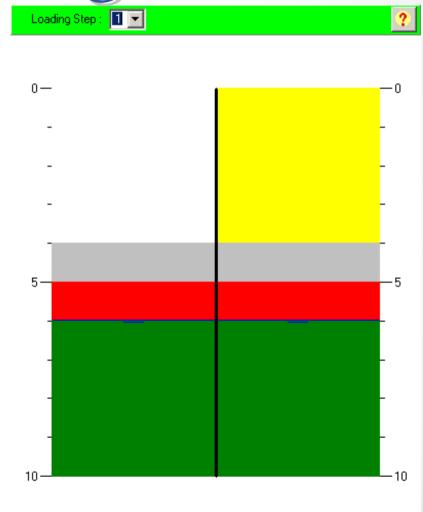
This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

Don't forget to visit our companion site http://www.vulcanhammer.org

Use subject to the terms and conditions of the respective websites.

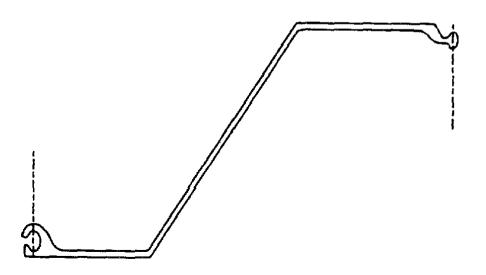

ENCE 4610 Foundation Analysis and Design

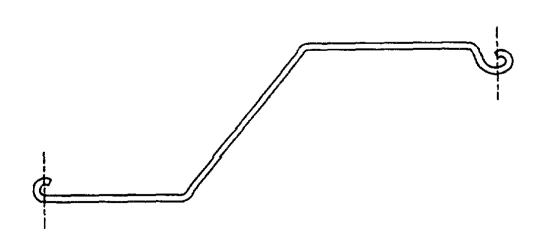
Lecture 10
Retaining Walls
Sheet Piling: Overview and Cantilever
Walls

Overview of Sheet Piling as a Retaining Wall

- Sheet piling is a structural "in-situ" type of retaining wall
 - Does not rely on its mass to retain the soil, as opposed to a gravity wall
 - In-situ walls rely on their flexural strength to retain soil, supported either by their own penetration into the soil or by an anchoring system
 - Other types of structural in-situ walls
 - Soldier pile walls use H-beams to hold timber or concrete lagging to retain soil on a temporary or permanent basis
 - Slurry walls bentonite slurry is injected into a trench after which reinforcement and concrete are placed into the trench, forming a wall

Materials for Sheet Piling

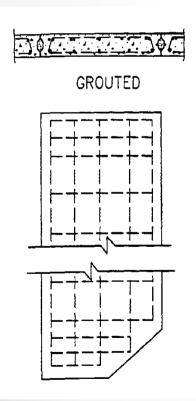


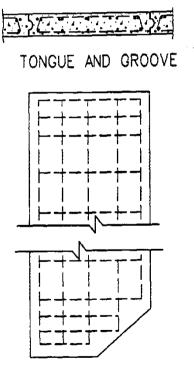

- Steel
 - Cold formed
 - Hot rolled
- Aluminium
 - Extruded
- Vinyl
 - Extruded
- Fibreglass
 - Pultruded
- Concrete
- Wood

Steel Sheet Piles

- Cold formed
 - Form rolled cold from steel plate
 - Common with lighter sheet pile profiles
 - Interlocks more prone to breakage

- Hot rolled
 - Panel and interlocks rolled in one operation
 - "Traditional" form of steel sheet piling

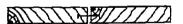

a. Hot-rolled Z-section


b. Cold-rolled Z-section

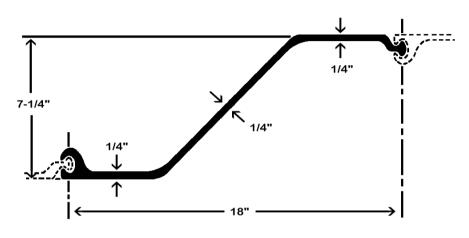
Concrete and Wood Sheeting

Concrete Sheeting

Wood Sheeting

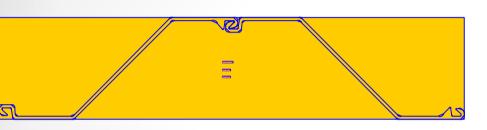


BUTT-ENDED



TONGUE AND GROOVE

SPLINT FASTENED


Aluminium, Vinyl and Fibreglass Sheeting

- Made for lightweight and light load applications
- Common substitute for wood or concrete walls
- Require special handling in setting and driving
- Vinyl sheets can be obtained in various colours, but is subject to long term creep

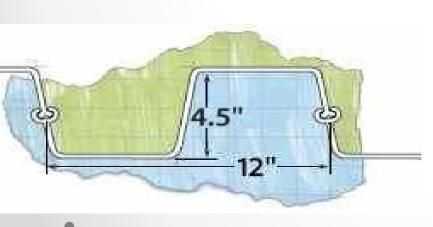
Sections of Sheet Piling

- Z-shaped sheeting

 Popular in north America
 Usually drive two at a time with split clamp

 Wall stiffness developed with each sheet without assumed assistance from the interlocks
- U-shaped sheeting (Larssen, etc.)
 Very popular in Europe Usually driven one at a time
 Wall stiffness developed with two sheets and load transferred using the interlocks (European practice; U.S. practice does not assume this load transfer)

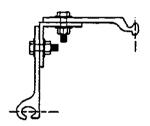
Sections of Sheet Piling


- Arched shaped
 - Used for shallower wall construction
 - Used in cold formed steel and aluminium sheeting

