

SOIL MOTIONS UNDER VIBRATING FOUNDATIONS

A Dissertation

Ву

JOHN VIVIAN PERRY, JR.

Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 1963

Major Subject Mechanical Engineering

SOIL MOTIONS UNDER VIBRATING FOUNDATIONS

A Dissertation

By JOHN VIVIAN PERRY, JR.

Approved as to style and content by:

(Chairman of Committee)

(Head of Department)

August 1963

ABSTRACT

Soil Motions under Vibrating Foundations

John V. Perry, Jr., B.S., Virginia Polytechnic Institute

M.S., Texas A & M University

Directed by: Prof. Spencer J. Buchanan

and Prof. Roy M. Wingren

This research was undertaken to determine the amount and extent of soil motions under vibrating foundations. The test soil was standard 20-30 Ottawa sand, ASTM C-190, that was contained in a one-meter cubical box. A force generator was mounted above the soil and applied dynamic loads to a circular footing. These were harmonic forces and were applied at frequencies between five and fifty cycles per second.

Three hundred and sixty-seven test runs were recorded on an electromagnetic oscillograph from signals generated by an accelerometer buried in the soil. This accelerometer was located at various depths beneath the center of a footing and, at other times, it was located beneath and offcenter. Other variables were the footings which had different diameters and masses.

Three empirical equations were developed from the test results using dimensional analysis. These equations were for maximum values of acceleration, velocity and displacement, respectively.

ACKNOWLEDGMENTS

My sincere regards go to Dean W. C. Hall, Dean F. J. Benson and Dr. C. M. Simmang for their interests, considerations and financial aid that made possible this investigation.

Deep appreciation is extended to the members of my committee: Professors C. W. Crawford, L. S. O'Bannon and R. M. Wingren - Mechanical Engineering Department; Dr. R. E. Basye - Mathematics; Professor S. J. Buchanan - Civil Engineering Department; and Dr. H. T. Kennedy - Petroleum Engineering Department; for their confidence, guidance, and counseling.

My associates: S. E. Brown, J. R. Carter, R. H. Gibson, J. G. Simek, H. G. Stallings, and Hoyett Taylor are recognized for their contributions toward the design, manufacture, and construction of the vibrator, foundation and electronic components.

Special thanks are given Professor A. M. Gaddis for technical assistance in the instrumentation of the project, also Professor L. S. O'Bannon for his many helpful suggestions and friendship over the years.

Restitution can never be made to my wife, Helen, and my children, John, Judy and Joan, for what they have endured, but their sacrifices have been both noticed and appreciated.

TABLE OF CONTENTS

					Page
Acknowle	edgments			P 81	iii
List of	Tables				V
List of	Figures				vi
List of	Symbols				viii
1	Introduction	3 1		9. T	1
1.1	Equipment			* = b	3
111	Procedure				18
IV	Results				28
V	Conclusions				48
VI	Recommendations				49
Reference	es				51
Appendix			, , , , , , , , , , , , , , , , , , ,		53

LIST OF TABLES

T	ab	le		Page
	1		Test results for $D_f = 6.28$ inches.	30
	2		Test results for $D_f = 5$ inches.	36
	3		Test results for $D_f = 6$ inches.	37
	4		Test results for $D_f = 7$ inches.	40
	5		Foundation settlements.	44
	6		Calibration curve and run correspondence.	44
	7	4	Dimensionless values of $(\ddot{\delta}_{f}/F_{v})$, $(f^{2}D_{f}^{m}f/F_{v})$,	45
			and (Y/D_f) .	

LIST OF FIGURES

Figure			Page
1	Recording equipment and potentiometer type calibrator.		8
2	Calibration and accelerometer amplifying equipment.		8
3	Calibration position for force transducer with loading rod and indicator.		9
4	Calibration position for force transducer with loading rod, five ten-pound weights, and indicator.		9
5	Three loading springs in calibration position with indicator and force transducer.	on	10
6	Scales for weighing sand and balance for small equipment.		10
7	Centered load point.		11
8	Foundation aligned under load point.		11
9	Loading column in position.	0	11
10	Left depth gage and belt transmission betwee variable speed drive and loading frame.	en	12
11	Drive side of loading frame and right depth gage.		12
12	Elements included in the foundation.		13
13	Electrical equipment configuration.		14
14	Tee-box and connectors.	(8)	15
15	Amplifier power supply.	9	16
16	Force transducer without strain gages.		17
17	Performance curve of Reeves Vari-Speed	٠	23

F	igure			Page
	18	Accelerometer and recording equipment calibration records (full size).		24
	19•	Accelerometer and recording equipment calibration curves for 0.10 g.		25
	20	Information obtained from photographic record.		26
	21	Five photographs showing changes in accelerometer output as (Y) decreases.		27
	22	Vibration nomograph.		43
	23	Logarithmic graph of values from Table 7.		46
	24	Graph of $\ddot{\mathcal{S}}_r/\ddot{\mathcal{S}}_o$ versus r , from Figure 23 and Equation 8.	10.00	47

