnical Limit States. This is also reflected in the simulation
results when those for the Bearing limit state (Figure 5-14) are compared to
those of the other two limit states (Figures 5-12 and 5-13). While the slip
plane distances for the Driving and Resisting Wedges are similar to the
Sliding and Base Area in Compression calculations, the Structural Wedge
slip plane of a bearing failure within the foundation expanded by seven
times, resulting in a 90% smaller Structural Wedge COVspatiai. In summary,
the Bearing limit state set of soil material distributions is non-similar to the
other two limit state distributions.

This difference among spatial COVs for the three limit states complicates
the computation of PUPsystem, which combines all of the Limit State’s
unsatisfactory probabilities. The factors that are applied to transform the
variable space to a normalized Gaussian variable space are different for the
same variable for different limit states because the standard deviations are
different. This violates the isotropy of this transformed space. Precise
values for Monte Carlo simulations cannot be computed for all the Limit
states because a drawn simulation variable value will have a different
probability of selection (due to anisotropic variables) for different limit
states. For example, for the sample point {¢'pw, ¢'sw, ¢'rw}={35.0, 36.0,
37.0} the probability of occurrence is that for 1 standard deviation (5) for
Sliding and Base Area in Compression limit states but 9.52 g for the
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Bearing limit state. This change in probability is illustrated by the shape of
the drawn simulations for the Bearing limit state (Figure 5-14) as compared
to the shapes of Sliding and Base Area in Compression limit states

(Figures 5-12 and 5-13).

This 25 ft wide T-Wall example problem allows the comparison of the
results of simulation to the numerical methods with those of the ASM
procedure for calculating PUP for the system (of three limit states), since
the primary and highest probability source of failures comes from the
Sliding limit state. For 1,000,000 simulation runs, the PUP values for the
Base Area in Compression and Bearing Limit states are 0.0, and the Sliding
limit state PUP is 0.001669. The ASM prediction for PUP of the Sliding
limit state is 0.001760, which is overpredicting the simulation probability
and indicates that the Sliding limit state response surface is non-linear.
Observe in Figures 5-11 and 5-13 that the ASM limit state response surface
for sliding is depicted as a plane. This 3-D surface depiction is not a precise
depiction of the response surface for the reason just stated. It should have
some curvature in it. Using these numbers, it can be assumed that the
PUPsystem is equivalent to the Sliding limit state PUP of 0.001669.

To calculate the actual PUPsystem value, with overlapping limit states using
different limit state spatial distributions, a numerical integration of the
transformed (normalized Gaussian) variable space in unsatisfactory
performance needs to be performed as displayed in Figure 5-4. The entire
space is divided into “cells.” An indicator function returns true if any limit
state gives unsatisfactory performance. If multiple limit states report
unsatisfactory performance for the variable values, the PDFs are computed
for those limit states, and the greatest probability is returned for the cell
and summed into the PUPsystem value. This maintains the case that the most
probable unsatisfactory limit state will occur before the other limit states
are activated.

Appendix sections A.3.3 and A.3.4 present methods for faster numerical
integration using hyperspheres, but these optimizations assume that the
same spatial distribution sets are being used if multiple limit states are
being solved. This is because the hypersphere method depends on
normalizing the spatial distributions so that hyperspherical shells with
constant probability are assumed. Refer to Figures A-10 and A-11 for a
visual depiction of these multiple “shells.” For the case where multiple limit
states have similar spatial distributions, these limit states can be combined
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for the calculation of PUPsystem in an optimized manner. To deal with the
non-similar distributions, the center of the shell element can be found in
the variable space (¢'pw, ¢’sw, ¢'rw) and the limit state evaluated for
unsatisfactory performance. In Figure A-10 or A-11, each shell is divided
into equal length segments around the circumference of each shell (not
shown), each of which are referred to as shell cells or simply cells in this
document. If the cell center is unsatisfactory for the non-similar
distribution, then the probability of the cell center calculation is computed
from the variable spatial distributions and, if the probability exceeds the
similar distribution probability, then that value is substituted into the
PUPsystem summation. This hybrid approach allows for a semi-optimized
hyperspherical calculation of PUPsystem, if a smaller number of non-similar
distributions exist as compared to the similar distributions.

Note that this hybrid hyperspherical PUPsystem method loses some precision
in the calculation of the non-similar distribution probability. The
hyperspherical shell elements keep the exact values for the normalized
spatial distributions specifically because the distribution is normalized,
which means that the curvature of the probability follows the shell. For
non-similar distributions, the curvature of probability is hyperellipsoid and
does not exactly match the hyperspherical shell. However, these resulting
arcs of the hyperellipsoid will show symmetric properties about the center
of the shell section with excess probability in one area of the shell section
being cancelled by a probability reduction in the area of the shell section
across the central point of the shell section.

For the 25 ft wide T-Wall example problem of Chapter 2, there is only one
truly non-similar set of distributed soil material variables which occurs for
the Bearing limit state. The other limit state sets of distributions are similar
enough that averaging the COVspatials of the similar individual limit states
will yield similar probability curvature for these limit states, especially as
the tails of the distribution are approached. The Bearing limit state has a
much different probability curvature about the Structural Wedge soil
material variable axis. This situation is ideal for the hybrid PUPsystem
calculation method suggested in the preceding paragraphs.

Figure 5-15 shows the result of performing the hybrid hyperspherical
PUPsystem calculation with a target precision of 0.000001 probability.
Observe in this figure that the pattern of simulation points for the shell cell
centers follows a radial coordinate pattern emanating from the origin to the
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three axes (i.e., from the mean values for the three variables). The
procedure generated 1,007,438 sampling runs. The blue points are
satisfactory results while the green-yellow points show where the Bearing
failures dominate and the red points show where Sliding failures occur. The
green plane is the ASM position of the failure response surface for the
sliding limit state. The linear progression of points outside of the main
conglomeration of points is the area where a minimum number of points
are applied to the hyperspherical shells and the probabilities are reduced.

Figure 5-15. Hybrid hyperspherical PUPsstemSimulation results for a T-Wall under
Extreme loads with base width of 25 ft.

Each simulation point in Figure 5-15 has a probability of approximately
0.000001 for the similar limit states, The Bearing limit state probabilities
are significantly smaller, especially as ¢’pw varies from the mean. Summing
the sample point probabilities of all of the limit states, the PUPsystem
calculated using the hybrid hyperspherical numerical method was
0.001664.

This PUPsystem value of 0.001664 is slightly lower than the Monte Carlo
simulation results for the Sliding limit state with only a 0.000005
difference. The authors of this report consider the values from the two
computations to be close in magnitude. This small difference could be a
result of sampling error, but it highlights that the Sliding limit state has a
non-linear response surface. This nearness was expected, since the Sliding
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limit state was the primary concern for failures. It is observed that the
extremely low probabilities of the Bearing limit state failure conditions
made no substantive difference in the PUPsystem calculation. While this
condition allows for a nearly direct comparison of PUPsystem to PUPsliding for
verification, it does not allow us to see the results of LRFD analysis as
compared to individual limit state LRFD analysis. An additional analysis is
required to address this feature.

Applying Equation 5.14 to the PUPsystem value of 0.001664 for the 25 ft base
problem, the resultant equivalent normal Ssystem value used as
approximation for system Reliability is 2.94.

Figure 5-16 shows the results of running the Usual load case (from

Figure 2-2) with the base width reduced to 15 ft. This case was chosen
because the ASM runs for Sliding, Base Area in Compression, and Bearing
all resulted in failures with significant (albeit low) probabilities. The three
planes are visible, with the Bearing limit state response surface (dark
blue) plane being above the mass of the samples, the Base Area in
Compression limit state response surface (turquois) plane being behind
the mass of the samples, and the Sliding limit state response surface (dark
green) plane proceeding at an angle across the front, left of the mass of
the samples. The ASM PUP for the Base Area in Compression limit state is
still extremely small and does not register to six decimal places. The ASM
PUP for the Bearing limit state is not insignificant with a value of
0.00032. The ASM PUP for the Sliding limit state still dominates with a
value of 0.010752. PUPsystem from the hybrid hyperspherical numerical
procedure had a value of 0.011857. Again, it is observed that the sliding
limit state dominates the contribution to PUPsystem 25 ft T-Wall base width
example, and that both the Bearing and the Base Area in Compression
limit states provide negligible contributions.
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Figure 5-16. Hybrid hyperspherical PUPysts=msimulation results for a T-Wall under Usual
loads with base width of 15 ft.

This case was included to show why numerical integration is necessary. The
ASM plane does not begin to describe the non-linear response of the
Bearing limit state. As samples are drawn that have very low ¢’sw values,
there is less support for the structure so that less vertical force from the
driving soil wedge is needed to put the structure into failure, leading to an
asymptotic curve to the response surface. Due to the scale of fluctuation
and the slip plane length for the mobilized soil under the Bearing load case,
the probability of very low ¢’sw values is extremely small.

In conclusion, it is shown that limit state response surfaces are non-linear
and overlapping and that a full integration of maximum probabilities will
give a more precise calculation of PUPsystem. It is also shown that the
adaptive hyperspherical Gaussian probability numerical integration will
allow for high precision calculation of PUPsystem using a similar number of
simulation runs (approximately 1,000,000 per limit state for a precision of
0.000001) as Monte Carlo methods. Unfortunately, the probabilities for
the base design example problem is driven primarily by the Sliding limit
state. The 15 ft wide T-Wall example provides a method to view all of the
limit state ASM hyperplanes and explicitly reveals the nonlinearity of the
bearing limit state. While this condition allows for a nearly direct
comparison of PUPsystem to PUPsiiding for verification, it does not allow one
to see the results of LRFD analysis as compared to individual limit state
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5.6

LRFD analysis. An additional analysis method is required to address this
feature.

Applying Equation 5.14 to the PUPsystem value of 0.011857 for the 15 ft wide
base problem, the resultant equivalent normal Ssystem value used as
approximation for system Reliability is 2.26.

Calculating PUPsysiem for the Chapter 2 T-Wall Example Problem
with Geotechnical and Structural Limit States using 25 ft base
width

In the previous section, PUPsystem results for only the three geotechnical
limit states were evaluated to reveal the non-linearity or non-planarity of the
response surface boundary between the satisfactory and unsatisfactory
performance regions. Performing only three limit states also made it simpler
to visualize the complete results which only have three dimensions. This
section extends the previous section with two more structural limit states.

The limit states of the previous section could be described by a function of
three variables that returned the status of the limit state, either satisfactory
or unsatisfactory. These three variables were the friction angles of the soil
along the slip planes contained within the Driving, Structural, and
Resisting soil wedges (¢#'bw, ¢'sw, and ¢’rw). The distributions for these
variables were computed based on point values for the material coefficient of
variation and application of the variance reduction factor computed using
the length of the slip planes and the scale of fluctuation for the soil materials.

The three Limit State example problem can be extended to include structural
limit states such as shear forces and moments acting upon the vertical
section of the wall, commonly referred to as the stem. The additional two
structural limit states use the same sets of soil strength variables but use
them to compute the total shear force or the total moment acting at the base
of the stem of the wall feature on the T-Wall. The distributions for these
variables use the same computations that are used for the Sliding Limit
State, calculating the same variance reduction factors computed based on the
slip plane calculations from Section 3.4 for the mean variable values.
Therefore, these distributions for the geotechnical soil materials are similar
to the Sliding and Base Area in Compression Limit States.

These computations are discussed in Sections 3.6 and 3.7 as well as
Appendix B. The resulting shear load or moment becomes the load on the
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system. Each structural limit state has another variable that is a directly
computed shear or moment resistance. The capacity for the Extreme load
case is dictated by the Usual load case demand multiplied by a load factor
of 2.2 according to EM 1110-2-2104 (HQUSACE 2016) Table 3-1 value for
the Serviceability limit state. For the Usual load case, the shear demand at
the base of the stem is computed to be 17,024 Ib, and the moment demand
is computed to be 228,612 ft-1b.

Table 3-9 for shear capacity and Table 3-10 for flexural capacity give
distribution type, bias factors for mean, and coefficient of variation as well
as standard deviations that define the capacity distributions for shear and
moment according to Ellingwood. The mean capacity is therefore the
serviceability capacity times the bias factor for the mean, with the standard
deviation of the capacity being the COV times the mean capacity. Because
Ellingwood defined both structural capacity distribution types to be a
lognormal distribution, each variable can be drawn from a normalized
Gaussian distribution and converted to a lognormal distribution value.

This means that the final two structural limit states status calculations are
functions of four variables. The stem shear limit state is a function with

¢’ ow, ¢'sw, ¢’rw, and the shear force resistance of the stem (Sr). The stem
moment limit state is a function with ¢’ow, ¢’sw, ¢’rw, and the moment
resistance of the stem (Su). The introduction of Sk and Sm means that the
adaptive hyperspherical Gaussian probability numerical integration
procedure will have to be extended from 3-D to five-dimensional (5-D),
since the number of distributed variables has increased. It is incidental that
the number of limit states is 5, also.

The new variables only affect one limit state apiece. Only distributed
variables that are shared between limit state functions need to be compared
for similarity because a function that does not use a variable will not be
affected by changes of the variable. Because the only shared variables of the
two new structural limit states are the ¢'’ow, ¢'sw, and ¢'zw values, which are
determined in the same fashion as the Sliding values, these limit states are
similar to each other and the Sliding and Base Area in Compression Limit
State. The lone dissimilar set of limit state distributions are found for the
Bearing limit state, as it was for the 3-D numerical analysis. The
distributions of the geotechnical variables with Mid-Range and Upper Range
COVs are shown in Tables 5-2 and 5-3, respectively. The structural Limit
State distributions are shown in Table 5-4.
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Table 5-2. Mid-Range means and standard deviations for soil effective angle of internal
friction ¢’values, in degrees.
Mid-Range COV values
Limit State Driving Wedge Structural Wedge Resisting Wedge
mean cov std. dev. | mean cov std. dev. | mean cov std. dev.
degrees degrees | degrees degrees | degrees degrees
Sliding 35 0.026 [0.91 30 0.2 6.00 37 0.039 |[1.43
Base Area in
Compression 35 0.026 |0.90 30 0.2 6.00 37 0.041 [1.50
(Overturning)
Bearing 35 0.026 |0.91 30 0.021 [0.63 37 0.039 [1.43
Stem Shear 35 0.026 [0.91 30 0.2 6.00 37 0.039 [1.43
Stem Moment |35 0.026 [0.91 30 0.2 6.00 37 0.039 |[1.43
Similar (average
of Sliding, BAIC,
Stem Shear, 35 0.026 [0.91 30 0.2 6.00 37 0.039 |[1.45
and Stem
Moment)
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Table 5-3. Upper Range means and standard deviations for soil effective angle of
internal friction ¢’values, in degrees.
Upper Range COV Values
Limit State Driving Wedge Structural Wedge Resisting Wedge
mean cov std. dev. | mean cov std. dev. | mean cov std. dev.
degrees degrees | degrees degrees | degrees degrees
Sliding 35 0.052 1.82 30 0.3 9.00 37 0.077 |2.85
Base Area in
Compression 35 0.051 1.79 30 0.3 9.00 37 0.081 |3.00
(Overturning)
Bearing 35 0.052 1.82 30 0.032 |[0.95 37 0.077 |2.85
Stem Shear 35 0.052 1.82 30 0.3 9.00 37 0.077 |2.85
Stem Moment |35 0.052 1.82 30 0.3 9.00 37 0.077 |2.85
Similar (average
of Sliding, BAIC,
Stem Shearr, 35 0.052 0.91 30 0.3 9.00 37 0.078 |2.89
and Stem
Moment)
Table 5-4. Means and standard deviations for stem shear force and stem moment.
Stem Shear Force Stem Moment
Limit State
Mean cov Std. Dev. Mean cov Std. Dev.
GN*(LN**) GN*(LN**) GN*(LN**) GN*(LN**)
10.654 0.179
Stem Shear (43,070.72 0.0168 | (7,752.73
Ib) lb)
S 13.232 0.139
2 (563,299.97 0.0105 | (78,862.00
Moment
ft-1b) ft-1b)

* Gaussian Normal distribution value (designated GN) to be converted to actual Log-Normal value

** Resultant actual Log-Normal distribution value (designated LN)

Table 5-2 has the same form and mostly the same values of Table 5-1. Table
5-3 gives the Upper Range distributions for these same variables. The
introduction of the new Stem Shear and Stem Moment distributions, which
are calculated in the same fashion as the Sliding Limit state and therefore
have the same values, makes a slight adjustment in the similar distribution

when averaging occurs.

Table 5-4 has the distributions of the new variables introduced for the Stem
Shear and Stem Moment limit states. The mean and standard deviation
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values for the log-normally distributed shear force and moment variables.
The variables are then converted to a Gaussian Normal distribution that,
when used as the exponent x in equation eX, derives the lognormal value
required for the variable. The Gaussian Normal distributions created for
stem shear and moment are used as the two new axes in the 5-D variable
coordinate system.

An ASM run was performed for each limit state to find the individual limit
state PUP value, estimated using a hyperplanar response surface normal to
a design point. Table 5-5 shows the results for both Mid-Range and Upper
Range COV distributions, with N/A results occurring where the ASM
bounds for S were exceeded (>8). Thus, the N/A cases possess a very low
PUP value with a corresponding f value greater than 8.

Table 5-5. ASM results for the limit states of the 5-D integration problem.

Mid-Range COVs Upper Range COVs
Limit State 25 ft base width model 25 ft base width model

pPUP Equivalent g | PUP Equivalent g
Sliding 0.001745170794 | 2.92 0.030312881586 |1.88
Compreasion |/ /A N/A N/A
Bearing 0.000000000630 | 6.07 0.000235387940 |3.49
Stem Shear 0.000815793637 |3.15 0.001114960718 |3.06
Stem Moment 0.000000005464 |5.71 0.000000027044 |5.44

A comparison is made between the Mid-Range COV and Upper Range COV
values used in the simulation runs for individual limit state performance.
The expectation was that using Upper Range COV variances would increase
the PUP for every limit state, which seems to be borne out for the cases for
which there are data. It can be assumed that the Base Area in Compression
Limits State has an increased PUP value, though that value is in the tails of
the distribution. A surprising result of the comparisons is in the amount of
difference that the change of variance makes for some limit states with
respect to others. The Stem Shear and Stem Moment Limit States had
decreases of 8 of 3% to 5%, the change of Sliding Limit State g was 36%,
while the change of the Bearing Limit State 8 was 43%. It is primarily
assumed by the authors of this report that these changes are primarily
explained away by the Three-Wedge geotechnical method and how the
foundation soil in the Structural Wedges interacts with the solution. The
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foundation soil does not apply to the Stem Shear and Stem Moment Limit
States but has a slip plane length equivalent to the length of the base
without separation for the Sliding Limit State and a slip plane length seven
times the length of the base for Bearing. Applying the Variance Reduction
to these slip plane lengths makes for a very tight distribution, so PUP
values in the tails of the distribution have more significant contributions
when the distribution is scaled.

Using Mid-Range COVs, the 5-D numerical processing runs for the 25 ft
base width example T-Wall problem produced a PUPsystem value of
0.002374 as compared to the 3-D numerical processing probability for the
geotechnical issues alone with a value of 0.001664. This is a significant
change and indicates that the failure response surface for the system has
been changed by the addition of the structural limit states. Thus, the
additional consideration of the structural limit states, most probably the
stem shear limit state, contributes to the PUP for the T-Wall.

Recall that the 0.001664 PUPsystem was, for all intents and purposes,
equivalent to the PUPsiiding for the 25 ft base width example problem for the
3-D results (i.e., Geotechnical limit states). Despite non-linearities, these
values were also very near to the ASM calculation for PUPsiiding.

Equation 5.15 shows that the probability of two (or more) mutually
exclusive limit states is equal to the sum of each of the individual limit state
probabilities (Ang and Tang 1984). Assuming the probabilities for Sliding,
Stem Shear, and Stem Moment are mutually exclusive, the maximum value
of the PUPsystem can be computed by summing their probabilities. This
equation can be derived from the equation for the maximum bounds given
in Appendix A section A.3.1.

P(LS, ULS,) = P(LS,) + P(LS,) (5.15)

Summing the PUP values for each of the limit state ASM probabilities of the
25 ft base width example problem in Table 5-4 gives a value of 0.002596,
which is close to 0.002374, the numerical calculation of the 5-D PUPsystem.
This would seem to suggest that the PUP volumes in the Gaussian Normal
Space for each limit state do not overlap, but that is not the case.

For the Stem Shear and Moment limit states, Gaussian Normal space
variable axes are created that explicitly define resistance, but given the
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definition of the Gaussian Normal distribution space, the other variable
axes are orthogonal to the resistance variable axes. The Geotechnical limit
state volumes are unaffected by the resistance variables. The Geotechnical
hyperplanes that define ASM probabilities are therefore parallel to the axes
that have no effect on them whereas the Structural limit states must not be
parallel to these axes since they define performance. This leads to the
conclusion that there must be overlap of the PUP volumes between the
Geotechnical and Structural limit states.

This conclusion is further proven by finding the dihedral angle between the
unit a vectors to the design points of the response surface hyper planes for
the Sliding and Stem Shear limit states determined using ASM. The
dihedral angle of these vectors is also the dihedral angle between the
hyperplanes. The Sliding limit state o is the vector [Driving Wedge ¢’ =
0.094745, Structural Wedge ¢’ = 0.949978, Resisting Wedge ¢’ = 0.297598,
Stem Shear Resistance = 0.0]. The stem shear resistance does not have
bearing on the sliding limit state, so its value is set to 0.0. The Stem Shear
limit state « is the vector [Driving Wedge ¢ = 0.134587, Structural Wedge
¢’ = 0.0, Resisting Wedge ¢’ = 0.048451, Stem Shear Resistance =
0.989717]. The dot product of these vectors yields the cosine of the dihedral
angle of 0.02717, which is a dihedral angle of more than 88 deg between
the hyperplanes.

