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Plastic Soil Mechanics Theories.

1, Introduction, Although civil engineers have been inter-

ested in soil mechanics for ages, only recently has it begun to

be feasible to apply to it the techniques of modern plasticity
theories, There is little experimental evidence as to which theory
to choose, On the other hand there is still relatively little
theoretical guidance as to fruitful lines of experimental attack.
This report is an attempt to bring the theoretical and experimental
forces somewhat nearer common ground,

To be mathematically tractable a theory of soil mechanics must
drastically simplify true soil structure, Only a few important
soll mechanisms may be considered, We will adopt rather naive
models of these mechanisms, for simplicity is at a premium and
high accuracy is not,

The basic soll structure is its skeleton of solid sand or silt
grains, usually of quartz, They are elastic in nature, Although
they are crystalline, their crystallographic axes are usuvally ran-
domiy oriénted so that the skeleton as a whole may be regarded as
isotropic.s

The interstices between the particles are filled with water,
air, or both, The water contains flocculated colloidal particles
much smaller than the sand or silt gralns, but appearing more pro-
minently in clays than in sands, They are sub ject to electro-chemi-

cal forces tending to bond together the grains of the skeleton,

* In some alluvial deposits stream action has caused the deposit
of non-randomly oriented highly flattened particles. The present
theory does not apply to such cases,



-l

A similar bonding is caused by surface tension in the water when
air is present, We will account for this bonding by introducing

a cohesive pressure Pos constant or at most weakly dependent on

the plastic work W, The energy loss resulting from the breaking
of these bonds and the rubbing together of the skeletal particles
as the soill deforms will be accounted for by a mechanism of
Coulomb friction,

The so0ll skeleton will transmit a stress TEJ. In addition

the water will transmit a pore pressure u, dependent primarily

on the strain €, In many cases the cohesive pressure and the

pore pressure can be lumped together into the intrinsic pressure

P=u-=p,.

A so0il may be considered incompressible only if it is saturated
with water and contains no air and if the watesr 1s not free to
flow out,

In the first 13 sections several different plastic soil
mechanics theories are developed, In section 14, the general
question of testing these theories 1s discussed, and speclalized
in section 15 to the ordinary triaxial type of testing situation.
In section 16 the theory of section 15 is extended for the perfect
plasticity case, and a numerical example is given in section 17,

Rather accurate experimental work 1is réquired in testing the
theories, as one might expect, If the experiments suggested are
feasible they should definitely throw light upon the internal

mechaniam of soil plasticity,
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NOTATION

The symbols are defined in or near the formulas given
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2, The total stress tensor 0"1J and the intrinsic pressure
p are defined in terms of the skeletal stress tensor 'rij, the

cohesive pressure A and the pore pressure u by
o..ijz Tij‘p 81‘1’ p=u-pc (l)

where Sij 1s the Kronecker delta: 511 =1, 813 = 0 for

1# 4.
The usual mechanical equations of equilibrium of plasticity

and elasticity are

Q0 Tix

Xo¢

+ =

F, =0 (2)
where the summation convention is used, and where Fi is the
rectangular xi-component of external force per unit volume.

The total strain tensor € is defined by

1]

1 Bui au.I )

1172 \ 7%, T B, (3)

where ui 1s the component of displacement in xi-direction.
This may be resolved into an elastic strain tensor €§j and a

plastic strain tensor eij such that

€ 4 = eij + €§J (4)

By [1; §§ 67, 69]* the elastic part is given by

degj = XAl - B 5,040 ,, (5)

* Numbers in brackets refer to the references at the end of the
report,
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where
* =1/(2p) = (1L + V)/E, B =A/(2p(3A+2p)] = V/E, (6)
where A.,/L are Lame constants, E is Young's modulus, and ¥