LIST OF SYMBOLS

S	ymbol	Dim	ensions	
	Ad	Double amplitude of light beam trace from accelerometer	L .	
	A'd	Double amplitude of light beam trace from accelerometer during calibration	L	
	Cc	Calibration curves	none	
	Dd	Relative density of sand	none	
	Df	Foundation diameter	L	
	Ε	Accelerometer sensitivity	F	
	Ec	Calibrated accelerometer sensitivity	F	
	F	Dimension of force	F	
	Fm	Mean force applied to the sand	F	
	F _v	Variable harmonic force applied to the sand	F	
	F ₁	Minimum force sensed by the transducer	F	
	F ₂	Maximum force sensed by the transducer	F	
	G	Specific gravity of solids in sand	none	
	Н	Depth of free sand in box	L	
	Нь	Depth of sand under the foundation	L	
	L	Dimension of length	L	
	R .	Horizontal distance between foundation and accelerometer centers	L	
	S	Foundation settlement	L	
	Т	Dimension of time	Т	
	٧	Volume of solids, air and water in sand	L ³	
	W	Weight (mass) of sand in box	FL-1 T2	

Symbol	D	Imensions
Wa	Weight (mass) of foundation elements above transducer	FL ⁻¹ T ²
Wb	Weight (mass) of transducer and foundation elements below transducer	FL-1T2
Wf	Weight (mass) of foundation	FL-1T2
'₩s	Dry weight (mass) of sand	FL-1 T2
Υ	Vertical distance between bottom of foundation and top of accelerometer	L
е	Void ratio of sand	none
f	Frequency	T-1
g	Local acceleration due to gravity	LT-2
ķ	Spring rate	FL-1
m _f	Mass of foundation	FL-1 T2
r	Ratio = Y/D_f	none
ro	Foundation radius	L
w	Moisture content of sand	none
8w	Unit weight of water	FL-3
8	Amplitude	L
ŝ	Maximum velocity	LT-1
ŝ	Maximum acceleration	LT-2
\mathcal{S}_{d}	Double amplitude	L
હ [ુ] જે: જે:	Acceleration at $Y = 0$	LT-2
8,	Acceleration at r	LT-2
p	Sand density	FL-3
4	One millionth, micro	none

CHAPTER !

INTRODUCTION

The purpose of this investigation was to determine the steady state soil motions under circular footings when acted upon by harmonically applied forces. The results in Chapter IV were obtained using the test facility and procedure described in Chapters II and III.

The author has been interested for some time in the study of vibrations and soil mechanics. He and his associates have acted as consultants on foundation vibrations problems and are concerned with the inadequacy of knowledge that would enable engineers to design a soil-foundation system with confidence. The soil-foundation system refers to the machine, the structure connecting it to the foundation, the foundation and the supporting soil.

The vibrations of this system can be determined in many ways once the installation has been made. However, no acceptable method has been found to design accurately the system, such that its vibrations can be predicted before installation. The unknown influence that some factors have on a particular system preclude an accurate design. Such factors are the kind, condition and arrangement of the soil. Also, the same factors vary with depth, location and environment.

Numerous investigations(1)*, both empirical and theoretical, have been made to resolve the factors which influence the vibrations of a soil-foundation system. One of the theoretical approaches to the problem(2) assumes the mass of soil, which vibrates with a foundation, is that contained in a right circular cylinder of the elastic half-space having a radius r_0 and a height r_0/π . One purpose of this investigation was to test the validity of this assumption.

^{*} Numbers in parentheses refer to references at the end of this dissertation.

CHAPTER II

EQUIPMENT

The experimental equipment is shown in Figures 1 through 16 and was located in the Mechanical Engineering Analog Computer Laboratory. One item not shown, a vacuum tube voltmeter borrowed from the Electrical Engineering Department, was used to check the output of the microvolter (Figures 2 and 13).

Recording Equipment

The oscillograph(3) records variable electric currents by the use of electromagnetic galvanometers in conjunction with a light source and a moving strip of photographic paper. Its timing system consists of a motor, slotted disk, fork, and light which records time lines (Figure 20) at 0.01 second intervals. The photographic paper speed may be varied from approximately 4 to 50 inches per second. This paper is available in 6 inch widths and either 100 or 200 foot rolls. The recording switch has OFF, AUTOMATIC, and MANUAL positions. A recording continued as long as the manual switch was held closed and for a 2 foot record with the automatic switch closed. A footage counter indicated the amount of paper used and a numbering counter projected a number (Figure 20) on each record. The sensitivity of the oscillograph was limited to that of the galvanometers and is inversely pro-

portional to the square of the galvanometer natural frequency.

Calibration Equipment

The accelerometer calibration equipment included the oscillator, microvolter and tee-box (Figures 2, 13 and 14). The oscillator introduced a preset frequency into the system; the microvolter, a preset voltage; and the tee-box enabled the system to be switched in or out. The force transducer and load springs had calibration equipment (Figures 3, 4, 5 and 13) composed of a strain gage indicator, loading rod, and known weights. A strobotac was used to set the frequency of loading.

Other Equipment

The entire system was so designed that many variations of D_f , F_m , F_v , f, H, m_f , R, and Y could be made. Additional mass could be added to the foundation by using the pressure gage calibration weights in the mechanical laboratory.