The fact that the dihedral angles are virtually perpendicular and yet the
PUPsystem is similar to the sum of PUPstiding and PUPstemshear leads the
authors to conclude that the probability of the overlap region, where the
combination of variables leads to failure in more than one limit state, is
statistically insignificant in this case. This situation will occur with any
overlap region (even with large dihedral angles) when the overlap is in the
tails of the distributions, because the probability of any point in the variable
space is the multiplication of all of the variable’s probability density
functions at that point. Integrating over the overlap space returns a very
small number. Returning to the example problem, the greatest probability
is PUPsliding, which has a g of 2.92. The PDF for f=2.92 is extremely small
and will be multiplied by even smaller values for the next closest limit state
S (Stem Shear). Integrating the overlap space contributes an insignificant
amount to PUPsystem.

Using Upper Range COVs creates a wholly different dynamic because the
change in variance changes the contributions of the individual Limit States.
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Table 5-5 ASM analysis reveals that the increase in variation affects the
Bearing and Sliding Limit States the most, respectively. While the Bearing
Limit State had hardly been a concern for the Example Problem using Mid-
Range COVs, it has become an issue for the Upper Range COVs.

Figure 5-17 shows the effect on the three primary individual limit states
(Sliding, Stem Shear, and Bearing) as the resistance scale factor (Rsr) is
increased. The minimal £ point at any Rsrlocation gives the greatest
individual PUP that will affect the structure. Because the Stem Shear Limit
State has higher g values than the other two limit states, it is not the limit
state of most likely failure.

Figure 5-17. Individual limit state analysis of # with respect to increasing As~
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The shapes and positions of the Load and Resistance distributions for the
individual limit states have a large effect on the rate of change of the
individual PUPs and fs for the limit states as Rsr changes. This is
illustrated by the different slopes for the Sliding Limit State and Bearing
Limit State Rsr-to-# curves. Slight changes of Rsr have a larger effect on
for the Sliding Limit State than the Bearing Limit State. This leads to a
situation where the most probable failure is with the Sliding Limit State
until the Rsrreaches a value of close to 1.5, and then the Bearing Limit
State becomes the limit state of most probable failure. Because of the slow
rate of change, high values of Rsr, meaning greater Load and Resistance
Factors, are required to reach target PUP and consequent S values. For
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Figure 5-17, an Rsr value of 2.5 is required to provide a guarantee £ of 3.5,
which is recommended for noncritical structures by Ellingwood.

Figure 5-18 shows b as a function of Rsr for three different cases: simulated
Sliding Limit State computations, Sliding Limit State 5-D integration, and a
Combined Limit State 5-D integration. The first two cases were provided as
a verification step since the simulation and 5-D integration should provide
nearly the same values, which they did. The black curve provides the result
of the Combined Limit State. This value is provided by a Gz() function,
which combines the results of the Gz() functions of the other Limit States.
Recall that the Gz() function returns the Resistance minus the Load (R-L).
If any individual Limit State Gz() function drops below o, then the
PUPsystem is increased by the greatest limit state failure probability.

Figure 5-18. Comparison of simulated Sliding Limit State, 5-D integration analysis for
Sliding Limit State, and 5-D integration analysis with the combined limit state
response f values as Rsris increased.
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The Combined curve closely follows the Sliding PUP curve until the Rsr
factor increases to nearly 1.25. This corresponds to the Figure 5-16
individual limit state results. The curve then starts to see the influence of
the other limit states, presumably Bearing according to Figure 5-16.
However, the value of £ is less than the individual g values as Rsr changes
because of the additive effects of the overlapping failure regions for each
limit state. For Rsr=2.0, the Bearing Limit State alone returns an
approximate value of f=3.4 (Figure 5-16), yet the Combined Limit State
returns an approximate value of f=3.1 (Figure 5-17).



ERDC/ITL TR-21-1

138

5.7

This analysis underscores the observations of Fan et al. (2014), who
indicated that determining individual load and resistance factors may not
provide a sufficient PUPsystem for the proposed lifetime of the structural and
geotechnical pile system. Fan et al. (2014) based their inference on the fact
that the probability areas of the combined limit states can be greater than
the probability area of any individual limit state, as shown in the
comparison of Figures 5-17 and 5-18. The observation is further bolstered
by the discovery that the primary individual limit state for determining the
Rsrbased on target PUP and S values can change as the Rsr changes.

Checking sliding resistance scale factors against the five-limit
state probability integration calculation

A comparison can be made for the Load and Resistance factors computed
in Chapter 4 against the multiple limit state adaptive hyperspherical
Gaussian probability numerical integration of Section 5.3.2.3 of this
chapter using Upper Range COVs. This comparison serves two purposes:
(1) to show the cumulative effect of multiple limit states on PUP values and
(2) to reveal whether load and resistance factors determined for the Limit
State with the greatest PUP value can be used to as good baseline values. In
the Extreme example problem of Figure 4-3b, the limit state that had the
highest PUP value of 0.00176 was the Sliding Limit State, followed by the
Stem Shear Limit State with value of 0.000836.

Simulation methods introduced in Chapter 4 provided methods for
determining a limit state’s resistance scale factor, Rsr, which can be applied
to the resistance to determine a design resistance. When this Rsris applied
to the specific design, the resulting PUP should be equal to a PUPrarget. The
Rsris converted to the Lsr based on the mean values of the current
simulation and the results are shown in Figure 4-7. The Lsr values can then
be decomposed into Load and Resistance Factors for LRFD with results
shown in Figure 4-8. Table 5-5 shows the S7arget values, Rsr values, and Lsr
values that were computed for the Sliding Limit State of the Upper Range
COVs in Figure 4-7.

To verify the correctness of using the Load and Resistance values based on
Sliding for the structural system being analyzed, we must apply the Rsrto
the adaptive hyperspherical Gaussian probability numerical integration
procedure, because this value is tuned to the Sliding load and resistance
means applied in the simulations. The Rsr is applied to the other four
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limit state resistance values as well, so that the full system performance
can be measured.

Table 5-6 shows the result of applying the Sliding Rsrin the adaptive
hyperspherical Gaussian probability numerical integration scheme in the
last two columns. Observe that the Srarget for Sliding exceeds the actual
PBsystem and that the difference becomes greater as the Srarger increases. This
observation is concerning because it reveals that Load and Resistance
factors based on the dominant limit state (Sliding for the example problem)
may be inadequate to specify designs that improve system response to a
specified probability of performance.

Table 5-6. The results of applying the 5-D adaptive hyperspherical Gaussian probability
numerical integration technique with the As-values determined for Sliding £ rzrger
values using Upper Range COVs.

ilzi/d/lgiet Sliding fragee | Sliding Rse | Sliding Lsr | PUPsstem | Bsystom
* & 1.000 & 0.027759 191
0.158655 1.00 0.836 1.166 0.175754 0.93
0.066807 1.50 0.909 1.269 0.074580 1.44
0.022750 2.00 1.009 1.407 0.025468 1.95
0.006210 2.50 1.150 1.603 0.008208 2.40
0.001350 3.00 1.356 1.891 0.003716 2.68
0.000233 3.50 1.734 2.418 0.001969 2.88
0.000159 3.60 1.802 2512 0.001856 2.90
0.000108 3.70 1.924 2.683 0.001774 2.92
0.000072 3.80 2.053 2.863 0.001752 292
0.000048 3.90 2.143 2.988 0.001747 292
0.000032 4.00 2.413 3.365 0.001715 2.93
*This value is not a result of assigning the Sliding [rarger, but a reflection of running the integration
at parity, where Rsr = 1.0.

Figure 5-19 shows the relationship between the Sliding Srarget and the
result Ssystem using the Rsr for that frarget. As the Sliding Srarget increases
above a value of 2.5, there is a noticeable divergence between Ssystem and
Sliding Srarget. The dashed red line shows the expected relationship if the
Sliding load factors were the driving condition for the system. This would



ERDC/ITL TR-21-1

140

be the case if there were only one dominant limit state (i.e., Sliding) and no
system response effects contributed by the other four limit states.

Figure 5-19. Comparison of system # values computed using increasing Sliding Asrto
the Dominant Sliding Limit State f e values.
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Table 5-7 shows this relationship as ratios of the System values (PUP and
) with respect to the Sliding Target values. The Pupsystem vs. PUPTarget
values for a Srarget greater than 2.5 begin to increase showing further
disparity. The ratio values for Srarget greater than or equal to 3.0 are greater
than 2.7. This PUPsystem to PUPrarget divergence is more noticeable than the
relationship divergence of SBsystem to Brarget.
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Table 5-7. Examining the ratios of PUPand g for Sliding limit state target and
integrated 5-D system results.

sP| lijd /i Ziet ; [ ;:;:tt; PUPsystem L system PUPsystem/PUPrarget | B system /B rarget
0.158655 |1.00 0.175754 0.93 1.108 0.932
0.066807 |1.50 0.074580 1.44 1.116 0.962
0.022750 |2.00 0.025468 |1.95 1.119 0.976
0.006210 |2.50 0.008208  |2.40 1.322 0.960
0.001350 |3.00 0.003716 2.68 2.753 0.892
0.000233 |3.50 0.001969 2.88 8.464 0.824
0.000159 |3.60 0.001856 2.90 11.665 0.806
0.000108 |3.70 0.001774 2.92 16.456 0.788
0.000072 |3.80 0.001752 2.92 24.216 0.768
0.000048 |3.90 0.001747 2.92 36.323 0.749
0.000032 |4.00 0.001715 2.93 54.150 0.732

The divergence of PUPsystem from PUPstiding in Table 5-6 (and in terms of £,
Figure 5-15) may be explained by the fact that the correlation between the
load and resistance is not taken into account in the 5-D adaptive
hyperspherical Gaussian probability numerical integration solution
method. This proportioned response is discussed in Section 4.6. Briefly
stated, for the three-soil wedge solution method, the load mean increases as
the resistance mean is increased by a scale factor because of design
changes. To determine the estimated correlated rate of change between the
load and resistance distribution means as the design changes, at least two
designs need to be analyzed with the same load conditions so that the rate
of change of the mean values can be measured for the two distributions.
However, load and resistance distributions can only be collected for a single
limit state in the three-wedge solution using Monte Carlo methods and
storing correlated values.

The results discussed in this chapter demonstrate that using a single,
dominant limit state to determine the system load and resistance factors
does not consider the complexity of multiple, overlapping limit states which
can have a cumulative effect. The devised hybrid adaptive hyperspherical
Gaussian probability numerical integration model results for the 5-D
reliability problem of this chapter demonstrate that this sort of analysis can
be used to improve Load and Resistance Factors for LRFD procedures.
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Considering the observations made by Allen (2005) and Fenton et al. (2016)
regarding non-redundant foundations, the part of the Figure 5-16 curve of
most interest is in the S value range of 3.1 to 3.7, with a typical g value of
around 3.5 for an American Association of State Highway and
Transportation Officials (AASHTO) and Canadian bridge foundation. Allen
(2005) states that the landmark Barker et al. (1991) reliability study of
bridges (75-year design life) and the various types of foundation systems
suggests a target S value of 3.5 for non-redundant systems such as footings.!
Based upon Fenton et al. (2016), the equivalent reliability-based target

f values of Canadian bridge foundation design is in the range of 3.1 to 3.7,
depending upon the consequence of its failure. In discussing the reliability
formulation background to the Canadian Highway Bridge Design Code
(CHBDC) (CSA 2014) for foundations or geotechnical systems design,
Fenton et al. (2016) provide their range for the target maximum lifetime
(75-year) failure probabilities, pm, and equivalent reliability indices for the
foundations ULS depending upon the consequence level (Table 5-8). Three
consequence levels were stipulated: high, typical, and low. A foundation that
supports a lifeline bridge or hospital is an example of a high consequence
level should a foundation failure occur. Conversely, if the foundation
supports a storage warehouse that is rarely visited, the failure consequences
are slight, and the consequence level is judged to be low.

1 An example of a redundant foundation system is a pile group consisting of five or more piles. Allen
(2005) states that Barker et al. (1991) conclude that a target S value of 2 to 2.5 for a redundant system
is appropriate. Zhang et al. (2001) and Paikowsky et al. (2004) have also concluded that for pile groups, a
P of 2.3 is reasonable to target when considering the resistance needed for a single pile located within a
group of significant size. Their reliability index value falls midway in the Barker et al. range
recommendation.
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Table 5-8. Targeted theoretical maximum lifetime
(75-year) failure probabilities, pm, and equivalent
reliability indices, £, for the ULS in the 2014 CHBDC for
foundations or geotechnical systems
(after Fenton et al. 2016).

E:\:\eslequence o 5
High 1/10,000 |3.7
Typical 1/5,000 35
Low 1/1,000 31

Subsection 4.9.2 discusses the adjustment of the Allen (2005) and Fenton et
al. (2016) reliability index S values from a 75-year bridge design life to a 100-
year project life used for USACE hydraulic structures. Recall Allen’s (2005)
reported target reliability index Svalue of 3.5 for footings and other non-
redundant (AASHTO 2012) systems becomes 3.46 for projects with a
100-year design life based on the Ebeling and White (2019) calculations and
their Table 2-8 results. This is the same Sequal 3.5 design value used for the
Canadian Bridge Code (CSA 2014) in the case of bridge foundations for an
Ultimate Limit State with a typical consequence level according to Fenton et
al. (2016). Fenton et al.’s (2016) Sof 3.7 for the Ultimate Limit State with a
high consequence level becomes 3.65 for a 100-year project life.

Concluding observations: The observations made for the T-Wall retaining
wall reliability problem discussed in this chapter consider the nonlinear
relationships that have been observed throughout the numerical research
involved in this project. It also reveals that correlation is to be expected in a
three-wedge analysis of geotechnical retaining structures when all three
wedges (i.e., Driving, Structural, and Resisting) are incorporated in the
engineering model of the reliability analysis. These are important aspects of
the Reliability analysis, impacting computed results.
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6.1

Summary, Conclusions, and Research
Recommendations

Summary

This report focuses on a Load and Resistance Factor Design (LRFD) for
complete, reinforced concrete hydraulic structures. Complete hydraulic
structural analysis involves the geotechnical and structural limit states, as
well as the soil structure interactions (SSI) induced by loading. A total of
five limit states are incorporated in the engineering model’s reliability
analysis of a hydraulic structure discussed in this report. These are

» global sliding failure of the structural system in its entirety

« bearing failure of the foundation to the structural system in its entirety

« overturning or rotational failure of the structural system about its
foundation in its entirety

+ shear failure of individual structural members

 flexural hinging of individual structural members.

The geotechnical reliability research results of Fan et al. (2014)
demonstrate that all five limit states need to be considered concurrently
and not independently, for all variables in the reliability analysis in order to
compute an accurate PUP value, and ultimately, accurate reliability results
for use in the computation of load factors.

Combined LRFD, involving geotechnical as well as structural limit states, is
an area that has not been addressed by the USACE. While research has
been conducted for structural LRFD where the materials are more uniform,
geotechnical research has been complicated by spatial variability of
engineering material properties for the soil(s). The companion Phase 1
Study (Ebeling and White 2019) documents the initial investigation into
reliability methodologies considered for application to the LRFD analysis of
geotechnical regimes for reinforced concrete hydraulic structures. It also
described initial development of numerical procedures with enough
precision for a complete LRFD analysis of the reinforced concrete,
hydraulic structures. This Phase 2 Study continues the development of
these analytical methods and new numerical procedures and applies them
to a reinforced concrete T-Wall example. The result is a Reliability-based
LRFD analysis of an example T-Wall possessing multiple geotechnical and
structural limit states.
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In that vein, this technical report has focused primarily on building
engineering models that capture soil-structure interaction and are readily
adaptable to reliability analysis of a USACE reinforced concrete T-Wall
buttressed by and retaining earth. This holds true with respect to the model
for first engineering limit state discussed, which centers on the sliding
stability analysis of a T-Wall. A T-Wall example structure was chosen to lay
out the engineering and reliability analysis capabilities needed because it
possesses the attributes of all three wedges in its geotechnical numerical
model: a driving wedge, a structural wedge, and a resisting wedge. The
engineering and reliability principles proposed for use are broad enough to
be used for overturning and bearing failure limit states as well. The
engineering model also contains the shear and flexural structural limit
states of the reinforced concrete stem. In summary, this Phase 2 Study
numerical T-Wall model example possesses all five geotechnical and
structural limit states.

Modeling variability in soils is complicated by the fact that even
“homogeneous” soil engineering material properties change with relative
distance. With enough difference in distance, the soil strength properties
can be completely unrelated to the distribution at the original location. This
led to the development of three different models being proposed in the
Phase 1 Study (Ebeling and White 2019). The first devised method uses an
earth pressure coefficient method to compute forces acting against the
structural wedge. The other two devised methods use the slip plane as a
basis for generating homogeneous material regions. One method created
numerous small sub-wedge features of scale of fluctuation width along the
slip plane assigned with material properties from the original soil property
distributions before applying the Variance Reduction Factor. The second
method described in Subsection 4.4.2 of Ebeling and White (2019) is used
in this report. This second method computes the slip plane length for each
of the three wedges and computes a Variance Reduction Factor based on
the slip plane length and the scale of fluctuation of the material properties
for each of the three wedges. This variance reduction factor is used to
establish a new distribution for each wedge convoluting the probabilities
over the longer slip plane run, accounting for spatial correlation along the
slip plane. Each of the three wedges possesses a Variance Reduction Factor
based on the length of the slip plane and the Scale of Fluctuation for that
soil region. The new soil property distribution has the same means but the
COV is reduced from the COVpoint value to a COVspatial value based on the
slip plane length and its orientation.



ERDC/ITL TR-21-1 146

These engineering models can be used in a reliability analysis to determine
the Probability of Unsatisfactory Performance (PUP) and reliability index
(B) for the geotechnical/structural system. A reliability analysis can
compute a value for PUP in a few different ways. Early methods researched
and discussed in the Phase 1 Study (Ebeling and White 2019) dealt with the
Advanced Second Moment (ASM) method and Monte Carlo simulation
techniques. The ASM method by itself only works for a single hyperplanar
limit state for estimating PUP, which does not serve the
geotechnical/structural systems in this report because the PUP system value
would be underestimated because the ASM method does not give results for
multiple overlapping limit states. However, the ASM method determines
the closest approach of the limit state response surface, giving a good
value and directional cosines («) that define a design point on the response
surface.

Monte Carlo simulation techniques can achieve greater accuracy than the
ASM method given enough simulation samples. Monte Carlo techniques
return a PUP value but do not give an accurate S or « value unless an ASM
search for a design point has been performed. It is also possible, given
random selection of samples, that not every limit states contribution will be
included in the PUP calculation.

Appendix C begins by introducing three methods for computing load and
resistance factors. The first method uses engineering Reliability standards.
The second method uses the Section C.2 numerical method that calculates a
Load-to-Resistance ratio which, combined with a prescribed Resistance
Factor, the Section C.3 method computes the corresponding Load Factor.
Finally, the third method uses the Section C.5 numerical procedure that
calculates a k value (for the max ) that can be applied in Equations C.40
and C.41.

Appendix C also introduces techniques for computing S given load and
resistance factors either directly or indirectly depending on variable
distributions. The Section C.4 numerical procedure attempts to iterate to
find a maximum £ given resistance and load distribution descriptions using
Rackwitz and Fiessler (1976, 1978) Gaussian Normal curve approximates.
The Section C.5 numerical procedure computes the maximum £ and its
associated k value. Given an arbitrary k value and substituting it into
equation C.42 will return a maximum g value, also. Section C.6 attempts to
indirectly calculate the g value for a non-normal distribution by summing
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fractional Gaussian curves to fit the non-normal distribution with low
error. The fractional curve properties are used in equation C.45 to
determine the g value for a non-normal distribution.

The authors also conducted a Monte-Carlo simulation with a large number
of samples on the resistance and load curves and calculated the (R-L) curve
with binned histograms. The PUP value was then calculated by integrating
probabilities for the resulting distribution up to the safety margin (R-L)=0
response surface and an inverse normal distribution cumulative
distribution function (CDF) calculation was used to get a transformed
Gaussian Normal space S value estimate.

These Appendix C methods work for single limit states with well-defined
traditional distributions for resistance and load. Additional investigation
reveals that structures with geotechnical features do not have these well-
defined, uncorrelated distributions for load and resistance.

In this Phase 2 study, a numerical model for a T-wall was created
(Chapter 3) and analyzed for all five limit states, geotechnical and
structural. Limit state solutions were performed for individual limit states
using ASM and Monte Carlo simulation methods (Chapter 4). These
methods were capable of determining probability density function (PDF)
distributions of loading and resistance from variable soil properties and
application of numerical procedures. These loads were computationally
non-linear according to analysis of the geotechnical wedges based on soil
properties. The establishment of these non-linear load and resistance PDF
distributions led to the development of methods for determining load and
resistance factors by numerical calculation of a scale factor for the
resistance PDF distribution such that samples from the scaled resistance
and unscaled load would yield the target PUP for the system (Section 4.2).

Discovery that these soil-based PDF distributions, load and resistance,
were not orthogonal but correlated as design changes were made to the
structure required extending the previous load and resistance factor
calculation procedure (Section 4.2) to include a proportionality value based
on the rate of change of load and resistance. In this case, scaling the
resistance PDF distribution had a correlated proportional scaling effect on
the load PDF distribution. This procedure is discussed in Section 4.6.
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Both of these procedures (Sections 4.2 and 4.6) produce a ratio of factored
load to factored resistance for a target PUP value. Section 4.7 provides a
means to calculate either the load or resistance factor, when the other
factor is fixed. With the ratio and a given resistance factor, the load factor
can be computed and vice versa. Given guidance for resistance factors,
which is a usual occurrence in USACE guidance, a load factor can be
computed to establish an agreed upon PUP.

Section 4.8 took the lessons learned and the procedures developed in the
previous sections of Chapter 4, which were applied to the Example Wall
with Extreme geometry (Figure 4-3b) and processed the wall with Upper
Range coefficients of variation (COVs) for the effective angles of internal
friction in each of the soil regions. This variability establishes the true
uncertainty for the Extreme condition. Figure 4-9 shows the relationship
between computed Load Factors and the equivalent S7arget for the Example
T-Wall with Upper Range material property COVs.

