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Abstract 

This technical report documents the second of a two-phase research and 
development (R&D) study in support of the development of a combined 
Load and Resistance Factor Design (LRFD) methodology that 
accommodates geotechnical as well as structural design limit states for 
design of the U.S. Army Corps of Engineers (USACE) reinforced concrete, 
hydraulic navigation structures. To this end, this R&D effort extends 
reliability procedures that have been developed for other non-USACE 
structural systems to encompass USACE hydraulic structures. Many of 
these reinforced concrete, hydraulic structures are founded on and/or 
retain earth or are buttressed by an earthen feature. Consequently, the 
design of many of these hydraulic structures involves significant soil 
structure interaction. Development of the required reliability and 
corresponding LRFD procedures has been lagging in the geotechnical 
topic area as compared to those for structural limit state considerations 
and have therefore been the focus of this second-phase R&D effort. Design 
of an example T-Wall hydraulic structure involves consideration of five 
geotechnical and structural limit states. New numerical procedures have 
been developed for precise multiple limit state reliability calculations and 
for complete LRFD analysis of this example T-Wall reinforced concrete, 
hydraulic structure. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
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1 Introduction 

1.1 Background 

The U.S. Army Corps of Engineers (USACE) has been relying on an 
allowable stress design (ASD) methodology for design of the various 
structural features comprising its hydraulic navigation structures. In ASD, 
also referred to as working stress design, factors of safety (FS) are implied 
through the use of allowable stresses during the structural design process. 
Allowable stresses are specified for use in the various design limit state 
conditions (flexural failure of a structural member, etc.) for the USACE 
three categories of design load cases of Usual, Unusual, and Extreme.1 In 
the USACE design guidance for geotechnical-dominated limit states and 
engineering issues, the use of FS against Ultimate Limit States (ULS) is 
more straightforward than in the Structural design guidance. The 
appropriate values for the FS are explicitly stated in this portion of the 
USACE guidance.  

The USACE is currently transitioning to a structural design methodology 
based on Load and Resistance Factor Design (LRFD). The advantage for 
LRFD is that it formally takes into consideration the variability in the loads 
and the resistances separately. LRFD has become an accepted mode of 
implementation of probability-based limit state design in structural steel 
and reinforced concrete design. Three of the most recently developed and 
prominent examples of the LRFD-based building and bridge design criteria 
are 

• American Society of Civil Engineers (2010), ASCE/SEI 7-10 Minimum 
Design Loads for Buildings and Other Structures 

• Canadian Standards Association (CSA 2014), Canadian Highway Bridge 
Design Code, CAN/CSA-S6-14 

• American Association of State Highway and Transportation Officials 
(AASHTO 2010), AASHTO LRFD Bridge Design Specifications. 

 

1 One definition of a limit state is as a structural condition beyond which it no longer fulfills the specified 
design criteria. 
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Development of these three LRFD-based design criteria have been led by 
the Structural engineering community within the civil engineering 
profession. In recent years, researchers have been proposing means for 
extending LRFD into Geotechnical ULS designs. However, to date, there 
are no LRFD-based Geotechnical design criteria. 

Many of the USACE hydraulic structures are founded on and/or retain 
earth or are buttressed by an earthen feature. Consequently, the designs of 
many of the USACE hydraulic structures involve significant soil structure 
interaction (SSI). Generally speaking, SSI is a specialized topic associated 
with foundation features for the structure and with a structure’s ability to 
retain earth and/or to be buttressed by an earthen mass. Currently, no 
LRFD methodology exists for SSI analysis of the USACE-type of hydraulic 
structures. 

1.2 Objective 

This technical report discusses research in support of the development of a 
Combined LRFD methodology that accommodates Structural as well as 
Geotechnical design limit states (especially the ULSs) as used in the design 
of the USACE hydraulic navigation structures. To this end, this research 
and development (R&D) effort intends to extend, to the extent possible, 
reliability procedures that have been developed for other non-USACE 
structural systems to encompass USACE hydraulic structures. Additionally, 
procedural methods for reliability analysis are examined and evaluated as 
possible means for accurate estimation of reliability for application to the 
to-be-developed combined LRFD methodology.  

1.3 Approach 

The authors of this technical report have gathered applicable reliability 
methodologies and supporting data from the civil engineering LRFD 
technical community. These methodologies and data come from many 
structural and geotechnical fields and are interpreted for ultimate use in a 
combined LRFD application to the USACE hydraulic structures. Numerical 
procedures to facilitate accurate reliability calculations are also devised to 
accommodate reliability analysis of the USACE hydraulic structures’ 
multiple limit states. 

This technical report builds on the basic research into this topic as 
summarized in the Ebeling and White (2019) Phase 1 R&D study. 
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Specifically, this Phase 2 R&D study fills in the technical gaps left out of the 
Phase 1 study as well as provides for a step-by-step approach to Reliability 
analysis of a reinforced concrete, hydraulic structure, including the 
supporting engineering analysis details, and translation into load factors. 
An evaluation of Reliability procedures will be performed in support of a 
methodology specification.  

1.4 Overview of the translation from Reliability Index into a Load 
Factor 

To statistically determine the capacity of a structural system, in general, the 
loads and resistances of the system need to be examined to find where the 
system will exceed the limitations for acceptable use. The probability for 
the exceedance of limitations is called the Probability of Unsatisfactory 
Performance (PUP), which is measured using Reliability methods. The use 
of specific Reliability methodology (advanced second moment [ASM] 
methods) allows for the determination of a reliability index β  (a scalar 
value) and the corresponding directional cosine αL(a vector value) for the 
normally distributed loads in a multivariate space (Ebeling and White 
2019). The definition of the load factor γL (a vector value) for a single linear 
limit state can be determined directly from β  and αL values in the following 
fashion: 

 𝛾𝛾𝐿𝐿 = (1 + 𝛼𝛼𝐿𝐿 ∗ 𝛽𝛽 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿) (1.1) 

where COVL is the coefficient of variation (COV) (= σ / µ) of the load L. In 
the case of multiple limit states, β  and αL values can be determined for each 
limit state. Similarly, the definition of the resistance factor ϕR (a vector 
value) for a single linear limit state can be determined directly from β  and 
αR values using 

 𝜑𝜑𝑅𝑅 = (1 − 𝛼𝛼𝑅𝑅 ∗ 𝛽𝛽 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅) (1.2) 

where COVR is the coefficient of variation (=σ/µ) of the resistance R. 
Describing L with a lognormal distribution, Equation 1.1 becomes 

 𝛾𝛾𝐿𝐿 = 𝑒𝑒𝛼𝛼𝐿𝐿∗𝛽𝛽∗𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿 (1.3) 

and with a lognormal distribution for R, Equation 1.2 becomes 

 𝜑𝜑𝑅𝑅 = 𝑒𝑒−𝛼𝛼𝑅𝑅∗𝛽𝛽∗𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 (1.4) 
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The PUP value can be determined for non-linear or multiple limit states as 
a holistic system. This paper discusses a procedure to determine an 
appropriate set of values for β  and αL given a system PUP value so that a 
corresponding holistic load factor γL can be determined. In a Reliability 
analysis of piles in spatially varying soils and considering multiple limit 
states, Fan et al. (2014) demonstrated that the system PUP value may be 
underestimated if multiple limit states are considered separately. They 
conclude that this aspect of multiple limit states is one of the limitations of 
the current LRFD approach. 

This application is in support of the design of USACE soil-founded, 
reinforced concrete hydraulic structures. Because these are soil-founded 
systems, variability in soil strength and earth loads can be extremely high 
requiring more precise calculation of the holistic system PUP value. 
Procedures for more precise calculation of the PUP for the multiple limit 
state system response are introduced. This technical report details the 
concluding R&D with an application of the Reliability and SSI engineering 
methodologies devised during Phase 1 R&D study to an example earth 
retaining structure. 

1.5 Seven limit states 

Soil-founded or rock-founded reinforced concrete hydraulic structures can 
possess up to seven limit states (Ebeling and White 2019). These limit 
states are  

1. flexural failure of individual structural members 
2. shear failure of individual structural members 
3. buckling failure of individual structural members subjected to axial 

compressive loading 
4. excessive displacement of the structural system in its entirety 
5. global sliding failure of the structural system in its entirety 
6. bearing failure of the foundation to the structural system in its entirety 
7. overturning or rotational failure of the structural system about its 

foundation in its entirety.  

The first three limit states are concerned with the reinforced concrete 
structural features. The fourth limit state is concerned with system 
performance. The latter three limit states are concerned with geotechnical 
effects on system response.  
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1.6 Report contents 

Chapter 2 discusses the hydraulic structure example problem, identifies the 
independent shear strength variables and their statistical distributions, and 
summarizes the engineering methodologies and equations needed for the 
engineering calculations used in the Reliability analysis. 

Chapter 3 starts out by identifying the five limit states considered in the 
analysis. This chapter then proceeds to outline the step-by-step engineering 
methodologies for determining limit state conditions given interaction 
between the reinforced concrete hydraulic structures, the geotechnical 
features about the structure, and the loads acting on the structure. 

Chapter 4 describes a Reliability-based procedural method for computing 
individual limit state PUP and Resistance and Load factors for the Chapter 2 
example T-Wall model problem with soil shear-strength variability. A 
procedure will be introduced to compute load factors based on these 
Reliability calculations.  

Chapter 5 outlines the step-by-step procedures for calculation of the PUP 
for soil-founded reinforced concrete hydraulic structures from a T-Wall 
system, point of view considering the five limit state methodologies of 
Chapter 3.  

Chapter 6 gives the summary and conclusions of this research study as well 
as recommendations on further research. 

Appendix A discusses individual and multiple Limit States and the 
computation of the PUP using numerical procedures. 

Appendix B describes the computation of earth and water pressure 
distributions, their resultant forces, and their points of application along 
the left and right faces of the Structural Wedge. 

Appendix C describes numerical methods used for calibrating partial load 
and resistance safety factors given a target β  value. These numerical 
procedures require a mathematically defined, continuous probability 
density function (PDF) distributions for load and resistance as well as that 
they be non-correlated. The loads and resistances are modeled with 
distributions with at most two unknown means. Typically, the resistance 
variable accounts for one unknown mean with the other unknown mean 
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corresponding to one of the load terms. Load ratios set the relationships of 
the mean values of the defined loads to the load with the unknown mean 
value. With these relationships, the ratio of the unknown mean value to the 
unknown resistance value allows for the definition of the load and 
resistance factors for the given target β . A supplemental procedure is 
derived for the calculation of the partial load safety factor given a specified 
partial resistance safety factor and the procedurally defined partial safety 
factor ratio. This supplemental procedure is valid for the condition where a 
single load and resistance variable are used. A second numerical procedure 
to calculate β  given variable load and resistance with distributions, which 
may have partial load and resistance safety factors applied is also 
presented. This second numerical procedure can be used as a verification 
step for the results from the first numerical procedure. An example for each 
of these procedures is included. The examples are taken from a 2016 
USACE LRF1 study. Important details in the Reliability-based 
computational processes for load and resistance factor computations to 
provide for consistent results from the Appendix C numerical procedure 
and from the 2016 unpublished LRFD study1 are identified and explained. 

Appendix D lists the equations required for establishing the limit state 
bearing capacity of a T-Wall founded on soil.  

 

1 Kent D. Hokens. 2016 (Oct). Unpublished. USACE Load Factor Development for Design of Hydraulic 
Concrete Structures. St. Paul District.  
NOTE: From this point forward, the document will be referred to or cited as “Hokens.” 
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2 Building an Example Soil-Structure 
Interaction Model with Material Variability 

2.1 Three-wedge T-Wall SSI example problem 

Because uncertainty in the model is dominated by the geotechnical 
response of the system, an example problem will be developed that focuses 
on this response. It is convenient to devise an example retaining wall 
structural problem containing the three limit state features of interest: a 
global sliding failure, a foundation bearing failure, and an overturning or 
rotational failure of the structural system about its foundation. This 
example should not be so complex as to impede the analysis with geologic 
details such as those stemming from patterns of rock jointing, etc. This 
example retaining structure selected for study is shown in Figure 2-1 and 
consists of a T-wall retaining a soil backfill behind its heel, founded on a 
geologically formed soil and with a soil buttress in front of its toe that is 
also geologically formed.  

Figure 2-1. Diagram of an example soil-founded, reinforced concrete hydraulic 
structure for analysis. 

 

It possesses a pool of water to the left-hand side of the T-Wall and above 
the soil buttress. A water table is contained within the retained soil on the 
right-hand side of the T-Wall. A differential head condition exists for this 
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T-Wall due to the existence of a higher head on the retained side of the wall 
relative to the pool elevation on the left-hand side of the wall. There are 
three soil regions identified in this figure, designated as soil regions 1, 2, 
and 3. Soil regions 1 (yellow) and 3 (gold) are engineer-selected backfill 
material placed by earth-moving equipment and compacted to engineering 
specification after construction of the T-Wall. Soil region 2 (tan) is 
naturally occurring soil and is assumed to be undisturbed by the 
construction of the T-Wall and backfill placement above it. Soil backfill is 
placed and compacted in front, behind, and above the T-Wall shortly after 
T-Wall construction and (reinforced) concrete curing concluded.  

The engineering soil properties and their statistical distributions are 
summarized in Table 2-1. Effective stress engineering soil parameters are 
specified for each of the three soil regions. In this table, the mean value is 
represented using the Greek symbol µ  while its coefficient of variation is 
designated by Mid-Range COV. Mean values for the Mohr-Coulomb shear 
strength, effective angle of internal soil friction values are provided, along 
with its Mid-Range point estimate COV value (in percent). Note that these 
are point estimate values and based upon the data summarized in Chapter 
3 and Appendix D of Ebeling and White (2019). The soil strength 
parameter φ’ for the three soil regions is assumed to be normally 
distributed with a lower bound at µ minus 3*σ and an upper bound at µ 
plus 5*σ, where σ is the standard deviation (= COV times µ). An additional 
requirement is that the lower bound is never less than zero deg. The soils of 
the three regions are assumed to be cohesionless (i.e., c’ equal to zero). 
Interface friction values are specified between the Driving and Structural 
Wedges (reported in the row labeled Soil region 1); between the base of the 
Structural Wedge and its foundation soil (reported in the row labeled Soil 
region 2); and between the Resisting and Structural Wedges (reported in 
the row labeled Soil region 3). Interface friction δ’ values are expressed as a 
fraction of the φ’ value in Table 2-1, assuming a very high degree of 
correlation between δ’ and φ’. In all probabilistic simulation analyses 
discussed in this report, φ’ values are varied according to the bounded 
normal PDF distribution while each δ’ value per φ’ value simulation is based 
upon the ratio of δ’ to φ’ as prescribed in this table. Mean hydraulic 
conductivity values are also reported along with its applicable direction of 
flow: vertical (V) or horizontal (H).  
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Table 2-1. Engineering properties for the three soil regions of the example T-Wall problem. 

 Unit Weights Soil Friction, 
φ’ 

Interface 
Friction, δ’ Hydraulic Conductivity 

Soil 
Region Soil Type γmoist 

(pcf) 
γsat 

(pcf) 
µφ’ 

(deg) 

Mid-
Range 
COVφ’ 
(%) 

Ratio 
δ’/φ’ 

µδ’ 
(deg) 

µk 

(cm/sec) Direction 

1 Compacted 
sand 123 126 35 10 0.4 14 2x10-3 Vertical 

2 Silty sand 
foundation - 123 30 20 1.0 30 4x10-4 Horizontal 

3 Compacted 
sand - 126 37 12 1.0 37 1x10-3 Vertical 

The height of the retained soil relative to the left-hand soil and pool 
elevation dictates the right-hand side to be the driving-load side. The right-
hand side retained soil attempts to move the retaining structure towards 
the pool. A potential sliding plane is depicted in red in the Figure 2-1 cross 
section. This postulated retaining structure possesses all but one (i.e., 
buckling failure) of the seven limit states.  

In preparation for engineering evaluation, the Figure 2-1 retaining wall 
system is divided into the Driving Wedge, the Structural Wedge, and the 
Resisting Wedge. This division of the soil features into three global wedges 
is consistent with the USACE EM 1110-2-2502 (HQUSACE 1989) design 
procedure of retaining wall analysis.  

On the right-hand side of the retaining structure is the Driving Wedge, as 
labeled in Figure 2-1. Gravity causes the soil mass located above the 
potential slip plane in this wedge to slide downward along the (red) 
potential slip surface. This, in turn, generates lateral movement of the 
Structural Wedge towards the pool and results in “mobilized active” earth 
pressures acting against the Driving Wedge to Structural Wedge interface.  

In the center of this figure is the Structural Wedge. The Structural Wedge 
consists of the retaining structure and any other soil fill material that lies 
contained within an area defined by the width of the structure. For this 
example, the potential slip plane is contained within the foundation soil 
(region 2) below the reinforced concrete structure. 

On the left-hand side of the structure is the Resisting Wedge. In this wedge, 
the weight of the soil and other (i.e., pool of water) loads/weights are 
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providing “mobilized passive” earth pressure against the structural wedge, 
therefore resisting sliding of the structural wedge. The Pool region 
extending above the top of the Resisting Wedge’s ground surface also exerts 
a hydrostatic water pressure force acting horizontally on the Structural 
Wedge’s left-hand side interface. This triangular hydrostatic water pressure 
distribution is not depicted in this figure. The slip plane in this region is 
typically more complicated than in the active pressure region. In the case of 
Figure 2-1, the slip plane of the resisting wedge is modeled using a 
logarithmic spiral curve. This is in contrast to the planar surface of the 
mobilized active driving wedge. Earth pressures are determined from a 
logarithmic spiral based slip plane solution and using resulting passive 
earth pressure coefficient, KPassive, tabulated by NAVFAC 7.2 (Department 
of the Navy 1982). 

Due to its contact with retained earth, the majority of the USACE hydraulic 
structures face SSI issues. SSI is sometimes described in general terms as 
the process in which the response of the soil influences the structural 
movement, and this structural movement, in turn, influences the soil’s 
response. 

A CTWall (Pace 1994) analysis for the normal load case following EM 1110-
2-2502 (HQUSACE 1989) design criteria (using Allowable Stress Design 
criteria) was conducted to develop preliminary T-Wall geometry using the 
mean values for the engineering soil properties given in Table 2-1. 
Figure 2-2 summarizes the resulting T-Wall geometry. 
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Figure 2-2. Preliminary T-Wall geometry resulting from a CTWall design for a normal 
load case. 

 

2.2 Key reliability methodology relationships 

Ebeling and White (2019) devised three means for computing the Figure 2-1 
statistical distributions for resultant earth pressure forces of the Figure 2-3 
left-hand side (PL) and right-hand side (PR) resultant forces imposed on the 
Structural Wedge. These forces, PL and PR, correspond to the reactions of the 
Resisting and Driving Wedges, respectively.  
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Figure 2-3. Driving Wedge and Resisting Wedge forces imposed on a Structural 
Wedge, PR and PL. 

 

This T-Wall example uses two devised geostatistical variance methods 
methodologies, one for the Driving Wedge and the second for the Resisting 
Wedge. The two applied methodologies are as follows: 

1. A sliding stability assessment using a wedge solution method that 
accounts for the reduction of correlation due to distances greater than 
the Scale of Fluctuation (δ) within the Driving Wedge combined with a 
simulation methodology to transfer uncertainty in the Mohr-Coulomb 
soil shear strength parameters (of c and φ) to the Figure 2-3 PL and PR 
resultant forces acting on the Structural Wedge. This procedure 
minimizes the number of wedges in the solution by using the Variance 
Reduction Factor Γ2(LActive) in a method described later in this paper. 
LPassive is the length of the slip plane that defines the base of the Driving 
Wedge. The application of this procedure requires homogenous 
material within the Driving Wedge. This procedure is applied to the 
foundation soil below the Structural Wedge as well since it is also 
homogenous. Each of these two (Wedge) regions is comprised of 
different soil types at the location of the potential slip plane.  

2. An earth pressure coefficient-based method of analysis combined with a 
simulation methodology to transfer uncertainty in the Mohr-Coulomb 
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soil shear strength parameters directly to the Figure 2-3 PL resultant 
force PL acting on the Structural Wedge. This procedure is also 
restricted to homogenous soil in the area of the Resisting Wedge. The 
orientation of the slip planes is estimated using the Mohr-Coulomb soil 
shear strength parameters for determining the magnitude of the 
Variance Reduction Factor, Γ2(LPassive), where LPassive is the length of the 
slip plane that defines the base of the Resisting Wedge. 

El-Ramly et al. (2002a,b) and others observe that by taking the spatial 
average of the geotechnical design property (e.g., strength) variable over 
the whole area of interest, such as along the slip surface in a limit 
equilibrium sliding stability analysis, positive and negative random errors 
at different locations within the averaging domain tend to cancel out. As a 
result, the random error variance associated with the averaged soil strength 
quantity is largely reduced over point estimates (Vanmarcke 1977a,b, 
1980). This reduction in variance over a point estimate’s variance is why it 
is so important to account for variance reduction due to spatial correlation 
of soil properties in probabilistic geotechnical engineering analyses. The 
Variance Reduction Function Γ2(L) developed by Vanmarcke (1977a,b) is a 
fundamental part of this approach.  

 Γ2(L) = �
1 L ≤ 𝛿𝛿
𝛿𝛿
L

L ≥ 𝛿𝛿 (2.1) 

where L is the length of the potential slip plane and δ is the scale of 
fluctuation of the soil region. This function is plotted in Figure 2-4. The 
spatial variability is described by the scale of fluctuation, which gives the 
distance at which soil engineering properties have changed enough to no 
longer be highly correlated.  
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Figure 2-4. Variance reduction function Γ2(L). 

 

The coefficient of variation for COVspatial of the spatial average variable of 
the soil Geotechnical design property as 

  𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = Γ2(𝐿𝐿) ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

2  (2.2) 

Recall that the COV is equal to the standard deviation for the variable 
divided by its mean value (=σ/µ). Values for the inherent variability of 
strength properties for COVpoint estimates (about trend lines) are gathered for 
different soil types using laboratory and in situ strength tests while 
COVmeasurement error reflects the variability in test results used to define the 
soil (strength) property. Historical data on both are given in Chapter 3 of 
Ebeling and White (2019). 

The application of a variance reduction factor applied to COVpoint estimates for 
soil strength is an important aspect of a Reliability analysis that includes 
Geotechnical limit state(s). Resulting values for COVspatial estimates are less 
than COVpoint estimates due to spatial averaging of the engineering strength 
parameters of the soil along specific planes, especially when the plane 
lengths are greater than the scale of fluctuation. These planes are usually 
selected by the engineer to be coincident with likely potential slip planes 
within the soil mass during a Reliability analysis considering Geotechnical 
Limit States.  

The Geotechnical strength data for natural soil deposits formed over 
geologic time clearly demonstrate anisotropic scale of fluctuation values in 
the horizontal and vertical directions; δV and δH. Appendix D of Ebeling and 
White (2019) provides a data base of values for δV and δH, as well as the 
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ratio of δH/δV. These data were obtained from the statistical processing of 
shear strength data with (vertical and horizontal) distance in various soil 
types. Over the last 20 years, engineers researching the spatial correlation 
of engineering soil properties have collected and studied the vertical and 
horizontal scale of fluctuation (or autocorrelation) engineering soil 
property data and some have made generalized observations. Several of 
these generalizations that have been published in the technical literature 
have been collected in Appendix D of Ebeling and White (2019) as well. 

The Figure 2-1 T-Wall of interest envisions three regions of soil types, as 
discussed previously. For soil regions 1 (in yellow) and 3 (in gold) that 
consists of select engineered compacted soil, isotropic scales of fluctuation in 
the vertical and horizontal directions are hypothesized for the backfill. This is 
because during excavation of borrow material and its subsequent 
compaction as an engineered backfill destroys the original structural makeup 
of the soil due to the original geologic process and creates a new intermixed 
soil structure. This contrasts with the soil region 2 (in tan), which is assumed 
to be a naturally occurring soil deposit that has been formed through 
geologic means and on a geologic time scale. For soil region 2, δh is assumed 
to be greater than δv. According to the strength data in Appendix D of 
Ebeling and White (2019), the trend may be on the order of a factor of 
between 9 to 13 times greater. δh is assumed to be 9 times δv for soil region 
2 in this T-Wall example. The data collected in Ebeling and White (2019) 
indicate that δv generally falls within a range of 0.5 to 2 m.1,2 In this T-Wall 
example, δv is assumed to be equal to 0.5 m for all three soil regions. These 
δv and δh data are summarized in Table 2-2 for the three soil regions. 
  

 

1 For a full list of the spelled-out forms of the units of measure used in this document, please refer to US 
Government Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing 
Office 2016), 248-52, https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-
STYLEMANUAL-2016.pdf. 

2 For a full list of the unit conversions used in this document, please refer to US Government Publishing 
Office Style Manual, 31st ed. (Washington, DC: US Government Publishing Office 2016), 345-7, 
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf. 

 

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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Table 2-2. Vertical and horizontal scales of fluctuation for the three soil regions 
 of the example T-Wall problem. 

 δv δh δh /δv 

Soil 
Region Soil Type (m) (ft) (m) (ft)  

1 Compacted 
sand 1 3.3 1 3.3 1 

2 Silty sand 
foundation 1 3.3 9 29.5 9 

3 Compacted 
sand 1 3.3 1 3.3 1 

As a result of the geologic process within a given layer for naturally 
deposited soils, soil properties tend to be anisotropic and, specifically, more 
variable in the vertical direction than in the horizontal direction. For these 
layers, a single scale of fluctuation value is needed for use along the 
potential slip plane when its orientation is neither horizontal nor vertical. 
Vanmarcke (1980) suggested an elliptical representation for estimation of 
an equivalent scale of fluctuation, δE, given a slip plane along the angle α 
from horizontal. 

 𝛿𝛿𝐸𝐸 = �𝛿𝛿𝑣𝑣2 sin2 𝛼𝛼 + 𝛿𝛿ℎ2 cos2 𝛼𝛼  (2.3) 

Other proposed δE approximations are given in Appendix E of Ebeling and 
White (2019). 

2.3 Key Geotechnical relationships being used to compute PR and PL 
forces acting on the Structural Wedge 

2.3.1 Driving Wedge Force PR 

For a homogenous cohesionless retained soil, the thrust force that the 
Driving Wedge imposes on the Structural Wedge (designated PR in Figure 
2-3) is computed using the active earth pressure force (PA) relationship 

 𝑃𝑃𝐴𝐴 = 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗
1
2
∗ 𝛾𝛾𝑒𝑒 ∗ (𝐻𝐻ℎ𝑒𝑒𝑒𝑒𝑒𝑒)2 (2.4) 

Hheel is the vertical height of the Structural to Driving wedge interface as 
measured from the heel of the T-Wall. KActive is the active earth pressure 
coefficient by the Coulomb’s active earth pressure coefficient (Ebeling and 
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Morrison 1992) for an effective stress designated soil region, Kmob-Active is 
computed as 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = cos2(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

cos(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)�1+�
sin�𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� ∗sin�𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝜃𝜃�

cos�𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�∗cos(θ) �

2 (2.5) 

where φ′mob-Active is the mobilized effective angle of internal friction of the 
soil and δ′mob-Active is the mobilized interface angle of friction. The use of 
Equation 2.5 is restricted to cases in which the value of φ′mob-Active is greater 
than θ. In an effective stress analysis, the mobilized effective angle of 
internal friction φ’mob-Active is given by 

 tan(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = tan�𝜙𝜙′�
𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

 (2.6) 

The mobilized effective angle of interface friction for the Structural to 
Driving active wedges interface is given by 

 tan(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = tan�𝛿𝛿′�
𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

 (2.7) 

An equivalent unit weight γe is used in Equation 2.4 to accommodate a 
water table within the retained soil of the Driving Wedge. In an effective 
stress analysis, a moist soil unit weight is assigned above the water table, 
and a saturated unit weight is assigned to the soil below the water table. 
Ebeling and White (2019) define the equivalent unit weight γe as 

 𝛾𝛾𝑒𝑒 = 𝛾𝛾1 ∗ �
ℎ1

(ℎ1+ℎ2)+ℎ3
∗ ℎ1

(ℎ1+ℎ2)� + 𝛾𝛾2−3 ∗ �1 −
ℎ1

(ℎ1+ℎ2)+ℎ3
∗ ℎ1

(ℎ1+ℎ2)� (2.8) 

for the Figure 2-1 Driving Wedge possessing a planar slip plane oriented at 
an angle α from horizontal, with a saturated unit weight γsat assigned to γ1 
for soil area 1 below the water table and a moist unit weight γmoist assigned 
to γ2-3 for soil area 2-3 above the water table (Figure 2-5). The ground 
surface is oriented at an angle of θ from horizontal. 
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Figure 2-5. Geometrical relationships used to define the height terms in the equivalent 
unit weight relationship for a partially submerged soil wedge delineated by a planar 

slip surface. 

 

A moist unit weight γmoist was assigned to γ2-3 for soil area 2-3 above the 
water table. When there is a differential head of water existing from one 
side of the Structural Wedge to the other, there will be flow of water within 
the soil regime. For the differential head example shown later in Figure 2-6, 
water will flow from the high-head side of the Driving Wedge side, through 
the foundation and up into the low-head side of the Resisting Wedge. To 
account for the effect of steady state seepage acting downward on the 
saturated volume of soil contained within the Driving Wedge, γ1 for soil 
area 1 is  

 𝛾𝛾1 = 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑖𝑖𝑦𝑦−𝐷𝐷𝐷𝐷 (2.9) 

with iy-DW being the downward, vertical gradient of steady-state seepage 
through the saturated soil volume of the Driving Wedge. The buoyant unit 
weight γbuy is defined as 

 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (2.10) 

with γwater designating the unit weight of water.  

The orientation of a planar Driving Wedge slip plane (Ebeling and 
Morrison 1992), as measured from horizontal, is 

 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑡𝑡𝑡𝑡𝑡𝑡−1 �−𝑡𝑡𝑡𝑡𝑡𝑡(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝜃𝜃)+𝑐𝑐𝐸𝐸1
𝑐𝑐𝐸𝐸2

� (2.11) 



ERDC/ITL TR-21-1  19 

 

where 

 𝑐𝑐𝐸𝐸1 = �
�𝑡𝑡𝑡𝑡𝑡𝑡�𝜙𝜙′

𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃�� ∗
[𝑡𝑡𝑡𝑡𝑡𝑡(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)] ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸1

�

1
2

 (2.12) 

with 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸1 = [1 + 𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)] (2.13) 

and 

 𝑐𝑐𝐸𝐸2 = 1 + �
[𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)] ∗

[𝑡𝑡𝑡𝑡𝑡𝑡(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)]�  

  (2.14) 

The use of Equation 2.11 is restricted to cases in which the value of φ′mob-

Active is greater than θ. αmob-Active is used to compute the value of h3 (Figure 
2-5) so that an equivalent unit weight may be determined using Equation 
2.8. Computations made using Equation 2.11 in support of Equation 2.8 
have restricted the minimum value of φ′mob-Active to be equal to θ plus 2 deg. 
αmob-Active is also used to compute the length of the Figure 2-1 slip plane 
LActive for the Driving Wedge when determining the value of the Variance 
Reduction Factor Γ2(L=LActive). Computations made using Equation 2.11 in 
support of LActive for the Driving Wedge have also restricted the minimum 
value of αmob-Active to θ  plus 2 deg. The equivalent unit weight Equation 2.8 
is sensitive to the Figure 2-5 h3 height, which can be excessively large for 
values of α that approach the value for θ  because of the infinite length 
shear plane issue (refer to Figure 2-5). 

2.3.2 Resisting Wedge force PL 

For a homogenous cohesionless butressing soil, the PP thrust force that the 
Resisting Wedge imposes on the Structural Wedge (designated PL in Figure 
2-3) is computed using 

 𝑃𝑃𝑃𝑃 = 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗
1
2
∗ 𝛾𝛾𝑒𝑒 ∗ (𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡)2 (2.15) 

Htoe is the vertical height of the Structural to Resisting Wedge soil interface 
as measured from the toe of the T-Wall. The passive earth pressure 
coefficient KPassive is obtained from Table 5-1 in Ebeling and White (2019) 
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for level ground and Resisting to Structural Wedge interface friction value 
of δint. This table is reproduced as Table 2-3 below. The values of passive 
earth pressure coefficient were computed using Logarithmic Spiral slip 
surface-based relationships for level ground and δ=δint and equal to φ.  

 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛿𝛿) = 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑅𝑅(𝛿𝛿,𝜙𝜙) (2.16) 

Values for R are provided in Ebeling and White (2019) Table 5-2 as a 
function of the value of φ and the value of the ratio δ/φ. This table is 
reproduced as Table 2-4. 

Table 2-3. Passive earth pressure coefficient KPassive 

(Kp) values for –δ equal to φ and a solution based on 
assuming a failure surface composed of logarithmic 

spiral portion and a planar surface  
portion – level ground. 

 

φ Kp(-δ=φ)
0 1
5 1.28
10 1.64
15 2.19
20 3.01
25 4.29
30 6.42
35 10.2
40 17.5
45 33.5
50 74.3
51 90
52 110
53 130
54 160
55 204
60 782
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Table 2-4. Reduction factor, R, values for various ratios of –δ/φ. 

 

The mobilized effective angle of soil friction within the Resisting Wedge is 
given by 

 tan(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = tan(𝜙𝜙′)
𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (2.17) 

and the mobilized effective angle of interface friction for the wedge 
interface between Structural to Resisting passive wedges is  

 tan(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = tan�𝛿𝛿′�
𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (2.18) 

The following computation in this procedure is specific to the Example 
Problem of this report, where the Resisting Wedge has a level ground 
surface that is submerged (Figure 2-1). For the saturated volume of soil 
contained within the Resisting Wedge, the equivalent unit weight γe for its 
soil area below the water table is 

 𝛾𝛾𝑒𝑒 = 𝛾𝛾1 = 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏 − 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑖𝑖𝑦𝑦−𝑅𝑅𝑅𝑅 (2.19) 

with iy-RW being the upward, vertical gradient of steady-state seepage 
through the saturated soil volume of the Resisting Wedge. Note the sign 
change on the gradient terms between Equations 2.9 and 2.19, reflecting 
the influence of the downward and upward seepage, respectively. 

The orientation of a planar slip plane (Ebeling and Morrison 1992), as 
measured from horizontal, is 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0 1 1 1 1 1 1 1 1 1 1 1
5 1 0.996 0.995 0.989 0.981 0.973 0.9645 0.956 0.949 0.9405 0.932
10 1 0.991 0.989 0.978 0.962 0.946 0.929 0.912 0.898 0.881 0.864
15 1 0.986 0.979 0.961 0.934 0.907 0.881 0.854 0.83 0.803 0.775
20 1 0.983 0.968 0.939 0.901 0.862 0.824 0.787 0.752 0.716 0.678
25 1 0.980 0.954 0.912 0.86 0.808 0.759 0.711 0.666 0.62 0.574
30 1 0.980 0.937 0.878 0.811 0.746 0.686 0.627 0.574 0.52 0.467
35 1 0.980 0.916 0.836 0.752 0.674 0.603 0.536 0.475 0.417 0.362
40 1 0.980 0.886 0.783 0.682 0.592 0.512 0.439 0.375 0.316 0.262
45 1 0.979 0.848 0.718 0.6 0.5 0.414 0.339 0.276 0.221 0.174
50 1 0.975 0.797 0.638 0.506 0.399 0.313 0.242 0.185 0.138 0.102
55 1 0.966 0.731 0.543 0.401 0.295 0.215 0.153 0.108 0.0737 0.0492
60 1 0.948 0.647 0.434 0.29 0.193 0.127 0.0809 0.0505 0.0301 0.0178

δ/φφ (deg)
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 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚−Passive = �
−𝜙𝜙′

𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +

𝑡𝑡𝑡𝑡𝑡𝑡−1 �𝑡𝑡𝑡𝑡𝑡𝑡(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝜃𝜃)+𝑐𝑐𝐸𝐸3
𝑐𝑐𝐸𝐸4

�� (2.20) 

where 

𝑐𝑐𝐸𝐸3 = �
�𝑡𝑡𝑡𝑡𝑡𝑡�𝜙𝜙′

𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝜃𝜃�� ∗
�𝑡𝑡𝑡𝑡𝑡𝑡�𝜙𝜙′

𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝜃𝜃� + 𝑐𝑐𝑐𝑐𝑐𝑐�𝜙𝜙′
𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�� ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸2

�

1
2�

 (2.21) 

with 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸2 = [1 + 𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)] (2.22) 

and 

 𝑐𝑐𝐸𝐸4 = 1 + �
[𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)] ∗

[𝑡𝑡𝑡𝑡𝑡𝑡(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝜃𝜃) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)]� (2.23) 

The exact geometry of the logarithmic spiral slip planes for the Table 2-3 
data is not known. This αmob-Passive relationship is used to compute an 
approximate length of the Passive Resisting Wedge slip plane LPassive for the 
Resisting Wedge when determining the value of the Variance Reduction 
Factor Γ2(L). It is recognized that a planar slip surface approximation is 
more accurate for soils with δmob-Passive less than or equal to φmob-Passive/2, as 
discussed in Subsection 3.3.4.1 of Ebeling and Morrison (1992) or 
Section 4.6 of Chen and Liu (1990). 

Computations made using Equation 2.20 in support of an approximate 
length computation of the Passive Resisting Wedge slip plane LPassive for the 
Resisting Wedge have restricted the minimum value of αmob-Passive to be 
equal to 5 deg for this level ground problem of a fully submerged Resisting 
Wedge. In this case, the computation of the equivalent unit weight by 
Equation 2.19 is not influenced by αmob-Passive, as was the case for the 
Driving Wedge (with αmob-Active). 

2.3.3 Line of Seepage – no gap 

Water will travel from high (total) head (i.e., HB in Figure 2-6) to low (total) 
head (HE), dictating the direction of flow within the soil regions. 
Consequently, the side with the highest (total) head dictates that the 
direction of flow is downward along that side of the T-Wall. In a Line of 



ERDC/ITL TR-21-1  23 

 

Seepage analysis (aka, Line of Creep), a vertical streamline, or flow line, is 
assumed within the soil and adjacent to the Structural Wedge (Ebeling and 
White 2019). Full contact along the base of the Structural Wedge with its 
foundation is assumed in Figure 2-6. The transformation procedure for the 
line of seepage method is for one-dimensional (1-D) flow along a singular 
path consisting of 1-D flow paths connected in series from one soil region 
on into the next soil region that are aligned along the three faces of the 
Structural Wedge of a T-Wall. These flow paths contained within the soil 
regions may possess different values for the saturated hydraulic 
conductivity of the soil. The transformed lengths for each of the three faces 
are determined using the relationships given in Figure 2-7. Assigning the 
total head boundary conditions of HB at point B and HC point C and with a 
linear head drop along the transformed section in Figure 2-7(a) allows for 
the determination of total heads HC at point C and HD at point D, as 
described in detail in Appendix G of Ebeling and White (2019). 

Figure 2-6. Seepage path for gradient determination assuming full contact along the 
base of the Structural Wedge with its foundation. 
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Figure 2-7. 1-D seepage path. (a) Constant slope in total head with distance along the 
transformed length of line of seepage in a homogenous, 1-D seepage path through all 

Kv-1 material. (b) Variation of slope in total head with distance along the three soil 
regions of the line of seepage. 

 

Observe that the transformed Figure 2-7(a) is required to compute the head 
values for HC and HD from HB and HE at the transformed position points of 
B, C' and D', respectively. Figure 2-7(b) shows these computed heads of HC 
and HD and actual heads HB and HE are mapped back to their actual 
position points B, C, D, and E. Here, the hydraulic gradient is constant 
along the segment of the 1-D flow line contained within each of the three 
Figure 2-6 soil regions and Figure 2-7(b) segments. The seepage gradients 
are then computed as equal to the change in total head divided by the 
actual length of the streamline segment. The actual gradients for each of 
the three regions are designated as iv-1, ih-2 and iv-3, respectively, in Figure 
2-7(b). iv-1 is substituted for iy-DW in Equation 2.9 and iv-3 is substituted for 
iy-RW in Equation 2.19 when computing the equivalent unit weights γe for 
the Driving soil and Resisting soil Wedges, respectively. 

The pressure head hp is computed at any point along each of the three 
Figure 2-7 streamline segments using Bernoulli’s equation for total head 
(H) and assuming the velocity head is negligible.  
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 ℎ𝑝𝑝 = 𝐻𝐻 − ℎ𝑒𝑒 (2.24) 

where he is the elevation head for the point. 

This modified relationship allows for the computation of the corres-
ponding pore water pressure (u) at the selected point by 

 𝑢𝑢 = ℎ𝑝𝑝 ∗ 𝛾𝛾𝑤𝑤 (2.25) 

2.3.4 Line of Seepage - gap 

There are slight changes for the case in which there is partial separation 
between the Structural Wedge and its foundation. This may occur when the 
effective resultant normal force N’ between the base of the T-Wall and its 
foundation is outside the kern (i.e., middle third region of the base). The 
modified Line of Seepage analysis is idealized in Figure 2-8 for this special 
case. When the distance to the effective normal force N’ as measured from 
the Toe of the T-Wall, designated XN-toe , is less than one-third the width of 
the base, a gap will develop starting at the heel point of the base. The length 
of the gap, Lgap, is calculated as 

 𝐿𝐿𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 3 ∗ 𝑥𝑥𝑁𝑁−𝑡𝑡𝑡𝑡𝑡𝑡 (2.26) 

By the geometry in Figure 2-8, the effective base area in compression, Be, is 
given by 

 𝐵𝐵𝑒𝑒 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐿𝐿𝑔𝑔𝑔𝑔𝑔𝑔 (2.27) 

or, equivalently, as 

 𝐵𝐵𝑒𝑒 = 3 ∗ 𝑥𝑥𝑁𝑁−𝑡𝑡𝑡𝑡𝑡𝑡 (2.28) 

with the geometric restriction that the value for Be is less than or equal to 
the base width, Base.  
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Figure 2-8. Seepage path for gradient determination assuming base separation along 
a portion of the base of the Structural Wedge with its foundation, starting at the heel. 

 

To account for the gap of length Lgap extending from the Toe (point C) to the 
tip of the compressive base pressure σ’n distribution (at point C’) in a Line of 
Seepage analysis, the 1-D line segment C-C’ is inserted into the Figure 2-7 
1-D seepage path analysis, resulting in Figure 2-9. This path now consists of 
four segments: B to C, C to C’, C’ to D, and D to E. For the gap zone, a high 
hydraulic conductivity value is assigned. The hydraulic conductivity assigned 
to the horizontal gap segment C to C’ in Figure 2-8 is 1 cm/sec. It is three 
orders of magnitude larger than those listed in Table 2-1. This high hydraulic 
conductivity value ensures that there will be virtually no total head loss along 
the Figure 2-8 Lgap length in the 1-D Line of Seepage computation. The total 
head transformation equation graphically depicted in Figures 2-9(a) and 
2-9(b) are applied to all four 1-D segments in the analysis in the usual 
manor. The transformed segment from point C to C’ in the Figure 2-9(a) 
transformed figure should show the same or nearly the same total head 
values at these two points. Again, virtually no head loss occurs during water 
seepage within a gap. Equation 2.24 for pressure head hp and Equation 2.25 
for pore water pressure are also applied in the usual manor. 
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Figure 2-9. 1-D seepage path with base gap. (a) Constant slope in total head with 
distance along the transformed length of line of seepage in a homogenous, 1-D 
seepage path through all Kv-1 material. (b) Variation of slope in total head with 

distance along the three soil regions (and 1 region of gap) of the line of seepage. 

 

2.4 Shear force, resultant normal force N' and its location along the 
base of the Structural Wedge 

The forces applied to the Structural Wedge are depicted in Figure 2-10. The 
Resisting Wedge and Driving Wedge impose forces PL and PR, respectively, 
upon this wedge. 
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Figure 2-10. Free body diagram of forces acting on the Structural Wedge, including the 
left- and right-hand side forces resulting from the Resisting Wedge and Driving Wedge, 

PL and PR, respectively. 

 

The symbols used in this Structural Wedge are defined as follows: 

• Base is the base width of the Structural Wedge. 
• EL is the horizontal shear force component of PL acting on the left side 

of the wedge. 
• ER is the horizontal shear force component of PR acting on the right side 

of the wedge. 
• h1 is the height from point D to the topmost point on the left side of the 

Structural Wedge free body diagram (point F). 
• h2 is the height from point C to the topmost point on the right side of 

the Structural Wedge free body diagram (point A). 
• h3 is the height from point D to the top of the buttressing soil on the left 

side of the Structural Wedge (point E). 
• h4 is the height from point C to the top of the retained soil on the right 

side of the Structural Wedge (point A). 
• h5 is the height from point D to the top of the top of pool on the left side 

of the Structural Wedge (point F). 
• h6 is the height from point C to the top of the top of the piezometric 

surface on the right side of the Structural Wedge (point B). 
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• h7 is the height from point D to HL. 
• h8 is the height from point C to HR. 
• h9 is the height from point D to EL. 
• h10 is the height from point C to ER. 
• HL is the horizontal resultant force exerted by the distribution of pool 

and pore water pressure acting on the left side of the wedge. 
• HR is the horizontal resultant force exerted by the distribution of pore 

water pressure acting on the right side of the wedge. 
• N’ is the effective force acting normal to the base of the wedge. 
• PL is the resultant interslice force acting on the left side of the wedge. 
• PR is the resultant interslice force acting on the right side of the wedge. 
• Tmob is the mobilized shear resistance force acting along the base of the 

wedge. 
• Ubase is the resultant water pressure force acting normal to the base 

calculated using the average of the pore water pressures at points C and 
D. Ubase acts normal to the base of the wedge. 

• W is the (total) weight of the wedge. 
• XL is the vertical shear force component of PL acting on the left side of 

the wedge. 
• XR is the vertical shear force component of PR acting on the right side of 

the wedge. 
• xN-toe is the distance from the Toe (point D) to the effective resultant 

normal force N’. 
• xN-base is the distance from the Toe (point D) to the resultant uplift force 

Ubase acting normal to wedge base. 
• xW-toe is the distance from the Toe (point D) to the weight of the 

structural wedge W. 

The Greek character symbols are defined as follows: 

• α is the angle the base of the planar wedge as measured from horizontal. 
α = 0 deg in this example and is therefore not included in this figure. 

• δL is the angle of interslice friction on the left side of the wedge. 
• δR is the angle of interslice friction on the right side of the wedge. 

The resultant mobilized active earth pressure force labeled PR in Figure 2-
10 is imposed on the right-hand side of the Structural Wedge by the Driving 
Wedge. Similarly, the resultant mobilized passive earth pressure force 
labeled PL in Figure 2-10 is imposed on the left-hand side of the Structural 
Wedge by the Resisting Wedge. 
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The summation of vertical forces acting on the Figure 2-10 T-Wall results in 
the expression for the effective vertical force normal to the base of the T-
Wall, 

 𝑁𝑁′ = 𝑊𝑊 −𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑋𝑋𝑅𝑅 − 𝑋𝑋𝐿𝐿 (2.29) 

The summation of horizontal forces acting on the Figure 2-10 T-Wall 
results in the mobilized shear resistance force acting along the base of the 
wedge,  

 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑅𝑅 + 𝐻𝐻𝑅𝑅 − 𝐸𝐸𝐿𝐿 − 𝐻𝐻𝐿𝐿 (2.30) 

It is the shear force required for horizontal equilibrium of the Structural 
Wedge. The ultimate horizontal force is given by 

 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑐𝑐′ ∗ 𝐵𝐵𝑒𝑒 + 𝑁𝑁′ tan(𝜙𝜙′) (2.31) 

where c’ is the effective cohesion and φ’ is the effective angle of internal 
friction. 

The FS at the foundation is then given by 

 𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

 (2.32) 

Summation of moments about the Toe of the Figure 2-10 T-Wall results in 

 𝑁𝑁′ ∗ 𝑥𝑥𝑁𝑁−𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑊𝑊 ∗ 𝑥𝑥𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝑥𝑥𝑈𝑈−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐿𝐿 ∗ ℎ3 + 𝐻𝐻𝐿𝐿 ∗ ℎ1 + 𝑋𝑋𝑅𝑅 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 −
𝐸𝐸𝑅𝑅 ∗ ℎ2 − 𝐻𝐻𝑅𝑅 ∗ ℎ4

�(2.33) 

Solving for xN-toe, 

 𝑥𝑥𝑁𝑁−𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊∗𝑥𝑥𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡−𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗𝑥𝑥𝑈𝑈−𝑡𝑡𝑡𝑡𝑡𝑡+𝐸𝐸𝐿𝐿∗ℎ3+𝐻𝐻𝐿𝐿∗ℎ1+𝑋𝑋𝑅𝑅∗𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐸𝐸𝑅𝑅∗ℎ2−𝐻𝐻𝑅𝑅∗ℎ4
𝑁𝑁′

 (2.34) 

Recall that for the Normal load case, the EM 1110-2-2502 (HQUSACE 
1989) performance criteria stipulates that Be is required to be equal to the 
base width, Base, but this in a deterministic calculation. When probabilistic 
engineering soil property criteria are considered through a simulation 
procedure of analysis, there are situations in which the Be value can be less 
than Base. However, values of Be less than Base will violate the EM 1110-2-
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2502 (HQUSACE 1989) design criteria for Normal loads. This would be a 
violation of the base area in compression limit state criteria.  

In preparation for a performance function probabilistic simulation 
assessment, Equation 2.33 needs to be recast. Rearranging, Equation 2.28 
becomes 

 𝑥𝑥𝑁𝑁−𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵𝑒𝑒
3

 (2.35) 

Recall that the value for Be is geometrically restricted to be less than or 
equal to the base width, Base.  

Introducing Equation 2.35, Equation 2.33 is recast as 

𝑁𝑁′ ∗ �𝐵𝐵𝑒𝑒
3
� = �𝑊𝑊 ∗ 𝑥𝑥𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝑥𝑥𝑈𝑈−𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐿𝐿 ∗ ℎ9 + 𝐻𝐻𝐿𝐿 ∗ ℎ7 + 𝑋𝑋𝑅𝑅 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 −

𝐸𝐸𝑅𝑅 ∗ ℎ10 − 𝐻𝐻𝑅𝑅 ∗ ℎ8
� (2.36) 

where Be is constrained geometrically to be less than or equal to Base. A 
gap is formed when Be is less than Base, and the length of the gap is 
determined by subtracting Be from Base. 

2.4.1 Location of Driving Wedge Force ER 

Figure 2-11 shows the horizontal component of the effective earth pressure 
distribution and the distribution of water pressures with their corres-
ponding resultant forces acting on the right side of the Structural Wedge.  
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Figure 2-11. Horizontal component of effective earth pressures and water pressures 
with their corresponding resultant forces acting on the right side  

of the Structural Wedge. 

 

The horizontal effective earth pressure at point B in Figure B-2 is given by 

 𝜎𝜎ℎ−𝐵𝐵′ = 𝐾𝐾𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ∗ 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (ℎ4 − ℎ6) (2.37) 

where 

γmoist is the moist unit weight of the retained soil, and KActive is mobilized 
active earth pressure coefficient given by Equation 2.4 and is calculated 
using φ’mob-Active and δ’mob-Active. 

The horizontal effective earth pressure at point C is  

 𝜎𝜎ℎ−𝐶𝐶′ = 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ∗ {𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (ℎ4 − ℎ6) + 𝛾𝛾1 ∗ ℎ6} (2.38) 

The point of application of ER is given by 

 ℎ10 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴−𝐵𝐵+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵−𝐶𝐶
𝐸𝐸𝑅𝑅

 (2.39) 
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with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴−𝐵𝐵 = �12 ∗ (𝜎𝜎ℎ−𝐵𝐵′ ) ∗ (ℎ4 − ℎ6)� ∗ �13 ∗ (ℎ4 − ℎ6) + ℎ6� (2.40) 

and 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵−𝐶𝐶 = �
�[(𝜎𝜎ℎ−𝐵𝐵′ ) ∗ (ℎ6)] ∗ �12 ∗ (ℎ6)�� +

��12 ∗ (𝜎𝜎ℎ−𝐶𝐶′ − 𝜎𝜎ℎ−𝐵𝐵′ ) ∗ (ℎ6)� ∗ �13 ∗ (ℎ6)��
� (2.41) 

2.4.2 Location of horizontal water pressure resultant force – right side of 
the Structural Wedge 

The resultant pore water pressure force HR is given by 

 𝐻𝐻𝑅𝑅 = 1
2 ∗ (𝑢𝑢𝐶𝐶) ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (2.42) 

Recall that the pore water pressure uc may be computed using the line of 
seepage (Subsection 2.3.3 or 2.3.4). 

The point of application of HR with reference to the elevation of the bottom 
of the base slab at its heel (i.e., point C), is given by 

 ℎ8 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵−𝐶𝐶
𝐻𝐻𝑅𝑅

 (2.43) 

with the moment about the elevation of the bottom of the base of the slab, 
defined as 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵−𝐶𝐶 = �12 ∗ (𝑢𝑢𝐶𝐶) ∗ (ℎ6)� ∗ �13 ∗ (ℎ6)� (2.44) 

2.4.3 Location of Resisting Wedge force EL 

Figure 2-12 shows the horizontal component of the effective earth pressure 
distribution and the distribution of water pressures with their corres-
ponding resultant forces acting on the left side of the Structural Wedge.  
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Figure 2-12. Horizontal component of effective earth pressures and water pressures 
with their corresponding resultant forces acting on the left side  

of the Structural Wedge. 