1s Poisson's ratio,

3., Yield conditions, Yield conditions for soils have usually

been based on the notion of Coulomb friction, as mentioned in

§ 2, beginning with the work of Coulomb himself [2], and have
been very extensively tested, At any given point in a soil the
skeletal stresses.acting on an arbitrary plane through that
point may be obtained by transformation from the stress components
referred to fixed axes, The ratio of sheafing stress to normal
stress is maximized by varying the direction of this plane,

According to the Coulomb friction idea, this maximum must remain

below a certain constant, tan¢ R # being the angle of shear-

ing resistance, It is a straightforward calculus problem to prove

that

7(1 l-sinf
Th.z l+sing , (7)

where 7;, Zﬁ ’ T}f are the three principal skeletal stresses,

so arranged that

T < ?; < Zb < 0 (8)

m =

the convention being that compressive stresses are negative,

(7) may be written in the form
$<c+ c'tang |, (9)
where

8 =3 Ty- T,), T ==p, - 3T+ T,), c=p, tang,  (10)
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(9) is the standard form of the yield condition as used in engin-
eering soil mechanics, [3; p, 22, formula [6]]. ¢ is called the
cohesion of the material,

The yield surface corresponding to (7) is a six-sided pyra-
mid.

(7) is simple and easy to apply when the principal directions
are known from symmetry or otherwise, In this respect it is
similar to the Tresca condition, Like the Tresca condition it
is rather complicated when expressed in invariant form, Then
the yleld condition is

KU(2% +3)0y - §(x+ 1), 7, + & x5
(11)

+H3K + 4) (5 - ) =0,

LS
n

m’

_1 1
Jo =3 Ty %y -3 =3

854 845
- }.[('r"_ T)2 + (Ty- )2+ (Te- TP, (12)

(7,- %Jﬂ( T - 39T, 30,
S13% Tay-3h By, % = gtan’d (13)

Drucker and Prager [4; p. 153] (see also [5; p. 447]) have
suggested a simpler yleld condition equivalent to

J%/z + 3‘1/217 Jl =0 (14)
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for N constant,. This has a conical yield surface,
The homogeneity of conditions (11) and (14) makes a two-

dimensional graphical representation possible, Define

X = - 31/2.1;/2/.1 , ¥ = (33/2/2)J§3/2J

50 (15)

Then (11) becomes
RI(2x + 3)y + 3(K+ 1)/x « X/x°1% + (3% + 4)(y° - 1) = O,

which may be solved in the form

__3x(2x +3) [ Ll _xx™S

a(% +1)° "I T
(16)
VJizx + 4)
12(\x+1)3/2 [1 - Xt 1]‘/" - Ix—‘+ 1Y/ .
(14) becomes
X = 72 (17)

The point (x,y) as defined by (1lb) can cover only a
finite region of the plane, Py a straightforward maximum-
rinimum- procedure, which will be omitted here, it may be shown
that

x>0, -1l<y=<1l, y< %x' - X

The region to the left of the curves (16) or (17) is elastic,

and the region to the right is forbidden, During plastic deforma-
tion the point (x,y) lies on one or the other of these curves,

In Fig. 1, equation (16) is plotted for the values of X indica-
ted beside each curve near the bottom, These curves are quite
similar to those for (17) for small X , corresponding to slight

soil compaction, but the difference becomes progressively more
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marked as X and the compaction increase,

4, Strain hardening. The angle of shearing resistance

i{s fairly constant over moderate ranges of stresses provided the
soil is somewhat compacted to begin with, However 1f the soil 1is
initially very loose, or if the stress becomes high enough to
drive water out of the soil permanently, this angle may change,
This phenomenon is referred to as strain hardening, Following
the custom in metal plasticity we will regard this as a function

of plastic work W, where

aw = rijdeg’j. (18)

When strain hardening is ignored so that ¢ i1s considered con-

stant, the resulting theory is referred to as perfect plasticity.