A numerical model for a T-Wall was created and analyzed using all five
geotechnical and structural limit states. Limit state solutions were
performed for individual limit states using ASM and Monte Carlo
simulation methods. These methods were capable of determining
distributions of loading and resistance based upon variable soil properties.
Also, an adaptive hyperspherical Gaussian probability numerical
integration model was developed to determine the PUPsystem, for all five
limit states, given the engineering model of a soil-founded T-Wall. This
devised adaptive hyperspherical Gaussian probability numerical
integration model and its hybridization are described in Subsections 5.3.2.2
and 5.3.2.3. The method had to be further extended to deal with individual
variables that could have different distributions for different limit states.
This model was applied to a three-geotechnical limit state scheme with
three geotechnical variables in Section 5.5. This analysis results in
computation-based diagrams that illustrate the Monte Carlo simulation
and adaptive hyperspherical Gaussian probability numerical integration
procedures and compares their performance. Both the resulting
PUPsystem and the plots from this analysis reveal that the Sliding limit
state is the primary limit state. The other two Geotechnical limit states of
Bearing and Base Area in Compression possess extremely low values for the
probability of unsatisfactory performance.
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6.2

This Section 5.5 analysis is extended in Section 5.6 where all five limit states,
geotechnical and structural, are combined into a single PUPsystem value. The
addition of the two Structural limit states introduced two new distributed
variables. These two new variables did not have an effect on the geotechnical
limit states. One of the new distributed variables gave the resistance of the
stem to the shear limit state, and the other gave the resistance of the stem to
the flexural moment limit state. The addition of these two limit states and
their variables made a difference in the PUPsystem calculation. While the
Geotechnical Sliding limit state was still the primary source of probability of
failure, the Structural Stem Shear limit state had a significant contribution to
the overall PUPsystem, with an estimated Gaussian Svalue in the range of 3.1.
A surprising result for the authors of this report was that although the limit
states had a large overlap of probabilities, the PUPsystem appeared additive of
the two limit states. This would be expected for parallel limit states. But
these two limit states are not parallel. This observation is explained by
realizing the overlap region has such an insignificant probability that
doubling its effect was still insignificant.

Conclusions

In conclusion, given two full distribution descriptions for load and
resistance the simulation method (with enough samples) and the Section
C.5 procedural method can determine an accurate PUP value either directly
or through a normal distribution CDF calculation from a calculated g.
Based on extensive series of trial and error computations, the Section C.6
method was found to be an interesting mathematical exercise but has too
many variables and needs restraint. Results from Reliability analyses
summarized at the end of Section C.2 showed that the f calculation method
for non-normal distributions requires small steps using normal
distributions mapped to the non-normal distribution at a given design
point (Rackwitz and Fiessler 1976, 1978), which can have problems with
accuracy in the tails region.

The Section C.2 procedural method is the only method that attempts to
numerically establish load and resistance factors that will scale the
positions of existing distributions so that the safety margin (R-L) response
surface will have a PUP value that corresponds to a normal distribution
Prarget CDF value. Unfortunately, this procedure is attempting to find a
value in the tail of the distribution and therefore has accuracy problems
that are revealed in the results tables in this section of the appendix.
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The individual limit state procedure for computing Load and Resistance
Distributions from material properties and determining load factors
(Section 4.2) provides a method for computing a ratio of load and
resistance factors for an individual Limit State. This method works with
orthogonal distribution sets for load and resistance as computed from
material properties. This method relies on the fact that material properties
follow the Central Limit Theorem of probability in large numbers (Henk
2004) and therefore have typical bell-shaped distributions and that the
load and resistance factors may have non-linear equations for their
distribution formation from those material properties.

The devised Section 4.2 method was extended to the more useful
proportioned load individual Limit State procedure for computing Load
and Resistance distributions from material properties and determining
load factors (Section 4.6). This procedure assumes some level of correlation
expressed as a proportion between the load and resistance distribution as
the structural design changes, as evidenced in Figures 4-2 and 4-3. A scale
factor is computed from the rates of change of load and resistance, and that
scale is applied for the estimation of the ratio of load and resistance scale
factors. This numerical procedure improves the speed at which the
computations are made, an important capability for conducting simulations
of the T-Wall in a Reliability analysis.

Section 4.7 reveals how the proportion of load factor and resistance factor
can be used to determine one factor if the other is specified. This is helpful,
since resistance factors are routinely specified in USACE guidance (e.g., EM
1110-2-2104 [HQUSACE 2016]).

Monte Carlo and adaptive hyperspherical Gaussian probability numerical
integration of PUPsystem for the three geotechnical limit states alone
revealed that Sliding was the most probable geotechnical limit state to fail
for the Chapter 2 T-Wall system example problem. The adaptive
hyperspherical Gaussian probability numerical integration provides a level
of accuracy for approximately the same level of effort (e.g., number of
model runs) as the Monte Carlo methods. Plots from these methods
revealed the non-planarity of the resulting response surfaces, contrary to
the estimates given by the ASM solution for the single limit states.

Combining geotechnical with structural limit states, Monte Carlo and
adaptive hyperspherical Gaussian probability numerical integration of the
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PUPsystem was performed again to find out if the new limit states would have
a noticeable effect. The Stem Shear Limit State provided a significant
contribution to PUPsystem. Finding load and resistance factors that reduce
the PUPsystem will be determined by the rate of change of these limit state
response surfaces with respect to the factors.

Table 3-1in EM 1110-2-2104 (HQUSACE 2016) guidance for the Extreme
load case for lateral earth pressures provides values for a Resistance Factor
of 0.5 and a Load Factor of 1.4. A Load Factor value of 1.4 corresponds to a
Reliability Index value of approximately 3.8 by the data given in Figure 4-9
for Upper Range COV values for effective angles of internal friction. The S
value of 3.8 for a USACE navigation structure falls approximately midway
between the Ellingwood reliability index recommendation for normal and
critical structures. This computed g value of 3.8 exceeds the historical
allowable stress design (ASD) foundation design g experience (Allen 2005)
as well as the guidance for the 2014 Canadian Bridge Design Code as
described by Fenton et al. (2016). Thus, the EM 1110-2-2104 (HQUSACE
2016) guidance LRFD values for load and resistance factors for the driving
and resisting earth pressure loads applied to the Structural Wedge in the
sliding limit state are deemed slightly conservative but not excessive by the
authors of this report when a g of 3.8 value is compared to the target g
values given by Allen (2005) and Fenton et al. (2016). This assessment may
be improved by making a Reliability assessment of other earth-retaining
USACE hydraulic structures following the procedure of analysis outlined in
this technical report.

The key conclusions are as follows:

« Research of previously devised methods for the determination of PUP
values reveal that traditional, Structural Engineering-based Reliability
methods, described in Appendix C, have limitations that prohibit their
use for multi-Limit State problems with correlation and complicated
distributions, which is the case with geotechnical structures.

« A T-Wall Analysis Example problem was developed with the geometry
determined for the usual load conditions of the Normal Load Case and
solved using EM 1110-2-2100 (HQUSACE 2005) stability criteria as well
as procedures for calculating the geotechnical forces that affected each
limit state. It is important to recall that not all three Geotechnical limit
states dictated the T-Wall geometry to satisfy minimum design
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guidance. It was the Sliding Limit State that dominated the geometry
requirements.

« Methods for determining distributions of Load and Resistance forces for
different Limit States given the geotechnical problem of an Example T-
Wall using histogram data of Monte Carlo simulations based on soil-
strength properties were developed. The development of these methods
revealed that the Load and Resistance distributions have correlations
for the geotechnical Wedge-based solution.

» Procedures for devising Load and Resistance factors from the collected,
correlated Monte Carlo simulation values for individual limit states
were determined, assuming that the Load and Resistance distributions
were uncorrelated (Section 4.2). It was discovered that this assumption
was not true.

« Because the Load and Resistance distributions were correlated, the
Section 4.2 procedure was extended to allow for correlation (Section
4.6). Accounting for the effects of correlated Load and Resistance
functions is essential for the determination of accurate Load and
Resistance Factors.

« The Usual Load Case (Table 3-1 of EM-1110-2-2104 [HQUSACE 2016])
design of the T-Wall uses USACE criteria (EM-1110-2-2502 [HQUSACE
1989]) with a Factor of Safety (FS) against Sliding of 1.5 (EM-1110-2-
2100 [HQUSACE 2005]). Table 4-1 reveals that the designed T-Wall
structure has a PUP value of 0.00025 using the anticipated Mid-Range
COV values for effective angle of internal friction (Table 2-1), which
equates to a S of 3.48 (Table 4-1) for the dominant limit state of sliding.
This value is consistent with first-generation AASHTO guidance (Allen
2005) value of 3.46 and Canadian Bridge Code (CSA 2014) for an
Ultimate Limit State (ULS) with a typical consequence level but is
slightly lower than the extrapolation to 100-year design life value of
3.65 for the 2014 Canadian bridge code (Fenton et al. 2016) ULS with a
high consequence level. (Refer to Subsection 4.9.2 for a discussion of
the conversion from a 75-year bridge design life to a 100-year project
life used for USACE hydraulic structures.) It is observed that the ASD
normal load case design using USACE criteria appears to be generally
consistent with Allen (2005) and Fenton et al. (2016) foundation
reliability targets.

« The Extreme Load Case uses the same T-Wall that has been dewatered.
The values for the Extreme Load Case with anticipated Mid-Range COV
values for effective angle of internal friction (Table 2-1) gives a PUP of
0.00175 and S of 2.92 (Table 4-2) for the dominant sliding limit state,
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which are noticeably lower than the Usual load case values. This
validates the expectation that the reliability of the foundation is reduced
as the severity of loading increases.

« Most importantly, Table 3-1 of EM 1110-2-2104 (HQUSACE 2016)
recommends for lateral earth pressures Load and Resistance Factors for
the Extreme Load Case to be 1.4 and 0.5, respectively. Figure 4-9
results, using the procedure of Subsection 4.6 applied to the dominant
limit state of sliding, reveals that for a Load Factor of 1.4, determined
using a Resistance Factor of 0.5, gives a § value of 3.8 for Upper Range
soil strength COV values. The calculated value for g of 3.8 is deemed
adequate for the critical Sliding Geotechnical Limit State with a 100-
year project life based on the LRFD information contained within Allen
(2005), and Fenton et al. (2016) adjusted to a 100-year project life
(Subsection 4.9.2) but falls between the Ellingwood reliability indices
recommended values for non-critical structures (5 = 3.5) and critical
structures (S = 4.0) with a single load path.

« Using Figure 4-9 results for the dominant limit state of sliding, a load
factor of 1.2 is sufficient to achieve a target g equal to 3.5, which is
required according to Ellingwood for a noncritical structure with a
single load path, given a specified resistance factor of 0.5 according to
EM 1110-2-2104 (HQUSACE 2016) guidance. This Load Factor value is
14% lower than the reported EM 1110-2-2104 load factor of 1.4 with the
same specified resistance factor.

« A method for the determination of overall PUP of the Example T-Wall
problem, considering all of the Limit States concurrently, was
implemented and was compared to the individual Limit State PUP
values. This is an essential requirement for a complete and accurate
system PUP value. Computation of PUPsystem reveals that the PUPsystem
value is greater than any individual Limit State PUP value.

» To generalize, when PUPsystem is greater than PUP for the dominant
limit state evaluated on its own, the load factor from the individual limit
state assessment may need to be increased. The PUPsysten needs to be
computed as the individual limit state load factor is being created. Note
that the rate of change for PUP as each resistance is scaled (Figure 5-16)
can cause the dominant Limit State to change.
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Appendix A: Computing Probabilities

A.1 The Gaussian multivariate spaces

While design and analysis procedures of structures are well defined in
theory, in reality the constituent parameters have many variations, which is
the reason for LRFD. Material properties (e.g., compressibility, x position)
are typically chosen from a range of values that are pulled from a
distribution with certain probabilities. An example distribution may be the
discrete histogram idealized in Figure A-1. Each bin in the histogram
presents how many times that bin has been selected from a sample data set.
Dividing those values by the total number of samples drawn gives a
normalized distribution, where the probability of selection of any given bin
(PDF) is a fraction of the total set and integrating the area under the PDF
gives CDF. For the entire curve, the total area is 1.

Figure A-1. PDF and CDF of histogram data.

Cumulative
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A Gaussian (also referred to as Normal) distribution is given by this equation:

_a-w?

e 202 (A1)

flxlu,0?) =

oV2m
This function provides numerous advantages when dealing with multiple
orthogonal variables in LRFD, so a means to create a Gaussian distribution
that approximates other distributions was established by Hasofer and Lind
(1974) based on a distribution transform method by Rackwitz and Fiessler

(1976, 1978). The Hasofer and Lind (1974) procedure does not find the
simple mean and standard deviation of another distribution but instead
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maps the CDF of the non-normal distribution to the CDF of a normal

distribution to get the best approximate Gaussian distribution with its own
mean and standard deviation (Figures A-2 and A-3).

Figure A-2. Histogram data and the Gaussian (normal) distribution.
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Probability Probability

PDF’=P’(X)— CDF=®d(x) CDF'=®’(x)

Figure A-3. The G(X") function is used to determine PUP.
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With N uncorrelated and orthogonal variables, an N-dimensional
multivariate space can be formed from the distributions for those variables.
With Gaussian distributions, a transformed space can be created that has a
unit distance of 10. The following equation is used to transform the X value
of ith variable of the distribution to the transformed coordinates:

' Xi—Hi
X! =t ai“) (A.2)
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and conversely,
Xi=Xjo; + (A.3)

A hyperplane can partition the multivariate Gaussian transformed space
into half-spaces. The N-space hyperplane has this equation:

0.0=a1*X1+a2*X2+"'+aN*XN+C (A4)

This hyperplane can also be described by a vector from the origin of the
multivariate space to the nearest point on the hyperplane. This vector is
perpendicular to the surface of the hyperplane. The vector has length 8 and
has unit direction component vector , with N*' axis component of an
(Figure A-4).

Figure A-4. A 2-D example of the PUPregion and the hyperplane description using o
and .

Transforming points from the i*" variable
space:

X = (X1L)/0

Design Point:

X' =0y

Design Point in original it" variable
space:

X = P+ 04Boy
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This multivariate, Gaussian transformed space has several properties that
make it attractive for determining limit state probabilities, such as is done
for reliability analysis and LRFD. The most important property is that, for
any hyperplane in the N-dimensional space partitions the space into two
half-spaces, the integrated volume of the half-space gives the same result
as a the CDF(p) for a normal distribution along the hyperplane’s defining
vector.

A hyperplane perfectly describes the response surface of a limit state
that has linear effects across multiple variable axes. For the purposes of
engineering evaluation, it is assumed that each limit state has linear
properties and that failure occurs because of non-linear, or plastic,
response.

A.2 Limit states and PUP

For engineering analysis with properties that vary, described by
multivariate space, a particular limit state (e.g., foundation sliding) can be
described by the multivariate function

g(X) = Capacity — Load (A.5)

This function has positive values for satisfactory performance, negative
values for unsatisfactory performance, and a value of 0.0 at the response
surface, which separates the performance regions (Figure A-5). For
probabilities, as discussed above, the response surface is assumed to be
hyperplanar.
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Figure A-5. A 2-D example of multiple limit states with closest approach of length | S].
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An indicator function can be created with the express purpose of
providing a multiplicative identity for X vector values where there is
unsatisfactory performance and a value of 0.0 at the response surface of
the limit state or less.

0: g(X) = 0.0

1: g(X) < 0.0 (A-8)

0 ={

The function to calculate PUP for the Gaussian multivariate space X is
py = P(X) = fpu i(X) R(X)dX (A7)
where h(X) is the probability density function for the space and is given by

h(X) = [Ih=1 h(Xn) (A.8)

As noted before, for a single hyperplanar surface in a Gaussian multivariate
space, the PUP is the same as the 1-D CDF along the line through the origin
that is perpendicular to the plane. For line [ = af3, where a is the directional
cosine vector, pv = &), with @&(f) being the CDF for the normal Gaussian
distribution.

Unfortunately, it is seldom that only one limit state is possible with the
engineering design/analysis of structures and especially the USACE
hydraulic structures (Section 1.5). In this case, a family of limit states needs
to be assessed, with each limit state having a different g(X) function. In this
case, combining the limit state functions gives a new, nonlinear, overall
response surface, described by the boundary of the union of the half-space
volumes for each limit state response surface hyperplane. For L limit states,

py = Un=y Pn(X) (A.9)

It is important to realize that these half-space sets of data are guaranteed to
intersect and overlap if the hyperplane equations are not parallel and may
subsume each other if the equations are parallel. This makes it difficult to get
an accurate determination of the PUP for multiple limit states.
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A.3 Estimating PUP for multiple limit states
A.3.1 Bounds Method

Ang and Tang (1974) suggested an alternative method for estimating the
PUP with multiple limit states based on finding the minimum and
maximum bounds for the value that the PUP can assume. This estimation is
not as accurate as the numerical Euclidean methods but can be found
quickly with methods to determine a design point for each limit state, and
therefore the equation for the hyperplane and the g distance to the
hyperplane, resulting in the PUP.

PUPLg; = @(B)) (A.10)

Each limit state hyperplane divides the Gaussian multivariate space into
half-spaces, with one half-space being the satisfactory performance region
and the other half-space being the unsatisfactory performance region for
that limit state. When there are multiple limit states, these regions in the
Gaussian multivariate space overlap and combine. The probability of these
combined regions having unsatisfactory performance is the probability of
failure given the union of all the regions

PUP = py[R; UR, U ..U Ry] (A.11)

However, as it has been previously described, the union of the regions
contains the overlapping volumes of unsatisfactory performance
probabilities. This complicates the calculation of the overall PUP.

Because each limit state is described by a hyperplane with shortest distance
1 from the origin, the lowest bound of the overall PUP can be proven to be
the greatest of the individual hyperplane PUPs of the limit states. This is
true because, for a set of limit states with parallel hyperplanes, the greatest
individual PUP subsumes the volumes of the other individual PUPs.

max( ®(6,)) < PUP (A.12)

Parallel hyperplanes can have non-intersecting half-planes of
unsatisfactory performance. For two such hyperplanes that do not overlap,
the probability of satisfactory performance is the multiplied probabilities of
satisfactory performance for each limit state. This implies that an upper
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limit to the PUP can be found by subtracting the combined probability of
satisfactory performance for multiple limit states from 1.0.

PUP<1—-T]; 1 —@(B)) (A.13)

Equations A.13 and A.14 establish absolute lower and upper bounds for the
PUP, but these bounds are for limit states that are not correlated (i.e., have
parallel hyperplanes in unimodal sets). In reality, the hyperplanes are
seldom parallel and have complex overlapping regions. Therefore,
correlation techniques can be used between pairs of hyperplanes (bimodal)
to tighten the bounds about the PUP. With more than two hyperplanes
(multimodal), the overlapping regions become much more complicated.

According to a decomposition of the union of sets using deMorgan’s rule as
described in Ang and Tang (1974), the bounding values for PUP using
bimodal probabilities is

PUP > max|Y{PUP,s; — X2} P(E;E;)}; 0.0] (A.14)

and

PUP < ¥y PUPsi = Xizp max(P(EiE))) (A.15)

Given hyperplane equations for the ith and jth limit state equations (in 2-D
for simplicity):

gl(X) = Qy + a1X1 + a2X2 (A16)
g](X) = bO + b1X1 + bZXZ (A.17)

The limit state response surface is determined by setting these equations to
0.0. According to Ang and Tang (1974), in Gaussian multivariate space, the
correlation coefficient can be found as the cosine of the dihedral angle (6)
between these hyperplanes.

pij = Covigugy) _ cos O (A.18)

agiagj

The dihedral angle between the planes is equivalent to the angle between
the vectors from the origin to the respective design points because each
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hyperplane is perpendicular to its design point vector. The cosine of this

angle can be expressed, from the normalized design point vectors ai and
), as

Pij = cosf = a; q; (Alg)

From Figures A-6 and A-7, observe that E;E; > A and E;E; > B. The probability of EiEj is
therefore bounded by

max[P(4),p(B)] < P(EE;) < P(A) + P(B) (A.20)

and, by reason of orthogonality,

P(4) = (~pb(~a) = d(~p) (- L) (A21)

and

P(B) = ®(—B,)®(=b) = d(=p;) (— B""’ﬁf) (A.22)

1-p2
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Figure A-6. Finding the contribution of area A to overlapping probabilities of g(X) and
8/(X).
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Figure A-7. Finding the contribution of area A to overlapping probabilities of gi(X)
and gi(X).

Using the relationships of Equations A.21 and A.22, the lower bound for
P(EiE})), given as

P(E;E;) = P(A) + P(B) (A.23)

should be used in Equation A.14 for each pair of limit states, and the upper
bound, given as

P(E;E;) = max[P(A), P(B)] (A.24)

should be used in Equation A.15 for each pair of limit states.

The results from the application of these equations is a minimum and
maximum range for the overall PUP given multiple limit states using a
bimodal analysis, using the bounds of each bimodal probabilities. The PUP
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is guaranteed to be in these ranges, so a reasonable estimate of the actual
value of the PUP is the average of the two bounding values, giving a
maximum error of half the range.

A.3.2 Euclidean numerical method

For multiple limit states, it is still possible to integrate the probabilities the
spaces using Equation A.7, but there needs to be an adjustment to the
indicator function specified in Equation A.6. That indicator function is
defined for a single limit state function g(X). To work with Z multiple limit
states, the overall indicator function must return the multiplicative identity
if any of the Z single limit state indicator functions returns with a value of 1.

iz(X) = 1-[15-1(1 - i,(X)) (A.25)

i, (X, Xo, ey Xny) *
PUP = ®(X) = [y, Jy, - Jx, {h(Xl, Xy, o, Xy)dX,dX, ... dXN} (A.26)
It would be possible to approximate the value of the PUP using a Euclidean
method. The Midpoint Rule Euclidean method is the one most people
remember from early calculus courses, but there are other Euclidean
methods (i.e., the Trapezoid Rule and Simpson’s Rule) that could give a
better estimation and require fewer sub-intervals.

