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Stresses and Strains in Soils: Elastic and Plastic*

Don C.Warrington'
oth June 2015

Many undergraduate civil engineering students find their required geotech-
nical courses strange. They enter into a new world of soil classifications, granular
mechanics and porous materials, and a raft of empirical formulae. There seems
to be little connection between the topics and a unifying theory is hard to find.

Other enter geotechnical engineering in the course of their work as equipment
suppliers, owners and the like, who may not have specific training in the field
and find many of the concepts baffling.

This article attempts to approach one of the important topics in geotech-
nical engineering—stresses in soils—in a different way. In the past, presentation of
theory was just that—presentation—and it was difficult to apply the theory in a
practical way except for the simplest of cases. Now, with finite element analysis,
this theory can become practical reality. Many practising civil engineers, how-
ever, look on FEA as a “black box” where one puts in (hopefully meaningful)
data and gets out answers which are at best no more meaningful than the data.
Hopefully this article will bridge the gap between the two and make learning
the essentials of stresses in soils easier.

1 Stresses in Two Dimensions

When undergraduate civil engineering students enter their first geotechnical
class, the materials they have studied are generally linear. But there are two
ways which we use this term.

The first is the generally understood meaning that a linear material is one
which obeys Hooke’s Law, which is

F = kAzx (1)
where
e [’ =force applied on a body, kN
e k =spring constant, *N/m
e Az =change in deflection from one point to another, m

A spring that obeys Hooke’s law will, when extended, resist the extension in
a linear relationship with the length the spring is extended. You double the
length you pull the spring apart, you double the force the spring will resist. But
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if you go beyond a certain point, that relationship is broken, if not the spring.
It’s usually possible to shove the spring back to its original length/extension,
but we instinctively know that things are not the same. We have exceeded the
elastic limit of the spring and have entered the plastic region of the spring’s
mechanical response. Things are more complicated now than they were before;
in some applications, the spring or structural member is no longer functional or
dangerous to use.

With some materials (especially metals) we can design a structure so that
it will not exceed the elastic limit in normal or intended use (and unfortunately
those are not the same, something any designer needs to keep in mind.) With
soils, we don’t have that luxury; at some point we are generally forced to use
them in the plastic, non-linear region.

The other way geotechnical engineering is different is that, for the first time,
students are forced to consider a real three-dimensional medium and not just
forces for bending moments on lines. We say three-dimensional; realities not-
withstanding, even geotechnical engineering people wince at the concept of doing
things in three dimensions. They will try to reduce the problem at hand to a
two- or one-dimensional problem to make things easier. Two examples reduc-
tion to a one-dimensional representation are effective stresses (which we discuss
briefly in this article) and consolidation (which is beyond our scope).

Two-dimensional representations, however, are commonplace in geotechnical
engineering. It makes like a good deal simpler if we can visualise (and make
calculations based on a two-dimensional situation. Let’s consider the foundation

shown in Figure 1.

Figure 1: Continuous Foundations (from [Kimmerling (2002)]



There are two rectangular slabs that are sitting flat on the ground. We
could analyse either or both of these as rectangles. However, the longer a
foundation or structural member is (and with pavements, they can turn into
many kilometres!) the less the effects of length have on the performance. With
shallow foundations like those shown, if the aspect ratio (i.e., the ratio of the
width to the length) is greater than 10, we generally classify them as continuous
foundations and analyse then as a two-dimensional structure (and in many ways
a one-dimensional one.) One consequence of this is that the loading, instead of
being in units of force like kN, is now in units of load per unit length, say *N/m.
The stresses under the foundation can certainly be analysed two-dimensionally.

To illustrate what this might look like, now consider the diagram in Figure
2.

EMBANKMENT LOAD OF INFINITE LENGTH NORMAL
TO THIS CROSS SECTION.

STRESSES DETERMINED FROM ELASTIC
SOLUTION. FOR ISOTROPIC SEMI-INFINITE
FOUNDATION.

- memer L NORMAL STRESSES

TS ==—ao . PRODUCED BY
EMBANKMENT, AS A

R, vermiea

SHEAR STRESSES

£ prooucen ey
o EMBANKMENT,AS A
= RATIO TOUNIT LOAD P:
POINT 08
Txz .ON VERTICAL AND

"1/ HORIZONTAL PLANES

Figure  2: Soil  Stresses Under an  Embankment  (from
[NAVFAC DM 7.01 (1982)])

We have the case of a soil, minding its own business, suddenly facing having
a large embankment dumped and compacted on top of it. This is obviously a
stressful situation, and we can see this with the stress contours in the various
parts of the soil. The embankment is semi-infinite in that it extends indefinitely
to the left. But it is also infinite in that it is assumed to extend indefinitely in
and out of the screen or paper. Thus we can model the already complex response
of the soil (made so in part because the slope of the embankment makes the
surface stress of the soil non-constant for some length) without having to worry
about three-dimensional effects or representations.