Flat-web sheeting

Almost exclusively used for cellular cofferdams

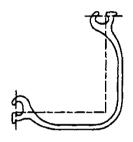
Main stress is tensile through the web and interlocks


Can be driven singly or two at a time

Transitional Sections and Interlock Styles

Transitional Sections

c. Fabricated corners


Ball and Socket (BS)

Single Jaw (SJ)

Thumb and Finger - three point contact (TF)

d. Rolled corners

Double Jaw (DJ)

Double Hook (DH)

Thumb and Finger - one point contact (TFX)

- Interlock Styles
 - Hot rolled and extruded sections
 - Ball and socket
 - Single or double jaw
 - Double hook
 - Thumb and finger
 - One point contact
 - Three point contact
 - Cold formed sections
 - Hook and grip

Hook and Grip (HG)

Specifications for Steel Sheet Piling (USS)

Steel Grade	Allowable Stress, ksi	Allowable Stress, MPa
ASTM A 328	25	172
ASTM A 572 Gr. 45	29	200
ASTM A 572 Gr. 50	32	220
ASTM A 572 Gr. 55	35	241
ASTM A 690	32	220

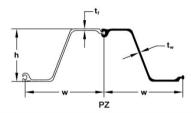
Steel Sheet Piling Section	s											
				Driv- ing	We	eight	Web	Sec Mod	tion Iulus	Area	Mome Ine	ent of rtia
Profile		Section Index	District Rolled	l Die.	Per Foot	Per Square Foot of Wall	Thick- ness	Per Pile	Per Foot of Wall	Per Pile	Per Pile	Per Foot of Wall
				In.	Lbs.	Lbs.	In.	ln.³	In.3	In.²	In.4	In.4
1 29/64"	with ier	PSX 32	H.	16½	44.0	32.0	²⁹ /64	3.3	2.4	12.94	5.1	3.7
₽ 1 %.	Interlock with Each Other	PS32*	H.S.	15	40.0	32.0	1/2	2.4	1.9	11.77	3.6	2.9
***	Inte Ea	PS 28	H.S.	15	35.0	28.0	3/8	2.4	1.9	10.30	3.5	2.8
111/2.	Other	PSA 28*	H.	16	37.3	28.0	1/2	3.3	2.5	10.98	6.0	4.5
	ո Each	PSA 23	H.S.	16	30.7	23.0	3/8	3.2	2.4	8.99	5.5	4.1
5. 34.	Interlock with Each Other	PDA 27	H.S.	16	36.0	27.0	3/8	14.3	10.7	10.59	53.0	39.8
31/4' 1/4'	Interio	PMA 22	H.S.	19%	36.0	22.0	3/8	8.8	5.4	10.59	22.4	13.7
127	Interlock with Each Other and with PSA23 or PSA28	PZ38	Н.	18	57.0	38.0	3/8	70.2	46.8	16.77	421.2	280.8
112.		PZ 32	Н.	21	56.0	32.0	3/8	67.0	38.3	16.47	385.7	220.4
12.	Interlocks with Itself and with PSA23 or PSA28	PZ <i>2</i> 7	Н.	18	40.5	27.0	³ ⁄8	45.3	30.2	11.91	276.3	184.2

*Sections PS32 and PSA28 are infrequently rolled and we do not advise their use in a design unless an adequate tonnage can be ordered at one time to assure a minimum rolling.

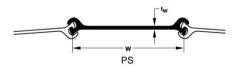
Complete data regarding these sections will be found in a separate publication entitled "USS Steel Sheet Piling."

H—Homestead, Pa. (Pittsburgh District) S—South Chicago (Chicago District)

Suggested Allowable Design Stresses—Sheet Piling								
Steel Brand or Grade	Minimum Yield Point, psi	Allowable Design Stress, psi*						
USS-EX-TEN 55 (ASTM A572 GR 55) USS EX-TEN 50 (ASTM A572 GR 50) USS MARINER STEEL USS EX-TEN 45 (ASTM A572 GR 45) Regular Carbon Grade (ASTM A 328)	55,000 50,000 50,000 45,000 38,500	35,000 32,000 32,000 29,000 25,000						

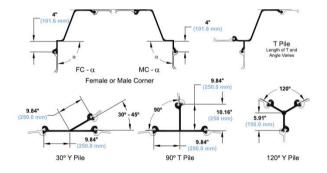

^{*}Based on 65% of minimum yield point. Some increase for temporary overstresses generally permissible.

PZ/PS Sections (Skyline)


PZ/PS

skylinesteelI

			THIC	KNESS	Cross	WE	GHT	SECTION	MODULUS		COATING	AREA
SECTION	Width (w) in	Height (h)	Flange (t _f)	Wall (t _w) in (mm)	Sectional Area in²/ft	Pile Ib/ft (kg/m)	Wall Ib/ft² (kg/m²)	Elastic in³/ft (cm²/m)	Plastic in³/ft (cm²/m)	Moment of Inertia	Both Sides ft ² /ft of single	Wall Surface ft ² /ft ² of wall (m ² /m ²)
SECTION	Strains			(dollo)	(61) 7119						100.300	
PZ 22	22.0 559	9.0 229	0.375 9.50	0.375 9.50	6.47 136.9	40.3 60.0	22.0 107.4	18.1 973	21.79 1171.4	84.38 11500	4.48 1.37	1.22
PZ 27	18.0 457	12.0 305	0.375 9.50	0.375 9.50	7.94 168.1	40.5 60.3	27.0 131.8	30.2 1620	36.49 1961.9	184.20 25200	4.48 1.37	1.49 1.49
PZ 35	22.6 575	14.9 378	0.600 15.21	0.500 12.67	10.29 217.8	66.0 98.2	35.0 170.9	48.5 2608	57.17 3073.5	361.22 49300	5.37 1.64	1.42 1.42
PZ 40	19.7	16.1 409	0.600	0.500	11.77 249.1	65.6 97.6	40.0 195.3	60.7 3263	71.92 3866 7	490.85 67000	5.37 1.64	1.64


