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Using Theory of Elasticity for
Estimating Stresses and Deflections

Since 1t concerns both stress
and strain/deflection, theory
of elasticity can be used to
estimate deflections in the
elastic region

— In this presentation, we will
emphasize stresses, will
consider deflections in more
detail later

Soils are highly nonlinear;

thus, the strains must be
restricted to small ones

— Will not consider strain-
softening effects, which means
that the shear modulus/modulus
of elasticity varies with the
proximity to the load

* Theory of elasticity 1s applied

to a semi-infinite solid (the
soil) and the stresses vary
(decrease) as one gets further
from the load source

For distributed loads, either a
flexible or rigid foundation
can be assumed, depending
upon the situation at hand

— Most solutions here—and those
commonly used—assume a
flexible foundation



Implementation of Theory of Elasticty

Boussinesq Theory

Based on theory of elasticity

Homogeneous, isotropic material
Semi-infinite solid

Original equations describe
loading at a point; can be applied
to various foundation shapes

Can be used to determine both
deflections and stresses

Many of these solutions assume
values of Poisson’s Ratio for
simplicity

In all cases, our main focus will be
on vertical stresses, although
horizontal and shear stresses can be
computed using this and other
theories

Westergaard Theory

— Similar to Boussinesq, but no

lateral deformations of the soil are

assumed

— Used with soils of alternating
layers of materials

— Used extensively in airfield
pavement design

Newmark’s Method

— Adaptation of Boussinesq Theory
for structures that do not have a

simple shape

2:1 Method

— Empirical method commonly used

to estimate structure induced
stresses (FHWA)



Shapes and Solution Methods

* Shapes * Solution Methods
— Shapes that will be — Equations
considered here * For simple cases, can be
* Point Loads very useful
* Line Loads (Flamant) * For more complex cases,
+ Strip Loads (Flamant) generally not practical

* Mistakes are common in
literature and on the

Rectangular Loads
Circular Loads

internet
— Chart and analytical — Charts (traditionally the
solutions can be combined most extensively used, but
because of superposition have accuracy issues)
— Newmark’s Method can — Computer program (needs
handle foundations of any check for verification)

shape — Newmark’s Graphical

Method



Boussinesq Point Load Stresses
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In these equations r is the cylindrical coordinate,
z

and R is the spherical coordinate,

Figure 28.1: Point load on half space.

R=\/z2+y2+ 22

Another interesting quantity is the distribution of the stresses as a function of depth, just below the point load, i.e. for v = 0. This is found
to be

3P -
r=0: 0, = rt (28.11)
r=0: oy =0p=-(1-w)—7. (28.12)

These stresses decrease with depth, of course.



Boussinesq Point Load Displacements

The solution for the displacements is
P(1+v) r*

Uy = —(1-w)1-2), BT
=l — (- W)= ) (28.7)
g = 0, (28.8)

- —P(1+”J[Q'1—f+i] 98.9

= g PU TVt Rl (28.9)

The vertical displacement of the surface is particularly interesting. This is

P(1 - 1/2) o

z2=0: wu,= : 28.10

0: wo=——2 (28.10)

For R — 0 this tends to infinity, indicating that at the point of application of the point load the displacement is infinitely large. This singular
behavior is a consequence of the singularity in the surface load, as in the origin the stress is infinitely large. That the displacement in that point
is also infinitelv large may not be so surprising.

We don’t use these very often because of the
singularity issue.



Boussinesq Point Load Illustration

Given

Point Load, 45 kN Solution

Point 3 m directly below the point z=3m

load R=(X2+y2+zz)“2=z=3m
Find r=20

Additional Vertical and Shear Stress c,, = ((3)(45)3))((2)(m)A3)’) =

Created by Point Load (overburden/ 2.387kPa

effective stresses not considered) c_=((3)(45)(0)3))((2)(m)(3)) =0

kPa



Flamant Line LLoad Stresses

In 1892 the French scientist M. Flamant obtained the solution for a vertical line load on a homogeneous isotropic linear elastic half space, see
Figure 30.1. This is the two-dimensional equivalent of Boussinesq’s basic
F problem. It can be considered as the superposition of an infinite number

of point loads, uniformly distributed along the y-axis. A derivation of this
T o :
solution is given in Appendix B.
In this case the stresses in the x,z-plane are
ANYE
O-,u 3
l 2F 2%  F
J”‘ Opg = ——7 = = cos’h, (30.1)
0, Trt oamr
9F z?2 9F
By =S S sin®  cos 0, (30.2)
Tr mr
;
oF 22 9oF . ) .
_‘ o : Ope = —— = — sin# cos” 6. (30.3)
Figure 30.1: Flamant’s Problem. Tor Ve

In these equations 7 = /a2 + 22. The quantity F has the dimension of a force per unit length, so that F/r has the dimension of a stress.
Expressions for the displacements are also known, but these contain singular terms, with a factor Inr. This factor is infinitely large in the
origin and at infinity. Therefore these expressions are not so useful.