 

The horizontal effective earth pressure at point D is  

 𝜎𝜎ℎ−𝐷𝐷′ = 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∗ {𝛾𝛾1 ∗ ℎ3} (2.45) 

where 

γ1 is the effective unit weight of the retained soil accounting for the upward, 
vertical gradient of steady-state seepage through the saturated soil volume 
of the Driving Wedge. Equation 2.19 provides for the γ1 value. 

KPassive is mobilized passive earth pressure coefficient given by Equation 
2.16 and is calculated using φ’mob-Active and δ’mob-Active. 

The point of application of EL, relative to the bottom of the base slab below 
the toe (point D), is given by 

 ℎ9 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷−𝐸𝐸
𝐸𝐸𝐿𝐿

 (2.46) 
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with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷−𝐸𝐸 = �12 ∗ (𝜎𝜎ℎ−𝐷𝐷′ ) ∗ (ℎ3)� ∗ �13 ∗ (ℎ3)� (2.47) 

The value for height h9 by Equation 2.46 should be equal to one-third of h3. 

2.4.4 Location of horizontal water pressure resultant force – right side of 
the Structural Wedge 

The computation of the pore water pressures acting normal to the 
Structural Wedge using the Line of Seepage procedure of analysis is 
discussed in Subsection B.2.2. The resultant pore water pressure force HL-1 
is given by 

 𝐻𝐻𝐿𝐿 = 1
2 ∗ (𝑢𝑢𝐸𝐸) ∗ (ℎ5 − ℎ3) + 1

2 ∗ (𝑢𝑢𝐸𝐸 + 𝑢𝑢𝐷𝐷) ∗ (ℎ3) (2.48) 

The point of application of HL, relative to the toe of the base slab (point D), 
is given by 

 ℎ7 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹−𝐸𝐸+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸−𝐷𝐷
𝐻𝐻𝐿𝐿

 (2.49) 

with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹−𝐸𝐸 = �12 ∗ (𝑢𝑢𝐸𝐸) ∗ (ℎ5 − ℎ3)� ∗ �13 ∗ (ℎ5 − ℎ3) + ℎ3� (2.50) 

and 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸−𝐷𝐷 = �
�[(𝑢𝑢𝐸𝐸) ∗ (ℎ3)] ∗ �12 ∗ (ℎ3)�� +

��12 ∗ (𝑢𝑢𝐷𝐷 − 𝑢𝑢𝐸𝐸) ∗ (ℎ3)� ∗ �13 ∗ (ℎ3)��
�  (2.51) 

2.5 Performance function 

As discussed in Subsection 2.4 of Ebeling and White (2019), each limit state 
boundary is represented mathematically by a performance function that is 
positive for satisfactory performance of the structure, negative for 
unsatisfactory, and 0.0 at the transition point of the limit state being 
investigated. As an example, the performance function can be defined with 
respect to the capacity of the structure, R, and the demand on the structure, 
L. With respect to the capacity and demand, the performance function 
becomes 

 𝑔𝑔(𝑿𝑿) = 𝑅𝑅 − 𝐿𝐿 (2.52) 
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The Equation 2.52 difference is sometimes referred to as the margin of 
safety. Using this definition of the performance function, satisfactory 
performance occurs when the capacity (R) exceeds the demand (L), and 
unsatisfactory performance occurs when the demand (L) meets or exceeds 
the capacity (R). The limit state occurs when the demand is balanced by the 
capacity. This can be related to the probabilities of whether the system 
performance is satisfactory or unsatisfactory (Figure 2-13). Given that the 
two variables R and L are each defined by a mean, a variance (equal to the 
square of the standard deviation), and a distribution (e.g., normal, 
lognormal), the PUP is the portion of the resulting distribution of (R-L) 
that falls below zero, as depicted and labeled in Figure 2-13. Since it is a 
ULS, the PUP is also referred to as probability of failure, Pf, in the civil 
engineering literature. Note that since this is a PDF, the area under the (R-
L) distribution is equal to 1.0, as are each of the PDF areas under the R and 
L distributions. 

Figure 2-13. Capacity vs. demand related to the probability of unsatisfactory 
performance (after Nowak and Collins 2000, 2013). 

 

The interrelationship between Reliability theory and Load and Resistance 
factors used in an LRFD methodology is derived by returning to the simple 
ULS example of Figure 2-13 and Equation 2.52. The single limit state 
response surface is defined by setting Equation 2.52 equal to zero, 

 𝑔𝑔(𝑿𝑿) = (𝑅𝑅 − 𝐿𝐿) = 0 (2.53) 

where R is the capacity (i.e., X2 = R) and L is demand (i.e., X1 = L). Recall 
that when (R-L) < 0, failure occurs. 
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3 The Five Limit States Being Considered for 
the Example Soil-Structure Interaction of 
the T-Wall Model with Material Variability 

3.1 Five limit states 

In general, soil-founded (or rock-founded) reinforced concrete hydraulic 
structures can possess up to seven limit states. These limit states are 
summarized in Chapter 1. For the three wedge T-Wall SSI example problem 
introduced in Chapter 2, five of the seven limit states are being considered 
in the example problem. These five limit states are  

1. Overturning or rotational failure of the structural system about its 
foundation in its entirety  

2. Global sliding failure of the structural system in its entirety 
3. Bearing failure of the foundation to the structural system in its entirety 
4. Flexural failure of individual structural members 
5. Shear failure of individual structural members. 

The first three limit states are concerned with geotechnical effects on 
system response. The latter two limit states are concerned with the 
reinforced concrete structural features.  

3.2 Initial structural system design considerations 

The full system that will be modeled for these limit states is a T-Wall as 
shown in Figure 2-1. The primary design feature for this structure that will 
determine satisfactory or unsatisfactory performance is the base width of 
the T-Wall. To perform a preliminary deterministic design, assign mean 
values from Table 2-1 for all shear strength variables of a T-Wall under 
normal loadings (as defined by EM 1110-2-2502 [HQUSACE 1989]) to 
obtain an initial estimate of the minimum required base width of the 
Chapter 2 example T-Wall. This preliminary deterministic design is 
facilitated by using the CASE software CTWall-R. CTWall-R is an updated 
version of CTWall (Pace 1994). Note that CTWall-R makes limiting 
assumptions in its wedge solution scheme so its results will be different 
from that of the solution made using the engineering relationships given in 
Chapter 2 of this report. This analysis is used solely to generate an initial, 
approximate estimate for the minimum T-Wall base width value, Base. 
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Once the design of the T-Wall structural system has been defined, the 
weight of the Structural Wedge can be determined from geometry, soil 
properties, and water levels. Note that total soil unit weight(s) (e.g., γsat 
below the water table) are used to compute W in this effective stress 
analysis. 

These two initial Structural Wedge properties of Base and W are used as 
constants in the following limit state iterative procedural methods. 

3.3 Base area in compression of the Structural Wedge limit state 

In Subsection 3.1, the first limit state deals with overturning or rotational 
failure of the structural system about its foundation in its entirety. In the 
USACE design process for hydraulic structures, this limit state is assessed 
through control of the amount of base area in compression for the 
Structural Wedge. This subsection summarizes the required steps: (1) a 
deterministic analysis to convert COVpoint estimates to COVspatial for the 
effective angle of internal soil friction of the retained soil of the active 
wedge and for the buttressing soil of the Resisting Wedge, (2) a procedural 
method to compute the performance of a structural system for the base 
area in compression limit state. 

3.3.1 Iterative method for determining interactions between Driving, 
Resisting, and Structural Wedges for at-rest equilibrium conditions 
for Base Area in Compression limit state 

Table 3-1 outlines an iterative procedure used to determine the forces and 
their point of application between the wedges (as shown in Figure 2-3) 
under at-rest conditions, enforced by steps 4 and 5. Because the system is 
defined in moment equilibrium and peak moments are defined by at-rest 
conditions, a solution that iterates through Driving and Resisting wedge 
slip-plane angles and foundation gap formation must be iterated through to 
determine the equilibrium state of the model. This iterative procedure 
returns (1) the forces and their point of application, (2) the length of the 
Driving and Resisting Wedge slip planes, (3) line of seepage information, 
and (4) the effective structural base width Be taking the effect of gap 
formation due to uplift and interaction moments. 
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Table 3-1. Iterative at-rest procedure to calculate Soil Wedge interactions. 

Step Driving, 
Resisting 
or 
Structural 
Wedge(s) 

Description 

1 D, R Assign at-rest earth pressures: Assign a FS equal to 1.5 to the Driving 
Wedge and the Resisting Wedge so as to obtain at-rest earth pressures 
according to EM 1110-2-2502 (HQUSACE 1989) and their resulting 
forces PR and PL, respectively, acting on either side of the Structural 
Wedge.  

2 D, R Assign soil properties φ’ and δ’: Assign the appropriate soil properties φ’ 
and δ’ for the procedure being followed. For a deterministic solution, 
apply mean values. For simulations, apply the current simulation run 
values X.  

3 D, S, R Line of Seepage: Perform a Line of Seepage analysis using the geometry 
determined during the preliminary design with mean hydraulic 
conductivity values for the three soil regions. Assume no gap develops 
under Normal loading in the initial analysis. Two sets of results are 
provided by this analysis: (a) the vertical seepage gradients acting within 
the Driving and Resisting Wedges (iy-DW and iy-RW, respectively) and (b) 
distributions of total heads, H, pressure heads hp, and pore water 
pressures, u, along the three faces of the wetted perimeter for the 
Structural Wedge.  

4 D PR: Compute the Pmob-Active force imposed on the Structural Wedge using 
the mean value for the soil strength parameters of the Driving Wedge soil 
region with FSmob-Active = 1.5 and using the Chapter 2 engineering 
relationships.  
(a) Compute the mobilized active soil wedge strength values of φ’mob-Active 
and δ’mob-Active using the mean value for φ’ with δ’ equal to a constant 
times φ’ and FSmob-Active = 1.5. 
(b) Compute the mobilized active earth pressure coefficient Kmob-Active.  
(c) Compute the orientation of the planar active wedge slip plane angle 
αmob-Active and the length of the slip plane LActive, and the Figure 2-5 Active 
Wedge geometry heights h1, h2 and h3. 
The next sequence of computations is required to compute the 
equivalent unit weight γe for the Driving Wedge: 
(d) Using the buoyant unit weight γbuy and vertical seepage gradient iy-DW, 
from the Line of Seepage calculation, compute the unit weight γ1, 
followed by the unit weight γe. 
(e) Compute PR = Pmob-Active using all the data generated in this 
computational step. It acts at an angle δ’mob-Active from the normal to the 
Driving to Structural Wedge interface. This wedge solution for PR with FS 
= 1.5 approximates the at-rest earth pressure force.  
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Step Driving, 
Resisting 
or 
Structural 
Wedge(s) 

Description 

5 R PL: Compute the Pmob-Passive force imposed on the Structural Wedge using 
the mean value for the soil strength parameters of the Resisting Wedge 
soil region with FSmob-Passive = 1.5 and using the Chapter 2 engineering 
relationships.  
(a) Compute the mobilized passive soil wedge strength values of φ’mob-

Passive and δ’mob-Passive using the mean value for φ’ with δ’ equal to a 
constant times φ’ and FSmob-Passive = 1.5. 
(b) Compute the mobilized passive earth pressure coefficient Kmob-Passive.  
(c) Compute the orientation of an “equivalent” planar passive wedge slip 
plane angle αmob-Passive and the length of the slip plane LPassive. 
The next sequence of computations is required to compute the 
equivalent unit weight γe for the Resisting Wedge: 
 (d) Compute the buoyant unit weight γbuy followed by the unit weight γ1. 
Use iy-RW from the Line of Seepage computation in this calculation. For 
the submerged Resisting Wedge, γe equals γ1. Note that this γe value 
differs from that computed for the Driving Wedge. 
(e) Compute PL = Pmob-Passive using all the data generated in this 
computational step. It acts at an angle δ’mob-Passive from the normal to the 
Resisting to Structural Wedge interface. This wedge solution for PL with 
FS = 1.5 approximates the at-rest earth pressure force. 

6 S Boundary Water pressures, u: Using the results from the Line of Seepage 
analysis: (a) compute the distribution of boundary water pressures acting 
normal to the left, base and side faces of the structural wedge.  
(b) Using this distribution of u, compute the resultant boundary water 
pressure forces acting normal to the three faces of the Structural Wedge: 
HL, Ubase, and HR. 

7 S Check for gap:  
(a) Use the vertical force equilibrium Equation (2.29) given in Chapter 2 
to solve for the magnitude of the effective normal force N’ acting normal 
to the base of the Structural Wedge.  
(b) Solve for the location of N’ as measured from the Toe of the 
Structural Wedge, xN-base.  
(c) Compute the length of gap Lgap, (if any). 

8 D, S, R If a gap is computed in the previous step, repeat the analysis starting 
with the Line of Seepage analysis and include this gap length: If the 
previous step results in a nonzero gap length, repeat steps (3) through 
(7) until convergence or a minimum tolerance in Lgap is met. 

3.3.2 Engineering steps in the calculation of COVspatial for the Driving 
and Resisting Wedges and Foundation Soil 

The normal load case (EM 1110-2-2502) (HQSUACE 1989) of the T-Wall 
design for the base area in compression limit state centers on the 
application of at-rest earth pressures by the Resisting Wedge and Driving 



ERDC/ITL TR-21-1  41 

 

Wedge (when present) against the Structural Wedge. The lengths of the slip 
planes of the Resisting, Driving, and Structural wedges are necessary to 
determine the geospatial coefficient of variation for Reliability analysis 
from the point estimate coefficient of variation. The calculation steps of this 
COVspatial for the three soil wedges is described in Table 3-2. The step-by-
step base area in compression limit state procedure of analysis of the 
Structural Wedge is summarized in Table 3-1, as well as the method to 
determine the slip planes for the wedges. These calculations make use of 
mean values for φ’ and δ’ in each of the three soil regions in Table 3-2 to 
compute the length of the Driving Wedge slip plane LActive and the length of 
the Resisting Wedge slip plane LPassive. 

Table 3-2 shows the procedure to calculate the coefficient of variation for 
the soil properties of the three soil wedges of Figure 2-1.  

Table 3-2. Procedural method to calculate COVspatial for the Driving and  
Resisting Wedges. 

Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

1 D, S, R Determine soil wedge interactions: iterate through Table 3-1, 
assigning mean values to φ’ and δ’ for each soil region. 

2 D Γ2(L) Driving Wedge: Compute the Variance Reduction Factor for the 
retained soil. 
(a) Using the vertical and horizontal scales of fluctuation (δv and δh) 
for the retained soil (Table 2-2), compute the equivalent scale of 
fluctuation δE along the planar slip plane of length L = LActive at angle 
αmob-Active (Equation 2.3). 
(b) Using Equation 2.1 with L = LActive, compute the Variance 
Reduction Factor for the retained soil. 

3 D COVspatial Driving Wedge: Compute COVspatial using Equation 2.2 of the 
effective angle of internal friction for the active wedge using the 
COVpoint estimate value given in Table 2-1.  

4 R Γ2(L) Resisting Wedge: Compute the Variance Reduction Factor for the 
buttressing soil. 
(a) Using the vertical and horizontal scales of fluctuation (δv and δh) 
for the buttressing soil (Table 2-2), compute the equivalent scale of 
fluctuation δE along the approximate planar slip plane of length L = 
LPassive at angle αmob-Passive. 
(b) Using Equation 2.1 with L = LPassive, compute the Variance 
Reduction Factor for the buttressing soil. 

5 R COVspatial Resisting Wedge: Compute COVspatial using Equation 2.2 of 
the effective angle of internal friction for the passive wedge using the 
COVpoint estimate value given in Table 2-1. 
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Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

6 S Γ2(L) Structural Wedge: Compute the Variance Reduction Factor for 
the foundation soil. 
(a) Set the equivalent scale of fluctuation to the horizontal scale of 
fluctuation for the foundation soil (δE = δh). The example assumes a 
horizontal base. 
(b) Using Equation 2.1 with L=Base, compute the Variance Reduction 
Factor for the foundation soil. 

7 S COVspatial Structural Wedge: Compute COVspatial using Equation 2.2 of 
the effective angle of internal friction for the foundation soil using the 
COVpoint estimate value given in Table 2-1. 

3.3.3 Engineering steps to assess the performance 
(satisfactory/unsatisfactory) of the Structural Wedge for the base 
area in compression limit state 

For a Reliability analysis of the base area in compression limit state of the 
Figure 2-3 Structural Wedge, variability in the soil shear strength 
parameters are considered. Table 2-1 lists the mean and point estimate 
COV values for the effective angle of internal friction and interface friction 
for the three soil regions of the Figure 2-1 T-Wall example problem model. 
Performing the series of computations outlined in Subsection 3.3.2 results 
in the transformation of these Table 2-1 point estimate COV values into 
spatial COV values for each soil region, as required for use in Geotechnical 
limit state analyses (Ebeling and White 2019). Table 3-3 establishes the 
steps to compute the performance of a designed T-Wall given a vector of 
random variables (X). For reliability purposes, this function is called the 
g(X) function, as will be discussed in Chapter 4. For the sample T-Wall 
example, this vector is comprised of the φ’ and δ’ values for the soil 
properties in the Driving, Resisting, and beneath the Structural Wedges. 
For a reliability analysis, a set of vectors will be created, and this function 
will be used with each of these vectors to determine PUP. In simulation 
methods, the vector X is created by drawing the values of φ’ and δ’ from 
their appropriate distributions. 
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Table 3-3. Base area in compression limit state procedure of Reliability analysis 
computing g(X) per simulation value X. 

Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

1 D, S, R Determine soil wedge interactions: iterate through Table 3-1, 
assigning values to φ’ and δ’ from X for each soil region. 

2 D, S, R Resisting moment R: Compute the Resisting moment R for simulation 
i using Equation 3.1. 

3 D, S, R Driving moment L: Compute the Driving moment L for simulation i 
using Equation 3.2. 

4 D, S, R Assessing g(X): Compute the value of the performance function g(X) 
for this simulation i using Equation 2.52. Note that if g(X) is positive 
then the performance of the structure is counted as satisfactory 
against the base area in compression limit state for variable vector X. 
However, if g(X) is negative then the performance of the structure is 
counted as unsatisfactory against the base area in compression limit 
state for variable vector X. 

The Equation 2.36 Resisting moments of Figure 2-10 are combined into a 
single moment term and the Driving moments of Equation 2.36 are 
combined into a second term for the Reliability analysis. The Equation 2.36 
resisting moments, designated as R, are given as 

 𝑅𝑅 = 𝑊𝑊 ∗ 𝑥𝑥𝑊𝑊−𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐿𝐿 ∗ ℎ9 + 𝐻𝐻𝐿𝐿 ∗ ℎ7 + 𝑋𝑋𝑅𝑅 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (3.1) 

In the probabilistic simulation process discussed in the next chapter, the 
moments due to forces W, and HL are deterministic. The other two 
moments due to forces EL and XR are variable and will change in value 
during each simulation. 

The Equation 2.36 driving moments, designated as L, are 

 𝐿𝐿 = 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝑥𝑥𝑈𝑈−𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝑅𝑅 ∗ ℎ10 + 𝐻𝐻𝑅𝑅 ∗ ℎ8 (3.2) 

Observe that the moment due to force N’ is not included because when the 
Structural Wedge is verged on moment equilibrium, its point of action is 
located at the heel. In the probabilistic simulation process discussed in the 
next chapter, the moment due to force HR is deterministic as well as that 
due to force Ubase, so long as Be = Base. The other two moments due to 
forces N’ and ER are variable and will change in value during each 
simulation. 
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Note that the mobilized values for φ’ and δ’ are being used in conjunction 
with this PR value to compute the ER and XR forces the Driving Wedge 
imposes on the Structural Wedge and not their ultimate strength values. 
The horizontal force component of mobilized force PR is given as 

 𝐸𝐸𝑅𝑅 = 𝑃𝑃𝑅𝑅 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (3.3) 

The vertical component of the mobilized right-hand side driving (wedge) 
force is given by 

 𝑋𝑋𝑅𝑅 = 𝑃𝑃𝑅𝑅 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (3.4) 

Similarly, the mobilized values for φ’ and δ’ are being used in conjunction 
with this PL value to compute the EL and XL forces the Resisting Wedge 
imposes on the Structural Wedge and not their ultimate strength values. 
The horizontal force component of mobilized force PL is given as 

 𝐸𝐸𝐿𝐿 = 𝑃𝑃𝐿𝐿 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) (3.5) 

The vertical component of the mobilized left-hand side resisting (wedge) 
force is given by 

 𝑋𝑋𝐿𝐿 = 𝑃𝑃𝐿𝐿 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) (3.6) 

Recall from Chapter 2 that the summation of vertical forces acting on the 
Figure 2-10 T-Wall results in the expression for the effective vertical force 
normal to the base of the T-Wall, 

 𝑁𝑁′ = 𝑊𝑊 −𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑋𝑋𝑅𝑅 − 𝑋𝑋𝐿𝐿 (2.29 bis) 

With EL and XR, now defined, the resultant resisting moment R may be 
computed using Equation 3.1 in Step 2 of Table 3-3. And with ER, XL, and N’ 
established, the resultant driving moment L may be computed using 
Equation 3.2 in Step 3 of Table 3-3.  

The value of the performance function g(X) for simulation i is computed in 
Step 3 using Equation 2.52. Table 3-3 is repeated for simulations i+1 
through n simulations with the current simulation X values. 
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The step-by-step engineering computations, used in the base area in the 
probabilistic compression limit state procedure of Reliability analysis of the 
Structural Wedge, are summarized in Table 3-2.  

3.4 Global sliding failure of the Driving, Structural, and Resisting 
Wedge limit state 

In Subsection 3.1, the second limit state deals with global sliding failure of 
the structural system in its entirety. This equates to a limit state of the 
Driving, Structural and Resisting Wedges sliding in unison. In the USACE 
design process for hydraulic structures, this limit state is assessed through 
control of the amount of shear resistance mobilized within the soils 
comprising the Driving, Wedge, foundation soil, and the soil comprising 
the Resisting Wedge. The USACE guidance document EM 1110-2-2502 
(HQUSACE 1989) expresses the required minimum factor of safety, FS, 
value through a Shear Mobilization Factor (SMF). The SMF is defined as 
the inverse of the minimum FS value. This subsection summarizes the 
required steps: (1) a deterministic analysis to convert COVpoint estimates to 
COVspatial for the effective angle of internal soil friction of the retained soil 
of the active wedge and for the buttressing soil of the Resisting Wedge and 
(2) a procedural method to compute the performance of a structural system 
for the global sliding failure limit state. By EM 1110-2502 guidance, the 
minimum FS value for any Load case (i.e., Usual, Unusual, or Extreme) is 
specified to be the same value within the Driving, Structural, and Resisting 
Wedges. 

3.4.1 Iterative method for determining interactions between Driving, 
Resisting, and Structural Wedges for force equilibrium conditions 
for Sliding limit state 

Table 3-4 outlines an iterative procedure used to determine the forces and 
their point of application between the wedges (as shown in Figure 2-3) in 
equilibrium altering the FS, enforced by steps 4 and 5. Because the system 
is not defined in force equilibrium, a solution that iterates through Driving 
and Resisting wedge slip-plane angles and foundation gap formation must 
be iterated through to determine the equilibrium state of the model, where 
the factors of safety of the three soil wedges are the same. This iterative 
procedure returns (1) the forces and their point of application, (2) the 
length of the Driving and Resisting Wedge slip planes, (3) line of seepage 
information, and (4) the effective structural base width Be taking the effect 
of gap formation due to uplift and interaction moments. 
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Table 3-4. Iterative procedure to calculate equilibrium force Soil Wedge interactions. 

Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

1 D, R Assign at-rest earth pressures: Assign an initial FS equal to 1.5 to the 
Driving Wedge and the Resisting Wedge to obtain at-rest earth 
pressures according to EM 1110-2-2502 (HQUSACE 1989) and their 
resulting forces PR and PL, respectively, acting on either side of the 
Structural Wedge.  

2 D, R Assign soil properties φ’ and δ’: Assign the appropriate soil properties 
φ’ and δ’ for the procedure being followed. For a deterministic 
solution, apply mean values. For simulations, apply the current 
simulation run values X.  

3 D, S, R Line of Seepage: Perform a Line of Seepage analysis using the 
geometry determined during the preliminary design with mean 
hydraulic conductivity values for the three soil regions. Assume no gap 
develops under Normal loading in the initial analysis. Two sets of 
results are provided by this analysis: (a) the vertical seepage 
gradients acting within the Driving and Resisting Wedges (iy-DW and iy-

RW, respectively) and distributions of (b) total heads, H, pressure 
heads hp, and pore water pressures, u, along the three faces of the 
wetted perimeter for the Structural Wedge.  

4 D PR: Compute the Pmob-Active force imposed on the Structural Wedge 
using the mean value for the soil strength parameters of the Driving 
Wedge soil region with the assigned value for FSmob-Active and using the 
Chapter 2 engineering relationships.  
(a) Compute the mobilized active soil wedge strength values of φ’mob-

Active and δ’mob-Active using the mean value for φ’ with δ’ equal to a 
constant times φ’ and the assigned value for FSmob-Active. 
(b) Compute the mobilized active earth pressure coefficient Kmob-Active.  
(c) Compute the orientation of the planar active wedge slip plane 
angle αmob-Active and the length of the slip plane LActive, and the Figure 
2-5 Active Wedge geometry heights h1, h2, and h3. 
The next sequence of computations is required to compute the 
equivalent unit weight γe for the Driving Wedge: 
(d) Using the buoyant unit weight γbuy and vertical seepage gradient iy-

DW, from the Line of Seepage calculation, compute the unit weight γ1, 
followed by the unit weight γe.  
(e) Compute PR = Pmob-Active using all the data generated in this 
computational step. It acts at an angle δ’mob-Active from the normal to 
the Driving to Structural Wedge interface.  
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Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

5 R PL: Compute the Pmob-Passive force imposed on the Structural Wedge 
using the mean value for the soil strength parameters of the Resisting 
Wedge soil region with the assigned value for FSmob-Passive and using 
the Chapter 2 engineering relationships.  
(a) Compute the mobilized passive soil wedge strength values of φ’mob-

Passive and δ’mob-Passive using the mean values for φ’ with δ’ equal to a 
constant times φ’ and with the assigned value for FSmob-Passive. 
(b) Compute the mobilized passive earth pressure coefficient Kmob-

Passive.  
(c) Compute the orientation of an “equivalent” planar passive wedge 
slip plane angle αmob-Passive and the length of the slip plane LPassive. 
The next sequence of computations is required to compute the 
equivalent unit weight γe for the Resisting Wedge: 
(d) Compute the buoyant unit weight γbuy followed by the unit weight 
γ1. Use iy-RW from the Line of Seepage computation in this calculation. 
For the submerged Resisting Wedge, γe equals γ1. Note that this γe 
value differs from that computed for the Driving Wedge. 
(e) Compute PL = Pmob-Passive using all the data generated in this 
computational step. It acts at an angle δ’mob-Passive from the normal to 
the Resisting to Structural Wedge interface.  

6 S Boundary Water pressures, u: Using the results from the Line of 
Seepage analysis: (a) compute the distribution of boundary water 
pressures acting normal to the left side, base and right side faces of 
the structural wedge.  
(b) Using this distribution of u, compute the resultant boundary water 
pressure forces acting normal to the three faces of the Structural 
Wedge, HL, Ubase and HR. 

7 S Check for gap:  
(a) Use the vertical force equilibrium equation given in Chapter 2 to 
solve for the magnitude of the effective normal force N’ acting normal 
to the base of the Structural Wedge.  
(b) Solve for the location of N’ as measured from the Toe of the 
Structural Wedge, xN-base.  
(c) Compute the length of gap Lgap, (if any). 
(d) Compute the base within compression, Be. Note that Be is always 
less than or equal to Base. 

8 D, S, R If a gap is computed in the previous step, repeat the analysis starting 
with the Line of Seepage analysis and include this gap length: If the 
previous step results in a nonzero gap length, repeat steps (3) 
through (7) until convergence or a minimum tolerance in Lgap is met. 
For the example problem, the tolerance for convergence on gap length 
is given as 0.1 ft. 
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Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

9 S Compute FSfoundation:  
(a) With all the forces acting on the Structural Wedge defined, solve 
for the shear force Tmob required for equilibrium along the base of the 
Structural Wedge using Equation 2.30. 
(b) Compute the factor of safety against sliding along the base of the 
structural wedge. Calculate FSfoundation using Equation 2.32 with the 
ultimate shear force capacity Tult given by Equation 2.31.  

10 D, S, R Iterate on factor of safety: If the computed value for FSfoundation does 
not match that assumed for FSmob-Active and FSmob-Passive, repeat steps 
(3) through (9) using an adjusted factor of safety value. This iterative 
process continues until convergence within a minimum tolerance in 
factor of safety is met. For the example problem, convergence is 
determined when the newly generated Factor of Safety varies by a 
tolerance value less than 0.01 Recall that for the Normal load case a 
minimum value of 1.5 is required for factor of safety against sliding. 

Step 10 is complicated because Equation 2.32 will go to infinity as Tmob 
approaches a zero value for the numerical modeling in the simulation 
process. This occurs because the mobilized Resisting Wedge force 
sufficiently counters the mobilized Driving Wedge force. It is further 
complicated because values for the soil strength properties can cause the 
Sliding Limit State to occur in the opposite direction than intended, toward 
the Driving Wedge. These conditions mean that it is important to choose a 
range to search for the maximum value of FSfoundation equivalent to FSActive 
and FSPassive (within the tolerance of 0.01). This range can be obtained by 
finding two bounding values of FSActive, with FSPassive being set equal to 
FSActive. The first bounding value is the FSActive value that generates (using 
Steps 3-9) a value of FSfoundation, which is greater FSActive. The second 
bounding value has to be chosen such that the computed value of FSfoundation 
is less than FSActive and greater than zero. When the bounds have been 
chosen, the iteration step, Step 10, can be accomplished using a numerical 
search algorithm within the bounds. 

3.4.2 Engineering steps in the calculation of COVspatial for the Driving 
and Resisting Wedges and the Foundation Soil under the sliding 
limit state 

In the normal load case (EM 1110-2-2502) (HQUSACE 1989), the T-Wall 
design for the sliding limit state centers on the application of earth 
pressures by the Resisting Wedge and Driving Wedge (when present) to the 
Structural Wedge. The calculation steps of this COVspatial for the three soil 
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wedges is described in Table 3-5. The sliding limit state procedure of 
analysis of the Driving, Structural, and Resisting Wedges is summarized in 
Table 3-4. These calculations make use of mean values for φ’ and δ’ in each 
of the three soil regions in Table 3-5 to compute the length of the Driving 
Wedge slip plane LActive and the length of the Resisting Wedge slip plane 
LPassive. The objective of these computations is to define COVspatial values for 
each of the three soil regions for use in the Reliability analysis of the 
subsequent subsection. 

Table 3-5. Procedure to calculate COVspatial for the Driving and Resisting Wedges and 
for the foundation soil. 

Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

1 D, S, R Determine soil wedge interactions: iterate through Table 3-4, 
assigning mean values to φ’ and δ’ for each soil region. 

2 D Γ2(L) Driving Wedge: Compute the Variance Reduction Factor for the 
retained soil. 
(a) Using the vertical and horizontal scales of fluctuation (δv and δh) 
for the retained soil (Table 2-2), compute the equivalent scale of 
fluctuation δE along the planar slip plane of length L = LActive at angle 
αmob-Active. 
(b) Compute the distance factor n using the Figure 2-4 relationship of 
n =LActive/δE  
(c) Determine the value for the Variance Reduction Factor using Figure 
2-4. 

3 D COVspatial Driving Wedge: Compute COVspatial of the effective angle of 
internal friction for the active wedge using the COVpoint estimate value 
given in Table 2-1. 

4 R Γ2(L) Resisting Wedge: Compute the Variance Reduction Factor for the 
buttressing soil. 
(a) Using the vertical and horizontal scales of fluctuation (δv and δh) 
for the buttressing soil (Table 2-2), compute the equivalent scale of 
fluctuation δE along the “approximate” planar slip plane of length L = 
LPassive at angle αmob-Passive. 
(b) Compute the distance factor n using the Figure 2-4 relationship of 
n =LPassive/δE  
(c) Determine the value for the Variance Reduction Factor using Figure 
2-4. 

5 R COVspatial Resisting Wedge: Compute COVspatial of the effective angle of 
internal friction for the passive wedge using the COVpoint estimate value 
given in Table 2-1. 
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Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

6 S Γ2(L) Structural Wedge: Compute the Variance Reduction Factor for 
the foundation soil. 
(a) Using the horizontal scale of fluctuation (δh) for the foundation soil 
(Table 2-2) and base width L = Base, compute the distance factor n 
using the Figure 2-4 relationship of n = Base / δh  
(b) Determine the value for the Variance Reduction Factor using 
Figure 2-4. 

7 S COVspatial Structural Wedge: Compute COVspatial of the effective angle of 
internal friction for the foundation using the COVpoint estimate value given 
in Table 2-1. 

3.4.3 Engineering steps in the Reliability analysis of the Structural 
Wedge for the sliding limit state 

In a Reliability analysis of the sliding limit state of the Figure 2-3 Structural 
Wedge, the variability in the soil shear strength parameters is considered. 
Table 2-1 lists the mean and point estimate COV values for the effective 
angle of internal friction and interface friction for the three soil regions of 
the Figure 2-1 T-Wall example problem model. Performing the series of 
computations outlined in Subsection 3.3.1 results in the transformation of 
these Table 2-1 point estimate COV values into spatial COV values for each 
soil region, as required for use in Geotechnical limit state analyses (Ebeling 
and White 2019). The engineering computations, used in the probabilistic 
sliding limit state procedure of Reliability analysis of the Structural Wedge, 
are summarized in Table 3-6. 
  



ERDC/ITL TR-21-1  51 

 

Table 3-6. Step-by-step sliding limit state procedure of Reliability analysis of the 
Structural Wedge.  

Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

1 D, S, R Determine soil wedge interactions: iterate through Table 3-4, 
assigning mean values to φ’ and δ’ for each soil region. 

2 D Driving force L: Compute the Driving force L for simulation i using 
Equation 3.7. 

3 R PL: Compute the ultimate PPassive force imposed on the Structural 
Wedge using the simulated value for the soil strength parameters of 
the Resisting Wedge soil region using the Chapter 2 engineering 
relationships.  
(a) Define the ultimate passive soil wedge strength values of φ’Passive 
and δ’Passive using the simulation generated value for φ’, with δ’ equal 
to a constant times φ’. 
(b) Compute the ultimate passive earth pressure coefficient KPassive.  
(c) Compute the orientation of an “equivalent” planar passive wedge 
slip plane angle αPassive and the length of the slip plane LPassive. 
The next sequence of computations is required to compute the 
equivalent unit weight γe for the Resisting Wedge: 
(d) Compute the buoyant unit weight γbuy followed by the unit weight 
γ1. Use iy-RW from the Line of Seepage computation in this calculation. 
For the submerged Resisting Wedge, γe equals γ1. Note that this γe 
value differs from that computed for the Driving Wedge. 
 (e) Compute PL = PPassive using all the data generated in this 
computational step. It acts at an angle δ’Passive from the normal to the 
Resisting to Structural Wedge interface. 

4 S Tult: Compute the ultimate horizontal shear force along the base of the 
structural Wedge using Equation 2.31 with ultimate shear strength 
soil parameters for the foundation soil. The computation of the 
effective normal force N’ is given by Equation 2.29. 

5 S, R Resisting force R: Compute the Resisting force R for simulation i using 
Equation 3.8. 

6 D, S, R Assessing g(X): Compute the value of the performance function g(X) 
for this simulation i using Equation 2.52. Note that if g(X) is positive, 
then the performance of the structure is counted as satisfactory 
against the base area in compression limit state for variable vector X. 
However, if g(X) is negative, then the performance of the structure is 
counted as unsatisfactory against the base area in compression limit 
state for variable vector X. 
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Step 1 follows the procedure of Table 3-4, assigning the simulation values of 
X for the variable soil properties of the wedges. The next step is to collect 
the Figure 2-10 Driving forces into a single force term and then do the same 
for the horizontal Resisting forces of Equation 2.30. The following 
relationship is used in Step 2 to compute the horizontal resultant driving 
force L imposed on the Structural Wedge by the Driving Wedge after the 
iterative computational procedure of Table 3-4 has been completed. The 
Equation 2.30 driving forces summed and designated as L, are 

 𝐿𝐿 = 𝐻𝐻𝑅𝑅 + 𝐸𝐸𝑅𝑅 (3.7) 

In the probabilistic simulation process, the force HR is deterministic. The 
other horizontal effective earth pressure force ER is variable and will change 
in value during each simulation. Its value is determined from the PR value. 
PR is set equal to PA from Equation 2.4 and is computed using the 
mobilized effective angle of internal friction of the soil, φ′mob-Active, and the 
mobilized interface angle of friction, δ′mob-Active for the last FS iteration. 
Note that the mobilized values for φ’ and δ’ are being used in conjunction 
with this PR value to compute the ER and XR forces the Driving Wedge 
imposes on the Structural Wedge and not their ultimate strength values. 
The horizontal force component of mobilized force PR is given as 

 𝐸𝐸𝑅𝑅 = 𝑃𝑃𝑅𝑅 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (3.3 bis) 

The vertical component of the mobilized right-hand side driving (wedge) 
force is given by 

 𝑋𝑋𝑅𝑅 = 𝑃𝑃𝑅𝑅 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (3.4 bis) 

The horizontal resisting forces, designated as R, are given as 

 𝑅𝑅 = 𝐻𝐻𝐿𝐿 + 𝐸𝐸𝐿𝐿 + 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢 (3.8) 

In the probabilistic simulation process used in Table 3-6, the force HL is 
deterministic. The other two forces EL and Tult are variable and will change 
in value during each simulation. The horizontal component of the ultimate 
left-hand side ultimate resisting force PL provided by the Resisting Wedge 
to the Structural Wedge given by 

 𝐸𝐸𝐿𝐿 = 𝑃𝑃𝐿𝐿 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′) (3.9) 
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In this equation, PL is set equal to PP from Equation 2.15 and is computed 
using the effective angle of internal friction of the soil, φ′Passive, and the 
interface angle of friction, δ′Passive (Step 3). Observe that the ultimate values 
for φ’ and δ’ are being used and not their mobilized values to compute EL.  

The vertical component of the ultimate left-hand side resisting force PL 
provided by the Resisting Wedge is given by 

 𝑋𝑋𝐿𝐿 = 𝑃𝑃𝐿𝐿 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿′) (3.10) 

Recall from Chapter 2 that the summation of vertical forces acting on the 
Figure 2-10 T-Wall results in the expression for the effective vertical force 
normal to the base of the T-Wall, 

 𝑁𝑁′ = 𝑊𝑊 −𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑋𝑋𝑅𝑅 − 𝑋𝑋𝐿𝐿 (2.29 bis) 

The ultimate horizontal force (i.e., capacity) along the base of the structural 
wedge is computed in Step 4 using the relationship 

 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑐𝑐′ ∗ 𝐵𝐵𝑒𝑒 + 𝑁𝑁′ tan(𝜙𝜙′) (2.31 bis) 

where c’ is the effective cohesion, Be is the base length of the Structural 
Wedge in compression, and φ’ is the effective angle of internal friction. The 
Step 4 computation of the effective normal force N’ is given by Equation 
2.29. With EL and Tult now defined, R may be computed using Equation 3.7 
in Step 5 of Table 3-6. 

The value of the performance function g(X) for simulation i is computed in 
Step 5 using Equation 2.52. Table 3-6 is repeated for simulations i+1 
through n simulations.  In Figure 3-1, all of the computed forces that are 
acting against the two-dimensional (2-D) cross section of the wall and its 
components are shown.  
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Figure 3-1. Free body diagram of resultant forces acting on the stem and base slab 
of the Structural Wedge. 

 

3.5 Bearing failure of the Structural Wedge limit state 

In Subsection 3.1, the third limit state deals with bearing failure of the 
structural system beneath its foundation. In the USACE design process for 
hydraulic structures, this limit state is assessed based on several factors for 
the Driving, Structural, and Resisting Wedges. This subsection summarizes 
the required steps: (1) a deterministic analysis to convert COVpoint estimates to 
COVspatial for the effective angle of internal soil friction of the retained soil 
of the Structural Wedge and for the buttressing soil around the Structural 
Wedge and (2) a procedural method to compute the performance of a 
structural system for the bearing limit state. 

3.5.1 Iterative method for determining interactions between Driving, 
Resisting, and Structural Wedges for force equilibrium conditions 
for bearing limit state 

For the bearing limit state, the force configuration acting on the Structural 
Wedge has the equivalence constraints for FS as the sliding limit state. 
Therefore, the same procedure for interaction of the wedges (Table 3-4) 
applies for this limit state and the calculation of the effective base width Be 
and the vertical shear forces, which act at the interfaces of the Structural 
Wedge. 
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3.5.2 Engineering steps in the calculation of COVspatial for the foundation 
soil 

The normal load case (EM 1110-2-2502) (HQUSACE 1989) of the T-Wall 
design for the bearing limit state centers on the application of the vertical 
pressure created by the weight of and shear forces applied to the Structural 
Wedges along the base of the structure. Because shear forces and the 
effective base length are required to determine the pressures acting at the 
base, a full analysis using the iterative method must be performed as shown 
in Table 3-5. This means that the spatial variance in the Driving and the 
Resisting Wedge must be determined as before. The lengths of the slip 
planes of the Resisting and Driving Wedges are necessary to determine the 
geospatial coefficient of variation for Reliability analysis from the point 
estimate coefficient of variation and are calculated according to the same 
procedure as before.  

For bearing, the variance of the soil beneath the structure is determined in 
a different fashion, instead of using a slip plane defining a linear wedge. In 
this circumstance, the soil is being pushed downward and, because of 
resistance below, outward to the sides of the structure. Figure 3-2 shows 
the zones of shear for the strip footing Structural Wedge being punched 
into the soil (Vesic 1967).  

Vanmarcke (1977a) suggested a fitting of the space with a theoretical 
triangular function on one side or the other of the structure. For example, 
the triangular region would be Regions I, II, and III on either the left or 
right of the structure in Figure 3-2, which is not to scale. He also suggested 
that an approximate simplified variance reduction factor for the base soil 
could be calculated as the product of the variance reduction factors for the 
vertical and horizontal scale of fluctuation directions. This approximation 
is followed by Baker and Calle (2002), Schneider and Schneider (2013), 
Babu and Dasaka (2007).  

 Γ𝐴𝐴2 = Γ𝑣𝑣2 × Γℎ2  (3.11) 

Babu and Dasaka (2007) suggested that, for cohesionless soils, the depth 
for vertical load regions could be approximated by 2B, where B is the length 
of the footing base, and the horizontal region distance for spatial 
approximation would be 2.5B along the horizontal axis. Extending the 
approximation for soil that can move to both sides of the structure implies 
that the horizontal soil region spatial distance should be 2 × 2.5B, or 5B. 
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Babu (2014) changed this horizontal spatial dimension for shallow 
foundations to 3.5B for a single side or 7B for the entire horizontal 
component, and these are the values the authors adopted for the shallow 
embedment of the T-Wall example problem.  

Figure 3-2. Idealizations of shear zones at failure of an earth-supported strip footing 
Structural Wedge. Zone I: Rankine Active zone; Zone II: Rankine Passive zone; and 

Zone III: Radial Shear zone. 

 

The step-by-step calculation of COVspatial for the bearing limit state 
procedure of analysis of the Structural Wedge is summarized in Table 3-7, 
as well as the method to determine the slip planes for the wedges and the 
soil beneath the base of the structure. The bearing limit state procedure of 
analysis of the Driving, Structural, and Resisting Wedges is summarized in 
Table 3-4.These calculations make use of mean values for φ’ and δ’ in each 
of the three soil regions to compute the length of the Driving Wedge slip 
plane LActive , the length of the Resisting Wedge slip plane LPassive and LV and 
LH for the foundation soil below the Structural Wedge. 
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Table 3-7. Step-by-step base area in compression limit state procedure of analysis of 
the Structural Wedge to calculate COVspatial for the Driving and Resisting Wedges. 

Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

1 D, S, R Determine soil wedge interactions: iterate through Table 3-4, 
assigning mean values to φ’ and δ’ for each soil region. 

2 D Γ2(L) Driving Wedge: Compute the Variance Reduction Factor for the 
retained soil. 
(a) Using the vertical and horizontal scales of fluctuation (δv and δh) 
for the retained soil (Table 2-2), compute the equivalent scale of 
fluctuation δE along the planar slip plane of length L = LActive at angle 
αmob-Active. 
(b) Using Equation 2.1 with L=LActive, compute the Variance Reduction 
Factor for the retained soil. 

3 D COVspatial Driving Wedge: Compute COVspatial using Equation 2.2 of the 
effective angle of internal friction for the active wedge using the 
COVpoint estimate value given in Table 2-1.  

4 R Γ2(L) Resisting Wedge: Compute the Variance Reduction Factor for the 
buttressing soil. 
(a) Using the vertical and horizontal scales of fluctuation (δv and δh) 
for the buttressing soil (Table 2-2), compute the equivalent scale of 
fluctuation δE along the “approximate” planar slip plane of length L = 
LPassive at angle αmob-Passive. 
(b) Using Equation 2.1 with L=LPassive, compute the Variance Reduction 
Factor for the buttressing soil. 

5 R COVspatial Resisting Wedge: Compute COVspatial using Equation 2.2 of 
the effective angle of internal friction for the passive wedge using the 
COVpoint estimate value given in Table 2-1. 

6 S Γ2(L) Structural Wedge: Compute the Variance Reduction Factor for 
the foundation soil. The base distance is measured as Be = Base - 
Lgap. The Variance reduction factor is computed using Equation 2.1 for 
horizontal and vertical values of L. 
(a) Set the vertical spatial distance LV = 2Be. Using Equation 2.1 with 
the vertical scale of fluctuation gives Γ𝑣𝑣2. 
(b) Set the horizontal spatial distance LH = 7Be. Using Equation 2.1 
with the horizontal scale of fluctuation gives Γℎ2. 
(c) Using Equation 3.11, compute the approximate Variance Reduction 
factor for the base soil. 

7 S COVspatial Structural Wedge: Compute COVspatial using Equation 2.2 of 
the effective angle of internal friction for the foundation soil using the 
COVpoint estimate value given in Table 2-1. 
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3.5.3 Engineering steps to assess the performance 
(satisfactory/unsatisfactory) of the Structural Wedge for the 
bearing limit state 

For a Reliability analysis of the bearing limit state of the Figure 2-3 
structural wedge, variability in the soil shear strength parameters are 
considered. Table 2-1 lists the mean and point estimate COV values for the 
effective angle of internal friction and interface friction for the three soil 
regions of the Figure 2-1 T-Wall example problem model. Performing the 
series of computations outlined in Subsection 3.4.1 results in the 
transformation of these Table 2-1 point estimate COV values into spatial 
COV values for each soil region, as required for use in Geotechnical limit 
state analyses (Ebeling and White 2019). Table 3-8 establishes the steps to 
compute the performance of a designed T-Wall given a vector of random 
variables (X) determined using the COVspatial values from Table 3-7. For 
reliability purposes, this function is called the g(X) function, as will be 
discussed in Chapter 4. For the sample T-Wall example, this vector is 
comprised of the φ’ and δ’ values for the soil properties in the Driving, 
Resisting, and beneath the Structural Wedges. For a reliability analysis, a 
set of vectors will be created, and this function will be used with each of 
these vectors to determine PUP.  

Table 3-8. Step-by step-base area in compression limit state procedure of Reliability 
analysis of the Structural Wedge.  

Step Driving, 
Resisting or 
Structural 
Wedge(s) 

Description 

1 D, S, R Determine soil wedge interactions: iterate through Table 3-4, 
assigning mean values to φ’ and δ’ for each soil region. 

2 D, S, R Resisting force R: Compute the resisting force using Equations D.1 
and D.2, which implement uniform base pressure capacity. 

3 D, S, R Load force L: Compute the vertical load L for simulation i using 
Equation 3.12. 

4 D, S, R Assessing g(X): Compute the value of the performance function g(X) 
for this simulation i using Equation 2.52. Note that if g(X) is positive 
then the performance of the structure is counted as satisfactory 
against the base area in compression limit state for variable vector X. 
However, if g(X) is negative then the performance of the structure is 
counted as unsatisfactory against the base area in compression limit 
state for variable vector X. 
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The equations for calculating the resistance base pressure and the 
subsequent resisting force, assuming that the pressure is applied uniformly, 
are Equation D.1 and Equation D.2 of Appendix D in this report. The 
pressures are assumed to be applied uniformly across the base because the 
failure constraint is that foundation soil has developed a fully plastic state 
with the full mobilization of the shear strength. This allows the entire 
structure to punch into the foundation soil as idealized in Figure 3-2. 

 𝑞𝑞 = 𝜁𝜁𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐 + 𝜁𝜁𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝑞𝑞0𝑁𝑁𝑞𝑞 + 𝜁𝜁𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝐵𝐵𝐵𝐵𝑁𝑁𝛾𝛾
2

(D.1 bis) 

where 

 q = vertical component of the ultimate unit bearing capacity of the 
foundation (pressure) 

Nc, Nq, Nγ= base bearing capacity factors 
 ζc, ζq, ζγ = shape factors 

ζcd, ζqd, ζγd= embedment factors 
ζci, ζqi, ζγI = inclination factors 
ζct, ζqt, ζγt = base tilt factors 

ζcg, ζqg, ζγg= ground slope factors 
 C = cohesion 
 γ = unit weight of the soil 
 Be = effective base width 
 L = effective base length (for a 2D section evaluation, a value of 1.0 

is used) 
 q0 = effective overburden pressure on a plane passing through the 

base of the footing. 

Notice that each of the factor terms is defined based on the variable 
properties of the foundation soil, the effective base width, and the geometry 
of the structure. These definitions are in Appendix D. The effective base 
width is altered by the variable soil properties in the Driving and Resisting 
Wedges. 

Because the computations used for Sliding and Base Area in Compression 
(Overturning) limit states already provide the effective vertical force 
exhibited by the structural wedge, which acts directly against the base, the 
bearing capacity is converted to an ultimate resisting force for the effective 
base width (for the 2-D slice), which is the width of the base in contact with 
the foundation soil. This width will be affected by uplift and overturning 
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forces that cause a gap to form between the foundation soil and the 
foundation. 

 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒  (D.2 bis)  

The Equation 2.36 vertical driving load, designated as L, is 

 𝐿𝐿 = 𝑊𝑊 −  𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  +  𝑋𝑋𝑅𝑅  −  𝑋𝑋𝐿𝐿 (3.12) 

Observe that the vertical demand L is the only force that can cause a 
bearing failure below the structural wedge base. Because of the 
assumptions of uniform pressures, the position of this force does not 
matter. The g(X) condition is only concerned that the total vertical forces 
on the structure exceed the resultant resistance bearing force computed in 
Equation D.2. The forces vary as the soil material properties φ’ and δ’ vary 
for both the load (in the Xr and Xl terms) and the bearing resistance. 

Step 1 follows the procedure of Table 3-4, assigning the simulation values of 
X for the variable soil properties of the wedges. Note that the mobilized 
values for φ’ and δ’ are being used in conjunction with this PR value to 
compute the XR forces the Driving Wedge imposes on the Structural Wedge 
and not their ultimate strength values. The vertical component of the 
mobilized right-hand side driving (wedge) force is given by 

 𝑋𝑋𝑅𝑅 = 𝑃𝑃𝑅𝑅 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (3.13) 

Similarly, the mobilized values for φ’ and δ’ are being used in conjunction 
with this PL value to compute the XL forces the Resisting Wedge imposes on 
the Structural Wedge and not their ultimate strength values. The vertical 
component of the mobilized left-hand side resisting (wedge) force is given 
by 

 𝑋𝑋𝐿𝐿 = 𝑃𝑃𝐿𝐿 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) (3.14) 

The value of the performance function g(X) for simulation i is computed in 
Step 4 using Equation 2.52. The procedure of Table 3-8 is repeated for 
simulations i+1 through n simulations to determine reliability of the 
structure under the bearing limit state. 
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The step-by-step engineering computations, used in the base area in the 
probabilistic compression limit state procedure of Reliability analysis of the 
Structural Wedge, is summarized in Table 3-8.  

3.6 Shear failure of the wall stem limit state 

The previous limit states have been concerned with only the geotechnical 
portion of the Structural System. To that end, all of the forces have only 
been affecting the full Structural Wedge, which incorporates the actual 
structural feature of the T-Wall and any soil or water regions that lie 
directly above the base of the reinforced structural slab. The structural 
feature consists of a reinforced concrete base slab and a vertical reinforced 
concrete wall (referred to as the stem), which geometrically forms the 
T-shape of the T-Wall structure, as illustrated in Figure 2-3. The base slab 
bears the weight of the overburden, which helps prevent overturning and 
sliding, as discussed in Subsections 3.3 and 3.4, respectively. The vertical 
stem portion of the T-Wall bears the brunt of the horizontal earth and 
water pressures on the structural system. The bottom of the stem where it 
meets the base slab has the greatest load because the earth and water 
pressures increase with depth.  