						WEIGHT		WEIGHT		WEIGHT		WEIGHT		WEIGHT		WEIGHT		WEIGHT		WEIGHT		WEIGHT		Elastic		COATIN	G AREA
SECTION	Width (w) in (mm)	Web (t _w) in (mm)	Maximum Interlock Strength k/in (kN/m)	Minimum Cell Diameter* ft	Cross Sectional Area in²/ft (cm²/m)	Pile lb/ft (kg/m)	Wall Ib/ft² (kg/m²)	Section Modulus in³/sheet (cm³/sheet)	Moment of Inertia in ⁴ /sheet (cm ⁴ /sheet)	Both Sides ft²/ft of single (m²/m)	Wall Surface ft²/ft² of wall (m²/m²)																
PS 27.5	19.69 500	0.4	24 4800	30 9.14	8.09 171.2	45.1 67.1	27.5 134.3	3.3 54	5.3 221	3.65	1.11 1.11																
PS 31	19.69	0.5	24 4800	30 9.14	9.12 193.0	50.9 75.7	31.0 151.4	3.3 54	5.3 221	3.65	1.11																

- Minimum cell diameter cannot be guaranteed for piles over 65 feet (19.81 m) in length.
 Minimum cell diameter cannot be guaranteed if piles are spiced.
 S8 Piles are needed to make a 30 foot diameter cell.

PZ/PS Hot Rolled Steel Sheet Piling

			Available Ste	el Grades			
	PZ's				PS's		
ASTM	YIELD S	TRENGTH	ASTM	YIELD S	TRENGTH	INTERLOCE	STRENGTH
ASIM	(ksi)		ASIM	(ksi)		(k/in)	
A 328	39	270	A 328	39	270	16	2800
A 572 Grade 50	50	345	A 572 Grade 50	50	345	20	3500
A 572 Grade 60	60	415	A 572 Grade 60	60	415	24	4200
A 572 Grade 65	65	450	A 572 Grade 65	65	450	24	4200
A 588	50	345	A 588	50	345	20	3500
A 690	50	345	A 690	50	345	20	3500

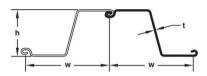
Corner and Junction Piles

Delivery Conditions & Tolerances

	ASTM A 6	
Mass	± 2.5%	
Length	+ 5 inches	- O inch

Maximum Rolled Lengths*

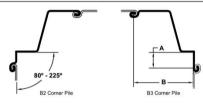
PZ	85 feet for singles, 70 feet for pairs	(25.9 m, 21.3 m)
PS	65 feet	(19.8 m)


^{*} Longer lengths may be possible upon request.

SKZ/SCZ Sections (Skyline)

SKZ/SCZ

skylinesteelI



					WE	GHT	SECTION	MODULUS		COATI	NG AREA
	Width (w)	Height (h)	Thickness (t)	Cross Sectional Area	Pile	Wall	Elastic	Plastic	Moment of Inertia	Both Sides	Coating
SECTION	in (mm)	in (mm)	in (mm)	in²/ft (cm³/m)	lb/ft (kg/m)	lb/ft² (kg/m²)	in³/ft (cm²/m)	in³/ft (cm²/m)	in ⁴ /ft (cm ⁴ /m)	ft²/ft (m²/m)	ft²/ft² (m²/m²)
SKZ 20	28.50 723.9	16.00 406.4	0.315	6.00 136.20	48.24 71.79	20.31 99.17	31.69 1704	36.66 1970.97	253.51 34618	7.60	1.60 1.60
SKZ 22	28.50 723.9	16.00 406.4	0.335 8.5	6.30 145.40	51.30 76.34	21.60 105.46	33.43 1797	38.94 2093.55	267.40 36515	7.60 2.32	1.60 1.60
SKZ 23	28.50 723.9	16.00 406.4	0.354 9.0	6.70 162.50	54.20 80.66	22.82 111.42	35.61 1915	41.12 2210.75	284.90 38905	7.60 2.32	1.60 1.60
SKZ 24	28.50 723.9	16.00 406.4	0.375 9.5	7.10 179.50	57.43 85.47	24.18 118.06	37.73 2028	43.52 2339.78	301.80 41213	7.60 2.32	1.60
SKZ 25	28.50 723.9	16.00 406.4	0.399	7.60 188.00	61.10 90.93	25.73 125.61	40.14 2158	46.24 2486.02	321.12 43851	7.60 2.32	1.60 1.60
SCZ 14	28.50 723.9	10.00 254.0	0.250 6.4	4.18 88.48	33.81 50.31	14.23 69.50	14.36 772	16.32 877.4	71.82 9808	6.10 1.86	1.28
SCZ 16	28.50 723.9	10.00 254.0	0.276 7.0	4.62 97.79	37.37 55.61	15.73 76.82	15.75 847	17.97 965.9	78.73 10751	6.10 1.86	1.28 1.28
SCZ 17	29.95 760.8	10.13 257,3	0.315	5.16 109.22	43.86 65.27	17.57 85.79	16.86 906	19.57 1051.9	88.77 12122	6.32 1.93	1.27 1.27
SCZ 18	29.95 760.8	10.13 257.3	0.335 8.5	5.49 116.21	46.67 69.45	18.70 91.28	17.86 960	20.85 1121.0	90.48 12356	6.32 1.93	1.27 1.27
SCZ 19	29.95 760.8	10.13 257.3	0.354	5.80 122.77	49.30 73.37	19.75 96.43	18.74 1008	22.06 1186.0	94.92 12962	6.32 1.93	1.27 1.27
SCZ 21	29.95 760.8	10.13 257.3	0.375 9.5	6.14 129.96	52.19 77.67	20.91 102.10	19.85 1067	23.26 1250.5	100.55 13731	6.32 1.93	1.27 1.27
SCZ 22	24.02 610.0	13.39 340.0	0.315 8.0	6.43 136.20	43.81 65.19	21.89 106.90	29.76 1600	33.75 1814.8	199.19 27200	5.91 1.80	1.48 1.48
SCZ 23	24.02 610.0	13.39 340.0	0.335 8.5	6.87 145.40	46.84 69.70	23.35 114.00	31.62 1700	36.08 1939.9	223.63 28900	5.91 1.80	1.48 1.48
SCZ 25	24.02 610.0	13.39 340.0	0.354	7.27 153.95	49.60 73.80	24.78 121.00	33.48 1800	38.13 2050.2	224.08 30600	5.91 1.80	1.48 1.48
SCZ 26	24.02 610.0	13.39 340.0	0.375 9.5	7.68 162.50	52.28 77.80	26.22 128.00	35.34 1900	40.28 2165.8	236.53 32300	5.91 1.80	1.48 1.48
SCZ 29	24.02 610.0	13.39 340.0	0.413	8.48 179.50	57.92 86.20	28.88 141.00	39.06 2100	44.49 2392.2	261.43 35700	5.91 1.80	1.48 1.48
SCZ 30	24.02	13.39	0.433	8.88 188.00	60.68	30.31 148.00	40.92	46.56 2503.2	273.88 37400	5.91	1.48