Of course, the Euclidean methods require that the space be divided into a
number of segments for each dimension (Figure A-8). Because the
Gaussian multivariate space is orthogonal and normalized, the same
number of intervals should be applied to each dimension. The greatest rate
of change of the function occurs near the origin, so for efficiency, the
subdivisions can be placed closer together at the origin than at the
extremes. However, since most of the limit states are applied near the tails
of the distributions, and therefore at extreme distances (>3.0c), care
should be taken to not spread the subdivisions too far so that accuracy and
precision will be maintained. Because the probabilities become extreme at
distances of greater than 30, the numerical solution should be satisfactory
in the range of -50to 50 for each variable.
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Figure A-8. Gridding the Gaussian multivariate space to determine the PUPbased on a
single limit state response surface.
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An issue with using the Euclidean approximations is the number of
analyses that will need to be run. To evaluate an individual subdivision
point, each of the limit state indicator functions will need to be found. If the
analysis function is written correctly, these values could be collected on a
single analysis execution. However, for a number of sub-divisions (S) and a
number of variables (IV), the total number of runs that will need to be
performed is NS. The computational complexity of this method means that
it will rarely be tractable for anything less than a high-performance
computational platform. Another issue with the numerical integration is
that the combined PDF for multiple variables, which are multiplied
together, make numbers so small that they outstrip the precision of even
double-precision floating point values in programming languages.

A.3.3 Hypersphere numerical method

Thus far, all of the methods explored have been based on hyperplanes
because there is a simple method of determining the CDF of half-spaces
divided by the hyperplane in the Gaussian multivariate space. There is
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another property of the Gaussian multivariate space that seems to be
overlooked. For any hypersphere (also known as an n-sphere) in the space
that is centered at the origin and has radius R, all of the points on the
surface of the hypersphere have the same probability density function
value, as shown in Figures A-9 and A-10.

p(Xg) = p(Rx1) X p(Rx2) X ... X p(Ryy) = p(0)"~'p(R) (A.27)

Figure A-9 shows that the probability for any thin shell is the same at a set
distance from the origin. Figure A-10 shows this thin shell in plan view. The
symmetry and the properties of the Gaussian Normal Curve means that the
probability at any distance in the multivariate space is the same at all
points on the hypersphere surface.

Figure A-9. Symmetric probability for pairs of bins equidistant from the
mean, section view.
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Figure A-10. Symmetric probability of the Gaussian Normal Curve at any distance in
the multivariate space at all points on the hypersphere surface, plan view.

Radii of Equivalent Probability

Given that the closed form equation of the surface area for the unit
hypersphere with dimension N is

N+11 N-1
% for odd N,and
Sy = N (A.28)
% for even N

Using concentric shells, the probability of satisfactory performance of the
N-dimensional hypersphere (h) with radius R in Gaussian multivariate
space (Figure A-11) is

Po(R) = [ Surp(0)N"'p(r)dr (A.29)

which seems much more tractable for a numerical solution, the factorial
divisors in Equation A.27 can grow quite large as the number of dimensions
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increases. For a PUP given hyperplanar limit states and g radius, it follows
that

PUP < (1 - P,(B)) (A.30)

Figure A-11. A 2-D demonstration of the hypersphere calculation of PUP.
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Unfortunately, this approach overestimates the PUP, and the error
increases as the radius £ increases. The error increases because the
hyperplane PUP decreases at such a rate that any error is exacerbated at
the tails of the distribution. Also, the accuracy of the hypersphere PUP is
greatly influenced by the resolution of numerical procedure to determine
its values, with greater error occurring at greater S values. Of course,
higher resolution numerical solutions also become intractable.

Table A-1 shows a quick calculation of error for a two-variable space, with
hyperplanar PUP calculations and the numerical approximation of the
integral of the hypersphere with different resolution step sizes. Recall that
for a two-variable space, the hyperplane is a line and the hypersphere is a



ERDC/ITL TR-21-1

174

circle. Table A-2 shows the hypersphere estimation error as a multiple of

the actual linear PUP value. Notice that as the hypersphere g increases, the
error becomes greater. This is because the drop-off of the hyperplanar limit
state CDF (@(1-p3)) drops off more rapidly than the CDF of the area outside

the circular area in the opposite half-plane.

with increasing accuracy.

Table A-1. PUPvalues for Hyperplanar Limit State and Hypersphere PUP Estimations

H_yperplanar Hypersphere Hypersphere Hypersphere Hypersphere

B z'/';zg PuP PUP (hPUP) PUP (hPUP) PUP (hPUP) PUP (hPUP)

(0.001 interval) | (0.0001 interval) i(r?t'grc\)/ggl i(r?t'grc\’gg()l
0.5 |0.30853754  |0.88207477 0.88245471 | 0.8824971 0.88249648
1 0.15865525  |0.60604896  |0.60648246  |0.60653191  |0.60653018
15 |0.0668072 0.32446544  |0.32463372  |0.32465059 | 0.32465228
2 0.02275013 | 0.1355278 0.1353545 0.13533991 | 0.13533548
25 |0.00620967  |0.04439116  |0.04398235  |0.04394257  |0.04393739
3 0.0013499 0.01168391  |0.01116649  |0.01111475  |0.01110957
3.5 |0.00023263 |0.00280223  |0.00224898  |0.00219364  |0.00218811
4 0.00003167  |0.00095991  |0.00039792  |0.00034172 | 0.00033609
45 |0.0000034 0.00066628 | 0.0001027 0.00004633 | 0.00004069
5 0.00000029  |0.00063019  |0.00006639  |0.00000999 | 0.00000435

Table A-2. Hypersphere PUPestimate error as a multiple of the actual Hyperplanar PUP.

B hPUP0.001/1PUP hPUP0.0001/1PUP hPUP0.00001/IPUP | hPUP0.000001/IPUP
0.5 |2.858889618 2.860121041 2.860258431 2.860256421
1 3.81991116 3.822643499 3.822955181 3.822944277
1.5 |4.856743585 4.859262475 4.859514992 4.859540289
2 5.957231893 5.949614354 5.948973039 5.948778315
2.5 |7.148714827 7.082880411 7.076474273 7.07564009
3 8.655389288 8.272086821 8.233758056 8.229920735
3.5 ]12.04586683 9.667626703 9.429738211 9.405966556
4 30.30975687 12.56457215 10.7900221 10.61225134
4.5 |195.9647059 30.20588235 13.62647059 11.96764706
5 2173.068966 228.9310345 34.44827586 15
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A.3.4 Hybrid hyperspherical probabilistic integration method

The hypersphere numerical method works quickly to determine the
probabilities of values occurring within a hypersphere of a defined radius
and can be run to generate tables for many different radii hyperspheres for
quick lookup. This method could be used to generate a quick estimate of
the value to the closest design point for the most likely to occur limit state
but will result in a large error region.

The authors of this report have looked at a Euclidean numerical method in
Cartesian space for the determination of probabilities with respect to
multiple limit states. This concept can be expanded to a polar coordinate
space, using

i7(r,0) =1 —[1%_1(1 - i,(r,0)) (A.31)
PUP = CD(T', 0) = fe froz() iz(r, 91, 92, ey HN)h(T, 91, 92, ey HN)dT' de(A32)

A numerical solution could transform the polar coordinates to Cartesian
coordinates for simplification of probability calculation. This means that
the iz() function can be determined from the Cartesian equation given in
Equation A.25. The probability function h() is the same as Equation A.8.
The rest of the equation deals with the approximation of volume occupied
by a polar coordinate described shell element of dr thickness and all of its
sweep angles. Because dimensionless angles are used for these sweep
angles in multiple dimensions and the angles interact within polar
coordinates, the definition of d@ needs to be rederived for each number of
dimensions. The following two equations show the polar integration
equations for two and three dimensions, respectively:

PUP = &(r,6) = [, [ iz(r,0)h(r,6)dr (rd6) (A.32a)

PUP = CD(T', 91, 92) =

2w m o (ig(r,01,0;)h(r,04,6;) *
JouzoJo,=0 =0 {dr(rdel)(r sin(d6;) d@z)} (A-32b)

The length term r needs to be multiplied by each angular delta to express
the shell element arc-distance for that angular sweep. For the 3-D
Equation A.32b, the total sweep of angle é: is reduced to make the
functions one-to-one, much like latitude and longitude are described on a
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sphere. Figure A-12(a,b) show why the reduction of distance for the dé-
term is required for polar coordinates. These figures use more
conventional notation for 3-D axes and angles with X, Y, and Z axes
representing Xi, X», and X3 variable space axes, respectively, and ¢ and 6
representing the 6. and & variable space angles, respectively. The
equation derivations for Equation A.32 become more involved as more
variable dimensions are included.

Figure A-12. Calculating dimensions for integrating spherical coordinate 3-D space.

A full numerical solution along these lines would have the same issues of
exponential time growth as the Euclidean method. Recall that the
numerical solution could be considered complete when r equals 50 because
the probabilities are extremely small past that limit.

It is certainly possible to minimize calculation time by marrying the
hypersphere calculation method with the polar coordinate method for
calculating the probabilities of multiple limit states in the Gaussian
multivariate space. Given the design point for the highest probability limit
state defined by Sa, the probability of satisfactory performance would be
the hypersphere probability of radius # combined with 1 minus the polar
PUP with r ranging from g to 5, thus limiting the polar search to a
somewhat manageable area. Of course, the PUP is 1 minus the probability
of satisfactory performance.

Another performance increase can be implemented if the limit states are
guaranteed to be hyperplanar. For the hyperplanar limit states, the ASM
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method calculates the distance from the origin £ and the unit directional
cosine vector o from the origin to the hyperplane which is normal to the
surface of the hyperplane. For multiple limit states, the limit state with the
minimum g value has the highest PUP. The iz() function returns a value of
o for every point within that minimum /£ value radius hypersphere.
Therefore, it is only necessary to integrate from this minimum /£ value to 5
to get the PUP.

If a level of precision is specified by establishing the accuracy to a specific
decimal place, another performance increase can be made by using the fact
that the volume of hyperspherical shells increases with constant radial
increments raised to the power of the number of dimensions n of the
hyperspace while the normal distribution values get smaller by a scale factor
times e?/n. The normal distribution values at the tails of the distribution
decrease faster than the volume of the hyperspherical shell grows.

Figure A-13a shows the exponential growth of hyperspherical shell volumes
as the radius increases, with radial increment 0.001. Figure A-13b shows
the normal distribution PDF value assigned for each of these
hyperspherical shell radii. Figure A-13¢ shows the cumulative probability
for the volume of the hyperspherical shell elements, computed by
multiplying the shell volume by its center radius PDF value. The resulting
curve shows that at the beginning, the increase of hyperspherical shell
volume from volume o drives the shape of the curve until the PDF
distribution drop off exceeds the rate of growth. At that point, the curve
begins to decrease with the tails of the distribution.
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Figure A-13. Distribution plots with respect to radius for 3-D sphere: (a) sphere shell
volume, (b) point distribution probability, (c) probability density for the sphere shell,

and (d) number of divisions of the sphere density where each shell division would
have 1.0e-10 probability.
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From these curves (Figure A-13 a through c), it can be inferred that, if equal
divisions were made of each hyperspherical shell, then each division’s
volume probability would be equivalent. Further, these divisions (based on
angular intervals) can be chosen to be equivalent or slightly less than a
specified volume probability based on the precision of solution desired,
simply by setting the number of divisions of the hyperspherical shell to the
mathematical ceiling of the volume probability of the entire hyperspherical
shell by the specified volume probability desired. For the beginning of the
curve and the ends of the curve where the volume of the hyperspherical shell
is extremely small and the tails of the distribution give extremely low
probabilities, respectively, a minimum value for the number of divisions can
be set to ensure that limit state values are accurately found. The number of
divisions, nangle, should not drop below a threshold based on the number of
variable dimensions (NDim). Samples must be taken at least in every
quadrant of the space and each variable dimension doubles the number of
quadrants. Therefore, the minimal number of samples should be 2N¥Pim and
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Nangle should not be allowed to be less than 2N¥Pim, For an example problem
with five dimensions, the minimal value for nangte will be 32. Figure A-13d
shows the number of shell divisions so that each division has a volume
probability of 1.0x10°, Summing these divisions should give the entire ring
probability to at least the tenth digit of precision. In truth, there are small
errors introduced for three of more dimensions because of polar coordinate
integration, so higher precision divisions will be needed to ensure the
numerical precision. From this curve, the level of integration is varied as the
radius increases.

A.4 Using an estimation of PUP to establish LRFD factors

Because the structural probability of usability is based on the lifetime of the
structure, the PUP can be used to establish the design limits for these
structures. Under applied load cases, the design points for several limit
states can be determined as a distance (in standard deviations) and
direction from the mean characteristics of the structure, Sa. An example of
this is shown in Figure A-14. The expected overall PUP value can be set to a
limit [e.g., @(3.5) with f = 3.5], which guarantees the structure’s lifetime
integrity probability.
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Figure A-14. Example limit states and s for unfactored loads and resistances.

There are two ways to envision that a scale factor can be applied to the
load(s) applied to a structure during its structural design: The first method
assumes that the load and response directions do not change. In this case,
each variable axis has the same universal scale applied (Figure A-15).
Because the factor is applied uniformly, the limit states maintain their
relative positions and angles to each other in the Gaussian multivariate
space. Once the limit states have been determined for the unscaled design
load, the system PUP can be considered to be a function of the single
applied scale factor (S) to the system.

PUP = f(S5) (A.33)
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Figure A-15. A uniform scale factor (S) is applied to the s for the limit state
design points.

For this equation, f(S) is a result of one of the multivariate, multi-limit
state estimation techniques discussed in the previous section. The purpose
is to make the calculated PUP approximately equivalent to the established
limit [e.g., @(3.5) with = 3.5]. Each limit state response surface is
described by

Biai—original = (ﬁi—original X S)ai—original (A-34)

Since the PUP can described by a function of a single variable (S), a
Newtonian or secant-based numerical method can be used to adjust the
design points (by changing the scale) until the solution approaches the limit
set for the overall system PUP, in an efficient way.

The second method to apply scale factors is more complicated but can give
a better overall design because all of the variables are considered
independently. To balance the design to the load and intended probability
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of failure, the initial attempt at the design must find the hyperplanar
definition vectors for all of the limit states, Si-originalQti-original (Figure A-14).
When these hyperplanar descriptions are discovered, factors can be applied
to the minimum £ value limit state that extends the distance from the
origin in the Gaussian multivariate space to the limit state hyperplane, thus
lowering the PUP for that limit state. However, this factor affects all of the
limit states to varying degrees as each variable axis is extended to varying
degrees by the minimum limit state’s directional cosines (e.g., i-original_x1).
This is shown in Figure A-16. In this case, Equation A.34 is interpreted in a
different way:

:Bi—originalai = .Bi—original(ai—original X S) (A-35)
Given this, each variable axis has its own scale factor
Sxi = QAi—original_Xxi X S (A.36)

For this situation, the PUP is a function of the scale factors for each of the
variables.

PUP = f(Sx1,Sx2 -+, Sxn) = f(S) (A.37)

Because of correlation between the limit state response surfaces, the
concern would be that these functions can lead to local minima and
maxima in a root finding because of the new slope calculations. Testing will
need to be performed to find if these issues confound root-finding
numerical algorithms.
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Figure A-16. Applying variable axis scale factors to adjust probabilities. A scale factor
applied to Limit State 1 causes slope changes in the response surfaces
for Limit State 2 and 3.

A.5 Validating PUP numerical estimation methods

To validate the models for PUP estimation, evaluate the inputs that will
lead to an increase in accuracy, and determine the resources (namely, time)
that will be needed to do these estimations, simple test cases were created.
These test cases were performed with two variables and had three
overlapping limit states. These tests were all performed on a Dell Precision
T7610 computer using Python 2.6 language for purposes of timing.

The first test case had two limit states that were perpendicular to the X;
variable axis at distance 1.0 and -1.2 along the axis. The third limit state
was perpendicular to the X- variable axis at distance 1.3 along the axis. For
all three limit states, the unsatisfactory performance was in the half-space
away from the origin of the Gaussian multivariate space. This can be seen
in Figure A-17.
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Figure A-17. The first test case for PUP estimation.
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Because the limit states are perpendicular or parallel, the limit states are
completely uncorrelated. This simplifies the calculation of the actual PUP.
The probability of the overlapping area of two limit state half-spaces is the
multiplication of each limit states’ PUP. This result is shown in Equations
A.21 and A.22, when p=0.0. This means that

P(E:E;) = ®(—B)(—;) (A.38)
Therefore, for the first simple test case, the PUP is given by

PUP = { D(—frs1) + P(—Prsz) + P(—Prs3) —

O(—Prs1)P(—PLs3) — q)(_ﬁLSZ)q)(_ﬁLss)} =0.34402870

Listings A.1 and A.2 show the result of performing a simple numeric
integration across the test case from -5 to 5 in each dimension of the
Gaussian multivariate space with step resolutions of 0.01 and 0.001,
respectively. The first few lines show the calculation of the PUP as
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discussed previously. The estimated value of PUP with resolution 0.01 from
the integration is 0.3414388654 and took 154 sec to integrate. This value is
within 0.2% of the actual calculated PUP value. The estimated value of PUP
with resolution 0.001 from the integration is 0.3437685994 and took
16,127 sec to integrate. This value is with 0.05% of the actual calculated
PUP value. While the additional accuracy can make slight changes at the
tails of the distribution, the solution time means that the 0.01 resolution
numerical integration is preferred.
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Listing A.1. Output from Euclidean numerical integration with step size 0.01.

===== Direct Calculation =====

PUP (LS1)

[
o

.15865525

I
o

PUP (LS2) .11506967

PUP (LS3)

Il
o

.09680048

E(LS1,LS3)

Il
o

.01535791

I
o

E(LS2,LS3) .01113880

PUP (Overall) PUP (LS1)+PUP(LS2) +PUP(LS3)-E (LS1,LS3) -
E(LS2,LS3) = 0.34402870

Input Parameters: Resolution=0.0100000000

numsteps=500

Solution Time=152

PUP (Overall) = 0.3414388654
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Listing A.2. Output from Euclidean numerical integration with step size 0.001.

===== Direct Calculation =====

PUP (LS1)

[
o

.15865525

I
o

PUP (LS2) .11506967

PUP (LS3)

Il
o

.09680048

E(LS1,LS3)

Il
o

.01535791

I
o

E(LS2,LS3) .01113880

PUP (Overall) PUP (LS1)+PUP(LS2) +PUP(LS3)-E (LS1,LS3) -
E(LS2,LS3) = 0.34402870

Input Parameters: Resolution=0.0010000000

numsteps=5000

Solution Time=16127

PUP (Overall) = 0.3437685994
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Listing A.3 and A.4 show the results of pure polar integration for the same
test case. Recall that polar integration can take advantage of the fact that any
point on the hypersphere has the same probability in the Gaussian
multivariate space for a significant speed-up. The integration is performed
from the center to a hypersphere of radius 5. The angle step is 0.01 for both
runs and the radius changes by steps of 0.01 and 0.001, respectively. The
first few lines show the calculation of the PUP as discussed previously. The
estimated value of PUP with radius resolution 0.01 from the integration is
0.3438739669 and took 217 sec to integrate. This value is within 0.05% of
the actual calculated PUP value and has better accuracy than the Euclidean
numerical integration does with 0.001 step resolution. The estimated value
of PUP with resolution 0.001 from the integration is 0.3440204733 and took
2,036 sec to integrate. This value is with 0.003% of the actual calculated PUP
value. While the additional accuracy can make slight changes at the tails of
the distribution, the solution time means that the 0.01 resolution adaptive
hyperspherical Gaussian probability numerical integration is preferred and
is better than the Euclidean numerical integration.
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Listing A.3. Output from adaptive hyperspherical Gaussian probability numerical
integration with radius step size 0.01 and angle step size 0.001.

===== Direct Calculation =====

PUP (LS1)

Il
o

.15865525

I
o

PUP (LS2) .11506967

PUP (LS3)

Il
o

.09680048

0.01535791

E(LS1,LS3)

I
o

E(LS2,LS3) .01113880

PUP (Overall) PUP (LS1)+PUP(LS2) +PUP(LS3)-E (LS1,LS3) -
E(LS2,LS3) = 0.34402870

Input Parameters: Radius Step=0.0100000000 Angle
Step=0.0010000000

Solution Time=217

PUP (Overall) = 0.3438739669
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Listing A.4. Output from adaptive hyperspherical Gaussian probability numerical
integration with radius step size 0.001 and angle step size 0.001.

===== Direct Calculation =====

PUP(LS1) = 0.15865525
PUP(LS2) = 0.11506967
PUP(LS3) = 0.09680048
E(LsS1,LsS3) = 0.01535791
E(LsS2,LsS3) = 0.01113880

PUP (Overall) PUP (LS1) +PUP(LS2) +PUP(LS3) -E (LS1,LS3) -
E(LS2,LS3) = 0.34402870

Input Parameters: Radius Step=0.0010000000 Angle
Step=0.0010000000

Solution Time=2036

PUP (Overall) = 0.3440204733
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The second test case (Figure A-18) was designed to test the Ang and Tang
(1974) Bounds method with correlated limit states. In this case, a design
point was chosen for three hyperplanar limit states. The design points were
(0.5,1.1), (-0.6,0.9), and (-0.9, -0.1) for Limit States 1, 2, and 3, respectively.
The unsatisfactory performance regions were in the half-planes for the
limit state response surfaces away from the origin.

Figure A-18. The second test case for PUP estimation.
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Listings A.5 shows the input design points along with the

calculated g values and « vectors for the limit states. The absolute bounds
for the PUP are calculated from Equations A.12 and A.13, resulting in
0.182590 <= PUP <= 0.376573, with an average value of 0.279582. Using
the pairwise correlation relationships in Equations A.14 and A.15, with
estimated values from Equations A.21-A.24, a tighter bound was
established as 0.229335 <= PUP <= 0.344048, with an average value of
0.286692. Because of the correlation, an actual value was not available, so a
polar integration was performed with a radius step of 0.01 and an angular
step of 0.01, which resulted in a PUP of 0.329675.
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Listing A.5. Output from Ang and Tang (1974) Bounds estimation compared to polar
integration method.