5, The pore pressure, If possible the water in the soll

flows in such a way as to relieve the pore pressure at the expense
of the skeleton, However the inertia and viscosity of the water
oppose this, Similar forces act on the air, but thelr magnitude
is much smaller so that may usually be neglected,

7y the law of Darcy,

! oC Vu,

Y, being the velocity of flow of water in the soil, Now V°¥
represents the outflow of water per unit time from a unit volume
of soil, so the increase per unit time 1in the space occupied by
the fluid per unit volume is proportional to 172u. Two factors
contribute to this Iincrease in the region occupled by the water,

One 18 an increase dV in the volume of the trapped air, thus
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foreing the water outward., The second is a decrease equal to
-d€ = -d€,n in the pore space within the skeleton, This decrease

forces the water outward into a larger volume, Therefore we have
V%u o HV/ At - D¢/ Bt (19)

where
In saturated soil V = 0, In unsaturated soil V > O,
but may be taken to depend on the pore pressure u, Therefore
2 2 =
' Vu - aU/dt =0, (21)
where
U=V -€e, viu <o (22)

and where h i1s essentially constant, but may tend to drop off
toward zero for very high frequency oscillations, In this case
it might be considered a function of ¥ or WVu,

6.. The plastic strain increment, Drucker [6] has shown

that there exists a plastic potential which is, in fact, the yield

function, if the plastic overwork due to an external agency acting

on a prestressed material is always positive. While this is

usually the case, especlally in metal plasticity, in the case of

the yield condition (7) it may not be, for an external agency may

have a "trigger" action in which it releases plastic deformation

while gaining energy at the expense of the initial stressing agency,
We will assume the medium to be 1sotropic, which seems justi-

fied 4f the soil deformations are not too large, We will also

assume the plastic strain increments dei’J to be proportional
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to the plastic work increment dW defined in (18), and to depend
on the stress components dlj, and possibly also on u and Py e
Let 0’1, 0’2, 0'3 denote the principal stress components

of the stress tensor, and let

8y = Oy - Oyu (23)

denote the principal stress deviations, Then, letting T1J:= OEJ
in the Appendix, the most general expression for the plastic

strein increments is

c1e§J = (B, 81J *E 8§yt Ey By skj) aw, (24)
where
By = Sy $3Fp + S$58 Fp v+ 8 8, Fy,
E)= S F + § F+ S, F,, (25)
By = B + Fp + Ty,
where

Fl = £( a‘l, 0.2, U'3)/[( sl- 52)( 51‘55)]:

F2 = f( 0.2, 0'3, fl)/[( 52" 55)( 52" 51)]’ (26)
F’ = ;(0;,0‘,’ o-t)/[(sl-sl)(sl" Sa)],
and where f(x,y,z) is arbitrary except that

£(x,y,2) = f(x,2,y), (27)

and except for equation (28) below,

If we multiply (24) by GEJ and sum, by (18)

2 =
(Jl-Sp)Eo + 2J2E1 + (SJ:5 + 3J1J2 - 2pJ2)E2 =1
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Inserting (25), after some reduction,
x£(x,y,2) + yf(y,z,x) + zf(z,x,y) =1, (28)

The principal axes for the stress are also principal axes
for the strain increments, Denote principal strain increments by

aeP

p p
dey, de 3

P, ael, Then by (24)-(26),

P _ | - T T
(29)
P . C
c1€‘3 = £ 0"3’ (1’ J'2)dw.

7. The Reuss equations, The Reuss equations in the plastic

theory of metals are derived using the invariant o 88 & plastic

potential, For these equations
1Ty, 0y, ) = §/(20) (30)

8. The Tresca theory. When the Tresca yleld condition 1is

used in conjunction with a plastic potential,

£ 0,,0,,0;) = [sgn( 0=~ 0,) + sgn( 0~ 0;)1/1( 0} - 63)sgn(0;-a7)

(31)
+ (05 - 03) sgn( 0~ d3) + (05~ ¢7)sgn( Gz- a,)]1.