Determining the horizontal forces acting at the bottom of the stem wall 
requires a few steps: First, a geotechnical Wedge equilibrium analysis must 
be run converging to a common FS value for the three wedges. This allows 
for the determination of the forces acting horizontally against the 
Structural Wedge imposed by the adjacent Driving and Resisting Wedges. 
This step follows the same procedure as Tables 3-4 and 3-6. These forces 
are combined with the model of the full Structural Wedge (with soils and 
water) to pass the forces to the base of the wall stem using the equations of 
Appendix B. Equation B.75 computes the geotechnical shear force at the 
wall stem, which is the load on the stem, based on the φ’ variables and the 
directly correlated δ’ values. 

The structure’s shear strength resistance is determined using the properties 
of the concrete used in the reinforced concrete structure. Reinforced 
concrete design of walls have been studied and typically have a variable 
strength using a lognormal distribution about the biased design strength of 
the structure, as given in Table 3-9. A bias factor is applied to the nominal 
design strength to account for conservatism in design. A bias factor of 1.15 
is applied for shear strength calculations. Studies also reveal that the 
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coefficient of variation for these structures is properly estimated to be 0.18 
for concrete shear strength calculations. 

Table 3-9. Design resistance model for the concrete Shear limit state  
(after Ellingwood1). 

Limit State Distribution Mean bias 
factor 

Coefficient of 
Variation 

Standard 
Deviation 

Shear Capacity 
(beams) LogNormal 1.15 0.18 0.207 

According to EM 1110-2-2104 (HQUSACE 2016), the load factor that 
should be applied to determine the design capacity of the structure under 
the usual case lateral earth loading is 2.2 (Table 3-1 of EM 1110-2-2104) 
(HQUSACE 2016). The required (minimum) reinforced concrete shear 
force value is computed for the lateral earth shear force imposed under the 
usual load case with mean values for the three φ’ and the correlated δ’ 
values for the soil wedges. The Table 3-9 load factor times the bias factor is 
applied to the mean concrete shear resistance capacity to arrive at the shear 
strength value used in the Ultimate limit state design. 

The design resistance capacity and distribution (Table 3-9) are used to 
form a limit state g(X) function with an analysis of the Structure under the 
Extreme load case using Tables 3-4 and 3-6 and Equation B.75. This 
equation has 4 variables: the previously existing variables φ’DW, φ’SW, and 
φ’RW, and now the new resistance variable sR. The soil friction angle 
computations combined with Equation B.75 give the load acting on the wall 
stem, and sR gives the true resistance. This new g(X) function (where g(X) 
= L-sR) can be used with the ASM, Monte Carlo, and simulation methods 
to determine the fitness of the structure using a PUP calculation.  

3.7 Flexural failure of the wall stem limit state 

In the same spirit as the shear failure of the wall stem, flexural failure also 
occurs near the base of the wall stem. This is especially true for the flexural 
limit state because the greatest moment arm occurs about the bottom of the 

 

1 Ellingwood, B. R. 2015. Procedures for Developing Reliability-Based Load Criteria for Hydraulic Steel 
and Concrete Structures. Final letter report submitted to the URS Group, Inc. U.S. Army Corps of 
Engineers.  

NOTE: From this point forward, the document will be referred to or cited as “Ellingwood.” 
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stem. A very similar procedure is used to calculate the resistance capacity 
against flexural failure. 

Determining the flexural forces acting at the bottom of the stem wall 
requires a few steps: First, a geotechnical wedge equilibrium analysis must 
be run converging to a common FS value for the three wedges. This allows 
for the determination of the forces acting horizontally against the 
Structural Wedge imposed by the adjacent Driving and Resisting Wedges 
and the height that the forces are applied, for moment arm computation. 
This step follows the same procedure as Tables 3-4 and 3-6. These forces 
and moment arms are combined with the model of the full Structural 
Wedge (with soils and water) to pass the forces and moments to the base of 
the wall stem using the equations of Appendix B. Equation B.76 computes 
the (geotechnical based) moment applied at the wall stem, which is the load 
on the stem, based on the φ’ variables and the directly correlated δ’ values. 

The structure’s flexural resistance is determined using the properties of the 
concrete and reinforcement steel used in the reinforced concrete structure. 
Reinforced concrete design of walls have been studied and typically have a 
variable strength using a lognormal distribution about the biased design 
strength of the structure, as given in Table 3-10. A bias factor is applied to 
the nominal design strength to account for conservatism in design. A bias 
factor of 1.12 is applied for moment strength calculations. Studies also 
reveal that the coefficient of variation for these structures is properly 
estimated to be 0.14 for moment strength calculations. 

Table 3-10. Design resistance model for the flexural limit state (after Ellingwood). 

Limit State Distribution Mean Bias 
Factor 

Coefficient of 
Variation 

Standard 
Deviation 

Flexural 
Capacity (one-
way slabs) 

LogNormal 1.12 0.14 0.157 
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According to EM 1110-2-2104 (HQUSACE 2016), the load factor that 
should be applied to determine the design capacity of the structure under 
the Usual case lateral earth loading (which is used to compute moments) is 
2.2 (Table 3-1 of the EM 1110-2-2104) (HQUSACE 2016). This required 
(minimum) reinforced flexural capacity value is computed for the lateral 
earth force and force application height imposed under the Usual load case 
with mean values for the three φ’ and the correlated δ’ values for the soil 
wedges. The Table 3-10 load factor times the bias factor is applied to the 
mean flexural resistance capacity to arrive at the flexural capacity value 
used in the Ultimate limit states design. 

The design flexural resistance capacity and distribution (Table 3-10) are used 
to form a limit state g(X) function with an analysis of the structure under the 
Extreme load case using Tables 3-4 and 3-6 and Equation B.76. This 
equation has four variables; the previously existing variables φ’DW, φ’SW, and 
φ’RW, and now the new resistance variable fR. The soil friction angle 
computations combined with Equation B.76 give the load acting on the wall 
stem, and fR gives the true resistance. This new g(X) function (where g(X) = 
L-fR) can be used with the ASM, Monte Carlo, and simulation methods to 
determine the fitness of the structure using a PUP calculation.  
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4 A Procedural Method for Computing 
Individual Limit State Probability of 
Unsatisfactory Performance (PUP) and 
Load Factors for the Example Soil-
Structure Interaction of the T-Wall Model 
with Material Variability 

4.1 Introduction and research 

Numerical Reliability-based methodologies beyond those discussed in 
Chapter 2 were also investigated as part of this research effort. Several 
numerical methods that may be used for calculating Load and Resistance 
scale factors for a single limit state are described in Appendix C. It is 
important to recognize the principal limitations for these numerical 
procedures:  

1. They all require a mathematically defined, continuous PDF 
distributions for load and for resistance.  

2. These procedures also require that load and resistance be uncorrelated. 
Independent load and resistance variables satisfy this requirement.  

The first numerical method discussed in Section C.2 was developed by 
Nowak and Collins (2013) and was restricted to single limit states, as the 
Load and Resistance units and distributions vary between limit states. The 
procedure was based on the Rackwitz and Fiessler (1976, 1978) procedure 
for mapping a non-normal distribution to a normal distribution with unit 
area. This procedure works well with continuous data and less well with 
histogram data because the routine requires computation of matching 
cumulative distribution function (CDF) and PDF data for the distribution 
with the normal distribution. This procedure allows for the scaling of the 
resistance distribution with respect to a fixed load distribution, adjusting 
the (R-L) distribution for a target value of β  and its associated PUP. 

This Nowak and Collins (2013) numerical procedure was adapted for use in 
solving problems discussed in this report. It stands in contrast with the 
ASM procedure in that ASM determines a β  value that corresponds to the 
probability of unsatisfactory performance given fixed load and resistance 
distributions. Load and resistance factors are computed in the ASM 
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approach from a design point that resides on the limit state response 
surface. These load and resistance factors guarantee the probability of 
unsatisfactory performance for the computed value for β.  

To summarize, the ASM method takes resistance and load distributions and 
calculates a β  value for a limit state to compute load and resistance factors. 
In contrast, the Nowak and Collins (2013) numerical procedure iteratively 
scales the resistance distribution while constraining the load distribution as 
fixed in reliability space allowing for calculation of load and resistance 
factors for a specified β  value. 

A supplemental procedure is discussed in Section C.3 that recognizes the 
fact that load and resistance factors are constants and therefore their ratio 
is constant. It is simpler to solve for this ratio of these two factors and then 
to calculate the partial load safety factor given a specified partial resistance 
safety factor. This safety factor ratio may be computed using the numerical 
procedure outlined in Section C.2. 

Section C.5 summarizes a reliability-based numerical procedure for 
computing a value for Reliability Index β following the steps outlined in 
Nowak (1999). Professor Nowak originally developed this procedure over 
a number of years with a focus on its application to LRFD-based bridge 
design (Nowak and Lind 1979; Nowak 1999; Nowak and Collins 2000, 
2013). 

Section C.6 describes a Gaussian function superposition approach of 
numerically fitting normalized normal distribution functions to a non-
normal PDF and computing a value for Reliability index β. This approach 
uses a number of summed Gaussian distribution values for each PDF value. 
The error between the non-normal distribution PDF and the summed 
Gaussian distributions PDF is minimized. The attractiveness of this 
analysis procedure is that it may be used on any form of PDF yet be able to 
determine a value for β  that may be used in a Reliability analysis for 
determination of load and resistance factors.  

Chapter 2 describes the geotechnical example problem that can be solved 
with SSI analysis using the equations of Chapter 3 for a T-Wall. This 
solution method depends on the design of the structural system, with a 
standard design defining the normal operating conditions and therefore the 
Usual load conditions and the three variable geotechnical material 
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properties of Mohr-Coulomb effective angle of internal friction for the 
retained soil wedge, the foundation and the resisting soil wedge, φ’1, φ’2 and 
φ’3, respectively. The three strength parameter variables for the three 
Figure 2-1 soil regions are assumed to be normally distributed, 
independent variables. Their statistical parameters are summarized in 
Table 2-1. The base width was varied, and the design was conducted with 
the USACE Computer-Aided Structural Engineering (CASE) CTWall 
software using allowable stress design (ASD) method applying the 
traditional engineering safety factors of EM 1110-2-2502 (HQUSACE 1989) 
for the Usual load case for each of the three Section 3.1 geotechnical limit 
states. The maximum base width that met the allowable stress design was 
for the sliding limit state (FS against sliding equal to 1.5 for the Normal 
load case). The sliding limit state was found to be critical among the three 
limit states, with the other two being bearing and base area in compression. 
Recall from Table 3-1 in EM 1110-2-2104 (HQUSACE 2016) that LRFD 
factors are applied for the Extreme load case and are not used in the design 
for the Usual and Unusual load cases. The limit states for this geotechnical-
structural system are described in Section 1.5.  

Given the design geometry as established using CTWall software for the 
Normal load case and the geotechnical material properties, the resulting 
limit state load and resistance are computed for the Extreme load case, and 
those values can be used to assess the performance of the structure in a 
probabilistic framework. A set of samples can be created by varying the 
material properties in a Monte Carlo style simulation. These sample points 
can be used to create a PDF histogram of load and resistance. It has been 
observed for this example T-Wall that the resulting distributions can be 
very different from a normal distribution. Recall φ’1, φ’2 and φ’ 3 are each 
normally distributed. Because the load L and resistance R (defined in 
Chapter 3), are computed from the same three wedge EM 1110-2-2502 
(HQUSACE 1989) based analysis formulation and geotechnical material 
properties, the load and resistance distributions have a great likelihood to 
be correlated.  

4.2 Individual limit state procedure for computing load and 
resistance distributions from material properties and 
determining load factors 

The following procedure provides a method based on Monte Carlo 
simulations with material variables for determination of LRFD load factors. 
This procedure was devised by Ebeling and White (2019) for the reliability 
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analysis of a T-Wall retains earth and is buttressed by earth, analytically 
modeled as an EM 1110-2-2502 (HQUSACE 1989) three-wedge retaining 
structure, with driving, structural, and resisting wedges. The Mohr-
Coulomb shear strength parameters of effective angles of internal friction 
(φ’1, φ’2, and φ’3) for the soils of the three respective wedges were assumed to 
be normally distributed, independent variables. A traditional Reliability-
based (Resistance-Load, or R-L) formulation of loads applied to the 
structural wedge containing the T-Wall was devised. Monte Carlo 
simulations were conducted to develop a database of corresponding 
resistance and load values which were then binned into a histogram to form 
PDF distributions. The resulting R and L distributions were observed to be 
non-normal because of the limit state computation method to calculate R 
and L from the three-wedge solution. Furthermore, because the three-
wedge solution method was used to compute load and resistance relative to 
each other, the distributions exhibited correlation. Rather than attempt to 
sample the load and resistance distributions and try to match the Pearson 
(1895) correlation coefficient, the original captured samples of 
corresponding L and R are used to calculate a Load Scale Factor (LSF) from 
a Resistance Scale Factor (RSF). The RSF is the scale factor that must be 
applied to the resistance distribution determined from the base structural 
design in order to achieve a target PUP value (PUPTarget). RSF times the 
mean Resistance (µResistance) determines the resistance required to 
counteract the design load, and so it is equivalent to the design load. The 
mean Load (µLoad) must be scaled by LSF to get the design load value. 
Designing the new resistance to meet this design load means the newly 
designed structure will achieve PUPTarget. This means that LSF is equivalent 
to the ratio of the load and resistance factors (γL/ϕR). From this ratio, and 
given a specified RSF value, an LSF value can be computed using the routine 
described in Appendix C, Section C.3. This procedure will be referred to as 
the Single Limit State Simulation Fixed Load Procedure because the load 
distribution remains fixed while the resistance distribution is scaled. 

1. Create Gz() function for the limit state(s) that returns total Resistance 
(R), total Load (L), and conditional value of unsatisfactory performance 
(where unsatisfactory performance occurs when R-L < 0.0). 

2. For geotechnical design, calculate the slip plane angle for the current 
design conditions and determine the geo-statistical variability of soil 
properties (e.g., Mohr-Coulomb effective angle of internal friction) for 
each soil wedge (Driving, Structural, Resisting). 
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3. For a certain number of samples (Nsamples), generate simulation soil 
properties and collect Gz() results, maintaining the order of the results 
so that R[index] corresponds to L[index]. Maintaining the order 
means that the distributions and any correlations are included in the 
sample data. 

4. Calculate µResistance and µLoad for the R[] and L[] simulation results. 
5. For verification, calculate the PUPInitial for the full simulation taking the 

number of simulations with unsatisfactory performance and dividing by 
the total number of simulations. This PUPInitial can be run through the 
inverse CDF function for a Normal Distribution to arrive at a somewhat 
arbitrary β Initial value. 

6. A β target value for a normal distribution is given that can be used to 
determine PUPtarget. 

7. Generate a function given R[], L[], PUPtarget, as well as a scale factor for 
Resistance RSF. This function calculates the unsatisfactory performance 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ {(𝑅𝑅[𝑖𝑖] ∗ 𝑅𝑅𝑆𝑆𝑆𝑆)−𝐿𝐿[𝑖𝑖]}�0:>0.0

1:<0.0
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  (4.1) 

To judge how close PUPRSF is to PUPtarget, the function returns a value 
�𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�. This value is 0.0 when PUPRSF is equal to 
PUPtarget and greater than 0.0 otherwise. 

8. Use a numerical procedure to find a value of RSF that minimizes the 
Step 7 function. Because the function returns a minimal value of 0.0 
when PUPRSF is equal to PUPtarget, the resulting value of RSF is the scale 
factor from the original Resistance distribution R[] to the Resistance 
distribution that, combined with the original Load distribution L[] has 
the same PUP as PUPtarget. 

9. The RSF value is a scale factor for the current design’s Resistance 
Distribution that satisfies the PUPtarget goal. The µResistance and µLoad 
values are the means of the distributions that may be correlated; 
therefore, their values have the same level of correlation. This means 
that LSF, which is the scale factor for the mean load that requires the 
scaled resistance, or 

 𝑅𝑅𝑆𝑆𝑆𝑆 ∗ 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝐿𝐿𝑆𝑆𝑆𝑆 ∗ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.0  (4.2) 

 𝐿𝐿𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∗𝑅𝑅𝑆𝑆𝑆𝑆
𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

  (4.3) 
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10. According to the Limit State equation, the mean Resistance to be 
designed for (µRDesign) is therefore 

 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 𝐿𝐿𝑆𝑆𝑆𝑆 ∗ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  (4.4) 

The product of the load scale factor times the mean load value (i.e., the 
right-hand side in this equation) is viewed as the value of minimum mean 
capacity required to achieve the PUPtarget value. Thus, this minimal design 
resistance RDesign is the exact minimum mean resistance required to achieve 
the PUPtarget capacity. Figures 4-1 and 4-2 show the effect of scaling the 
Resistance Distribution by a computed RSF for a specified PUPSystem. Notice 
that the Load Distribution is held constant as RSF is applied. 

Figure 4-1. Unscaled Load and Resistance Distributions and the resulting Gz() 
distribution for the Sliding Limit State. 
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Figure 4-2. An RSF Scale Factor of 1.734 is applied to the Resistance Distributions and 
a new Gz() distribution is computed with PUPTarget for the Sliding Limit State. 

 

This procedure can be used for traditional LRFD, where the load and 
resistance distributions can be readily defined, although this is typically a 
trivial case that can be solved by basic analytical Reliability methods. This 
procedure becomes more important for issues where the resistance 
distribution can be calculated but is highly non-linear and/or is correlated 
to the load distribution. In this case, the procedure based on samples more 
accurately captures the behavior in the tails of the distributions, assuming 
that the design does not change the shape and dispersion rate of the 
distribution.  

A full LRFD, with soil structure interaction, has more assumptions. In this 
case, the load distribution is not fixed but is a result of analysis of a design. 
The resistance distribution has these same characteristics and for the same 
reason. Each design case makes a difference in the mean loads and 
resistances because it also changes the forces acting on the structural wedge 
and therefore the T-Wall structure. Because the load conditions change the 
elevation of water and the slip planes of the driving and resisting Wedges, 
the mean Load and Resistance on the structure changes with the design. 
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For the example problem, the Normal load case is described, with sloping 
backfill with an elevated internal water table within the retained soil, 
partial pool side fill, and a pool elevation. Three other load cases were 
considered (in order of severity). These cases may be considered as the 
Extreme design load case and two beyond-Extreme load cases for the 
structural system. The three cases are for the same T-wall but (1) dewatered 
on the pool side (Extreme), (2) dewatered with pool side fill being lowered 
to the top of the T-Wall foundation (beyond Extreme), and (3) dewatered 
with no fill on the former pool side (beyond Extreme). In each sequential 
case, there is less resisting soil and water to the backfill soil on the land side 
of the T-wall than existed in the prior case. These four load cases are 
illustrated in Figure 4-3. 

Figure 4-3. Representations of the four design cases: (a) Normal Load Case, (b) 
Dewatered Load Case, (c) Dewatered with Reduced Fill for the Resisting Wedge, and 

(d) Dewatered with No Fill for the Resisting Wedge. 

  
(a) (b) 

  
(c) (d) 
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4.3 Sliding Limit State results for mid-range COVs 

Tables 4-1 through 4-4 show the results of computing RSF and LSF for the 
Sliding Limit State load conditions (computed as forces) for a T-Wall 
designed with a 25 ft base for different PUPtarget values based on specified 
normal distribution β target values. It was determined through a trial-and-
error progression that setting nSamples to 1,000,000 simulations would give 
sufficiently accurate results. Notice that each design load condition has a 
different µR and µL because the design load case affects the load and 
resistance. The LSF value is based on the current load condition’s mean 
values, µR and µL.  

Table 4-1 is for the standard Normal load case of Figure 4-3a. This case is 
not traditionally solved for load factors for LRFD because the goal of LRFD 
for the USACE Navigation structures is to reduce the probability of 
Extreme load events causing unsatisfactory performance for the structural 
system as per EM 1110-2-2104 (HQUSACE 2016). This case is solved for the 
resistance and load factors here to provide insight into the full story of how 
load factors are developed for the Sliding geotechnical limit state problem. 
Solving this case also establishes the value of the Reliability Index, β , that 
the traditional EM 1110-2-2502 (HQUSACE 1989) allowable stress design 
procedure achieves given the Normal load case, which resulted in a 25 ft 
wide base with an FS against sliding equal to 1.5. EM 1110-2-2100 
(HQUSACE 2005) requires that the FS for sliding of a Normal structure 
using the Ordinary Site Information Category must meet or exceed 1.5 for 
the Usual load case. Monte Carlo simulation with material variables 
possessing Normal distributions was used to determine the PUP value for 
the normal load case design, resulting in a PUP of 0.00025, which equates 
to a β  value of 3.48 (approximated with a Normal Gaussian Distribution). 
Using the Single Limit State Simulation Fixed Load Procedure (Subsection 
4.1), the Table 4-1 values were produced. It is possible to interpolate the 
design β  using the target β ’s and RSF factors from Table 4-1, because the 
design β  occurs when RSF = 1.0 where the scale factor results in the values 
of the simulation being unchanged. Interpolating between the values of the 
last two rows gives a design β  of 3.48, which matches the simulation value. 
This defines the performance of the 25 ft wide T-Wall designed with a sliding 
factor of safety of 1.5 for the Usual load case in a probabilistic framework. 
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Table 4-1. For the 25 ft wide base with Normal (watered) operating conditions: 
µR = 54,042.96 lb, µL = 38,963.16 lb, β initial = 3.48, PUPinitial = 0.00025, R[] to L[] 

correlation = 0.976556. 

βtarget PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.779 1.08 

1.5 0.06681 0.811 1.125 

2.0 0.02275 0.847 1.175 

2.5 0.00621 0.889 1.233 

3.0 0.00135 0.939 1.303 

3.5 0.00023 1.002 1.390 

Table 4-2. For the 25 ft wide base with Extreme (dewatered) operating conditions: 
µR = 51,763.52 lb, µL = 37,574.50 lb, β initial = 2.92, PUPinitial = 0.00175, R[] to L[] 

correlation = 0.978495. 

β target PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.779 1.101 

1.5 0.06681 0.837 1.156 

2.0 0.02275 0.886 1.220 

2.5 0.00621 0.940 1.295 

3.0 0.00135 1.016 1.400 

3.5 0.00023 1.187 1.635 

Table 4-3. For the 25 ft wide base with beyond-Extreme soil to top of base (dewatered) 
operating conditions: 

µR = 43,459.34 lb, µL = 34,874.95 lb, β initial = 1.39, PUPinitial = 0.08229, R[] to L[] 
correlation = 0.973397. 

β target PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.938 1.169 

1.5 0.06681 1.025 1.277 

2.0 0.02275 1.191 1.484 

2.5 0.00621 1.437 1.790 

3.0 0.00135 1.810 2.255 

3.5 0.00023 2.246 2.798 
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Table 4-4. For the 25 ft wide base with beyond-Extreme scoured soil to the toe of the 
structure (dewatered) operating conditions: 

µR = 42,775.71 lb, µL = 34,427.89 lb, β initial = 1.251, PUPinitial = 0.10551, R[] to L[] 
correlation = 0.971258. 

β target PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.956 1.187 

1.5 0.06681 1.072 1.331 

2.0 0.02275 1.283 1.594 

2.5 0.00621 1.574 1.956 

3.0 0.00135 2.061 2.561 

3.5 0.00023 2.747 3.413 

For the example problem, Extreme conditions are met when the structure 
is dewatered, as depicted in Figure 4-3b. Flood-side soil erosion, as 
depicted in Figure 4-3c and d, are special beyond extreme load cases that 
are outside of the acceptable bounds for the structure. They are included to 
show scale factor growth as conditions change. 

For the dewatered case using the design with a 25 ft base width, the 
program CTWALL-R (Pace 1994) returned an FS for sliding of 1.43. The 
EM 1110-2-2100 (HQUSACE 2005) requires that the FS for sliding of a 
Normal structure using the Ordinary Site Information Category must meet 
or exceed 1.1 for the Extreme load case. Therefore, the designed structure 
has met the requirement by a significant amount, even exceeding the 
minimum Unusual load case safety factor of 1.3. Monte Carlo simulations 
of this design under the Extreme load case yields a β initial of 2.92, with a 
PUPinitial of 0.00175. Table 4-2 gives the scale factors for the Extreme load 
case of Figure 4-3b. To achieve a PUPtarget of 0.00023 corresponding to a 
normal distribution β target of 3.5, the load scale factor LSF is 1.635 giving a 
value of RDesign equal to 61,434 lb (= 37,574.5 times 1.635 by Equation 4.4). 
This 61,434 lb is viewed as the value of minimum mean capacity required to 
achieve the PUPtarget value, which should be designed for. Therefore, this 
value is also the minimal design resistance RDesign. This procedure works if 
the load distribution is constant.  

Tables 4-1 through 4-4 reveal that the mean load changes as the design is 
altered, going from a mean load of 54,043 lb for the Normal load case to a 
mean load of 42,776 lb for the most Extreme load case. This implies that 
any redesign that has a resistance distribution with a mean that approaches 
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a desired RDesign value is also altering the load distribution, and therefore 
the PUP and β  for the system. This is because the solution method given a 
design computes the Load and Resistance from the mobilized soil regions 
via the slip plane computation of the three-wedge system. If the engineer is 
trying to achieve a design that exceeds a PUP value precisely, a few design 
iterations in T-Wall base width may be required per load case. The extreme 
value of LSF given β target 3.5 for Table 4-2 yields a value for RDesign of 
61,434 lb (Equation 4.4), and that value appears to be a high value, given 
the other computed resistances for the 25 ft base load cases. 

Tables 4-1 through 4-4 also give the initial values for β  and PUP given the 
original computed distributions. These values corroborate the calculations 
for RSF, as the value for RSF is less than 1.0 while β target is less than β initial 
and greater than 1.0 otherwise. The same holds true for the PUP values.  

In the Tables 4-1 through 4-4 titles, the correlation values between the 
Resistance and Load distributions are reported for the Sliding load case. 
These distributions were found to have at least a 97% correlation between 
the sample resistance and load values. Other statistical tests were 
performed to determine the Pearson correlation coefficients between the 
input variables (φ’DW, φ’SW, and φ’RW) to assure that the input variables were 
independent after their simulation. These variables had correlation 
coefficients between each (simulation) sample set with values less than 
0.004, confirming each variable’s independence from each other. This 
result means that any correlation introduced to the derived load and 
resistance distributions is not due to the simulation procedure. Because 
this procedural method works with direct simulation results, the 
distribution is preserved with its correlation directly when the resistance 
values are scaled. This is different than the Nowak and Collins (2013) 
procedure discussed in Appendix C, which relies on Resistance and Load 
distributions for its variables that are uncorrelated. The conversion of the 
load and resistance distributions using the Rackwitz-Fiessler (1976, 1978) 
transform is confounded by correlated variables. 

In summary, the numerical Reliability simulation procedure outlined in 
Section 4.2 and applied to this 25 ft base width T-Wall example is devised 
for computations made using a single limit state at a time because in this 
procedure the load and resistance distributions are calculated expressly for 
that limit state. 
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4.4 Base Area in Compression Limit State results for mid-range COVs 

Tables 4-5 and 4-6 show the results of computing RSF and LSF for the Base 
Area in Compression (i.e., Overturning) Limit State load conditions for a 
T-wall designed with a 25 ft base for different PUPtarget values based on 
specified normal distribution β target values. The resistance and load 
distributions are computed in units of moment, foot-pounds. Notice that 
each design load condition has a different µR and µL because the design load 
case affects the load and resistance. The LSF value is based on the current 
load condition’s mean values, µR and µL.  

Table 4-5. For the 25 ft wide base with standard (watered) operating conditions: 
µR = 1,390,809.72 ft-lb, µL = 806,216.96 ft-lb, β initial >6.0, PUPinitial = 0.00000, R[] to 

L[] correlation = 0.298669. 

β target PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.586 1.010 

1.5 0.06681 0.589 1.015 

2.0 0.02275 0.592 1.021 

2.5 0.00621 0.595 1.026 

3.0 0.00135 0.598 1.031 

3.5 0.00023 0.601 1.037 

Table 4-6. For 25 ft wide base with standard (dewatered) operating conditions: 
µR = 1,370,070.13 ft-lb, µL = 740,131.49 ft-lb, β initial >6.0, PUPinitial = 0.00000, R[] to 

L[] correlation = 0.331293. 

β target PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.546 1.011 

1.5 0.06681 0.549 1.017 

2.0 0.02275 0.553 1.023 

2.5 0.00621 0.556 1.029 

3.0 0.00135 0.559 1.035 

3.5 0.00023 0.562 1.040 
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It may cause pause when observing that the LSF values for both load cases 
are greater than 1.0, when the resistance needs to be lowered to less than or 
equal to 0.6 of its mean value. This is because there is so much excess 
capacity for the design and µR is greater than 2 times the µL. Recall the 
design of this 25 ft wide T-Wall is based on the Usual load case for the 
sliding limit state. It is speculated, based on the minimal scale change of 
load (LSF) to find the RDesign value (by Equation 4.4), that the load and 
resistance distributions for this limit state possess small variance. This 
causes the slope of the PUP curve for the β target values to be steep and occur 
over a short span of base width values. This interpretation is bolstered by a 
series of runs varying the base width in the design between 12 and 15 ft for 
the normal load case. In these runs, the approximate PUP values decreased 
from 0.99 at the smaller base width of 12 ft to a PUP value of 0.066 at base 
width of 13 ft, and continued to a value of 0.023 at 14 ft. At 15 ft base width, 
the PUP value was essentially 0.0. Thus, for base width of 25 ft, the PUP 
value for the base area in compression limit state is 0.0.  

4.5 Bearing Limit State results for mid-range COVs 

Tables 4-7 and 4-8 show the results of computing RSF and LSF for the 
Bearing Limit State load conditions for a T-wall designed with a 25 ft base 
for different PUPtarget values based on specified normal distribution β target 
values. The resistance and load distributions are computed in units of force, 
pounds. Notice that each design load condition has a different µR and µL 
because the design load case affects the load and resistance. This is being 
observed for all Geotechnical limit states. The LSF value is based on the 
current load condition’s mean values, µR and µL.  

Table 4-7. For the 25 ft wide base with standard (watered) operating conditions: 
µR = 131,936.98 lb, µL = 48,736.99 lb, β initial >6.0, PUPinitial = 0.00000, R[] to L[] 

correlation = 0.880871. 

β target PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.401 1.085 

1.5 0.06681 0.417 1.129 

2.0 0.02275 0.436 1.180 

2.5 0.00621 0.460 1.245 

3.0 0.00135 0.506 1.370 

3.5 0.00023 0.561 1.518 
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Table 4-8. For 25 ft wide base with standard (dewatered) operating conditions: 
µR = 149,225.00 lb, µL = 54,808.31 lb, β initial >6.0, PUPinitial = 0.00000, R[] to L[] 

correlation = 0.811645. 

β target PUPtarget 
Scale Factors 

RSF LSF 

1.0 0.15866 0.394 1.073 

1.5 0.06681 0.408 1.110 

2.0 0.02275 0.422 1.149 

2.5 0.00621 0.438 1.192 

3.0 0.00135 0.460 1.253 

3.5 0.00023 0.489 1.322 

The bearing capacity results have much larger resistance forces than for the 
sliding limit state because the forces are acting vertically and mobilizing 
more of the foundation soil. The higher resistances and smaller vertical 
loads lead to excess resistance. This causes the slope of the PUP curve for 
the β target values to be steep and occur over a short span of base width 
values for the T-Wall, as was observed for the Base Area in Compression 
limit state. 

4.6 Soil Structure Interaction (SSI)-proportioned load individual limit 
state procedure for computing load and resistance distributions 
from material properties and determining load factors 

Subsection 4.2 introduces the first analytical simulation Reliability 
procedure used for load and resistance factors computation, and it is 
referred to as the Single Limit State Simulation Fixed Load Procedure 
because the resulting limit state load distribution for the testing structure 
remains fixed while the resistance distribution is scaled. Using simulation 
generated sliding limit state R and L data for T-Walls with base widths 
between 22 ft and 28 ft, Figure 4-4 is introduced, which reveals that this 
Fixed Load Assumption, while valid for many engineering Reliability 
analysis, is not appropriate for the Figure 2-1 geotechnical soil structure 
interaction problem. The assumption breaks down because, for 
geotechnical problems of this type, a change of design (in this case a change 
in base width for the T-Wall) affects both the load and resistance forces 
from the interacting soil wedges. The sliding limit state R and L force 
simulation data are highly correlated for this T-Wall problem. An improved 
procedure, called the proportioned load procedure for predicting load and 
resistance factors, was then devised and applied to this same problem. This 
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procedure adjusts the L distribution as the R distribution changes. The 
results from this second analysis are also included in this subsection. This 
procedure will be referred to as the Single Limit State Simulation 
Proportioned Load Procedure. 

Figure 4-4 provides a visual comparison of simulation results versus the 
prediction results from using the Subsection 4.2 procedure. The orange 
solid line of the plot passes through data points collected for the simulation 
runs at each of the base widths from 22 ft to 28 ft. The actual values of the 
simulations for these base widths return the resultant mean resisting force 
and the approximated Gaussian Normal distribution β  value for the 
simulated PUP value. The result from the unscaled simulated data is used 
to form the orange solid curved line segments and are judged to be precise. 
The dashed lines represent the predicted values from each base width’s 
actual distributions of the mean resistance force given a target approximate 
Gaussian Normal β , or β target. For example, with a 22 ft base width run and 
a β target of 3.0, the resistance force would be approximately 50,000 lb, by 
the intersection of the light blue dashed line with a β target-value of 3.0 in 
this figure. The precise value for β target of 3.0 from the orange direct 
simulated value line is a force of between 53,000 and 54,000 lb. 

Figure 4-4. Predicted resistances (using the Section 4.2 procedure) for multiple wall 
widths to achieve a target beta (with fixed load) versus the actual β  values computed 

for each wall width. 
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Note that while the slopes for individual predicted values (dashed lines) 
and the computed values are not linear, they do show linear tendencies, 
especially for the dashed line data that plots below the solid orange line. 
This suggests that it is possible to adjust the predicted values given load 
and resistance distributions for a single base width using the ratio of 
change of mean resistance to change of mean load as the base width 
changes, so long as the distributions about the means do not change 
significantly. In this way, a better prediction of RSF and therefore LSF can be 
computed given the load and current β  of a specific base width.  

The following procedure provides a method based on Monte Carlo 
simulations with material definitions for determination of LRFD load 
factors. Rather than attempt to sample the load and resistance distributions 
and try to match the Pearson (1895) correlation coefficient, the original 
captured samples with computed resistance and load are used to calculate 
the Load Scale Factor (LSF) and Resistance Scale Factor (RSF). This 
procedure will be called the proportioned load procedure for predicting 
load and resistance factors.  

1. Create Gz() function for the limit state(s) that returns total Resistance 
(R), total Load (L), and conditional value of unsatisfactory performance 
(where unsatisfactory performance occurs when R-L < 0.0) 

2. For geotechnical design, calculate the slip angle for the current design 
conditions and determine the geo-statistical variability of soil properties 
(e.g., soil friction angle) for each soil wedge (Driving, Structural, 
Resisting) 

3. Run a Gz() analysis for two different design cases (in this case, varying 
the base width), and collect the rate of change of µLoad and µResistance 
labeled ∆Load and ∆Resistance, respectively. For greater accuracy, more runs 
can be made, and the rate of change values averaged. 

4. For a certain number of samples (Nsamples), generate simulation soil 
properties and collect Gz() results for a base design case (e.g., single 
base width), maintaining the order of the results so that R[index] 
corresponds to L[index]. Maintaining the order means that the 
distributions and any correlations are included in the sample data. 

5. Calculate µResistance and µLoad for the R[] and L[] simulation results. 
6. For verification, calculate the PUPInitial for the full simulation taking the 

number of simulations with unsatisfactory performance and dividing by 
the total number of simulations. This PUPInitial can be run through the 
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inverse CDF function for a Normal Distribution to arrive at a somewhat 
arbitrary β Initial value. 

7. A β target value for a normal distribution is given that can be used to 
determine PUPtarget. 

8. Generate a function given R[], L[], PUPtarget, as well as a scale factor for 
Resistance RSF. This function calculates the unsatisfactory performance 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ �

(𝑅𝑅[𝑖𝑖] ∗ 𝑅𝑅𝑆𝑆𝑆𝑆)−

(𝐿𝐿[𝑖𝑖]+((𝑅𝑅𝑆𝑆𝑆𝑆−1.0)∗𝑅𝑅[𝑖𝑖])∗
Δ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
)��
0:>0.0
1:<0.0

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (4.1 bis) 

To judge how close PUPRSF is to PUPtarget, the function returns a value 
�𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�. This value is 0.0 when PUPRSF is equal to PUPtarget 
and greater than 0.0 otherwise. 

9. Use a numerical procedure to find a value of RSF that minimizes the 
Step 7 function. Because the function returns a minimal value of 0.0 
when PUPRSF is equal to PUPtarget, the resulting value of RSF is the scale 
factor from the original Resistance distribution R[] to the Resistance 
distribution that, combined with the original Load distribution L[], has 
the same PUP as PUPtarget. 

10. The RSF value is a scale factor for the current design’s Resistance 
Distribution that satisfies the PUPtarget goal. The µResistance and µLoad 
values are the means of the distributions that may be correlated; 
therefore, their values are have the same level of correlation. This 
means that LSF, which is the scale factor for the mean load that requires 
the scaled resistance, or 

 𝑅𝑅𝑠𝑠𝑠𝑠 ∗ 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 −  𝐿𝐿𝑆𝑆𝑆𝑆 ∗ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.0 (4.2 bis) 

 𝐿𝐿𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅∗𝑅𝑅𝑆𝑆𝑆𝑆
𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

 (4.3 bis) 

11. According to the Limit State equation, the mean Resistance to be 
designed for (µRDesign) is therefore 

 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 𝐿𝐿𝑆𝑆𝑆𝑆 ∗ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (4.4 bis) 

The difference between this numerical routine and the one in Section 4.2 
are in Steps 3 and 8, where the relationship of the change in load to 
resistance according to design changes is added to the computation in 
Step 8.  
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Figure 4-5 shows the results of applying the proportioned load procedure 
for predicting load and resistance factors to estimate the resistance force 
necessary to achieve a β target relating to an associated PUPtarget. Because 
simulations were run given base widths from 22 to 28 ft, average values 
could be computed for ∆Load and ∆Resistance, which were calculated as 
729.6717 lbf and 1,990.048 lbf, respectively. 

Figure 4-5. Predicted resistances for multiple wall widths to achieve a target β target 
(with load adjusted to match the rate of change with the variable resistance) versus 

the actual β  values computed for each wall width. 

 

The results of using this procedure show an all-around improvement, but a 
much better improvement for higher values of β target. The predicted values 
over all the base widths for β target=3.1 range from 52,189 lbf to 57,102 lbf 
with a difference of nearly 5,000 lbf using the fixed load procedure. The 
proportional load procedure has predicted values that range from 54,580 lbf 
to 56,711 lbf with a difference of just over 2,000 lbf. The computed actual 
value was 55,742 lbf, which nearly centers the smaller range.  

For β target equal to 2.7, the fixed load procedure predicted forces varied from 
46,463 lb to 53,718 lb. The proportional load predicted forces varied from 
46,820 lb to 51,366 lb. The precise value is approximately 47,158 lb, a value 
that is interpolated from the orange curve as it crosses the β = 2.7 value, 
which is much nearer to the predicted values using the shorter base width. 

Figure 4-6 shows the relationship of the predicted Resistance, Load, and 
(Resistance-Load) curves for direct simulations and simulation predictions 
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using the proportioned load procedure. For the Resistance and Load 
curves, the 22 ft base with T-Wall predicted histograms lie to the left of the 
actual 25 ft histogram values and have a narrower range. The 28 ft 
predicted Resistance and Load histograms lie to the right of the actual 25 ft 
histogram values and have a wider range.  

Subtracting the Loads from the Resistances, the (R-L) histogram curves 
cross the 0.0 vertical axis, and PUP values are computed by integrating the 
values to the left of the 0.0 vertical axis. Note that the PUP values for the 
25 ft actual simulations and the 22 and 28 ft predicted simulations are 
approximately the same; it is the mean values (µR-L) and standard 
distributions (σR-L) that change due the spread of the distribution values. 
Because less earth is mobilized with a shorter model base width, the spread 
of the distribution is less, and thus it is a better distribution to predict with. 
Recall that the proportioned load procedure prediction is based on mean 
loads and resistances. 

Figure 4-6. Actual versus Predicted Resistance, Load, and R-L histograms for the β target 
value of 2.9348 corresponding to the actual β  for the 25 ft base width model. 

 

The proportioned load procedure yields better predictions when the L and 
R distributions have less dispersion (Figure 4-6). This is revealed by the 
data in Figure 4-5, as described subsequently: the 25 ft base width precise 
(orange line) β  value is 2.93 and occurs with µResistance equal to 51,777 lb. 
The predictions from the base widths with precise β  values less than 2.93, 
which are the base widths less than 25 ft for this example, are better than 
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the base widths that have higher precise β  values. For example, the 22 ft 
base width prediction for β  equal to 2.93 of the resistance force is 
approximately 51,066 lb. This has a liberal error of less than 2%. Using the 
same example, the 28 ft base width prediction for β  equal to 2.93 of the 
resistance force is approximately 54,470 lb. This has a conservative error of 
greater than 5%. This trend is shown in Figure 4-5 by the fact that the 
predicted curves (in dashed lines) that are above the orange solid line 
precise values more closely follow the precise line curvature, whereas the 
predicted curves follow a nearly steeper curvature below the precise curve. 

For the proportioned load procedure to have a more accurate slope for the 
rate of change of µResistance to µLoad, at least a pair of design values that have 
precise β  values should encompass the β target. The difference between the 
precise value µResistance to µLoad for the encompassing values provide the rate 
of change of µLoad with respect to µResistance. Using the example of the 
previous paragraph, the 28 ft base width design, with β  equal to 3.17, has 
µResistance equal to 57,781 lb and µLoad equal to 39,744 lb. The 22 ft base 
width design, with β  equal to 2.62, has µResistance equal to 45,841 lb and µLoad 
equal to 35,366 lb. Using these two values, the mean load changes at a rate 
of 4,378 lb for each mean resistance change of 11,940 lb. This linear rate-of-
change slope provides the backbone for step 8 in the proportional load 
procedure. This allows a search for the mean resistance while maintaining 
the correlation-induced separation between µResistance and µLoad. These 
values are computed in Step 3 and applied in Step 8 of the proportional 
load procedure. 

4.7 Using RSF and LSF to compute load factor (γL) and resistance 
factor (ϕ R) 

Simulation values based on geospatial properties are used to determine the 
PUPinitial for a single limit state of the current geotechnical design given the 
example T-Wall structure, initially with a base width of 25 ft. The value for 
PUPinitial establishes the base relationship of RSF to PUPtarget, When 
PUPtarget is equal to PUPinitial, RSF is equal to 1. The statistical dispersion of 
the simulation samples establishes the rate at which RSF changes as the 
current PUP is adjusted to reach PUPtarget. In statistical simulations the 
population of simulated samples falling within the tails of the distribution 
are a critical feature affecting the accuracy of the PUP computation. 
Therefore, sufficient samples are required to achieve convergence as the 
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current PUP approaches PUPtarget. ϕR is sometimes referred to as γR in this 
report, as γ  is often used to reference factors for forces. 

 𝜑𝜑𝑅𝑅 ∗ 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥  𝛾𝛾𝐿𝐿 ∗ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (4.5) 

LSF is the ratio of scaled mean resistance to design mean load, when RSF has 
been applied to the resistance samples to obtain PUPtarget (Equation 4.5). 
Multiplying the mean load times LSF results in the amount of resistance 
that must be designed for (designated RDesign in Equation 4.4) to have a 
probability of unsatisfactory performance of PUPtarget, if all conditions 
remain the same. 

The resulting value of LSF times the mean load being required to be less 
than or equal to RDesign (Equation 4.4) means that LSF is equivalent to the 
ratio of the load and resistance factors (γL/ϕR), according to Equation 4.3. 
Equation C.19 in Appendix C.3 (which transposes γR for ϕR) reveals that, to 
achieve PUPtarget with varying resistances and loads, Equation 4.5 must be 
true for (1.0-PUPtarget), according to the Reliability Response Surface 
equation GZ()=0. 

4.7.1 Computing load and resistance factors from LSF 

Until this point, the load factor (γL) and resistance factor (ϕR) have not 
been considered separately, but as the ratio, LSF. To determine the 
individual values of the two factors, a value for one of these factors has to 
be assigned and the other computed. It is important to realize that these 
two factors, by definition, are defined due to the uncertainty in the 
definition of the load and resistance variables combined with an acceptable 
PUPTarget for the distribution of the difference in the resistance vector 
minus load vector of simulated values (i.e., R[] minus L[]. The USACE has 
traditionally specified (e.g., in ASD) acceptable resistance capacity 
limitations expressed in terms of FS or its inverse, the SMF, applied to 
capacity term for the Geotechnical limit states (EM 1110-2-2502) 
(HQUSACE 1989). The FS/SMF terms have been tempered to allow for 
conservative computation of design strength given experience in the 
uncertainty of estimation. Therefore, the authors of this report suggest 
specifying a value for the resistance factor ϕR. 

In consideration of the previous paragraph’s discussion, it is therefore 
deduced that RDesign has the higher variability, with negative impact when 
the resistance is less than that expected. This is reflected by values of ϕR 
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less than 1.0, reducing the amount of RDesign. A resistance factor value of ϕR 
less than 1.0 is cited in the Fenton et al. (2016) description of the 
Reliability-based Canadian Bridge design code that relates to geotechnical 
limit states. 

In EM 1110-2-2104 (HQUSACE 2016) Table 3-1, the values of ϕR applied to 
resistance forces determined by lateral earth pressures are 0.9 for at-rest 
conditions and 0.5 for all other conditions for the Extreme load case. The 
authors of this report suspect that this reflects the dispersion in soil 
strength properties for those Geotechnical limit state conditions. Recall 
that lateral earth pressures are important for calculating the Sliding and 
Base Area in Compression limit states. Once ϕR has been assigned, 
Equation 4.6 uses the definition of LSF to determine γL. 

 𝛾𝛾𝐿𝐿 =  𝜑𝜑𝑅𝑅 ∗ 𝐿𝐿𝑆𝑆𝑆𝑆 (4.6) 

Using the Example problem Extreme load case values from Table 4-2, 
LSF=1.635 when β target=3.5 and PUPtarget=0.00023. Under Extreme Load 
Case conditions, according to EM 1110-2-2104 (HQUSACE 2016), the value 
for ϕR is 0.5 for the resisting force of the passive earth pressure distribution 
force. Using Equation 4.6, γL would result in a value of 0.818, and from this 
same table, LSF=1.4 when β target=3.0 and PUPtarget=0.000125. Using 
Equation 4.6 with a ϕR equal to 0.5 results in γL equal to 0.7. In both of 
these cases, applying ϕR as 0.5 reduces the resistance distribution, which in 
turn causes the value of γL to converge to a smaller value which is less than 
1.0. This leads the authors of this report to question if the value of 0.5 is too 
conservative for ϕR. If the philosophy is taken that the factored load case 
should never be diminished, then the minimum γL would be 1.0. Applying 
this value with LSF=1.4, then the lowest value for ϕR should be 0.71 by 
Equation 4.6. 

Table 4-9 shows the results of performing the proportional method Monte 
Carlo simulations with the Sliding Limit state to determine the 
intermediate scale factors, RSF and LSF, and then converting them to the 
load and resistance factors, γL and φR, for the defined Extreme load cases of 
Section 4.3. The load factors in this table increase as the Extreme load case 
conditions become more severe (e.g., reduction of soil). This indicates to 
the authors of this report that the selection of the Extreme Load case 
conditions and geometry can make a significant impact in the design of 
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USACE hydraulic structures and lead to different Load (and when varied, 
Resistance) Factors. 

Table 4-9. Computation of Load and Resistance scale 
factors with β target equal to 3.5 for each of the Extreme 

load conditions. 

Extreme 
Load Case RSF LSF γL 

φR  
(EM 
1110-2-
2104) 
(HQUSACE 
2016) 

Dewatered 1.17 1.607 0.804 0.5 

Dewatered 
Soil at 
Base 

2.22 2.766 1.383 0.5 

Dewatered 
with 
Scoured 
Soil 

2.74 3.406 1.703 0.5 

4.7.2 Adjusting load and resistance factors to account for bias with 
nominal loads and resistances 

The procedure outlined for generating load and resistance factors in 
Section 4.7.1 works for the example problem, where load and resistance 
distributions are created as a result of computation applied to material 
variables drawn from well-defined distributions. These variables were the 
effective angles of internal friction for the Driving, Structural, and Resisting 
Wedges (φ’DW, φ’SW, and φ’RW, respectively) and the computed length of the 
slip planes. Because the load and resistance distributions were computed 
directly from these values, there was no estimation bias in the distributions. 

Bias factors are introduced due to the conservatism or liberalism in devised 
engineering computational procedures used to establish nominal resistance 
and load values. Subsection 2.1.2 in Ebeling and White (2019) discusses an 
example computation of a bias factor for the resistance of a pile foundation. 
The reader is referred to this subsection for further details on one approach 
that is used for computing a value for the bias factor. 

Nominal distributions based on devised engineering design methodologies 
have two governing statistical components, a nominal mean value (µnominal) 
and the COV, from which the standard deviation (σnominal) can be obtained. 
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The bias scale factor (λ) is applied to µnominal to create the base mean value 
(µ). The COV is not changed and maintains the same relationship between 
the µnominal and σnominal as between µ and σ. This applies for both load and 
resistance distributions. From this point forward, the distribution with 
nominal values will be referred to in this report as the nominal distribution 
and the distribution with bias factors applied will be referred to as the 
mean distribution. Therefore, the means of the load and resistance 
distributions are 

 𝜇𝜇𝐿𝐿 = 𝜆𝜆𝐿𝐿 ∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (4.7) 

and 

 𝜇𝜇𝑅𝑅 = 𝜆𝜆𝑅𝑅 ∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (4.8) 

Applying these equations to the performance function inequality implied by 
Equation 4.2, which works with mean values: 

 𝜑𝜑𝑅𝑅 ∗ 𝜆𝜆𝑅𝑅 ∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≥  𝛾𝛾𝐿𝐿 ∗ 𝜆𝜆𝐿𝐿 ∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (4.9) 

The procedures that have been developed to find the LSF that guarantees a 
PUPtarget works with the mean distributions according to the Gz() functional 
Equations 4.2 and 4.3. Equation 4.4 gives the equation for the mean design 
resistance from LSF and µL. These leads to the following derivations: 

 𝜇𝜇𝑅𝑅 = 𝐿𝐿𝑆𝑆𝑆𝑆 ∗ 𝜇𝜇𝐿𝐿  (4.10) 

 𝜆𝜆𝑅𝑅 ∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐿𝐿𝑆𝑆𝑆𝑆 ∗ 𝜆𝜆𝐿𝐿 ∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (4.11) 

and 

 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐿𝐿𝑆𝑆𝑆𝑆∗𝜆𝜆𝐿𝐿
𝜆𝜆𝑅𝑅

∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (4.12) 

This suggests that a nominal load scale factor LSFnominal can be introduced 
that scales µnominalL to the design value of µnominalR.  

 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗  𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (4.13) 
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where 

 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝑆𝑆𝑆𝑆∗𝜆𝜆𝐿𝐿
𝜆𝜆𝑅𝑅

 (4.14) 

Since the bias factors must be defined for the problem and the LSF value can 
be computed procedurally, LSFnominal can be found for the system. 

From Equation 4.6,  

 𝐿𝐿𝑆𝑆𝑆𝑆 = 𝛾𝛾𝐿𝐿
𝜑𝜑𝑅𝑅

 (4.15) 

Substituting into 4.14,  

 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛾𝛾𝐿𝐿∗𝜆𝜆𝐿𝐿
𝜑𝜑𝑅𝑅∗𝜆𝜆𝑅𝑅

 (4.16) 

Solving for γL, 

 𝛾𝛾𝐿𝐿 = 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗
𝜑𝜑𝑅𝑅∗𝜆𝜆𝑅𝑅
𝜆𝜆𝐿𝐿

 (4.17) 

Using the EM 1110-2-2104 (HQUSACE 2016) Table 3-1 values as an 
unbiased ϕR in the same manner mentioned at the beginning of Section 4.7, 
the value of the unbiased γL can be determined. This is the generalized form 
of the load and resistance factors for nominal values with bias. If λL and λR 
are both 1, then the equations revert to the form discussed in the previous 
sections.  

4.8 Using upper range point estimate coefficient of variation (COV) 
values for material properties  

Increasing the COV of the input material variables (e.g., effective angle of 
internal friction) for this system should increase the variability of the load 
and resistance for the model. These load and resistance variabilities acting 
on the Structural Wedge, in turn, will affect the generation of load and 
resistance factors. The values from Table 2-1 do not use the Upper Range 
values for COV for the effective angle of internal friction for example 
problem displayed in Figure 2-1.  