Now also note the stresses themselves. The top part of the figure shows nor-
mal stresses in both the x- and y-directions. (Actually, geotechnical engineers
prefer x- and z-directions, with z downward positive.) In their early forma-
tion, most civil engineers primarily consider axial stresses (trusses) and bending
stresses (beams.) In both cases the stresses are in one direction, i.e., along the
axis of the truss or beam. But now we have normal stresses that are not only in
two directions, but their relative magnitudes vary in different parts of the soil
mass.

Complicating matters further, we see shear stresses in the lower part of the
figure. Although soils experience failure in direct shear in this case the shear
stresses are the result of the normal ones. How normal and shear stresses exist
at a single point is best illustrated in Figure 3, which looks at the points shown
in Figure 2 in detail.
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Figure 3: Mohr’s Circle and Normal and Shear Stresses at Selected Locations
(from [NAVFAC DM 7.01 (1982)])

Mohr’s Circle is one of those things we learn about in mechanics of materials
and work hard to forget about afterwards. But here it rears its ugly head. The
horizontal axis is the normal stress and the vertical axis is the shear stress. If
we know the normal stresses in the x- and z-directions and the shear stresses
at any point, we can plot Mohr’s Circle for any stress point and determine the
stress state at any direction . There are two directions of special interest.

e The first is along the horizontal axis. The two points where the circle
intersects that axis (labelled oy and oyy) are the principal stresses.

e The second isn’t quite along the vertical axis but at the top and bottom
of the circles, and this is the maximum shear stress 7,,q4-

Both of these stress states are important and we will come back to them later.
When computational power was limited, Mohr’s Circle was actually used to



graphically analyse the stress states. Today we do this analytically, using for-
mulae such as

2
Or + 0 Or+ 0
or, UIHIQZi\/<mQZ) + 72, (2)

Trz =
If we define the deviator stress as
AO’ZUI—O'[[[ (4)

Equation 3 can be written as

Tpsy = — (5)

So how often would a geotechnical engineer have to generate a plot like
Figure 2 with all of these stresses? The answer is, not very, not at least by
hand. In the past, elastic theory has been used to estimate how these stresses
vary with both depth and distance from the load, and various formulae, charts
and tables can be used. This is obviously a good problem to which FEA can be
applied. We need to have some basic understanding of how stresses induced at
the soil surface (or below it) are distributed and the stress levels that result.

But first, we need to back up a little and consider elastic and plastic stresses
and the event that separates the two: failure.

2 Failure in Soils

It is evident that there are two things in life that most of us are unprepared
for: success and failure. This is especially evident in a cyclical business like
construction. If business is slow or non-existent, we go out of business for lack
of revenue. If it is very good, we sometimes go out of business because we
overextend ourselves.

With soils, we generally do not prepare them for failure except when failure
is what’s necessary. The best example of this is the installation of driven piles,
when what we’re trying to do is get the soil mass around the pile to fail with
each blow of the hammer (or with the oscillation of a vibratory one.) Preparing
soils for success is another matter. The oldest way of doing this is compaction,
although now there is an array of soil improvement methods available.

2.1 What is Failure in Soils?

But now we must answer the question: what is failure? How do we define it?
And once we’ve defined it, how do we prevent it? Let us look at Figures 4 and
5.
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Figure 4: Ductile  Failure from  Direct Shear Test (from
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Figure 5: Brittle Failure from Direct Shear Test (from [EM 1110-2-1906 (1986)])

From both of these we get an idea that soil response to loads and stresses
begins with “not so bad” and deteriorates to “really bad.” There is no real
elastic behaviour to be seen in either of these curves, especially with Figure
4. In the case of Figure 5, things start out somewhat better, but then reach a
peak stress, from which the material actually experiences a stress drop before
failure. In both cases we see a considerable step-up in complexity from simple
elastic behaviour. Often our goal is to design something by avoiding stressing
the material beyond its yield point. Especially with Figure 4, we would be hard
pressed to even find a yield point!

Attempts have been made over the years to directly model this non-linear
behaviour. The best known of these is the “hyperbolic” model generally associ-
ated with [Duncan and Chang (1970)]. The soil response with such a model is
shown in Figure 6.
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Figure 6: Hyperbolic Soil Model (from [EM 1110-1-1904 (1990)])

We can see the similarity of the response with Figure 4. Although this is so,
it is complex to implement.

But can we, say, take a simple model and make it work in spite of its limit-

ations? The answer to this is a qualified “yes,” and we can see such a model in
Figure 7.
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Figure 7: Elastic-Plastic Soil Model

Now we see two clear regions of soil response. To the left of the yield strain



we have elastic behaviour, in accordance with Equation 6. As long as we stay in
this region, the response is what we call “path independent,” i.e., independent
of the stress history of the soil in question. If we go to the right, we have plastic
deformations, or permanent sets, and Equation 6 no longer applies. The yield
strain becomes our failure point. As we saw with the actual results, the stress
can continue to rise, remain constant, or fall with increasing strain.