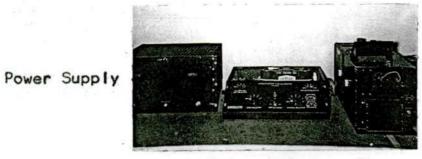
Transducers. The force transducer(4, 5, 6) Figure 16) has four strain gages bonded at ninety-degree intervals around the middle. Each gage has a factor of 2.08 and a resistance of 120 ohms ± 2%. The transducer is a part of the foundation (Figure 12).

The accelerometer(7), shown hanging on a nail inside the box in Figures 7, 8, and 9, is a piezoelectric device with a stainless steel case 0.60 inches in diameter by 0.42 inches thick and weighs 11 grams with mounting screw.

Amplifier. The amplifier (8) (Figure 2) has a selector switch with settings of 1, 3 and 10 gains; an input selector switch with the second of three positions recommended for use with all piezoelectric and capacitive type pickups; and an output standardizer that makes it possible to standardize the sensitivity of any accelerometer to a value E less than its original calibration E_c . The amplifier is energized by the power supply (Figure 15) which includes a transformer (9) for low frequency response.

Soil, container and beam. The soil tested was standard 20-30 Ottawa sand(10, 11, 12). It was obtained in seventy 50 pound bags (Figure 6). A one-meter cubical box, inside dimensions, was the container in which the sand was placed for testing. The box (Figures 3, 4 and 7 through 11) was constructed of one-half inch plywood, reinforced with 2" x 4" lumber and had metal bearing plates around the top periphery. These plates supported the depth gage and loading beam (Figures 10 and 11). The loading beam was a 6-inch, wide-flange, 25 pounds per foot steel beam. Mounted on this beam were the loading frame and variable speed drive (Figures 10 and 11). The beam, variable speed drive and loading frame were mounted such that the load point (Figure 7) could be positioned at any place inside the box.

Loading frame and foundation. The loading frame (Figures 5 and 7 through 11) was fabricated by welding various steel sections and had bolted to it two Sealmaster ball bearings No. SFT-12. These self aligning bearings supported the three-quarter inch diameter shaft, 13 inches long, that had a V-pulley keyed to one end and an eccentric machined on the other. The eccentric has a New Departure bearing No. 77-R-6 pressed on and held from axial movement by an Industrial retaining ring No. 3100-37. There are two such shafts, one has an eccentricity of 0.167 inches and the other half that. The shaft is belt driven from the Reeves Vari-Speed Motordrive, "C" Flow, 100-1A-12, having output speeds from 310 to 3100 revolutions per minute.


The loading frame front flanges have two holes, each is one-half inch in diameter, drilled three and seven-eights inches on centers. Through these holes are inserted steel rods of adequate hardness. The rods had a diameter of 0.4990 inches with tolerances of +0.0000 inches. An aluminum follower was machined to hold one, two or three Briggs and Stratton exhaust valve springs No. 26478 and two Thompson ball bushings No. A-81420. The top of the follower has a Conolite bearing plate cemented to the center. This plate makes contact with the bearing on the shaft eccentric. The bushings, held in place in the follower with two Industrial retaining rings No. 3100-87, allowed the follower to move

freely on the steel rods.

Beneath the follower and separated by the springs is the loading bar with adapter (Figure 12). This bar is machined similarly to the follower and has its adapter screwed to the bottom. The adapter has a hole for inserting a plumb bob string and one end has a cone-shaped depression to hold the column adapter.

The column (Figure 12) rested on a steel loading plate that was screwed to the foundation disk. Seven disks were made; one had a ten square centimeter area; and the others had diameters of 4, 5, 6, 6.28, 7, and 10 inches. The length of the foundation elements could be varied by screwing the threaded rod inside the column and securing them with a locking nut. There were three sets of these steel columns and rods; long, intermediate and short.

Depth gages. The depth gages were vertical 1" x 4" S4S boards secured to a horizontal screed (Figures 7 through 9) at their lower ends. The verticals (Figures 10 and 11) passed through brackets and were held in place with set screws. The depth of sand in the box could be read on meter scales at indexes on the brackets. The scales were cut from a meter stick and glued to rabbeting in each vertical. This device also served to level the sand in the box. Depths were read to whole millimeters and estimated to fractions of a millimeter.

Oscillograph

Potentiometer Type Calibrator

Figure 1. Recording equipment and potentiometer type calibrator.

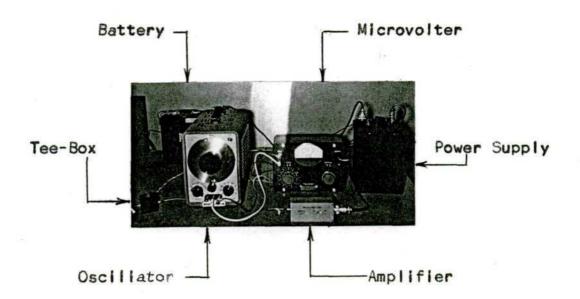


Figure 2. Calibration and accelerometer amplifying equipment.