The Upper Range point-estimate COV values for the effective angle of 
internal friction of the three soil regions are listed in Table 4-10 and based on 
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the soils strength data contained in Appendix D of Ebeling and White (2019). 
These point-estimate COV values were converted to spatial COV values using 
the procedure outlined in Ebeling and White (2019) for use in the analysis 
summarized in this section. Table 4-10 lists these Upper Range COV values 
along with the original, Mid-Range COV values for comparison purposes. 

Table 4-10. Engineering properties with Upper Range COV values for the three soil 
regions of the example T-Wall problem. 

 Unit 
Weights Soil Friction, φ’ Interface 

Friction, δ’ 
Hydraulic 

Conductivity 

Soil 
Region Soil Type γmoist 

(pcf) 
γsat 

(pcf) 
µφ’ 

(deg) 

Mid-
Range 
COVφ’ 
(%) 

Upper 
Range 
COVφ’ 
(%) 

Ratio 
δ’/φ’ 

µδ’ 
(deg) 

µk 
(cm/sec) Direction 

1 Compacted 
sand 123 126 35 10 20 0.4 14 2x10-3 Vertical 

2 Silty sand 
foundation - 123 30 20 30 1.0 30 4x10-4 Horizontal 

3 Compacted 
sand - 126 37 12 24 1.0 37 1x10-3 Vertical 

To measure the effect of changing the COVs for the material variables (φ’DW, 
φ’SW, and φ’RW), simulations were performed as the COVs were linearly 
changed from the original, Mid-Range COVs to the Upper Range COVs as 
characterized by the parameter t. The parameter t is 0.0 for the original, 
Mid-Range COVs, 1.0 for the Upper Range COVs, and at select, linear 
interpolation for values for t greater than 0.0 and less than 1.0. The 
procedure of Section 4.6 was performed with differing values of βTarget. 

The relationship of Sliding Limit State LSF values to the change of COVs is 
given in Figure 4-7 for different values of βTarget. The value of βTarget, 
designated B in this figure, range in value from a low of 1.0 to a high of 3.5. 
Because an increasing COV can be construed as increasing uncertainty 
about the mean values for the soil strength variables, the results indicate 
that the ratio of Load Factor to Resistance Factor increases as the 
dispersion increases. This makes sense, as the Load and Resistance Factors 
are generated to address uncertainty.  
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Figure 4-7. Computed values for Sliding Limit State LSF with the same target β  
(designated B) as the COVs go from the original, Mid-Range value (t=0.0) to the Upper 

Range values (t=1.0). 

 

For the Figure 4-7 family of curves with different βTarget values, the rate of 
change in LSF values with increasing Upper Range COV values distances 
between consecutive curves increases and is observed to be increasingly 
non-linear for the largest COV values region (i.e., near t = 1.0). This is to be 
expected as higher βTarget values approach the tails of the distributions, 
where sample density decreases. 

The increase in the LSF values is not linear for any β Target value. The authors 
speculate that this non-linearity results because the computed Load 
distribution sees a greater increase in COV than the computed Resistance 
distribution. 

Using Equation 4.6 with a Resistance Factor of 0.5, from EM 1110-2-2104 
(HQUSACE 2016) Table 3-1 Extreme load case lateral earth pressures, with 
the results in Figure 4-7 gives the Load Factor to uncertainty plot of Figure 
4-8. The relationship of Equation 4.6 demonstrates that for a Resistance 
Factor held constant, the Load Factor increases in value as 
dispersion/uncertainty increases. 
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Figure 4-8. Computed values for Sliding Limit State Load Factor (based on a 
resistance factor of 0.5) with the same target β  (B) as the COVs go from the original, 

Mid-Range value (t=0.0) to the Upper Range values (t=1.0). 

 

For a single load case, it is possible to map how the load factor changes as a 
function of βTarget. Figure 4-9 shows how load factors increase as βTarget 
increases for the system with Upper Range COVs for the Sliding Limit 
State. The relationship resulting from the simulations is non-linear due to 
the probability densities decreasing at distances further from the mean. 
The curve is smooth for β s from 1 to 3.5 because there is an adequate 
number of samples in those regions to make fairly accurate predictions. 
The curve begins to show some irregularity in results for β  values of 3.5 to 4 
because the number of simulation samples in that region, due to low 
probability density, are likely smaller than required. However, the authors 
feel that the trend is adequately captured in these results and no further 
simulation analyses with larger sample sizes are warranted. Computing 
load factors for higher β  values would require performing a much greater 
number of simulations. The form of the curve is apparent in Figure 4-9, 
even with the recognized instabilities in the tail of the distribution. 
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Figure 4-9. Upper Range COV value based computed Sliding Limit State Load Factors 
for increasing β Target, all for a Resistance Factor of 0.5. 

 

4.9 Conclusions 

4.9.1 Results from Original, Mid-Range COV values for effective angles of 
friction 

Section 4.1 presents an assessment of existing limit state computations with 
respect to geotechnical problems, specifically the example problem described 
in Chapter 2. The traditional Reliability-based methods rely on defined (e.g., 
Gaussian) and uncorrelated distributions with continuity of slope for load 
and resistance (e.g., Nowak and Collins 2013). The Example 2 geotechnical 
problem creates load and resistance distributions that are not well-defined, 
continuous, and non-correlated because the loads and resistances are 
computed from normal distribution soil properties with conditional 
equations where all of the soil properties are used for load and resistance. 

Section 4.2 introduces another procedure for determining load scale factors 
for individual limit states that relies on direct Monte Carlo simulation given 
values recovered from distributions of the material properties (i.e., φ’1, φ’2, 
and φ’3). Recall that these three shear strength parameters are defined as 
independent, normally distributed variables in the Chapter 2 T-Wall 
problem. From these simulation runs, correlated resistance and load 
samples are computed in the units consistent with each limit state. A scale 
factor for the existing resistance samples can be searched for numerically to 
find the value such that the scaled values compared to the corresponding 
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load samples yields the probability of unsatisfactory performance desired. 
This resulting Resistance Scale Factor is then converted to a Load Scale 
Factor in the devised analytical procedure. Given the correlation, and 
changes of load and resistance values as the design changes, this process may 
need to be iterated to achieve the desired accuracy for the desired PUP.  

Using the Example 2 design of a T-wall with a base of 25 ft under the Usual 
load condition and Extreme load condition, each of the three geotechnical 
limit states were assessed for the Load Scale Factor determined by the 
Section 4.2 procedure. The biggest indicator that a limit state is more likely 
to occur than another is the Resistance Scale Factor. The greater the value 
of RSF, and especially if it exceeds 1.0, indicates the greater PUP values. 
Because the range between load and resistance distribution means can vary 
by large amounts between limit states, the LSF value does not reveal the 
PUP status between limit states.  

In traditional steel structure LRFD design, the variation in both the 
nominal load and resistance can be estimated with more certainty than the 
resistance and load in a Geotechnical limit state involving soil structure 
interaction. Soil strength properties are measured sparsely and are spatially 
correlated. Generally speaking, the dispersion in Geotechnical strength 
properties are greater than for structural steel and concrete strength 
properties. In addition, the dispersion in Geotechnical strength properties 
contribute to the dispersion of the resisting and load forces applied to the 
structural wedge by the driving wedge and by the resisting wedge of the 
three wedge system formulation that are used in the three Geotechnical 
limit state evaluations of Sliding, Base Area in Compression, and Bearing. 

Note that using USACE criteria for allowable stress design (EM 1110-2-
2100) (HQUSACE 2005) resulted in a base width for the example T-Wall 
being 25 ft. Under Normal Load conditions, the PUPinitial for this structure 
is 0.00025, and the resulting β initial is over 3.5. However, LRFD is about 
improving reliability under Extreme load conditions, which by definition, 
happen infrequently. According to Figure 4-5, extending the base width of 
the wall to 26 ft will provide satisfactory performance corresponding to a 
value of β  greater than 3.0. To approach a β target of 3.5, the computations 
show that the base width would have to be extended to 32 ft.  

However, extending the base width to 32 ft may be unnecessary, at least 
according to traditional USACE guidance. The Base width design is based 
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on FS according to design using the CTWALL (Pace 1994) software. This 
design meets the standards of EM 1110-2-2502 (HQUSACE 1989) and, 
therefore, the EM 1110-2-2100 (HQUSACE 2005) guidance for the FS for 
sliding of a structure under Normal loading using the Ordinary Site 
Information Category. This FS under ASD of 1.5 yields a design β  of 3.48 
under the Normal Load case, using Monte Carlo simulations.  

Using the EM 1110-2-2100 (HQUSACE 2005) guidance for the FS for 
sliding of a structure under Extreme loading using the Ordinary Site 
Information Category, the FS should have a minimum value of 1.1. The 
lowered safety factor reflects the fact that Extreme loading is an infrequent 
and short duration occurrence, so the PUP value is affected by how often 
these events occur as well as their duration. CTWALL software executions 
with the Extreme Load case yielded a FS of 1.43, which exceeds this ASD 
guidance limit of EM 1110-2-2100 (HQUSACE 2005). Monte Carlo 
simulations give this limit state a yield β  of 2.92. This value affirms the 
selection of lower β  values in the work of Fenton et al. (2016), where a β  of 
2.5 was used for soil-structure interaction for bridges but also reveals that 
the new proportioned load procedure allows for greater accuracy in β target 
calculation over the Fenton approximations. The authors suggest that β target 
values for the SSI limit states can approach values of 3.0, resulting in safer 
PUP values.  

This leads the authors to conclude that for this example problem in which 
the sliding limit state controls the T-Wall geometry, a β target for the 
Extreme load case can be defined to be less than the β target for the normal 
load case. Using the proportioned load procedure with an appropriate limit 
state model and correctly conditioned Extreme Load cases, greater 
accuracy can be obtained resulting in lower PUP values.  

4.9.2 Results from Upper Range COV values for effective angles of 
friction 

LRFD results are based on Extreme events, where limit state boundaries 
are exceeded. To achieve those conditions, the most severe conditions that 
the designed T-Wall will be put under were used (Figure 4-3 b). However, 
to adequately understand the variability in the model, Upper Range COV 
values for known distributions of the independent variables φ’DW, φ’SW, and 
φ’RW should be used. The greater variability leads to higher Load Factors. 
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In Table 6.3 of his unpublished 2015 letter report to the USACE on the 
topic of Procedures for Developing Reliability-Based Load Criteria for 
Hydraulic Steel and Concrete Structures, Professor Bruce Ellingwood 
recommended 100-year service life target β  values of 3.5 and 4.0 for non-
critical and critical structures, respectively. This recommendation of 
reliability targets for LRFD is for hydraulic structures possessing a single 
load path. 

In the Barker et al. (1991) LRFD study, resistance factors were developed 
using statistical data gathered from case studies obtained from published 
literature. Small scale-model tests provide the primary source of data for 
the Reliability assessment of footings in their study. The Load and 
Resistance factors were calibrated by fitting to ASD for different foundation 
systems. Allen (2005) observed that calibration by fitting to ASD influenced 
and frequently controlled the final value selected for the resistance factor in 
the Barker R&D team’s study. 

Allen (2005) observes that resistance factors in general for (US) bridge and 
other structural designs have been derived to produce a β  value of 3.5, 
corresponding to an approximate probability of failure of 1/5,000. In 
Allen’s summary and interpretation of the Barker et al. (1991) R&D team’s 
landmark study of the reliability of different types of foundations, Barker et 
al. (1991) concluded that a target reliability index value of 3.5 should be 
used for footings and other non-redundant systems. This recommendation 
is not universal to all foundation types. For example, separate target β  
value recommendations were made by Allen and other engineers that he 
cited for individual and group pile foundations. Driven piles were 
distinguished from bored piles in these target β -value recommendations.  

Fenton et al. (2016) observe that according to the probabilistic based 
Canadian Bridge Design Code (CSA 2014), a typical geotechnical system 
might have a target maximum lifetime failure probability, pf, of 1/5,000 
(2.0 × 10-4) for an Ultimate Limit State with a typical consequence level. 
Canadian bridges are designed for a 75-year design life. A value for pf of 
1/5,000 for a 75-year design life structure has to be adjusted to account for 
the fact that USACE hydraulic structures have a design life of 100 years. 
This adjusted value, given the longer structural design life, is reported in 
Table 2-8 of Ebeling and White (2019) and corresponds to a PUP value of 
1/3,475 (2.67 × 10-4). This PUP value is equivalent to a β  value of 3.46. 
Again, according to Fenton et al. (2016), the Canadian Bridge Design Code 
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(CSA 2014) provides guidance for a target maximum lifetime failure 
probability, pf, of 1/10,000 for an Ultimate Limit State with a high 
consequence level. Ebeling and White (2019) in their Table 2-8 report for a 
100-year design life, a corresponding PUP value of 1/7,519 (1.33 × 10-4) and 
its equivalent β  value of 3.65. Summarizing, the probabilistic Canadian 
Bridge Design Code data would infer a range in β  between 3.46 and 3.65 
for typical to high consequence levels in a 100-year design life structure. 

Table 3-1 in EM 1110-2-2104 (HQUSACE 2016) guidance for the Extreme 
load case for lateral earth pressures provides values for a Resistance Factor 
of 0.5 and a Load Factor of 1.4. A Load Factor value of 1.4 corresponds to a 
Reliability Index value of approximately 3.8 by the data given in Figure 4-9 
for Upper Range COV values for effective angles of internal friction. The β  
value of 3.8 for a USACE Navigation Structure falls approximately midway 
between the Ellingwood reliability index recommendation for normal and 
critical structures. This computed β  value of 3.8 exceeds the historical ASD 
foundation design β  experience (Allen 2005) as well as the guidance for the 
Canadian Bridge Design Code as described by Fenton et al. (2016). Thus, 
the EM 1110-2-2104 (HQUSACE 2016) guidance LRFD values for load and 
resistance factors for the driving and resisting earth pressure loads applied 
to the Structural Wedge in the sliding limit state are deemed slightly 
conservative but not excessive by the authors of this report when a β  of 3.8 
value for the dominant limit state of sliding is compared to the target β  
values given by Allen (2005) and Fenton et al. (2016). This assessment may 
be improved by making a Reliability assessment of other earth-retaining 
USACE hydraulic structures following the procedure of analysis outlined in 
this technical report. 

Using Figure 4-9, a load factor of 1.2 is sufficient to achieve a target β  equal 
to 3.5 for the dominant limit state of sliding, which is required according to 
Ellingwood for a noncritical structure with a single load path, given a 
specified resistance factor of 0.5 according EM 1110-2-2104 (HQUSACE 
2016) guidance. This Load Factor value is 14% lower than the reported EM 
1110-2-2104 (HQUSACE 2016) load factor of 1.4 with the same specified 
resistance factor. 
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5 A Numerical Method for Computing 
Multiple Limit States Probability of 
Unsatisfactory Performance (PUP) and 
Load Factors for the Example Soil-
Structure Interaction of the T-Wall Model 
with Material Variability 

5.1 Combining multiple limit states 

Chapter 3 introduced procedures for calculating the g(X) functions for each 
of the individual limit states that can occur for the T-Wall example problem 
specified in Chapter 2. Each g(X) function is created based on the 
computed loads and resistances, with failure happening when the load 
exceeds the resistance, a natural conclusion of Equation 2.52. The loads 
and resistances are computed from the variable soil properties of vector X 
and expected water levels in the geotechnical three wedge solution method, 
using Driving, Resisting, and Structural Wedges. Chapter 2 concluded by 
stating that lower values of g(X) are not desired, with values less than the 
response surface (where g(X)=0.0) indicating failure or unsatisfactory 
performance. 

To compute the combined PUP for all of the limit states for the T-Wall 
example problem, there needs to be an overarching performance function 
that accounts for all the limit states at once. Because lower values are not 
desired, this performance function can be computed as 

 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿) = min(𝑔𝑔1(𝑿𝑿),𝑔𝑔2(𝑿𝑿),𝑔𝑔3(𝑿𝑿),𝑔𝑔4(𝑿𝑿),𝑔𝑔5(𝑿𝑿),𝑔𝑔6(𝑿𝑿)) (5.1) 

where  

 gMLS(X) = the Multiple Limit State performance function, 
 g1(X) = the overturning limit state, 
 g2(X) = the sliding limit state, 
 g3(X) = the bearing limit state, 
 g4(X) = the stem shear limit state, 
 g5(X) = the stem moment limit state, 
 g6(X) = any additional limit state (e.g., based upon limiting 

deformation for the T-Wall). 
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For PUP calculations, the exact value of a performance function is not 
necessary. It is only necessary to report if the performance function exceeds 
0.0 or not, which determines if the performance is satisfactory or not. This 
leads to a response surface indicator function, given as 

 𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿) = �0:𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿) ≥ 0.0
1:𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿) < 0.0 (5.2) 

For this multiple limit state indicator function a value of 0 indicates 
satisfactory performance while a value of 1 indicates unsatisfactory 
performance. 

Figure 5-1 shows a probability-based two-variable space with multiple limit 
states. The two variables X’1 and X’2 shown in this figure are presented in 
the transformed basic variable space, as described in Section 2.4 of Ebeling 
and White (2019). The concentric, blue circles shown in this figure represent 
the radially symmetric, normalized, Normal-Gaussian PDF distribution. 
Observe that the PDF is isotropic in this transformed, 2-D space. The 
Reliability Index β  shown in this figure represents the number of standard 
deviations from the means of X’1 and X’2 variables of this figure’s origin to 
the Design Point. The Design Point is the closest distance from either limit 
state response surface to the mean center. The response surfaces for the 
two limit states are identified in this figure. The area beyond the red 
combined response surface line (where the areas are shaded) is the region 
where the indicator function would return 1, with the unshaded regions 
returning 0.  
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Figure 5-1. A 2-D example of multiple limit states with closest approach of length |β | 
in the transformed basic variable space. 

 

5.2 The multivariate space for the response function 

For the Chapter 2 Example T-Wall problem, the variable vector is described 
as 

 𝑿𝑿 = �𝜙𝜙′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝛿𝛿′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝜙𝜙′𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 𝛿𝛿′𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙′𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝛿𝛿′𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�(5.3) 

Where the values are drawn from the distributions determined from the 
mean values (µ) given in Table 2-1 and using the spatial COVs calculated 
according to the procedures of Chapter 3 to obtain the needed value of 
standard deviation (σ= COV times µ). Recall from Chapter 2 that the soil 
strength parameters φ’ and δ’ for all three soil regions are assumed to be 
normally distributed with a lower bound at µ minus 5*σ and an upper 
bound at µ plus 5*σ. For simplicity in the example problem, these 
respective distributions are assumed to have no correlation and are drawn 
from Gaussian distribution. Because the distributions are not correlated, 
they can form orthogonal axes of a probability distribution space. Using the 
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means as the origin and normalizing each distribution by its standard 
deviation, the variable distributions form a normalized Gaussian 
distribution space.  

The vector X describes a point in the space, where the probability of that 
point is 

 ℎ𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿) = ∏ ℎ(𝑋𝑋𝑛𝑛)𝑛𝑛  (5.4) 

where h() is the probability density function for the normal Gaussian 
distribution and Xn is the nth variable of vector X. 

The normalized Gaussian distribution space has several simplifying 
properties. For instance, given a hypersphere with radius β  from the mean 
origin in the normalized Gaussian distribution space, every point on the 
surface of the hypersphere has the same probability. Another useful 
property is that given the same hypersphere of radius β, integrating the 
area of the half-space behind any hyperplane tangent to the hypersphere 
has the same probability as the area behind a point at that distance for an 
individual normal distribution. 

5.3 Calculation methods for PUP  

5.3.1 Advanced second moment (ASM) method for a single limit state 

The ASM family of procedures can find the closest point on a response 
surface (where g(X)=0.0) from the origin at the mean values for the 
normalized Gaussian distribution space. This closest point is called the 
design point (Figure 5-2). The vector from the mean origin to the design 
point has distance β  and can be normalized to a unit vector that has the 
directional cosine values for each of the axes, α. This vector is 
perpendicular to the response surface if the response surface is 
hyperplanar. From the description of the normalized Gaussian distribution 
space, the PUP value of this single limit state is the same as one minus the 
single normal distribution CDF value for β, 1-Φ (β ) (Figure 5.3). 

The ASM methods use the same procedure to find the design point. Using 
the derivative to find the slope toward the response surface, the ASM 
method walks along the surface to find the local minima distance between 
the mean origin and the response surface. 
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Although it is not a method that can be used for multiple limit states, the 
ASM methods can serve a useful purpose for proposed methods to calculate 
PUP. For instance, bound-finding methods combine multiple hyperplanar 
equations to determine the effective range for PUP values. Another 
example is the use of the design point for Importance Sampling, which will 
be discussed at the end of Subsection 5.3.3. 

Figure 5-2. A 2-D example of the PUP region and the hyperplane description using α 
and β  determined using ASM methods.  
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Figure 5-3. Transferring the hyperplanar limit state to the single normal axis. 

 

5.3.2 Numerical solutions for PUP  

5.3.2.1 Direct Euler numerical integration 

Given a normalized Gaussian distribution space, the PUP value can be 
computed by integrating the space with the indicator function. Equation 5.5 
gives an integration for PUP using Euclidean coordinates in the normalized 
Gaussian distribution space. Figure 5-4 shows how this integration is 
performed numerically by discretizing the probability space of 2-D vector X. 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 = Φ(𝑿𝑿) = � ∫ ∫ …∫ 𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁)𝑋𝑋𝑁𝑁𝑋𝑋2𝑋𝑋1
∗

ℎ𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁)𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2 …𝑑𝑑𝑋𝑋𝑁𝑁
� (5.5) 

To find an approximate design point (the location of unsatisfactory 
performance that is closest to the mean origin), the center location of the 
grid point needs to be determined. A best distance measure is initialized to 
infinity for the start. As the integration proceeds, if unsatisfactory 
performance has been found, then the distance from the gridpoint center to 
the mean origin is computed. If this distance is less than the previous best 
distance, then the new design point is set to the gridpoint center and the best 
distance is set to its distance to the mean origin. This design point has an 
error no bigger than the distance from corner to corner of a grid cell. 
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Figure 5-4. Numerical integration and computation of a PUP value with two variables 
with Gaussian distributions given a single hyperplanar limit state  

(using Euclidean coordinates). 

 

5.3.2.2 Adaptive hyperspherical Gaussian probability numerical integration 

Another numerical method to integrate this area has properties that can 
optimize algorithmic run times. This method is to use polar coordinates 
instead of Euclidean coordinates. Because the probability at a certain 
radius has the same probability for any angles, varying the radius first 
reduces the number of times a probability has to be calculated for the 
hyperspherical shells. The integration in polar coordinates is given as 

𝑷𝑷𝑷𝑷𝑷𝑷𝑴𝑴𝑴𝑴𝑴𝑴 = 𝚽𝚽(𝒓𝒓,𝝋𝝋,𝜽𝜽𝟏𝟏…𝑵𝑵) =

∫ ∫ ∫ …∫ � 𝒊𝒊𝑴𝑴𝑴𝑴𝑴𝑴(𝒓𝒓,𝝋𝝋,𝜽𝜽𝟏𝟏,𝜽𝜽𝟐𝟐, … ,𝜽𝜽𝑵𝑵)𝒉𝒉(𝒓𝒓)𝒓𝒓𝑵𝑵 ∗
𝒔𝒔𝒔𝒔𝒔𝒔𝑵𝑵−𝟏𝟏(𝝓𝝓𝑵𝑵)𝒔𝒔𝒔𝒔𝒔𝒔𝑵𝑵−𝟐𝟐(𝝓𝝓𝑵𝑵−𝟏𝟏) … 𝒔𝒔𝒔𝒔𝒔𝒔(𝝓𝝓𝟏𝟏)𝒅𝒅𝝓𝝓𝑵𝑵𝒅𝒅𝝓𝝓𝑵𝑵−𝟏𝟏 …𝒅𝒅𝝓𝝓𝟏𝟏𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

�𝜽𝜽𝑵𝑵𝜽𝜽𝟏𝟏𝝋𝝋𝒓𝒓 (5.6) 
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where the polar-coordinate version of function iMLS() is computed by 
converting the coordinates to Euclidean coordinates and solving in the 
previous fashion. 

To find an approximate design point (the location of unsatisfactory 
performance that is closest to the mean origin), it is only necessary to store 
the gridpoint centroid of the first unsatisfactory result. Since the radius 
proceeds outward from the mean origin, this point is at the shortest 
distance to the limit state response surface. Because of perspective effects, 
the error in this method increases with the distance from the mean origin. 

5.3.2.3 Hybrid adaptive hyperspherical Gaussian probability numerical 
integration using ASM 

Because of the number of dimensions and the necessity of high-accuracy 
solutions, hyperspherical probability integration methods suffer from 
exponential growth, which leads to rapid growth until the solution 
computation becomes intractable. Methods that restrict the volume to be 
integrated and the step size for computational summation can help 
mitigate this growth restraint, as well as restricting the number of variable 
dimensions. This section provides methods to restrict the volume to be 
searched and the step size as the integration is performed. 

Previously, there have already been provided limits on the volume to be 
searched by limiting the search to β  radius values less than 5.0 standard 
deviations. This limitation is based on the normalized Gaussian 
distribution space, which has a cumulative probability that is less than 
10e-6 beyond the 5.5th standard deviation, or in the tails of the 
distribution. This restriction can be further limited by recognizing that each 
limit state is defined by a hyperplane that can be defined with β radius and 
α  vector using the ASM methods. Because the integration solves for the 
PUP, the range of the solution only needs to progress from the β  value for 
the limit state hyperplane nearest the mean origin of the normalized 
Gaussian distribution space to the maximum β  value of 5.5.  

While this method can make a tremendous impact on the time to perform 
the probabilistic integration, this technical report uses non-hybrid 
method unless otherwise specified. This method is used to maintain the 
same numerical computations throughout to prove the utility of the 
complete method.  
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5.3.3 Computing PUP using simulation 

Traditional Reliability solutions rely on simulation to calculate PUP. 
Simulation methods work by generating X through probabilistic sampling 
of the constituent distributions. Because samples are chosen according to 
the distribution, a large sample set begins to approximate the probability 
density of the area of the space. Thus, for n samples, the PUP value can be 
calculated as 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿𝑛𝑛)𝑛𝑛
𝑛𝑛

 (5.7) 

where Xn is the nth sampled point. 

For a typical Monte Carlo simulation, samples are chosen completely at 
random. Because so many samples are chosen in high-probability regions 
of the space, it takes a large number of points to accurately map the 
normalized Gaussian distribution space. 

Another sampling method called Latin Hypercubes divides each probability 
axis into a fixed number nLH of equal probability regions. To create a set of 
samples, each axis is assigned one of its probabilistic regions at random. 
Once selected, that probabilistic region cannot be selected again for that 
axis. A sample point is selected within the selected hyperregion. This is 
done until nLH samples have been selected. At this point, the process to 
calculate Equation 5.7 is performed. Because the normalized Gaussian 
distribution space is divided according to the distributions and points are 
guaranteed to be selected from every region for every variable, fewer 
samples are necessary for Latin Hypercubes than for the simple Monte 
Carlo technique. 

Both Latin Hypercube and Monte Carlo simulation suffer issues with 
accuracy when the area of interest (in this case, the response surface and 
unsatisfactory region) has very low probabilities. Importance Sampling is 
the method to deal with this. In Importance Sampling, a point is chosen on 
or near a transition region and then points are chosen about the 
distribution at that location. The probabilities of the sample points are then 
transformed back to the original distributions. Because more samples are 
taken about the region of interest, the accuracy of the calculation is 
improved. To find a point on the region of interest, an Advanced Second 
Moment computation is performed using the g(X) function to find the 
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point on the response surface nearest to the origin (the design point at the 
original distribution mean values). The design point establishes a 
normalized vector α and a distance to the surface β. Importance Sampling 
is used in the USACE CASE program CPGA-R probabilistic solution 
procedure for the Reliability analysis of pile groups and calculation of a 
PUP value. Figure 5-5 depicts the governing Equations 5.8 through 5.11. 
The author’s experience is that while Importance Sampling improves 
accuracy locally, it can have problems with concave response surfaces that 
enclose the tail ends of the distributions.  

For distribution spaces P and Q, where the points will be sampled from Q 
but transformed to a probability in P for Importance Sampling, the 
normalized distance that a sampled point has from each distribution space 
mean is given as 

 𝜷𝜷𝒑𝒑 = 𝑿𝑿𝒊𝒊−𝝁𝝁𝒑𝒑
𝝈𝝈𝒑𝒑

 (5.8) 

 𝜷𝜷𝒒𝒒 = 𝑿𝑿𝒊𝒊−𝝁𝝁𝒒𝒒
𝝈𝝈𝒒𝒒

 (5.9) 

The weighting function based on these β  vectors is then 

 𝑊𝑊(𝑿𝑿) = 𝑃𝑃(𝜷𝜷𝒑𝒑)
𝑄𝑄(𝜷𝜷𝒒𝒒)

 (5.10) 

Where the functions p() and q() represent the PDF point probabilities for 
the sample point Xi in the two spaces. This leads to the calculation of the 
point chosen from the distribution space Q in terms of probability in 
distribution space P as 

 𝑃𝑃𝑢𝑢 = 1
𝑁𝑁
∑ 𝐼𝐼(𝑔𝑔(𝑿𝑿𝑁𝑁
𝑖𝑖=1 ))𝑊𝑊(𝑿𝑿) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 � 𝐼𝐼 = 1|𝑔𝑔(𝑿𝑿) < 0

𝐼𝐼 = 0|𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� (5.11) 
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Figure 5-5. Importance Sampling determines the ratio between two distributions P and 
Q to calculate the true p probability for the point sampled from q.  

 

5.3.4 Finding the limiting range (bounds) for PUP  

Ang and Tang (1984), in an effort to reduce time to compute the value of 
PUP with multiple hyperplaner response surfaces, decided to use logical 
methods based on DeMorgan’s rule for the combination of logical 
probabilities. 

There are limited technical publications reporting on probabilistic 
investigations of multiple Geotechnical limit states and multiple failure 
modes. Fan et al. (2014) discuss the Reliability analysis of piles in spatially 
varying soils considering multiple failure modes. Specifically, they 
summarize their research into the performance state of vertical drilled shafts 
under combined lateral and axial loading using a Reliability analysis. The 
performance of the vertical pile is defined in terms of the displacements 
induced by external loading. They consider three performance limit states: 
lateral pile deflection, angular pile distortion, and axial pile movement at the 
top of shaft. The unsatisfactory performance event is said to occur if the 
induced displacements at the top of the pile are greater than the 
corresponding allowable displacements. Lateral pile response is computed 
using the p-y method of pile-to-soil interaction analysis, and vertical 
displacements are computed using a t-z model for pile-to-soil interaction.1 
Uncertainties in soil deformation and strength properties are considered in 
their Reliability analysis. Each of the soil property variables used in the 

 

1 Examples of the USACE CASE programs that perform lateral p-y analysis and axial t-z analysis are 
COM624G and CAXPILE, respectively. 
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analytical model are characterized by values of mean, standard deviation and 
distribution type (e.g., normal, lognormal). With the statistical properties 
defined, a Monte-Carlo simulation method is used to conduct the Reliability 
analysis. They apply a conventional Reliability methodology of computing a 
PUP value for each of the three displacement limit states as well as a PUP 
value for the system.  

One of the important findings of the Fan et al. (2014) study is that the PUP 
for the system is greater than for any of the three individual displacement 
limit state modes and is less than the sum of the PUP values of the three 
individual limit state modes if assuming the statistical independence 
among the three limit state modes. Fan et al. (2014) emphasize that the 
value for PUP will be underestimated if multiple displacement limit state 
modes are not considered simultaneously while the PUP value for the 
system will be overestimated if the dependence among the different 
displacement limit states is not considered. 

The USACE hydraulic structures are designed to resist multiple limit states, 
which are listed in Section 1.5. When a hydraulic structure is viewed in 
terms of a Reliability methodology, Fan’s research indicates that the 
interrelationship between multiple performance limit states and a system 
PUP value is an important consideration. This is one of the research tasks 
investigated by the authors of this report, with the initial findings discussed 
in the Phase 1 portion of the two-phase research study, in Chapter 4 and 
Appendix A of Ebeling and White (2019). 

Accommodating multiple limit states and/or failure modes given multiple 
variables in the PUP calculation has been shown by the Fan et al. (2014) 
study to be a requirement of a Reliability analysis. Therefore, Appendix A 
describes different methods that have been researched and/or devised by 
the authors of this report to estimate the overall PUP values for systems 
with multiple limit state response surfaces.  

For a single Limit State with a hyperplanar Limit State Response Surface, 
as shown in Figure 5-6, the calculation of PUP is simple and accurate. 
Because the variables are mapped to a normalized multivariate Gaussian 
distribution space, the integration of the area of unsatisfactory 
performance on one side of the hyperplane of distance β  (at the design 
point) from the mean origin is the same as the area for the single variable 
normalized Gaussian distribution beyond the design point distance β.  
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Figure 5-6. Mapping the integrated PUP from the multivariate hyperplane to a single 
Gaussian distribution.  

 

This situation becomes more complicated as non-hyperplanar limit state 
response surfaces are considered. Figure 5-7 shows how two hyperplanar 
limit states combine to create a non-hyperplanar limit state response 
surface. In this case, the integral of the point value PUP probabilities 
includes the probabilities under the second limit state that does not overlap 
the first limit state probabilities. This is represented by the Figure 5-7 
probability distribution area that is beyond the limit state response surface 
where the regions are shaded red, green, and khaki. The probabilities of the 
overlap of the second limit state and the first limit state only need to be 
accounted for once.  
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Figure 5-7. Mapping the integrated PUP from the multivariate hypersphere to a single 
Gaussian distribution.  

 

Recall from Ebeling and White (2019), the reliability of the system is 
defined as the complement of the probability of unsatisfactory performance 
(1-PUP) in their Equation 2.10. Because the ASM design point exists at the 
point where the limit state response surface is nearest the origin of the 
normalized multivariate Gaussian distribution space, a way to 
conservatively estimate the compliment of the PUP value so that 
satisfactory performance is guaranteed is to compute the probability of the 
hypersphere of radius β, as shown in Figure 5-7. Recall that the Figure 5-7 
origin corresponds to the mean values for all variables. This estimate 
integrates the complement of PUP using the probabilities outside of the 
hypersphere to determine PUP. This value is conservative because the 
hypersphere is guaranteed to be completely in the area of satisfactory 
performance but is not guaranteed to encompass all of the satisfactory 
performance region.  

More accurate range finding PUP estimation methods provide a minimal 
range for the upper and lower bounds of the PUP using logical combination 
constraints given the limit state response surfaces, their number, and 
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possible overlap information. The minimal range refers to the fact that the 
bounds are at the closest distance from each other based on the logical 
combinations. The authors of this report suggest that by choosing a value at 
the midpoint of the range will guarantee an estimate that is accurate to 
within half the range width. Ang and Tang (1984) provide methods for 
finding the bounds of the overlap of regions based on Bayesian logic. These 
estimations are based on non-correlated variables, so they involve 
perpendicular response surfaces. The overlap regions involve the 
combination of comparing each limit state with respect to each other, as 
shown in the two-limit state, 2-D example of Figures 5-8 and 5-9. The 
upper and lower bounds for the overall PUP would be the different 
summations and removals of probabilities based on the Bayesian 
combinations of non-correlated values as described in Subsection A.3.1 of 
Appendix A. The difference in the bounds is described by the third overlap 
region between overlap regions A and B from -5.8 and 5-9. Note that the 
bounds can be found for multi-variate, multi-limit state problems.  

Figure 5-8. Finding the overlap region A given limit state I with respect to limit state J. 
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Figure 5-9. Finding the overlap region B given limit state J with respect to limit state I. 

 

The range-finding methods were developed at a time (e.g., Ang and Tang 
1984) when computational power was not widely available to perform the 
more accurate numerical integration techniques that are required to handle 
correlation between limit state response surfaces. This computational 
power is now available for a limited number of variables. However, range-
finding methods are still useful in that they provide valuable information 
that bounds the range in PUP value with minimal computational effort. 
Recalling the authors’ suggestion made earlier in this subsection, a value 
assigned equal to the midpoint of the range will guarantee an estimate that 
is accurate to within half the range width. 

Monte Carlo simulation methods can also be used to estimate PUP. 
Samples would be taken at random from the variable space according to 
each variables distribution then the unsatisfactory or satisfactory result of 
the sample would be computed. Many samples would be taken, and the 
ratio of unsatisfactory results to the overall number of samples would give 
the PUP estimate. For a full Monte Carlo simulation, a large number of 
samples (>10,000) would be required. The Latin Hypercube sampling 
method reduces the number of samples required by guaranteeing that 
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samples are not repeatedly chosen in the same regions. Also, Importance 
Sampling lowers the error in calculation of the probability, by sampling 
about the design point, which is the point of the lowest β  distance for all of 
the limit states (Figure 4-8), on the response surface for the combined limit 
states. To perform Importance Sampling, the design point, which gives the 
point on the closest limit state to the origin of the normalized Gaussian 
distribution, needs to be found. This can be done using the ASM 
techniques. A major concern for the simulation methods is that there are no 
guarantees that sample points will be generated in all of the limit state 
unsatisfactory performance regions, when multiple limit states exist. This 
concern is mitigated by the fact that the limit state regions that are not 
covered will typically have very low probabilities. 

Numerical integration can also be used to estimate PUP. The concern is the 
possibility that, in some instances, it can quickly grow to be unsolvable in a 
timely manner, even on the most advanced computers. The authors believe 
that for a small number of variables, this method may provide results in a 
timely manner. Figure 5-4 shows an integration method for estimating the 
PUP value. The space is divided into a hypergrid, and each grid cell 
probability would be added to the PUP if the variable values would lead to 
unsatisfactory performance. The two sources of error for this calculation 
would be the resolution of the hypergrid and the range of the calculations. 
By having the range vary from -5 to 5 standard deviations from the mean 
for each variable, the error can be minimized. An improvement to the 
integration method utilizes the fact that the probability of a normalized 
Gaussian distribution stays the same at a given radius; therefore, a polar 
hypergrid could be used so that the probability calculations would be 
quicker. These numerical integration methods are described in Appendix A 
Subsections A.3.2 and A.3.4. Because all of the variable spaces are mapped 
for integration and the solution looks for any unsatisfactory performance in 
any grid cell (voxel, or volume element), this solution method works for 
multi-variate, multi-limit state problems. 

5.4 Determining Load and Resistance Factor Design (LRFD) values 
from PUP 

Given a PUP value from one of the methods listed above, the goal is to 
determine an equivalent β  distance and a vector of directional cosines α, so 
that load and resistance factors may be derived. Most of these methods 
compute PUP without respect to where the probabilities lie. Only the ASM 
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method attempts to locate the point with the maximum probability of 
occurrence while the others can produce close estimates.  

One possible method to determine β  from PUP is to calculate the 
probability of a hypersphere that encloses an area of probability in the 
normalized Gaussian distribution space that has an integrated probability 
of 1-PUP. The radius of this hypersphere is then the β  distance. This is 
illustrated with Figure 5-10. 

Figure 5-10. Setting radius β  for a hypersphere so the probability density outside the 
hypersphere integrates to the same value as the integration of the area region 

bounded by the limit state hyperplanes.  

 

This figure shows a two-variable system where X=[X’1,X’2]. The 
Unsatisfactory Performance region is defined by two hyperplanar limit 
states in Figure 5-10a. A design point is found using ASM. This design point 
is the closest point on the Response Surface (which separates satisfactory 
performance regions from unsatisfactory performance regions). As 
described previously, the unsatisfactory performance region’s probability is 
determined accurately by integrating the point probabilities on one side of 
the limit state response surface (such as Equation 5.5).  

For a given PUP value, Figure 5-10b shows that a hypersphere can be 
created that encompasses the integrated probability of the complement of 
PUP, which is 1.0-PUP. In this case, the Unsatisfactory Performance is the 
integration of the point probabilities outside the hypersphere and 
equivalent to the integration of probabilities to one side of the response 
surface in Figure 5-10a. The hypersphere has a radius of β*. This can be 
computed without knowing the directional cosines α ,  which reveal the 
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distance to the closest point on the response surface. Notice that β* is 
greater than the design point β, which means that some of the volume inside 
the hypersphere (which geometry calls an n-ball) is part of the Unsatisfactory 
Performance region defined by the limit state hyperplanar surfaces.  

The volume of a hypersphere with dimension n of radius β  is given as 

 𝑉𝑉𝑛𝑛(𝛽𝛽) = 𝜋𝜋
𝑛𝑛
2

Γ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛2+1)
𝛽𝛽𝑛𝑛 (5.12) 

Where ΓEuler() is the Gamma function specified by Euler that provides a 
method to calculate the factorial of complex (and therefore real) numbers. 
An approximation of these functions can be found in many programming 
languages. Using Equation 5.12, the cumulative probability of a 
hypersphere with radius β  can be estimated by the radial integration of 
concentric ring probabilities. For a single concentric ring of hypersphere 
with dimension n and radius β  and radius interval β i, the probability of a 
point being selected in the ring is approximated as 

 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) = �𝑉𝑉𝑛𝑛(𝛽𝛽 + 𝛽𝛽𝑖𝑖) − 𝑉𝑉𝑛𝑛(𝛽𝛽 − 𝛽𝛽𝑖𝑖)�(𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝛽𝛽))𝑛𝑛 (5.13) 

where PNormal() is the single dimension normal PDF function. 

Summing these ring probabilities from the origin to any full hypersphere 
radius β  gives the approximate cumulative probability of the hypersphere. 
These data can be kept in a look-up table using small increments of the 
radius so that an equivalent approximate value for β hypersphere can be 
computed for the probability of satisfactory performance for the response 
surface computed using methods that do not give β  values (i.e., simulation, 
integration, and bounding techniques).  

 System Reliability Index, β system - Series Model: Park et al. (2015) 
studied the system reliability of a simple two-member truss with two failure 
modes for optimization purposes in design, computing the probability of 
failure and reliability of the truss system using a reliability simulation 
based computational methodology. The main goal of their paper is to 
discuss the reduction of computational complexity and error introduced by 
ignoring dependence between failure modes on evaluating system 
reliability, especially in the tails of the distributions, with respect to 
application in system optimization problems. A series reliability model, in 
contrast to a parallel reliability model, composed of two failure modes was 
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postulated for their truss model. The series failure model is the union of 
failures among multiple failure modes, which implies that any single failure 
mechanism directly relates to system failure, as compared to the parallel 
failure model which requires multiple individual failures to cause system 
failure (i.e., an intersection of failures). A series model is judged by the 
authors of this technical report to be a reasonable assumption for a truss 
because the truss system fails if any individual truss element fails, as 
pointed out by Nowak and Collins (2013), in discussion of their Figure 9.4 
truss. Park observes that a series model is a common failure scenario in 
structural design. 

Structural failure of the Park et al. (2015) two-bar truss model is modeled 
with uncertainties for each of the two limit states being considered (i.e., 
tension failure in bar elements). It was assumed that the ultimate strength 
and the two external forces are uncertain inputs that can be described as 
normally distributed variables using a mean and coefficient of variation. 
Individual truss members are subjected to tensile force or compressive 
force only, depending on specific values drawn from the input variable 
distributions. The type of member force that developed depended upon (1) 
the geometric configuration of the individual trusses, (2) the strength of the 
individual truss members in tension and in compression, (3) the position, 
the orientation, (4) magnitude of the point load(s) applied to the joints in 
the truss system, and (5) the boundary conditions imposed on the truss 
system joints (e.g., none, roller, or pin). A simulation procedure, consisting 
of 10,000 random variable simulations, was used in their reliability 
computations. The system probability of failure, Pf-system, is computed using 
the union of failure space for the two limit states, as depicted in Figure 5 of 
Park et al. (2015). Their figure looks similar to Figure 5-1 of this report. 

Park et al. (2015) expressed the system Reliability index, β system, as 

 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −Φ−1�𝑃𝑃𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (5.14) 

where Φ( )-1 is the inverse CDF of standard normal distribution. This agrees 
with one of the approaches suggested earlier in this subsection and 
depicted in Figure 5-10 for characterizing system reliability. It was arrived 
at independent of Park et al. (2015). 
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5.5 Calculating PUPsystem for the Chapter 2 Geotechnical T-Wall 
example problem with a 25 ft and 15 ft base widths  

In Chapter 4, the geotechnical structural system described in Chapter 2 was 
evaluated for individual limit states from the soil material property 
distributions to determine the resistance and load distributions as well as 
PUP for the specified limit state. Chapter 3 revealed in Tables 3-2, 3-5 and 
3.7 that the computation of spatial COVs for the soil material values used 
different procedures, given each of the three respective Geotechnical limit 
state assumptions. This means that each procedure could conceivably 
create very different spatial COVs for each of the three material property 
distributions in the limit state set. The spread of the values is determined 
by the original, Mid-Range point estimate standard deviation value 
multiplied by variance reduction factor, which was created from the slip 
plane length and scale of fluctuation for the soil region. Table 5-1 gives the 
means, coefficient of variations, and standard deviations of the variables for 
each limit state using Mid-Range COVs. The simulation sets in this section 
were created using Mid-Range COVs, but later sections will evaluate this 
problem set with Upper Range COVs. 

Table 5-1. Mid-Range means and standard deviations for soil effective angle of 
internal friction φ’ values, in degrees, for the three different limit states and their three 

different soil regions along with their COV. 

Limit State 
Driving Wedge Structural Wedge Resisting Wedge 

mean COV Std. 
Dev. mean COV Std. 

Dev. mean COV Std. 
Dev. 

Sliding 35 0.026 0.91 30 0.2 6.00 37 0.039 1.43 

Base Area in 
Compression 
(Overturning) 

35 0.026 0.90 30 0.2 6.00 37 0.041 1.50 

Bearing 35 0.026 0.91 30 0.021 0.63 37 0.039 1.43 

 

Similar 
(average of 
Sliding and 
BAiC) 

35 0.026 0.90 30 0.2 6.00 37 0.040 1.47 
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Figures 5.11 – 5-14 show simulation values drawn from each Limit States 
set of distributions for the three variables, forming a 3-D space. The three 
variables are described by the three axes shown as red, green, and blue 
arrows representing the orthogonal φ’DW, φ’SW, and φ’RW values, respectively. 
The crossing point for the three axes is at the mean value origin for the 
distributions. These plots are shown in the non-normalized variable space 
so that distribution values can be compared as actual distances. Sample 
points are shown in either a blue color or red color representing 
satisfactory or unsatisfactory performance, respectively. Additionally, a 
green plane is shown that reveals the results of an ASM analysis for a given 
limit state. The ASM analysis assumes a hyper-planar response surface 
dividing the satisfactory response half-space from unsatisfactory response 
half-space, which is normal to a design point, given as the point of greatest 
probability on the surface. For these images, there is only a single plane 
shown associated with the sliding limit state in Figure 5-11. Figure 5-11 was 
created by overlapping the samples for all of the three Geotechnical limit 
states, which were simulated separately. These mean and COV values are 
the same as reported in Table 2-1. Because the standard deviation of the 
Structural Wedge φ values are so much different between the sliding and 
base area in compression limit states as compared to the bearing limit 
state, the shape of the distribution sample set varies from a long ellipsoid 
(Figures 5-12 and 5-13) to a vertical disk (Figure 5-14). 
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Figure 5-11. Sample simulation sets of 3-D (Driving, Resisting, and Structural Wedge) 
material soil friction φ  variable data drawn from the different sets of Normal 

distributions for each of the three limit states overlapped, given a T-Wall with base 
width of 25 ft. 

 

Figure 5-12. Sample set of 3-D (Driving, Resisting, and Structural Wedge) material soil 
friction φ  variable data drawn from Normal distributions for the Base Area in 

Compression Limit State, given a T-Wall with base width of 25 ft.  
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Figure 5-13. Sample set of 3-D (Driving, Resisting, and Structural Wedge) material soil 
friction φ  variable data drawn from Normal distributions for the Sliding Limit State with 

Satisfactory and Unsatisfactory performance points and ASM limit state hyperplane, 
given a T-Wall with base width of 25 ft.  

 

Figure 5-14. Sample set of 3-D (Driving, Resisting, and Structural Wedge) material soil 
friction φ  variable data drawn from Normal distributions for the Bearing Limit State with 

no Unsatisfactory performance points, given a T-Wall with base width of 25 ft.  
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In practice, the calculated values of load and resistance forces in the 
simulations are found to be correlated because of the force interactions 
among the three wedges and the imposed force equilibrium for the three 
wedges. Because the Sliding and Base Area in Compression limit state slip 
plane distances are similar, the resulting set of variable distributions is 
similar, as reflected in their spatial COV values from Table 5-1. These 
similar distributions are further revealed in Figures 5-12 and 5-13, where 
the sample point ellipsoid shapes and ranges are similar. At this stage in 
the discussion, it is pointed out that the structural shear and moment limit 
states for the stem of the T-Wall, by definition, use the same set of spatial 
distributions as the Sliding Limit State.  

The Bearing Limit State is based on vertical forces of the Structural Wedge 
acting on the soil foundation, resulting in a very different spatial 
distribution for the dispersion in the soil strength property along the slip 
plane for bearing failure within the foundation, beneath the structural 
wedge. Observe in Table 5-1 that the foundations spatial COV possesses a 
value that is 90% smaller than the Structural Wedge COVspatial from the 
other two Geotechnical Limit States. This is also reflected in the simulation 
results when those for the Bearing limit state (Figure 5-14) are compared to 
those of the other two limit states (Figures 5-12 and 5-13). While the slip 
plane distances for the Driving and Resisting Wedges are similar to the 
Sliding and Base Area in Compression calculations, the Structural Wedge 
slip plane of a bearing failure within the foundation expanded by seven 
times, resulting in a 90% smaller Structural Wedge COVspatial. In summary, 
the Bearing limit state set of soil material distributions is non-similar to the 
other two limit state distributions.  

This difference among spatial COVs for the three limit states complicates 
the computation of PUPsystem, which combines all of the Limit State’s 
unsatisfactory probabilities. The factors that are applied to transform the 
variable space to a normalized Gaussian variable space are different for the 
same variable for different limit states because the standard deviations are 
different. This violates the isotropy of this transformed space. Precise 
values for Monte Carlo simulations cannot be computed for all the Limit 
states because a drawn simulation variable value will have a different 
probability of selection (due to anisotropic variables) for different limit 
states. For example, for the sample point {φ’DW, φ’SW, φ’RW}={35.0, 36.0, 
37.0} the probability of occurrence is that for 1 standard deviation (β ) for 
Sliding and Base Area in Compression limit states but 9.52 β  for the 
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Bearing limit state. This change in probability is illustrated by the shape of 
the drawn simulations for the Bearing limit state (Figure 5-14) as compared 
to the shapes of Sliding and Base Area in Compression limit states 
(Figures 5-12 and 5-13).  

This 25 ft wide T-Wall example problem allows the comparison of the 
results of simulation to the numerical methods with those of the ASM 
procedure for calculating PUP for the system (of three limit states), since 
the primary and highest probability source of failures comes from the 
Sliding limit state. For 1,000,000 simulation runs, the PUP values for the 
Base Area in Compression and Bearing Limit states are 0.0, and the Sliding 
limit state PUP is 0.001669. The ASM prediction for PUP of the Sliding 
limit state is 0.001760, which is overpredicting the simulation probability 
and indicates that the Sliding limit state response surface is non-linear. 
Observe in Figures 5-11 and 5-13 that the ASM limit state response surface 
for sliding is depicted as a plane. This 3-D surface depiction is not a precise 
depiction of the response surface for the reason just stated. It should have 
some curvature in it. Using these numbers, it can be assumed that the 
PUPsystem is equivalent to the Sliding limit state PUP of 0.001669.  

To calculate the actual PUPsystem value, with overlapping limit states using 
different limit state spatial distributions, a numerical integration of the 
transformed (normalized Gaussian) variable space in unsatisfactory 
performance needs to be performed as displayed in Figure 5-4. The entire 
space is divided into “cells.” An indicator function returns true if any limit 
state gives unsatisfactory performance. If multiple limit states report 
unsatisfactory performance for the variable values, the PDFs are computed 
for those limit states, and the greatest probability is returned for the cell 
and summed into the PUPsystem value. This maintains the case that the most 
probable unsatisfactory limit state will occur before the other limit states 
are activated. 

Appendix sections A.3.3 and A.3.4 present methods for faster numerical 
integration using hyperspheres, but these optimizations assume that the 
same spatial distribution sets are being used if multiple limit states are 
being solved. This is because the hypersphere method depends on 
normalizing the spatial distributions so that hyperspherical shells with 
constant probability are assumed. Refer to Figures A-10 and A-11 for a 
visual depiction of these multiple “shells.” For the case where multiple limit 
states have similar spatial distributions, these limit states can be combined 
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for the calculation of PUPsystem in an optimized manner. To deal with the 
non-similar distributions, the center of the shell element can be found in 
the variable space (φ’DW, φ’SW, φ’RW) and the limit state evaluated for 
unsatisfactory performance. In Figure A-10 or A-11, each shell is divided 
into equal length segments around the circumference of each shell (not 
shown), each of which are referred to as shell cells or simply cells in this 
document. If the cell center is unsatisfactory for the non-similar 
distribution, then the probability of the cell center calculation is computed 
from the variable spatial distributions and, if the probability exceeds the 
similar distribution probability, then that value is substituted into the 
PUPsystem summation. This hybrid approach allows for a semi-optimized 
hyperspherical calculation of PUPsystem, if a smaller number of non-similar 
distributions exist as compared to the similar distributions. 