Although this looks like an oversimplification—and in many ways it is—we
can use this not only to effectively model soils in computational frameworks like
finite element analysis but also use it to conceptually describe soil behaviour on
a more simplistic basis.

There are two more things we should say about the plastic region, the one to
the right of the yield strain. The first is that the three options we are given are
obviously not the only ones we have available. A curved response is certainly
possible. Linear responses, however, are obviously simpler to model. To make
things even less complex, for the rest of this monograph we will only consider
the case where stress does not increase past the yield strain, i.e., the “pure
plastic” case. For many soils this is a conservative assumption.

The second is that, once the yield strain is exceeded, we generally assume
that, if we decide to have mercy on the soil and stop increasing the strain, the
stress will return along an elastic slope. An excellent example of this is the way
we model pile shaft and toe static response during driving, as shown in Figure
8.
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Figure 8: Elasto-Plastic Response After Yield (from
[Goble and Rausche (1986)])

We see that the unloading DS is parallel to the elastic line before failure.

2.2 When Does Failure Take Place?

Now that we have at least a vague idea of what failure in soils is, we need to ask
the next logical question: when does it take place? Do we need to run tests on
every soil to determine that point of failure? Or can we make some estimate?
The question “when” implies time, which isn’t what we’re looking for at this
point. What we are looking for is a stress-strain state at which point the soil



goes beyond the elastic limit. Let’s start with the simpler failure model.

We saw in Mohr’s Circle three points of special interest: the two principal
stresses o7 and oy;; and the maximum shear stress 7,,4,. Both of these suggest
a failure model.

One obvious candidate would be the maximum principal stress o;. For
stresses in one direction it is very common to use this; if it exceeds yield, we have
experienced yield failure (and sooner or later will experience ultimate failure if
we keep increasing the stresses.) With stresses in more than one axis, this is
problematic due to the greater complexity of the stress state, so we are more
inclined to use other failure criteria.

Another possibility is the maximum shear stress. In fact, this model-generally
called the Tresca criterion—is probably the most commonly used failure criterion
in materials engineering. It’s also easy to compute because, if we look at Mohr’s
Circle, the radius 7,4, is half the diameter of o7 — oy, Or

- o1 20111 (6)

With some soils, we can use this criterion to estimate the point of failure.
However, the Tresca/maximum shear stress criterion does not include the effects
of internal friction, i.e., the grains of soil rubbing against each other.

The most straightforward way of doing that brings us back to our friend
Mohr, or more specifically the Mohr-Coulomb criterion of failure, which is

Ty = ¢+ optand (7)
This is plotted in Figure 9.
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Figure 9: Mohr-Coulomb Failure Line (from [EM 1110-2-2504 (1994)])

The failure line (more commonly called an envelope) is, in theory at least, a
solid line. Soils don’t always obey this criterion (or any other for that matter)



perfectly; variance from the ideal is very much the rule in soil mechanics. But
it’s a reasonable approximation.

With all of its parameters non-zero, it is a sloped line. There are two special
cases that are very important in soil mechanics:

1. ¢ = 0, the line becomes horizontal. Soils which meet this criterion are
referred to as purely cohesive; the Tresca (maximum shear stress) criterion
can be used to define their failure. Clays and, to a lesser extent, silts can
be categorised in this way.

2. ¢ = 0, the line begins at the origin and slopes upward. Soils which
meet this criterion are referred to as purely cohesionless. Many sands
and gravels (especially if they have no fines) can be categorised in this
way.

It is not an overstatement to say that the theory of soil mechanics, as currently
practised, is largely based on Mohr-Coulomb failure theory. Much of our soil
characterisation activity, and the testing designed to perform that character-
isation, is designed to obtain Mohr-Coulomb results. As [Abbo et. al. (2011)]
point out:

The Mohr—Coulomb yield criterion provides a relatively simple
model for simulating the plastic behavior of soil. Other more so-
phisticated constitutive models for predicting the behavior of soil
have been developed over the past three decades, however the com-
plexity of these models, as well as the additional testing required to
determine the various soil parameters involved, minimizes their util-
ity for practicing geotechnical engineers. The Mohr—Coulomb yield
function is also of importance to finite element researchers and prac-
titioners as it forms the basis of many analytical solutions. These
analytical solutions serve as crucial benchmarks for validating nu-
merical algorithms and software.

This observation is supported by [McCarron (2013)].

Although it looks simple, Mohr-Coulomb failure theory has its complexities
in implementation, whether that takes place on an elementary level or in finite
element code. Some of these are addressed by its close cousin Drucker-Prager
theory, although the jury is still very much out on whether it should replace
Mohr-Coulomb or not. So we proceed with Mohr-Coulomb, limitations and all.