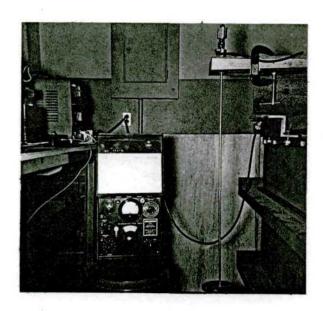
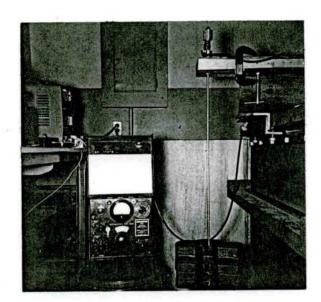



Figure 3. Calibration position for force transducer with loading rod and indicator.

Figure 4. Calibration position for force transducer with loading rod, five ten-pound weights, and indicator.

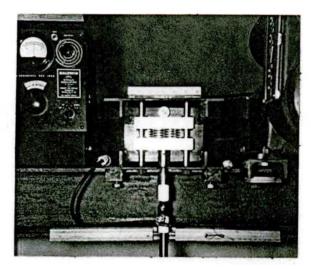


Figure 5. Three loading springs in calibration position with indicator and force transducer.

Figure 6. Scales for weighing sand and balance for small equipment.

Figure 7. Centered load point.

Figure 8. Foundation aligned under load point.

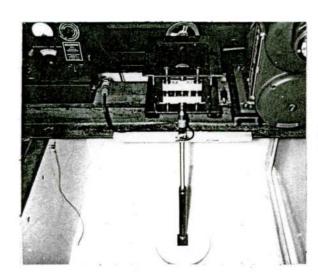


Figure 9. Loading column in position.

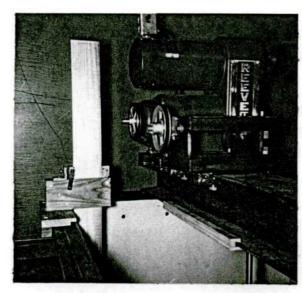


Figure 10. Left depth gage and belt transmission between variable speed drive and loading frame.

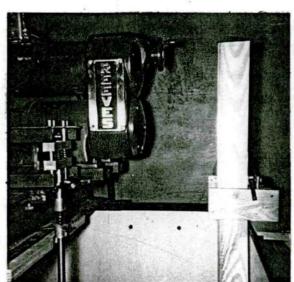


Figure 11. Drive side of loading frame and right depth gage.