Limit State 1 (LS1) Design Point (0.500000 1.100000)
Beta=1.208305 Alpha = (0.413803 0.910366)

Limit State 2 (LS2) Design Point (-0.600000 0.900000)
Beta=1.081665 Alpha = (-0.554700 0.832050)

Limit State 3 (LS3) Design Point (-0.900000 -0.100000)
Beta=0.905539 Alpha = (-0.993884 -0.110432)

PUP(LS1) = 0.113465
PUP(LS2) = 0.139701
PUP(LS3) = 0.182590

Absolute Bounds: 0.182590 <= PUP <= 0.376573 Average =
0.279582

Tighter Bounds: 0.229335 <= PUP <= (0.344048 Average =
0.286692

===== Numerical Analysis =====

Input Resolution: Radius step size = 0.010000 Angle step size
= 0.001000

PUP = 0.329675
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While the Bounds Estimation Method was simple to compute, the range of
the values is too big for estimation in the tails of the Gaussian Normal
distribution. The averaged values also were not accurate enough for the
rigorous application that would be required by an LRFD solution method.
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Appendix B: Earth and Water Pressure
Distributions, Resultant Forces
and Their Points of Application
along the Faces of the Structural
Wedge

B.1 Introduction: Resultant forces and their points of application along
the two faces and the base of the Structural Wedge

Figure B-1 shows the resultant left- and right-side earth forces Pr and Pk,
the left- and right-side resultant water forces Hr and Hr acting on the
Structural Wedge, its base reaction force N’, and base uplift force Ubase. Also
included on this figure are the various distances to these forces and key
geometry points.

Figure B-1. Free body diagram of forces acting on the Structural Wedge, including the
left- and right-side forces resulting from the Resisting Wedge and Driving Wedge,
P and P, respectively.
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B.2 Distribution of right-side interface earth pressures for a partially
submerged, retained soil

Figure B-2 shows the horizontal component of the effective earth pressure
distribution and the distribution of water pressures with their
corresponding resultant forces acting on the right side of the Structural
Wedge.

Figure B-2. Horizontal component of effective earth pressures and water pressures
with their corresponding resultant forces acting on the right side
of the Structural Wedge.
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B.2.1 Horizontal effective earth pressures - right side of the Structural
Wedge

The horizontal effective earth pressure at point B in Figure B-2 is given by

!

Op-p = KActive * COS(‘S,mob—Active) * Ymoist * (h4 - h6) (2-37 biS)
where
ymoist i the moist unit weight of the retained soil and Kactive is mobilized

active earth pressure coefficient given by Equation 2.4 and is calculated
llSiIlg ¢’mob—Active and &'mob-Active.
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The horizontal effective earth pressure at point Crop is

o _ { Kactive * €0S(8' mop—active) * } (B.2)
h—CTop {ymoist * (h4_ — h6) + Y1 * (h6 - hheel)}

where

7 is the effective unit weight of the retained soil accounting for the
downward, vertical gradient of steady-state seepage through the saturated
soil volume of the Driving Wedge. Equation 2.9 provides for the y: value.

The horizontal effective earth pressure at point C is

!

Op—c = {

Kaetive * €05 (8 mob-pctive) * } (2.38 bis)

{Vmoist * (h4 - h6) + Y1 * h6}

B.2.2 Pore water pressures - along the perimeter of the Structural Wedge

The pore water pressures at submerged points B, Crop, C, D, and Drop of
Figure B-1 are computed using the Line of Seepage procedure outlined in
Subsection 2.3.1 for no gap or that in Subsection 2.3.2 with a gap extending
from the heel of the Structural Wedge, along its base. The total heads Ha at
point A and HE at point E are the necessary boundary conditions to solve
for the total heads at all of these interior points, as shown in the
Transformed Line of Seepage plots of Figure 2-6.a (or Figure 2-8.a). Recall
the pressure head hp is computed at any point along each of the three
Figure 2-6 streamline segments using Bernoulli’s equation for total head
(H) (and assuming the velocity head is negligible).

»=H~—h, (2.24 bis)

where he is the elevation head for the point (from Figure 2-5). This
modified relationship allows for the computation of the corresponding pore
water pressure (u) at the selected point by

u=h,*y, (2.25 bis)

B.2.3 Horizontal effective earth pressure resultant forces - right side of the
Structural Wedge

The resultant horizontal effective earth pressure force Er-: is given by
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Ep_1 = %* (op—p) * (hy — hg) + % * (O-f,l—B + Ur’z—crop) * (hg — hpeer) (B.2)

The point of application of Er-; is given by

MomER14_p+MOomER1p_cTop

hep_ 1 =
ER-1 ER—1

with
MomER1,_p = [% * (op-p) * (hy — he)] * [% * (hy — he) + he] (B.4)
and

{[(O_r,l—B) * (hﬁ - hheel)] *}
[% * (h6 - hheel)+hheel]

MomER15—crop = [% * (Uf’z—CTop - Uf’l—B) * (he — hheel)] * (B.5)
{ E * (hg — hpeer) + hheel] }
The resultant horizontal effective earth pressure force Er-- is given by
Ero = %* (Uf’z—CTop + Ui’z—c) * (Rpeer) (B.6)
The point of application for Er-2 is given by
Mgy = e cTop=C (B.7)

ER—2
with

MomERZCTop—C = {[(ai’l—CTop) * (hheel)] * [% * (hheel)]} + {[% * (O_PIL—C - O-ill—CTop) * (hheel)] *
E * (hheel)]} (B'S)

The resultant horizontal effective earth pressure force Er is
Er = Ep—1 + Er— (B.9)

and its point of application given by

ER—1*hgr—1+ER—2*hgR—
hlo — R—-1*'ER—-1 R—2*''ER-2 (B.j_O)
ER
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The resultant mobilized effective, active earth pressure force Pk is

ER

R~ Cos(®) (B.11)
and its vertical force component Xk is
Xr = ER * tan(9) (B.12)
B.2.4 Horizontal water pressure resultant forces - right side of the
Structural Wedge
The resultant pore water pressure force Hr-: is given by
Hp_q =3% (ucrop) * (he — hneer) (B.13)

The point of application of Hr-; with reference to the elevation of the heel,
is given by

MomHR1p_cTop

hyr-1 = ——— (B.14)
with the moment about the elevation of the bottom of the base of the slab,

defined as

[% * (Ucrop) * (he — hneer) ] *} (B.15)

MomHR15_ =
pmctop { [% * (h6 - hheel) + hheel]

And the point of application of Hr-: with reference to the elevation of top of
base slab, corner point Crop, is given by

(hgr—1 — Pheer) = %* (he — Nneer) (B.16)
The resultant pore water pressure force Hr-2 is given by
Hp_p = 3% (uCTop + uc) * (Mpeer) (B.17)

The point of application for Hr-» with reference to the elevation of the heel,
is given by

MomHR2cTop—
hyr-2 = # (B.18)
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with the moment about the elevation of the bottom of the base of the slab,
defined as

[ (s} ]
{[% * (Uerop — e ) * (hneer) ] *}

E * (hheel)]

MomHRZCTop_C S (819)

B.3 Resultant forces acting on the soil block - right, located above the
heel portion of the base slab for the Structural Wedge

Figure B-3 shows the resultant earth pressure and water pressure resultant
forces acting on the soil block located above the heel portion of the base
slab for the Structural Wedge. It is designated “soil block - right” because
this soil block is situated to the right of the reinforced concrete stem. The
stem as well as the reinforced concrete base slab bound the left and bottom
faces of this soil block. Observe that no horizontal shear force (7) is
assumed to act along the base of soil block - right, consistent with the EM
1110-2-2502 (HQUSACE 1989) assumption.

Figure B-3. Free body diagram of resultant forces acting on and within the soil block
(right) located above the heel portion of the base slab for the Structural Wedge.
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Values for forces Er-1, Xr-1, and Hr-: are computed from the earth and water
pressure distributions along the imaginary vertical section extending up
from the heel of the T-Wall through the retained soil using the equations
given in Subsections B.2.3 and B.2.4, respectively. Recall there is no
horizontal shear force (T') assumed to act along the base of soil block -
right, consistent with the EM 1110-2-2502 (HQUSACE 1989) assumption.
Then horizontal force equilibrium applied to the Figure B-3 soil block -
right, the resultant horizontal effective earth pressure force Er-; applied to
the stem is defined as

E*p1 =Ep—1+Hp1 —H'p (B.20)

For the constant elevation piezometric surface in the partially submerged
retained soil block - right of Figure B-3 with a constant, vertical
(downward) seepage gradient,

H *p_1=Hp_4 (B.21)

and the H"r-; point of action will be the same as that for Hr-: (Equation
B.16),

(ht'r-1 = Preer) = (hugr—1 — hneet) = 5 * (he — hpeer) (B.22)
Consequently, by Equation B.20,
E*p_q = Eg (B.23)

For this T-Wall geometry, he+r-: was set equal to her-: because a complete
solution for the location of this force is a complex computation that is not
anticipated to provide for a significant change from this assumption.

Quantitative assessment of the vertical shear force X"r-; exerted on the stem
by the soil block - right is not as straightforward as one might hope. There
are significant SSI issues that influence the interface forces within the soil
block - right of the Structural Wedge. For example, a right triangle-shaped
soil region adjacent to the vertical interface between the roughened surface
of the reinforced concrete stem face (with the triangle’s base defined by the
base slab) is not contained within the inverted triangular volume of soil
possessing a fully mobilized shear strength (Figure B-4). Also depicted in
Figure B-4 is the inverted triangular volume of slip planes centered with its
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tip at the heel of the T-Wall. This is the active earth pressure soil zone,
contained within this inverted triangular volume feature, that has its soil
shear strength mobilized to the level of ¢’ mob-active. Therefore, if FSactive
equals 1.0, then @'mob-active is equal to ¢ of soil region 1. This inverted
triangular soil volume forms as the Structural Wedge moves away from the
Driving Soil Wedge, with this inverted triangular soil volume dropping
downward as the T-Wall moves out. A graben will form above this inverted
triangular soil volume due to this downward soil mass movement.

Figure B-4. Active and passive Rankine states of stress behind and in front of a
cantilever retaining wall, respectively (after Peck et al. 1974).

Active soil zone

w
Partially Soil Region 1
Passive soil zone Mobilized
Soil Strength
Zone

Soil Region 3

Soil Region 2

Because the reinforced concrete stem face is located outside of the inverted
triangular soil volume, the zone of soil adjacent to the vertical stem face
interfaces does not mobilize its shear strength as a result of lateral T-Wall
movement and active soil wedge development in the soil zone above the
heel of the T-Wall. Thus, there is a right-angled triangular soil pocket that
does not fully mobilize its shear strength (Figure B-4). It is situated
between the stem face and the left side of the soil contained within the
Figure B-4 inverted triangle of retained soil (active earth pressure zone)
and above the top of the base slab.

Recall this Figure B-4 soil regime of fully mobilized shear strength above
the heel of the T-Wall takes the geometric form of an inverted, triangular
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volume of soil. The orientation of the bottom-most slip plane defining the
right side of this inverted triangle into the soil of the Driving Wedge is
oriented from horizontal by the angle given by Equation 2.11. For a
compacted, cohesionless engineered backfill consisting of granular soil, this
angle is equal to approximately 60 deg from horizontal. This inverted,
triangular volume of soil also extends into the soil of the soil block - right
within the Structural Wedge, as shown in Figure B-4. The lateral extent of
the active soil regime into soil block - right is approximated as being
defined geometrically by a (slip) plane emanating from the heel of the
T-Wall and oriented from horizontal at this same Equation 2.11 slip plane
angle of approximately 60 deg from horizontal. For a heel base slab that is
18 ft wide, as measured from stem to heel and with a 26.5 ft tall stem over a
3.5 ft thick base slab, the right angled triangular soil zone next to the stem
face for soil block - right is outside of the Figure B-4 triangular active wedge
soil zone. Thus, active soil wedge theory would not be applied to determine
the value for the vertical shear force X"&-: exerted on the stem by the right-
angled triangular soil pocket.

The approach taken to compute a vertical shear force X*z-; is a complete
SSI-based approach developed through research first investigated by Dr.
Ebeling (Ebeling 1989). This type of shear force is named vertical shear
and is not associated with the development of the active soil wedge and its
inverted, triangular volume of soil (Figure B-4). The vertical shear force
X"r-1 exerted on the stem by the soil block - right is calculated using the
Vertical Shear Force computational procedure outlined in Appendix F
procedure of EM 1110-2-2100 (HQUSACE 2005). This vertical shear force
results from the differential settlement of the soil during backfilling of the
T-Wall after its construction. This differential settlement and resulting
vertical shear force arise due to the soil hanging on the roughened concrete
vertical (stem) surface. Recall that this soil region adjacent to the vertical
soil-structure interface is beyond the active soil wedge zone that develops
with a focal point of the heel of the T-Wall and as a result of the movement
of the T-Wall away from its retained soil.

(K * Cye) *
[%*Vmoist * (Hstem — (he — hheel))z] +
[Vmoist * (Hstem — (he — hheel)) * (hg — hheel)] +
[%*)/1 * (he — hheel)z]

X*p_y = (B.24)
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with K equal to 0.1 by EM 1110-2-2100 (HQUSACE 2005) Figure F-3 for a
stem wall of height equal to 26.5 ft (Hstem), as measured form the top of
base slab, and retaining dense, compacted granular fill. The correction
factor Cu: for post-backfilling submergence of the compacted backfill is
given by

Coe = {1 - 2222} (B.25)

Hstem

For (h4-hs) equal to 6 ft and Hstem equal to 26.5 ft, Cuwt becomes 0.23. Thus,
the term (K*Cuwt) is equal to 0.023 (=0.1%0.23). If the compacted, dense
granular backfill was not submerged after placement, the vertical shear
coefficient would remain a value of 0.1 since the correction factor Cw: would
then be equal to 1.

Vertical force equilibrium applied to the Figure B-3 soil block - right results
in the effective force N>k normal to the base of soil block - right being
defined as

N'pgp = Wyp + Xp1 + —X"g_1 — Upr (B.26)
The vertical force Xr-: is
Xg-1 = Eg_1 * tan(8 mop-active) (B.27)
The weight of soil block - right is given by

Ymoist * [% * ((h4 - hheel) - Hstem) * Lheel] +
WbR = Ymoist * [(Hstem - (h6 - hheel)) * Lheel] + (B'28)
Vsaturated * [(hﬁ - hheel) * Lheel]

Its positon xwer relative to the heel of the base slab is

(mest [“*((hz} hpeel)— Hstem)*Lheel] *Lheel +)

J Ymoist* [(Hstem_(hs hheel))*l'heel] [_*Lheel]+ !

Vsaturated*[(Re=Rheet) *Lheel]* —*Lheel] J
Wpr

XwbR = (B.29)

With a horizontal phreatic surface within soil block - right, the uplift water
pressure acting normal to the base of this soil block will be uniform. With a
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uniform downward acting seepage gradient iy-pw within the soil block-right,
the resultant uplift force Upr is

UbR = [ywater * (1 - iy—DW) * (h6 - hheel)] * Lheel (B.30)

Its positon xvpr relative to the outside, top corner of the base slab, point
CTop, is

L
Xypr = €€/, (B.31)

Moment equilibrium applied to the Figure B-3 soil block - right results in
the position of the effective force N’»r normal to the base of soil block -
right, as measured from the outside, top corner of the base slab, point Crop,
defined as

Ep-1*(hER—1—Rpee)+
HR-1*(hgr-1—Nhee) =X "R-1*(Lheer)—
t E*R—l*(hE*R—;L_hheel)_ J
H*R—l*(hH*R—;L_hheel)_UbR*(xUbR) (B 32)
N'pRr

J Wpr*Xwpr+ ER—1WpRr*XwpRr— 1

XNbR =

The horizontal effective earth pressure force E'r-; acts on the stem at a
height above the base slab equal to

[%*Vmoist*(Hstem_ (h6_hheel))2] *[%*(Hstem_ (he=hnee))+(hg—hpee)) |+
[Vmoist*(Hstem_(h6_hheel))*(h6_hheel)]*[%*(h6_hheel)] +
[%*V1 *(h6_hheel)2] *[%*(hs_hheel)]

hpip_q4 = -
E*R-1 { 2 ¥motse*(Hstem—(he—hneen)” | + } ( )

[Vmoist*(Hstem_ (hs_hheel))*(h6_hheel)] +
[%*V1*(h6_hheel)2]

with y given by Equation 2.9 for a constant vertical, downward seepage.

The horizontal water pressure force H'r-: acts normal to the stem and at a
height above the top of the base slab equal to

(hyr-1 — hpeer) = %* (he = hneer) (B.22 bis)

B.4 Distribution of left-side interface earth pressures for a partially
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submerged, retained soil

Figure B-5 shows the horizontal component of the effective earth pressure
distribution and the distribution of water pressures with their
corresponding resultant forces acting on the left side of the Structural
Wedge.

Figure B-5. Horizontal component of effective earth pressures and water pressures
with their corresponding resultant forces acting on the left side
of the Structural Wedge.
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B.4.1 Horizontal effective earth pressures - left side of the Structural
Wedge

The horizontal effective earth pressure at point E in Figure B-5 is zero. The
horizontal effective earth pressure at point Drop is given by

O-;l—DTOp = KPassive * 605(5’m0b—Passive) *Y1 * (h3 - htoe) (B-34)
where y; is the effective unit weight of the retained soil accounting for the

upward, vertical gradient of steady-state seepage through the saturated soil
volume of the Driving Wedge. Equation 2.19 provides for the y; value.
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Kpassive 1s mobilized passive earth pressure coefficient given by Equation
2.16 and is calculated using ¢’ mob-active and 'mob-Active.

The horizontal effective earth pressure at point D is
O-ill—D = KPassive * 605(5’m0b—Passive) * {Vl * h3} (2-45 biS)

B.4.2 Horizontal effective earth pressure resultant forces - left side of the
Structural Wedge

The resultant horizontal effective earth pressure force Er; is given by
E_,= % * (Ur’l—DTop) * (hg — htoe) (B.35)

The point of application of EL-;, relative to the bottom of the base slab, is

given by
hgp-1 = % (B.36)
with
ot [

The resultant horizontal effective earth pressure force Er-- is given by
E,_,= % * (Uf'l—DTop + UL')) * (Neoe) (B.38)

The point of application for EL-», relative to the bottom of the base slab, is

given by
hgp_p = % (B.39)
with
R Y e M A
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The resultant horizontal effective earth pressure force Er is
EL = EL—l + EL—Z (841)

and its point of application, relative to the bottom of the base slab, given by

Ej—1*hgp—1+Ep—2*hgp—
hg — L—1*"EL-1 L—2*ItEL-2 (B.42)
EL

The resultant effective earth pressure force Pr is

Ej

PL - Cos(sinob—Passive) (B43)
and its vertical force component X1 is
XL = EL * tan((s;nob_Passive) (B44)

B.4.3 Horizontal water pressure resultant forces - left side of the Structural
Wedge

The computation of pore water pressures acting normal to the Structural
Wedge using the Line of Seepage procedure of analysis is discussed in
Subsection B.2.2. The resultant pore water pressure force Hr; is given by

Hy_1 =3 * (ug) * (hs — h3) (B.45)

The point of application of Hi-;, relative to the bottom of the base slab, is
given by

MomHL1g_g
Hp—

hyr-1 = (B.46)

with
MomHL1p_g = [2 (ug) * (hs — h3)] * [t % (hs — h3) + hs|  (B.47)

And the point of application of Hr-; with reference to the elevation of top of
base slab, corner point Drop, is given by
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(har-1 = Reoe) = 3% (hs — hgoe) (B.48)
The resultant pore water pressure force Hr-- is given by
Hy_,=3% (uE + uDTop) * (h3—Ngoe) (B.49)
The point of application for Hi-», relative to the bottom of the base slab, is
given by

MomHL2g_prop

hhp—2 = ——— (B.50)

with
[(up) = (hs = heoe)] »
( {[% * (h3 - htoe) + htoe]} i \

{[% * (uDTop - uE) * (hs — htoe)] *}
E * (h3 - htoe) + htoe]

MomHLZE_DTop = (Bj.)

The resultant pore water pressure force Hi-3 is given by
Hp_3= %* (uDTop + uD) * (Neoe) (B.52)

The point of application for Hi-s, relative to the bottom of the base slab, is

given by
hyp_s = o 2PTop-D (B.53)
Hy_3
with
{[(uDTop) * (htoe)] * [% * (htoe)]} +
MomHL3prop-p = {[% * (uD - uDTop) * (htoe)] *} (B.54)
[% * (htoe)]

B.5 Resultant forces acting on the soil block - right, located above the
toe portion of the base slab for the Structural Wedge

Figure B-6 shows the resultant earth pressure and water pressure resultant
forces acting on the soil block located above the toe portion of the base slab
for the Structural Wedge. Recall that the soil-based interface forces acting on
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the interface extending upwards from the toe of the T-Wall are a result of the
Structural Wedge plowing into the Resisting Wedge. The Figure B-6 region
of the Structural Wedge is designated “soil block — left” because this soil
block is situated to the left of the reinforced concrete stem. The stem as well
as the reinforced concrete base slab bound the right and bottom faces of this
soil block. Observe that no horizontal shear force (T') is assumed to act along
the base of soil block - left, consistent with the EM 1110-2-2502 (HQUSACE
1989) assumption.

Figure B-6. Free body diagram of resultant forces acting on and within the soil block
(left) located above the toe portion of the base slab for the Structural Wedge.
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Values for forces Er-1, X1-1, and Hi-; are computed from the earth and water
pressure distributions along the imaginary vertical section extending up
from the heel of the T-Wall through the retained soil using the equations
given in Subsections B.4.2 and B.4.3, respectively. Recall there is no
horizontal shear force (T) assumed to act along the base of soil block - left,
consistent with the EM 1110-2-2502 (HQUSACE 1989) assumption. Then,
by horizontal force equilibrium applied to the Figure B-6 soil block - left,
the resultant horizontal effective earth pressure force E*z-; applied to the
stem is defined as



ERDC/ITL TR-21-1 210

E'y1=E 1+H 1—-H14 (B.53)

For the constant elevation piezometric surface in the partially submerged
retained soil block - left of Figure B-6 with a constant vertical (upward)
seepage gradient, the boundary water pressure distributions and their
resultant forces are equivalent.