9, The Drucker-Prager soil theory. In this theory (4 ], the

yield condition (14) is used in conjunction with a plastic potential,
For 1¢t,

2@y, g ag) = (372 4 /(23 ) 1/157V/ 20 (3 -3p) + %1 (s2)
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10, The first soil theory. In this paper we will consider

several soll theories. In the first of these, the yleld conditlon
(7) is used in conjunction with a plastic potential, This leads
to

f( Vls 0'29 63) = [Sgn( 0"1 - 0’2) + Sgn( a'l - 0?5) + 2 Sin¢

- sin¢g I sgn (0, - 03) - sgn (07} -G'S)IT/D,

D= (0-0)sgn(0 - 0,) + ( - 03)sgn( 05- g3) *
(33)

+ ( 9"3 - d"l) sgn( T -a‘l) + 2 sin¢ (Jl - 3p)
- sincﬁ [a"llsgn( T, - 0’2) - 8gn (d'l - 0'5)I+ 0’2lsgn( oo (7'3)

- sgn( 0 y- 03)| + 05 sen( @5 - 07) - senl 03 - GR)]7T.

11, The second soil theory. If one assumes that the soil

shears along the planes of maximum ratio of shearing stress to

normal stress when the yield condition (7) holds, one is led to
£ 0y, 0y 075) = V(- 7y-p)[sen( o) - @) + sgn( & - 03)1/D,

D= 0,7 (-0-p)lsen( ¢7- 7) + sgn (0 - 05)] (
34)

+ Y (- 0, - P)lsen (0, - 03) + sen( 7y - 07))])

+ 031/(- 0z - p)lsgn( 0z -0,) + sgn (05 - 0,)].

12, The third soil theory, In another possible soil theory

the yield condition (7) is used together with f( 0y 05 a-s) as

defined in (30),
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13, The fourth soil theory. In this theory, in analogy with

the third soil theory, one uses the yleld condition (7) together
with £( 7, 6'2,0'3) as defined in (31),
14, Testing the theories, Beyond this point experimental

evidence is required for further progress, It 1s essential to
test the various theorles suggested or others, It 1s necessary
to determine the form of V as a function of u in (22), and the
form of ¢ as a function of the plastic work W, In addition,
the elastic constants must be determined for any given sample.
It is desirable to isolate the unknowns in different testing pro-
grams if possible,

The problem of determining the elastic constants can be

isolated, Since
e
a-ijdeij - a'ijdeij - dw,

by (5),
“A(%aija'ij) B ﬂA(% Tiy Ty4) = /Vijdeij - 4w (35)

The constants ©¢ and p can be determined if the stresses and
strains and the generation of plastic energy can be measured in

the process of a deformation, The plastic energy 1s converted

into heat and could presumably be measured by measuring the tempera-
ture of the sample, The expressions in (35) represent lines in

the ok, /‘ -plane, Experimental errors will probably prevent a
common intersection of these lines, but 1t will probably prove

easy to select by eye a point in the « ,F-plane sultably near all
the lines., A more sophisticated least square or linear regression

procedure could be employed if desired,
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The experimental quantities in equation (35) are integrated
expressions, so exceptional accuracy will probably not be required
in their measurement, However the determination of the functional
natures of V and ¢ must use point-to-point data, so higher
accuracy will be required for them, It may be desirable to
devise tests not requiring the measurement of W, since this will
certalnly be difficult to do with high accuracy.

To avoid complications the test set-up should have symmetries
of such a nature that the principal directions are known. Then
by (4), (5), (29),

ale) - &0y - BO)/1(07, 0, 0y) =

= d(€5 - RT5 - BF)/£( T, Ty, 0,) = dW
where 0, 0,, 0z are principal stresses and

T = Tt Tyt T, (37)

For the theories considered here in $£§ 9-13, when common factors
are cancelled, the two equations on the left of (36) have denomina-
tors that are functions of T/ T ,8and 7/ T only.
Eliminating the latter ratio between the two equations we may solve
for Tm/Tym . By (7) this gives a point-by point expression for
¢ .