2.3 Putting the “What” and “When” Together

Now that we have defined how we plan to model the soil, what failure is and at
what point does it take place, it’s time to put this all together, and to do this
we can use our Mohr’s circle once again. But before we do a little overview of
testing is in order.

If we look at Figure 2, we see that the stress state of a given point in the
soil can be a very complex business. In fact this figure does not include effects
of effective/overburden stress, stress history of the soil (principally preconsoli-
dation) or many other effects. Attempting to simulate the stress state of soils
in the ground in a laboratory setting is a difficult business. But try we must.
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Looking at Figure 9, we see that failure is defined as a stress state which
appears above the Mohr-Coulomb failure line (or beyond the envelope if we
mirror image the line around the horizontal axis.) Ultimately this is about
elevating the shear stress (vertical axis) to a point where the soil experiences
failure. The most straightforward way of doing this is the direct shear tests,
whose results can be seen in Figures 4 and 5. A diagram of this test is shown
in Figure 10.
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Figure 10: Direct Shear Test Schematic (from [EM 1110-2-1906 (1986)])

Although the direct shear test is simple to run and, in some cases, appro-
priately simulates the application of shear stresses, in reality it not used exten-
sively. The direct shear test does not do two things which are necessary for
most geotechnical applications:

1. Properly model the way in which shear stresses are generated. If we look at
the situation in Figure 2, we see that the shear stresses take place because
of the increase in normal stresses, not a direct occurrence of shear.

2. Does not simulate confinement as well as one would like. Again with the
situation in Figure 2, we have an increase in the vertical stress. But we
also have an increase in horizontal stress due to the fact that each point
in the soil is confined by the surrounding soil. If you compress a specimen
of material, it will bulge. But if it is confined, it cannot bulge, or not as
much as it could otherwise.

The answer to these weaknesses is the triaxial test, which is still an important
test for determining values of ¢, ¢, and other quantities such as the modulus of
elasticity. A diagram of the test is shown in Figure 11.

11
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Figure 11: Triaxial Test (from [NAVFAC DM 7.01 (1982)])

A cylindrical soil sample is wrapped in a membrane and placed between a
base and a piston. The specimen is immersed in water, which is pressurised
to the desired confining stress (meant to simulate the lateral stress oyr;. The
specimen is compressed by the piston to simulate a vertical stress o;. This
latter stress is increased until failure is achieved. As the lower part of the figure
indicates, a wide variety of drainage conditions can be simulated, as can a wide
variety of pore pressure conditions. The triaxial test has been so successful
that it is simulated frequently by finite element code developers as a test case!
The result in either method is a stress-strain curve where we can determine the
location of the “break” from what we model as elastic behaviour to plastic, and
use the conditions under which that break took place along with Mohr-Coulomb
theory to characterise the soil and predict failure under actual conditions.

So what do the results look like? Some samples of this can be shown in
Figure 12.
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Figure 12: Triaxial Test Results (from [NAVFAC DM 7.01 (1982)])

At the top we see the result for a purely cohesive soil. Remember that we
can simulate various values of confining stress o;;;. However, for such a soil,
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the deviator stress (and thus the maximum shear stress, per Equation 6) is
constant, thus the failure line is likewise horizontal as Mohr-Coulomb failure
theory would predict. If we have reason to believe that the soil is purely cohes-
ive, we can dispense with the confining pressure altogether and determine the
cohesion/maximum shear stress with one test. This is referred to as an uncon-
fined compression test, and the result is either the cohesion or the unconfined
compression strength (which is double the cohesion.)

The next two are more typical of cohesionless soils. The ideal for cohesion-
less and mixed soils is for the successive results of the triaxial test (varied by
changing o7y and thus o) is to draw a line tangent to all of them and determ-
ine both the slope of the line tan¢ and its y-intercept c¢. Unfortunately factors
such as preconsolidation and non-linearities in the failure envelope make this
difficult to achieve.

The last one gets us to stress-path theory. This is beyond the scope of this
paper, but to model any non-linear (and thus non-path independent) material
some understand of this is necessary.

3 Elastic and Plastic Behaviour in Soils

At this point we can make some justification for modelling the soils according
to the scheme shown in Figure 7. But how do we implement it in practice? The
answer is, “it depends.” But first a quick note about effective stresses.

3.1 Effective Stresses

Probably the first type of soil stress civil engineering students are exposed to
are effective stresses. These are the stresses that are due to the weight of the
soil and its interaction with the pore water. The computation of effective stress
is beyond the scope of this article, and more information can be obtained in
[FHWA-NHI-06-088 (2006)]. A couple of interesting points can be made here,
however,

The first is that it is a very common (if not often explicit) assumption that
the confining stress at a point in a soil mass oy is in fact the effective stress
exerted horizontally. If we consider the sequence of the triaxial test, once we
load the specimen into the machine, we bring the confining stress oy up to
the level of the effective stress we would like to simulate. In doing that we
also have to bring the vertical stress o7 to the same level to keep equilibrium.
Once everything is equal and stable, then we increase ¢ until failure. In real
situations, placing a load at or near the surface has the same effect: it raises
the vertical stress o7 to a higher level, possibly inducing failure.