H* 3 =H, (B.56)

H*, ,=H,, (B.57)
Consequently, by Equation B.55,

E*f 1y =Ei (B.58)

This equivalency is judged appropriate for the level ground scenario above
the base slab. By the same logic regarding the symmetrical pressure

distributions,
(ha1-1 = Mneer) = (hup—1 — hneet) (B.59)
(heL-2 = hneet) = (hur-2 = Rpeer) (B.60)
(hg*L-1 = Rneer) = (hgL-1 — Rneer) (B.61)

For this T-Wall geometry, he-; was set equal to her-: because a complete
solution for the location of this force is a complex computation that is not
anticipated to provide for a significant change from this assumption.

Because of the geometric configuration of the soil region at the toe, the
majority of soil block - left, located above the toe of the base slab will be
contained within the passive soil wedge feature developing within the
buttressing soil wedge zone (Figure B-4). Therefore, the vertical shear force
computational procedure (Ebeling 1989) due to differential settlement
along the roughened concrete stem that was used to compute X"r-; of soil
block — right, cannot be used to compute X".-1.

Instead, the value of X"r-; will be computed based upon the assumption of a
mobilized passive earth pressure zone of soil defined geometrically by an
inverted triangular soil volume that encroaches into soil block - right of the
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Structural Wedge as well as into the Resisting Wedge. This inverted
triangular passive soil volume is defined by two slip planes with their origin
at the toe of the T-Wall (Figure B-4). Each plane extends from the toe and
is defined using the angle given by Equation 2.20, with reference to
horizontal. For a compacted, cohesionless engineered backfill consisting of
granular soil, this approximate slip plane angle is equal to 30 deg. The
inverted, triangular volume of passive soil also extends into the soil of the
Resisting Wedge, as previously stated. The value for X"z-; will be computed
from the 6L value based upon the user defined material properties of ¢’z and
the ratio of 5./ #'L.

X1 =E" 1 tan(arlnob—Passive) (B.62)
By Equations B.61 and B.65,
X'p1=X14 (B.63)
Vertical force equilibrium applied to the Figure B-6 soil block - left results
in the effective force N’». normal to the base of soil block - left being
defined as
Ny, =Wy — X1+ X7 — Uy, (B.64)
Moment equilibrium applied to the Figure B-6 soil block - left results in the

position of the effective force N'’» normal to the base of soil block - left, as
measured from point Drop at the top of the base slab, being defined as

Xnpr = Wy * Xwpr + Ep—1 % (hgr—1 — heoe) + Hp—q * (-1 — Reoe) + Hp—p * (Ayp—p —
heoe) +X 11 * (Lege) — E"—1 * (hgrp—1 — heoe) — H'p—q * (hyrp—1 — Repe) —H'p_p *
(hysp—2 = htoe) — Upp * (xypL)}/N'py (B.65)

With the symmetry in earth pressure and water pressure distributions,
Equation B.65 reduces to

XnpL = Whp * Xwpr + +X"1-1 * (Loe) — Upy, * (xyp)}/N'p,  (B.66)

The weight of soil block - left is given by

WbL = Ywater * [(hs - h3) * Ltoe] + Ysaturated * [(h3 - htoe) * Ltoe](B-67)
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Its positon xwar relative to the toe of the base slab is

1
Ywater * [(hS - h3) * Ltoe] * [E * Ltoe] +

XwpL = 1
Vsaturated * [(h3 - htoe) * Ltoe] * [E * Ltoe

] /Wy, (B.68)

In the case of level, submerged ground, xwsL will be equal to
Ko, = 1%/, (B.69)

With a horizontal phreatic surface within soil block - left, the uplift water
pressure acting normal to the base of this soil block will be uniform. With a
uniform upward acting seepage gradient iy-rw within the soil block - left,
the resultant uplift force UpL is

UbL = [Vwater * (1 + iy—RW) * (h3 - htoe)] * Ltoe (B-7O)

Its positon xvsL relative to the top of the toe slab is
XupL = Ltoe/z (B.71)

The horizontal effective earth pressure force E*L-; acts on the stem at a
height above the base slab equal to

[%*V1 *(hz—htoe) 2]*

. _ [%*(hS_htoe)]
(hE*L—l htoe) - {[%*yl*(h3_htoe)2]} (B72)

with y provided by Equation 2.19 for a constant vertical, upward seepage.
This equation simplifies to

(hgr—1 — htoe) = % * (hs — Rtoe) (B.73)

The horizontal water pressure force H'.-; acts normal to the stem and at a
height above the base slab equal to

(hyp1 — hege) = 15 ™ Fieoe) (B.74)

Figure B-7 shows the free body diagram summarizing the resultant forces
acting on the stem and base slab of the Structural Wedge. These forces are
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transferred to the reinforced concrete T-Wall through soil block - right and
through soil block - left.

Figure B-7. Free body diagram of resultant forces acting on the stem and base slab
of the Structural Wedge.
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The resultant shear force Vstem acting internal to the base of the reinforced
concrete stem is given by

Vstem = _E;—l - HE—1 + Ei‘-1 + HL*—l + HL*—Z (B.75)

and the moment Mstem acting internal to the base of the reinforced concrete
stem is

Ep_1 * ((hgrr—1 — hneet) + Hr—1 * (hyrp—1 — Rpeer) —
Mstem = EE—l * (hE*L—l - hheel) - Hl:k—l * (hH*L—l - hheel) - (B-76)
Hi_; * (hg*p—2 — Rpeer)
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Appendix C: Numerical Methods for the
Calculation of S and Load and
Resistance Factors Given
Uncorrelated Load and
Resistance PDF Curves

C.1 Introduction: Assumptions and requirements for calculating load
and resistance factors

This appendix begins by outlining the steps in a numerical procedure for
calibrating partial load and resistance safety factors given a target
reliability index (#) value as well as two alternative procedures of analysis.
The first is a numerical procedure described in Section C.2 of this appendix
that has been adapted to this R&D effort from that outlined in Section 8.5
of Nowak and Collins (2013) for bridge design. A numerical procedure to
calculate g given variable load and resistance with distributions, which may
have partial load and resistance safety factors applied is presented to be
used as a verification step (Section C.4). To verify the computation of
partial safety factors, this procedure is used by calculating £ from the
partial load and resistant factors applied to the load and resistance
distributions. This value should then match the target g value. This second
numerical procedure is also adapted to this R&D effort from a procedure
described in Nowak and Collins (2013).

Section C.3 derives a supplemental procedure to calculate the partial load
safety factor given a specified partial resistance safety factor and the
procedurally defined partial safety factor ratio. This safety factor ratio may
be computed using the numerical procedure outlined in Section C.2.

Section C.5 summarizes a reliability-based numerical procedure for
computing a value for Reliability Index g following the steps outlined in
Nowak (1999). Professor Nowak originally developed this procedure over a
number of years with a focus on its application to LRFD based bridge
design (Nowak and Lind 1979; Nowak 1999; Nowak and Collins 2000,
2013).

Section C.6 describes a Gaussian function superposition approach of
numerically fitting normalized normal distribution functions to a non-
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normal PDF and computing a value for Reliability index 5. The
attractiveness of this analysis procedure is that it may be used on any form
of PDF yet be able to determine a value for # that may be used in a
Reliability analysis for determination of load and resistance factors.

These numerical procedures outlined in this appendix require a
mathematically defined, continuous probability density function (PDF)
distributions for load and resistance. These procedures also require that
load and resistance variables not be correlated (i.e., independent).

On page 269 of Nowak and Collins (2013), the LRFD design equation is
given as

YR * UR 2 VL * UL (C.1)

with yr being the resistance factor, ur the mean resistance, . the load
factor and ,a. the mean load. Note that Nowak and Collins (2000, 2013) are
using the mean values for resistance and load and not the nominal values in
this governing LRFD equation. This governing equation was subsequently
re-written by Nowak and Collins in terms of nominal resistance and load
and given on their page 269 as

(Yr*AR) * Ry = (Y * AL) * Ly (C.2)

with Ar being the resistance bias factor, R the nominal resistance, A the
load bias factor and L» the nominal load.

As noted, the following sections provide procedures to compute Reliability
Indices and partial safety factors. These calculations deal with different
types of probability distributions. There are certain conditions that affect
the calculation of partial safety factors for loads (y) and partial safety
factors for resistances (¢). For a set of uncorrelated variables described by
normal distributions, the procedure is straightforward. Conversion of the
normal distributions into a Gaussian Normal space allows for the
determination of a design point for the limit state function g(x*). The
closest point from the means to the limit state response surface where
g(x")=0 is the design point. In the Gaussian Normal space, the unit distance
corresponds to a change of one standard deviation from the mean origin.
Therefore, the distance to the design point gives the g distance to the
response surface from which PDF (¢) and CDF (@) values can be obtained.
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The vector from the mean origin of each of the ith variable, 4, to the design
point x"; on the limit state response surface after being normalized to unit
length gives the directional cosine components («) for the uncorrelated
variables. Recall o1 is the standard deviation for the ith variable. The design
point for g(x*)=0 in variable space is given by the equation

x*i = U + (ll'ﬁO'i (C3)

Substituting the target Starget for the design point g projects the response
surface to Siarger. Then the factor that gives that value is calculated as

N
X

Yi= (C.4)

8
<%

Where yi is the factor and X is the component value given for Starget, and xVi
is the nominal value for the variable (load or resistance), which can change
through the iterative procedure. For resistance, yi becomes ¢: in Equation
C.4.

The next section describes the numerical procedure for performing this
same set of steps when some or all of the variables possess non-normal
distributions.

C.2 Procedure for calculating load and resistance factors given
variables with non-normal distributions

The following steps outline the procedure for calculating load and
resistance factors given variables with non-normal distributions.

1. Formulate the limit state function and the design equation. These
equations will work with as many random variables as possible, with
their distributions and parameters. It is assumed that every random
variable will have a COV or standard deviation. At most, only two
unknown means will be allowed. Typically, the resistance variable
accounts for one unknown mean with the other unknown mean
corresponding to one of the load terms. Load ratios set the relationships
of the mean values of the loads to the unknown values. For example, in
LRFD application to bridge design it is common for the live load to be
set equal to one-third the dead load (Nowak and Collins 2013) when
applying this numerical procedure. Initializing for the first iteration, the
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limit state equation where g(X)=o0 is evaluated to determine the
relationship between the unknown mean values.

2. An initial design point X is obtained by assuming values for n-1 of the
random variables, with mean values being a good assumption. Solve the
limit state equation where g(X)=0 to determine the remaining variable
on the failure boundary.

3. For non-normal axis design point values, determine the equivalent
distribution (z£x and o¢x) using Equation C.5 and Equation C.6. These
values create a distribution at x* that has an equivalent CDF and PDF at
the design point x". If the axis of a design point variable is on a normal
distribution, then z¢x and o¢x) correspond to the already existent
distribution. This step may not be possible if the normal mean is one of
the unknowns.

pe = x* — of[@71(E.(x"))] (C.5)
ot = ® (x*;;”x) = = ¢[o7 (E(M)] (C.6)

4. Calculate the partial derivatives of the limit state function with respect
to the reduced variates. The column vector {G} is comprised of these
derivatives:

(G}={"3} whereG, =22 (C.7)

0z; evaluated at the design point
G
5. From the matrix of correlation coefficients [ o], calculate the directional
cosine column vector {a}:

[pl(c}
_ __lpolG} c.8
&= e (C.8)

with the correlation matrix for a two variable problem given as

_[P11 P12
] = P21 Pzz]
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The diagonals of the correlation matrix are set to unity, and pi- is
typically equal to p-:. For independent variables X; and X>, there is no
correlation (i.e., p12 = p21 = 0), and the diagonal terms are unity.

6. The new design point in reduced variates for n-1 variables is computed
using the target 3, Brarget.

Zi* = aiﬂtarget (C.10)

7. Return the new design point in the original coordinate space for the n-1
variables using the expected distribution for the variables

xi = pg, +z oy, (C.11)

At this point, the remaining random value can be solved for by solving
the limit state function so that g(x*) = 0. The relationship between the
two unknown mean values may have changed, so the relationship can be
updated by assuming a bias of 1.0, the nominal xibecomes equal to xi.

* AT
x; _ Hx;7Zi0x;

ﬂxl- Hxi

Vi = =1+2;COVy, = 1+ @BrargesCOVy,  (C.12)

Therefore,

*

Mo, = < (C.13)

1+aiﬁtargetC0in

8. Repeat steps 3 to 8 until {a} converges.
9. Use Equation C.4 with the converged values to calculate each design
factor.

Example C.1 - Dead load bending moment for a beam

A trial design was performed of a singly reinforced beam with an
unfactored dead load bending moment, Mpr, set equal to 200 kip-ft. It
follows the procedure of Example 5.9 of Nowak and Collins (2013). This
example only deals with a dead load condition. The beam with a width of

12 in. and a depth (d) to center of reinforcement of 28 in. was analyzed in a
2016 USACE LRFD study (Hokens). A concrete compressive strength, f, of
4,000 psi and a reinforcement yield strength, f;, of 60,000 psi were used.
The required area of steel, using a resistance factor, gacr, of 0.9 from ACI
318-14, is 2.37 in2.
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The load factor for dead load, when not combined with other loads, is 1.4 in
ASCE 7-10 and is designated jasce in this example. Ellingwood states that
the probability density function (PDF or described functionally as ¢()) for
dead loads applied to buildings is normally distributed with a bias factor,
AL, of 1.05 and a COVL of 0.1. The mean dead load, s, is computed to be
210 kip-ft by

Upr = ApL * Mpy, (C.14)
The safety margin relationship for LRFD for this example is

bact * My, = Yasce * Mpy, (C.15)

Rearranging for M, this equation becomes

Mn — YASCE*MpL (C.16)

baci

Introducing the ASCE dead load factor, jasck, of 1.4, the dead load moment,
Mpbr, of 200 kip-ft and the ACI flexural resistance factor, gacr, of 0.9, the
nominal moment are computed as

1.4%200
M, =

= 311.11 Kkip-ft

By the following two relationships for the nominal flexural capacity of a
singly reinforced beam equal to 311.11 kip-ft, the required reinforcement
steel cross-sectional area is verified (Hokens) to be 2.37 in2 for the signally
reinforced beam using the relationships

My = Ag+ fy|d -] (C.47)
with
_ _Artly
= o (C.18)

where
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B
Il

area of reinforcing steel
yield strength of reinforcing steel
d = distance from compression face to center of reinforcing steel

by
I

a = height of equivalent Whitney stress block in reinforced concrete
fe = concrete compression strength
b = width of beam or design section.

The mean resistance, ur, is computed to be 348.44 kip-ft by
IJ_R = /‘lR * Mn (019)

where the bias factor on flexural resistance, Az, is defined as 1.12 by
Ellingwood for a one-way slab. The COVk is defined as 0.14. Recall that Mx
is the nominal resistance computed using equation C.16. Ellingwood also
suggests a lognormal distribution for flexural capacity of one-way slabs
with a COVk of 0.14 in his document.

Following the procedural steps for calculating load and resistance factors
given variables with non-normal distributions for the first iteration:

1. There are two variables in this example: the resistance variable (R) and
the load variable (L). The design equation is defined by g(x*)=R-L, and
the limit state occurs when g(x*)=0.0, which occurs when R=L. The
distribution for the load L is the same as the normal distribution, so the
COVL = 0.1. It is assumed that both mean load and resistance are
unknown. The unknown mean load 4 is used as the basis for
calculations, with all of the other values relating to its value through
ratios. This relationship is assumed to be zr= 11 for g(x*)=0.0.

2. An initial design point is calculated by assuming n-1 variable values. For
the two-variable problem, the design point value for load (1) is assumed
to be the mean value, 1. Solving the g(x*)=0.0 limit state response
surface equation gives the design point for the resistance (r*) as 1.

3. Risthe only variable with a non-normal distribution, so its equivalent
normal distribution values need to be determined using Equation C.5
and Equation C.6. Some additional information is needed from the
original log-normal distribution values. From the original log normal
distribution (and these values are constant through the iterations),

, o} 48.782
Oine =In(1+ 77 ) = In{ 1+ 7225 | = 001941
2 .
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Oimg = ’alan = 0.139

2
Hing = Inug) — =28 = 5.844

For log-normal resistance variable, the closed form solution of these
equivalent normal parameters are

of =1r"og = 0.139y,
pr =77[1=In(r") + wnrl = 6.844u,
Notice that umr) is approximately equal to In(ur) when the COVr < 0.2

(Nowak and Collins 2013 p 26).
4. Calculating {G} from the derivatives,

99 e e
1 OR design point R Hr
Gz——z—faf =0f =0, =COV,*p, =0.1%p

design point
5. From the matrix equation C.8,
_ (@R _ (—0.812
ta} = {aL} - { 0.583 J
Note that since the variables R and L are independent variables, the
correlation matrix [ p] is an identity matrix, with values of 1 along the
major term diagonals and off-diagonal terms of o.

6. The new design point in Gaussian Normal coordinates for the load is
determined, with Starget = 3.0,

z] = A Prarger = 0.583 % 3.0 = 1.75
7. Returning to the original coordinate system,
U'=p, +zjo, =u,(1+z;,C0V;) = 1175 * ;.

8. Using g(x*)=0.0, then,
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r*=10"=1175*y,

An updated value of the estimated mean value of R,

_ r* _ 1.175xu;, _
MR = Tiappcove  1+(-0812)3)(0.14) 1783 *

9. Table C-1 summarizes how the values change for each iteration of the
procedure. The iterative computations for this example were made in an
Excel spread sheet. While four iterations were performed, in actuality, a
threshold for convergence would be established when implemented
within an algorithm.

Table C-1. lterations of Step 3-8 as the design point and mean resistance change.

ORIGINAL ITERATION 1 |ITERATION 2 |ITERATION3 |ITERATION 4
r* 1w 1.174933y  |1.156396u | 1.158209z4 | 1.15803u
1w 1.174933y, 1156396 | 1.158209z | 1.15803z
wr |1 1.783459y,  |1.802396x, | 1.800834z | 1.8009914

10. Combining Equation C.4 with Equation C.19. the resistance factor is
calculated using the resistance bias value for Ar value attributed to
Ellingwood, as

Agr™  Agr® 112115803 %y

VR =r = = 1.800991 # 1,

0.72
ArM, Ur

Recall yr is also designated as ¢r or simply ¢ in the main body of this
report.

Combining Equation C.4 with Equation C.14, the load factor is calculated
using the load bias value for AL attributed to Ellingwood, as

A A" 1.05%1.15803 * py

= = = 1.216
ALMp,, 253 1y

YL

Recall that by applying this numerical procedure outlined in this example
guarantees minimal partial resistance and load safety factors that, when
multiplied by the nominal resistance and its resistance bias and nominal
load and its load bias, will compute a design point on the limit state
response surface at distance Starget.
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In Chapter 4 of the main report, the concept of a Lsr was introduced as the
scale factor that could be applied to the mean load to create a new mean
resistance that, when the Gz() function has been applied to the
distributions, returns a target PUP value. Introducing these y& and jz values
of 0.72 and 1.216, respectively, into Equation 4.6, the Lsris

v, 1216
Lgpg =—=—"—=1.69
SE Ty T 0.72

Note that because Lsr was determined in the Nowak and Collins (2013)
procedure of analysis using an LRFD formulation written in terms of mean
values for the load and resistance, this constant does not work with
nominal loads and resistances without some modification. This modifi-
cation for use with nominal values of loads and resistances is discussed in
Subsection C.4.2.

C.3 Supplemental procedure: calculation of the partial load safety
factor given a specified partial resistance safety factor and the
procedurally defined partial safety factor ratio

The limit state g(X) function is defined for i resistances and j loads as

For the single load and resistance problem and because g(X)=0.0 at the
limit state response surface where R-L=0.0,

Yr*Ugr = VL * UL (C.21)

pp=xp, (C.22)
YR

Note that in this Nowak and Collins (2013) based procedure of analysis,
these equations make use of mean values for loads and resistances rather
than nominal values for loads and resistances. Introducing Equation C.19
and C.14 into Equation C.22, the relationship between nominal values of
load and resistance is

My * Ag = ;—z x Ly * A, (C.23)

Solving for Mn,
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_ YL
My = — * Ly (C.24)

This implies that there is a yLnominal and a yRnominal that may be computed as

Yinominat = Y1 * AL (C.25)

YRnominal = VYR * Ar (C.20)

The nominal scale factor Lsrnominal can then be defined as

_ YLnominal
LSFNominal - ] (C-27)
YRnominal

The initial value for nominal resistance My was calculated from the
nominal load L~ based on an unbiased ASCE load factor yasce and an ACI
resistance factor yacr (which is the same as ¢acr) specified in the Hokens
writeup:

My =4SCE s |y (C.28)

baci

This implies that the ratio of the factors is a constant for the single load and
resistance problem because the ratio of the means is a constant at the limit
state response surface. Recall from example C.1 the values for yz and ;2 are
0.72 and 1.216, respectively. Also, recall the values of the bias factors Az and
AR are 1.05 and 1.12, respectively. In keeping with the specified flexural
resistance factor 0.9 of ACI 318-14, which is applied to the nominal
resistance, and maintaining the same relationship between the load and
resistance factor to satisfy the g(X)=o0 limit state response surface equation
(assuming the mean load and resistance values do not change), then the
load factor according to an ACI 318-14 ¢acr value of 0.9 should account for
bias factors using nominal values and be

YASCE _ YL*AL
bact  YR*AR (C.29)

*A
Yasce = Paci :(IL*AL (C.30)
R*™R

1.216 * 1.05

——— | = 1.425
0.72 x 1.12 )

Yasce = 0-9<
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This yacr load factor value shows a less than 2% difference from the 1.4
value which was calculated and reported in the Hokens write-up of LRFD
procedures for this singly reinforced beam example problem.

An Lsrvalue of 1.69 was calculated in the previous subsection. This value
corresponds to the case of mean load and resistance values. A LsrNominal
value can be obtained from the relationship in Equation C.27:

L L M vy _ 12164105 12768 _
SFNominal = %SF = 30 ™ youdg — 0.72+1.12  0.8064

1.58 (C.31)

Using the yasce to gacr relationship gives an engineering load scale factor
LSFEngineering value of

1.4
Lsrengineering = % =50 1.56 (C.32)

There is just over a 1% difference between the Lsrnominat and Lsrengineering
values. They are judged to be consistent.