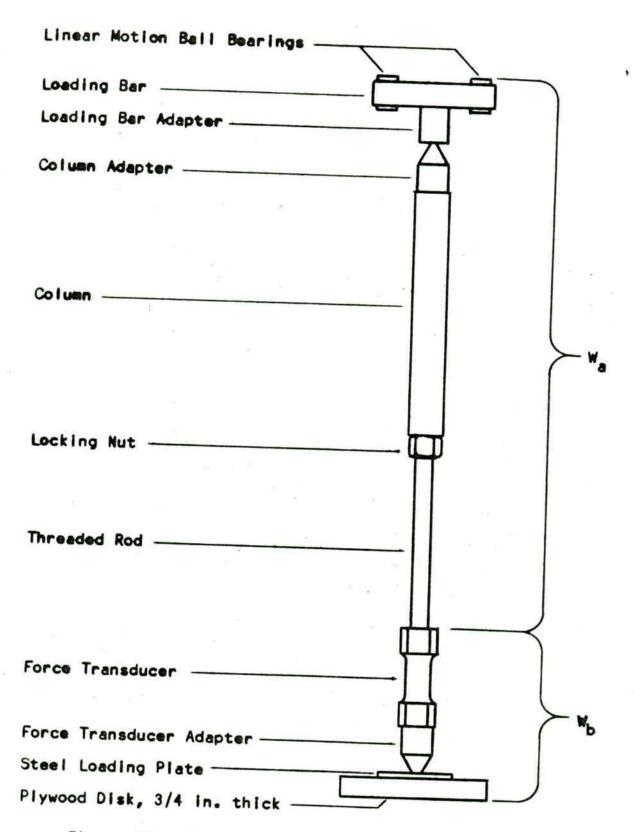
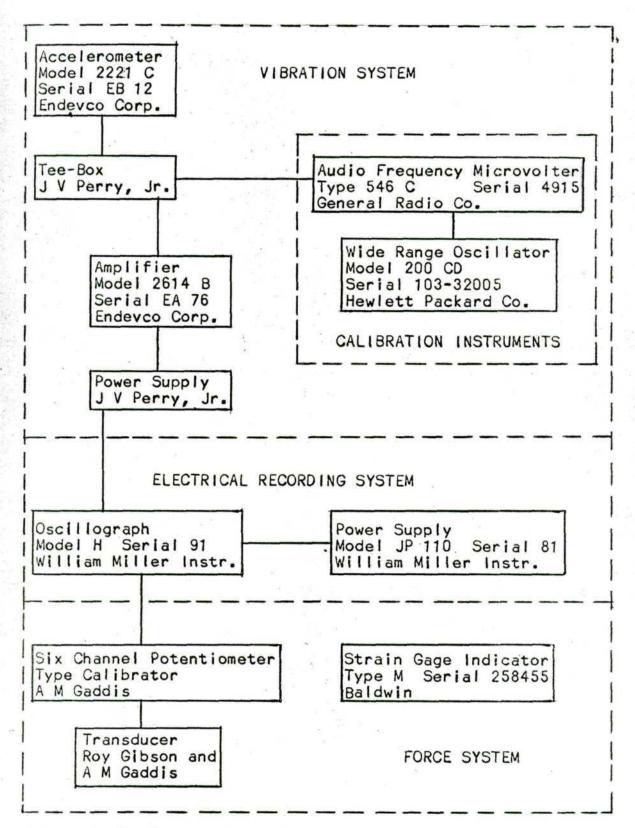
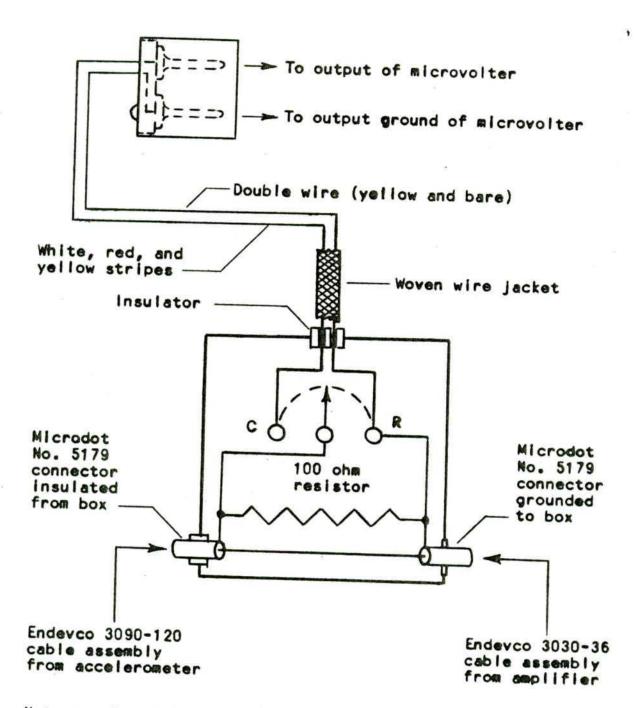
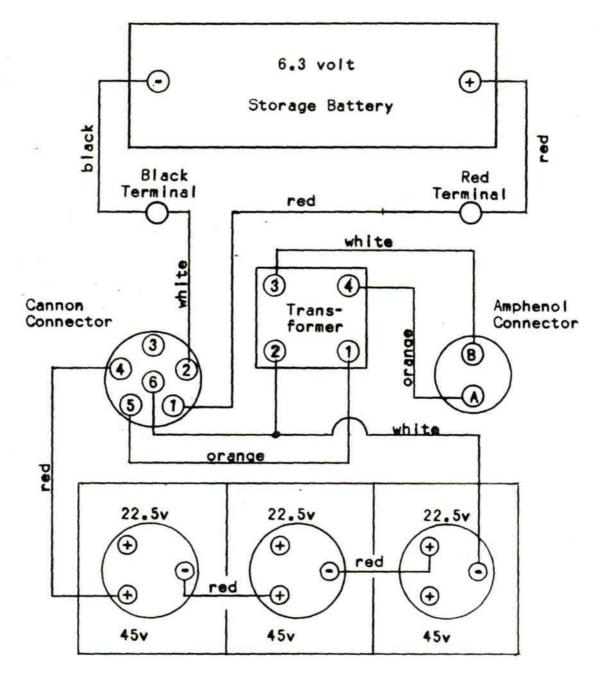


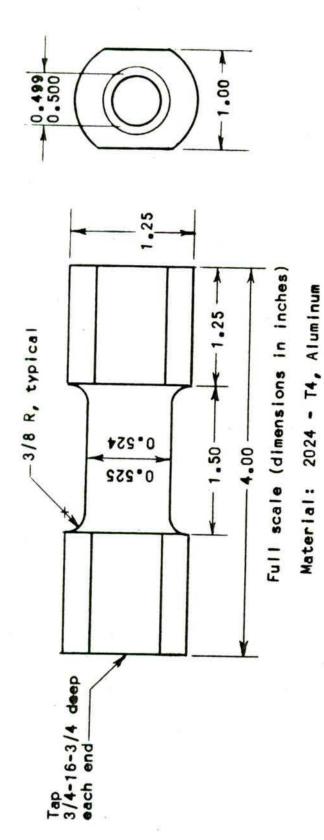
Figure 12. Elements included in the foundation.


Figure 13. Electrical equipment configuration.

Notes: 1. C is the switch position for calibrate.

- 2. R is the switch position for run.
- 3. Not to scale.


Figure 14. Tee-box and connectors.

Notes: 1. Cannon RWK-6-31SL mates with RWK-6-22C-1/4 on cable. The other end of cable has WK-6-21C-1/4 that mates with WK-6-32S on Endevco amplifier.

- 2. Amphenol AN-3102-A-10SL-4P mates with AN-3106-A-10SL-4S (C).
- 3. Transformer is Endevco model 2609.1.