Note that this hybrid hyperspherical PUPsystem method loses some precision 
in the calculation of the non-similar distribution probability. The 
hyperspherical shell elements keep the exact values for the normalized 
spatial distributions specifically because the distribution is normalized, 
which means that the curvature of the probability follows the shell. For 
non-similar distributions, the curvature of probability is hyperellipsoid and 
does not exactly match the hyperspherical shell. However, these resulting 
arcs of the hyperellipsoid will show symmetric properties about the center 
of the shell section with excess probability in one area of the shell section 
being cancelled by a probability reduction in the area of the shell section 
across the central point of the shell section.  

For the 25 ft wide T-Wall example problem of Chapter 2, there is only one 
truly non-similar set of distributed soil material variables which occurs for 
the Bearing limit state. The other limit state sets of distributions are similar 
enough that averaging the COVspatials of the similar individual limit states 
will yield similar probability curvature for these limit states, especially as 
the tails of the distribution are approached. The Bearing limit state has a 
much different probability curvature about the Structural Wedge soil 
material variable axis. This situation is ideal for the hybrid PUPsystem 
calculation method suggested in the preceding paragraphs. 

Figure 5-15 shows the result of performing the hybrid hyperspherical 
PUPsystem calculation with a target precision of 0.000001 probability. 
Observe in this figure that the pattern of simulation points for the shell cell 
centers follows a radial coordinate pattern emanating from the origin to the 
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three axes (i.e., from the mean values for the three variables). The 
procedure generated 1,007,438 sampling runs. The blue points are 
satisfactory results while the green-yellow points show where the Bearing 
failures dominate and the red points show where Sliding failures occur. The 
green plane is the ASM position of the failure response surface for the 
sliding limit state. The linear progression of points outside of the main 
conglomeration of points is the area where a minimum number of points 
are applied to the hyperspherical shells and the probabilities are reduced. 

Figure 5-15. Hybrid hyperspherical PUPsystem simulation results for a T-Wall under 
Extreme loads with base width of 25 ft.  

 

Each simulation point in Figure 5-15 has a probability of approximately 
0.000001 for the similar limit states, The Bearing limit state probabilities 
are significantly smaller, especially as φ’DW varies from the mean. Summing 
the sample point probabilities of all of the limit states, the PUPsystem 
calculated using the hybrid hyperspherical numerical method was 
0.001664. 

This PUPsystem value of 0.001664 is slightly lower than the Monte Carlo 
simulation results for the Sliding limit state with only a 0.000005 
difference. The authors of this report consider the values from the two 
computations to be close in magnitude. This small difference could be a 
result of sampling error, but it highlights that the Sliding limit state has a 
non-linear response surface. This nearness was expected, since the Sliding 
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limit state was the primary concern for failures. It is observed that the 
extremely low probabilities of the Bearing limit state failure conditions 
made no substantive difference in the PUPsystem calculation. While this 
condition allows for a nearly direct comparison of PUPsystem to PUPSliding for 
verification, it does not allow us to see the results of LRFD analysis as 
compared to individual limit state LRFD analysis. An additional analysis is 
required to address this feature.  

Applying Equation 5.14 to the PUPsystem value of 0.001664 for the 25 ft base 
problem, the resultant equivalent normal β system value used as 
approximation for system Reliability is 2.94. 

Figure 5-16 shows the results of running the Usual load case (from 
Figure 2-2) with the base width reduced to 15 ft. This case was chosen 
because the ASM runs for Sliding, Base Area in Compression, and Bearing 
all resulted in failures with significant (albeit low) probabilities. The three 
planes are visible, with the Bearing limit state response surface (dark 
blue) plane being above the mass of the samples, the Base Area in 
Compression limit state response surface (turquois) plane being behind 
the mass of the samples, and the Sliding limit state response surface (dark 
green) plane proceeding at an angle across the front, left of the mass of 
the samples. The ASM PUP for the Base Area in Compression limit state is 
still extremely small and does not register to six decimal places. The ASM 
PUP for the Bearing limit state is not insignificant with a value of 
0.00032. The ASM PUP for the Sliding limit state still dominates with a 
value of 0.010752. PUPsystem from the hybrid hyperspherical numerical 
procedure had a value of 0.011857. Again, it is observed that the sliding 
limit state dominates the contribution to PUPsystem 25 ft T-Wall base width 
example, and that both the Bearing and the Base Area in Compression 
limit states provide negligible contributions.  
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Figure 5-16. Hybrid hyperspherical PUPsystem simulation results for a T-Wall under Usual 
loads with base width of 15 ft.  

 

This case was included to show why numerical integration is necessary. The 
ASM plane does not begin to describe the non-linear response of the 
Bearing limit state. As samples are drawn that have very low φ’SW values, 
there is less support for the structure so that less vertical force from the 
driving soil wedge is needed to put the structure into failure, leading to an 
asymptotic curve to the response surface. Due to the scale of fluctuation 
and the slip plane length for the mobilized soil under the Bearing load case, 
the probability of very low φ’SW values is extremely small. 

In conclusion, it is shown that limit state response surfaces are non-linear 
and overlapping and that a full integration of maximum probabilities will 
give a more precise calculation of PUPsystem. It is also shown that the 
adaptive hyperspherical Gaussian probability numerical integration will 
allow for high precision calculation of PUPsystem using a similar number of 
simulation runs (approximately 1,000,000 per limit state for a precision of 
0.000001) as Monte Carlo methods. Unfortunately, the probabilities for 
the base design example problem is driven primarily by the Sliding limit 
state. The 15 ft wide T-Wall example provides a method to view all of the 
limit state ASM hyperplanes and explicitly reveals the nonlinearity of the 
bearing limit state. While this condition allows for a nearly direct 
comparison of PUPsystem to PUPSliding for verification, it does not allow one 
to see the results of LRFD analysis as compared to individual limit state 
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LRFD analysis. An additional analysis method is required to address this 
feature.  

Applying Equation 5.14 to the PUPsystem value of 0.011857 for the 15 ft wide 
base problem, the resultant equivalent normal β system value used as 
approximation for system Reliability is 2.26. 

5.6 Calculating PUPsystem for the Chapter 2 T-Wall Example Problem 
with Geotechnical and Structural Limit States using 25 ft base 
width 

In the previous section, PUPsystem results for only the three geotechnical 
limit states were evaluated to reveal the non-linearity or non-planarity of the 
response surface boundary between the satisfactory and unsatisfactory 
performance regions. Performing only three limit states also made it simpler 
to visualize the complete results which only have three dimensions. This 
section extends the previous section with two more structural limit states.  

The limit states of the previous section could be described by a function of 
three variables that returned the status of the limit state, either satisfactory 
or unsatisfactory. These three variables were the friction angles of the soil 
along the slip planes contained within the Driving, Structural, and 
Resisting soil wedges (φ’DW, φ’SW, and φ’RW). The distributions for these 
variables were computed based on point values for the material coefficient of 
variation and application of the variance reduction factor computed using 
the length of the slip planes and the scale of fluctuation for the soil materials.  

The three Limit State example problem can be extended to include structural 
limit states such as shear forces and moments acting upon the vertical 
section of the wall, commonly referred to as the stem. The additional two 
structural limit states use the same sets of soil strength variables but use 
them to compute the total shear force or the total moment acting at the base 
of the stem of the wall feature on the T-Wall. The distributions for these 
variables use the same computations that are used for the Sliding Limit 
State, calculating the same variance reduction factors computed based on the 
slip plane calculations from Section 3.4 for the mean variable values. 
Therefore, these distributions for the geotechnical soil materials are similar 
to the Sliding and Base Area in Compression Limit States. 

These computations are discussed in Sections 3.6 and 3.7 as well as 
Appendix B. The resulting shear load or moment becomes the load on the 
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system. Each structural limit state has another variable that is a directly 
computed shear or moment resistance. The capacity for the Extreme load 
case is dictated by the Usual load case demand multiplied by a load factor 
of 2.2 according to EM 1110-2-2104 (HQUSACE 2016) Table 3-1 value for 
the Serviceability limit state. For the Usual load case, the shear demand at 
the base of the stem is computed to be 17,024 lb, and the moment demand 
is computed to be 228,612 ft-lb. 

Table 3-9 for shear capacity and Table 3-10 for flexural capacity give 
distribution type, bias factors for mean, and coefficient of variation as well 
as standard deviations that define the capacity distributions for shear and 
moment according to Ellingwood. The mean capacity is therefore the 
serviceability capacity times the bias factor for the mean, with the standard 
deviation of the capacity being the COV times the mean capacity. Because 
Ellingwood defined both structural capacity distribution types to be a 
lognormal distribution, each variable can be drawn from a normalized 
Gaussian distribution and converted to a lognormal distribution value.  

This means that the final two structural limit states status calculations are 
functions of four variables. The stem shear limit state is a function with 
φ’DW, φ’SW, φ’RW, and the shear force resistance of the stem (SR). The stem 
moment limit state is a function with φ’DW, φ’SW, φ’RW, and the moment 
resistance of the stem (SM). The introduction of SR and SM means that the 
adaptive hyperspherical Gaussian probability numerical integration 
procedure will have to be extended from 3-D to five-dimensional (5-D), 
since the number of distributed variables has increased. It is incidental that 
the number of limit states is 5, also. 

The new variables only affect one limit state apiece. Only distributed 
variables that are shared between limit state functions need to be compared 
for similarity because a function that does not use a variable will not be 
affected by changes of the variable. Because the only shared variables of the 
two new structural limit states are the φ’DW, φ’SW, and φ’RW values, which are 
determined in the same fashion as the Sliding values, these limit states are 
similar to each other and the Sliding and Base Area in Compression Limit 
State. The lone dissimilar set of limit state distributions are found for the 
Bearing limit state, as it was for the 3-D numerical analysis. The 
distributions of the geotechnical variables with Mid-Range and Upper Range 
COVs are shown in Tables 5-2 and 5-3, respectively. The structural Limit 
State distributions are shown in Table 5-4. 
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Table 5-2. Mid-Range means and standard deviations for soil effective angle of internal 
friction φ’ values, in degrees. 

Limit State 

Mid-Range COV values 

Driving Wedge Structural Wedge Resisting Wedge 

mean 
degrees 

COV 
std. dev. 
degrees 

mean 
degrees 

COV 
std. dev. 
degrees 

mean 
degrees 

COV 
std. dev. 
degrees 

Sliding 35 0.026 0.91 30 0.2 6.00 37 0.039 1.43 

Base Area in 
Compression 
(Overturning) 

35 0.026 0.90 30 0.2 6.00 37 0.041 1.50 

Bearing 35 0.026 0.91 30 0.021 0.63 37 0.039 1.43 

Stem Shear 35 0.026 0.91 30 0.2 6.00 37 0.039 1.43 

Stem Moment 35 0.026 0.91 30 0.2 6.00 37 0.039 1.43 

 

Similar (average 
of Sliding, BAiC, 
Stem Shear, 
and Stem 
Moment) 

35 0.026 0.91 30 0.2 6.00 37 0.039 1.45 
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Table 5-3. Upper Range means and standard deviations for soil effective angle of 
internal friction φ’ values, in degrees. 

Limit State 

Upper Range COV Values 

Driving Wedge Structural Wedge Resisting Wedge 

mean 
degrees 

COV 
std. dev. 
degrees 

mean 
degrees 

COV 
std. dev. 
degrees 

mean 
degrees 

COV 
std. dev. 
degrees 

Sliding 35 0.052 1.82 30 0.3 9.00 37 0.077 2.85 

Base Area in 
Compression 
(Overturning) 

35 0.051 1.79 30 0.3 9.00 37 0.081 3.00 

Bearing 35 0.052 1.82 30 0.032 0.95 37 0.077 2.85 

Stem Shear 35 0.052 1.82 30 0.3 9.00 37 0.077 2.85 

Stem Moment 35 0.052 1.82 30 0.3 9.00 37 0.077 2.85 

 

Similar (average 
of Sliding, BAiC, 
Stem Shear, 
and Stem 
Moment) 

35 0.052 0.91 30 0.3 9.00 37 0.078 2.89 

Table 5-4. Means and standard deviations for stem shear force and stem moment. 

Limit State 

Stem Shear Force Stem Moment 

Mean 
GN*(LN**) 

COV 
Std. Dev. 
GN*(LN**) 

Mean 
GN*(LN**) 

COV 
Std. Dev. 
GN*(LN**) 

Stem Shear 
10.654 
(43,070.72 
lb) 

0.0168 
0.179 
(7,752.73 
lb) 

   

Stem 
Moment    

13.232 
(563,299.97 
ft-lb) 

0.0105 
0.139 
(78,862.00 
ft-lb) 

* Gaussian Normal distribution value (designated GN) to be converted to actual Log-Normal value 

** Resultant actual Log-Normal distribution value (designated LN) 

Table 5-2 has the same form and mostly the same values of Table 5-1. Table 
5-3 gives the Upper Range distributions for these same variables. The 
introduction of the new Stem Shear and Stem Moment distributions, which 
are calculated in the same fashion as the Sliding Limit state and therefore 
have the same values, makes a slight adjustment in the similar distribution 
when averaging occurs. 

Table 5-4 has the distributions of the new variables introduced for the Stem 
Shear and Stem Moment limit states. The mean and standard deviation 
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values for the log-normally distributed shear force and moment variables. 
The variables are then converted to a Gaussian Normal distribution that, 
when used as the exponent x in equation eX, derives the lognormal value 
required for the variable. The Gaussian Normal distributions created for 
stem shear and moment are used as the two new axes in the 5-D variable 
coordinate system. 

An ASM run was performed for each limit state to find the individual limit 
state PUP value, estimated using a hyperplanar response surface normal to 
a design point. Table 5-5 shows the results for both Mid-Range and Upper 
Range COV distributions, with N/A results occurring where the ASM 
bounds for β  were exceeded (>8). Thus, the N/A cases possess a very low 
PUP value with a corresponding β  value greater than 8. 

Table 5-5. ASM results for the limit states of the 5-D integration problem. 

Limit State 

Mid-Range COVs Upper Range COVs 

25 ft base width model 25 ft base width model 

PUP Equivalent β  PUP Equivalent β  

Sliding 0.001745170794 2.92 0.030312881586 1.88 

Base Area in 
Compression N/A N/A N/A N/A 

Bearing 0.000000000630 6.07 0.000235387940 3.49 

Stem Shear 0.000815793637 3.15 0.001114960718 3.06 

Stem Moment 0.000000005464 5.71 0.000000027044 5.44 

A comparison is made between the Mid-Range COV and Upper Range COV 
values used in the simulation runs for individual limit state performance. 
The expectation was that using Upper Range COV variances would increase 
the PUP for every limit state, which seems to be borne out for the cases for 
which there are data. It can be assumed that the Base Area in Compression 
Limits State has an increased PUP value, though that value is in the tails of 
the distribution. A surprising result of the comparisons is in the amount of 
difference that the change of variance makes for some limit states with 
respect to others. The Stem Shear and Stem Moment Limit States had 
decreases of β  of 3% to 5%, the change of Sliding Limit State β  was 36%, 
while the change of the Bearing Limit State β  was 43%. It is primarily 
assumed by the authors of this report that these changes are primarily 
explained away by the Three-Wedge geotechnical method and how the 
foundation soil in the Structural Wedges interacts with the solution. The 
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foundation soil does not apply to the Stem Shear and Stem Moment Limit 
States but has a slip plane length equivalent to the length of the base 
without separation for the Sliding Limit State and a slip plane length seven 
times the length of the base for Bearing. Applying the Variance Reduction 
to these slip plane lengths makes for a very tight distribution, so PUP 
values in the tails of the distribution have more significant contributions 
when the distribution is scaled.  

Using Mid-Range COVs, the 5-D numerical processing runs for the 25 ft 
base width example T-Wall problem produced a PUPsystem value of 
0.002374 as compared to the 3-D numerical processing probability for the 
geotechnical issues alone with a value of 0.001664. This is a significant 
change and indicates that the failure response surface for the system has 
been changed by the addition of the structural limit states. Thus, the 
additional consideration of the structural limit states, most probably the 
stem shear limit state, contributes to the PUP for the T-Wall. 

Recall that the 0.001664 PUPsystem was, for all intents and purposes, 
equivalent to the PUPSliding for the 25 ft base width example problem for the 
3-D results (i.e., Geotechnical limit states). Despite non-linearities, these 
values were also very near to the ASM calculation for PUPSliding.  

Equation 5.15 shows that the probability of two (or more) mutually 
exclusive limit states is equal to the sum of each of the individual limit state 
probabilities (Ang and Tang 1984). Assuming the probabilities for Sliding, 
Stem Shear, and Stem Moment are mutually exclusive, the maximum value 
of the PUPsystem can be computed by summing their probabilities. This 
equation can be derived from the equation for the maximum bounds given 
in Appendix A section A.3.1.  

 𝑃𝑃(𝐿𝐿𝐿𝐿1 ∪ 𝐿𝐿𝐿𝐿2) = 𝑃𝑃(𝐿𝐿𝐿𝐿1) + 𝑃𝑃(𝐿𝐿𝐿𝐿2) (5.15) 

Summing the PUP values for each of the limit state ASM probabilities of the 
25 ft base width example problem in Table 5-4 gives a value of 0.002596, 
which is close to 0.002374, the numerical calculation of the 5-D PUPsystem. 
This would seem to suggest that the PUP volumes in the Gaussian Normal 
Space for each limit state do not overlap, but that is not the case. 

For the Stem Shear and Moment limit states, Gaussian Normal space 
variable axes are created that explicitly define resistance, but given the 
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definition of the Gaussian Normal distribution space, the other variable 
axes are orthogonal to the resistance variable axes. The Geotechnical limit 
state volumes are unaffected by the resistance variables. The Geotechnical 
hyperplanes that define ASM probabilities are therefore parallel to the axes 
that have no effect on them whereas the Structural limit states must not be 
parallel to these axes since they define performance. This leads to the 
conclusion that there must be overlap of the PUP volumes between the 
Geotechnical and Structural limit states. 

This conclusion is further proven by finding the dihedral angle between the 
unit α vectors to the design points of the response surface hyper planes for 
the Sliding and Stem Shear limit states determined using ASM. The 
dihedral angle of these vectors is also the dihedral angle between the 
hyperplanes. The Sliding limit state α is the vector [Driving Wedge φ’ = 
0.094745, Structural Wedge φ’ = 0.949978, Resisting Wedge φ’ = 0.297598, 
Stem Shear Resistance = 0.0]. The stem shear resistance does not have 
bearing on the sliding limit state, so its value is set to 0.0. The Stem Shear 
limit state α is the vector [Driving Wedge φ’ = 0.134587, Structural Wedge 
φ’ = 0.0, Resisting Wedge φ’ = 0.048451, Stem Shear Resistance = 
0.989717]. The dot product of these vectors yields the cosine of the dihedral 
angle of 0.02717, which is a dihedral angle of more than 88 deg between 
the hyperplanes. 

The fact that the dihedral angles are virtually perpendicular and yet the 
PUPsystem is similar to the sum of PUPsliding and PUPstemshear leads the 
authors to conclude that the probability of the overlap region, where the 
combination of variables leads to failure in more than one limit state, is 
statistically insignificant in this case. This situation will occur with any 
overlap region (even with large dihedral angles) when the overlap is in the 
tails of the distributions, because the probability of any point in the variable 
space is the multiplication of all of the variable’s probability density 
functions at that point. Integrating over the overlap space returns a very 
small number. Returning to the example problem, the greatest probability 
is PUPsliding, which has a β  of 2.92. The PDF for β =2.92 is extremely small 
and will be multiplied by even smaller values for the next closest limit state 
β  (Stem Shear). Integrating the overlap space contributes an insignificant 
amount to PUPsystem. 

Using Upper Range COVs creates a wholly different dynamic because the 
change in variance changes the contributions of the individual Limit States. 
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Table 5-5 ASM analysis reveals that the increase in variation affects the 
Bearing and Sliding Limit States the most, respectively. While the Bearing 
Limit State had hardly been a concern for the Example Problem using Mid-
Range COVs, it has become an issue for the Upper Range COVs. 

Figure 5-17 shows the effect on the three primary individual limit states 
(Sliding, Stem Shear, and Bearing) as the resistance scale factor (RSF) is 
increased. The minimal β  point at any RSF location gives the greatest 
individual PUP that will affect the structure. Because the Stem Shear Limit 
State has higher β  values than the other two limit states, it is not the limit 
state of most likely failure.  

Figure 5-17. Individual limit state analysis of β  with respect to increasing RSF. 

 

The shapes and positions of the Load and Resistance distributions for the 
individual limit states have a large effect on the rate of change of the 
individual PUPs and β s for the limit states as RSF changes. This is 
illustrated by the different slopes for the Sliding Limit State and Bearing 
Limit State RSF-to-β  curves. Slight changes of RSF have a larger effect on β  
for the Sliding Limit State than the Bearing Limit State. This leads to a 
situation where the most probable failure is with the Sliding Limit State 
until the RSF reaches a value of close to 1.5, and then the Bearing Limit 
State becomes the limit state of most probable failure. Because of the slow 
rate of change, high values of RSF, meaning greater Load and Resistance 
Factors, are required to reach target PUP and consequent β  values. For 
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Figure 5-17, an RSF value of 2.5 is required to provide a guarantee β  of 3.5, 
which is recommended for noncritical structures by Ellingwood. 

Figure 5-18 shows b as a function of RSF for three different cases: simulated 
Sliding Limit State computations, Sliding Limit State 5-D integration, and a 
Combined Limit State 5-D integration. The first two cases were provided as 
a verification step since the simulation and 5-D integration should provide 
nearly the same values, which they did. The black curve provides the result 
of the Combined Limit State. This value is provided by a Gz() function, 
which combines the results of the Gz() functions of the other Limit States. 
Recall that the Gz() function returns the Resistance minus the Load (R-L). 
If any individual Limit State Gz() function drops below 0, then the 
PUPSystem is increased by the greatest limit state failure probability.  

Figure 5-18. Comparison of simulated Sliding Limit State, 5-D integration analysis for 
Sliding Limit State, and 5-D integration analysis with the combined limit state 

response β  values as RSF is increased. 

 

The Combined curve closely follows the Sliding PUP curve until the RSF 
factor increases to nearly 1.25. This corresponds to the Figure 5-16 
individual limit state results. The curve then starts to see the influence of 
the other limit states, presumably Bearing according to Figure 5-16. 
However, the value of β  is less than the individual β  values as RSF changes 
because of the additive effects of the overlapping failure regions for each 
limit state. For RSF=2.0, the Bearing Limit State alone returns an 
approximate value of β =3.4 (Figure 5-16), yet the Combined Limit State 
returns an approximate value of β =3.1 (Figure 5-17). 
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This analysis underscores the observations of Fan et al. (2014), who 
indicated that determining individual load and resistance factors may not 
provide a sufficient PUPSystem for the proposed lifetime of the structural and 
geotechnical pile system. Fan et al. (2014) based their inference on the fact 
that the probability areas of the combined limit states can be greater than 
the probability area of any individual limit state, as shown in the 
comparison of Figures 5-17 and 5-18. The observation is further bolstered 
by the discovery that the primary individual limit state for determining the 
RSF based on target PUP and β  values can change as the RSF changes. 

5.7 Checking sliding resistance scale factors against the five-limit 
state probability integration calculation 

A comparison can be made for the Load and Resistance factors computed 
in Chapter 4 against the multiple limit state adaptive hyperspherical 
Gaussian probability numerical integration of Section 5.3.2.3 of this 
chapter using Upper Range COVs. This comparison serves two purposes: 
(1) to show the cumulative effect of multiple limit states on PUP values and 
(2) to reveal whether load and resistance factors determined for the Limit 
State with the greatest PUP value can be used to as good baseline values. In 
the Extreme example problem of Figure 4-3b, the limit state that had the 
highest PUP value of 0.00176 was the Sliding Limit State, followed by the 
Stem Shear Limit State with value of 0.000836. 

Simulation methods introduced in Chapter 4 provided methods for 
determining a limit state’s resistance scale factor, RSF, which can be applied 
to the resistance to determine a design resistance. When this RSF is applied 
to the specific design, the resulting PUP should be equal to a PUPTarget. The 
RSF is converted to the LSF based on the mean values of the current 
simulation and the results are shown in Figure 4-7. The LSF values can then 
be decomposed into Load and Resistance Factors for LRFD with results 
shown in Figure 4-8. Table 5-5 shows the β Target values, RSF values, and LSF 

values that were computed for the Sliding Limit State of the Upper Range 
COVs in Figure 4-7.  

To verify the correctness of using the Load and Resistance values based on 
Sliding for the structural system being analyzed, we must apply the RSF to 
the adaptive hyperspherical Gaussian probability numerical integration 
procedure, because this value is tuned to the Sliding load and resistance 
means applied in the simulations. The RSF is applied to the other four 
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limit state resistance values as well, so that the full system performance 
can be measured. 

Table 5-6 shows the result of applying the Sliding RSF in the adaptive 
hyperspherical Gaussian probability numerical integration scheme in the 
last two columns. Observe that the β Target for Sliding exceeds the actual 
β System and that the difference becomes greater as the β Target increases. This 
observation is concerning because it reveals that Load and Resistance 
factors based on the dominant limit state (Sliding for the example problem) 
may be inadequate to specify designs that improve system response to a 
specified probability of performance.  

Table 5-6. The results of applying the 5-D adaptive hyperspherical Gaussian probability 
numerical integration technique with the RSF values determined for Sliding β Target 

values using Upper Range COVs.  

Sliding 
PUPTarget Sliding β Target Sliding RSF Sliding LSF PUPSystem β System 

* * 1.000 * 0.027759 1.91 

0.158655 1.00 0.836 1.166 0.175754 0.93 

0.066807 1.50 0.909 1.269 0.074580 1.44 

0.022750 2.00 1.009 1.407 0.025468 1.95 

0.006210 2.50 1.150 1.603 0.008208 2.40 

0.001350 3.00 1.356 1.891 0.003716 2.68 

0.000233 3.50 1.734 2.418 0.001969 2.88 

0.000159 3.60 1.802 2.512 0.001856 2.90 

0.000108 3.70 1.924 2.683 0.001774 2.92 

0.000072 3.80 2.053 2.863 0.001752 2.92 

0.000048 3.90 2.143 2.988 0.001747 2.92 

0.000032 4.00 2.413 3.365 0.001715 2.93 

*This value is not a result of assigning the Sliding βTarget, but a reflection of running the integration 
at parity, where RSF = 1.0. 

Figure 5-19 shows the relationship between the Sliding β Target and the 
result β System using the RSF for that β Target. As the Sliding β Target increases 
above a value of 2.5, there is a noticeable divergence between β System and 
Sliding β Target. The dashed red line shows the expected relationship if the 
Sliding load factors were the driving condition for the system. This would 
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be the case if there were only one dominant limit state (i.e., Sliding) and no 
system response effects contributed by the other four limit states. 

Figure 5-19. Comparison of system β  values computed using increasing Sliding RSF to 
the Dominant Sliding Limit State β Target values.  

 

 Table 5-7 shows this relationship as ratios of the System values (PUP and 
β ) with respect to the Sliding Target values. The PupSystem vs. PUPTarget 
values for a β Target greater than 2.5 begin to increase showing further 
disparity. The ratio values for β Target greater than or equal to 3.0 are greater 
than 2.7. This PUPSystem to PUPTarget divergence is more noticeable than the 
relationship divergence of β System to β Target.  
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Table 5-7. Examining the ratios of PUP and β  for Sliding limit state target and 
integrated 5-D system results.  

Sliding 
PUPTarget 

Sliding 
β Target 

PUPSystem β System PUPSystem /PUPTarget β System /βTarget 

0.158655 1.00 0.175754 0.93 1.108 0.932 

0.066807 1.50 0.074580 1.44 1.116 0.962 

0.022750 2.00 0.025468 1.95 1.119 0.976 

0.006210 2.50 0.008208 2.40 1.322 0.960 

0.001350 3.00 0.003716 2.68 2.753 0.892 

0.000233 3.50 0.001969 2.88 8.464 0.824 

0.000159 3.60 0.001856 2.90 11.665 0.806 

0.000108 3.70 0.001774 2.92 16.456 0.788 

0.000072 3.80 0.001752 2.92 24.216 0.768 

0.000048 3.90 0.001747 2.92 36.323 0.749 

0.000032 4.00 0.001715 2.93 54.150 0.732 

The divergence of PUPSystem from PUPSliding in Table 5-6 (and in terms of β , 
Figure 5-15) may be explained by the fact that the correlation between the 
load and resistance is not taken into account in the 5-D adaptive 
hyperspherical Gaussian probability numerical integration solution 
method. This proportioned response is discussed in Section 4.6. Briefly 
stated, for the three-soil wedge solution method, the load mean increases as 
the resistance mean is increased by a scale factor because of design 
changes. To determine the estimated correlated rate of change between the 
load and resistance distribution means as the design changes, at least two 
designs need to be analyzed with the same load conditions so that the rate 
of change of the mean values can be measured for the two distributions. 
However, load and resistance distributions can only be collected for a single 
limit state in the three-wedge solution using Monte Carlo methods and 
storing correlated values. 

The results discussed in this chapter demonstrate that using a single, 
dominant limit state to determine the system load and resistance factors 
does not consider the complexity of multiple, overlapping limit states which 
can have a cumulative effect. The devised hybrid adaptive hyperspherical 
Gaussian probability numerical integration model results for the 5-D 
reliability problem of this chapter demonstrate that this sort of analysis can 
be used to improve Load and Resistance Factors for LRFD procedures. 
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Considering the observations made by Allen (2005) and Fenton et al. (2016) 
regarding non-redundant foundations, the part of the Figure 5-16 curve of 
most interest is in the β  value range of 3.1 to 3.7, with a typical β  value of 
around 3.5 for an American Association of State Highway and 
Transportation Officials (AASHTO) and Canadian bridge foundation. Allen 
(2005) states that the landmark Barker et al. (1991) reliability study of 
bridges (75-year design life) and the various types of foundation systems 
suggests a target β  value of 3.5 for non-redundant systems such as footings.1 
Based upon Fenton et al. (2016), the equivalent reliability-based target 
β  values of Canadian bridge foundation design is in the range of 3.1 to 3.7, 
depending upon the consequence of its failure. In discussing the reliability 
formulation background to the Canadian Highway Bridge Design Code 
(CHBDC) (CSA 2014) for foundations or geotechnical systems design, 
Fenton et al. (2016) provide their range for the target maximum lifetime 
(75-year) failure probabilities, pm, and equivalent reliability indices for the 
foundations ULS depending upon the consequence level (Table 5-8). Three 
consequence levels were stipulated: high, typical, and low. A foundation that 
supports a lifeline bridge or hospital is an example of a high consequence 
level should a foundation failure occur. Conversely, if the foundation 
supports a storage warehouse that is rarely visited, the failure consequences 
are slight, and the consequence level is judged to be low. 
  

 

1 An example of a redundant foundation system is a pile group consisting of five or more piles. Allen 
(2005) states that Barker et al. (1991) conclude that a target β  value of 2 to 2.5 for a redundant system 
is appropriate. Zhang et al. (2001) and Paikowsky et al. (2004) have also concluded that for pile groups, a 
β  of 2.3 is reasonable to target when considering the resistance needed for a single pile located within a 
group of significant size. Their reliability index value falls midway in the Barker et al. range 
recommendation. 
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Table 5-8. Targeted theoretical maximum lifetime 
(75-year) failure probabilities, pm, and equivalent 

reliability indices, β , for the ULS in the 2014 CHBDC for 
foundations or geotechnical systems  

(after Fenton et al. 2016). 

Consequence 
Level pm β  

High 1/10,000 3.7 

Typical 1/5,000 3.5 

Low 1/1,000 3.1 

Subsection 4.9.2 discusses the adjustment of the Allen (2005) and Fenton et 
al. (2016) reliability index β values from a 75-year bridge design life to a 100-
year project life used for USACE hydraulic structures. Recall Allen’s (2005) 
reported target reliability index β value of 3.5 for footings and other non-
redundant (AASHTO 2012) systems becomes 3.46 for projects with a 
100-year design life based on the Ebeling and White (2019) calculations and 
their Table 2-8 results. This is the same β equal 3.5 design value used for the 
Canadian Bridge Code (CSA 2014) in the case of bridge foundations for an 
Ultimate Limit State with a typical consequence level according to Fenton et 
al. (2016). Fenton et al.’s (2016) β of 3.7 for the Ultimate Limit State with a 
high consequence level becomes 3.65 for a 100-year project life. 

Concluding observations: The observations made for the T-Wall retaining 
wall reliability problem discussed in this chapter consider the nonlinear 
relationships that have been observed throughout the numerical research 
involved in this project. It also reveals that correlation is to be expected in a 
three-wedge analysis of geotechnical retaining structures when all three 
wedges (i.e., Driving, Structural, and Resisting) are incorporated in the 
engineering model of the reliability analysis. These are important aspects of 
the Reliability analysis, impacting computed results.  
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6 Summary, Conclusions, and Research 
Recommendations 

6.1 Summary 

This report focuses on a Load and Resistance Factor Design (LRFD) for 
complete, reinforced concrete hydraulic structures. Complete hydraulic 
structural analysis involves the geotechnical and structural limit states, as 
well as the soil structure interactions (SSI) induced by loading. A total of 
five limit states are incorporated in the engineering model’s reliability 
analysis of a hydraulic structure discussed in this report. These are 

• global sliding failure of the structural system in its entirety 
• bearing failure of the foundation to the structural system in its entirety 
• overturning or rotational failure of the structural system about its 

foundation in its entirety  
• shear failure of individual structural members 
• flexural hinging of individual structural members. 

The geotechnical reliability research results of Fan et al. (2014) 
demonstrate that all five limit states need to be considered concurrently 
and not independently, for all variables in the reliability analysis in order to 
compute an accurate PUP value, and ultimately, accurate reliability results 
for use in the computation of load factors. 

Combined LRFD, involving geotechnical as well as structural limit states, is 
an area that has not been addressed by the USACE. While research has 
been conducted for structural LRFD where the materials are more uniform, 
geotechnical research has been complicated by spatial variability of 
engineering material properties for the soil(s). The companion Phase 1 
Study (Ebeling and White 2019) documents the initial investigation into 
reliability methodologies considered for application to the LRFD analysis of 
geotechnical regimes for reinforced concrete hydraulic structures. It also 
described initial development of numerical procedures with enough 
precision for a complete LRFD analysis of the reinforced concrete, 
hydraulic structures. This Phase 2 Study continues the development of 
these analytical methods and new numerical procedures and applies them 
to a reinforced concrete T-Wall example. The result is a Reliability-based 
LRFD analysis of an example T-Wall possessing multiple geotechnical and 
structural limit states. 
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In that vein, this technical report has focused primarily on building 
engineering models that capture soil-structure interaction and are readily 
adaptable to reliability analysis of a USACE reinforced concrete T-Wall 
buttressed by and retaining earth. This holds true with respect to the model 
for first engineering limit state discussed, which centers on the sliding 
stability analysis of a T-Wall. A T-Wall example structure was chosen to lay 
out the engineering and reliability analysis capabilities needed because it 
possesses the attributes of all three wedges in its geotechnical numerical 
model: a driving wedge, a structural wedge, and a resisting wedge. The 
engineering and reliability principles proposed for use are broad enough to 
be used for overturning and bearing failure limit states as well. The 
engineering model also contains the shear and flexural structural limit 
states of the reinforced concrete stem. In summary, this Phase 2 Study 
numerical T-Wall model example possesses all five geotechnical and 
structural limit states. 

Modeling variability in soils is complicated by the fact that even 
“homogeneous” soil engineering material properties change with relative 
distance. With enough difference in distance, the soil strength properties 
can be completely unrelated to the distribution at the original location. This 
led to the development of three different models being proposed in the 
Phase 1 Study (Ebeling and White 2019). The first devised method uses an 
earth pressure coefficient method to compute forces acting against the 
structural wedge. The other two devised methods use the slip plane as a 
basis for generating homogeneous material regions. One method created 
numerous small sub-wedge features of scale of fluctuation width along the 
slip plane assigned with material properties from the original soil property 
distributions before applying the Variance Reduction Factor. The second 
method described in Subsection 4.4.2 of Ebeling and White (2019) is used 
in this report. This second method computes the slip plane length for each 
of the three wedges and computes a Variance Reduction Factor based on 
the slip plane length and the scale of fluctuation of the material properties 
for each of the three wedges. This variance reduction factor is used to 
establish a new distribution for each wedge convoluting the probabilities 
over the longer slip plane run, accounting for spatial correlation along the 
slip plane. Each of the three wedges possesses a Variance Reduction Factor 
based on the length of the slip plane and the Scale of Fluctuation for that 
soil region. The new soil property distribution has the same means but the 
COV is reduced from the COVPoint value to a COVSpatial value based on the 
slip plane length and its orientation.  



ERDC/ITL TR-21-1  146 

 

These engineering models can be used in a reliability analysis to determine 
the Probability of Unsatisfactory Performance (PUP) and reliability index 
(β ) for the geotechnical/structural system. A reliability analysis can 
compute a value for PUP in a few different ways. Early methods researched 
and discussed in the Phase 1 Study (Ebeling and White 2019) dealt with the 
Advanced Second Moment (ASM) method and Monte Carlo simulation 
techniques. The ASM method by itself only works for a single hyperplanar 
limit state for estimating PUP, which does not serve the 
geotechnical/structural systems in this report because the PUP system value 
would be underestimated because the ASM method does not give results for 
multiple overlapping limit states. However, the ASM method determines 
the closest approach of the limit state response surface, giving a good β  
value and directional cosines (α) that define a design point on the response 
surface. 

Monte Carlo simulation techniques can achieve greater accuracy than the 
ASM method given enough simulation samples. Monte Carlo techniques 
return a PUP value but do not give an accurate β  or α value unless an ASM 
search for a design point has been performed. It is also possible, given 
random selection of samples, that not every limit states contribution will be 
included in the PUP calculation. 

Appendix C begins by introducing three methods for computing load and 
resistance factors. The first method uses engineering Reliability standards. 
The second method uses the Section C.2 numerical method that calculates a 
Load-to-Resistance ratio which, combined with a prescribed Resistance 
Factor, the Section C.3 method computes the corresponding Load Factor. 
Finally, the third method uses the Section C.5 numerical procedure that 
calculates a k value (for the max β ) that can be applied in Equations C.40 
and C.41. 

Appendix C also introduces techniques for computing β  given load and 
resistance factors either directly or indirectly depending on variable 
distributions. The Section C.4 numerical procedure attempts to iterate to 
find a maximum β  given resistance and load distribution descriptions using 
Rackwitz and Fiessler (1976, 1978) Gaussian Normal curve approximates. 
The Section C.5 numerical procedure computes the maximum β  and its 
associated k value. Given an arbitrary k value and substituting it into 
equation C.42 will return a maximum β  value, also. Section C.6 attempts to 
indirectly calculate the β  value for a non-normal distribution by summing 
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fractional Gaussian curves to fit the non-normal distribution with low 
error. The fractional curve properties are used in equation C.45 to 
determine the β  value for a non-normal distribution.  

The authors also conducted a Monte-Carlo simulation with a large number 
of samples on the resistance and load curves and calculated the (R-L) curve 
with binned histograms. The PUP value was then calculated by integrating 
probabilities for the resulting distribution up to the safety margin (R-L)=0 
response surface and an inverse normal distribution cumulative 
distribution function (CDF) calculation was used to get a transformed 
Gaussian Normal space β  value estimate. 

These Appendix C methods work for single limit states with well-defined 
traditional distributions for resistance and load. Additional investigation 
reveals that structures with geotechnical features do not have these well-
defined, uncorrelated distributions for load and resistance.  

In this Phase 2 study, a numerical model for a T-wall was created 
(Chapter 3) and analyzed for all five limit states, geotechnical and 
structural. Limit state solutions were performed for individual limit states 
using ASM and Monte Carlo simulation methods (Chapter 4). These 
methods were capable of determining probability density function (PDF) 
distributions of loading and resistance from variable soil properties and 
application of numerical procedures. These loads were computationally 
non-linear according to analysis of the geotechnical wedges based on soil 
properties. The establishment of these non-linear load and resistance PDF 
distributions led to the development of methods for determining load and 
resistance factors by numerical calculation of a scale factor for the 
resistance PDF distribution such that samples from the scaled resistance 
and unscaled load would yield the target PUP for the system (Section 4.2).  

Discovery that these soil-based PDF distributions, load and resistance, 
were not orthogonal but correlated as design changes were made to the 
structure required extending the previous load and resistance factor 
calculation procedure (Section 4.2) to include a proportionality value based 
on the rate of change of load and resistance. In this case, scaling the 
resistance PDF distribution had a correlated proportional scaling effect on 
the load PDF distribution. This procedure is discussed in Section 4.6. 
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Both of these procedures (Sections 4.2 and 4.6) produce a ratio of factored 
load to factored resistance for a target PUP value. Section 4.7 provides a 
means to calculate either the load or resistance factor, when the other 
factor is fixed. With the ratio and a given resistance factor, the load factor 
can be computed and vice versa. Given guidance for resistance factors, 
which is a usual occurrence in USACE guidance, a load factor can be 
computed to establish an agreed upon PUP. 

Section 4.8 took the lessons learned and the procedures developed in the 
previous sections of Chapter 4, which were applied to the Example Wall 
with Extreme geometry (Figure 4-3b) and processed the wall with Upper 
Range coefficients of variation (COVs) for the effective angles of internal 
friction in each of the soil regions. This variability establishes the true 
uncertainty for the Extreme condition. Figure 4-9 shows the relationship 
between computed Load Factors and the equivalent β Target for the Example 
T-Wall with Upper Range material property COVs.  

A numerical model for a T-Wall was created and analyzed using all five 
geotechnical and structural limit states. Limit state solutions were 
performed for individual limit states using ASM and Monte Carlo 
simulation methods. These methods were capable of determining 
distributions of loading and resistance based upon variable soil properties. 
Also, an adaptive hyperspherical Gaussian probability numerical 
integration model was developed to determine the PUPsystem, for all five 
limit states, given the engineering model of a soil-founded T-Wall. This 
devised adaptive hyperspherical Gaussian probability numerical 
integration model and its hybridization are described in Subsections 5.3.2.2 
and 5.3.2.3. The method had to be further extended to deal with individual 
variables that could have different distributions for different limit states. 
This model was applied to a three-geotechnical limit state scheme with 
three geotechnical variables in Section 5.5. This analysis results in 
computation-based diagrams that illustrate the Monte Carlo simulation 
and adaptive hyperspherical Gaussian probability numerical integration 
procedures and compares their performance. Both the resulting 
PUPsystem and the plots from this analysis reveal that the Sliding limit 
state is the primary limit state. The other two Geotechnical limit states of 
Bearing and Base Area in Compression possess extremely low values for the 
probability of unsatisfactory performance. 
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This Section 5.5 analysis is extended in Section 5.6 where all five limit states, 
geotechnical and structural, are combined into a single PUPsystem value. The 
addition of the two Structural limit states introduced two new distributed 
variables. These two new variables did not have an effect on the geotechnical 
limit states. One of the new distributed variables gave the resistance of the 
stem to the shear limit state, and the other gave the resistance of the stem to 
the flexural moment limit state. The addition of these two limit states and 
their variables made a difference in the PUPsystem calculation. While the 
Geotechnical Sliding limit state was still the primary source of probability of 
failure, the Structural Stem Shear limit state had a significant contribution to 
the overall PUPsystem, with an estimated Gaussian β value in the range of 3.1. 
A surprising result for the authors of this report was that although the limit 
states had a large overlap of probabilities, the PUPsystem appeared additive of 
the two limit states. This would be expected for parallel limit states. But 
these two limit states are not parallel. This observation is explained by 
realizing the overlap region has such an insignificant probability that 
doubling its effect was still insignificant. 

6.2 Conclusions 

In conclusion, given two full distribution descriptions for load and 
resistance the simulation method (with enough samples) and the Section 
C.5 procedural method can determine an accurate PUP value either directly 
or through a normal distribution CDF calculation from a calculated β. 
Based on extensive series of trial and error computations, the Section C.6 
method was found to be an interesting mathematical exercise but has too 
many variables and needs restraint. Results from Reliability analyses 
summarized at the end of Section C.2 showed that the β  calculation method 
for non-normal distributions requires small steps using normal 
distributions mapped to the non-normal distribution at a given design 
point (Rackwitz and Fiessler 1976, 1978), which can have problems with 
accuracy in the tails region. 

The Section C.2 procedural method is the only method that attempts to 
numerically establish load and resistance factors that will scale the 
positions of existing distributions so that the safety margin (R-L) response 
surface will have a PUP value that corresponds to a normal distribution 
β target CDF value. Unfortunately, this procedure is attempting to find a 
value in the tail of the distribution and therefore has accuracy problems 
that are revealed in the results tables in this section of the appendix. 
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The individual limit state procedure for computing Load and Resistance 
Distributions from material properties and determining load factors 
(Section 4.2) provides a method for computing a ratio of load and 
resistance factors for an individual Limit State. This method works with 
orthogonal distribution sets for load and resistance as computed from 
material properties. This method relies on the fact that material properties 
follow the Central Limit Theorem of probability in large numbers (Henk 
2004) and therefore have typical bell-shaped distributions and that the 
load and resistance factors may have non-linear equations for their 
distribution formation from those material properties. 

The devised Section 4.2 method was extended to the more useful 
proportioned load individual Limit State procedure for computing Load 
and Resistance distributions from material properties and determining 
load factors (Section 4.6). This procedure assumes some level of correlation 
expressed as a proportion between the load and resistance distribution as 
the structural design changes, as evidenced in Figures 4-2 and 4-3. A scale 
factor is computed from the rates of change of load and resistance, and that 
scale is applied for the estimation of the ratio of load and resistance scale 
factors. This numerical procedure improves the speed at which the 
computations are made, an important capability for conducting simulations 
of the T-Wall in a Reliability analysis. 

Section 4.7 reveals how the proportion of load factor and resistance factor 
can be used to determine one factor if the other is specified. This is helpful, 
since resistance factors are routinely specified in USACE guidance (e.g., EM 
1110-2-2104 [HQUSACE 2016]). 

Monte Carlo and adaptive hyperspherical Gaussian probability numerical 
integration of PUPsystem for the three geotechnical limit states alone 
revealed that Sliding was the most probable geotechnical limit state to fail 
for the Chapter 2 T-Wall system example problem. The adaptive 
hyperspherical Gaussian probability numerical integration provides a level 
of accuracy for approximately the same level of effort (e.g., number of 
model runs) as the Monte Carlo methods. Plots from these methods 
revealed the non-planarity of the resulting response surfaces, contrary to 
the estimates given by the ASM solution for the single limit states.  

Combining geotechnical with structural limit states, Monte Carlo and 
adaptive hyperspherical Gaussian probability numerical integration of the 
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PUPsystem was performed again to find out if the new limit states would have 
a noticeable effect. The Stem Shear Limit State provided a significant 
contribution to PUPsystem. Finding load and resistance factors that reduce 
the PUPsystem will be determined by the rate of change of these limit state 
response surfaces with respect to the factors. 

Table 3-1 in EM 1110-2-2104 (HQUSACE 2016) guidance for the Extreme 
load case for lateral earth pressures provides values for a Resistance Factor 
of 0.5 and a Load Factor of 1.4. A Load Factor value of 1.4 corresponds to a 
Reliability Index value of approximately 3.8 by the data given in Figure 4-9 
for Upper Range COV values for effective angles of internal friction. The β  
value of 3.8 for a USACE navigation structure falls approximately midway 
between the Ellingwood reliability index recommendation for normal and 
critical structures. This computed β  value of 3.8 exceeds the historical 
allowable stress design (ASD) foundation design β  experience (Allen 2005) 
as well as the guidance for the 2014 Canadian Bridge Design Code as 
described by Fenton et al. (2016). Thus, the EM 1110-2-2104 (HQUSACE 
2016) guidance LRFD values for load and resistance factors for the driving 
and resisting earth pressure loads applied to the Structural Wedge in the 
sliding limit state are deemed slightly conservative but not excessive by the 
authors of this report when a β  of 3.8 value is compared to the target β  
values given by Allen (2005) and Fenton et al. (2016). This assessment may 
be improved by making a Reliability assessment of other earth-retaining 
USACE hydraulic structures following the procedure of analysis outlined in 
this technical report. 

The key conclusions are as follows: 

• Research of previously devised methods for the determination of PUP 
values reveal that traditional, Structural Engineering-based Reliability 
methods, described in Appendix C, have limitations that prohibit their 
use for multi-Limit State problems with correlation and complicated 
distributions, which is the case with geotechnical structures. 

• A T-Wall Analysis Example problem was developed with the geometry 
determined for the usual load conditions of the Normal Load Case and 
solved using EM 1110-2-2100 (HQUSACE 2005) stability criteria as well 
as procedures for calculating the geotechnical forces that affected each 
limit state. It is important to recall that not all three Geotechnical limit 
states dictated the T-Wall geometry to satisfy minimum design 
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guidance. It was the Sliding Limit State that dominated the geometry 
requirements. 

• Methods for determining distributions of Load and Resistance forces for 
different Limit States given the geotechnical problem of an Example T-
Wall using histogram data of Monte Carlo simulations based on soil-
strength properties were developed. The development of these methods 
revealed that the Load and Resistance distributions have correlations 
for the geotechnical Wedge-based solution. 

• Procedures for devising Load and Resistance factors from the collected, 
correlated Monte Carlo simulation values for individual limit states 
were determined, assuming that the Load and Resistance distributions 
were uncorrelated (Section 4.2). It was discovered that this assumption 
was not true. 

• Because the Load and Resistance distributions were correlated, the 
Section 4.2 procedure was extended to allow for correlation (Section 
4.6). Accounting for the effects of correlated Load and Resistance 
functions is essential for the determination of accurate Load and 
Resistance Factors. 

• The Usual Load Case (Table 3-1 of EM-1110-2-2104 [HQUSACE 2016]) 
design of the T-Wall uses USACE criteria (EM-1110-2-2502 [HQUSACE 
1989]) with a Factor of Safety (FS) against Sliding of 1.5 (EM-1110-2-
2100 [HQUSACE 2005]). Table 4-1 reveals that the designed T-Wall 
structure has a PUP value of 0.00025 using the anticipated Mid-Range 
COV values for effective angle of internal friction (Table 2-1), which 
equates to a β  of 3.48 (Table 4-1) for the dominant limit state of sliding. 
This value is consistent with first-generation AASHTO guidance (Allen 
2005) value of 3.46 and Canadian Bridge Code (CSA 2014) for an 
Ultimate Limit State (ULS) with a typical consequence level but is 
slightly lower than the extrapolation to 100-year design life value of 
3.65 for the 2014 Canadian bridge code (Fenton et al. 2016) ULS with a 
high consequence level. (Refer to Subsection 4.9.2 for a discussion of 
the conversion from a 75-year bridge design life to a 100-year project 
life used for USACE hydraulic structures.) It is observed that the ASD 
normal load case design using USACE criteria appears to be generally 
consistent with Allen (2005) and Fenton et al. (2016) foundation 
reliability targets. 

• The Extreme Load Case uses the same T-Wall that has been dewatered. 
The values for the Extreme Load Case with anticipated Mid-Range COV 
values for effective angle of internal friction (Table 2-1) gives a PUP of 
0.00175 and β  of 2.92 (Table 4-2) for the dominant sliding limit state, 
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which are noticeably lower than the Usual load case values. This 
validates the expectation that the reliability of the foundation is reduced 
as the severity of loading increases. 

• Most importantly, Table 3-1 of EM 1110-2-2104 (HQUSACE 2016) 
recommends for lateral earth pressures Load and Resistance Factors for 
the Extreme Load Case to be 1.4 and 0.5, respectively. Figure 4-9 
results, using the procedure of Subsection 4.6 applied to the dominant 
limit state of sliding, reveals that for a Load Factor of 1.4, determined 
using a Resistance Factor of 0.5, gives a β  value of 3.8 for Upper Range 
soil strength COV values. The calculated value for β  of 3.8 is deemed 
adequate for the critical Sliding Geotechnical Limit State with a 100-
year project life based on the LRFD information contained within Allen 
(2005), and Fenton et al. (2016) adjusted to a 100-year project life 
(Subsection 4.9.2) but falls between the Ellingwood reliability indices 
recommended values for non-critical structures (β  = 3.5) and critical 
structures (β  = 4.0) with a single load path. 

• Using Figure 4-9 results for the dominant limit state of sliding, a load 
factor of 1.2 is sufficient to achieve a target β  equal to 3.5, which is 
required according to Ellingwood for a noncritical structure with a 
single load path, given a specified resistance factor of 0.5 according to 
EM 1110-2-2104 (HQUSACE 2016) guidance. This Load Factor value is 
14% lower than the reported EM 1110-2-2104 load factor of 1.4 with the 
same specified resistance factor.  

• A method for the determination of overall PUP of the Example T-Wall 
problem, considering all of the Limit States concurrently, was 
implemented and was compared to the individual Limit State PUP 
values. This is an essential requirement for a complete and accurate 
system PUP value. Computation of PUPSystem reveals that the PUPSystem 
value is greater than any individual Limit State PUP value. 