In summary, the Lsr value is based on mean values for resistance and load.
To compare an Lsr value to a scale factor based on nominal resistance and
load (i.e., a LsrEngineering value), a conversion from Lsr to LsrNominal 1S
required. After conversion, the values for Lsrnominal and LsrEngineering may be
compared directly.

This supplemental scaling procedure only works for the single load and
resistance problem as outlined in this subsection. Keeping the same ratio
of load factor to resistance factor guarantees that the factored load will be
equivalent to the factored resistance for a design point on the limit state
response surface. Recall that the factors were calculated so that the
factored resistance and factored load satisfy the g(x*)=0 equation for a
design point at Starget distance from the mean values for load and
resistance.

C.4 Verification: procedure for calculating design point / at the limit
state for given variables with non-normal distributions

C.4.1 Numerical verification

The verification procedure for determining the design point 3 for g(x)=0
given non-normal distributions for the variable space is similar to the
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process for determining load and resistance factors as outlined in
Subsection C.2. This follows because the latter procedure is derived from
the former (Nowak and Collins 2013), as described in their Subsection
5.4.1. This means that the procedure to calculate the g for the design point
can act as verification of the load and resistance factors by using factored
loads and resistances and checking to make sure the calculated £ is indeed
equal to the target value.

The g(X) function provides limit state satisfactory values when the factored
load and factored resistance satisfy the following inequality:

UR: UL ; .
i ()/Ri * ﬁ) =Y (nj * —’) (C.18 bis)

AL,

Recall yz is also designated as ¢r or simply ¢ in the main body of this report.
Observe that this relationship is expressed in terms of mean values. The
limit state response surface occurs when both sides are equivalent.

The formulation steps for the two independent variables problem are the
following:

1. Formulate limit state function g(x*) and probability distributions. These
values should match the values used in the load and resistance factor
calculations.

2. Guess an initial design point. A good initial guess would be an average
of the mean values for load and for resistance.

3. Determine the equivalent normal distribution parameters for the non-
normal distributions at the design point. For instance, for a log-normal
distribution of variate Xi:

2
ofix, = In (1 + %) (C.33)
l’l'lTLXi = ln(nuXi) - 05 O—lani (C34)

Nowak and Collins (2013) derived the following equivalent normal
distribution values from Equations C.5 and C.6 for the log-normal
distribution, with design point x":

O-)?L' = xi*o-lnXL- (C35)



ERDC/ITL TR-21-1 227

g, = %" [1 = In(x") + pun, | (C.36)

Nowak and Collins (2013) also provide other equations for other non-
normal distributions.
4. Transform the variates to the reduced Gaussian normalized space.
xi" Uy,

z; = (C.37)

e
Ox.
X

5. Determine the partial derivatives of the slope of the g(x*) function for
each variate and store in a {G} vector. For a limit state that only has a
load and resistance and g(x*) = X;-X> (where X; corresponds to the
resistance and X- corresponds to the load). From Equation C.7:

_ _9g — _ 1€

G, = Xl - = —1loy, (C.38)
_ _9g _ e

G, = TN = +10X2 (C.39)

Observe the negative sign in front of the partial in both of these
equations.

6. From the reduced variates and the vector {G}, estimate /.

{6}"{z*}
== C.40
p v{6}T{G} ( )

For this uncorrelated two variable problem, the Equation C.9
correlation matrix [ p] is an identity matrix, which by definition does not
change the vector it is multiplied against. In this case, the transposed
matrix Equation C.8 times the vector {z*} simplifies to the matrix
equation form given here to determine the scalar value of .

7. The directional cosine values & are then calculated using Equation C.8.
It is generally assumed that the variables are uncorrelated.

8. The Gaussian Normalized design point is calculated for the variables
using a and g values for n-1 variables, which are on the response
surface based on the equivalent normal distribution.

z; = a; (C.41)
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9. Convert the Gaussian Normalized design point back to the variable
space for the n-1 variables.

10. For the unknown variable, determine the value such that the position in
non-normalized variable space satisfies the limit state function where
g(x)=o.

11. Iterate until the value of # and the design point x* converge. Because the
variable spaces have non-normal distributions, this convergence step
needs to occur even if the limit state function is linear.

Example C.2 - verifying example C.1 results

This section is a continuation of the Example C.1 problem, including its
results. It follows the procedure of Example 8.4 of Nowak and Collins
(2013).

1. This step has been performed in Example C.1.

2. The mean load s is specified as 210 kip-ft based on the nominal value,
N1, equal to 200 kip-ft and a load bias factor AL equal to 1.05. The load
COVL = 0.1. The log-normal resistance distribution has a COVr = 0.14
(Ellingwood) and has a resistance bias factor Az equal to 1.12. The load
and resistance factors jz and yz are drawn from the previous example
with values of 1.216 and 0.72, respectively. The mean resistance ur is
calculated (using the equivalency expressed in the relationship of
Equation C.21) as

p, = N, * A, = 210.00
Up = (%) = 354.67
o, =y, * COV, = 21.00
Or = Ug * COVx = 49.64
Therefore, the initial guess of the design point gives a value of
= (210 + 354.57) / 2 = 282.29
Given g(x*) =R-L=0:

['=282.29
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3. The equivalent normal parameters can be calculated in the same
manner as Example C.1, resulting in

g = \/ln (1+ %) = Jln (1+222) = 0.139

0.1392

2
Hing = In(ug) — “22 = In(354.57) — = 5.861

and an equivalent normal distribution for resistance at the design point
given by

of =1r"0g = 39.33
ug =1[1—In(r*) + iy ry] = 343.9

Notice that u,®) is approximately equal to /n(uz) when the COVr < 0.2
(Nowak and Collins 2013, p 26).

The equivalent normal distribution for the load at the design point is
the existing distribution calculated in Step 2:

of =21

pué =210

4. The reduced variate design point is calculated with Equation C.37:

« _ U—uf (294.104—210
L - 21

z ) = 3.442

e
oL

T -up (294.104—365.22
40.975

zi =" )= -1567

5. Determining the {G} vector,

ag e __
G =—5q| . = —1of = —39.328
G =% = +1lof =
) = = +10f = 21

oL |*

6. Estimate f using Equation C.40, § = 3.003.
7. The {a} vector is determined using Equation C.8
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8.

0.

_ (@Ry _ (—0.882
*= {aL} ={ 0.471 J

with the correlation coefficient matrix [p] defined as an identity matrix

for the pair of independent variables R and L.

The new reduced design point for the resistance term is calculated as

z} = agf = —0.882 * 3.003 = —2.65

Converting back from the Gaussian Normal space,

r* = ug + zg * o = 343.9 — 2.65 * 39.33 = 239.708

10. From the limit state response surface equation g(X)=0.0,

11.

I’=r"=239.708.

Table C-2 shows the results of iterating Steps 3 through 10 four times.
The calculations were all made in an Excel spread sheet. This gives a
clear idea of the convergence pattern that is approaching a g of 2.98, or
a difference of less than 1% from the Starget values of 3. The loss of
precision may be attributed to the small number of iterations (four) that
were performed in the Taylor series approximation of Example C.1 as
well as the fact that higher-order terms were neglected in the Taylor
series expansion formulation.



ERDC/ITL TR-21-1 231

Table C-2. Iterations of Step 3-10 as the design point and S values change.

Original lteration 1 lteration 2 lteration 3 lteration 4
7 282.2838 239.7079 244.3495 243.8894 243.9310736
I* 282.2838 239.7079 244.3495 243.8894 243.9310736
p 3.003365 3.07278 3.073797 3.073807 3.073807221

Notice that in Step 2, the factored mean resistance is calculated based on
the original mean load per the relationship of Equation C.21. This proves
that the calculation of the proportional 72 values from the ACI yz values of
Step 10 of Example 1 will provide the same values of Table C-2.

Table C-3 shows the calculation of g using the verification procedure for
four iterations using the nominal load and resistance factors (;2=1.4 and
Jr=0.9, respectively) as calculated in the Hokens write-up of LRFD
procedures.

Table C-3. Iterations of Step 3-10 as the design point and S values change for the
Hokens write-up of LRFD procedures.

Original lteration 1 lteration 2 lteration 3 lteration 4
= 279.2222 238.9629 243.2369 242.8256 242.8657985
[* 279.2222 238.9629 243.2369 242.8256 242.8657985
p 2.903375 2.966626 2.967497 2.967504 2.967504536

The results reveal that the actual S given these factors converges to 2.97,
which is approximately 1.1% less than the desired Btarger value of 3
computed in a Hokens study. The 2016 study computed PUP values using
Monte Carlo simulations from the Log-Normal resistance distribution and
the Normal load distribution. The PUP value is a cumulative distribution
effect of probabilities of (R-L) up to 0.0, so one would think that the g
value could be determined by using the inverse CDF function (@!(PUP)).
This was the procedure used in the 2016 study. Unfortunately, the
distribution resulting from subtracting load from resistance (R-L) is not a
normal distribution because the resistance distribution is non-normal. To
map the non-normal (R-L) distribution to a normal distribution g value
requires a transform into Gaussian Normal space. This transform is fixed
by the constraints that the inverse CDF (& ') and the inverse PDF (¢') of
the distance from the mean to the design point must have the same g value.
Recall that the design point is defined by (R-L) equal to zero. This
transform moves the mean of the (R-L) non-normal distribution to a
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Gaussian Normal distribution, resulting in a different distance to the design
point and therefore a different g value. This observation demonstrates the
need to follow the numerical procedure outlined in Section C.1 to

determine the partial resistance and load safety factor values that are
consistent with the Srarger value and allow for the scaling of the load factor
based on any other user-prescribed resistance factor value using the
supplemental procedure of Section C.3.

C.4.2 Simulation verification

Simulation methods can also be used to verify that the load and resistance
factors computed in Example C.1 generate the target PUP and f values,
given a sufficient number of samples to guarantee precision. The mean load
has the same value for both the unpublished USACE (2016) procedure and
the load and resistance factor procedure. This value is computed as follows

p, = Ly * A, = 200 * 1.05 = 210

The mean resistance is computed differently depending on the procedure
used. The unpublished USACE (2016) procedure calculates the mean
resistance value using nominal values:

1.4
g = Ly *?SJ*AR =200 * 55+ 1.12 = 348.44
ACU .

Using the computed load and resistance factors from Example C.1, the
computation of mean resistance becomes

YL 210 1.216
= * — = *
Hr = Hy, Y 0.72

= 354.67

Recall that load uses a normal distribution and that resistance uses a log-
normal distribution. Table C-4 shows the distributions and the resultant
PUP values for the two procedures simulated with 1,000,000 samples. Both
results are very close to the target b value of 3.0, indicating that the results
are within the sampling error of the simulations. For these simulations, the
engineering values gave a closer approximation to the target g value, but
both values are within the significant error.
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Table C-4. Comparison of LRFD statistical variable parameters and
computed results from the unpublished USACE (2016) letter report
and the computations made in this appendix.

USACE (2016) LRFD Factors
y 210 210
covi 0.1 0.1
o1 21 21
LR 348.44 354.67
COVr 0.14 0.14
Or 48.78 49.65
HLNR 5.844 5.861
OLNR 0.139 0.139
PUP 0.001418 0.001016
B =@ (PUP) 2.983 3.085

C.5 Nowak (1999) Reliability method-based numerical procedure for
computing a value for Reliability Index S

In 1999 Nowak, introduced a reliability-based numerical procedure for
computing a value for Reliability Index f. The procedure that he outlined in
his paper assumed that the total load, L, is a normal random variable and
that the resistance, R, is a lognormal random variable. These assumptions
are typical in bridge design. This procedure can be adjusted to work with
other distributions if the equations are re-derived. Nowak’s procedure is
described in the following eight steps:

1. The Nowak (1999) Reliability-based procedure relies on specified
inputs:

Resistance parameters: Rn, Ar, COVR

Load parameters: HQ, OQ

where Rn is the nominal resistance, Az is the resistance bias factor,
COVR is the coefficient of variation for resistance, w0 is the mean
load, and oo is the standard deviation of the load.

2. The mean resistance is calculated as

U = ApR, (C.42)
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3. Assume the initial design point for unknown k as
R* = pp(1 — k x COVy) (C.43)

For the initial value, k is set equal to 2 by Nowak (1999) in his LRFD
application to bridge design.

4. Compute the value for the CDF @ and PDF ¢ of the design point on the
lognormal distribution R at the design point R*, with the superscripted
asterisk designating the design point. This calculation can be sped up by
precalculating the argument for functions @ and ¢,

a*=(InR*—Inug)/COVy (C.44)

so that the CDF and PDF are, respectively,
Fo(R*) = ®(a®) (C.45)
fr(R") = ¢(a”)/(COVRR") (C.46)

5. Using Rackwitz-Fiessler (1976, 1978) equations, find the normal
distribution for R’ that approximates the values at R*.

_ ¢{e e}

Op' = W = COVRR* (C47)
COVRR*
Upr = R* — o @7 (a®)] = R* — a’op (C.48)

Because the load is defined as a normal curve, the values that describe it
are the mean, uo, and standard deviation, oo.
6. The Reliability Index, £, is calculated as

B =(R*—a*COViR* — /AQ)/\/(COVRR*)Z + 0} (C.49)

7. A new design point is calculated for the resistance term

R* = pp — ﬁ(COVRR*)Z/J(COVRR*)Z + (C.50)



ERDC/ITL TR-21-1 235

8. If the new design point varies significantly from the last assumed value,
go to Step 4 and repeat. Typically, the value can be obtained in one
cycle.

This numerical procedure will find the value for k that gives a maximum £
value for the distribution created by subtracting the load distribution from
the resistance distribution. The steps above were performed for resistance
parameter values of R» = 311.11 kip-ft, Az = 1.12, COVR = 0.14 and load
parameters of o = 210 kip-ft, op = 21 kip-ft for the reinforced concrete
beam problem discussed in Section C.2. The nominal load is 200 kip-ft
with ALoad = 1.05 and the COVL = 0.1. The corresponding mean value for
resisting moment equals 348.44 kip-ft by Equation C.19. The
corresponding mean value for dead load moment equals 210 kip-ft by
Equation C.14. Recall that the nominal resistance is based on ASCE 7-10
load and ACI 318-14 resistance factors. This procedure generated a
maximum /£ for safety margin (R-L) of 3.02 with a k value of 2.16 for the
Section C.2 beam possessing a ur of 348.44 kip-ft.

The resistance parameter value of R» for the reinforced concrete beam was
then changed to = 37.68 kip-ft (for a lognormal distribution with a bias
factor of 1.12 and a COVk of 0.14). The corresponding mean value for
resisting moment equals 378.31 kip-ft by Equation C.19. The nominal value
of the dead load moment remains 200 kip-ft (normal distribution) with a
dead load bias factor of 1.05 and COVpr of 0.1. The corresponding mean
value for dead load moment remains unchanged and equal to 210 kip-ft by
Equation C.14. Notice that this nominal resistance value is based on the
computed load and resistance factors from Section C.2 as described in
Section C.3. This procedure generated a maximum £ for R-L of 3.52 with a
k value of 2.46.

Nowak and Lind (1979) introduced the concept that the load factor is
related to the bias of the design value to the mean value of the load
component (1), a target S with its directional cosine terms (Stargetci, nOW
denoted by Nowak and Lind a designated constant k), and the coefficient of
variation of the load component (COV;). For normally distributed loads
applied to a design attributing to the total effect, the equation for the load
factor (1) is therefore

¥vi = 4, (1+ k * COV) (C.51)
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For normally distributed resisting loads applied to a design reducing the
total effect, the equation for the resistance factor (¢:) is therefore

In Nowak (1999) and Nowak and Lind (1979), load and resistance factors
related to k values varying from 1.8—2.1 were used for bridge design, and
the load and resistance factors were rounded to the nearest 0.05. Nowak
(1999) fixed the value of k to 2.0 for multiple load cases applied to LRFD
bridge design with three dead loads, one live load, and one impact load in
his Appendix F. He made conservative simplifying assumptions to aid the
designer using estimated biases and COVs, altering the resulting load
factors. Bathurst et al. (2008) noted that a value of k=2 was used in the
development of the Canadian highway bridge design code and the
AASHTO LRFD bridge design specifications. This value of k was also used
by the team of Bathurst, Allen and Nowak in their research into load and
resistance factors for reinforced earth applications. The load factors were
determined for all of the loads and a conservative value was chosen
between the extremes.

Using Equations C.51 and C.52 with k = 2.0 with the input bias factor
values and COVs results in

v, = A, (1 + k *COV,) = 1.05(1 + 2.0 x 0.1) = 1.26

br = (1 — k x COVy) = 1.12(1 — 2.0 * 0.14) = 0.806

The Nowak (1999) and Nowak and Collins (2013) equation that solves for g
in this procedure given a lognormal resistance distribution and the normal
load distribution is therefore

_ RpAR(1-kVR)[1-In(1-kVR)]-uq

\/[RnVRlR(l—kVR)]“O'(Zg

B (C.53)

This equation was also applied to LRFD based tunnel design by the Nowak
PhD student Ghasemi in his 2015 Auburn University PhD dissertation
(Ghasemi 2015).

Figure C-1 shows the results from using Equation C.51 with resistance
characterized by R = 311.11 kip-ft with ur of 348.44 kip-ft and a nominal
load of 200 kip-ft with uo = 210 kip-ft and varying k to determine values for
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f3. Notice that these plots verify the maximum fs calculated from the
procedural method. Table C-5 summarizes the values for £ in k-value range
suggested in the 1979 Nowak and Lind paper. In Nowak’s later work on
LRFD as applied to bridge design (e.g., Nowak (1999), Nowak and Collins
(2000, 2013), a k value of 2.0 is used. This same k value of 2.0 was used in
his LRFD application to reinforce earth design (Bathurst et al. 2008).
Therefore, attention was focused on the variation in resulting Equation C.51
S values for a range in k from 1.8 to 2.1 (Table C-5). For LRFD-based tunnel
design, Ghasemi (2015) states that k may be taken approximately 1.8 to 2.0
for strength limit states (Nowak 1999). Observe the minor variation in S
value within the k equal to 1.8 to 2.1 range.

Figure C-1. Reliability Index B as a function of the constant A for the problem of a
reinforced concrete beam with its capacity defined by a nominal resisting moment of
311.11 kip-ft with a mean resisting moment of 348.44 kip-ft.
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Table C-5. Reliability Index S as a function of the
constant Afor the problem of a reinforced
concrete beam with its capacity defined by a
nominal resisting moment of 311.11 kip-ft with
a mean resisting moment of 348.44 kip-ft.

K B
1.8 3.000
2 3.013
2.1 3.016

Recall that the Nowak (1999) numerical procedure discussed earlier in this
section generated a maximum /£ for R-L of 3.02 with a k value of 2.16.
Therefore, for an assigned k value of 2, a  value of 3.013 is close to this
maximum /£ value from the numerical procedure.

Figure C-2 shows the results from using Equation C.51 with resistance
characterized by R» = 337.68 kip-ft with ur of 378.31 kip-ft and a nominal
load of 200 kip-ft with uo = 210 kip-ft and varying k to determine values for
f3. Notice that these plots verify the maximum fs calculated from the
procedural method: Table C-6 summarizes the values for g in k-value range
suggested in the 1979 Nowak and Lind paper. Observe the minor variation
in S value within the k equal to 1.8 to 2.1 range.

Figure C-2. Reliability Index £ as a function of the constant Afor the problem of a
reinforced concrete beam with its capacity defined by a nominal resisting moment of
337.68 kip-ft with a mean resisting moment of 378.31 kip-ft.
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Table C-6. Reliability Index S as a function of the
constant Afor the problem of a reinforced
concrete beam with its capacity defined by a
nominal resisting moment of 337.68 kip-ft with
a mean resisting moment of 378.31 kip-ft.

K B
1.8 3.458

2 3.487
2.1 3.498

Recall that the Nowak (1999) numerical procedure discussed earlier in this
section generated a maximum /£ for R-L of 3.52 with a k value of 2.46.
Therefore, for an assigned k value of 2, a # value of 3.487 is close to this
maximum /£ value from the numerical procedure.

C.6 A Gaussian function superposition approach of numerically fitting
normalized normal distribution functions to a non-normal pdf and
computing a value for Reliability Index S

In his 2015 Doctor of Philosophy dissertation, Seyed Hooman Ghasemi
(Ghesemi 2015) proposed using a series of Gaussian normalized Normal
distribution functions to approximate a non-normal PDF safety margin (R-
L) distribution. Dr. Ghasemi’s dissertation committee was chaired by
Professor Andrzej Nowak. Professor Nowak has been a leader in LRFD
research with application in bridge design. By their approach, a series of n
overlapping scaled Gaussian functions have scaled PDFs that can be
summed to approximate the shape of the non-normal PDF safety margin
and have a cumulative area of the approximated curve that approaches 1.0
for CDF integration. The reliability index value can be determined from the
series solution from the reliability indices for each of the individual
Gaussian functions. Because a normal distribution function is being used
for each term of the Gaussian series, a reliability index value may also be
conveniently computed for each term. Dr. Ghasemi provided the
relationship between the reliability index values computed for each of the n
terms and the resulting single g value representative of the summed
distribution for all n terms. Since the resulting PDF for the summed n
Gaussian PDF distributions fits the original non-normal PDF, their
resulting S value is representative of the non-normal distribution and may
be used in reliability and any subsequent assessments of load and
resistance (i.e., partial safety) factors, yand ¢, respectively.
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The series superposition of generalized Gaussian function used for each
term in the series of n terms is given as

(x=p)?

fOr) = Ty a % == v € 207 (C.54)
The Reliability Index is defined based on the summation of the reliability
indices for each of the normal distributions numerically fitted to the safety
margin (R-L) data during this numerical superposition fitting process.
Values for the amplitude scale constants ai, mean values ui, standard
deviations o, and reliability index values i for all n series terms are
adjusted during the best-fit numerical process using a Python numerical fit
optimization library function minimize (scipy.optimize.minimize). This
library function chooses between several optimization numerical methods
to approach the solution.

g =2i(a;*pi) (C.55)
This equation simplifies to

B =YMa;x= (C.56)

0j

Note that for each Gaussian term added, a set of three constants are to be
defined by the numerical fitting procedure of the safety margin (R-L) data
during the course of numerical analysis. Python language-based software
was written and a program was developed to facilitate the numerical best-
fit computational process of defining and constructing the individual
Gaussian terms and the series superposition PDF to the non-normal PDF of
safety margin (R-L) data points.