SK7/SC7

SKZ/SCZ Cold Formed Steel Sheet Piling

Corner Piles

SCZ 14 - SCZ 16 A = 5 0 inches (127 0 mm)

B = 23.5 inches (596.9 mm)

SK7 20 - SK7 25 B = 23.5 inches (596.9 mm)

SCZ 17 - SCZ 21 A = 5.0 inches (127.0 mm) B = 24.95 inches (633.7 mm)

SC7 22 - SC7 30 A = 5.0 inches (127) B = 19.0 inches (482.6 mm)

Delivery Conditions & Tolerances

± 2.5%

+ 5 inches ± 0.08 inches

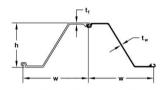
Straightness 0.2% of the length 0.4% of the width Twisting

Maximum Rolled Lengths*

* Longer lengths may be possible upon request.

Optional Accessories

Sheet Pile Protector

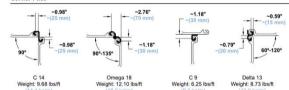

Sheet Pile Protector

AZ Sections (Skyline)

AZ Hot Rolled Steel Sheet Piling

skylinesteelI

			THIC	KNESS		WEI	GHT	SECTION	MODULUS		COATING	AREA
	Width (w)	Height (h)	Flange (t _f)	Web (t _w)	Cross Sectional Area	Pile	Wall	Elastic	Plastic	Moment of Inertia	Both Sides	Wall
SECTION	in (mm)	in (mm)	in (mm)	in (mm)	in²/ft (cm²/m)	lb/ft (kg/m)	lb/ft ² (kg/m ²)	in³/ft (cm³/m)	in³/ft (cm³/m)	in4/ft (cm4/m)	ft²/ft of single (m²/m)	ft ² /ft ² (m ² /m ²
AZ 12	26.38	11.89	0.335	0.335	5.94	44.42	20.22	22.3	26.2	132.8	5.45	1.23
AZ 13	670 26.38	11.93	0.375	8.50 0.375	125.7 6.47	48.38	98.70 22.02	1200	1409 28.4	18140	1.66 5.45	1.23
	670 26.38	303.0 11.97	9.50 0.413	9.50 0.413	136.9 7.03	72.00 52.62	107.50	1300 26.0	1528 30.7	19700 156.0	1.66 5.45	1.23
AZ 14							116.90				1.66	
AZ 12-770	30.31 770	13.52 343.5	0.335 8.50	0.335	5.67 120.1	48.78 72.60	19.31 94.30	23.2 1245	27.5 1480	156.9 21430	6.10 1.86	1.20
AZ 13-770	30.31 770	13.54 344.0	0.354	0.354	5.94 125.8	51.14 76.10	20.24 98.80	24.2 1300	28.8 1546	163.7 22360	6.10 1.86	1.20
AZ 14-770	30.31 770	13.56	0.375	0.375	6.21	53.42 79.50	21.14	25.2 1355	30.0	170.6	6.10 1.86	1.20
AZ 17	24.80	14.92	0.335	0.335	6.53	45.96 68.40	22.24	31.0 1665	36.2 1944	231.3 31580	5.64	1.35
AZ 18	24.80	14.96	0.375	0.375	7.11	49.99	24.19	33.5	39.1	250.4	5.64	1.35
AZ 19	24.80	15.00	9.50 0.413	0.413	7.74	74.40 54.43	26.34	1800 36.1	2104 42.3	34200 270.8	5.64	1.35
AZ 17-700	630 27.56	381.0 16.52	0.335	0.335	163.8 6.28	49.12	128.60 21.38	1940 32.2	2275 37.7	36980 265.3	6.10	1.35
AZ 18-700	700 27.56	16.54	0.354	0.354	6.58	73.10 51.41	22.39	1730 33.5	39.4	36230 276.8	1.86 6.10	1.33
	700 27.56	420.0 16.56	9.00 0.375	9.00	139.2	76.50 53.76	109.30	1800 34.8	2116 41.0	37800 288.4	1.86 6.10	1.33
AZ 19-700		420.5			145.6		114.30	1870				1.33
AZ 25	24.80 630	16.77 426.0	0.472	0.441	8.74 185.0	61.49 91.50	29.74 145.20	45.7 2455	53.4 2873	382.6 52250	5.91 1.80	1.41