• To generalize, when PUPSystem is greater than PUP for the dominant 
limit state evaluated on its own, the load factor from the individual limit 
state assessment may need to be increased. The PUPSystem needs to be 
computed as the individual limit state load factor is being created. Note 
that the rate of change for PUP as each resistance is scaled (Figure 5-16) 
can cause the dominant Limit State to change. 
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Appendix A: Computing Probabilities 

A.1 The Gaussian multivariate spaces 

While design and analysis procedures of structures are well defined in 
theory, in reality the constituent parameters have many variations, which is 
the reason for LRFD. Material properties (e.g., compressibility, x position) 
are typically chosen from a range of values that are pulled from a 
distribution with certain probabilities. An example distribution may be the 
discrete histogram idealized in Figure A-1. Each bin in the histogram 
presents how many times that bin has been selected from a sample data set. 
Dividing those values by the total number of samples drawn gives a 
normalized distribution, where the probability of selection of any given bin 
(PDF) is a fraction of the total set and integrating the area under the PDF 
gives CDF. For the entire curve, the total area is 1. 

Figure A-1. PDF and CDF of histogram data. 

 

A Gaussian (also referred to as Normal) distribution is given by this equation: 

 𝑓𝑓(𝑥𝑥|𝜇𝜇,𝜎𝜎2) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2  (A.1) 

This function provides numerous advantages when dealing with multiple 
orthogonal variables in LRFD, so a means to create a Gaussian distribution 
that approximates other distributions was established by Hasofer and Lind 
(1974) based on a distribution transform method by Rackwitz and Fiessler 
(1976, 1978). The Hasofer and Lind (1974) procedure does not find the 
simple mean and standard deviation of another distribution but instead 
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maps the CDF of the non-normal distribution to the CDF of a normal 
distribution to get the best approximate Gaussian distribution with its own 
mean and standard deviation (Figures A-2 and A-3). 

Figure A-2. Histogram data and the Gaussian (normal) distribution. 

 
 

Figure A-3. The G(X’) function is used to determine PUP. 

 

With N uncorrelated and orthogonal variables, an N-dimensional 
multivariate space can be formed from the distributions for those variables. 
With Gaussian distributions, a transformed space can be created that has a 
unit distance of 1σ. The following equation is used to transform the X value 
of ith variable of the distribution to the transformed coordinates: 

 𝑋𝑋𝑖𝑖′ = (𝑋𝑋𝑖𝑖−𝜇𝜇𝑖𝑖)
𝜎𝜎𝑖𝑖

 (A.2) 
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and conversely, 

 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖′𝜎𝜎𝑖𝑖 + 𝜇𝜇𝑖𝑖 (A.3) 

A hyperplane can partition the multivariate Gaussian transformed space 
into half-spaces. The N-space hyperplane has this equation: 

 0.0 = 𝑎𝑎1 ∗ 𝑋𝑋1 + 𝑎𝑎2 ∗ 𝑋𝑋2 + ⋯+ 𝑎𝑎𝑁𝑁 ∗ 𝑋𝑋𝑁𝑁 + 𝑐𝑐  (A.4) 

This hyperplane can also be described by a vector from the origin of the 
multivariate space to the nearest point on the hyperplane. This vector is 
perpendicular to the surface of the hyperplane. The vector has length β  and 
has unit direction component vector α, with Nth axis component of αN 
(Figure A-4). 

Figure A-4. A 2-D example of the PUP region and the hyperplane description using α 
and β . 
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This multivariate, Gaussian transformed space has several properties that 
make it attractive for determining limit state probabilities, such as is done 
for reliability analysis and LRFD. The most important property is that, for 
any hyperplane in the N-dimensional space partitions the space into two 
half-spaces, the integrated volume of the half-space gives the same result 
as a the CDF(β) for a normal distribution along the hyperplane’s defining 
vector.  

A hyperplane perfectly describes the response surface of a limit state 
that has linear effects across multiple variable axes. For the purposes of 
engineering evaluation, it is assumed that each limit state has linear 
properties and that failure occurs because of non-linear, or plastic, 
response. 

 A.2 Limit states and PUP 

For engineering analysis with properties that vary, described by 
multivariate space, a particular limit state (e.g., foundation sliding) can be 
described by the multivariate function 

 𝑔𝑔(𝑿𝑿) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (A.5) 

This function has positive values for satisfactory performance, negative 
values for unsatisfactory performance, and a value of 0.0 at the response 
surface, which separates the performance regions (Figure A-5). For 
probabilities, as discussed above, the response surface is assumed to be 
hyperplanar. 
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Figure A-5. A 2-D example of multiple limit states with closest approach of length |β|.  
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An indicator function can be created with the express purpose of 
providing a multiplicative identity for X vector values where there is 
unsatisfactory performance and a value of 0.0 at the response surface of 
the limit state or less. 

 𝑖𝑖(𝑿𝑿) = �0:𝑔𝑔(𝑿𝑿) ≥ 0.0
1:𝑔𝑔(𝑿𝑿) < 0.0  (A.6) 

The function to calculate PUP for the Gaussian multivariate space X is 

 𝑝𝑝𝑈𝑈 = Φ(𝑿𝑿) = ∫ 𝑖𝑖(𝑿𝑿)ℝ𝑁𝑁 ℎ(𝑿𝑿)𝑑𝑑𝑿𝑿 (A.7) 

where h(X) is the probability density function for the space and is given by 

 ℎ(𝑿𝑿) = ∏ ℎ(𝑋𝑋𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (A.8) 

As noted before, for a single hyperplanar surface in a Gaussian multivariate 
space, the PUP is the same as the 1-D CDF along the line through the origin 
that is perpendicular to the plane. For line l = αβ, where α is the directional 
cosine vector, pU = Φ(β ), with Φ(β ) being the CDF for the normal Gaussian 
distribution.  

Unfortunately, it is seldom that only one limit state is possible with the 
engineering design/analysis of structures and especially the USACE 
hydraulic structures (Section 1.5). In this case, a family of limit states needs 
to be assessed, with each limit state having a different g(X) function. In this 
case, combining the limit state functions gives a new, nonlinear, overall 
response surface, described by the boundary of the union of the half-space 
volumes for each limit state response surface hyperplane. For L limit states, 

 𝑝𝑝𝑈𝑈 = ⋃ Φ𝑛𝑛(𝑿𝑿)𝐿𝐿
𝑛𝑛=1  (A.9) 

It is important to realize that these half-space sets of data are guaranteed to 
intersect and overlap if the hyperplane equations are not parallel and may 
subsume each other if the equations are parallel. This makes it difficult to get 
an accurate determination of the PUP for multiple limit states. 
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A.3 Estimating PUP for multiple limit states 

A.3.1 Bounds Method 

Ang and Tang (1974) suggested an alternative method for estimating the 
PUP with multiple limit states based on finding the minimum and 
maximum bounds for the value that the PUP can assume. This estimation is 
not as accurate as the numerical Euclidean methods but can be found 
quickly with methods to determine a design point for each limit state, and 
therefore the equation for the hyperplane and the β  distance to the 
hyperplane, resulting in the PUP. 

 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 =  Φ(𝛽𝛽𝑖𝑖)  (A.10) 

Each limit state hyperplane divides the Gaussian multivariate space into 
half-spaces, with one half-space being the satisfactory performance region 
and the other half-space being the unsatisfactory performance region for 
that limit state. When there are multiple limit states, these regions in the 
Gaussian multivariate space overlap and combine. The probability of these 
combined regions having unsatisfactory performance is the probability of 
failure given the union of all the regions  

 𝑃𝑃𝑃𝑃𝑃𝑃 ≅ 𝑝𝑝𝑢𝑢[𝑅𝑅1 ∪ 𝑅𝑅2 ∪ …∪ 𝑅𝑅𝑁𝑁]  (A.11) 

However, as it has been previously described, the union of the regions 
contains the overlapping volumes of unsatisfactory performance 
probabilities. This complicates the calculation of the overall PUP. 

Because each limit state is described by a hyperplane with shortest distance 
β I from the origin, the lowest bound of the overall PUP can be proven to be 
the greatest of the individual hyperplane PUPs of the limit states. This is 
true because, for a set of limit states with parallel hyperplanes, the greatest 
individual PUP subsumes the volumes of the other individual PUPs. 

 max
𝑖𝑖
� Φ(𝛽𝛽𝑖𝑖)� ≤ 𝑃𝑃𝑃𝑃𝑃𝑃 (A.12) 

Parallel hyperplanes can have non-intersecting half-planes of 
unsatisfactory performance. For two such hyperplanes that do not overlap, 
the probability of satisfactory performance is the multiplied probabilities of 
satisfactory performance for each limit state. This implies that an upper 
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limit to the PUP can be found by subtracting the combined probability of 
satisfactory performance for multiple limit states from 1.0. 

 𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 1 −∏ (1 −Φ(𝛽𝛽𝑖𝑖)𝑖𝑖  ) (A.13) 

Equations A.13 and A.14 establish absolute lower and upper bounds for the 
PUP, but these bounds are for limit states that are not correlated (i.e., have 
parallel hyperplanes in unimodal sets). In reality, the hyperplanes are 
seldom parallel and have complex overlapping regions. Therefore, 
correlation techniques can be used between pairs of hyperplanes (bimodal) 
to tighten the bounds about the PUP. With more than two hyperplanes 
(multimodal), the overlapping regions become much more complicated. 

According to a decomposition of the union of sets using deMorgan’s rule as 
described in Ang and Tang (1974), the bounding values for PUP using 
bimodal probabilities is 

 𝑃𝑃𝑃𝑃𝑃𝑃 ≥ max�∑ {𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 − ∑ 𝑃𝑃�𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗�}; 0.0𝑖𝑖−1
𝑗𝑗=1𝑖𝑖 � (A.14) 

and 

 𝑃𝑃𝑃𝑃𝑃𝑃 ≤ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 − ∑ max
𝑗𝑗<𝑖𝑖

(𝑃𝑃�𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗�)𝑁𝑁
𝑖𝑖=2

𝑁𝑁
𝑖𝑖=1  (A.15) 

Given hyperplane equations for the ith and jth limit state equations (in 2-D 
for simplicity): 

 𝑔𝑔𝑖𝑖(𝑿𝑿) = 𝑎𝑎0 + 𝑎𝑎1𝑋𝑋1 + 𝑎𝑎2𝑋𝑋2 (A.16) 

 𝑔𝑔𝑗𝑗(𝑿𝑿) = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 (A.17) 

The limit state response surface is determined by setting these equations to 
0.0. According to Ang and Tang (1974), in Gaussian multivariate space, the 
correlation coefficient can be found as the cosine of the dihedral angle (θ) 
between these hyperplanes. 

 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗)
𝜎𝜎𝑔𝑔𝑖𝑖𝜎𝜎𝑔𝑔𝑗𝑗

= cos 𝜃𝜃 (A.18) 

The dihedral angle between the planes is equivalent to the angle between 
the vectors from the origin to the respective design points because each 
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hyperplane is perpendicular to its design point vector. The cosine of this 
angle can be expressed, from the normalized design point vectors αi and 
αj, as 

 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜶𝜶𝑖𝑖 ⋅ 𝜶𝜶𝑗𝑗   (A.19) 

From Figures A-6 and A-7, observe that 𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗 ⊃ 𝐴𝐴 and 𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗 ⊃ 𝐵𝐵. The probability of EiEj is 
therefore bounded by 

 max[𝑃𝑃(𝐴𝐴),𝑝𝑝(𝐵𝐵)] ≤ 𝑃𝑃(𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗) ≤ 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) (A.20) 

and, by reason of orthogonality, 

 𝑃𝑃(𝐴𝐴) = Φ(−𝛽𝛽𝑖𝑖)Φ(−𝑎𝑎) = Φ(−𝛽𝛽𝑖𝑖)Φ�−𝛽𝛽𝑗𝑗−𝜌𝜌𝛽𝛽𝑖𝑖
�1−𝜌𝜌2

� (A.21) 

and 

 𝑃𝑃(𝐵𝐵) = Φ�−𝛽𝛽𝑗𝑗�Φ(−𝑏𝑏) = Φ�−𝛽𝛽𝑗𝑗�Φ�−𝛽𝛽𝑖𝑖−𝜌𝜌𝛽𝛽𝑗𝑗
�1−𝜌𝜌2

� (A.22) 
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Figure A-6. Finding the contribution of area A to overlapping probabilities of g i(X) and 
g j(X). 
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Figure A-7. Finding the contribution of area A to overlapping probabilities of g i(X)  
and g j(X). 

 

Using the relationships of Equations A.21 and A.22, the lower bound for 
P(EiEj), given as  

 𝑃𝑃�𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗� = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) (A.23) 

should be used in Equation A.14 for each pair of limit states, and the upper 
bound, given as 

 𝑃𝑃�𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗� = max[𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐵𝐵)] (A.24) 

should be used in Equation A.15 for each pair of limit states. 

The results from the application of these equations is a minimum and 
maximum range for the overall PUP given multiple limit states using a 
bimodal analysis, using the bounds of each bimodal probabilities. The PUP 
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is guaranteed to be in these ranges, so a reasonable estimate of the actual 
value of the PUP is the average of the two bounding values, giving a 
maximum error of half the range. 

A.3.2 Euclidean numerical method 

For multiple limit states, it is still possible to integrate the probabilities the 
spaces using Equation A.7, but there needs to be an adjustment to the 
indicator function specified in Equation A.6. That indicator function is 
defined for a single limit state function g(X). To work with Z multiple limit 
states, the overall indicator function must return the multiplicative identity 
if any of the Z single limit state indicator functions returns with a value of 1. 

 𝑖𝑖𝑍𝑍(𝑿𝑿) = 1 −∏ �1 − 𝑖𝑖𝑧𝑧(𝑿𝑿)�𝑍𝑍
𝑧𝑧=1  (A.25) 

 𝑃𝑃𝑃𝑃𝑃𝑃 = Φ(𝑿𝑿) = ∫ ∫ …∫ � 𝑖𝑖𝑍𝑍(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁) ∗
ℎ(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁)𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2 …𝑑𝑑𝑋𝑋𝑁𝑁

�𝑋𝑋𝑁𝑁𝑋𝑋2𝑋𝑋1
 (A.26) 

It would be possible to approximate the value of the PUP using a Euclidean 
method. The Midpoint Rule Euclidean method is the one most people 
remember from early calculus courses, but there are other Euclidean 
methods (i.e., the Trapezoid Rule and Simpson’s Rule) that could give a 
better estimation and require fewer sub-intervals.  

Of course, the Euclidean methods require that the space be divided into a 
number of segments for each dimension (Figure A-8). Because the 
Gaussian multivariate space is orthogonal and normalized, the same 
number of intervals should be applied to each dimension. The greatest rate 
of change of the function occurs near the origin, so for efficiency, the 
subdivisions can be placed closer together at the origin than at the 
extremes. However, since most of the limit states are applied near the tails 
of the distributions, and therefore at extreme distances (>3.0σ), care 
should be taken to not spread the subdivisions too far so that accuracy and 
precision will be maintained. Because the probabilities become extreme at 
distances of greater than 3σ, the numerical solution should be satisfactory 
in the range of -5σ to 5σ for each variable. 
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Figure A-8. Gridding the Gaussian multivariate space to determine the PUP based on a 
single limit state response surface. 

 

An issue with using the Euclidean approximations is the number of 
analyses that will need to be run. To evaluate an individual subdivision 
point, each of the limit state indicator functions will need to be found. If the 
analysis function is written correctly, these values could be collected on a 
single analysis execution. However, for a number of sub-divisions (S) and a 
number of variables (N), the total number of runs that will need to be 
performed is NS. The computational complexity of this method means that 
it will rarely be tractable for anything less than a high-performance 
computational platform. Another issue with the numerical integration is 
that the combined PDF for multiple variables, which are multiplied 
together, make numbers so small that they outstrip the precision of even 
double-precision floating point values in programming languages.  

A.3.3 Hypersphere numerical method  

Thus far, all of the methods explored have been based on hyperplanes 
because there is a simple method of determining the CDF of half-spaces 
divided by the hyperplane in the Gaussian multivariate space. There is 
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another property of the Gaussian multivariate space that seems to be 
overlooked. For any hypersphere (also known as an n-sphere) in the space 
that is centered at the origin and has radius R, all of the points on the 
surface of the hypersphere have the same probability density function 
value, as shown in Figures A-9 and A-10. 

 𝑝𝑝(𝑿𝑿𝑅𝑅) = 𝑝𝑝(𝑅𝑅𝑋𝑋1) × 𝑝𝑝(𝑅𝑅𝑋𝑋2) × … × 𝑝𝑝(𝑅𝑅𝑋𝑋𝑋𝑋) = 𝑝𝑝(0)𝑁𝑁−1𝑝𝑝(𝑅𝑅) (A.27) 

Figure A-9 shows that the probability for any thin shell is the same at a set 
distance from the origin. Figure A-10 shows this thin shell in plan view. The 
symmetry and the properties of the Gaussian Normal Curve means that the 
probability at any distance in the multivariate space is the same at all 
points on the hypersphere surface. 

Figure A-9. Symmetric probability for pairs of bins equidistant from the 
mean, section view. 
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Figure A-10. Symmetric probability of the Gaussian Normal Curve at any distance in 
the multivariate space at all points on the hypersphere surface, plan view.  

 

Given that the closed form equation of the surface area for the unit 
hypersphere with dimension N is 

 𝑆𝑆𝑁𝑁 =

⎣
⎢
⎢
⎢
⎡2

𝑁𝑁+11
2 𝜋𝜋

𝑁𝑁−1
2

(N−2)‼
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜 𝑁𝑁, 𝑎𝑎𝑎𝑎𝑎𝑎

2𝜋𝜋
𝑁𝑁
2

�12N−1�!
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑁𝑁

 (A.28) 

Using concentric shells, the probability of satisfactory performance of the 
N-dimensional hypersphere (h) with radius R in Gaussian multivariate 
space (Figure A-11) is 

 𝑃𝑃ℎ(𝑅𝑅) = ∫ 𝑆𝑆𝑁𝑁𝑟𝑟2𝑝𝑝(0)𝑁𝑁−1𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑𝑅𝑅
𝑟𝑟=0  (A.29) 

which seems much more tractable for a numerical solution, the factorial 
divisors in Equation A.27 can grow quite large as the number of dimensions 
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increases. For a PUP given hyperplanar limit states and β  radius, it follows 
that 

 𝑃𝑃𝑃𝑃𝑃𝑃 ≤ (1 − 𝑃𝑃ℎ(𝛽𝛽)) (A.30) 

Figure A-11. A 2-D demonstration of the hypersphere calculation of PUP. 

 

Unfortunately, this approach overestimates the PUP, and the error 
increases as the radius β  increases. The error increases because the 
hyperplane PUP decreases at such a rate that any error is exacerbated at 
the tails of the distribution. Also, the accuracy of the hypersphere PUP is 
greatly influenced by the resolution of numerical procedure to determine 
its values, with greater error occurring at greater β  values. Of course, 
higher resolution numerical solutions also become intractable. 

Table A-1 shows a quick calculation of error for a two-variable space, with 
hyperplanar PUP calculations and the numerical approximation of the 
integral of the hypersphere with different resolution step sizes. Recall that 
for a two-variable space, the hyperplane is a line and the hypersphere is a 
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circle. Table A-2 shows the hypersphere estimation error as a multiple of 
the actual linear PUP value. Notice that as the hypersphere β  increases, the 
error becomes greater. This is because the drop-off of the hyperplanar limit 
state CDF (Φ (1-β )) drops off more rapidly than the CDF of the area outside 
the circular area in the opposite half-plane.  

Table A-1. PUP values for Hyperplanar Limit State and Hypersphere PUP Estimations 
with increasing accuracy.  

β  
Hyperplanar 
Linear PUP 
(lPUP) 

Hypersphere 
PUP (hPUP) 

Hypersphere 
PUP (hPUP) 

Hypersphere 
PUP (hPUP) 

Hypersphere 
PUP (hPUP) 

  (0.001 interval) (0.0001 interval) (0.00001 
interval) 

(0.000001 
interval) 

0.5 0.30853754 0.88207477 0.88245471 0.8824971 0.88249648 

1 0.15865525 0.60604896 0.60648246 0.60653191 0.60653018 

1.5 0.0668072 0.32446544 0.32463372 0.32465059 0.32465228 

2 0.02275013 0.1355278 0.1353545 0.13533991 0.13533548 

2.5 0.00620967 0.04439116 0.04398235 0.04394257 0.04393739 

3 0.0013499 0.01168391 0.01116649 0.01111475 0.01110957 

3.5 0.00023263 0.00280223 0.00224898 0.00219364 0.00218811 

4 0.00003167 0.00095991 0.00039792 0.00034172 0.00033609 

4.5 0.0000034 0.00066628 0.0001027 0.00004633 0.00004069 

5 0.00000029 0.00063019 0.00006639 0.00000999 0.00000435 

Table A-2. Hypersphere PUP estimate error as a multiple of the actual Hyperplanar PUP. 

β  hPUP0.001/lPUP hPUP0.0001/lPUP hPUP0.00001/lPUP hPUP0.000001/lPUP 

0.5 2.858889618 2.860121041 2.860258431 2.860256421 

1 3.81991116 3.822643499 3.822955181 3.822944277 

1.5 4.856743585 4.859262475 4.859514992 4.859540289 

2 5.957231893 5.949614354 5.948973039 5.948778315 

2.5 7.148714827 7.082880411 7.076474273 7.07564009 

3 8.655389288 8.272086821 8.233758056 8.229920735 

3.5 12.04586683 9.667626703 9.429738211 9.405966556 

4 30.30975687 12.56457215 10.7900221 10.61225134 

4.5 195.9647059 30.20588235 13.62647059 11.96764706 

5 2173.068966 228.9310345 34.44827586 15 
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A.3.4 Hybrid hyperspherical probabilistic integration method 

The hypersphere numerical method works quickly to determine the 
probabilities of values occurring within a hypersphere of a defined radius 
and can be run to generate tables for many different radii hyperspheres for 
quick lookup. This method could be used to generate a quick estimate of 
the value to the closest design point for the most likely to occur limit state 
but will result in a large error region. 

The authors of this report have looked at a Euclidean numerical method in 
Cartesian space for the determination of probabilities with respect to 
multiple limit states. This concept can be expanded to a polar coordinate 
space, using  

 𝑖𝑖𝑍𝑍(𝑟𝑟,𝜽𝜽) = 1 −∏ �1 − 𝑖𝑖𝑧𝑧(𝑟𝑟,𝜽𝜽)�𝑍𝑍
𝑧𝑧=1  (A.31) 

 𝑃𝑃𝑃𝑃𝑃𝑃 = Φ(𝑟𝑟,𝜽𝜽) = ∫ ∫ 𝑖𝑖𝑍𝑍(𝑟𝑟,𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁)ℎ(𝑟𝑟,𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁)𝑑𝑑𝑑𝑑∞
𝑟𝑟=0𝜽𝜽 𝑑𝑑𝜽𝜽(A.32) 

A numerical solution could transform the polar coordinates to Cartesian 
coordinates for simplification of probability calculation. This means that 
the iZ() function can be determined from the Cartesian equation given in 
Equation A.25. The probability function h() is the same as Equation A.8. 
The rest of the equation deals with the approximation of volume occupied 
by a polar coordinate described shell element of dr thickness and all of its 
sweep angles. Because dimensionless angles are used for these sweep 
angles in multiple dimensions and the angles interact within polar 
coordinates, the definition of dθ needs to be rederived for each number of 
dimensions. The following two equations show the polar integration 
equations for two and three dimensions, respectively: 

 𝑃𝑃𝑃𝑃𝑃𝑃 = Φ(𝑟𝑟, 𝜃𝜃) = ∫ ∫ 𝑖𝑖𝑍𝑍(𝑟𝑟, 𝜃𝜃)ℎ(𝑟𝑟,𝜃𝜃)𝑑𝑑𝑑𝑑∞
𝑟𝑟=0

2𝜋𝜋
𝜽𝜽=𝟎𝟎 (𝑟𝑟𝑟𝑟𝑟𝑟) (A.32a) 

 𝑃𝑃𝑃𝑃𝑃𝑃 = Φ(𝑟𝑟, 𝜃𝜃1,𝜃𝜃2) =

                                                       ∫ ∫ ∫ � 𝑖𝑖𝑍𝑍
(𝑟𝑟, 𝜃𝜃1,𝜃𝜃2)ℎ(𝑟𝑟,𝜃𝜃1,𝜃𝜃2) ∗

𝑑𝑑𝑑𝑑(𝑟𝑟𝑟𝑟𝜃𝜃1)(𝑟𝑟 sin(𝑑𝑑𝜃𝜃1)𝑑𝑑𝜃𝜃2)�
∞
𝑟𝑟=0

𝜋𝜋
𝜃𝜃1=0

2𝜋𝜋
𝜃𝜃2=0

 (A.32b) 

The length term r needs to be multiplied by each angular delta to express 
the shell element arc-distance for that angular sweep. For the 3-D 
Equation A.32b, the total sweep of angle θ1 is reduced to make the 
functions one-to-one, much like latitude and longitude are described on a 
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sphere. Figure A-12(a,b) show why the reduction of distance for the dθ2 
term is required for polar coordinates. These figures use more 
conventional notation for 3-D axes and angles with X, Y, and Z axes 
representing X1, X2, and X3 variable space axes, respectively, and φ and θ 
representing the θ1 and θ2 variable space angles, respectively. The 
equation derivations for Equation A.32 become more involved as more 
variable dimensions are included. 

Figure A-12. Calculating dimensions for integrating spherical coordinate 3-D space. 

 

A full numerical solution along these lines would have the same issues of 
exponential time growth as the Euclidean method. Recall that the 
numerical solution could be considered complete when r equals 5σ because 
the probabilities are extremely small past that limit. 

It is certainly possible to minimize calculation time by marrying the 
hypersphere calculation method with the polar coordinate method for 
calculating the probabilities of multiple limit states in the Gaussian 
multivariate space. Given the design point for the highest probability limit 
state defined by βα, the probability of satisfactory performance would be 
the hypersphere probability of radius β  combined with 1 minus the polar 
PUP with r ranging from β  to 5, thus limiting the polar search to a 
somewhat manageable area. Of course, the PUP is 1 minus the probability 
of satisfactory performance. 

Another performance increase can be implemented if the limit states are 
guaranteed to be hyperplanar. For the hyperplanar limit states, the ASM 
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method calculates the distance from the origin β  and the unit directional 
cosine vector α from the origin to the hyperplane which is normal to the 
surface of the hyperplane. For multiple limit states, the limit state with the 
minimum β  value has the highest PUP. The iZ() function returns a value of 
0 for every point within that minimum β  value radius hypersphere. 
Therefore, it is only necessary to integrate from this minimum β  value to 5 
to get the PUP. 

If a level of precision is specified by establishing the accuracy to a specific 
decimal place, another performance increase can be made by using the fact 
that the volume of hyperspherical shells increases with constant radial 
increments raised to the power of the number of dimensions n of the 
hyperspace while the normal distribution values get smaller by a scale factor 
times e1/n. The normal distribution values at the tails of the distribution 
decrease faster than the volume of the hyperspherical shell grows. 

Figure A-13a shows the exponential growth of hyperspherical shell volumes 
as the radius increases, with radial increment 0.001. Figure A-13b shows 
the normal distribution PDF value assigned for each of these 
hyperspherical shell radii. Figure A-13c shows the cumulative probability 
for the volume of the hyperspherical shell elements, computed by 
multiplying the shell volume by its center radius PDF value. The resulting 
curve shows that at the beginning, the increase of hyperspherical shell 
volume from volume 0 drives the shape of the curve until the PDF 
distribution drop off exceeds the rate of growth. At that point, the curve 
begins to decrease with the tails of the distribution. 
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Figure A-13. Distribution plots with respect to radius for 3-D sphere: (a) sphere shell 
volume, (b) point distribution probability, (c) probability density for the sphere shell, 
and (d) number of divisions of the sphere density where each shell division would 

have 1.0e-10 probability. 

 

From these curves (Figure A-13 a through c), it can be inferred that, if equal 
divisions were made of each hyperspherical shell, then each division’s 
volume probability would be equivalent. Further, these divisions (based on 
angular intervals) can be chosen to be equivalent or slightly less than a 
specified volume probability based on the precision of solution desired, 
simply by setting the number of divisions of the hyperspherical shell to the 
mathematical ceiling of the volume probability of the entire hyperspherical 
shell by the specified volume probability desired. For the beginning of the 
curve and the ends of the curve where the volume of the hyperspherical shell 
is extremely small and the tails of the distribution give extremely low 
probabilities, respectively, a minimum value for the number of divisions can 
be set to ensure that limit state values are accurately found. The number of 
divisions, nangle, should not drop below a threshold based on the number of 
variable dimensions (NDim). Samples must be taken at least in every 
quadrant of the space and each variable dimension doubles the number of 
quadrants. Therefore, the minimal number of samples should be 2NDim and 
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nangle should not be allowed to be less than 2NDim. For an example problem 
with five dimensions, the minimal value for nangle will be 32. Figure A-13d 
shows the number of shell divisions so that each division has a volume 
probability of 1.0×10-10. Summing these divisions should give the entire ring 
probability to at least the tenth digit of precision. In truth, there are small 
errors introduced for three of more dimensions because of polar coordinate 
integration, so higher precision divisions will be needed to ensure the 
numerical precision. From this curve, the level of integration is varied as the 
radius increases. 

A.4 Using an estimation of PUP to establish LRFD factors  

Because the structural probability of usability is based on the lifetime of the 
structure, the PUP can be used to establish the design limits for these 
structures. Under applied load cases, the design points for several limit 
states can be determined as a distance (in standard deviations) and 
direction from the mean characteristics of the structure, β α. An example of 
this is shown in Figure A-14. The expected overall PUP value can be set to a 
limit [e.g., Φ (3.5) with β  = 3.5], which guarantees the structure’s lifetime 
integrity probability. 
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Figure A-14. Example limit states and β s for unfactored loads and resistances. 

 

There are two ways to envision that a scale factor can be applied to the 
load(s) applied to a structure during its structural design: The first method 
assumes that the load and response directions do not change. In this case, 
each variable axis has the same universal scale applied (Figure A-15). 
Because the factor is applied uniformly, the limit states maintain their 
relative positions and angles to each other in the Gaussian multivariate 
space. Once the limit states have been determined for the unscaled design 
load, the system PUP can be considered to be a function of the single 
applied scale factor (S) to the system. 

 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓(𝑆𝑆)  (A.33) 
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Figure A-15. A uniform scale factor (S) is applied to the β s for the limit state  
design points. 

 

For this equation, f (S) is a result of one of the multivariate, multi-limit 
state estimation techniques discussed in the previous section. The purpose 
is to make the calculated PUP approximately equivalent to the established 
limit [e.g., Φ (3.5) with β = 3.5]. Each limit state response surface is 
described by 

 𝛽𝛽𝑖𝑖𝜶𝜶𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = (𝛽𝛽𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑆𝑆)𝜶𝜶𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (A.34) 

Since the PUP can described by a function of a single variable (S), a 
Newtonian or secant-based numerical method can be used to adjust the 
design points (by changing the scale) until the solution approaches the limit 
set for the overall system PUP, in an efficient way.  

The second method to apply scale factors is more complicated but can give 
a better overall design because all of the variables are considered 
independently. To balance the design to the load and intended probability 
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of failure, the initial attempt at the design must find the hyperplanar 
definition vectors for all of the limit states, β i-originalαi-original (Figure A-14). 
When these hyperplanar descriptions are discovered, factors can be applied 
to the minimum β  value limit state that extends the distance from the 
origin in the Gaussian multivariate space to the limit state hyperplane, thus 
lowering the PUP for that limit state. However, this factor affects all of the 
limit states to varying degrees as each variable axis is extended to varying 
degrees by the minimum limit state’s directional cosines (e.g., αi-original_X1). 
This is shown in Figure A-16. In this case, Equation A.34 is interpreted in a 
different way: 

 𝛽𝛽𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝜶𝜶𝑖𝑖 = 𝛽𝛽𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝜶𝜶𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑆𝑆) (A.35) 

Given this, each variable axis has its own scale factor 

 𝑆𝑆𝑋𝑋𝑋𝑋 = 𝛼𝛼𝑖𝑖−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑋𝑋𝑋𝑋 × 𝑆𝑆 (A.36) 

For this situation, the PUP is a function of the scale factors for each of the 
variables. 

 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓(𝑆𝑆𝑋𝑋1,𝑆𝑆𝑋𝑋2, … , 𝑆𝑆𝑋𝑋𝑋𝑋) = 𝑓𝑓(𝑺𝑺) (A.37) 

Because of correlation between the limit state response surfaces, the 
concern would be that these functions can lead to local minima and 
maxima in a root finding because of the new slope calculations. Testing will 
need to be performed to find if these issues confound root-finding 
numerical algorithms.  
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Figure A-16. Applying variable axis scale factors to adjust probabilities. A scale factor 
applied to Limit State 1 causes slope changes in the response surfaces  

for Limit State 2 and 3. 

 

A.5 Validating PUP numerical estimation methods 

To validate the models for PUP estimation, evaluate the inputs that will 
lead to an increase in accuracy, and determine the resources (namely, time) 
that will be needed to do these estimations, simple test cases were created. 
These test cases were performed with two variables and had three 
overlapping limit states. These tests were all performed on a Dell Precision 
T7610 computer using Python 2.6 language for purposes of timing. 

The first test case had two limit states that were perpendicular to the X1 
variable axis at distance 1.0 and -1.2 along the axis. The third limit state 
was perpendicular to the X2 variable axis at distance 1.3 along the axis. For 
all three limit states, the unsatisfactory performance was in the half-space 
away from the origin of the Gaussian multivariate space. This can be seen 
in Figure A-17.  
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Figure A-17. The first test case for PUP estimation. 

 

Because the limit states are perpendicular or parallel, the limit states are 
completely uncorrelated. This simplifies the calculation of the actual PUP. 
The probability of the overlapping area of two limit state half-spaces is the 
multiplication of each limit states’ PUP. This result is shown in Equations 
A.21 and A.22, when ρ=0.0. This means that 

 𝑃𝑃�𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗� =  Φ(−𝛽𝛽𝑖𝑖)Φ�−𝛽𝛽𝑗𝑗� (A.38) 

Therefore, for the first simple test case, the PUP is given by 

 𝑃𝑃𝑃𝑃𝑃𝑃 =  � Φ(−𝛽𝛽𝐿𝐿𝐿𝐿1) + Φ(−𝛽𝛽𝐿𝐿𝐿𝐿2) + Φ(−𝛽𝛽𝐿𝐿𝐿𝐿3) −
Φ(−𝛽𝛽𝐿𝐿𝐿𝐿1)Φ(−𝛽𝛽𝐿𝐿𝐿𝐿3) −Φ(−𝛽𝛽𝐿𝐿𝐿𝐿2)Φ(−𝛽𝛽𝐿𝐿𝐿𝐿3)� = 0.34402870 

Listings A.1 and A.2 show the result of performing a simple numeric 
integration across the test case from -5 to 5 in each dimension of the 
Gaussian multivariate space with step resolutions of 0.01 and 0.001, 
respectively. The first few lines show the calculation of the PUP as 
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discussed previously. The estimated value of PUP with resolution 0.01 from 
the integration is 0.3414388654 and took 154 sec to integrate. This value is 
within 0.2% of the actual calculated PUP value. The estimated value of PUP 
with resolution 0.001 from the integration is 0.3437685994 and took 
16,127 sec to integrate. This value is with 0.05% of the actual calculated 
PUP value. While the additional accuracy can make slight changes at the 
tails of the distribution, the solution time means that the 0.01 resolution 
numerical integration is preferred. 
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Listing A.1. Output from Euclidean numerical integration with step size 0.01. 

 

===== Direct Calculation ===== 

PUP(LS1) = 0.15865525 

PUP(LS2) = 0.11506967 

PUP(LS3) = 0.09680048 

E(LS1,LS3) = 0.01535791 

E(LS2,LS3) = 0.01113880 

 

PUP(Overall) = PUP(LS1)+PUP(LS2)+PUP(LS3)-E(LS1,LS3)-
E(LS2,LS3) = 0.34402870 

 

 

===== Direct Numerical Integration Calculation ===== 

Input Parameters: Resolution=0.0100000000 

numsteps=500 

Solution Time=152 

PUP(Overall) = 0.3414388654 
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Listing A.2. Output from Euclidean numerical integration with step size 0.001. 

 
  

===== Direct Calculation ===== 

PUP(LS1) = 0.15865525 

PUP(LS2) = 0.11506967 

PUP(LS3) = 0.09680048 

E(LS1,LS3) = 0.01535791 

E(LS2,LS3) = 0.01113880 

 

PUP(Overall) = PUP(LS1)+PUP(LS2)+PUP(LS3)-E(LS1,LS3)-
E(LS2,LS3) = 0.34402870 

 

 

===== Direct Numerical Integration Calculation ===== 

Input Parameters: Resolution=0.0010000000 

numsteps=5000 

Solution Time=16127 

PUP(Overall) = 0.3437685994 
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Listing A.3 and A.4 show the results of pure polar integration for the same 
test case. Recall that polar integration can take advantage of the fact that any 
point on the hypersphere has the same probability in the Gaussian 
multivariate space for a significant speed-up. The integration is performed 
from the center to a hypersphere of radius 5. The angle step is 0.01 for both 
runs and the radius changes by steps of 0.01 and 0.001, respectively. The 
first few lines show the calculation of the PUP as discussed previously. The 
estimated value of PUP with radius resolution 0.01 from the integration is 
0.3438739669 and took 217 sec to integrate. This value is within 0.05% of 
the actual calculated PUP value and has better accuracy than the Euclidean 
numerical integration does with 0.001 step resolution. The estimated value 
of PUP with resolution 0.001 from the integration is 0.3440204733 and took 
2,036 sec to integrate. This value is with 0.003% of the actual calculated PUP 
value. While the additional accuracy can make slight changes at the tails of 
the distribution, the solution time means that the 0.01 resolution adaptive 
hyperspherical Gaussian probability numerical integration is preferred and 
is better than the Euclidean numerical integration. 
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Listing A.3. Output from adaptive hyperspherical Gaussian probability numerical 
integration with radius step size 0.01 and angle step size 0.001. 

 

===== Direct Calculation ===== 

PUP(LS1) = 0.15865525 

PUP(LS2) = 0.11506967 

PUP(LS3) = 0.09680048 

E(LS1,LS3) = 0.01535791 

E(LS2,LS3) = 0.01113880 

 

PUP(Overall) = PUP(LS1)+PUP(LS2)+PUP(LS3)-E(LS1,LS3)-
E(LS2,LS3) = 0.34402870 

 

 

===== Hyperspherical Integration Calculation ===== 

Input Parameters: Radius Step=0.0100000000 Angle 
Step=0.0010000000 

Solution Time=217 

PUP(Overall) = 0.3438739669 
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Listing A.4. Output from adaptive hyperspherical Gaussian probability numerical 
integration with radius step size 0.001 and angle step size 0.001. 

 
  

===== Direct Calculation ===== 

PUP(LS1) = 0.15865525 

PUP(LS2) = 0.11506967 

PUP(LS3) = 0.09680048 

E(LS1,LS3) = 0.01535791 

E(LS2,LS3) = 0.01113880 

 

PUP(Overall) = PUP(LS1)+PUP(LS2)+PUP(LS3)-E(LS1,LS3)-
E(LS2,LS3) = 0.34402870 

 

 

===== Hyperspherical Integration Calculation ===== 

Input Parameters: Radius Step=0.0010000000 Angle 
Step=0.0010000000 

Solution Time=2036 

PUP(Overall) = 0.3440204733 
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The second test case (Figure A-18) was designed to test the Ang and Tang 
(1974) Bounds method with correlated limit states. In this case, a design 
point was chosen for three hyperplanar limit states. The design points were 
(0.5,1.1), (-0.6,0.9), and (-0.9, -0.1) for Limit States 1, 2, and 3, respectively. 
The unsatisfactory performance regions were in the half-planes for the 
limit state response surfaces away from the origin. 

Figure A-18. The second test case for PUP estimation. 

 

Listings A.5 shows the input design points along with the 
calculated β  values and α vectors for the limit states. The absolute bounds 
for the PUP are calculated from Equations A.12 and A.13, resulting in 
0.182590 <= PUP <= 0.376573, with an average value of 0.279582. Using 
the pairwise correlation relationships in Equations A.14 and A.15, with 
estimated values from Equations A.21-A.24, a tighter bound was 
established as 0.229335 <= PUP <= 0.344048, with an average value of 
0.286692. Because of the correlation, an actual value was not available, so a 
polar integration was performed with a radius step of 0.01 and an angular 
step of 0.01, which resulted in a PUP of 0.329675. 



ERDC/ITL TR-21-1  192 

 

Listing A.5. Output from Ang and Tang (1974) Bounds estimation compared to polar 
integration method. 

 

===== Input Parameters ===== 

Limit State 1 (LS1) Design Point (0.500000 1.100000) 
Beta=1.208305 Alpha = (0.413803 0.910366) 

Limit State 2 (LS2) Design Point (-0.600000 0.900000) 
Beta=1.081665 Alpha = (-0.554700 0.832050) 

Limit State 3 (LS3) Design Point (-0.900000 -0.100000) 
Beta=0.905539 Alpha = (-0.993884 -0.110432) 

 

===== Ang and Tang Limits ===== 

PUP(LS1) = 0.113465 

PUP(LS2) = 0.139701 

PUP(LS3) = 0.182590 

 

Absolute Bounds: 0.182590 <= PUP <= 0.376573 Average = 
0.279582 

 

Tighter Bounds: 0.229335 <= PUP <= 0.344048 Average = 
0.286692 

 

===== Numerical Analysis ===== 

Input Resolution: Radius step size = 0.010000 Angle step size 
= 0.001000 

PUP = 0.329675 
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While the Bounds Estimation Method was simple to compute, the range of 
the values is too big for estimation in the tails of the Gaussian Normal 
distribution. The averaged values also were not accurate enough for the 
rigorous application that would be required by an LRFD solution method. 
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Appendix B: Earth and Water Pressure 
Distributions, Resultant Forces 
and Their Points of Application 
along the Faces of the Structural 
Wedge 

B.1 Introduction: Resultant forces and their points of application along 
the two faces and the base of the Structural Wedge 

Figure B-1 shows the resultant left- and right-side earth forces PL and PR, 
the left- and right-side resultant water forces HL and HR acting on the 
Structural Wedge, its base reaction force N’, and base uplift force Ubase. Also 
included on this figure are the various distances to these forces and key 
geometry points.  

Figure B-1. Free body diagram of forces acting on the Structural Wedge, including the 
left- and right-side forces resulting from the Resisting Wedge and Driving Wedge, 

PL and PR, respectively. 
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B.2 Distribution of right-side interface earth pressures for a partially 
submerged, retained soil 

Figure B-2 shows the horizontal component of the effective earth pressure 
distribution and the distribution of water pressures with their 
corresponding resultant forces acting on the right side of the Structural 
Wedge.  

Figure B-2. Horizontal component of effective earth pressures and water pressures 
with their corresponding resultant forces acting on the right side  

of the Structural Wedge. 

 

B.2.1 Horizontal effective earth pressures – right side of the Structural 
Wedge 

The horizontal effective earth pressure at point B in Figure B-2 is given by 

 𝜎𝜎ℎ−𝐵𝐵′ = 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ∗ 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (ℎ4 − ℎ6) (2.37 bis) 

where 

γmoist is the moist unit weight of the retained soil and KActive is mobilized 
active earth pressure coefficient given by Equation 2.4 and is calculated 
using φ’mob-Active and δ’mob-Active. 
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The horizontal effective earth pressure at point CTop is 

 𝜎𝜎ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ = � 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ∗
{𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (ℎ4 − ℎ6) + 𝛾𝛾1 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)}�         

where 

γ1 is the effective unit weight of the retained soil accounting for the 
downward, vertical gradient of steady-state seepage through the saturated 
soil volume of the Driving Wedge. Equation 2.9 provides for the γ1 value. 

The horizontal effective earth pressure at point C is  

 𝜎𝜎ℎ−𝐶𝐶′ = � 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐
(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ∗

{𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ (ℎ4 − ℎ6) + 𝛾𝛾1 ∗ ℎ6}� (2.38 bis) 

B.2.2 Pore water pressures – along the perimeter of the Structural Wedge 

The pore water pressures at submerged points B, CTop, C, D, and DTop of 
Figure B-1 are computed using the Line of Seepage procedure outlined in 
Subsection 2.3.1 for no gap or that in Subsection 2.3.2 with a gap extending 
from the heel of the Structural Wedge, along its base. The total heads HA at 
point A and HE at point E are the necessary boundary conditions to solve 
for the total heads at all of these interior points, as shown in the 
Transformed Line of Seepage plots of Figure 2-6.a (or Figure 2-8.a). Recall 
the pressure head hp is computed at any point along each of the three 
Figure 2-6 streamline segments using Bernoulli’s equation for total head 
(H) (and assuming the velocity head is negligible).  

 ℎ𝑝𝑝 = 𝐻𝐻 − ℎ𝑒𝑒 (2.24 bis) 

where he is the elevation head for the point (from Figure 2-5). This 
modified relationship allows for the computation of the corresponding pore 
water pressure (u) at the selected point by 

 𝑢𝑢 = ℎ𝑝𝑝 ∗ 𝛾𝛾𝑤𝑤 (2.25 bis) 

B.2.3 Horizontal effective earth pressure resultant forces – right side of the 
Structural Wedge 

The resultant horizontal effective earth pressure force ER-1 is given by 

(B.2) 
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 𝐸𝐸𝑅𝑅−1 = 1
2 ∗ (𝜎𝜎ℎ−𝐵𝐵′ ) ∗ (ℎ4 − ℎ6) + 1

2 ∗ �𝜎𝜎ℎ−𝐵𝐵
′ + 𝜎𝜎ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ � ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.2) 

The point of application of ER-1 is given by 

 ℎ𝐸𝐸𝐸𝐸−1 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐴𝐴−𝐵𝐵+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐵𝐵−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐸𝐸𝑅𝑅−1

 (B.3) 

with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐴𝐴−𝐵𝐵 = �12 ∗ (𝜎𝜎ℎ−𝐵𝐵′ ) ∗ (ℎ4 − ℎ6)� ∗ �13 ∗ (ℎ4 − ℎ6) + ℎ6� (B.4) 

and 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐵𝐵−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

⎩
⎪
⎨

⎪
⎧ �

[(𝜎𝜎ℎ−𝐵𝐵′ ) ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)] ∗
�12 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)+ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒�

� +

�
�12 ∗ �𝜎𝜎ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

′ − 𝜎𝜎ℎ−𝐵𝐵′ � ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗
�13 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) + ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒�

�
⎭
⎪
⎬

⎪
⎫

 (B.5) 

The resultant horizontal effective earth pressure force ER-2 is given by 

 𝐸𝐸𝑅𝑅−2 = 1
2 ∗ �𝜎𝜎ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

′ + 𝜎𝜎ℎ−𝑐𝑐′ � ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.6) 

The point of application for ER-2 is given by 

 ℎ𝐸𝐸𝐸𝐸−2 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝐶𝐶
𝐸𝐸𝑅𝑅−2

 (B.7) 

with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝐶𝐶 = ���𝜎𝜎ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ � ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗ �12 ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�� + ��12 ∗ �𝜎𝜎ℎ−𝐶𝐶
′ − 𝜎𝜎ℎ−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′ � ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗

�13 ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)��  (B.8) 

The resultant horizontal effective earth pressure force ER is 

 𝐸𝐸𝑅𝑅 = 𝐸𝐸𝑅𝑅−1 + 𝐸𝐸𝑅𝑅−2 (B.9) 

and its point of application given by 

 ℎ10 = 𝐸𝐸𝑅𝑅−1∗ℎ𝐸𝐸𝐸𝐸−1+𝐸𝐸𝑅𝑅−2∗ℎ𝐸𝐸𝐸𝐸−2
𝐸𝐸𝑅𝑅

 (B.10) 
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The resultant mobilized effective, active earth pressure force PR is 

 𝑃𝑃𝑅𝑅 = 𝐸𝐸𝑅𝑅
𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿) (B.11) 

and its vertical force component XR is 

 𝑋𝑋𝑅𝑅 = 𝐸𝐸𝑅𝑅 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿) (B.12) 

B.2.4 Horizontal water pressure resultant forces – right side of the 
Structural Wedge 

The resultant pore water pressure force HR-1 is given by 

 𝐻𝐻𝑅𝑅−1 = 1
2 ∗ �𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.13) 

The point of application of HR-1 with reference to the elevation of the heel, 
is given by 

 ℎ𝐻𝐻𝐻𝐻−1 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐵𝐵−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐻𝐻𝑅𝑅−1

 (B.14) 

with the moment about the elevation of the bottom of the base of the slab, 
defined as 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐵𝐵−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �
�12 ∗ �𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗
�13 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) + ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒�

� (B.15) 

And the point of application of HR-1 with reference to the elevation of top of 
base slab, corner point CTop, is given by 

 (ℎ𝐻𝐻𝐻𝐻−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) = 1
3 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.16) 

The resultant pore water pressure force HR-2 is given by 

 𝐻𝐻𝑅𝑅−2 = 1
2 ∗ �𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑢𝑢𝑐𝑐� ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.17) 

The point of application for HR-2 with reference to the elevation of the heel, 
is given by 

 ℎ𝐻𝐻𝐻𝐻−2 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝐶𝐶
𝐻𝐻𝑅𝑅−2

 (B.18) 
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with the moment about the elevation of the bottom of the base of the slab, 
defined as 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝐶𝐶 =

⎩
⎪
⎨

⎪
⎧ �

��𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗
�12 ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�

� +

�
�12 ∗ �𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑢𝑢𝐶𝐶� ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗

�13 ∗ (ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�
�
⎭
⎪
⎬

⎪
⎫

 (B.19) 

B.3 Resultant forces acting on the soil block – right, located above the 
heel portion of the base slab for the Structural Wedge 

Figure B-3 shows the resultant earth pressure and water pressure resultant 
forces acting on the soil block located above the heel portion of the base 
slab for the Structural Wedge. It is designated “soil block - right” because 
this soil block is situated to the right of the reinforced concrete stem. The 
stem as well as the reinforced concrete base slab bound the left and bottom 
faces of this soil block. Observe that no horizontal shear force (T) is 
assumed to act along the base of soil block - right, consistent with the EM 
1110-2-2502 (HQUSACE 1989) assumption. 

Figure B-3. Free body diagram of resultant forces acting on and within the soil block 
(right) located above the heel portion of the base slab for the Structural Wedge. 
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Values for forces ER-1, XR-1, and HR-1 are computed from the earth and water 
pressure distributions along the imaginary vertical section extending up 
from the heel of the T-Wall through the retained soil using the equations 
given in Subsections B.2.3 and B.2.4, respectively. Recall there is no 
horizontal shear force (T ) assumed to act along the base of soil block - 
right, consistent with the EM 1110-2-2502 (HQUSACE 1989) assumption. 
Then horizontal force equilibrium applied to the Figure B-3 soil block - 
right, the resultant horizontal effective earth pressure force E*R-1 applied to 
the stem is defined as 

 𝐸𝐸∗𝑅𝑅−1 = 𝐸𝐸𝑅𝑅−1 + 𝐻𝐻𝑅𝑅−1 − 𝐻𝐻∗
𝑅𝑅−1 (B.20) 

For the constant elevation piezometric surface in the partially submerged 
retained soil block - right of Figure B-3 with a constant, vertical 
(downward) seepage gradient,  

 𝐻𝐻 ∗𝑅𝑅−1= 𝐻𝐻𝑅𝑅−1 (B.21) 

and the H*R-1 point of action will be the same as that for HR-1 (Equation 
B.16), 

 (ℎ𝐻𝐻∗𝑅𝑅−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) =  (ℎ𝐻𝐻𝐻𝐻−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) = 1
3 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.22) 

Consequently, by Equation B.20, 

 𝐸𝐸∗𝑅𝑅−1 = 𝐸𝐸𝑅𝑅−1 (B.23) 

For this T-Wall geometry, hE*R-1 was set equal to hER-1 because a complete 
solution for the location of this force is a complex computation that is not 
anticipated to provide for a significant change from this assumption. 

Quantitative assessment of the vertical shear force X*R-1 exerted on the stem 
by the soil block - right is not as straightforward as one might hope. There 
are significant SSI issues that influence the interface forces within the soil 
block - right of the Structural Wedge. For example, a right triangle-shaped 
soil region adjacent to the vertical interface between the roughened surface 
of the reinforced concrete stem face (with the triangle’s base defined by the 
base slab) is not contained within the inverted triangular volume of soil 
possessing a fully mobilized shear strength (Figure B-4). Also depicted in 
Figure B-4 is the inverted triangular volume of slip planes centered with its 
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tip at the heel of the T-Wall. This is the active earth pressure soil zone, 
contained within this inverted triangular volume feature, that has its soil 
shear strength mobilized to the level of φ’mob-Active. Therefore, if FSActive 
equals 1.0, then φ’mob-Active is equal to φ’ of soil region 1. This inverted 
triangular soil volume forms as the Structural Wedge moves away from the 
Driving Soil Wedge, with this inverted triangular soil volume dropping 
downward as the T-Wall moves out. A graben will form above this inverted 
triangular soil volume due to this downward soil mass movement.  

Figure B-4. Active and passive Rankine states of stress behind and in front of a 
cantilever retaining wall, respectively (after Peck et al. 1974). 