Recall that in the reinforced concrete beam example problem of Section
C.2, the flexural resisting moment was defined as a lognormal distribution
with a nominal moment of 311.11 kip-ft, bias factor of 1.12 and a COVr of
0.14. The corresponding mean value for resisting moment equals 348.44
kip-ft by Equation C.19. The nominal value of the dead load moment is 200
kip-ft. The load distribution is normal with a dead load bias factor of 1.05
and COVpL of 0.1. The corresponding mean value for dead load moment
equals 210 kip-ft by Equation C.14. The nominal values for the resisting
moments are calculated from samples in the real-world space, but to create
samples in the real-world space, a normal distribution in logarithmic space
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is used and for sampling and the values are converted to real space. The
standard deviation and mean of the normal distribution in logarithmic
space are calculated as

2
Ong = JIn(1+ :—g;) (C.57)
tin g = In(ug) — 0.501, (C.58)

The safety margin (R-L) PDF data was determined by simulation, gathering
10 million samples from the resistance and load distributions. The samples
were subtracted to generate the (R-L) samples. The results from this process
is shown in Figure C-3, where the yellow curve is the safety margin and
values below 0.0 for the safety margin curve are unsatisfactory. The PUP
value is therefore the integrated probability of the yellow curve for values
below 0.0. Using the parameters in the previous paragraph, Figure C-4
shows the simulated safety margin (R-L) distribution.

Figure C-3. Computed safety margin PDF, PDF for a normal load PDF defined with a
mean of 210 kip-ft, and a PDF for a lognormal resistance PDF defined by a nominal
resisting moment of 311.11 kip-ft with a mean resisting moment of 348.44 kip-ft.
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Through trial and error, it was found that a series of seven Gaussian
function terms results in a good fit for the distribution curve of the safety
margin (R-L) PDF data. When the number of functional terms was less
than seven, the changes in curvature for the safety margin PDF were not
followed as well as the seven term Gaussian fit. With more functional terms
than seven, the variation in curvature became too large resulting in a
multimodal curve rather than the single mode simulation curve. This result
is virtually guaranteed because each functional term curve adds three more
variables to the fitness function (the function variables of ai, i, and o
times the number of functional terms). Initial values for the functional term
variables were chosen with small standard deviations, a:’s that summed to
1.0, and separation in the means to encourage movement.

The individual sets of ai, i, oi and fi values for each of the seven Gaussian
terms that were superimposed, resulted in the best fit of the nonlinear (R-
L) PDF are summarized in Table C-7. The sampled distribution is shown in
Figure C-4, and the individual terms forming the summed curve fit
distribution are shown in Figure C-5.

Table C-7. Computed values of series constant coefficients, means, standard
deviations, and reliability indices for each of the seven Gaussian functions for the
problem of a reinforced concrete beam with its capacity defined by a nominal resisting
moment of 311.11 kip-ft with a mean resisting moment of 348.44 kip-ft.

Series | A 7, o/ B

Term #

1 0.000902 131.166763 13.459697 9.745150
2 0.302227 152.789236 39.598064 3.858503
3 0.178650 108.349004 41.063404 2.638578
4 -0.000376 164.436394 11.450387 14.360772
5 -0.001067 92.533972 16.565957 5.585791
6 0.278710 171.082874 57.469848 2.976915
7 0.241486 104.461490 37.327819 2.798489
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Figure C-4. Resulting simulation PDF for the A-L distribution given a lognormal
resistance distribution (nominal resisting moment of 311.11 kip-ft and COVz= 0.14)
and a normal load distribution (nominal load moment of 200.00 kip-ft and
COVor = 0.1).
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Figure C-5. Resulting simulation PDF for the R-L distribution (given nominal resisting
moment of 311.11 kip-ft) with curve fit by summing seven fractional normal curves.
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To correctly model the probability curve, it is imperative that the sum of the
fractional normal areas should equal to 1.0 because this matches the total
cumulative probability. The area of each fractional normal curve is ai
because the scale factor is applied to a unit area standard normal curve.
Summing the a; column of Table C-7 returns a value of 1.000532, which is
very close to the probability area.

From equation C.56 and Table C-7, one can calculate a value for the PUP 3
for the fit curve. This combined PUP f value is 3.140449. The residual
error of this curve fit was 0.0, indicating an excellent fit over the entire
domain. More importantly, the coefficient of determination (R2) give a
fitness value of 95.5% for the PUP region.

For the second example, recall that for the reinforced concrete beam
example problem of Section C.3, the flexural resisting moment was defined
as a lognormal distribution with a nominal moment of 337.68 kip-ft, bias
factor of 1.12, and a COVk of 0.14. The corresponding mean value for
resisting moment equals 378.31 kip-ft by Equation C.19. The nominal value
of the dead load moment is 200 kip-ft. The load distribution is normal with
a dead load bias factor of 1.05 and COVpr. of 0.1. The corresponding mean
value for dead load moment equals 210 kip-ft by Equation C.14. Using the
parameters in this paragraph, Figure C-6 shows the simulated safety
margin (R-L) distribution.

A series of seven Gaussian function terms were used, resulting in a good fit
of the distribution curve of the safety margin (R-L) PDF data. The
individual sets of ai, ui, o1, and fi values for each of the seven Gaussian
terms that were superimposed resulted in the best fit of the nonlinear (R-L)
PDF are summarized in Table C-8. The sampled distribution is shown in
Figure C-6, and the individual terms forming the summed curve fit
distribution are shown in Figure C-7.
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Table C-8. Computed values of series constant coefficients, means, standard
deviations and reliability indices for each of the seven Gaussian functions for the
problem of a reinforced concrete beam with its capacity defined by a nominal resisting
moment of 337.68 kip-ft with a mean resisting moment of 378.31 kip-ft.

Torm # | 4 w o p

1 0.126179 161.415548 15.599337 10.347590
2 -0.018637 175.203552 16.873393 10.383421
3 -0.045216 147.748934 16.670027 8.863149
4 0.083196 188.816040 17.711134 10.660867
5 0.120355 134.193684 17.058013 7.866900
6 0.403193 208.227268 42.576387 4.890675
7 0.323917 115.431851 39.080976 2.953658

Figure C-6. Resulting simulation PDF for the A-L distribution given a
lognormal resistance distribution (nominal resisting moment of
337.68 kip-ft and COVr = 0.14) and a normal load distribution
(nominal resisting moment of 200.00 kip-ft and COVo. = 0.1).
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Figure C-7. Resulting simulation PDF for the A-L distribution
(given nominal resisting moment of 337.68 kip-ft) with curve fit
by summing seven fractional normal curves.
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To correctly model the probability curve, it is imperative that the sum of the
fractional normal areas should equal to 1.0 because this matches the total
cumulative probability. The area of each fractional normal curve is ai
because the scale factor is applied to a unit area standard normal curve.
Summing the ai column of Table C-8 returns a value of 0.992978, which is
very close to the probability area.

From Equation C.56 and Table C-8, one can calculate a value for the PUP
for the fit curve. This combined PUP g value is 5.473765. The residual error
for this fit curve was very low with a value of 0.000007, although there
seems to be issues at the peak and on the right side of the data, which could
have an effect on the S calculation. Note that the error occurs mostly in the
tails of the distributions, as those areas affect the PUP calculation. An
attempt was made to calculate R2 for the PUP region, but the data in the
tails of the PUP region had extremely low values of magnitude. The low
magnitude of the values in this region is explained by g = 5.473765.

C.7 Summary and conclusions

Four numerical procedures were investigated, and a numerical relationship
of the load and resistance factors was identified in this appendix. These
numerical procedures were derived to handle the specific example problem
with a log-normal distribution for the resistance term and a normal
distribution for load. Section C.2 investigated a procedure that, when
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presented with load and resistance PDF curves, would generate load and
resistance factors (without bias) that scale the PDF curves so that the
combined PUP result would have a CDF value equivalent to a normal
distribution CDF at Starget. Section C.3 was a quick numerical exploration of
the fact that keeping the ratio between the load and resistance factors the
same will result in the same resulting value for S because the ratio of scaled
resistance to scaled load determines the PUP result. Sections C.4 through
C.6 explore ways of calculating f given different input values that describe
the load and resistance PDF curves.

Two example problems were included based upon a trial design of a singly
reinforced beam with an unfactored dead load bending moment, Mpr, set
equal to 200 kip-ft for a beam with a width of 12 in. and a depth (d) to
center of reinforcement of 28 in. This example was taken from a 2016
USACE LRFD study (unpublished). This appendix outlines the complete
numerical procedure to follow to obtain appropriate values for load and
resistance factors for a prescribed Starget value as well as a supplemental
procedure to compute a load factor consistent with the ACI prescribed
resistance factor ¢ value maintaining factor relationships computed for a
prescribed Siarget value, so long as the mean load value remain unaltered.
Table C-9 shows the difference of effect between the ACI/ASCE load and
resistance factors and the factors computed by using the Section C.2
procedure with Starget = 3.0. The third row shows the effect of using the
Section C.3 ratio with the input ACI resistance factor (0.9) to change the
load factor. The final row shows the results of the Section C.5 (Equations
C.51 and C.52) factor calculations.

For the following tables, A. is the load bias factor, Nr. is the nominal load, sz
is the mean load, COV is the coefficient of variation for load, yz is the load
factor, ¢r is the resistance factor, Az is the resistance bias factor, Nk is the
nominal resistance, ur is the mean resistance, and COVr is the coefficient of
variation for resistance.

Table C-9. Load and resistance factors and the effect on resistance.

AL N y77 covi |(n or n/or | Ar Nr HR

COVr

ACI

1.05 |200.0 210.0 0.1 1.4 0.9 1.556 | 1.12 311.11 348.44

0.14

C.2

1.05 |200.0 210.0 0.1 1.21595 |0.720173 1.688 | 1.12 337.68 378.21

0.14

C.3

1.05 |200.0 210.0 0.1 1.519586 0.9 1.688 | 1.12 337.68 378.21

0.14

C.5

1.05 |200.0 210.0 0.1 1.26 0.806 1.563 | 1.12 312.66 350.17

0.14
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The consistency between computed yand ¢ values in Example C.1 for the
specified Brarget value of 3.0 was verified by the second numerical procedure
in Example C.2. This Example C.1 calculation of ¢ and yresulted in
different values than the values reported from the 2016 USACE LRFD
study (unpublished). In Example C.2, the calculated values were shown to
be more accurate than the values from the 2016 USACE LRFD study
(unpublished).

These examples were carried forward into the Section C.4, Section C.5, and
Section C.6 methods of # computation. The Section C.6 method was
explicitly supported by simulation runs with 10,000,000 samples for both
the load and resistance from the defined curves.

Table C-10 shows the results of using the various computed load and
resistance factors to calculate # with the numerical procedure of Section
C.4. This method seems to verify the results of the Section C.2 and C.3
computations, where Starget Was set to 3.0.

Table C-10. Applying Section C.4 calculation of g using the various load and

resistance factors.
Method M /8 or n/Pr Nr Resultant g
ACI 200.0 1.4 0.9 1.556 311.11 2.614
C.2 200.0 1.21595 0.720173 | 1.688 337.68 2.981
C3 200.0 1.519586 0.9 1.688 337.68 2.981
C5 200.0 1.26 0.806 1.563 312.66 2.636

Table C-11 shows the results of using the various computed nominal
resistances computed from load and resistance factors to calculate g with
the numerical procedure of Section C.5. This method contradicts the C.4
method results, with the load and resistance factors computed from Section
C.2 and C.3 procedures, which are coincident, giving a much more
conservative value of ~3.5 for f. The load and resistance values for the
factors given by ACI/ASCE and the Section C.5 equations is closer to Starget
= 3.0. The computed value for k was derived from the last iteration design
point R* using equation C.43.
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Table C-11. Calculating the maximum g using the Section C.5 procedure given
nominal resistances based on computed load and resistance factors.

Method Nr Ar COVr y7 oL p Kk

ACI 311.11 1.12 0.14 210.0 21.0 3.016 2.157
C2and C.3 337.68 1.12 0.14 210.0 21.0 3.516 2.455
C.5 312.66 1.12 0.14 210.0 21.0 3.046283 2.175218

Section C.6 involves fitting a set of fractional Gaussian distributions to the
resulting resistance minus load distribution (R-L) safety margin curve. In
order to determine this curve, a set of Monte Carlo samples using the
distributions of resistance and load are drawn and subtracted from each
other. The resulting points for each distribution are then binned into a
histogram to determine probabilities, resulting in curves similar to Figure
C-3. The PUP value can be determined from the R-L curve by integrating
the portion of the curve with a moment below zero. A resultant g value is
computed from the PUP value by applying the inverse CDF function for a
Gaussian Normal distribution to the PUP. Table C-12 shows the results
using the different load and resistance factors.

Table C-12. Results of 10M simulations being performed using
procedural load and resistance factors.

Method n ¢R PUP ;esulta nt
ACI 1.4 0.9 0.001441 2.98

C.2 1.21595 0.720173 0.000239 | 3.493
C3 1.519586 0.9 0.000239 3.493
C5 1.26 0.806 0.001286 3.015

When the fractional Gaussian distributions have been determined that sum
to a proper curve with low error that approximates the R-L curve, Equation
C.56 can be used to determine the g value for a normal distribution that
has the same CDF at the response surface where the safety margin R-L = 0.
Table C-13 shows the results of these S calculations for a low-error curve fit
with seven distributions. Note that the initial seeded values for the
fractional Gaussian distributions can play a large part in the amount of
error in the fit and in the final # calculation. This may be better controlled
if the values for the fractional Gaussian distributions were bounded. The
initial values for the fractional curves were adjusted to give a coefficient of
determination, R2, value for each summed curve of at least 95% of the
original values. The resultant s reveal a weakness of this procedure when
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the fractional curve values were not bounded. Although the fitness curve
has an area of one, which matches the simulation distribution, portions of
the curve, especially in the tails, do not have good properties because
individual fractional distribution curves can have negative area. This affects
the CDF calculation, especially if the summed curve drops below zero in the
integrated region.

Table C-13. Results of 10M simulations being performed using
procedural load and resistance factors.

Method n/Pr R2 Resultant g
ACI 1.556 0.955 3.14
C.2and C.3 1.688 0.993 5.47
C.5 1.563 0.977 2.46

This appendix introduced three methods for computing load and resistance
factors. The first method is using engineering standards. The second
method is using the Section C.2 numerical method, which establishes a
ratio for the Section C.3 ratio method. Finally, the third method is using the
Section C.5 numerical procedure, which calculates a k value (for the max f3)
that can be applied in Equations C.51 and C.52.

This appendix also introduced techniques for computing /4 given load and
resistance factors either directly or indirectly. The Section C.4 numerical
procedure attempts to iterate to find a maximum f given resistance and
load distribution descriptions using Rackwitz and Fiessler (1976, 1978)
normal curve approximates. The Section C.5 numerical procedure
computes the maximum £ and its associated k value. Substituting this k
value into Equation C.53 will return this maximum /£ value, also. Section
C.6 attempts to indirectly calculate the g value for a non-normal
distribution by summing fractional Gaussian curves to fit the non-normal
distribution with low error. The fractional curve properties are used in
Equation C.56 to determine the S value for a non-normal distribution. The
authors also did a Monte-Carlo simulation with a large number of samples
on the resistance and load curves and calculated the R-L curve with binned
histograms. The PUP value was then calculated by integrating probabilities
for the resulting distribution up to the safety margin R-L=0 response
surface and an inverse normal distribution CDF calculation was used to get
a transformed Gaussian Normal space f value.



ERDC/ITL TR-21-1 251

In conclusion, given two full distribution descriptions, the simulation
method (with enough samples) and the Section C.5 procedural method can
determine an accurate PUP value either directly or through a normal
distribution CDF calculation from a calculated £. Based on extensive series
of trial and error computations, the Section C.6 method was found to be an
interesting mathematical exercise but has too many variables and needs
restraint. The Section C.2 £ calculation method for non-normal
distributions requires small steps using normal distributions mapped to the
non-normal distribution at a given design point (Rackwitz and Fiessler
1976, 1978), which can have problems with accuracy in the tails region, as
shown in the results tables in this section of the appendix.

The Section C.2 procedural method is the only method that attempts to
numerically establish load and resistance factors that will scale the
positions of existing distributions so that the safety margin (R-L) response
surface will have a PUP value that corresponds to a normal distribution
Prarget CDF value. Unfortunately, this procedure is attempting to find a
value in the tail of the distribution and therefore has accuracy problems
that are revealed in the results tables in this section of the appendix.
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Appendix D: Calculations of Soil Bearing
Capacity for Limit State
Definition

D.1 Introduction: bearing defined

The form of the generalized bearing capacity equation used for the example
problem is given as

zyzydzyizytzyg BYN,

q= (c(cd(ci(ct(chNc + (q(qd(qi(qt(qQQONq + (D-j-)

where

Q = vertical component of the ultimate unit bearing capacity of the
foundation (pressure)
N, Nq, N,= base bearing capacity factors
e, &g, & = shape factors
led, Cqd, $d = embedment factors
Cei, Lqi, ¢1= inclination factors
ety Sat, S= base tilt factors
eg, g, $y= ground slope factors
C = cohesion
y = unit weight of the soil
Be = effective base width
L = effective base length (for a 2-D section evaluation, a value of 1.0
is used)
qo = effective overburden pressure on a plane passing through the
base of the footing.

Because the computations used for Sliding and Base Area in Compression
(Overturning) limit states already provide the effective vertical force
exhibited by the structural wedge, which acts directly against the base, the
bearing capacity is converted to an ultimate resisting force for the effective
base width (for the 2-D slice), which is the width of the base in contact with
the foundation soil. This width will be affected by uplift and overturning
forces that cause a gap to form between the foundation soil and the
foundation.

RBearing = Beq (D.2)
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This is the ultimate bearing capacity force for the entire foundation, and if
the vertical force acting on the structural wedge exceeds this value, the
structural soil provides unsatisfactory performance. Figure D-1 shows a
2-D cross section of a complex T-Wall geometry with enough input
information to determine the resistance to bearing failure.

Figure D-1. A geometry view of a complex T-Wall configuration with definition of the
geometry necessary to compute bearing capacity.

D.2 Base bearing capacity factors (Nc, Ng, N,)

The base bearing capacity factors used in this program are the ones
developed by Meyerhof (1963) for a shallow horizontal strip footing under
vertical load. These values are conditionally based on the value of the
foundation soil Interface Friction Angle ¢:
N, = (N; — 1) cot ¢ (D.3)
N, = e™ @ oN, (D.4)

N, = (N, — 1) tan 1.4¢) (D.5)
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where

Ny = tan? (5 +2) (D.6)

However, for ¢ = 0°, Equation D.3 is indefinite, so the value is given as
N, =5.14 (D.7)

D.3 Shape factors ({o, Cor &)

The shape factors used in this program also use the relationships developed
by Meyerhof (1963). These values are conditionally based on the value of
the foundation soil Interface Friction Angle ¢:

{c=10+02Nys~ (D.8)

For ¢=0°,
{q=¢,=10 (D.9)

For ¢ > 10°,
(g =8 =10+ 01N, (D.10)

For 0° < ¢ < 10°, a linear interpolation between Equations D.9 and D.10
(with ¢ = 10.0) is used.

D.3 Embedment factors ({ea, {40, $a)

The embedment factors also use the relationships developed by Meyerhof
(1963). These values are conditionally based on the value of the foundation
soil Interface Friction Angle ¢:

D
{ca =1.0+0.22tan (% + %) (D.11)
where D is the depth of embedment at the base of the footing.
For ¢=0°,

{qa = Gya = 1.0 (D.12)
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For ¢ > 10°,

D
{ga = Gya = 1.0+ 0.17tan (5 +2) (D.13)

For 0° < ¢ < 10°, a linear interpolation between Equations D.12 and D.13
(with ¢ = 10.0) is used.

D.4 Inclination factors ((zi, oiy &3i)

The inclination factors also use the relationships developed by Meyerhof

(1963).
6 2
Cei = Cqi = (1 - %) (D.14)
Where 6 is the angle of inclination of the load from vertical as shown in
Figure D-1.
For 6<= ¢,
6 2
Oy = (1 - E) (D.15)
For 6> ¢,
¢y = 0.0 (D.16)

D.5 Base tilt factors ({er, {opy $j2)
The base tilt factors use the relationships developed by Vesic (1975).
{gt = §ye = (1 — atan ¢)? (D.17)

where « is the slope of the base of the footing as shown in Figure D-1.

For ¢ = 0°,
(op=1— (2 ﬁ) (D.18)
For ¢ > 0°,
1_€qt

(et = (qt - N, tan ¢ (D.19)
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D.6 Ground slope factors ({eg Cag Cre)

Ground slope factors are compute using the relationships developed by
Vesic (1975).

{9 = {yg = (1 —tan B)? (D.20)

where £ is the slope of the surface soil as shown in Figure D-1.

For ¢ = 0°,
(g =1- (2 %) (D.21)
N, = =2sinf (D.22)
For ¢ > 0°,
1—§'qg

{cg = {qg T N tan¢ (D.23)

D.7 Effective foundation dimensions

An approximate method developed by Meyerhof (1963) is employed to
adjust the foundation dimensions for eccentric loadings. For the strip
footings employed in this report,

B, = B, — 2.0e, (D.24)
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Acronyms and Abbreviations

1-D
2-D
5-D
ASD
AASHTO
ASD
ASM
CASE
CDF
CHBDC
Cov
FS
LRFD
Lsr
PDF
PUP
R&D
Rsr

SSI
ULS
USACE

one-dimensional

two-dimensional

five-dimensional

allowable stress design

American Association of State Highway and Transportation Officials
allowable stress design

Advanced second moment
Computer-Aided Structural Engineering
cumulative distribution function
Canadian Highway Bridge Design Code
coefficient of variation

factor(s) of safety

Load and Resistance Factor Design

load scale factor

probability density function

Probability of Unsatisfactory Performance
research and development

resistance scale factor

soil structure interaction

Ultimate Limit States

U.S. Army Corps of Engineers
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