The second is that modelling effective stresses in finite element analysis is
one think that makes geotechnical FEA unique. Failure to do so will give dis-
astrous results, so all viable commercial code has a method of simulating this.
A description of this simulation is given in [Naylor et.al. (1981)].

3.2 Elasticity and Plasticity: the Forks in the Road

We must directly address the issue of elasticity and plasticity. How do we
implement a model that includes both, as we should? The core of the problem

14



is that, although elasto-plastic mechanics have been appreciated for a long time,
except for the simplest cases it is very difficult to include both in “closed form”
analytic calculations.

Yogi Berra used to say, “When you come to a fork in the road, take it.” We
actually have two forks in the road to consider.

The first is whether we plan to used “traditional” formula types of calcula-
tions or use a numerical method such as finite elements. Finite elements can
handle both elasticity and plasticity at the same time by calculating which one is
appropriate and how it should be implemented. Although some might consider
simply jettisoning all traditional methods, such a solution is not really practical
and potentially misleading, since we are now completely at the mercy of a com-
puter program. We should also keep in mind that most finite element code in
common use has the same underlying Mohr-Coulomb (and other) principles that
the more conventional methods do. We can make the same (or worse) mistakes
with finite element analysis as we can with conventional methods, especially if
our soil data is spotty.

If we stick with traditional methods, we come to the second fork in the
road: do we analyse elastically or plastically? The answer is “one or the other,”
depending upon the problem at hand. One of the things that baffles newcomers
to geotechnical engineering is the mixture of various types of methods with
no apparent relationship to each other. But there is method in this madness.
Looking at Figure 7 once again, if we have a problem dominated by small
deflections, elastic analysis makes sense to use. On the other hand, if large
deflections (in many cases catastrophic) are anticipated, then plastic analysis is
called for. A surprisingly large variety of problems can be solved by ignoring
one regime and concentrating on the other.

3.3 Elastic Solutions

Going back once again to our triaxial test, we first load the ends and the sides
of the specimen with the same confining stress o7, and then apply additional
stress oy — oy to the ends. With soils under a newly applied surface load, it is
the same: we apply a load Q (total load) or q (load per unit) area to the surface,
and then attempt to estimate the increase in stress Ap at a point of interest
in the earth. We are probably not interested in inducing plastic deformation
in the soil; we will have enough trouble with other forms of deformation, such
as poroelasticity /consolidation, collapse and swelling not to want to risk elastic
failure. Thus the change in soil stress at any point in the soil can be estimated
using elastic theory.

3.3.1 Boussinesq Theory for Stresses

The most common theory for elastic estimations of changes in soil stress is
Boussinesq theory. A simple way to illustrate this is to consider point loading
as shown in Figure 13. The diagram on the left shows some basic geometric
parameters, the equations on the right show the various stress types (normal or
shear) and directions.)
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Figure 13: Point Loading (from [NAVFAC DM 7.01 (1982)])

We notice several interesting things about this:

1. The vertical stress is at its maximum directly under the load. In this case,
it is infinite, as the area is zero.

2. For a given depth Z the vertical stresses are at their maximum value
directly under the load.

3. The horizontal and shear stresses directly under the load are zero.

4. The further away from the load (i.e., as R increases) the smaller the
stresses.

Most engineers are interested in the increase in the vertical stress component,
i.e., the Ap or deviator stress increase with the application of the load. As long
as the ground is reasonably homogeneous and the elastic limit is not breached,
elastic solutions such as Boussinesq and its relative Westergaard are very useful
in computing stress changes in soils, which in turn are useful for analyses such
as consolidation and other settlement estimates.

3.3.2 Methods of Implementing Boussinesq Theory

Several ways have been developed to estimate these stress increases.

The first (and traditionally most popular) are the chart solutions. An ex-
ample of this for circles is found in Figure 14, and more of them (with instruc-
tions and examples of use) are found in [NAVFAC DM 7.01 (1982)]. Because
theory of elasticity is being used, superposition applies, and solutions (i.e., the
cumulative effect of neighbouring structures) can be added or, for voids, sub-
tracted.
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Figure 14: Boussinesq Chart for Circular Foundations (from

[NAVFAC DM 7.01 (1982)])

The second is to use equations, as illustrated in Figure 13. While especially
useful for, say, a spreadsheet, they are frequently wrong in the literature and
thus should be used with care.