Figure 15. Amplifier power supply.

Mechanical properties:

68,000 psi = ultimate strength in tension

47,000 psi = yield strength in tension

41,000 psi = ultimate strength in shear

psi = modulus of elasticity (average of tension and compression) - endurance strength in reversed bending at 5×10^8 cycles 20,000 psi 10.6 X 10⁶

Physical properties:

0.10 lbm / inch³ = specific weight 935°F - 1180°F = melting range

Figure 16. Force transducer without strain gages.

CHAPTER III

PROCEDURE

This chapter is subdivided into assumptions and procedure. The assumptions apply to the soil and the procedure includes equipment calibration and method of testing. The results are given in Chapter IV.

Assumptions

The kind and arrangement of the soil were constants. Other constants were; w = 0.115%, and G = 2.75. The relative density(11 and 14) was a variable and its effect was minimized by loading the foundation at six dial settings (Figure 17) of the variable speed drive, viz. 1, 3, 5, 6, 7, and 8. This gave full settlement to the foundation before the record runs were made.

The relative density, $D_d = (e_{max} - e)/(e_{max} - e_{min})$, where $e = (G_W^2 V/W_s) - 1$, was not held constant because of variations in V/W_s . The isopyc(15) and value of V/W_s would be difficult to determine since the zone(16) that bounds V depends upon the initial density and the periodic impulses from the vibrator. According to R. K. Bernhard and J. Finelli (page 252 of reference 1) it is difficult to measure density variations with soil depth.

The coefficient of dynamic subgrade reaction(17) was another variable that was neglected. This coefficient depends, in part, upon the size and shape of the loaded area.

Procedure

<u>Calibration of equipment.</u> The force gage was positioned for compression (Figures 3 and 4) and found to have a straight line relationship between deflection and load up to the maximum expected load of 100 pounds. The springs were checked against the force gage (Figure 5) to find the spring rate and the F_{ν} which could be applied with one, two and three springs. This information is in Appendix A.

The accelerometer had a factory calibration but this did not go below 20 cycles per second, cps. Therefore, the accelerometer was calibrated between f = 5 cps and 20 cps as follows:

- 1. The accelerometer was screwed to the top of the follower which had a $\mathcal{E}_{\rm d}$ = 0.334 inches.
- 2. The follower was vibrated at a known frequency and ${\rm A}_{\rm d}$ measured.
- 3. The value of $\vec{\mathcal{S}}/g$ was calculated using the relation $(\mathcal{S}_d/2)(2\pi f)^2/g$, and A_d' was obtained for this frequency and recording equipment configuration from $A_d/(\vec{\mathcal{S}}/g)g$ equals $A_d'/(0.10g)$.
- 4. Steps 2 and 3 were repeated using different frequencies and a graph made of $A_d'/(0.10g)$ versus f. Values of A_d' were taken from this graph at f=5, 10, 15 and 20 cps.
- 5. A frequency of 5 cps was set on the oscillator and the microvolter adjusted to give the same A_d^{\prime} at this

frequency from the graph in step 4. This voltage was the equivalent of 0.10g for f = 5 cps.

 Step 5 was repeated at frequencies of 10, 15, and 20 cps.

The accelerometer and recording equipment calibration was accomplished for the runs as follows:

- 1. A voltage, equivalent to 1g, was set on the microvolter and f = 5 cps was set on the oscillator. These signals were sent through the system and a record taken on the oscillograph paper.
- 2. The frequency was changed in increments of 5 cps extending over the range and records taken of each.
- 3. Steps 1 and 2 were repeated for voltage equivalents of 0.50g and 0.10g.

Typical records are shown as a set in Figure 18. The equipment was calibrated before, during, and after a series of runs and averaged to obtain the proper curve. These curves are shown in Figure 19 and the corresponding runs in Table 6.

Appendix B has the factory calibration information.

The Reeves Vari-Drive did not need calibrating but a performance curve (Figure 17) was drawn to find the output speed for a particular dial setting. This curve helped to obtain a value close to the desired frequency by setting the dial.

The potentiometer type calibrator (Figure 1) was adjusted to give a one inch deviation from the zero force line (Figure 20) for each twenty pounds of force.

Method of testing. Bags of sand were weighed (Figure 6).

and the sand poured into the box. The empty bags were then

weighed to determine the sand weight. The sand top surface

was screeded level and its depth measured with the depth

gage. This is recorded in Appendix C and averaged 36.71

pounds per centimeter of depth.

The beam, vari-drive, and loading frame were adjusted and locked in position with load point centered in the box (Figure 7). The accelerometer was positioned at a known location for each run. Four methods were used to bury the accelerometer in the sand:

- 1. An insulated steel rod, 38 cm long, was positioned vertically and supported by the box and sand. The accelerometer was placed over the rod so that its top surface was flush with the upper end of the rod.
 - 2. It was supported only by the sand.
- 3. It was placed on top a piece of filter paper
 11 cm in diameter.
- 4. It was screwed to a thin aluminum disk 3 in. in diameter.

Refer to Appendix D for information regarding each run.