T4/ Tm DbYeing known, p can be determined from (1). 1In
fact

P00, T/ Tn- Ty/(1 - TYWT,) (38)

gives a point-by-point determination of p,



«15-

15, Static compression of a cylindrical soil sample, We

will specialize the material in the last section to the case of
cylindrical soil samples commonly used in soil testing., The sample
will be compressed axially., The sides may be unconfined, rigidly
confined, or confined in some other manner imposing a known
relationship among the stress and strain components, We will
assume the stress and strain components and the intrinsic pressure
to be constant throughout the sample. In practice this will be
approximately true before the sample begins to exude water except

near the ends of the column, Then by (21), U = const, By (22)
u=q(€), q’(e) <0 (39)

Establish a cylindrical Y ,6, z-coordinate system with
z-axis parallel to the elements of the column and let O, T, rz,
e‘,,e,,ez denote principal stress and strain components, Then

G =9 =0, =0,, 0,=0,, €g=¢€,. The yleld conditions
(7) and (14) take on the same form, In the elastic zones, by (1),

-0 -p>(-0, - pk, (40)

and in the plastic zones

- Gp-p=(-@, -k, (41)
where in elther case
k = (1-sin@)/(1 + singp ) = (1 - n)/(1 + 27) (42)

By (30)-(34), (41),

0o, o, ) =-k8/(qn-x80)),

(43)



where 8§ = 1 for the Drucker-Prager theory and the first soil
theory (which are identical in this problem), & = -1/2 for the
second soil theory, and & = O for the third and fourth soil
theories (which are identical in this problem),
By (38),
<AL0; + 301 -gA15(2a, + T, =
(44)
= [f(eO0,.de,.+ a'zdez)-Aw,

from which o and F may be determined,
By (36), (43),

ok’ - . ae, - L q, + AT)/a(ep - XTp + AT), (45)

from which k may be determined,
By (38) or (41),
p=(ko, - 0.)/(1 - k), (46)

from which p may be determined,

When P, 1s constant u may be determined as a function of €
up to an additive constant. When P, varies with W, samples of the
same skeletal structure but different water contents may be run
to determine, within an additive constant, the function of W and
the function of € which, added together, equal p,

16. The case k = const, In this case (45) may be integrated,

giving
oA-q,) + p'(-¢) + ¥ e - (&) = const., (47)
where

p=lav-g/G+¥), k¥ =14}y, (48)
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The constant on the right of (47) may be determined by evaluating
it at a particular stress-strain state of the sample, This may
then be transposed to the left side, Therefore we may take the
constant on the right of (47) as zero if instead of taking the
true stresses and strains on the left of (47), we take the differ-
ence between these stresses and strains and those of one particular
stress-straln state of the sample,

We may now evaluate of, /8', and ¥ in (47) by a least
squares procedure, Suppose 2N observations are made as the
sample is compressed and denote the observed quantities by adding
a subscript 1 to the notations used above, where i = 1,2,,.., n,

We wish to minimize

_1 @ ’ 2
Y = H El[“(" U;i) + F (" 0'1) + yeri - ('ei)] ]
2 ' /2 ’
= Aa® + 2Twp' +2Ja¥ +BR° +2KAY (49)
+c7® -2 P - 208'- 2Hy +D,
where
1 & 2 _1 &8 2
A=z él(-a;,i), B =% iZz‘l(-a'i),
1 < 2 1 & o
C=z igl(eri) , D=z 1251 (-€,)%,
1= S (e (-0, =i (-0=.)e (50)
“n €= %1’ 170 “n fz ri’ “ri’
1 & 1 <
K = o él (-U’i)eri, F = o iz_-_-]_ (- %i)(-ei)’
n
G =% 12—1 (' 0'1)(-61), H= 3.1 12_1(61,1)(‘61).