 

Because the reinforced concrete stem face is located outside of the inverted 
triangular soil volume, the zone of soil adjacent to the vertical stem face 
interfaces does not mobilize its shear strength as a result of lateral T-Wall 
movement and active soil wedge development in the soil zone above the 
heel of the T-Wall. Thus, there is a right-angled triangular soil pocket that 
does not fully mobilize its shear strength (Figure B-4). It is situated 
between the stem face and the left side of the soil contained within the 
Figure B-4 inverted triangle of retained soil (active earth pressure zone) 
and above the top of the base slab. 

Recall this Figure B-4 soil regime of fully mobilized shear strength above 
the heel of the T-Wall takes the geometric form of an inverted, triangular 
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volume of soil. The orientation of the bottom-most slip plane defining the 
right side of this inverted triangle into the soil of the Driving Wedge is 
oriented from horizontal by the angle given by Equation 2.11. For a 
compacted, cohesionless engineered backfill consisting of granular soil, this 
angle is equal to approximately 60 deg from horizontal. This inverted, 
triangular volume of soil also extends into the soil of the soil block - right 
within the Structural Wedge, as shown in Figure B-4. The lateral extent of 
the active soil regime into soil block - right is approximated as being 
defined geometrically by a (slip) plane emanating from the heel of the 
T-Wall and oriented from horizontal at this same Equation 2.11 slip plane 
angle of approximately 60 deg from horizontal. For a heel base slab that is 
18 ft wide, as measured from stem to heel and with a 26.5 ft tall stem over a 
3.5 ft thick base slab, the right angled triangular soil zone next to the stem 
face for soil block - right is outside of the Figure B-4 triangular active wedge 
soil zone. Thus, active soil wedge theory would not be applied to determine 
the value for the vertical shear force X*R-1 exerted on the stem by the right-
angled triangular soil pocket. 

The approach taken to compute a vertical shear force X*R-1 is a complete 
SSI-based approach developed through research first investigated by Dr. 
Ebeling (Ebeling 1989). This type of shear force is named vertical shear 
and is not associated with the development of the active soil wedge and its 
inverted, triangular volume of soil (Figure B-4). The vertical shear force 
X*R-1 exerted on the stem by the soil block - right is calculated using the 
Vertical Shear Force computational procedure outlined in Appendix F 
procedure of EM 1110-2-2100 (HQUSACE 2005). This vertical shear force 
results from the differential settlement of the soil during backfilling of the 
T-Wall after its construction. This differential settlement and resulting 
vertical shear force arise due to the soil hanging on the roughened concrete 
vertical (stem) surface. Recall that this soil region adjacent to the vertical 
soil-structure interface is beyond the active soil wedge zone that develops 
with a focal point of the heel of the T-Wall and as a result of the movement 
of the T-Wall away from its retained soil. 

 𝑋𝑋∗𝑅𝑅−1 =

⎩
⎪
⎨

⎪
⎧

(𝐾𝐾 ∗ 𝐶𝐶𝑤𝑤𝑤𝑤) ∗

⎩
⎨

⎧ �12∗𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ �𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�
2
� +

�𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ �𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� +
�12∗𝛾𝛾1 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)2� ⎭

⎬

⎫

⎭
⎪
⎬

⎪
⎫

 (B.24) 



ERDC/ITL TR-21-1  203 

 

with K equal to 0.1 by EM 1110-2-2100 (HQUSACE 2005) Figure F-3 for a 
stem wall of height equal to 26.5 ft (Hstem), as measured form the top of 
base slab, and retaining dense, compacted granular fill. The correction 
factor Cwt for post-backfilling submergence of the compacted backfill is 
given by  

 𝐶𝐶𝑤𝑤𝑤𝑤 = �1 − (ℎ4−ℎ6)
𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� (B.25) 

For (h4-h6) equal to 6 ft and Hstem equal to 26.5 ft, Cwt becomes 0.23. Thus, 
the term (K*Cwt) is equal to 0.023 (=0.1*0.23). If the compacted, dense 
granular backfill was not submerged after placement, the vertical shear 
coefficient would remain a value of 0.1 since the correction factor Cwt would 
then be equal to 1. 

Vertical force equilibrium applied to the Figure B-3 soil block - right results 
in the effective force N’bR normal to the base of soil block - right being 
defined as 

 𝑁𝑁′𝑏𝑏𝑏𝑏 = 𝑊𝑊𝑏𝑏𝑏𝑏 +  𝑋𝑋𝑅𝑅−1 + −𝑋𝑋∗𝑅𝑅−1 − 𝑈𝑈𝑏𝑏𝑏𝑏 (B.26) 

The vertical force XR-1 is 

 𝑋𝑋𝑅𝑅−1 = 𝐸𝐸𝑅𝑅−1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (B.27) 

The weight of soil block - right is given by 

 𝑊𝑊𝑏𝑏𝑏𝑏 = �
𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ �12 ∗ �(ℎ4 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) − 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� ∗ 𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒� +
𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ ��𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑙𝑙)� ∗ 𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒� +

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ [(ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒]
� (B.28) 

Its positon xWbR relative to the heel of the base slab is 

 𝑥𝑥𝑊𝑊𝑊𝑊𝑊𝑊 = ⎩
⎪
⎨

⎪
⎧𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗�

1
2∗�(ℎ4−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)−𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∗𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒�∗�

1
3∗𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒�+

𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗��𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�∗𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒�∗�
1
2∗𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒�+

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗[(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)∗𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒]∗�
1
2∗𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒� ⎭

⎪
⎬

⎪
⎫

𝑊𝑊𝑏𝑏𝑏𝑏
 (B.29) 

With a horizontal phreatic surface within soil block - right, the uplift water 
pressure acting normal to the base of this soil block will be uniform. With a 
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uniform downward acting seepage gradient iy-DW within the soil block-right, 
the resultant uplift force UbR is  

 𝑈𝑈𝑏𝑏𝑏𝑏 = �𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ �1 − 𝑖𝑖𝑦𝑦−𝐷𝐷𝐷𝐷� ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ∗ 𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (B.30) 

Its positon xUbR relative to the outside, top corner of the base slab, point 
CTop, is 

 𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈 = 𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒
2�  (B.31) 

Moment equilibrium applied to the Figure B-3 soil block - right results in 
the position of the effective force N’bR normal to the base of soil block - 
right, as measured from the outside, top corner of the base slab, point CTop, 
defined as 

 𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁 = ⎩
⎪
⎨

⎪
⎧

𝑊𝑊𝑏𝑏𝑏𝑏∗𝑥𝑥𝑊𝑊𝑊𝑊𝑊𝑊+ 𝐸𝐸𝑅𝑅−1𝑊𝑊𝑏𝑏𝑏𝑏∗𝑥𝑥𝑊𝑊𝑊𝑊𝑊𝑊−
𝐸𝐸𝑅𝑅−1∗(ℎ𝐸𝐸𝐸𝐸−1−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)+

𝐻𝐻𝑅𝑅−1∗(ℎ𝐻𝐻𝐻𝐻−1−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)−𝑋𝑋∗𝑅𝑅−1∗(𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒)−
𝐸𝐸∗𝑅𝑅−1∗�ℎ𝐸𝐸∗𝑅𝑅−1−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒�−

𝐻𝐻∗
𝑅𝑅−1∗�ℎ𝐻𝐻∗𝑅𝑅−1−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒�−𝑈𝑈𝑏𝑏𝑏𝑏∗(𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈) ⎭

⎪
⎬

⎪
⎫

𝑁𝑁′𝑏𝑏𝑏𝑏
 (B.32) 

The horizontal effective earth pressure force E*R-1 acts on the stem at a 
height above the base slab equal to 

 ℎ𝐸𝐸∗𝑅𝑅−1 = ⎩
⎪
⎨

⎪
⎧�12∗𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗�𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�

2
�∗�13∗�𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�+(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�+

�𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗�𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�∗(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�∗�
1
2∗(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�+

�12∗𝛾𝛾1∗(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)2�∗�
1
3∗(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)� ⎭

⎪
⎬

⎪
⎫

⎩
⎨

⎧ �12∗𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗�𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�
2
�+

�𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗�𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�∗(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)�+
�12∗𝛾𝛾1∗(ℎ6−ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)2� ⎭

⎬

⎫
(B.33) 

with γ1 given by Equation 2.9 for a constant vertical, downward seepage.  

The horizontal water pressure force H*R-1 acts normal to the stem and at a 
height above the top of the base slab equal to 

 (ℎ𝐻𝐻∗𝑅𝑅−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) =  13 ∗ (ℎ6 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.22 bis) 

B.4 Distribution of left-side interface earth pressures for a partially 
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submerged, retained soil 

Figure B-5 shows the horizontal component of the effective earth pressure 
distribution and the distribution of water pressures with their 
corresponding resultant forces acting on the left side of the Structural 
Wedge.  

Figure B-5. Horizontal component of effective earth pressures and water pressures 
with their corresponding resultant forces acting on the left side  

of the Structural Wedge. 

 

B.4.1 Horizontal effective earth pressures – left side of the Structural 
Wedge 

The horizontal effective earth pressure at point E in Figure B-5 is zero. The 
horizontal effective earth pressure at point DTop is given by 

 𝜎𝜎ℎ−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′ = 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∗ 𝛾𝛾1 ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) (B.34) 

where γ 1 is the effective unit weight of the retained soil accounting for the 
upward, vertical gradient of steady-state seepage through the saturated soil 
volume of the Driving Wedge. Equation 2.19 provides for the γ 1 value. 
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KPassive is mobilized passive earth pressure coefficient given by Equation 
2.16 and is calculated using φ’mob-Active and δ’mob-Active. 

The horizontal effective earth pressure at point D is  

 𝜎𝜎ℎ−𝐷𝐷′ = 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿′𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∗ {𝛾𝛾1 ∗ ℎ3} (2.45 bis) 

B.4.2 Horizontal effective earth pressure resultant forces – left side of the 
Structural Wedge 

The resultant horizontal effective earth pressure force EL-1 is given by 

 𝐸𝐸𝐿𝐿−1 = 1
2 ∗ �𝜎𝜎ℎ−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

′ � ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) (B.35) 

The point of application of EL-1, relative to the bottom of the base slab, is 
given by 

 ℎ𝐸𝐸𝐸𝐸−1 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐸𝐸
𝐸𝐸𝐿𝐿−1

 (B.36) 

with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐸𝐸 = �
�12 ∗ �𝜎𝜎ℎ−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

′ � ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡)� ∗
�13 ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) + ℎ𝑡𝑡𝑡𝑡𝑡𝑡�

� (B.37) 

The resultant horizontal effective earth pressure force EL-2 is given by 

 𝐸𝐸𝐿𝐿−2 = 1
2 ∗ �𝜎𝜎ℎ−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

′ + 𝜎𝜎𝐷𝐷′ � ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡) (B.38) 

The point of application for EL-2, relative to the bottom of the base slab, is 
given by 

 ℎ𝐸𝐸𝐸𝐸−2 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐷𝐷−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐸𝐸𝐿𝐿−2

 (B.39) 

with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐷𝐷−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �
���𝜎𝜎ℎ−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′ � ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)� ∗ �12 ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)�� +

��12 ∗ �𝜎𝜎ℎ−𝐷𝐷
′ − 𝜎𝜎ℎ−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′ � ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)� ∗ �13 ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)��

�(B.40) 
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The resultant horizontal effective earth pressure force ER is 

 𝐸𝐸𝐿𝐿 = 𝐸𝐸𝐿𝐿−1 + 𝐸𝐸𝐿𝐿−2 (B.41) 

and its point of application, relative to the bottom of the base slab, given by 

 ℎ9 = 𝐸𝐸𝐿𝐿−1∗ℎ𝐸𝐸𝐸𝐸−1+𝐸𝐸𝐿𝐿−2∗ℎ𝐸𝐸𝐸𝐸−2
𝐸𝐸𝐿𝐿

 (B.42) 

 

The resultant effective earth pressure force PL is 

 𝑃𝑃𝐿𝐿 = 𝐸𝐸𝐿𝐿
𝑐𝑐𝑐𝑐𝑐𝑐�𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

′ �
 (B.43) 

and its vertical force component XL is 

 𝑋𝑋𝐿𝐿 = 𝐸𝐸𝐿𝐿 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′ ) (B.44) 

B.4.3 Horizontal water pressure resultant forces – left side of the Structural 
Wedge 

The computation of pore water pressures acting normal to the Structural 
Wedge using the Line of Seepage procedure of analysis is discussed in 
Subsection B.2.2. The resultant pore water pressure force HL-1 is given by 

 𝐻𝐻𝐿𝐿−1 = 1
2 ∗ (𝑢𝑢𝐸𝐸) ∗ (ℎ5 − ℎ3) (B.45) 

The point of application of HL-1, relative to the bottom of the base slab, is 
given by 

 ℎ𝐻𝐻𝐻𝐻−1 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐹𝐹−𝐸𝐸
𝐻𝐻𝐿𝐿−1

 (B.46) 

with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1𝐹𝐹−𝐸𝐸 = �12 ∗ (𝑢𝑢𝐸𝐸) ∗ (ℎ5 − ℎ3)� ∗ �13 ∗ (ℎ5 − ℎ3) + ℎ3� (B.47) 

And the point of application of HL-1 with reference to the elevation of top of 
base slab, corner point DTop, is given by 
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 (ℎ𝐻𝐻𝐻𝐻−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) = 1
3 ∗ (ℎ5 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) (B.48) 

The resultant pore water pressure force HL-2 is given by 

 𝐻𝐻𝐿𝐿−2 = 1
2 ∗ �𝑢𝑢𝐸𝐸 + 𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� ∗ (ℎ3−ℎ𝑡𝑡𝑡𝑡𝑡𝑡) (B.49) 

The point of application for HL-2, relative to the bottom of the base slab, is 
given by 

 ℎ𝐻𝐻𝐻𝐻−2 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐸𝐸−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐻𝐻𝐿𝐿−2

 (B.50) 

with 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝐸𝐸−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =

⎩
⎪
⎨

⎪
⎧ �

[(𝑢𝑢𝐸𝐸) ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡)] ∗
�12 ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) + ℎ𝑡𝑡𝑡𝑡𝑡𝑡�

� +

�
�12 ∗ �𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑢𝑢𝐸𝐸� ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡)� ∗

�13 ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) + ℎ𝑡𝑡𝑡𝑡𝑡𝑡�
�
⎭
⎪
⎬

⎪
⎫

 (B.1) 

The resultant pore water pressure force HL-3 is given by 

 𝐻𝐻𝐿𝐿−3 = 1
2 ∗ �𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑢𝑢𝐷𝐷� ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡) (B.52) 

The point of application for HL-3, relative to the bottom of the base slab, is 
given by 

 ℎ𝐻𝐻𝐻𝐻−3 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐷𝐷
𝐻𝐻𝐿𝐿−3

 (B.53) 

with 

 𝑀𝑀𝑀𝑀𝑚𝑚𝐻𝐻𝐻𝐻3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐷𝐷 = �
���𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)� ∗ �12 ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)�� +

�
�12 ∗ �𝑢𝑢𝐷𝐷 − 𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)� ∗

�13 ∗ (ℎ𝑡𝑡𝑡𝑡𝑡𝑡)�
�

� (B.54) 

B.5 Resultant forces acting on the soil block – right, located above the 
toe portion of the base slab for the Structural Wedge 

Figure B-6 shows the resultant earth pressure and water pressure resultant 
forces acting on the soil block located above the toe portion of the base slab 
for the Structural Wedge. Recall that the soil-based interface forces acting on 
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the interface extending upwards from the toe of the T-Wall are a result of the 
Structural Wedge plowing into the Resisting Wedge. The Figure B-6 region 
of the Structural Wedge is designated “soil block – left” because this soil 
block is situated to the left of the reinforced concrete stem. The stem as well 
as the reinforced concrete base slab bound the right and bottom faces of this 
soil block. Observe that no horizontal shear force (T ) is assumed to act along 
the base of soil block - left, consistent with the EM 1110-2-2502 (HQUSACE 
1989) assumption. 

Figure B-6. Free body diagram of resultant forces acting on and within the soil block 
(left) located above the toe portion of the base slab for the Structural Wedge. 

 

Values for forces EL-1, XL-1, and HL-1 are computed from the earth and water 
pressure distributions along the imaginary vertical section extending up 
from the heel of the T-Wall through the retained soil using the equations 
given in Subsections B.4.2 and B.4.3, respectively. Recall there is no 
horizontal shear force (T) assumed to act along the base of soil block - left, 
consistent with the EM 1110-2-2502 (HQUSACE 1989) assumption. Then, 
by horizontal force equilibrium applied to the Figure B-6 soil block - left, 
the resultant horizontal effective earth pressure force E*L-1 applied to the 
stem is defined as 
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 𝐸𝐸∗𝐿𝐿−1 = 𝐸𝐸𝐿𝐿−1 + 𝐻𝐻𝐿𝐿−1 − 𝐻𝐻∗
𝐿𝐿−1 (B.55) 

For the constant elevation piezometric surface in the partially submerged 
retained soil block - left of Figure B-6 with a constant vertical (upward) 
seepage gradient, the boundary water pressure distributions and their 
resultant forces are equivalent. 

 𝐻𝐻∗
𝐿𝐿−1 = 𝐻𝐻𝐿𝐿−1 (B.56) 

 𝐻𝐻∗
𝐿𝐿−2 = 𝐻𝐻𝐿𝐿−2 (B.57) 

Consequently, by Equation B.55,  

 𝐸𝐸∗𝐿𝐿−1 = 𝐸𝐸𝐿𝐿−1 (B.58) 

This equivalency is judged appropriate for the level ground scenario above 
the base slab. By the same logic regarding the symmetrical pressure 
distributions,  

 (ℎ𝐻𝐻∗𝐿𝐿−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) = (ℎ𝐻𝐻𝐻𝐻−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.59) 

 (ℎ𝐻𝐻∗𝐿𝐿−2 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) = (ℎ𝐻𝐻𝐻𝐻−2 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.60) 

  (ℎ𝐸𝐸∗𝐿𝐿−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) = (ℎ𝐸𝐸𝐸𝐸−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) (B.61) 

For this T-Wall geometry, hE*L-1 was set equal to hEL-1 because a complete 
solution for the location of this force is a complex computation that is not 
anticipated to provide for a significant change from this assumption. 

Because of the geometric configuration of the soil region at the toe, the 
majority of soil block - left, located above the toe of the base slab will be 
contained within the passive soil wedge feature developing within the 
buttressing soil wedge zone (Figure B-4). Therefore, the vertical shear force 
computational procedure (Ebeling 1989) due to differential settlement 
along the roughened concrete stem that was used to compute X*R-1 of soil 
block – right, cannot be used to compute X*L-1.  

Instead, the value of X*R-1 will be computed based upon the assumption of a 
mobilized passive earth pressure zone of soil defined geometrically by an 
inverted triangular soil volume that encroaches into soil block - right of the 
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Structural Wedge as well as into the Resisting Wedge. This inverted 
triangular passive soil volume is defined by two slip planes with their origin 
at the toe of the T-Wall (Figure B-4). Each plane extends from the toe and 
is defined using the angle given by Equation 2.20, with reference to 
horizontal. For a compacted, cohesionless engineered backfill consisting of 
granular soil, this approximate slip plane angle is equal to 30 deg. The 
inverted, triangular volume of passive soil also extends into the soil of the 
Resisting Wedge, as previously stated. The value for X*L-1 will be computed 
from the δL value based upon the user defined material properties of φ’L and 
the ratio of δL/φ’L. 

 𝑋𝑋∗𝐿𝐿−1 = 𝐸𝐸∗𝐿𝐿−1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡(𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′ ) (B.62) 

By Equations B.61 and B.65, 

 𝑋𝑋∗𝐿𝐿−1 = 𝑋𝑋𝐿𝐿−1 (B.63) 

Vertical force equilibrium applied to the Figure B-6 soil block - left results 
in the effective force N’bL normal to the base of soil block - left being 
defined as 

 𝑁𝑁′𝑏𝑏𝑏𝑏 = 𝑊𝑊𝑏𝑏𝑏𝑏 −  𝑋𝑋𝐿𝐿−1 + 𝑋𝑋∗𝐿𝐿1 − 𝑈𝑈𝑏𝑏𝑏𝑏 (B.64) 

Moment equilibrium applied to the Figure B-6 soil block - left results in the 
position of the effective force N’bL normal to the base of soil block - left, as 
measured from point DTop at the top of the base slab, being defined as 

 𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁 = {𝑊𝑊𝑏𝑏𝑏𝑏 ∗ 𝑥𝑥𝑊𝑊𝑊𝑊𝑊𝑊 +  𝐸𝐸𝐿𝐿−1 ∗ (ℎ𝐸𝐸𝐸𝐸−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) + 𝐻𝐻𝐿𝐿−1 ∗ (ℎ𝐻𝐻𝐻𝐻−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) + 𝐻𝐻𝐿𝐿−2 ∗ (ℎ𝐻𝐻𝐻𝐻−2 −
ℎ𝑡𝑡𝑡𝑡𝑡𝑡)+𝑋𝑋∗𝐿𝐿−1 ∗ (𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡) − 𝐸𝐸∗𝐿𝐿−1 ∗ (ℎ𝐸𝐸∗𝐿𝐿−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) − 𝐻𝐻∗

𝐿𝐿−1 ∗ (ℎ𝐻𝐻∗𝐿𝐿−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) − 𝐻𝐻∗
𝐿𝐿−2 ∗

(ℎ𝐻𝐻∗𝐿𝐿−2 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) − 𝑈𝑈𝑏𝑏𝑏𝑏 ∗ (𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈)}/𝑁𝑁′𝑏𝑏𝑏𝑏  (B.65) 

With the symmetry in earth pressure and water pressure distributions, 
Equation B.65 reduces to 

 𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁 = {𝑊𝑊𝑏𝑏𝑏𝑏 ∗ 𝑥𝑥𝑊𝑊𝑊𝑊𝑊𝑊 + +𝑋𝑋∗𝐿𝐿−1 ∗ (𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡) − 𝑈𝑈𝑏𝑏𝑏𝑏 ∗ (𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈)}/𝑁𝑁′𝑏𝑏𝑏𝑏 (B.66) 

The weight of soil block - left is given by 

 𝑊𝑊𝑏𝑏𝑏𝑏 = 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ [(ℎ5 − ℎ3) ∗ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡] + 𝛾𝛾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ [(ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) ∗ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡](B.67) 
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Its positon xWbL relative to the toe of the base slab is 

 𝑥𝑥𝑊𝑊𝑊𝑊𝑊𝑊 = �
𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ [(ℎ5 − ℎ3) ∗ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡] ∗ �1

2
∗ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡� +

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ [(ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) ∗ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡] ∗ �1
2
∗ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡�

� /𝑊𝑊𝑏𝑏𝑏𝑏 (B.68) 

In the case of level, submerged ground, xWbL will be equal to 

 𝑥𝑥𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡
2�  (B.69) 

With a horizontal phreatic surface within soil block - left, the uplift water 
pressure acting normal to the base of this soil block will be uniform. With a 
uniform upward acting seepage gradient iy-RW within the soil block - left, 
the resultant uplift force UbL is  

 𝑈𝑈𝑏𝑏𝑏𝑏 = �𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ �1 + 𝑖𝑖𝑦𝑦−𝑅𝑅𝑅𝑅� ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡)� ∗ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 (B.70) 

Its positon xUbL relative to the top of the toe slab is 

 𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈 = 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡
2�  (B.71) 

The horizontal effective earth pressure force E*L-1 acts on the stem at a 
height above the base slab equal to 

 (ℎ𝐸𝐸∗𝐿𝐿−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) =
�
�12∗𝛾𝛾1∗(ℎ3−ℎ𝑡𝑡𝑡𝑡𝑡𝑡)2�∗

�13∗(ℎ3−ℎ𝑡𝑡𝑡𝑡𝑡𝑡)�
�

��12∗𝛾𝛾1∗(ℎ3−ℎ𝑡𝑡𝑡𝑡𝑡𝑡)2��
 (B.72) 

with γ1 provided by Equation 2.19 for a constant vertical, upward seepage. 
This equation simplifies to 

 (ℎ𝐸𝐸∗𝐿𝐿−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) = 1
3 ∗ (ℎ3 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) (B.73) 

The horizontal water pressure force H*L-1 acts normal to the stem and at a 
height above the base slab equal to 

 (ℎ𝐻𝐻∗𝐿𝐿−1 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡) = (ℎ5 − ℎ𝑡𝑡𝑡𝑡𝑡𝑡)
3�  (B.74) 

Figure B-7 shows the free body diagram summarizing the resultant forces 
acting on the stem and base slab of the Structural Wedge. These forces are 
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transferred to the reinforced concrete T-Wall through soil block - right and 
through soil block - left. 

Figure B-7. Free body diagram of resultant forces acting on the stem and base slab  
of the Structural Wedge. 

 

The resultant shear force Vstem acting internal to the base of the reinforced 
concrete stem is given by 

 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝐸𝐸𝑅𝑅−1∗ − 𝐻𝐻𝑅𝑅−1∗ + 𝐸𝐸𝐿𝐿−1∗ + 𝐻𝐻𝐿𝐿−1∗ + 𝐻𝐻𝐿𝐿−2∗  (B.75) 

and the moment Mstem acting internal to the base of the reinforced concrete 
stem is 

 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
𝐸𝐸𝑅𝑅−1∗ ∗ ((ℎ𝐸𝐸∗𝑅𝑅−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) + 𝐻𝐻𝑅𝑅−1∗ ∗ (ℎ𝐻𝐻∗𝑅𝑅−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) −
𝐸𝐸𝐿𝐿−1∗ ∗ (ℎ𝐸𝐸∗𝐿𝐿−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) − 𝐻𝐻𝐿𝐿−1∗ ∗ (ℎ𝐻𝐻∗𝐿𝐿−1 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒) −

𝐻𝐻𝐿𝐿−2∗ ∗ (ℎ𝐻𝐻∗𝐿𝐿−2 − ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒)
� (B.76) 
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Appendix C: Numerical Methods for the 
Calculation of β  and Load and 
Resistance Factors Given 
Uncorrelated Load and 
Resistance PDF Curves 

C.1 Introduction: Assumptions and requirements for calculating load 
and resistance factors 

This appendix begins by outlining the steps in a numerical procedure for 
calibrating partial load and resistance safety factors given a target 
reliability index (β ) value as well as two alternative procedures of analysis. 
The first is a numerical procedure described in Section C.2 of this appendix 
that has been adapted to this R&D effort from that outlined in Section 8.5 
of Nowak and Collins (2013) for bridge design. A numerical procedure to 
calculate β  given variable load and resistance with distributions, which may 
have partial load and resistance safety factors applied is presented to be 
used as a verification step (Section C.4). To verify the computation of 
partial safety factors, this procedure is used by calculating β  from the 
partial load and resistant factors applied to the load and resistance 
distributions. This value should then match the target β  value. This second 
numerical procedure is also adapted to this R&D effort from a procedure 
described in Nowak and Collins (2013).  

Section C.3 derives a supplemental procedure to calculate the partial load 
safety factor given a specified partial resistance safety factor and the 
procedurally defined partial safety factor ratio. This safety factor ratio may 
be computed using the numerical procedure outlined in Section C.2. 

Section C.5 summarizes a reliability-based numerical procedure for 
computing a value for Reliability Index β  following the steps outlined in 
Nowak (1999). Professor Nowak originally developed this procedure over a 
number of years with a focus on its application to LRFD based bridge 
design (Nowak and Lind 1979; Nowak 1999; Nowak and Collins 2000, 
2013). 

Section C.6 describes a Gaussian function superposition approach of 
numerically fitting normalized normal distribution functions to a non-
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normal PDF and computing a value for Reliability index β . The 
attractiveness of this analysis procedure is that it may be used on any form 
of PDF yet be able to determine a value for β  that may be used in a 
Reliability analysis for determination of load and resistance factors.  

These numerical procedures outlined in this appendix require a 
mathematically defined, continuous probability density function (PDF) 
distributions for load and resistance. These procedures also require that 
load and resistance variables not be correlated (i.e., independent).  

On page 269 of Nowak and Collins (2013), the LRFD design equation is 
given as 

 𝛾𝛾𝑅𝑅 ∗ 𝜇𝜇𝑅𝑅 ≥ 𝛾𝛾𝐿𝐿 ∗ 𝜇𝜇𝐿𝐿 (C.1) 

with γ R being the resistance factor, µR the mean resistance, γL the load 
factor and µL the mean load. Note that Nowak and Collins (2000, 2013) are 
using the mean values for resistance and load and not the nominal values in 
this governing LRFD equation. This governing equation was subsequently 
re-written by Nowak and Collins in terms of nominal resistance and load 
and given on their page 269 as 

 (𝛾𝛾𝑅𝑅 ∗ 𝜆𝜆𝑅𝑅) ∗ 𝑅𝑅𝑛𝑛 ≥ (𝛾𝛾𝐿𝐿 ∗ 𝜆𝜆𝐿𝐿) ∗ 𝐿𝐿𝑛𝑛 (C.2) 

with λR being the resistance bias factor, Rn the nominal resistance, λL the 
load bias factor and Ln the nominal load. 

As noted, the following sections provide procedures to compute Reliability 
Indices and partial safety factors. These calculations deal with different 
types of probability distributions. There are certain conditions that affect 
the calculation of partial safety factors for loads (γ ) and partial safety 
factors for resistances (φ ). For a set of uncorrelated variables described by 
normal distributions, the procedure is straightforward. Conversion of the 
normal distributions into a Gaussian Normal space allows for the 
determination of a design point for the limit state function g(x*). The 
closest point from the means to the limit state response surface where 
g(x*)=0 is the design point. In the Gaussian Normal space, the unit distance 
corresponds to a change of one standard deviation from the mean origin. 
Therefore, the distance to the design point gives the β  distance to the 
response surface from which PDF (φ ) and CDF (Φ ) values can be obtained. 
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The vector from the mean origin of each of the ith variable, µi, to the design 
point x*i on the limit state response surface after being normalized to unit 
length gives the directional cosine components (α ) for the uncorrelated 
variables. Recall σi is the standard deviation for the ith variable. The design 
point for g(x*)=0 in variable space is given by the equation  

 𝑥𝑥∗𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝛼𝛼𝑖𝑖𝛽𝛽𝜎𝜎𝑖𝑖 (C.3) 

Substituting the target β target for the design point β  projects the response 
surface to β target. Then the factor that gives that value is calculated as  

 𝛾𝛾𝑖𝑖 = 𝑥𝑥𝑖𝑖
∗

𝑥𝑥𝑖𝑖
𝑁𝑁 (C.4) 

Where γ i is the factor and Xi is the component value given for β target, and xNi 
is the nominal value for the variable (load or resistance), which can change 
through the iterative procedure. For resistance, γ i becomes φ i in Equation 
C.4. 

The next section describes the numerical procedure for performing this 
same set of steps when some or all of the variables possess non-normal 
distributions.  

C.2 Procedure for calculating load and resistance factors given 
variables with non-normal distributions  

The following steps outline the procedure for calculating load and 
resistance factors given variables with non-normal distributions. 

1. Formulate the limit state function and the design equation. These 
equations will work with as many random variables as possible, with 
their distributions and parameters. It is assumed that every random 
variable will have a COV or standard deviation. At most, only two 
unknown means will be allowed. Typically, the resistance variable 
accounts for one unknown mean with the other unknown mean 
corresponding to one of the load terms. Load ratios set the relationships 
of the mean values of the loads to the unknown values. For example, in 
LRFD application to bridge design it is common for the live load to be 
set equal to one-third the dead load (Nowak and Collins 2013) when 
applying this numerical procedure. Initializing for the first iteration, the 
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limit state equation where g(X)=0 is evaluated to determine the 
relationship between the unknown mean values. 

2. An initial design point X is obtained by assuming values for n-1 of the 
random variables, with mean values being a good assumption. Solve the 
limit state equation where g(X)=0 to determine the remaining variable 
on the failure boundary.  

3. For non-normal axis design point values, determine the equivalent 
distribution (µeX and σeX) using Equation C.5 and Equation C.6. These 
values create a distribution at x* that has an equivalent CDF and PDF at 
the design point x*. If the axis of a design point variable is on a normal 
distribution, then µeX and σeX) correspond to the already existent 
distribution. This step may not be possible if the normal mean is one of 
the unknowns. 

 𝜇𝜇𝑥𝑥𝑒𝑒 = 𝑥𝑥∗ − 𝜎𝜎𝑥𝑥𝑒𝑒�Φ−1�𝐹𝐹𝑥𝑥(𝑥𝑥∗)�� (C.5) 

 𝜎𝜎𝑥𝑥𝑒𝑒 = 1
𝑓𝑓𝑥𝑥(𝑥𝑥∗)𝜙𝜙 �

𝑥𝑥∗−𝜇𝜇𝑥𝑥𝑒𝑒

𝜎𝜎𝑥𝑥𝑒𝑒
� = 1

𝑓𝑓𝑥𝑥(𝑥𝑥∗)𝜙𝜙�Φ
−1�𝐹𝐹𝑥𝑥(𝑥𝑥∗)�� (C.6) 

4. Calculate the partial derivatives of the limit state function with respect 
to the reduced variates. The column vector {G} is comprised of these 
derivatives: 

 {𝐺𝐺} =

⎩
⎪
⎨

⎪
⎧
𝐺𝐺1
𝐺𝐺2
𝐺𝐺3.
..
𝐺𝐺𝑛𝑛⎭
⎪
⎬

⎪
⎫

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑍𝑍𝑖𝑖
�
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡

 (C.7) 

5. From the matrix of correlation coefficients [ρ], calculate the directional 
cosine column vector {α }: 

 {𝛼𝛼} = [𝜌𝜌]{𝐺𝐺}
�{𝐺𝐺}𝑇𝑇[𝜌𝜌]{𝐺𝐺}

 (C.8) 

with the correlation matrix for a two variable problem given as 

 [𝜌𝜌] = �
𝜌𝜌11 𝜌𝜌12
𝜌𝜌21 𝜌𝜌22� (C.9) 
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The diagonals of the correlation matrix are set to unity, and ρ12 is 
typically equal to ρ21. For independent variables X1 and X2, there is no 
correlation (i.e., ρ12 = ρ21 = 0), and the diagonal terms are unity. 

6. The new design point in reduced variates for n-1 variables is computed 
using the target β , β target. 

 𝑧𝑧𝑖𝑖∗ = 𝛼𝛼𝑖𝑖𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (C.10) 

7. Return the new design point in the original coordinate space for the n-1 
variables using the expected distribution for the variables 

 𝑥𝑥𝑖𝑖∗ = 𝜇𝜇𝑋𝑋𝑖𝑖
𝑒𝑒 + 𝑧𝑧𝑖𝑖∗𝜎𝜎𝑋𝑋𝑖𝑖

𝑒𝑒  (C.11) 

At this point, the remaining random value can be solved for by solving 
the limit state function so that g(x*) = 0. The relationship between the 
two unknown mean values may have changed, so the relationship can be 
updated by assuming a bias of 1.0, the nominal xNi becomes equal to µXi.  

 𝛾𝛾𝑖𝑖 = 𝑥𝑥𝑖𝑖
∗

𝜇𝜇𝑥𝑥𝑖𝑖  
=

𝜇𝜇𝑥𝑥𝑖𝑖+𝑧𝑧𝑖𝑖
∗𝜎𝜎𝑥𝑥𝑖𝑖

𝜇𝜇𝑥𝑥𝑖𝑖
= 1 + 𝑧𝑧𝑖𝑖∗𝐶𝐶𝐶𝐶𝑉𝑉𝑥𝑥𝑖𝑖 = 1 + 𝛼𝛼𝑖𝑖𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑖𝑖 (C.12) 

Therefore, 

 𝜇𝜇𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖
∗

1+𝛼𝛼𝑖𝑖𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑉𝑉𝑥𝑥𝑖𝑖
 (C.13) 

8. Repeat steps 3 to 8 until {α } converges.  
9. Use Equation C.4 with the converged values to calculate each design 

factor. 

Example C.1 – Dead load bending moment for a beam 

A trial design was performed of a singly reinforced beam with an 
unfactored dead load bending moment, MDL, set equal to 200 kip-ft. It 
follows the procedure of Example 5.9 of Nowak and Collins (2013). This 
example only deals with a dead load condition. The beam with a width of 
12 in. and a depth (d) to center of reinforcement of 28 in. was analyzed in a 
2016 USACE LRFD study (Hokens). A concrete compressive strength, f’c, of 
4,000 psi and a reinforcement yield strength, fy, of 60,000 psi were used. 
The required area of steel, using a resistance factor, φACI, of 0.9 from ACI 
318-14, is 2.37 in2. 
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The load factor for dead load, when not combined with other loads, is 1.4 in 
ASCE 7-10 and is designated γASCE in this example. Ellingwood states that 
the probability density function (PDF or described functionally as φ ()) for 
dead loads applied to buildings is normally distributed with a bias factor, 
λL, of 1.05 and a COVL of 0.1. The mean dead load, µL, is computed to be 
210 kip-ft by 

 𝜇𝜇𝐷𝐷𝐷𝐷 = 𝜆𝜆𝐷𝐷𝐷𝐷 ∗ 𝑀𝑀𝐷𝐷𝐷𝐷 (C.14) 

The safety margin relationship for LRFD for this example is 

 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑀𝑀𝑛𝑛 = 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑀𝑀𝐷𝐷𝐷𝐷 (C.15) 

Rearranging for Mn, this equation becomes 

 𝑀𝑀𝑛𝑛 = 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗𝑀𝑀𝐷𝐷𝐷𝐷
𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴

 (C.16) 

Introducing the ASCE dead load factor, γASCE, of 1.4, the dead load moment, 
MDL, of 200 kip-ft and the ACI flexural resistance factor, φACI, of 0.9, the 
nominal moment are computed as 

 𝑀𝑀𝑛𝑛 = 1.4∗200
0.9

= 311.11 kip-ft 

By the following two relationships for the nominal flexural capacity of a 
singly reinforced beam equal to 311.11 kip-ft, the required reinforcement 
steel cross-sectional area is verified (Hokens) to be 2.37 in2 for the signally 
reinforced beam using the relationships  

 𝑀𝑀𝑛𝑛 = 𝐴𝐴𝑓𝑓 ∗ 𝑓𝑓𝑦𝑦 �𝑑𝑑 −
𝑎𝑎
2
� (C.17) 

with 

 𝑎𝑎 = 𝐴𝐴𝑓𝑓∗𝑓𝑓𝑦𝑦
0.85∗𝑓𝑓𝑐𝑐′∗𝑏𝑏

 (C.18) 

 

 

where 
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 As = area of reinforcing steel 
 fy = yield strength of reinforcing steel 
 d = distance from compression face to center of reinforcing steel 
 a = height of equivalent Whitney stress block in reinforced concrete 
 f’c = concrete compression strength 
 b = width of beam or design section. 

The mean resistance, µR, is computed to be 348.44 kip-ft by 

 𝜇𝜇𝑅𝑅 = 𝜆𝜆𝑅𝑅 ∗ 𝑀𝑀𝑛𝑛 (C.19) 

where the bias factor on flexural resistance, λR, is defined as 1.12 by 
Ellingwood for a one-way slab. The COVR is defined as 0.14. Recall that Mn 
is the nominal resistance computed using equation C.16. Ellingwood also 
suggests a lognormal distribution for flexural capacity of one-way slabs 
with a COVR of 0.14 in his document. 

Following the procedural steps for calculating load and resistance factors 
given variables with non-normal distributions for the first iteration: 

1. There are two variables in this example: the resistance variable (R) and 
the load variable (L). The design equation is defined by g(x*)=R-L, and 
the limit state occurs when g(x*)=0.0, which occurs when R=L. The 
distribution for the load L is the same as the normal distribution, so the 
COVL = 0.1. It is assumed that both mean load and resistance are 
unknown. The unknown mean load µL is used as the basis for 
calculations, with all of the other values relating to its value through 
ratios. This relationship is assumed to be µR= 1µL for g(x*)=0.0. 

2. An initial design point is calculated by assuming n-1 variable values. For 
the two-variable problem, the design point value for load (l*) is assumed 
to be the mean value, 1µL. Solving the g(x*)=0.0 limit state response 
surface equation gives the design point for the resistance (r*) as 1µL. 

3. R is the only variable with a non-normal distribution, so its equivalent 
normal distribution values need to be determined using Equation C.5 
and Equation C.6. Some additional information is needed from the 
original log-normal distribution values. From the original log normal 
distribution (and these values are constant through the iterations), 

𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 = ln�1 +
𝜎𝜎𝑅𝑅2

𝜇𝜇𝑅𝑅2
� = ln�1 +

48.782

348.442
� = 0.01941 
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𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 = �𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.139 

 𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 = ln(𝜇𝜇𝑅𝑅) − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙
2

2
= 5.844  

For log-normal resistance variable, the closed form solution of these 
equivalent normal parameters are 

 𝜎𝜎𝑅𝑅𝑒𝑒 = 𝑟𝑟∗𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 = 0.139𝜇𝜇𝐿𝐿 

𝜇𝜇𝑅𝑅𝑒𝑒 = 𝑟𝑟∗[1 − ln(𝑟𝑟∗) + 𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙] = 6.844𝜇𝜇𝐿𝐿 

Notice that µln(R) is approximately equal to ln(µR) when the COVR < 0.2 
(Nowak and Collins 2013 p 26). 

4. Calculating {G} from the derivatives, 

 𝐺𝐺1 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎𝑅𝑅𝑒𝑒�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= −𝜎𝜎𝑅𝑅𝑒𝑒 = −0.139 ∗ 𝜇𝜇𝐿𝐿  

 𝐺𝐺2 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎𝐿𝐿𝑒𝑒�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝜎𝜎𝐿𝐿𝑒𝑒 = 𝜎𝜎𝐿𝐿 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿 ∗ 𝜇𝜇𝐿𝐿 = 0.1 ∗ 𝜇𝜇𝐿𝐿  

5. From the matrix equation C.8, 

 {𝛼𝛼} = �
𝛼𝛼𝑅𝑅
𝛼𝛼𝐿𝐿� = �−0.812

0.583 �  

Note that since the variables R and L are independent variables, the 
correlation matrix [ρ] is an identity matrix, with values of 1 along the 
major term diagonals and off-diagonal terms of 0. 

6. The new design point in Gaussian Normal coordinates for the load is 
determined, with β target = 3.0, 

 𝑧𝑧𝐿𝐿∗ = 𝛼𝛼𝐿𝐿𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.583 ∗ 3.0 = 1.75  

7. Returning to the original coordinate system, 

 𝑙𝑙∗ = 𝜇𝜇𝐿𝐿 + 𝑧𝑧𝐿𝐿∗𝜎𝜎𝐿𝐿 = 𝜇𝜇𝐿𝐿(1 + 𝑧𝑧𝐿𝐿∗𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿) = 1.175 ∗ 𝜇𝜇𝐿𝐿  

8. Using g(x*)=0.0, then, 
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 𝑟𝑟∗ = 𝑙𝑙∗ = 1.175 ∗ 𝜇𝜇𝐿𝐿  

An updated value of the estimated mean value of R, 
 𝜇𝜇𝑅𝑅 = 𝑟𝑟∗

1+𝛼𝛼𝑅𝑅𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅
= 1.175∗𝜇𝜇𝐿𝐿

1+(−0.812)(3)(0.14)
= 1.783 ∗ 𝜇𝜇𝐿𝐿  

9. Table C-1 summarizes how the values change for each iteration of the 
procedure. The iterative computations for this example were made in an 
Excel spread sheet. While four iterations were performed, in actuality, a 
threshold for convergence would be established when implemented 
within an algorithm. 

Table C-1. Iterations of Step 3-8 as the design point and mean resistance change. 
 

ORIGINAL ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4 

r* 1µL 1.174933µL 1.156396µL 1.158209µL 1.15803µL 

l* 1µL 1.174933µL 1.156396µL 1.158209µL 1.15803µL 

 µR 1µL 1.783459µL 1.802396µL 1.800834µL 1.800991µL 

10. Combining Equation C.4 with Equation C.19. the resistance factor is 
calculated using the resistance bias value for λR value attributed to 
Ellingwood, as  

𝛾𝛾𝑅𝑅 = 𝜙𝜙𝑅𝑅 =
𝜆𝜆𝑅𝑅𝑟𝑟∗

𝜆𝜆𝑅𝑅𝑀𝑀𝑛𝑛
=
𝜆𝜆𝑅𝑅𝑟𝑟∗

𝜇𝜇𝑅𝑅
=  

1.12 ∗ 1.15803 ∗ 𝜇𝜇𝐿𝐿
1.800991 ∗ 𝜇𝜇𝐿𝐿

= 0.72 

Recall γR is also designated as φR or simply φ  in the main body of this 
report. 

Combining Equation C.4 with Equation C.14, the load factor is calculated 
using the load bias value for λL attributed to Ellingwood, as 

𝛾𝛾𝐿𝐿 =
𝜆𝜆𝐿𝐿𝑙𝑙∗

𝜆𝜆𝐿𝐿𝑀𝑀𝐷𝐷𝐷𝐷
=
𝜆𝜆𝐿𝐿𝑙𝑙∗

𝜇𝜇𝐿𝐿
=

1.05 ∗ 1.15803 ∗ 𝜇𝜇𝐿𝐿
1 ∗ 𝜇𝜇𝐿𝐿

= 1.216 

Recall that by applying this numerical procedure outlined in this example 
guarantees minimal partial resistance and load safety factors that, when 
multiplied by the nominal resistance and its resistance bias and nominal 
load and its load bias, will compute a design point on the limit state 
response surface at distance β target. 
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In Chapter 4 of the main report, the concept of a LSF was introduced as the 
scale factor that could be applied to the mean load to create a new mean 
resistance that, when the Gz() function has been applied to the 
distributions, returns a target PUP value. Introducing these γR and γL values 
of 0.72 and 1.216, respectively, into Equation 4.6, the LSF is  

𝐿𝐿𝑆𝑆𝑆𝑆 =
𝛾𝛾𝐿𝐿
𝛾𝛾𝑅𝑅

=
1.216
0.72

= 1.69 

 Note that because LSF was determined in the Nowak and Collins (2013) 
procedure of analysis using an LRFD formulation written in terms of mean 
values for the load and resistance, this constant does not work with 
nominal loads and resistances without some modification. This modifi-
cation for use with nominal values of loads and resistances is discussed in 
Subsection C.4.2. 

C.3 Supplemental procedure: calculation of the partial load safety 
factor given a specified partial resistance safety factor and the 
procedurally defined partial safety factor ratio  

The limit state g(X) function is defined for i resistances and j loads as 

 ∑ �𝛾𝛾𝑅𝑅𝑖𝑖 ∗ 𝜇𝜇𝑅𝑅𝑖𝑖� ≥ ∑ �𝛾𝛾𝐿𝐿𝑗𝑗 ∗ 𝜇𝜇𝐿𝐿𝑗𝑗�𝑗𝑗𝑖𝑖  (C.20) 

For the single load and resistance problem and because g(X)=0.0 at the 
limit state response surface where R-L=0.0, 

 𝛾𝛾𝑅𝑅 ∗ 𝜇𝜇𝑅𝑅 = 𝛾𝛾𝐿𝐿 ∗ 𝜇𝜇𝐿𝐿 (C.21) 

 𝜇𝜇𝑅𝑅 = 𝛾𝛾𝐿𝐿
𝛾𝛾𝑅𝑅
∗ 𝜇𝜇𝐿𝐿 (C.22) 

Note that in this Nowak and Collins (2013) based procedure of analysis, 
these equations make use of mean values for loads and resistances rather 
than nominal values for loads and resistances. Introducing Equation C.19 
and C.14 into Equation C.22, the relationship between nominal values of 
load and resistance is 

 𝑀𝑀𝑁𝑁 ∗ 𝜆𝜆𝑅𝑅 = 𝛾𝛾𝐿𝐿
𝛾𝛾𝑅𝑅
∗ 𝐿𝐿𝑁𝑁 ∗ 𝜆𝜆𝐿𝐿 (C.23) 

Solving for MN, 
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 𝑀𝑀𝑁𝑁 = 𝛾𝛾𝐿𝐿∗𝜆𝜆𝐿𝐿
𝛾𝛾𝑅𝑅∗𝜆𝜆𝑅𝑅

∗ 𝐿𝐿𝑁𝑁 (C.24) 

This implies that there is a γLnominal and a γRnominal that may be computed as 

 𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛾𝛾𝐿𝐿 ∗ 𝜆𝜆𝐿𝐿 (C.25) 

 𝛾𝛾𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛾𝛾𝑅𝑅 ∗ 𝜆𝜆𝑅𝑅 (C.26) 

The nominal scale factor LSFNominal can then be defined as 

 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 (C.27) 

The initial value for nominal resistance MN was calculated from the 
nominal load LN based on an unbiased ASCE load factor γASCE and an ACI 
resistance factor γACI (which is the same as φACI) specified in the Hokens 
writeup: 

 𝑀𝑀𝑁𝑁 = 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴

∗ 𝐿𝐿𝑁𝑁 (C.28) 

This implies that the ratio of the factors is a constant for the single load and 
resistance problem because the ratio of the means is a constant at the limit 
state response surface. Recall from example C.1 the values for γR and γL are 
0.72 and 1.216, respectively. Also, recall the values of the bias factors λL and 
λR are 1.05 and 1.12, respectively. In keeping with the specified flexural 
resistance factor 0.9 of ACI 318-14, which is applied to the nominal 
resistance, and maintaining the same relationship between the load and 
resistance factor to satisfy the g(X)=0 limit state response surface equation 
(assuming the mean load and resistance values do not change), then the 
load factor according to an ACI 318-14 φACI value of 0.9 should account for 
bias factors using nominal values and be 

 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴

= γ𝐿𝐿∗𝜆𝜆𝐿𝐿
γ𝑅𝑅∗𝜆𝜆𝑅𝑅

  (C.29) 

 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴
γ𝐿𝐿∗𝜆𝜆𝐿𝐿
γ𝑅𝑅∗𝜆𝜆𝑅𝑅

 (C.30) 

𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.9 �
1.216 ∗ 1.05
0.72 ∗ 1.12

� = 1.425 
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This γACI load factor value shows a less than 2% difference from the 1.4 
value which was calculated and reported in the Hokens write-up of LRFD 
procedures for this singly reinforced beam example problem.  

An LSF value of 1.69 was calculated in the previous subsection. This value 
corresponds to the case of mean load and resistance values. A LSFNominal 
value can be obtained from the relationship in Equation C.27: 

 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝑆𝑆𝑆𝑆 ∗
𝜆𝜆𝐿𝐿
𝜆𝜆𝑅𝑅

= 𝛾𝛾𝐿𝐿∗𝜆𝜆𝐿𝐿
𝛾𝛾𝑅𝑅∗𝜆𝜆𝑅𝑅

= 1.216∗1.05
0.72∗1.12

= 1.2768
0.8064

= 1.58 (C.31) 

Using the γASCE to φACI relationship gives an engineering load scale factor 
LSFEngineering value of 

 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴

= 1.4
0.9

= 1.56 (C.32) 

There is just over a 1% difference between the LSFNominal and LSFEngineering 
values. They are judged to be consistent.  

In summary, the LSF value is based on mean values for resistance and load. 
To compare an LSF value to a scale factor based on nominal resistance and 
load (i.e., a LSFEngineering value), a conversion from LSF to LSFNominal is 
required. After conversion, the values for LSFNominal and LSFEngineering may be 
compared directly. 

This supplemental scaling procedure only works for the single load and 
resistance problem as outlined in this subsection. Keeping the same ratio 
of load factor to resistance factor guarantees that the factored load will be 
equivalent to the factored resistance for a design point on the limit state 
response surface. Recall that the factors were calculated so that the 
factored resistance and factored load satisfy the g(x*)=0 equation for a 
design point at βtarget distance from the mean values for load and 
resistance.  

C.4 Verification: procedure for calculating design point β  at the limit 
state for given variables with non-normal distributions  

C.4.1 Numerical verification 

The verification procedure for determining the design point β  for g(x*)=0 
given non-normal distributions for the variable space is similar to the 
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process for determining load and resistance factors as outlined in 
Subsection C.2. This follows because the latter procedure is derived from 
the former (Nowak and Collins 2013), as described in their Subsection 
5.4.1. This means that the procedure to calculate the β  for the design point 
can act as verification of the load and resistance factors by using factored 
loads and resistances and checking to make sure the calculated β  is indeed 
equal to the target value.  

The g(X) function provides limit state satisfactory values when the factored 
load and factored resistance satisfy the following inequality: 

 ∑ �𝛾𝛾𝑅𝑅𝑖𝑖 ∗
𝜇𝜇𝑅𝑅𝑖𝑖
𝜆𝜆𝑅𝑅𝑖𝑖
� ≥ ∑ �𝛾𝛾𝐿𝐿𝑗𝑗 ∗

𝜇𝜇𝐿𝐿𝑗𝑗
𝜆𝜆𝐿𝐿𝑗𝑗
�𝑗𝑗𝑖𝑖  (C.18 bis) 

Recall γR is also designated as φR or simply φ in the main body of this report. 
Observe that this relationship is expressed in terms of mean values. The 
limit state response surface occurs when both sides are equivalent. 

The formulation steps for the two independent variables problem are the 
following: 

1. Formulate limit state function g(x*) and probability distributions. These 
values should match the values used in the load and resistance factor 
calculations. 

2. Guess an initial design point. A good initial guess would be an average 
of the mean values for load and for resistance. 