The third is Newmark’s Method, shown in Figure 15. Although developed
in the U.S., it is more popular in Europe, and is the most flexible non-computer
method for computing stress increases in soils.
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Figure 15: Newmark’s Method (from [NAVFAC DM 7.01 (1982)])

Yet another approach is to use computer software. The results of one package
(FoSSA) are shown in Figure 16 for an embankment loading. The software can
be based on a number of theories: Boussinesq, Westergaard, or even the finite
element method itself. The advantage of using software is that varying ground
conditions can be modelled, and of course the effective stress can be likewise
calculated for the soil profile.
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Figure 16: FoSSA  Results for Embankment Loading (from
[FHWA-NHI-06-088 (2006)])

3.3.3 Elastic Settlements

Up to this point we’ve talked about elastically induced (and estimated) stresses.
But we can also estimate deflections using elastic theory. The elastic settlement
induced by a surface load can be estimated using the equation

=2 (1 ) (®)

where ¢ is the load per unit area, B is the basic lateral dimension of the
foundation (usually the width,) E is the modulus of elasticity, and p is Poisson’s
Ratio. I, the influence factor, depends upon the geometry of the foundation
and the depth from the surface where an “incompressible” (usually rock) layer
is found. For cases where the soil can be assumed to be “infinite” in depth (the
same assumption applies to the Boussinesq discussion earlier) influence factors
can be found in Table 1.

S
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Table 1: Influence Factors for Elastic Settlement, Infinitely Deep Soil Profile
(from [NAVFAC DM 7.01 (1982)])

Shape and Rigidity Factor I for Loaded Areas
on an Elastic Half-Space of Infinite Depth
Shape and Edge/Middle
Rigidity Center Corner of Long Side Average
Circle (flexible) 1.00 0.64 0.85
Circle (rigid) 0.79 0.79 0.79
Square (flexible) 1.12 0.56 0.76 0.95
Square (rigid) 0.82 0.82 0.82 0.82
Rectangle:
(flexible)
length/width
2 1.53 0.76 1.12 1.30
5 2.10 1.05 1.68 1.82
10 2.56 1.28 2,10 2.24
Rectangle:
(rigid)
length/width
2 1.12 1.12 1.12 1.12
5 1.6 1.6 1.6 1.6
10 2.0 2.0 2.0 2.0

Influence factors are also available for situations where the relative rigid layer
is close to the surface.

Elastic methods are generally used to estimate the immediate settlement
of a foundation and in conjunction with other types of settlement, such as
consolidation. Some methods of settlement estimation, such as Schmertmann’s
Method for cohesionless soils, attempt to incorporate elastic settlement with
pore water drainage/particle rearrangement settlement into one method, with
varying degrees of success.

3.3.4 Horizontal Stresses

We mentioned that vertical stress increases caused by applied loads could be
analysed by using elastic theory. With large soil masses, horizontal stresses are
not of great interest. An entirely different situation exists with retaining walls,
where loads that are developed on the surface near a retaining wall can appear
in the horizontal pressure profile against the wall itself. Examples of this can
be seen in Figure 17.
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Figure 17: Lateral Stresses Estimated with Elastic Theory (from
[FHWA-NHI-06-088 (2006)])

One “short cut” commonly used—and illustrated in Figure 17—is that pressure
distributions on retaining walls can be treated as concentrated loads, which
makes hand calculations considerably simpler.

While on the subject of lateral earth pressures, the existence of Poisson’s
Ratio implies that horizontal stresses and deflections in soils can be computed

21



from vertical stresses using theory of elasticity. Although this is theoretically
possible, most major failures due to lateral earth pressures are plastic in nature.
These will be discussed in the next section.

3.4 Plastic Solutions

The one thing that separates elastic solutions from plastic solutions is the degree
of deformation. The elastic solutions discussed earlier imply relatively small
deflections. With plastic deformations large deformations follow, and the failure
that goes with them is frequently catastrophic.

We have used extensively the triaxial test as an illustrative aid for the con-
cepts presented. With most compressive specimens of soils and other materials,
a progressively larger compressive load is applied until the column of material
collapses. In practice, soils generally fail plastically along what we call “slip
surfaces,” i.e., surfaces where two soil masses move relative to each other to
the point where the elastic limit is reached, at which point significant relative
movement begins.

3.4.1 Slope Stability

The problem which really brought this to the attention of the profession—and
the general public—is slope stability. An illustration of that kind of failure is
shown in Figure 18.
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Figure 18: Slope Stability Failure (from [FHWA-NHI-06-088 (2006)))

The main driving force to induce failure in a slope is the weight of the slope
soil itself, with help from whatever surcharge loading may be at the top of the
slope. For most slope stability problems we assume a circular failure surface.