AZ 26	24.80	16.81 427.0	0.512	0.480	9.35 198.0	65.72 97.80	31.79 155.20	48.4 2600	56.9 3059	406.5 55510	5.91 1.80	1.41
AZ 28	24.80 630	16.85 428.0	0.551	0.520	9.97	70.15	33.94 165.70	51.2 2755	60.5 3252	431.6 58940	5.91 1.80	1.41
AZ 24-700	27.56 700	18.07	0.441	0.441	8.23 174.1	64.30 95.70	28.00	45.2 2430	53.5 2867	408.8 55820	6.33	1.38
AZ 26-700	27.56	18.11	0.480	0.480	8.84 187.2	69.12	30.10 146.90	48.4 2600	57.1 3070	437.3 59720	6.33	1.38
AZ 28-700	27.56	18.15 461.0	0.520	0.520	9.46	73.93	32.19 157.20	51.3 2760	60.9	465.9 63620	6.33	1.38
AZ 37-700	27.56	19.65	0.669	0.480	10.68	83.46	36.33	68.9	79.2	676.6	6.76	1.46
AZ 39-700	700 27.56	19.69	0.709	0.520	11.34	124.20 88.63	177.40 38.59	3705 72.5	4260 83.7	92400 714.0	6.76	1.46
AZ 41-700	700 27.56	19.72	0.748	0.559	12.00	93.74	188.40 40.84	3900 76.2	4500 88.3	97500 751.4	6.76	1.46
AZ 46	700 22.83	501.0 18.94	0.709	0.551	13.76	139.50 89.10	199,40 46.82	4095 85.5	4745 98.5	102610 808.8	6.23	1.63
AZ 40		481.0	18.00	14.00	291.2	132.60	228.60	4595	5295	110450	1.90	1.63
AZ 48	22.83 580	18.98	0.748	0.591	14.48 306.5	93.81 139.60	49.28 240.60	89.3 4800	103.3 5553	847.1 115670	6.23 1.90	1.63
AZ 50	22.83 580	19.02 483.0	0.787	0.630	15.22	98.58 146.70	51.80 252.9	93.3 5015	108.2 5816	886.5 121060	6.23 1.90	1.63


AZ

AZ Hot Rolled Steel Sheet Piling

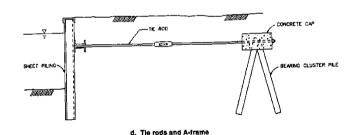
			Available	e Steel Grade	s			
A	MERICAN		CA	ANADIAN		E	JROPEAN	
ASTM	YIELD STRENGTH		CSA G40.21	YIELD S	TRENGTH	EN 10248	YIELD STRENGTH	
ASIM	(ksi)		CSA G40.21	(ksi)		EN 10248	(ksi)	
A 328	39	270	Grade 260 W	38	260	S 240 GP	35	240
A 572 Grade 42	42	290	Grade 300 W	43	297	S 270 GP	39	270
A 572 Grade 50	50	345	Grade 350 W	51		S 320 GP	46	315
A 572 Grade 55	55	380	Grade 400 W	58	400	S 355 GP	51	355
A 572 Grade 60	60	415				S 390 GP	57	390
A 572 Grade 65	65	450				S 430 GP	62	430
A 690	50	345				S 460 AP	67	460
A 690*	57							

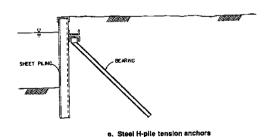
*Not available for AZ 37-700 and larger.

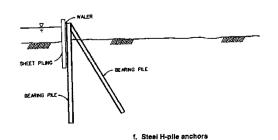
Corner Piles

Delivery Conditions & Tolerances

	ASTM A 6		EN 10248	
Mass	± 2.5%		± 5%	
Length	+ 5 inches	- 0 inches	± 200 mm	
Height			± 7 mm	
Thickness			≤ 8.5 mm	± 0.5 mm
			> 8.5 mm	±.6%
Width			± 2%	
Double Pile Width			± 3%	
Straightness			0.2% of the length	
Ends out of Square			2% of the width	

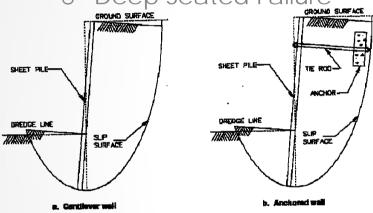

Maximum Rolled Lengths

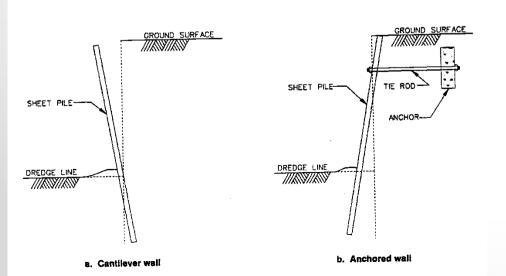

AZ	101.7 feet	(31.0 m)
C 9	59.1 feet	(18.0 m)
C 14	59.1 feet	(18.0 m)
Delta 13	59.1 feet	(18.0 m)
Omega 18	52.0 feet	(16.0 m)