Flamant Strip Load Stresses

On the basis of Flamant’s solution several other solutions may be obtained using the principle of superposition. An example is the case of a
uniform load of magnitude p on a strip of width 2a, see Figure 30.2. In this case the stresses are

.= B[(é?l — By) + sin by cos by — sin by cos ], (30.4)
vy

0o = L[(By — 03) — sinf cos By + sin By cos o), (30.5)
m

Py 9 2 .
0. = —[cos” By — cos” fy]. (30.6)
m
In the center of the plane, for ¥ =0, o = —@,. Then the stresses are
o By
=p : an
=0 : g = [(f + sinfy cos 0], (30.7)
2p :
x=0: o, ==[(6 —sin#) cos], (30.8)
"
=0 : o,..=0 (30.9)
That the shear stress .. = 0 for ¥ = 0 is a consequence of the symunetry

of this case. The stresses o, and .. are shown in Figure 30,3, as functions
of the depth z. Both stresses tend towards zero for = — >, of course, but
the horizontal normal stress appears to tend towards zero much faster than
the vertical normal stress, It also appears that at the surface the horizontal
stress is equal to the vertical stress. At the surface this vertical stress is equal to the load p, of course, hecause that is a boundary condition of
the problem. Actually, in every point of the surface below the strip load the normal stresses are o, = o.. = p.

Figure 30.2; Strip load.

It may be interesting to further explore the result that the shear stress o, 0 along
a../p the axis of svimmetry @ = 0 in the case of a strip load, see Figure 30.2. It can be expected
that this symmetry also holds for the horizontal displacement, so that v, = 0 along the
axis # = 0. This means that this solution can also be used as the solution of the problem
that is obtained by considering the right half of the strip problem only, see Figure 30,4,
In this problem the quarter plane @ > 0,2 > 0 is supposed to be loaded by a strip load
of width a on the surface = = 0, and the boundary conditions on the boundary » = 0
are that the displacement u, = 0 and the shear stress o,., = (0, representing a perfectly
smooth and rigid vertical wall. The wall is supposed to extend to an infinite depth, which
is impractical. For a smooth rigid wall of finite depth the solution may be considered as
a first approximation.
The formulas (30.7) and (30.8) can also be written as

{
Tuxf P

z/a

2p, i
o y =0 Oz —larctan(—) + (30.10)
Figure 30.3: Stresses for o = 0, T 2
2p. Nt azx .
r=0: ., = |arctan( —) 5 =1, (30.11)
T 2 a? 4 =2



Chart for
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Boussinesq
Rectangle
and Square
Stresses
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Influence Value for Vertical Stress Beneath a Corner of a
Uniformly Loaded Rectangular Area (Boussinesq Case)




Rectangular Influence Coeftficient I
Using Equations

Equations for Boussinesq Influence Coefficients for Rectangles at Corner (us-
ing DM 7 notation):

If m?n? > m?+n?+ 1:

p 2 2 . 2

mn(m*+n*+ 2 mnvm* +n-+1 .

1/412 ( ) —— + arctan(2 —; \/2 —)+m |t
vVm?2+n2+1 (m? 4+ n? + 1+ m?n?) m2+n2+1—m2n

Otherwise:

1/4 (2

mn (m? +n? + 2 mnyvm?2 +n?+ 1 B

1
—— +arctan(2 ——— ) |7

vm?+n?+1(m?+n?+ 1+ m2n?) m? +n? +1—m?n



Using Superposition with Boussinesq
Charts

UNIFORMLY UNIFORMLY
/_ LOADED AREA /_ LOADED AREA

z z
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Verrujt Newmark Example

 (J1ven

— Buildings as shown to the

right 10 m

— Yellow building has __
uniform load of 5 kPa 2 1m

A

— Brown building has a
uniform load of 15 kPa 4m

. ! A

. ) A

. : i

L] . i

° . i
. i

| Ju e

ln T Rl

— Vertical stress 8m below
point A Figure 29.4: Example.