A foundation was aligned under load point (Figure 8), and loading column placed in position (Figure 9). The elements included in the foundation were actually positioned with the force transducer near the bottom (Figure 12). This

allowed the transducer to sense all forces transferred to the soil except those coming from the transducer, its adapter, steel loading plate and plywood disk. The weights of all foundation elements, springs, and follower are in Appendix C.

The record runs were made using different foundation diameters and masses, and at various values of Y, R, F_m , F_V , and f. Approximately 900 runs were made but only 367 (Tables 1 through 4) were used. The ones not used showed little or no accelerometer excitation as seen in Figure 21 for Run No. 157.

Information from a photographic record for Run No. 291 is shown in Figure 20. The top curve is from the accelerometer system and its jaggedness illustrates noise. Values taken from the record are recorded in Table 4; A'_d is from the appropriate calibration curve in Figure 19 and Table 6. The determination of F_m for this run and W_f for runs 1 through 18 and 19 through 42 are in Appendix E.

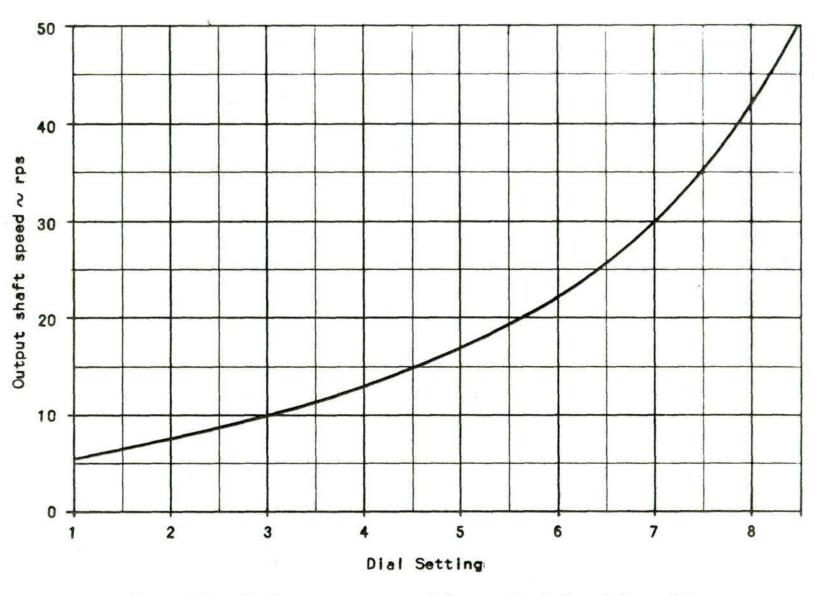


Figure 17. Performance curve of Reeves Vari-Speed Motordrive.

83

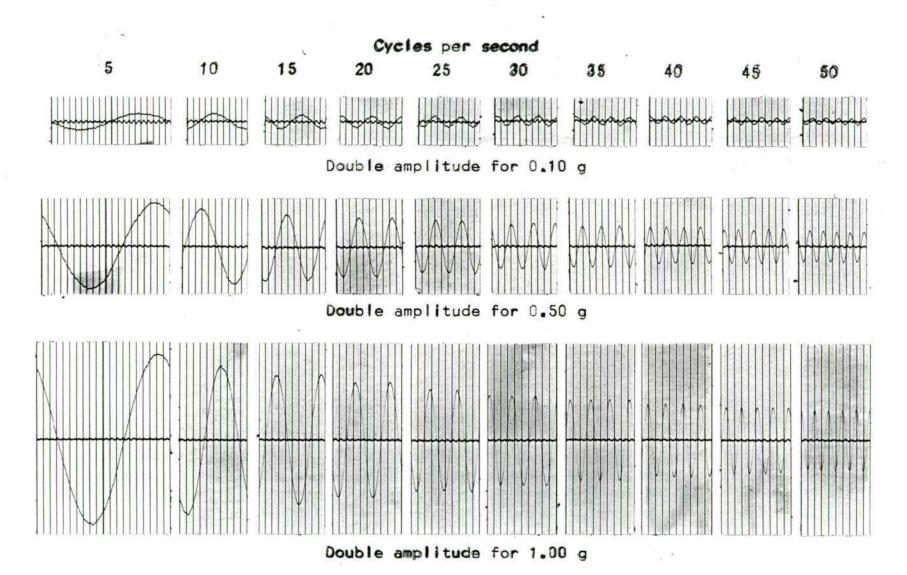


Figure 18. Accelerometer and recording equipment calibration records (full size).