^{*} Longer lengths may be possible upon request

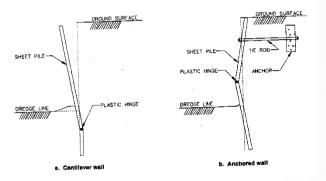
Cantilever and Anchored Walls

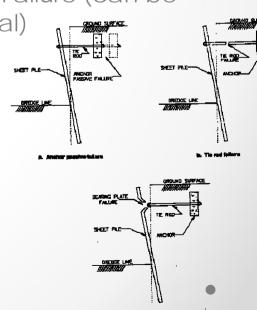
- Anchored Walls
 - Walls which have additional supports buried in the soil (tiebacks)




- Cantilever Walls
 - Walls which have no additional supports, and which rely on the lateral earth pressures in the lower portion of the wall to support the earth in the upper portion
 - Limited in height and soil type
 - Almost exclusively done with steel piling
 - Generally restricted to temporary structures

Failure of Sheet Pile Walls


- Geotechnical Failure
 - o Deep Seated Failure


o Inadequate Penetration

- Structural Failure
 - o Flexural Failure

Anchorage Failure (can be geotechnical)

Methods of Solution for Cantilever Walls

Conventional Method

- Involves analysing active and passive pressures on sheet pile wall per layer
- Traditionally the most common method used
- Versatile but requires some experience for proficiency
- Complex soil profiles can be difficult

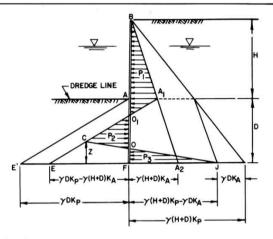
Simplified Method

- Variation of conventional method
- o Eliminates problems at wall toe
- Still requires some proficiency

Chart Method

- o Very straightforward to use
- Only applicable to simplest cases
- Good check on other methods

Closed Form Solution


- Math complex but more straightforward
- o Limited number of cases

Computer Software

o For complex soil profiles, only practical solution

Design of Cantilever Walls: Conventional Method

NOTE: WATER LEVELS CAN SE DIFFERENT CHOPPOSITE SIDES DUE TO PUMPING, TIDAL FLUCTUATIONS AND OTHER REASONS.

 Assume a trial depth of penetration, D. This may be estimated from the following approximate correlation.

Standard Penetration Resistance, N Blows/foot	Depth of Penetration*
0 - 4	2.OH
5 - 10	1.5н
11 - 30	1.25H
31 - 50	1.OH
+50	0.75H

- * H = height of piling above dredge line
- Determine the active and passive lateral pressure using appropriate coefficients of lateral earth pressure. If the Coulomb method is used, it should be used conservatively for the passive pressure.
- 3. Satisfy the requirements of static equilibrium: the sum of the forces in the horizontal direction must be zero and the sum of the moments about any point must be zero. The sum of the horizontal forces may be written in terms of pressure areas:

$$\triangle(EA_1A_2) - \triangle(FBA_2) - \triangle(ECJ) = 0$$

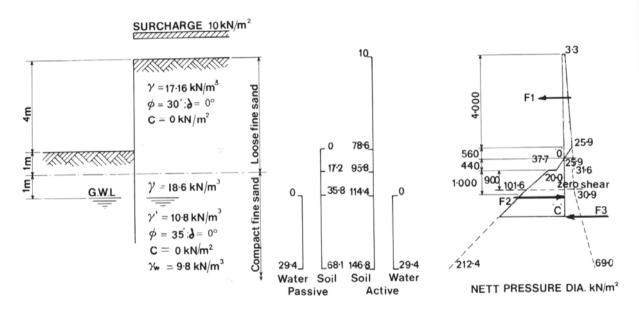
Solve the above equation for the distance, Z. For a uniform granular soil,

$$Z = \frac{K_P D^2 - K_A (H+D)^2}{(K_P - K_A) (H+2D)}$$

FIGURE 23 Analysis for Cantilever Wall

- 4. Take moments about point F. If sum of moments is other than zero, readjust D and repeat calculations until sum of moments around F is zero.
- 5. Compute maximum moment at point of zero shear.
- Increase D by 20% 40% to result in approximate factor of safety of 1.5 to 2.

Notes:


a) For cantilever or anchored sheet pile walls, you may use either Rankine earth pressure coefficients for both Ka and Kp or the AASHTO scheme (Coulomb Ka/

log-spiral Kp).

B) Re item 6, a better of way of including the factor of safety is to divide the Kp by 1.5-2. Once this is done, no further consideration of factor of safety is necessary. Murthy suggests this for anchored walls but this is also acceptable for cantilever walls as well, and is better practice in both cases. C) Do not confuse the method in 6 with the D increase in the "simplified" method discussed in Murthy. They are two entirely different factors. The D increase for the simplified method is a result of the method, not a factor of safety.

Cantilever Sheet Pile Example Cantilever Wall-Example

(Cohesionless Soils)

OVERBURDEN kN/m2

Active Pressure
$$p_a = \gamma.h K_a - 2c \sqrt{K_a + p_w}$$

Passive Pressure $p_p = \gamma.h K_p + 2c \sqrt{K_p + p_w}$

The coefficients of earth pressures are obtained from the tables in the section on earth and water pressures.