Verruyjt Newmark Example

* Solution

— Since there are two different loads, best way is to analyze two loads separately and
add them together using superposition

— Notation is per previous chart

— In both cases, it was simpler to compute a “large’ area and then subtract a void
from that area

— Influence coefficients were from the equations, can also be obtained from the

charts

Yellow Foundation

Fectangle B, m L, m £ m T f |z Fressure, kPa Stress, kPa

ABFG [+) = 10 ] 0,745 1.25 .16 5.00 0.823

ABJH (- 4 10 = 0.5 1.25 0.13 -5.00 -0.637
Tatal 0186 kPa

Brown Foundation

Fectangle B, m L, m £ .m T f |z Fressure, kPa Stress, kPsa

ACEG (+) = 12 = 0.75 1.5 017 15.00 2.551

ABFG (-] = 10 ] .75 1.2%5 .16 -15.00 -2 465
Tatal 0.0533 kPa

Complete Total U265 kFa



oussinesq Circular Stresses (Analytic
olution)

As an example consider the case of a uniform load of magnitude p
over a circular area, of radius a. The solution for this case can be found by integration over a circular area (S.P. Timoshenko & JLN. Goodier,
Theory of Elasticity, paragraph 124}, see Figure 28.3,

The stresses along the axis » = 0, i.e. below the center of the load,

_I‘ii,;;ip : are found to be

._:i

r=0: og..=p(l--=) (28.13)
;}"

= o |
r=0: o, =p|(1+ ,,}E -3i- m}]. (28.14)
z in which h = vz2 +a°.
The displacement of the origin is
Figure 28.3: Uniform load over circular area. o DA
r=0,2=0: wu =21 —:»-’)f, (28.15)

i solution will be used as the basis of a more general case in the next chapter.

Another important problem, which was already solved by Boussinesq (see S.P. Timoshenko & I.N. Goodier, Theory of Elasticity, paragraph

'} is the problem of a half space loaded by a vertical force on a rigid plate. The force is represented by P = 7a*p. see Figure 28.4. The distri-
bution of the normal stresses below the plate is found to be

{=
apP

P WL T YAy . (28.16)

L I'his stress distribution is shown in Figure 28.4. At the edge of the

[ ‘ plate the stresses are infinitely large, as a consequence of the constant

displacement of the rigid plate. In reality the material near the edge of
the plate will probably deform plastically. It can be expected, however.
that the real distribution of the stresses below the plate will be of the
form shown in the figure, with the largest stresses near the edge. The
center of the plate will subside without much load.

The displacement of the plate is

T i

(1-), (28.17)
W F s
When this is compared with the displacement below a uniform load,
see (28.15), it appears that the displacement of the rigid plate is some-
what smaller, as could be expected.

z=L0<r<a: Us=

| 3

Figure 28.4: Rigid plate on half space.



Circular Tank Example

* Given * Solution
— Circular Tank, 25 metres — Bearing Pressure = 59,800 kN/
diameter 491 m2 =122 kPa
— Soil, 18 kN/m3 unit weight, — Effective stress due to
water table very deep overburden = (10 m)(18
— Weight of tank 6100 metric kN/m3) = 180 kPa
tons = 59,800 kN — Stress induced at 10 m =92.3
 Find kPa (see below)

— Combined stress with effective

— Vertical stress induced by tank stress = 180492 3 = 272 3 kPa

10 metres below the centre of
the tank

— Effective stress induced by the
overburden

— Combined stress

3 3 3
» 1—(5j = pl 1| ——2 =122/ 1- 10 =92.3kPa
b V22 +ad J10* +12.5°




Elastic Settlement

Based on theory of elasticity

T P

. . HITHT 5
Load applied at a point or over
an area on a semi-infinite half
space
Can estimate both deflections 2
and Stresses Figure 28.3: Uniform load over circular area.

Theory Of BOUSSlneSq mOSt As an example consider the case of a uniform load of magnitude p
Commonly used, Wlll dlscuss over a circular area, of radius a.
stresses later

The displacement of the origin is

Especially useful in computing

a
the settlement of structures on P=0,2=0: wu,—2(1— Vg)p_
firmer material, such as
intermediate geomaterials and
rock



Elastic Settlement; Definition of
Intermediate Geomaterials and Rock

where: 0,
Cy
Ap
The geotechnical specialist is usually concerned with the design and construction of some B;
type of geotechnical feature constructed on or out of a geomaterial. For engineering v
purposes, in the context of this manual, the geomaterial is considered to be primarily rock E

and soil. A geomaterial intermediate between soil and rock is labeled as an intermediate

geomaterial (IGM). These three classes of geomaterials are described as follows:

Rock is a relatively hard, naturally formed solid mass consisting of various minerals and
whose formation is due to any number of physical and chemical processes. The rock
mass is generally so large and so hard that relatively great effort (e.g., blasting or heavy

crushing forces) is required to break it down into smaller particles.

Soil is defined as a conglomeration consisting of a wide range of relatively smaller

particles derived from a parent rock through mechanical weathering processes that
include air and/or water abrasion, freeze-thaw cyeles, temperature changes, plant and
animal activity and by chemical weathering processes that include oxidation and
carbonation. The soil mass may contain air, water, and/or organic materials derived from
decay of vegetation, etc. The density or consistency of the soil mass can range from very
dense or hard to loose or very soft.