Equation 7 implies that there are two sources for shear strength at the
critical failure surface: the soil cohesion and the product of the horizontal stress
and the friction angle. Both of these (especially the latter) can vary along the
surface, which complicate calculations considerably. There are several solution
techniques to this problem. We can assume that the soil mass acts as a unit,
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which is fine for cohesive soils in simple profiles but not so good when things
get complicated. We also have the method of slices, where we divide the slope
into vertical slices which can then be analysed like giant elements. If we choose
to use software, this makes finding the failure circle simpler, as it will iterate
through the possible cases and find a solution. Detailed descriptions of these
methods are beyond this article; a more thorough treatment can be found in
[NAVFAC DM 7.01 (1982), FHWA-NHI-06-088 (2006)].

We can also apply finite element software to the problem. Finite element
solutions take a different approach to finding the critical surface. Instead of
making assumptions about the shape of the surface, the software progressively
reduces soil strength parameters until failure is induced. It is not necessary to
assume the surface or location of the failure surface, which is especially advant-
ageous in profiles with large non-uniformities.

3.4.2 Bearing Capacity Failure

Another type of slip surface failure that is commonly analysed in geotechnical
practice is bearing capacity failure, especially for shallow foundations. An ex-
ample of this (for general shear failure) is shown in Figure 19.

Q

Figure 19: Bearing Capacity Failure Zones (from [Kimmerling (2002)])

As was the case with the elastic analysis, a shallow foundation applies a
load to the soil. In addition to elastic and other types of settlement, a failure
surface appears in the soil. It is in a log-spiral shape, a shape that appears
often in nature. If the applied load results in a stress along the failure surface
in the plastic zone, the foundation fails, generally by overturning. So we see
that two very different types of responses come from the same applied load, and
of course there can be plastic deformation in settlement, especially with softer
soils, where the two failure modes are not so distinct.

3.4.3 Retaining Walls and Lateral Earth Pressures

Although generally not thought of in this way, lateral earth pressures are also
related to plastic failure along a slip surface. Figure 20 shows a wedge between

23



a retaining wall and a slip surface behind it. Depending upon the geometry,
the well known (and somewhat complicated) lateral earth pressure coefficient
equations can be computed from a static analysis of the wedge. In fact, the trial
wedge method is commonly used to analyse lateral earth pressures with involved
geometries such as broken backfill. A similar approach is used to determine the
critical height of vertical cuts in cohesive soils, an important component of
trench safety analysis.
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Figure 20: Wedge Analysis of Lateral Earth Pressures (from
[EM 1110-2-2504 (1994)])

One assumption that is frequently challenged in retaining wall analysis is
the shape of the slip surface. Figure 20 shows a planar surface, which is the
assumption behind Rankine and Coulomb earth pressure theories. A log-spiral
shaped slip surface—similar to what we saw with shallow foundations—can also be
used. The downside is that these slip surfaces frequently defy a simple analytic
solution, which means that we either have to use an approximation to determine
the needed coefficients or use some kind of a chart or interpolation scheme.
Sometime we can have it both ways. AASHTO, for example, recommends the
use of Coulomb (planar slip surface) theory for active (wall moving away from
soil) pressures, but then turns around and recommends log-spiral theory for
passive (wall moving towards soil) pressures [FHWA-NHI-06-088 (2006)].

4 Finite Element Analyses in Geotechnical En-
gineering: Some Basics

We've referred often to finite element analysis. Many engineers look on the
method as a “black box” (or maybe a “grey box” if they have been exposed to
it at the undergraduate or graduate level.) This is a brief treatment of some of
the concepts behind finite element analysis and how they apply to geotechnical
problems.

Finite element analysis, in general, involves several steps [Moaveni (1999)]:
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1. Discretise the region to be analysed into finite elements. More math-
ematically oriented types would use the term “solution domain,” but that
brings up an important advantage of finite elements: mathematically, each
element is a “complete system.”

2. Assume a solution that approximates the behaviour of an element. Be-
cause of the nature of elements, that approximation doesn’t have to be the
same for all elements. With care, you can mix and match them. Some-
times the approximation is exact, as is the case with spar and beam ele-
ments. There are many approximation schemes, but most solid mechanics
applications use a Galerkin method.

3. Develop element equations, from (1) and (2).

4. Assemble the elements mathematically to form a solution of the entire
problem.

5. Apply boundary conditions and loads. With solid mechanics we generally
think of loads as forces and moments, but they can also be temperatures,
etc. Boundary conditions have always been tricky in geotechnical engin-
eering, where we are attempting to simulate the behaviour of semi-infinite
masses with very finite computers. There are several ways of dealing with
this problem, from special boundary formulations to simply making the
system big enough so that the boundary doesn’t matter.

6. Solve the system of equations simultaneously. With static linear systems,
this can be done in one shot. Geotechnical problems are not linear and
frequently not static either, so more effort is required.