By (49), Y is minimized when o, ,9', and ¥ are solutions
of

Ao + IF'+ Jy

i
N

I + B,a' + K»y =g, (51)

Jet + Kp'+ C¥y¥ =H,
The corresponding value of Y is
Y=D-Fc£-GF'-H7 (52)

By (49) this quantity may be judged small 1f it is small with
respect to D,

17, An example. The foregoing theory was applied to one
case of a soll sample measurement made with a Hveem stabilometer,
The accuracy of the test was below the requirements of the theory,
but the results will be included anyway simply as an illustration,

The values of the stresses and strains over the range con-
sidered are given in columns 1l-4 of Table 1, The derivatives
given in columns 7-9 were calculated numerically,

After subtracting the initial values in columns 3«6 from the

other entries, the quantities A-H in (50) may be calculated,

They are
A = 781,000 1b%/in%, B = 8750,273 1b2/inf,
c - 2,951°107° D= 7,270°107°
- 2 4 - . "3 2
I = 2611,383 1b°/in", J = 47.,456°10"" 1bv/in”,
K= 158,970°10"°1b/1n®, F = 75,067°10"0 1b/in?,
6 = 251.397°10"%1b/1in®, H = 4.616°107°,
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TABLE 1.
1 2 3 4 5 6 7 8 9

-0, ., -0, €, -T -€ 103dez/da; 10°de /a0, 4q/dc,
1b/1n° 1b/1in° 1b/1in° 1n/1b 1n?/1p

47,8 ,0286 21,0 .0036 89.8  .0214 .251 074  .600

55,7 ,0304 26,0 L0041 107.7  ,0222 .207 063  .660

63,7 ,0319 31,5 ,0046 1267  ,0227 .176 063 715

71,6 ,0332  37.6 .0060 146.6  .0232 .166 045  .748

79,6 ,0344 43,6 ,0063 166.6  ,0238 .140 036 173

g7.5 ,0356 49,6 ,0065 186.5  ,0246 .126 030 795

95,5 ,0364 56,0 ,0068 207.5  ,0248 112 .026 810
103,56 ,0372 62,6 ,0060 228,56  .0252 ,100 021  .824
111,4 ,0379 69,0 ,0061 249,65  ,0857 ,080 018  .840

The solution of equations (51) gives of = 18.5'10'6 1n2/1b,
p o= 9.36°20"¢ 1n%/1b, ¥ = .763, By (48), /B =1.26°10~8 1n2/1b,
By (6), E =58, 100 1b/in°, ¥ = .073. By (48), k ¢ = 1.381,
Since 0 < k <1, this indicates the appropriateness of the second
soil theory in which 8 = - 1/2., This gives k = ,524, corres-
ponding, by (42), to a shearing resistance angle ¢ = 18°, By
(52) the corresponding minimum value of Y 1is .036'10"6, 80
Y/D = ,0050,

Using these values of e and @ , point to point values of
k were computed from (45) and columns 7-9 of Table 1, The results
are graphed in Fig, 2, The solid line corresponds to the wvalue

k = ,624 calculated in the last paragraph,



The quantity p may now be computed from (46) and Table 1,

The results are given in Fig. 3 using k = ,524,

Sk -
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Appendix,
The following theorem is a slight extension of one due to
C. B, Morrey, R, M., Lakness, and E, Parzen.
Theorem Let sij and Tij be symmetric tensors connected
by a relation

Sij = Fyy(Toq) = Fyy(Mys Tags Tazs Tigs Toz, Tip) (4)

which is invariant to cartesian coordinate transformations, Then

there exists a function f(x,y,z) for which

f(x,y,2) = £f(x,2z,y) (B)
such that
Sij = &8, & 1,;+ By, »J (¢)
where
o = TelaFy + T3TFy + T T Fy,
B, = -1y + THF) - (T4 + T))F, - (1) + T,)F;, (D)
£ - F) + Fy + Fy,
where
Fy = £(T),T,,T5) /(T - T ) (Ty- T4) 1,
F, =