Intermediate geomaterials (IGMs) are transition materials between soils and rocks. The
distinction of IGMs from soils or rocks for geotechnical engineering purposes is made
purely on the basis of strength of the geomaterials. Discussions and special design

considerations of IGMs are beyond the scope of this document.

m

3

Vv

change 1in stress at top of rock surface due to applied footing load

_ CyApBr(1-v?)

Em

vertical settlement at surface

footing width or diameter

shape and rigidity factors (Table 8-13)

Poisson’s ratio (refer to Table 5-22 in Chapter 5)

Young’s modulus of rock mass (see Section 5.12.1 in Chapter 5)

Table 8-13

Shape and rigidity factors, Cy, for calculating settlements of points on loaded areas at

the surface of a semi-infinite elastic half space (after Winterkorn and Fang, 1975)

Shape Center Corner }liddli{)f ‘\Iidd]’i of Average
Short Side | Long Side

Circle 1.00 0.64 0.64 0.64 0.85
Circle (rigid) 0.79 0.79 0.79 0.79 0.79
Square 1.12 0.56 0.76 0.76 0.95
Square (rigid) 0.99 0.99 0.99 0.99 0.99
Rectangle (length/width):

1.5 1.36 0.67 0.89 0.97 L.15
2 1.52 0.76 0.98 1.12 1.30
3 1.78 0.88 1.11 1.35 1.52
5 2.10 1.05 1.27 1.68 1.83
10 2.53 1.26 1.49 2.12 2.25
100 4.00 2.00 2.20 3.60 3.70
1000 5.47 2.75 2.94 5.03 5.15
10000 6.90 3.50 3.70 6.50 6.60




Example of Elastic Settlement in Rock

* G1ven * Solution
— Same circular foundation — From Table 8-13, C;=1.0
as before, only now seated (for flexible foundation)
on rock, RMR = 50 (see

— Result 1s computed below
SFH Eq. 5-29)

— E,=145,000 ps1 =
1,000,000 kPa

— Poisson’s Ratio = 0.33
—— * Find

— Detlection at centre

— Using Verruijt Equation
28.15 (online) will yield
the same result

C ApB, |\1-v* _ 2
5 _ Cutw A1=v?) 1122525 %(1-0.33 ) 003 7m — > T
E 1000000




60 Degree Loading

2:1 Method

*  For rectangular loads, formula in
center diagram at right

. Note the use of total load in equation

*  For square and circular structures:

q

Ap = 5
1+=
B

. Note the use of the unit load in this form,
not the total load @

*  Should not be used anywhere other
than the center of the foundation

*  Example at center of foundation

PS Use same 25 metre diameter tank with 122
kPa loading

o In this case, z/B = 0.4, so Ac_ =
(122)(1/(1+0.4)?) = 62.2 kPa

(b)

on theory of elasticity

=
=
9 applied
I Y Y Y YY VPV Y P
2 “Exact’ Distribution based
Z

_ Approximate

i

Y

\

=4 distribution, Ap
r-'\

Figure 2-10. Distribution of vertical stress by the 2:1 method (after Perloff and Baron,

1976).



Example 2-2: For the Example 2-1 shown in Figure 2-7, assume that a 5 ft wide strip footing with a
loading intensity of 1,000 psfis located on the ground surface. Compute the stress
increments. Ap. under the centerline of the footing and plot them on the p, diagram
shown in Figure 2-7 down to a depth of 20 ft.

0ft

v, = 110 pef
10ft <7

20 ft

Solution:
For the strip footing, use the left chart in Figure 2-9. As per the terminology of the chart in Figure 2-

° 9. B=3 ftand q,= 1.000 psf. Compile a table of stresses for various depths and plot as follows:
Combined Db L | oot | S 88 ot

25 05| 080 800 (110)(2.3)=275 1.075

L4 5.0 1.0 0.55 550 (110X5.0)=550 1,100

E ffe Cth e 75 15 [ 040 400 (110)(7.5)=825 1.225

10.0 2.0 0.32 320 (110)10.0)=1.100 1.420

12.5 25 0.25 250 1.100+(12.5-10.0)(110-62.4)=1.219 1.469

15.0 3.0 0.20 200 1.L100+(15.0-10.0)(110-62.4)=1,338 1,538

S tre S S and 17.5 35 ‘ 0.18 180 1L100+H(17.5-10.0)(110-62.4)=1.457 1.637

20.0 4.0 0.16 160 1.100+20.0-10.0)(110-62 4)=1.576 1.736

°
( s pp 11( :d 0 1,000 2,000 3,000  Pressure (pst)

5 ;y:pl ‘; B
Stress N
— Depth (ft) 10 \\ "‘
I_I}(&\\‘\n
\
: \/
Example e
20 1376 J_// 2.200

Pressure Diagram

Figure 2-12. Example calculation of ps with stress increments from strip load on p,-
diagram,



Questions?
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