7. Extract the information from the solution in tabular and graphic format.

Armed with this information, we can proceed. Consider the finite element model
of a pile and soil system shown in Figure 21.
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Figure 21: Finite Element Model of Pile and Soil System

The pile located towards the left edge of the model. So, you ask, where’s
the other half? This is an axisymmetric representation of the system. As we
said earlier, to reduce three-dimensional reality to two-dimensional analysis we
have to make some reasonable reduction in the system. As shown in Figure 22,
in general there are three ways to accomplish this:

1. Plane Stress: the thickness is finite and there is no stress in the z-axis
(into the paper or screen) direction. Plane stress assumption is more
common with relative thin mechanical members and is used infrequently
in geotechnical applications.

2. Plane Strain: the thickness is infinite and there is no strain in the z-axis
direction. This is, in reality, just about the “standard” case for two-
dimensional geotechnical representations, finite element and otherwise.
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Although the thickness is theoretically infinite, in practical application
we assume a unit thickness, so we have loads per unit length of wall,
continuous foundation, etc.

3. Axisymmetric: the elements wrap themselves around a centre axis, thus
they can be analysed in two dimensions. This is very commonly used in
deep foundation problems, as is the case in Figure 21.
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I rere™

(a) Plane stress (b) Plane strain (c) Axial symmetry

Figure 22: Two-Dimensional Representations (after [Owen and Hinton (1980)])

The lines shown in Figure 21 are divisions between elements. For obvious
reasons, the elements shown are quadrilateral elements. The simplest quadrilat-
eral element has four nodes, one at each corner, which both define its geometry
and connect the element with its neighbours. A popular element in geotech-
nical engineering is the eight-node “serendipity” quadrilateral element, with
four nodes at the corners and four additional nodes at the midpoints of the
element borders. For greater accuracy, we can add another node at the centre
of the elements for a nine-node quadrilateral element.

Having constructed this model, now what? As is the case with closed form
solutions, we have to determine what we are solving for. For a static model
of a solid system, that’s easy: we want to sum the forces to zero, as we do in
statics. We want not only to do this at the boundaries, but for every node in
the system. At the boundaries, we have the reactions, some or all of which are
non-zero for a system with forces applied to it. But the interior nodes also have
forces from the elasticity of the system. We write this as follows:

F+F =0 9)

where F; are the internal forces and F, are the external forces. (The external
forces include gravity, which acts throughout the system.) These forces are not
simply scalars but vectors, a series of values for every node and degree of freedom
(there are two for each node, in x- and z-directions) in the system.

For a linear system, we reformulate Equation 10 to compute the internal
forces as
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Fi=Kd (10)

The variable d is for the displacements, which are a mixture of x- and z-
direction displacements. K; is the tangential stiffness matrix, the “spring con-
stant” of the system. Substituting we have

Kid+F, =0 (11)

For a purely linear elastic system, this can be solved in one step. If there
is non-linearity, it must be done iteratively. The significance of the K; is now
apparent: with a non-linear situation, the stiffness of the system becomes a
moving target, and we search for the actual stiffness at each step of the analysis.
In some cases we can get around tinkering with K; every iteration, but the
objective is the same.

So how do we know when non-linearity takes place? The analysis will yield
both the deflections at the nodes and the stresses at the elements. Basically,
if the principal stresses induce a stress state so that Mohr’s Circle crosses the
Mohr-Coulomb failure line shown in Figure 9, then the element (or integration
point) is assumed to have entered the plastic state, and the stress is limited
accordingly. It’s the same as with hand calculations, although there some com-
plicating factors:

1. The behaviour in the plastic region can be hardening or softening rather
than purely plastic, but this complicates the analysis, especially if the
element stresses reduce, in which case we have the phenomenon of Figure
8.

2. Inspection of Figure 9 shows that the principal stress combination that
produces failure is not unique; there are an infinite number of them pos-
sible in any situation. To choose the “correct” one, in addition to the
failure function we use the plastic potential function, which utilises the
dilitancy of the soil. If the dilitancy angle 1) = ¢, we have what is called
an associated flow rule, and K; remains symmetric and thus easier to ana-
lyse. With most soils with any internal friction, 1 # ¢ and we have a
non-associated flow rule, which leads to an asymmetric K; and thus more
computational expense.

For dynamic problems, Equation 11 can be modified to
K, d+ F, = Md (12)

where M is the distributed mass and d is the acceleration of the mass at any
point. If this looks suspiciously like Newton’s Second Law, that’s because it is!

Although the concepts are simple, their implementation involves many math-
ematical and physical implementations that are beyond the scope of this paper.
But the existence of these complications should not obscure the basic simplicity
of the concept and its relation to more conventional solution techniques.

5 Conclusions

Stresses in soils is an important topic, and we have only scratched the surface
here. Hopefully the perspective we have used will make it easier for you to

28



understand these stresses. We have skimmed over some imporant topics such as
effective stresses or the details of slip surface failure; more information on both
can be found in [NAVFAC DM 7.01 (1982)] and [FHWA-NHI-06-088 (2006)].
And we hope that, if you employ finite element software for geotechnical ana-
lysis, you will go into it with a greater understanding for this method, too.
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