3 f(TS’Tl’TZ)/[‘(Ts - Tl) (Ts" Tg)])

Tlsz’Ts being the principal values of the tensor Tij’ 1.e., the
roots of the equation

3

2 =
¥ - LT° + I, T -1, =0 (F)
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where
I, = Ty
_ o 2 2
Ip =Ty Tpp * Tpolas * T33T17 = Ty = Toz - Ty (@)
I, = lTiJ' ]

Proof, A cartesian coordinate transformation may be written

X3 T B4y Ty o (H)
where
By 8qy T Sij’ 240 aJF = 81j’ (1)

The matrices "Sij" and || Ty g | of tensor components are
transformed by (H) to new matrices “sij" and "tiju such
that

SiJ= s#aha”, Tyy = tap 84u TR ()
Since the relationship (A) is invariant,

s (t

)

«pg = Fap oy

Substituting this and (J) into (A),
F13'%ap %o 2qp ) = Fap (Pm) 21a%5p )

In particular [8; Ch, I, § 3], there exists a transformation,
with matrix || E“" , to principal axes, i.e., such that the

tensor components Eij satisfy

Tty 81.1 (L)
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Then by (J), (K), taking 844 = Eij,

Tij'= T,'Eiy 33, , (M)
FiJ(qu) = fua (T1,To,Tx) 31“ EJ’ , (N)

where
fiJ(Tl,Tz,Ts) = Fij(Tm § ) (0)

Now let tij = Eij in (K),

FiJ(Td ap‘aq‘) =f otp (Tl’Tz’Ts)ain aJP (P)
Insert
o 1 o
Hessll = flo o 1
1 0 o0
Then
., 0 O
Ingeagll= flo 75 ©
o o T
Therefore by (0) and (P),
foo  foz  Tio
ey 5o, 50t = fIf25 35 T3
If1z Tz ™2

the arguments of the functions fij on the right being tl’tz’t3°

This relation gives
fop(t1sbast5) = F1n(ta,t5,t)),  £35(81,85,85) = £35(85,%,85),

(Q)
£15(t1,80,83) = £y(t5,8055) 5 Lo3(t),t0,t5) = £15(85,85,8,),



Now insert

1 0 0

a = 0 0 l

213
0 =1 0
in (P). This gives
t 0 !
1 0
\ltaaiaa ja" = 0 t3 0 3

0 0 t2

so by (0) and (P),

f13 13 -T2
“fij(tl,tB,ta)“ = || f13 f33 =fa3
=10 =T23 Ty

This gives

£11(tyatpstg) = £y (8g,84,8,),  £i5(81,85,85) = =f)4(t,,85,85)
(R)

Defining

f(x,y,z) = fll(x’y’z)’

(B) follows from (R), Also, from (R), f 0. Therefore by (Q),

12 ©
r

To complete the proof we must show that the right-hand sides
of (C) and (N) are equa 1, Inserting (M) into (C), and using (I),

$;; %P+ 0+ & "':)Eir S gr (s)

13 <0, f23 = 0, and fzz(x:y:z) = £(y,z,x), f33(x,Y:z) z f(z,x,y).

Cend el v



2=

Now by (D),
2 _ _
St &)+ &1y = (T)- TRHT - TPy = £(T,T,,T,)

2 _ =
$, * $1Tp + BTp = (Tp - T)(Tp - T))Fp = £(Tp,T4,Ty)

2
B * F 15+ Bo057 = (Tg - T)(T; = Tp)Fy = £(T5,T,Tp)

Substituting this into (S), we obtain the right-hand side of
(N), completing the proof,
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