3. Determine the equivalent normal distribution parameters for the non-
normal distributions at the design point. For instance, for a log-normal 
distribution of variate Xi: 

 𝜎𝜎𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖
2 = ln�1 +

𝜎𝜎𝑋𝑋𝑖𝑖
2

𝜇𝜇𝑋𝑋𝑖𝑖
2 � (C.33) 

 𝜇𝜇𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖 = ln�𝜇𝜇𝑋𝑋𝑖𝑖� − 0.5𝜎𝜎𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖
2  (C.34) 

Nowak and Collins (2013) derived the following equivalent normal 
distribution values from Equations C.5 and C.6 for the log-normal 
distribution, with design point x*: 

 𝜎𝜎𝑋𝑋𝑖𝑖
𝑒𝑒 = 𝑥𝑥𝑖𝑖∗𝜎𝜎𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖 (C.35) 
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 𝜇𝜇𝑋𝑋𝑖𝑖
𝑒𝑒 = 𝑥𝑥𝑖𝑖∗�1 − ln(𝑥𝑥𝑖𝑖∗) + 𝜇𝜇𝑙𝑙𝑙𝑙𝑋𝑋𝑖𝑖� (C.36) 

Nowak and Collins (2013) also provide other equations for other non-
normal distributions. 

4. Transform the variates to the reduced Gaussian normalized space. 

 𝑧𝑧𝑖𝑖∗ =
𝑥𝑥𝑖𝑖∗−𝜇𝜇𝑋𝑋𝑖𝑖

𝑒𝑒

𝜎𝜎𝑋𝑋𝑖𝑖
𝑒𝑒  (C.37) 

5. Determine the partial derivatives of the slope of the g(x*) function for 
each variate and store in a {G} vector. For a limit state that only has a 
load and resistance and g(x*) = X1-X2 (where X1 corresponds to the 
resistance and X2 corresponds to the load). From Equation C.7: 

 𝐺𝐺1 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋1

�
𝑥𝑥1∗

= −1𝜎𝜎𝑋𝑋1
𝑒𝑒  (C.38) 

 𝐺𝐺2 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋2

�
𝑥𝑥2∗

= +1𝜎𝜎𝑋𝑋2
𝑒𝑒  (C.39) 

Observe the negative sign in front of the partial in both of these 
equations. 

6. From the reduced variates and the vector {G}, estimate β . 

 𝛽𝛽 = {𝐺𝐺}𝑇𝑇{𝑧𝑧∗}
�{𝐺𝐺}𝑇𝑇{𝐺𝐺}

 (C.40) 

For this uncorrelated two variable problem, the Equation C.9 
correlation matrix [ρ] is an identity matrix, which by definition does not 
change the vector it is multiplied against. In this case, the transposed 
matrix Equation C.8 times the vector {z*} simplifies to the matrix 
equation form given here to determine the scalar value of β . 

7. The directional cosine values α are then calculated using Equation C.8. 
It is generally assumed that the variables are uncorrelated. 

8. The Gaussian Normalized design point is calculated for the variables 
using α and β  values for n-1 variables, which are on the response 
surface based on the equivalent normal distribution. 

 𝑧𝑧𝑖𝑖∗ = 𝛼𝛼𝑖𝑖𝛽𝛽 (C.41) 
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9. Convert the Gaussian Normalized design point back to the variable 
space for the n-1 variables. 

10. For the unknown variable, determine the value such that the position in 
non-normalized variable space satisfies the limit state function where 
g(x*)=0. 

11. Iterate until the value of β  and the design point x* converge. Because the 
variable spaces have non-normal distributions, this convergence step 
needs to occur even if the limit state function is linear. 

Example C.2 – verifying example C.1 results 

This section is a continuation of the Example C.1 problem, including its 
results. It follows the procedure of Example 8.4 of Nowak and Collins 
(2013). 

1. This step has been performed in Example C.1. 
2. The mean load µL is specified as 210 kip-ft based on the nominal value, 

NL, equal to 200 kip-ft and a load bias factor λL equal to 1.05. The load 
COVL = 0.1. The log-normal resistance distribution has a COVR = 0.14 
(Ellingwood) and has a resistance bias factor λR equal to 1.12. The load 
and resistance factors γL and γR are drawn from the previous example 
with values of 1.216 and 0.72, respectively. The mean resistance µR is 
calculated (using the equivalency expressed in the relationship of 
Equation C.21) as 

𝜇𝜇𝐿𝐿 = 𝑁𝑁𝐿𝐿 ∗  𝜆𝜆𝐿𝐿 = 210.00 

𝜇𝜇𝑅𝑅 = �𝜇𝜇𝐿𝐿∗𝛾𝛾𝐿𝐿
𝛾𝛾𝑅𝑅

� = 354.67  

𝜎𝜎𝐿𝐿 = 𝜇𝜇𝐿𝐿 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿 = 21.00 

𝜎𝜎𝑅𝑅 = 𝜇𝜇𝑅𝑅 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 = 49.64 

Therefore, the initial guess of the design point gives a value of 

r*= (210 + 354.57) / 2 = 282.29 

Given g(x*) =R-L=0: 

l*=282.29 
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3. The equivalent normal parameters can be calculated in the same 
manner as Example C.1, resulting in 

𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 = �ln �1 + 𝜎𝜎𝑅𝑅
2

𝜇𝜇𝑅𝑅
2� = �ln �1 + 49.642

354.572
� = 0.139  

 
𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 = ln(𝜇𝜇𝑅𝑅) − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙

2

2
= ln(354.57) − 0.1392

2
= 5.861  

 
and an equivalent normal distribution for resistance at the design point 
given by 

𝜎𝜎𝑅𝑅𝑒𝑒 = 𝑟𝑟∗𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 = 39.33  
 
𝜇𝜇𝑅𝑅𝑒𝑒 = 𝑟𝑟∗�1 − ln(𝑟𝑟∗) + 𝜇𝜇ln (𝑅𝑅)� = 343.9 
 

Notice that µln(R) is approximately equal to ln(µR) when the COVR < 0.2 
(Nowak and Collins 2013, p 26). 

 
The equivalent normal distribution for the load at the design point is 
the existing distribution calculated in Step 2: 

𝜎𝜎𝐿𝐿𝑒𝑒 = 21  
 
𝜇𝜇𝐿𝐿𝑒𝑒 = 210  
 
 

4. The reduced variate design point is calculated with Equation C.37: 

𝑧𝑧𝐿𝐿∗ = 𝑙𝑙∗−𝜇𝜇𝐿𝐿
𝑒𝑒

𝜎𝜎𝐿𝐿
𝑒𝑒 = �294.104−210

21
� = 3.442  

 
𝑧𝑧𝑅𝑅∗ = 𝑟𝑟∗−𝜇𝜇𝑅𝑅

𝑒𝑒

𝜎𝜎𝑅𝑅
𝑒𝑒 = �294.104−365.22

40.975
� = −1.567  

5. Determining the {G} vector, 

𝐺𝐺1 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑟𝑟∗

= −1𝜎𝜎𝑅𝑅𝑒𝑒 = −39.328  

𝐺𝐺2 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑙𝑙∗

= +1𝜎𝜎𝐿𝐿𝑒𝑒 = 21  

6. Estimate β  using Equation C.40, β  = 3.003. 
7. The {α } vector is determined using Equation C.8 
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𝛼𝛼 = �
𝛼𝛼𝑅𝑅
𝛼𝛼𝐿𝐿� = �−0.882

0.471 �  

with the correlation coefficient matrix [ρ] defined as an identity matrix 
for the pair of independent variables R and L. 

8. The new reduced design point for the resistance term is calculated as 

𝑧𝑧𝑅𝑅∗ = 𝛼𝛼𝑅𝑅𝛽𝛽 = −0.882 ∗ 3.003 = −2.65  

9. Converting back from the Gaussian Normal space, 

𝑟𝑟∗ = 𝜇𝜇𝑅𝑅𝑒𝑒 + 𝑧𝑧𝑅𝑅∗ ∗ 𝜎𝜎𝑅𝑅𝑒𝑒 = 343.9− 2.65 ∗ 39.33 = 239.708  

10. From the limit state response surface equation g(X)=0.0, 
l*=r*=239.708. 

11. Table C-2 shows the results of iterating Steps 3 through 10 four times. 
The calculations were all made in an Excel spread sheet. This gives a 
clear idea of the convergence pattern that is approaching a β  of 2.98, or 
a difference of less than 1% from the β target values of 3. The loss of 
precision may be attributed to the small number of iterations (four) that 
were performed in the Taylor series approximation of Example C.1 as 
well as the fact that higher-order terms were neglected in the Taylor 
series expansion formulation.  
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Table C-2. Iterations of Step 3-10 as the design point and β  values change. 
 Original Iteration 1 Iteration 2 Iteration 3 Iteration 4 

r* 282.2838 239.7079 244.3495 243.8894 243.9310736 

l* 282.2838 239.7079 244.3495 243.8894 243.9310736 

β  3.003365 3.07278 3.073797 3.073807 3.073807221 

Notice that in Step 2, the factored mean resistance is calculated based on 
the original mean load per the relationship of Equation C.21. This proves 
that the calculation of the proportional γL values from the ACI γR values of 
Step 10 of Example 1 will provide the same values of Table C-2. 

Table C-3 shows the calculation of β  using the verification procedure for 
four iterations using the nominal load and resistance factors (γL=1.4 and 
γR=0.9, respectively) as calculated in the Hokens write-up of LRFD 
procedures. 

Table C-3. Iterations of Step 3-10 as the design point and β  values change for the 
Hokens write-up of LRFD procedures. 

 
Original Iteration 1 Iteration 2 Iteration 3 Iteration 4 

r* 279.2222 238.9629 243.2369 242.8256 242.8657985 

l* 279.2222 238.9629 243.2369 242.8256 242.8657985 

β  2.903375 2.966626 2.967497 2.967504 2.967504536 

The results reveal that the actual β  given these factors converges to 2.97, 
which is approximately 1.1% less than the desired β target value of 3 
computed in a Hokens study. The 2016 study computed PUP values using 
Monte Carlo simulations from the Log-Normal resistance distribution and 
the Normal load distribution. The PUP value is a cumulative distribution 
effect of probabilities of (R-L) up to 0.0, so one would think that the β  
value could be determined by using the inverse CDF function (Φ-1(PUP)). 
This was the procedure used in the 2016 study. Unfortunately, the 
distribution resulting from subtracting load from resistance (R-L) is not a 
normal distribution because the resistance distribution is non-normal. To 
map the non-normal (R-L) distribution to a normal distribution β  value 
requires a transform into Gaussian Normal space. This transform is fixed 
by the constraints that the inverse CDF (Φ−1) and the inverse PDF (φ−1) of 
the distance from the mean to the design point must have the same β  value. 
Recall that the design point is defined by (R-L) equal to zero. This 
transform moves the mean of the (R-L) non-normal distribution to a 
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Gaussian Normal distribution, resulting in a different distance to the design 
point and therefore a different β  value. This observation demonstrates the 
need to follow the numerical procedure outlined in Section C.1 to 
determine the partial resistance and load safety factor values that are 
consistent with the β target value and allow for the scaling of the load factor 
based on any other user-prescribed resistance factor value using the 
supplemental procedure of Section C.3. 

C.4.2 Simulation verification 

Simulation methods can also be used to verify that the load and resistance 
factors computed in Example C.1 generate the target PUP and β  values, 
given a sufficient number of samples to guarantee precision. The mean load 
has the same value for both the unpublished USACE (2016) procedure and 
the load and resistance factor procedure. This value is computed as follows 

𝜇𝜇𝐿𝐿 = 𝐿𝐿𝑁𝑁 ∗ 𝜆𝜆𝐿𝐿 = 200 ∗ 1.05 = 210 

The mean resistance is computed differently depending on the procedure 
used. The unpublished USACE (2016) procedure calculates the mean 
resistance value using nominal values: 

𝜇𝜇𝑅𝑅 = 𝐿𝐿𝑁𝑁 ∗
𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴

∗ 𝜆𝜆𝑅𝑅 = 200 ∗
1.4
0.9

∗ 1.12 = 348.44 

Using the computed load and resistance factors from Example C.1, the 
computation of mean resistance becomes 

𝜇𝜇𝑅𝑅 = 𝜇𝜇𝐿𝐿 ∗
𝛾𝛾𝐿𝐿
𝛾𝛾𝑅𝑅

= 210 ∗
1.216
0.72

= 354.67 

Recall that load uses a normal distribution and that resistance uses a log-
normal distribution. Table C-4 shows the distributions and the resultant 
PUP values for the two procedures simulated with 1,000,000 samples. Both 
results are very close to the target b value of 3.0, indicating that the results 
are within the sampling error of the simulations. For these simulations, the 
engineering values gave a closer approximation to the target β  value, but 
both values are within the significant error. 
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Table C-4. Comparison of LRFD statistical variable parameters and 
computed results from the unpublished USACE (2016) letter report 

and the computations made in this appendix. 

 USACE (2016) LRFD Factors 

µL 210 210 

COVL 0.1 0.1 

σL 21 21 

µR 348.44 354.67 

COVR 0.14 0.14 

σR 48.78 49.65 

µLNR 5.844 5.861 

σLNR 0.139 0.139 

PUP 0.001418 0.001016 

β  = Φ−1(PUP) 2.983 3.085 

C.5 Nowak (1999) Reliability method-based numerical procedure for 
computing a value for Reliability Index β  

In 1999 Nowak, introduced a reliability-based numerical procedure for 
computing a value for Reliability Index β. The procedure that he outlined in 
his paper assumed that the total load, L, is a normal random variable and 
that the resistance, R, is a lognormal random variable. These assumptions 
are typical in bridge design. This procedure can be adjusted to work with 
other distributions if the equations are re-derived. Nowak’s procedure is 
described in the following eight steps: 

1. The Nowak (1999) Reliability-based procedure relies on specified 
inputs: 

Resistance parameters: Rn, λR, COVR  
Load parameters:  µQ, σQ 
where Rn is the nominal resistance, λR is the resistance bias factor, 
COVR is the coefficient of variation for resistance, µQ is the mean 
load, and σQ is the standard deviation of the load. 

2. The mean resistance is calculated as  

 𝜇𝜇𝑅𝑅 = 𝜆𝜆𝑅𝑅𝑅𝑅𝑛𝑛 (C.42) 
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3. Assume the initial design point for unknown k as 

 𝑅𝑅∗ = 𝜇𝜇𝑅𝑅(1 − 𝑘𝑘 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅) (C.43) 

For the initial value, k is set equal to 2 by Nowak (1999) in his LRFD 
application to bridge design. 

4. Compute the value for the CDF Φ and PDF φ of the design point on the 
lognormal distribution R at the design point R*, with the superscripted 
asterisk designating the design point. This calculation can be sped up by 
precalculating the argument for functions Φ and φ, 

 𝛼𝛼∗ = (ln𝑅𝑅∗ − ln𝜇𝜇𝑅𝑅)/𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 (C.44) 

so that the CDF and PDF are, respectively, 

 𝐹𝐹𝑅𝑅(𝑅𝑅∗) = Φ(𝛼𝛼∗) (C.45) 

 𝑓𝑓𝑅𝑅(𝑅𝑅∗) = ϕ(𝛼𝛼∗)/(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅∗) (C.46) 

5. Using Rackwitz-Fiessler (1976, 1978) equations, find the normal 
distribution for R’ that approximates the values at R*. 

 𝜎𝜎𝑅𝑅′ = 𝜙𝜙�Φ−1[Φ(𝛼𝛼∗)]�

� 𝜙𝜙(𝛼𝛼∗)
𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅∗

�
= 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅∗ (C.47) 

 𝜇𝜇𝑅𝑅′ = 𝑅𝑅∗ − 𝜎𝜎𝑅𝑅′Φ−1[Φ(𝛼𝛼∗)] = 𝑅𝑅∗ − 𝛼𝛼∗𝜎𝜎𝑅𝑅′ (C.48) 

Because the load is defined as a normal curve, the values that describe it 
are the mean, µQ, and standard deviation, σQ. 

6. The Reliability Index, β , is calculated as 

 𝛽𝛽 = (𝑅𝑅∗ − 𝛼𝛼∗𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅∗ − 𝜇𝜇𝑄𝑄)/�(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅∗)2 + 𝜎𝜎𝑄𝑄2 (C.49) 

7. A new design point is calculated for the resistance term 

 𝑅𝑅∗ = 𝜇𝜇𝑅𝑅′ − 𝛽𝛽(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅∗)2/�(𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅∗)2 + 𝜎𝜎𝑄𝑄2 (C.50) 
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8. If the new design point varies significantly from the last assumed value, 
go to Step 4 and repeat. Typically, the value can be obtained in one 
cycle. 

This numerical procedure will find the value for k that gives a maximum β  
value for the distribution created by subtracting the load distribution from 
the resistance distribution. The steps above were performed for resistance 
parameter values of Rn = 311.11 kip-ft, λR = 1.12, COVR = 0.14 and load 
parameters of µQ = 210 kip-ft, σQ = 21 kip-ft for the reinforced concrete 
beam problem discussed in Section C.2. The nominal load is 200 kip-ft 
with λLoad = 1.05 and the COVL = 0.1. The corresponding mean value for 
resisting moment equals 348.44 kip-ft by Equation C.19. The 
corresponding mean value for dead load moment equals 210 kip-ft by 
Equation C.14. Recall that the nominal resistance is based on ASCE 7-10 
load and ACI 318-14 resistance factors. This procedure generated a 
maximum β  for safety margin (R-L) of 3.02 with a k value of 2.16 for the 
Section C.2 beam possessing a µR of 348.44 kip-ft. 

The resistance parameter value of Rn for the reinforced concrete beam was 
then changed to = 37.68 kip-ft (for a lognormal distribution with a bias 
factor of 1.12 and a COVR of 0.14). The corresponding mean value for 
resisting moment equals 378.31 kip-ft by Equation C.19. The nominal value 
of the dead load moment remains 200 kip-ft (normal distribution) with a 
dead load bias factor of 1.05 and COVDL of 0.1. The corresponding mean 
value for dead load moment remains unchanged and equal to 210 kip-ft by 
Equation C.14. Notice that this nominal resistance value is based on the 
computed load and resistance factors from Section C.2 as described in 
Section C.3. This procedure generated a maximum β  for R-L of 3.52 with a 
k value of 2.46. 

Nowak and Lind (1979) introduced the concept that the load factor is 
related to the bias of the design value to the mean value of the load 
component (λi), a target β  with its directional cosine terms (β targetαi, now 
denoted by Nowak and Lind a designated constant k), and the coefficient of 
variation of the load component (COVi). For normally distributed loads 
applied to a design attributing to the total effect, the equation for the load 
factor (γ i) is therefore 

 𝛾𝛾𝑖𝑖 = 𝜆𝜆𝑖𝑖(1 + 𝑘𝑘 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) (C.51) 
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For normally distributed resisting loads applied to a design reducing the 
total effect, the equation for the resistance factor (φ i) is therefore 

 𝜙𝜙𝑖𝑖 = 𝜆𝜆𝑖𝑖(1 − 𝑘𝑘 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) (C.52) 

In Nowak (1999) and Nowak and Lind (1979), load and resistance factors 
related to k values varying from 1.8–2.1 were used for bridge design, and 
the load and resistance factors were rounded to the nearest 0.05. Nowak 
(1999) fixed the value of k to 2.0 for multiple load cases applied to LRFD 
bridge design with three dead loads, one live load, and one impact load in 
his Appendix F. He made conservative simplifying assumptions to aid the 
designer using estimated biases and COVs, altering the resulting load 
factors. Bathurst et al. (2008) noted that a value of k=2 was used in the 
development of the Canadian highway bridge design code and the 
AASHTO LRFD bridge design specifications. This value of k was also used 
by the team of Bathurst, Allen and Nowak in their research into load and 
resistance factors for reinforced earth applications. The load factors were 
determined for all of the loads and a conservative value was chosen 
between the extremes. 

Using Equations C.51 and C.52 with k = 2.0 with the input bias factor 
values and COVs results in 

𝛾𝛾𝐿𝐿 = 𝜆𝜆𝐿𝐿(1 + 𝑘𝑘 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿) = 1.05(1 + 2.0 ∗ 0.1) = 1.26  

𝜙𝜙𝑅𝑅 = 𝜆𝜆𝑅𝑅(1 − 𝑘𝑘 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅) = 1.12(1 − 2.0 ∗ 0.14) = 0.806  

The Nowak (1999) and Nowak and Collins (2013) equation that solves for β  
in this procedure given a lognormal resistance distribution and the normal 
load distribution is therefore 

 𝛽𝛽 = 𝑅𝑅𝑛𝑛𝜆𝜆𝑅𝑅(1−𝑘𝑘𝑉𝑉𝑅𝑅)[1−ln(1−𝑘𝑘𝑉𝑉𝑅𝑅)]−𝜇𝜇𝑄𝑄

�[𝑅𝑅𝑛𝑛𝑉𝑉𝑅𝑅𝜆𝜆𝑅𝑅(1−𝑘𝑘𝑉𝑉𝑅𝑅)]2+𝜎𝜎𝑄𝑄
2

 (C.53) 

This equation was also applied to LRFD based tunnel design by the Nowak 
PhD student Ghasemi in his 2015 Auburn University PhD dissertation 
(Ghasemi 2015).  

Figure C-1 shows the results from using Equation C.51 with resistance 
characterized by Rn = 311.11 kip-ft with µR of 348.44 kip-ft and a nominal 
load of 200 kip-ft with µQ = 210 kip-ft and varying k to determine values for 
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β . Notice that these plots verify the maximum β s calculated from the 
procedural method. Table C-5 summarizes the values for β  in k-value range 
suggested in the 1979 Nowak and Lind paper. In Nowak’s later work on 
LRFD as applied to bridge design (e.g., Nowak (1999), Nowak and Collins 
(2000, 2013), a k value of 2.0 is used. This same k value of 2.0 was used in 
his LRFD application to reinforce earth design (Bathurst et al. 2008). 
Therefore, attention was focused on the variation in resulting Equation C.51 
β  values for a range in k from 1.8 to 2.1 (Table C-5). For LRFD-based tunnel 
design, Ghasemi (2015) states that k may be taken approximately 1.8 to 2.0 
for strength limit states (Nowak 1999). Observe the minor variation in β  
value within the k equal to 1.8 to 2.1 range. 

Figure C-1. Reliability Index β  as a function of the constant k for the problem of a 
reinforced concrete beam with its capacity defined by a nominal resisting moment of 

311.11 kip-ft with a mean resisting moment of 348.44 kip-ft.  
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Table C-5. Reliability Index β as a function of the 
constant k for the problem of a reinforced 

concrete beam with its capacity defined by a 
nominal resisting moment of 311.11 kip-ft with 

a mean resisting moment of 348.44 kip-ft.  

K β  

1.8 3.000 

2 3.013 

2.1 3.016 

Recall that the Nowak (1999) numerical procedure discussed earlier in this 
section generated a maximum β  for R-L of 3.02 with a k value of 2.16. 
Therefore, for an assigned k value of 2, a β  value of 3.013 is close to this 
maximum β  value from the numerical procedure. 

Figure C-2 shows the results from using Equation C.51 with resistance 
characterized by Rn = 337.68 kip-ft with µR of 378.31 kip-ft and a nominal 
load of 200 kip-ft with µQ = 210 kip-ft and varying k to determine values for 
β . Notice that these plots verify the maximum β s calculated from the 
procedural method: Table C-6 summarizes the values for β  in k-value range 
suggested in the 1979 Nowak and Lind paper. Observe the minor variation 
in β  value within the k equal to 1.8 to 2.1 range.  

Figure C-2. Reliability Index β  as a function of the constant k for the problem of a 
reinforced concrete beam with its capacity defined by a nominal resisting moment of 

337.68 kip-ft with a mean resisting moment of 378.31 kip-ft.  
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Table C-6. Reliability Index β as a function of the 
constant k for the problem of a reinforced 

concrete beam with its capacity defined by a 
nominal resisting moment of 337.68 kip-ft with 

a mean resisting moment of 378.31 kip-ft.  

K β  

1.8 3.458 

2 3.487 

2.1 3.498 

Recall that the Nowak (1999) numerical procedure discussed earlier in this 
section generated a maximum β  for R-L of 3.52 with a k value of 2.46. 
Therefore, for an assigned k value of 2, a β  value of 3.487 is close to this 
maximum β  value from the numerical procedure. 

C.6 A Gaussian function superposition approach of numerically fitting 
normalized normal distribution functions to a non-normal pdf and 
computing a value for Reliability Index β  

In his 2015 Doctor of Philosophy dissertation, Seyed Hooman Ghasemi 
(Ghesemi 2015) proposed using a series of Gaussian normalized Normal 
distribution functions to approximate a non-normal PDF safety margin (R-
L) distribution. Dr. Ghasemi’s dissertation committee was chaired by 
Professor Andrzej Nowak. Professor Nowak has been a leader in LRFD 
research with application in bridge design. By their approach, a series of n 
overlapping scaled Gaussian functions have scaled PDFs that can be 
summed to approximate the shape of the non-normal PDF safety margin 
and have a cumulative area of the approximated curve that approaches 1.0 
for CDF integration. The reliability index value can be determined from the 
series solution from the reliability indices for each of the individual 
Gaussian functions. Because a normal distribution function is being used 
for each term of the Gaussian series, a reliability index value may also be 
conveniently computed for each term. Dr. Ghasemi provided the 
relationship between the reliability index values computed for each of the n 
terms and the resulting single β  value representative of the summed 
distribution for all n terms. Since the resulting PDF for the summed n 
Gaussian PDF distributions fits the original non-normal PDF, their 
resulting β  value is representative of the non-normal distribution and may 
be used in reliability and any subsequent assessments of load and 
resistance (i.e., partial safety) factors, γ and φ, respectively. 
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The series superposition of generalized Gaussian function used for each 
term in the series of n terms is given as 

 𝑓𝑓(𝑥𝑥𝑖𝑖) = ∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 1

√2∗𝜋𝜋∗𝜎𝜎2
∗ 𝑒𝑒

(𝑥𝑥−𝜇𝜇)2

2∗𝜎𝜎2  (C.54) 

The Reliability Index is defined based on the summation of the reliability 
indices for each of the normal distributions numerically fitted to the safety 
margin (R-L) data during this numerical superposition fitting process. 
Values for the amplitude scale constants ai, mean values µ i, standard 
deviations σ i, and reliability index values β i for all n series terms are 
adjusted during the best-fit numerical process using a Python numerical fit 
optimization library function minimize (scipy.optimize.minimize). This 
library function chooses between several optimization numerical methods 
to approach the solution. 

 𝛽𝛽 = ∑ (𝑎𝑎𝑖𝑖 ∗ 𝛽𝛽𝑖𝑖)𝑛𝑛
𝑖𝑖  (C.55) 

This equation simplifies to 

 𝛽𝛽 = ∑ (𝑎𝑎𝑖𝑖 ∗𝑛𝑛
𝑖𝑖

𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

) (C.56) 

Note that for each Gaussian term added, a set of three constants are to be 
defined by the numerical fitting procedure of the safety margin (R-L) data 
during the course of numerical analysis. Python language-based software 
was written and a program was developed to facilitate the numerical best-
fit computational process of defining and constructing the individual 
Gaussian terms and the series superposition PDF to the non-normal PDF of 
safety margin (R-L) data points.  

Recall that in the reinforced concrete beam example problem of Section 
C.2, the flexural resisting moment was defined as a lognormal distribution 
with a nominal moment of 311.11 kip-ft, bias factor of 1.12 and a COVR of 
0.14. The corresponding mean value for resisting moment equals 348.44 
kip-ft by Equation C.19. The nominal value of the dead load moment is 200 
kip-ft. The load distribution is normal with a dead load bias factor of 1.05 
and COVDL of 0.1. The corresponding mean value for dead load moment 
equals 210 kip-ft by Equation C.14. The nominal values for the resisting 
moments are calculated from samples in the real-world space, but to create 
samples in the real-world space, a normal distribution in logarithmic space 
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is used and for sampling and the values are converted to real space. The 
standard deviation and mean of the normal distribution in logarithmic 
space are calculated as  

 𝜎𝜎ln𝑅𝑅 = �ln �1 + 𝜎𝜎𝑅𝑅
2

𝜇𝜇𝑅𝑅
2� (C.57) 

 𝜇𝜇ln𝑅𝑅 = ln(𝜇𝜇𝑅𝑅) − 0.5𝜎𝜎ln𝑅𝑅2  (C.58) 

The safety margin (R-L) PDF data was determined by simulation, gathering 
10 million samples from the resistance and load distributions. The samples 
were subtracted to generate the (R-L) samples. The results from this process 
is shown in Figure C-3, where the yellow curve is the safety margin and 
values below 0.0 for the safety margin curve are unsatisfactory. The PUP 
value is therefore the integrated probability of the yellow curve for values 
below 0.0. Using the parameters in the previous paragraph, Figure C-4 
shows the simulated safety margin (R-L) distribution.  

Figure C-3. Computed safety margin PDF, PDF for a normal load PDF defined with a 
mean of 210 kip-ft, and a PDF for a lognormal resistance PDF defined by a nominal 
resisting moment of 311.11 kip-ft with a mean resisting moment of 348.44 kip-ft.  
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Through trial and error, it was found that a series of seven Gaussian 
function terms results in a good fit for the distribution curve of the safety 
margin (R-L) PDF data. When the number of functional terms was less 
than seven, the changes in curvature for the safety margin PDF were not 
followed as well as the seven term Gaussian fit. With more functional terms 
than seven, the variation in curvature became too large resulting in a 
multimodal curve rather than the single mode simulation curve. This result 
is virtually guaranteed because each functional term curve adds three more 
variables to the fitness function (the function variables of ai, µ i, and σ i 
times the number of functional terms). Initial values for the functional term 
variables were chosen with small standard deviations, ai’s that summed to 
1.0, and separation in the means to encourage movement. 

The individual sets of ai, µ i, σ i and β i values for each of the seven Gaussian 
terms that were superimposed, resulted in the best fit of the nonlinear (R-
L) PDF are summarized in Table C-7. The sampled distribution is shown in 
Figure C-4, and the individual terms forming the summed curve fit 
distribution are shown in Figure C-5.  

Table C-7. Computed values of series constant coefficients, means, standard 
deviations, and reliability indices for each of the seven Gaussian functions for the 

problem of a reinforced concrete beam with its capacity defined by a nominal resisting 
moment of 311.11 kip-ft with a mean resisting moment of 348.44 kip-ft.  

Series 
Term # 

AI µI σI β ι 

1 0.000902 131.166763 13.459697 9.745150 

2 0.302227 152.789236 39.598064 3.858503 

3 0.178650 108.349004 41.063404 2.638578 

4 -0.000376 164.436394 11.450387 14.360772 

5 -0.001067 92.533972 16.565957 5.585791 

6 0.278710 171.082874 57.469848 2.976915 

7 0.241486 104.461490 37.327819 2.798489 
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Figure C-4. Resulting simulation PDF for the R-L distribution given a lognormal 
resistance distribution (nominal resisting moment of 311.11 kip-ft and COVR = 0.14) 

and a normal load distribution (nominal load moment of 200.00 kip-ft and  
COVDL = 0.1).  

 

Figure C-5. Resulting simulation PDF for the R-L distribution (given nominal resisting 
moment of 311.11 kip-ft) with curve fit by summing seven fractional normal curves. 
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To correctly model the probability curve, it is imperative that the sum of the 
fractional normal areas should equal to 1.0 because this matches the total 
cumulative probability. The area of each fractional normal curve is ai 
because the scale factor is applied to a unit area standard normal curve. 
Summing the ai column of Table C-7 returns a value of 1.000532, which is 
very close to the probability area. 

From equation C.56 and Table C-7, one can calculate a value for the PUP β  
for the fit curve. This combined PUP β  value is 3.140449. The residual 
error of this curve fit was 0.0, indicating an excellent fit over the entire 
domain. More importantly, the coefficient of determination (R2) give a 
fitness value of 95.5% for the PUP region. 

For the second example, recall that for the reinforced concrete beam 
example problem of Section C.3, the flexural resisting moment was defined 
as a lognormal distribution with a nominal moment of 337.68 kip-ft, bias 
factor of 1.12, and a COVR of 0.14. The corresponding mean value for 
resisting moment equals 378.31 kip-ft by Equation C.19. The nominal value 
of the dead load moment is 200 kip-ft. The load distribution is normal with 
a dead load bias factor of 1.05 and COVDL of 0.1. The corresponding mean 
value for dead load moment equals 210 kip-ft by Equation C.14. Using the 
parameters in this paragraph, Figure C-6 shows the simulated safety 
margin (R-L) distribution. 

A series of seven Gaussian function terms were used, resulting in a good fit 
of the distribution curve of the safety margin (R-L) PDF data. The 
individual sets of ai, µ i, σ I, and β i values for each of the seven Gaussian 
terms that were superimposed resulted in the best fit of the nonlinear (R-L) 
PDF are summarized in Table C-8. The sampled distribution is shown in 
Figure C-6, and the individual terms forming the summed curve fit 
distribution are shown in Figure C-7. 
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Table C-8. Computed values of series constant coefficients, means, standard 
deviations and reliability indices for each of the seven Gaussian functions for the 

problem of a reinforced concrete beam with its capacity defined by a nominal resisting 
moment of 337.68 kip-ft with a mean resisting moment of 378.31 kip-ft.  

Series 
Term #  AI µI σI β ι 

1 0.126179 161.415548 15.599337 10.347590 

2 -0.018637 175.203552 16.873393 10.383421 

3 -0.045216 147.748934 16.670027 8.863149 

4 0.083196 188.816040 17.711134 10.660867 

5 0.120355 134.193684 17.058013 7.866900 

6 0.403193 208.227268 42.576387 4.890675 

7 0.323917 115.431851 39.080976 2.953658 

Figure C-6. Resulting simulation PDF for the R-L distribution given a 
lognormal resistance distribution (nominal resisting moment of 
337.68 kip-ft and COVR = 0.14) and a normal load distribution 
(nominal resisting moment of 200.00 kip-ft and COVDL = 0.1).  
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Figure C-7. Resulting simulation PDF for the R-L distribution  
(given nominal resisting moment of 337.68 kip-ft) with curve fit  

by summing seven fractional normal curves. 

 

To correctly model the probability curve, it is imperative that the sum of the 
fractional normal areas should equal to 1.0 because this matches the total 
cumulative probability. The area of each fractional normal curve is ai 
because the scale factor is applied to a unit area standard normal curve. 
Summing the ai column of Table C-8 returns a value of 0.992978, which is 
very close to the probability area. 

From Equation C.56 and Table C-8, one can calculate a value for the PUP β  
for the fit curve. This combined PUP β  value is 5.473765. The residual error 
for this fit curve was very low with a value of 0.000007, although there 
seems to be issues at the peak and on the right side of the data, which could 
have an effect on the β  calculation. Note that the error occurs mostly in the 
tails of the distributions, as those areas affect the PUP calculation. An 
attempt was made to calculate R2 for the PUP region, but the data in the 
tails of the PUP region had extremely low values of magnitude. The low 
magnitude of the values in this region is explained by β  = 5.473765. 

C.7 Summary and conclusions 

Four numerical procedures were investigated, and a numerical relationship 
of the load and resistance factors was identified in this appendix. These 
numerical procedures were derived to handle the specific example problem 
with a log-normal distribution for the resistance term and a normal 
distribution for load. Section C.2 investigated a procedure that, when 
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presented with load and resistance PDF curves, would generate load and 
resistance factors (without bias) that scale the PDF curves so that the 
combined PUP result would have a CDF value equivalent to a normal 
distribution CDF at β target. Section C.3 was a quick numerical exploration of 
the fact that keeping the ratio between the load and resistance factors the 
same will result in the same resulting value for β  because the ratio of scaled 
resistance to scaled load determines the PUP result. Sections C.4 through 
C.6 explore ways of calculating β  given different input values that describe 
the load and resistance PDF curves.  

Two example problems were included based upon a trial design of a singly 
reinforced beam with an unfactored dead load bending moment, MDL, set 
equal to 200 kip-ft for a beam with a width of 12 in. and a depth (d) to 
center of reinforcement of 28 in. This example was taken from a 2016 
USACE LRFD study (unpublished). This appendix outlines the complete 
numerical procedure to follow to obtain appropriate values for load and 
resistance factors for a prescribed β target value as well as a supplemental 
procedure to compute a load factor consistent with the ACI prescribed 
resistance factor φ value maintaining factor relationships computed for a 
prescribed β target value, so long as the mean load value remain unaltered. 
Table C-9 shows the difference of effect between the ACI/ASCE load and 
resistance factors and the factors computed by using the Section C.2 
procedure with β target = 3.0. The third row shows the effect of using the 
Section C.3 ratio with the input ACI resistance factor (0.9) to change the 
load factor. The final row shows the results of the Section C.5 (Equations 
C.51 and C.52) factor calculations. 

For the following tables, λL is the load bias factor, NL is the nominal load, µL 
is the mean load, COVL is the coefficient of variation for load, γ L is the load 
factor, φ R is the resistance factor, λR is the resistance bias factor, NR is the 
nominal resistance, µR is the mean resistance, and COVR is the coefficient of 
variation for resistance.  

Table C-9. Load and resistance factors and the effect on resistance.  

 λL NL µL COVL γL φR γL/φR λR NR µR COVR 

ACI 1.05 200.0 210.0 0.1 1.4 0.9 1.556 1.12 311.11 348.44 0.14 

C.2 1.05 200.0 210.0 0.1 1.21595 0.720173 1.688 1.12 337.68 378.21 0.14 

C.3 1.05 200.0 210.0 0.1 1.519586 0.9 1.688 1.12 337.68 378.21 0.14 

C.5 1.05 200.0 210.0 0.1 1.26 0.806 1.563 1.12 312.66 350.17 0.14 
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The consistency between computed γ and φ values in Example C.1 for the 
specified β target value of 3.0 was verified by the second numerical procedure 
in Example C.2. This Example C.1 calculation of φ and γ resulted in 
different values than the values reported from the 2016 USACE LRFD 
study (unpublished). In Example C.2, the calculated values were shown to 
be more accurate than the values from the 2016 USACE LRFD study 
(unpublished). 

These examples were carried forward into the Section C.4, Section C.5, and 
Section C.6 methods of β  computation. The Section C.6 method was 
explicitly supported by simulation runs with 10,000,000 samples for both 
the load and resistance from the defined curves.  

Table C-10 shows the results of using the various computed load and 
resistance factors to calculate β  with the numerical procedure of Section 
C.4. This method seems to verify the results of the Section C.2 and C.3 
computations, where β target was set to 3.0. 

Table C-10. Applying Section C.4 calculation of β  using the various load and 
resistance factors.  

Method NL γL φR γL/φR NR Resultant β 

ACI 200.0 1.4 0.9 1.556 311.11 2.614 

C.2 200.0 1.21595 0.720173 1.688 337.68 2.981 

C.3 200.0 1.519586 0.9 1.688 337.68 2.981 

C.5 200.0 1.26 0.806 1.563 312.66 2.636 

Table C-11 shows the results of using the various computed nominal 
resistances computed from load and resistance factors to calculate β  with 
the numerical procedure of Section C.5. This method contradicts the C.4 
method results, with the load and resistance factors computed from Section 
C.2 and C.3 procedures, which are coincident, giving a much more 
conservative value of ~3.5 for β. The load and resistance values for the 
factors given by ACI/ASCE and the Section C.5 equations is closer to β target 
= 3.0. The computed value for k was derived from the last iteration design 
point R* using equation C.43. 
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Table C-11. Calculating the maximum β  using the Section C.5 procedure given 
nominal resistances based on computed load and resistance factors. 

Method NR λR COVR µL σL β k 

ACI 311.11 1.12 0.14 210.0 21.0 3.016 2.157 

C.2 and  C.3 337.68 1.12 0.14 210.0 21.0 3.516 2.455 

C.5 312.66 1.12 0.14 210.0 21.0 3.046283 2.175218 

Section C.6 involves fitting a set of fractional Gaussian distributions to the 
resulting resistance minus load distribution (R-L) safety margin curve. In 
order to determine this curve, a set of Monte Carlo samples using the 
distributions of resistance and load are drawn and subtracted from each 
other. The resulting points for each distribution are then binned into a 
histogram to determine probabilities, resulting in curves similar to Figure 
C-3. The PUP value can be determined from the R-L curve by integrating 
the portion of the curve with a moment below zero. A resultant β  value is 
computed from the PUP value by applying the inverse CDF function for a 
Gaussian Normal distribution to the PUP. Table C-12 shows the results 
using the different load and resistance factors. 

Table C-12. Results of 10M simulations being performed using  
procedural load and resistance factors. 

Method γL φR PUP Resultant 
β 

ACI 1.4 0.9 0.001441 2.98 

C.2 1.21595 0.720173 0.000239 3.493 

C.3 1.519586 0.9 0.000239 3.493 

C.5 1.26 0.806 0.001286 3.015 

When the fractional Gaussian distributions have been determined that sum 
to a proper curve with low error that approximates the R-L curve, Equation 
C.56 can be used to determine the β  value for a normal distribution that 
has the same CDF at the response surface where the safety margin R-L = 0. 
Table C-13 shows the results of these β  calculations for a low-error curve fit 
with seven distributions. Note that the initial seeded values for the 
fractional Gaussian distributions can play a large part in the amount of 
error in the fit and in the final β  calculation. This may be better controlled 
if the values for the fractional Gaussian distributions were bounded. The 
initial values for the fractional curves were adjusted to give a coefficient of 
determination, R2, value for each summed curve of at least 95% of the 
original values. The resultant β s reveal a weakness of this procedure when 
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the fractional curve values were not bounded. Although the fitness curve 
has an area of one, which matches the simulation distribution, portions of 
the curve, especially in the tails, do not have good properties because 
individual fractional distribution curves can have negative area. This affects 
the CDF calculation, especially if the summed curve drops below zero in the 
integrated region.  

Table C-13. Results of 10M simulations being performed using 
procedural load and resistance factors. 

Method γL/φR R2 Resultant β 

ACI 1.556 0.955 3.14 

C.2 and C.3 1.688 0.993 5.47 

C.5 1.563 0.977 2.46 

This appendix introduced three methods for computing load and resistance 
factors. The first method is using engineering standards. The second 
method is using the Section C.2 numerical method, which establishes a 
ratio for the Section C.3 ratio method. Finally, the third method is using the 
Section C.5 numerical procedure, which calculates a k value (for the max β ) 
that can be applied in Equations C.51 and C.52. 

This appendix also introduced techniques for computing β  given load and 
resistance factors either directly or indirectly. The Section C.4 numerical 
procedure attempts to iterate to find a maximum β  given resistance and 
load distribution descriptions using Rackwitz and Fiessler (1976, 1978) 
normal curve approximates. The Section C.5 numerical procedure 
computes the maximum β  and its associated k value. Substituting this k 
value into Equation C.53 will return this maximum β  value, also. Section 
C.6 attempts to indirectly calculate the β  value for a non-normal 
distribution by summing fractional Gaussian curves to fit the non-normal 
distribution with low error. The fractional curve properties are used in 
Equation C.56 to determine the β  value for a non-normal distribution. The 
authors also did a Monte-Carlo simulation with a large number of samples 
on the resistance and load curves and calculated the R-L curve with binned 
histograms. The PUP value was then calculated by integrating probabilities 
for the resulting distribution up to the safety margin R-L=0 response 
surface and an inverse normal distribution CDF calculation was used to get 
a transformed Gaussian Normal space β  value.  
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In conclusion, given two full distribution descriptions, the simulation 
method (with enough samples) and the Section C.5 procedural method can 
determine an accurate PUP value either directly or through a normal 
distribution CDF calculation from a calculated β . Based on extensive series 
of trial and error computations, the Section C.6 method was found to be an 
interesting mathematical exercise but has too many variables and needs 
restraint. The Section C.2 β  calculation method for non-normal 
distributions requires small steps using normal distributions mapped to the 
non-normal distribution at a given design point (Rackwitz and Fiessler 
1976, 1978), which can have problems with accuracy in the tails region, as 
shown in the results tables in this section of the appendix. 

The Section C.2 procedural method is the only method that attempts to 
numerically establish load and resistance factors that will scale the 
positions of existing distributions so that the safety margin (R-L) response 
surface will have a PUP value that corresponds to a normal distribution 
β target CDF value. Unfortunately, this procedure is attempting to find a 
value in the tail of the distribution and therefore has accuracy problems 
that are revealed in the results tables in this section of the appendix.  
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Appendix D: Calculations of Soil Bearing 
Capacity for Limit State 
Definition 

D.1 Introduction: bearing defined 

The form of the generalized bearing capacity equation used for the example 
problem is given as 

 𝑞𝑞 = 𝜁𝜁𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝜁𝜁𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐 + 𝜁𝜁𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝜁𝜁𝑞𝑞𝑞𝑞𝑞𝑞0𝑁𝑁𝑞𝑞 + 𝜁𝜁𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝜁𝜁𝛾𝛾𝛾𝛾𝐵𝐵𝐵𝐵𝑁𝑁𝛾𝛾
2

 (D.1) 

where 

 Q = vertical component of the ultimate unit bearing capacity of the 
foundation (pressure) 

Nc, Nq, Nγ= base bearing capacity factors 
 ζc, ζq, ζγ = shape factors 

 ζcd, ζqd, ζγd = embedment factors 
ζci, ζqi, ζγI = inclination factors 
ζct, ζqt, ζγt = base tilt factors 

ζcg, ζqg, ζγg= ground slope factors 
 C = cohesion 
 γ = unit weight of the soil 
 Be = effective base width 
 L = effective base length (for a 2-D section evaluation, a value of 1.0 

is used) 
 q0 = effective overburden pressure on a plane passing through the 

base of the footing. 

Because the computations used for Sliding and Base Area in Compression 
(Overturning) limit states already provide the effective vertical force 
exhibited by the structural wedge, which acts directly against the base, the 
bearing capacity is converted to an ultimate resisting force for the effective 
base width (for the 2-D slice), which is the width of the base in contact with 
the foundation soil. This width will be affected by uplift and overturning 
forces that cause a gap to form between the foundation soil and the 
foundation. 

 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝑒𝑒𝑞𝑞  (D.2) 
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This is the ultimate bearing capacity force for the entire foundation, and if 
the vertical force acting on the structural wedge exceeds this value, the 
structural soil provides unsatisfactory performance.  Figure D-1 shows a 
2-D cross section of a complex T-Wall geometry with enough input 
information to determine the resistance to bearing failure. 

Figure D-1. A geometry view of a complex T-Wall configuration with definition of the 
geometry necessary to compute bearing capacity. 

 

D.2 Base bearing capacity factors (Nc, Nq, Nγ ) 

The base bearing capacity factors used in this program are the ones 
developed by Meyerhof (1963) for a shallow horizontal strip footing under 
vertical load. These values are conditionally based on the value of the 
foundation soil Interface Friction Angle φ: 

 𝑁𝑁𝑐𝑐 = (𝑁𝑁𝑞𝑞 − 1) cot𝜙𝜙 (D.3) 

 𝑁𝑁𝑞𝑞 = 𝑒𝑒𝜋𝜋 tan𝜙𝜙𝑁𝑁𝜙𝜙 (D.4) 

 𝑁𝑁𝛾𝛾 = (𝑁𝑁𝑞𝑞 − 1) tan 1.4𝜙𝜙 (D.5) 
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where 

 𝑁𝑁𝜙𝜙 = tan2 �𝜋𝜋
4

+ 𝜙𝜙
2
� (D.6) 

However, for φ = 0°, Equation D.3 is indefinite, so the value is given as 

 𝑁𝑁𝑐𝑐 = 5.14 (D.7) 

D.3 Shape factors (ζc, ζq, ζγ ) 

The shape factors used in this program also use the relationships developed 
by Meyerhof (1963). These values are conditionally based on the value of 
the foundation soil Interface Friction Angle φ: 

 𝜁𝜁𝑐𝑐 = 1.0 + 0.2𝑁𝑁𝜙𝜙
𝐵𝐵
𝐿𝐿
 (D.8) 

For φ = 0°, 

 𝜁𝜁𝑞𝑞 = 𝜁𝜁𝛾𝛾 = 1.0 (D.9) 

For φ > 10°, 

 𝜁𝜁𝑞𝑞 = 𝜁𝜁𝛾𝛾 = 1.0 + 0.1𝑁𝑁𝜙𝜙
𝐵𝐵
𝐿𝐿
 (D.10) 

For 0° <  𝜙𝜙 ≤ 10° , a linear interpolation between Equations D.9 and D.10 
(with φ = 10.0) is used. 

D.3 Embedment factors (ζcd, ζqd, ζγd ) 

The embedment factors also use the relationships developed by Meyerhof 
(1963). These values are conditionally based on the value of the foundation 
soil Interface Friction Angle φ: 

 𝜁𝜁𝑐𝑐𝑐𝑐 = 1.0 + 0.2 𝐷𝐷
𝐵𝐵

tan �𝜋𝜋
4

+ 𝜙𝜙
2
� (D.11) 

where D is the depth of embedment at the base of the footing. 

For φ = 0°, 

 𝜁𝜁𝑞𝑞𝑞𝑞 = 𝜁𝜁𝛾𝛾𝛾𝛾 = 1.0 (D.12) 
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For φ > 10°, 

 𝜁𝜁𝑞𝑞𝑞𝑞 = 𝜁𝜁𝛾𝛾𝛾𝛾 = 1.0 + 0.1 𝐷𝐷
𝐵𝐵

tan �𝜋𝜋
4

+ 𝜙𝜙
2
� (D.13) 

For 0° <  𝜙𝜙 ≤ 10° , a linear interpolation between Equations D.12 and D.13 
(with φ = 10.0) is used. 

D.4 Inclination factors (ζci, ζqi, ζγi ) 

The inclination factors also use the relationships developed by Meyerhof 
(1963). 

 𝜁𝜁𝑐𝑐𝑐𝑐 = 𝜁𝜁𝑞𝑞𝑞𝑞 = �1 − 𝛿𝛿
90
�
2
 (D.14) 

Where δ  is the angle of inclination of the load from vertical as shown in 
Figure D-1. 

For δ<= φ, 

 𝜁𝜁𝛾𝛾𝛾𝛾 = �1 − 𝛿𝛿
𝜙𝜙
�
2
 (D.15) 

For δ > φ, 

 𝜁𝜁𝛾𝛾𝛾𝛾 = 0.0 (D.16) 

D.5 Base tilt factors (ζct, ζqt, ζγt ) 

The base tilt factors use the relationships developed by Vesic (1975). 

 𝜁𝜁𝑞𝑞𝑞𝑞 = 𝜁𝜁𝛾𝛾𝛾𝛾 = (1 − 𝛼𝛼 tan𝜙𝜙)2 (D.17) 

where α is the slope of the base of the footing as shown in Figure D-1. 

For φ = 0°, 

 𝜁𝜁𝑐𝑐𝑐𝑐 = 1 − �2 𝛼𝛼
𝜋𝜋+2

� (D.18) 

For φ > 0°, 

 𝜁𝜁𝑐𝑐𝑐𝑐 = 𝜁𝜁𝑞𝑞𝑞𝑞 −
1−𝜁𝜁𝑞𝑞𝑞𝑞
𝑁𝑁𝑐𝑐 tan𝜙𝜙

 (D.19) 
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D.6 Ground slope factors (ζcg, ζqg, ζγg ) 

Ground slope factors are compute using the relationships developed by 
Vesic (1975). 

 𝜁𝜁𝑞𝑞𝑞𝑞 = 𝜁𝜁𝛾𝛾𝛾𝛾 = (1 − tan𝛽𝛽)2 (D.20) 

where β  is the slope of the surface soil as shown in Figure D-1. 

For φ = 0°, 

 𝜁𝜁𝑐𝑐𝑐𝑐 = 1 − �2 𝛽𝛽
𝜋𝜋+2

� (D.21) 

 𝑁𝑁𝛾𝛾 = −2 sin𝛽𝛽 (D.22) 

For φ > 0°, 

 𝜁𝜁𝑐𝑐𝑐𝑐 = 𝜁𝜁𝑞𝑞𝑞𝑞 −
1−𝜁𝜁𝑞𝑞𝑞𝑞
𝑁𝑁𝑐𝑐 tan𝜙𝜙

 (D.23) 

D.7 Effective foundation dimensions 

An approximate method developed by Meyerhof (1963) is employed to 
adjust the foundation dimensions for eccentric loadings. For the strip 
footings employed in this report, 

 𝐵𝐵𝑒𝑒′ = 𝐵𝐵𝑒𝑒 − 2.0𝑒𝑒𝑥𝑥 (D.24) 
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Acronyms and Abbreviations 

1-D one-dimensional 

2-D two-dimensional 

5-D five-dimensional  

ASD allowable stress design  

AASHTO American Association of State Highway and Transportation Officials 

ASD allowable stress design  

ASM Advanced second moment 

CASE Computer-Aided Structural Engineering  

CDF cumulative distribution function 

CHBDC Canadian Highway Bridge Design Code 

COV coefficient of variation  

FS factor(s) of safety  

LRFD Load and Resistance Factor Design  

LSF load scale factor 

PDF probability density function  

PUP Probability of Unsatisfactory Performance 

R&D research and development 

RSF resistance scale factor 

SSI soil structure interaction 

ULS Ultimate Limit States  

USACE U.S. Army Corps of Engineers  
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