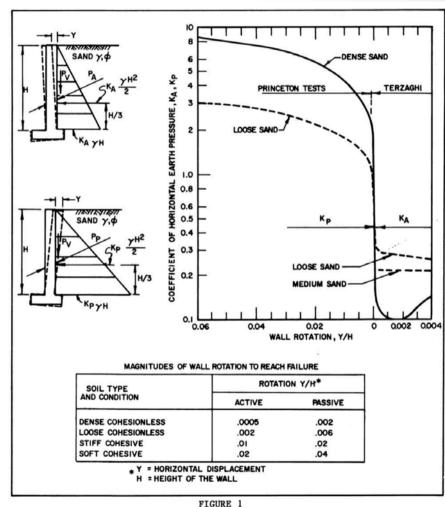
Note: Wall friction has been ignored in this

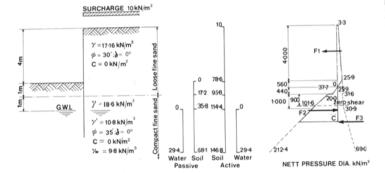
Loose fine sand Compact fine sand $\begin{array}{lll} K_a = 0.33 & K_p = 3.0 \\ K_a = 0.27 & K_p = 3.7 \end{array}$

Note: Wall friction has been ignored in this example, however its beneficial effect can be included at the discretion of the engineer.

SPW 2006

- Simple software to use, does not require installation
- Input according to instructions
- For active-passive stroke, use chart at right
 - Complete stroke Y/H should be sum of active and passive rotation values, depending upon the soil
 - Y/H sum is then multiplied by height H (as shown) to determine stroke




FIGURE 1
Effect of Wall Movement on Wall Pressures

Cantilever Sheet Pile Example (Cohesionless Soils)

E4

Retaining Walls

Cantilever Wall - Example

OVERBURDEN kN/m2

Active Pressure $p_a = \gamma.h K_a - 2c \sqrt{K_a + p_w}$ Passive Pressure $p_p = \gamma.h K_p + 2c \sqrt{K_p} + p_w$

The coefficients of earth pressures are obtained from the tables in the section on earth and water pressures.

 $K_a = 0.33$ $K_p = 3.0$ Loose fine sand

Compact fine sand $K_a = 0.27$ $K_p = 3.7$

Note: Wall friction has been ignored in this example, however its beneficial effect can be included at the discretion of the engineer.

pa at ground level		10 x 0-33		3.3 kN/m ²
pa at 4 m below ground level in loose sand		78-6 x 0-33		25-9 kN/m ²
pa at 5 m below ground level in loose sand	-	95.8 x 0.33	-	31-6 kN/m ²
pa at 5 m below ground level in compact sand		95-8 x 0-27	_	25-9 kN/m ²
pa at 6 m below ground level in compact sand		114·4 x 0·27	-	30-9 kN/m ²
pa at 9 m below ground level in compact sand		146.8 x 0.27 + 29	9.4 =	69-0 kN/m ²
pa at 5 in below ground level in compact same				

Retaining Walls

E5

```
pp at 4 m below ground level in loose sand
 pp at 5 m below ground level in loose sand
                                                                              = 0 kN/m<sup>2</sup>
                                                   = 17·2 x 3·0
p_D at 5 m below ground level in compact sand = 17.2 \times 3.7
                                                                             = 51.6 kN/m<sup>2</sup>
 pp at 6 m below ground level in compact sand
                                                                                 63-6 kN/m2
                                                 = 35.8 x 3.7
p_D at 9 m below ground level in compact sand = 68.1 \times 3.7 + 29.4
                                                                             = 132.5 \text{ kN/m}^2
Nett p_p at 5 m below ground level in loose sand = 51.6 - 31.6
                                                                             = 281.4 kN/m<sup>2</sup>
Nett pp at 5 m below ground level in compact sand = 63.6 - 25.9
                                                                             = 20.0 \text{ kN/m}^2
Nett p<sub>D</sub> at 6 m below ground level in compact sand = 132.5 - 30.9
                                                                             = 37.7 kN/m<sup>2</sup>
Nett pp at 9 m below ground level in compact sand = 281.4 - 69.0
                                                                             = 101-6 kN/m<sup>2</sup>
                                                                             = 212.4 \text{ kN/m}^2
```

As the Pressure Diagram below 'O' is not uniform the depth O.C. is most easily derived by trial

Try O.C. = 3.0 m

Moments about 'C'

```
3-3 x 4-000 x 5-560
                                                    73.4
   22.6 x 4.000 x 0.5 x 4.893
                                                   221.2
  25.9 x 0.560 x 0.5 x 3.373
                                                    24.5
- 20·0 x 0·440 x 0·5 x 2·707
                                                 — 11.9
- 37·7 x 1·000 x 2·060
                                                 — 77.7
- 63.9 x 1.000 x 0.5 x 1.893
                                                - 60.5
-101.6 x 1.560 x 0.780
                                                -123.6
- 57.6 x 1.560 x 0.5 x 0.520
                                                 — 23·4
                                                   22-0 kN/m
```

Hence the correct value of O.C. is slightly more than 3.0 m. However it is sufficiently accurate

```
Depth of cut-off required = 0.560 + 1.2 \times 3.0 \approx 4.2 \text{ m}
Total Active Pressure
                         = 14.6 \times 4
                               25.9 x 0.560 x 0.5
```

Zero Shear (Max. Bending Moment) occurs 5.9 m below ground level.

Moments about and above point of zero shear.

```
3·3 x 4·000 x 3·900
 22.6 x 4.000 x 0.5 x 3.233
                                                   146.1
 25.9 x 0.560 x 0.5 x 1.713
                                                    12.4
-20.0 x 0.440 x 0.5 x 1.047
-37.7 x 0.900 x 0.450
                                                  -15.2
-57.5 x 0.900 x 0.5 x 0.300
                                                  — 7⋅8
```

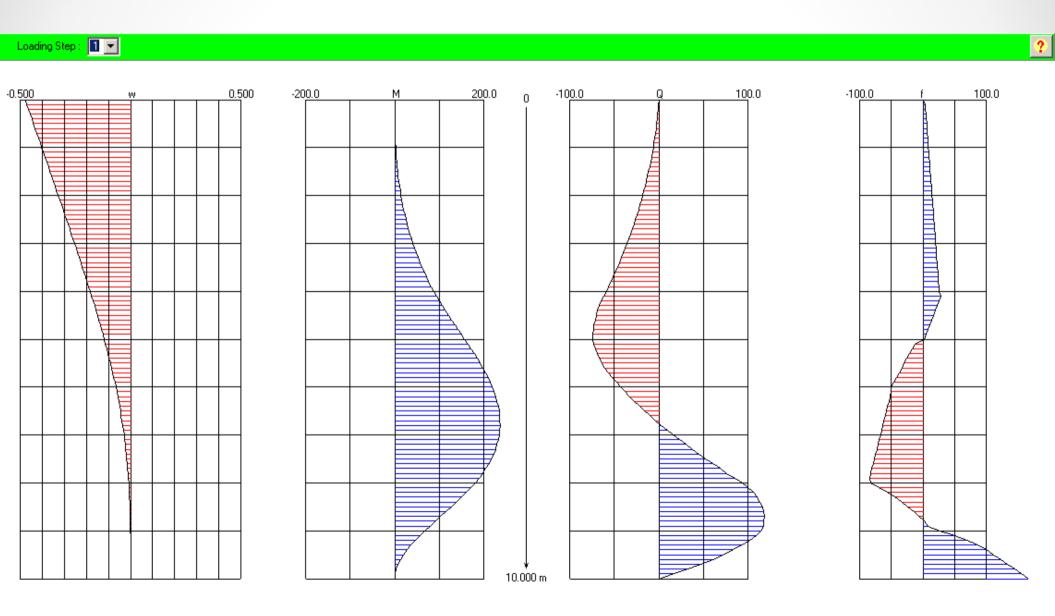
Bending Moment on Piles = 182·4 kN/m

182-4 x 1000 x 100 Z required $= 1459 \text{ cm}^3/\text{m}$ 125 x 100

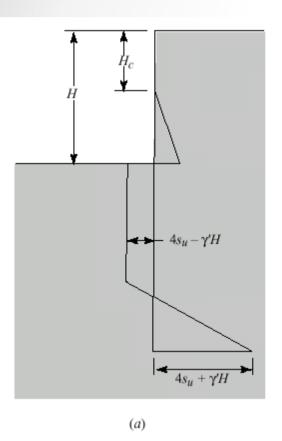
Z of Larssen $3/20 = 1665 \text{ cm}^3/\text{m}$ Z of Frodingham $3N = 1688 \text{ cm}^3/\text{m}$

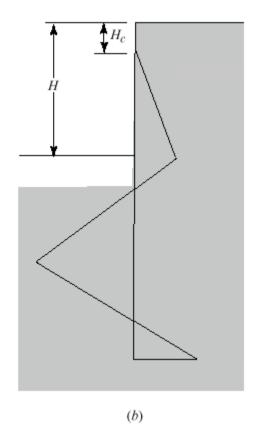
Use either Frodingham 3N or Larssen 3/20 Piles x 8·2 m. long in Grade 43A steel

182-4 kN/m


Input to SPW 2006

	Loading Step :	1 🔻	Right Side	▼								?
No.	Soil Name	Н	Wd	Ws	Zw	Сар	q	С	Ka	Кр	Kn	Dw
		m	kN/m³	kN/m³	m	m	kN/m²	kN/m²				m
1	Loose Fine Sand	4.000	17.160	17.160	6.000	0.000	10.000	0.000	0.333	2.000	1.000	0.032
2	Loose Fine Sand	1.000	17.160	17.160	6.000	0.000	10.000	0.000	0.333	2.000	0.500	0.032
3	Dense Fine San	1.000	18.600	18.600	6.000	0.000	10.000	0.000	0.270	2.470	0.426	0.010
4	ense Fine Sand	4.000	18.600	18.600	6.000	0.000	10.000	0.000	0.270	2.470	0.426	0.010


	Loading Step :	1 🔻	Left Side	▼								?
No	Soil Name	Н	Wd	Ws	Zw	Сар	q	С	Ka	Кp	Kn	Dw
		m	kN/m³	kN/m³	m	m	kN/m²	kN/m²	-			m
1	Loose Fine Sand	4.000	0.000	10.000	6.000	0.000	0.000	0.000	1.000	1.000	1.000	1.000
2	Loose Fine Sand	1.000	17.160	17.160	6.000	0.000	0.000	0.000	0.333	2.000	0.500	0.032
3	Dense Fine Sanı	1.000	18.600	18.600	6.000	0.000	0.000	0.000	0.270	2.470	0.426	0.010
4	ense Fine Sand	4.000	18.600	18.600	6.000	0.000	0.000	0.000	0.270	2.470	0.426	0.010


Ī	Loading Step: 1									
	No.	Depth	Fx	Fa	Dw					
		m	kN/m	kN/m	m					
	0	0.000	0.000	0.000	1.000					
	1	4.000	0.000	0.000	1.000					
	2	5.000	0.000	0.000	1.000					
	3	6.000	0.000	0.000	1.000					
	4	10.000	0.000	0.000	1.000					

Solution to Example from SPW 2006

Cantilever Piles in Clay

- Two step analysis
 - Short term, where φ = 0 and c = s_u (analyse for cohesion only)
 - Long term, where φ >0 and c > 0 (use strengths from S (C-D) tests)
 - Include critical height considerations

Questions