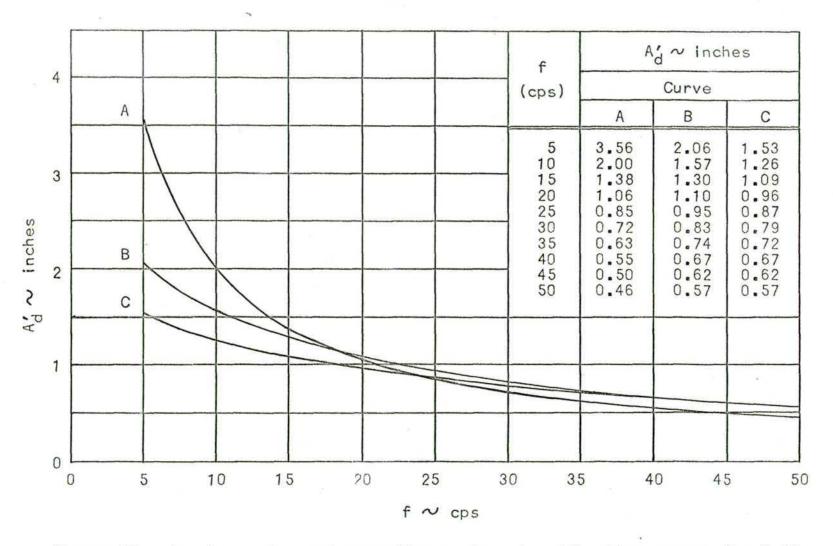


Figure 19. Accelerometer and recording equipment calibration curves for 0.10 g.

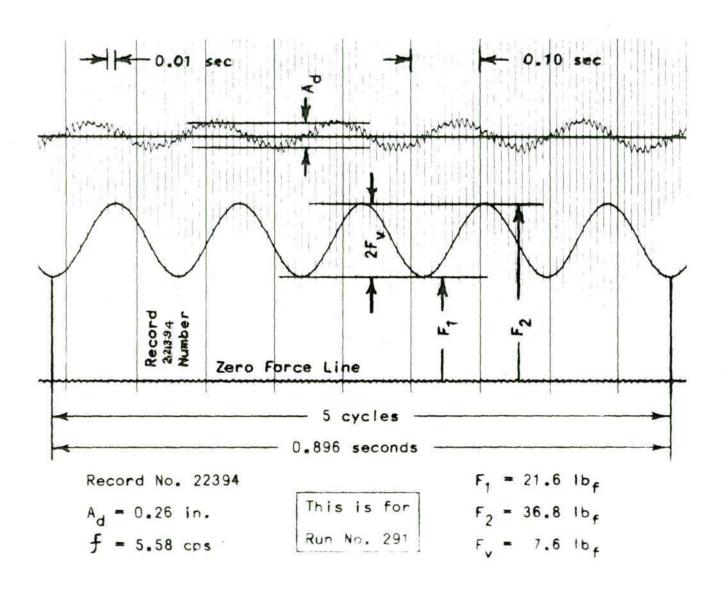


Figure 20. Information obtained from photographic record.

00

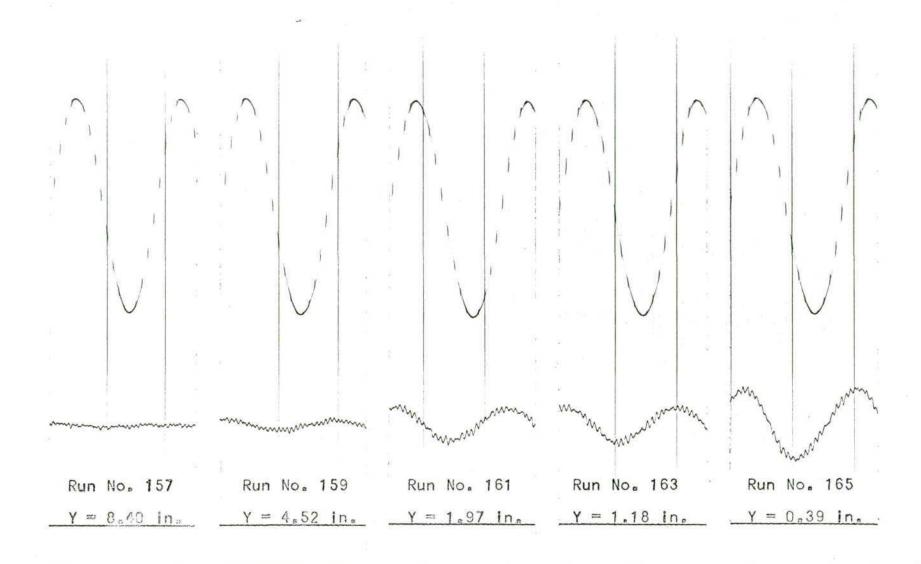


Figure 21. Five photographs showing changes in accelerometer output as (Y) decreases.

CHAPTER IV

The results are given in Tables 1 through 4. The columns headed $\hat{\mathcal{S}}$ and $\hat{\mathcal{S}}_d$ were completed using the values for f and $\hat{\mathcal{S}}/g$ with a vibration nomograph (Figure 22). Table 5 contains information on settlements and Table 6 shows the calibration curve and run correspondence. Dimensionless parameters(13) are shown in Table 7 for some of the runs and presented graphically in Figure 23. From this figure, equations are written as follows:

$$\ddot{\delta}_{o} = 0.036 \text{ f}(D_{f}F_{v}/m_{f})^{0.5} \qquad [1]$$

$$\ddot{\delta}_{o.37} = 0.010 \text{ f}(D_{f}F_{v}/m_{f})^{0.5} \qquad [2]$$

$$\ddot{\delta}_{o.78} = 0.006 \text{ f}(D_{f}F_{v}/m_{f})^{0.5} \qquad [3]$$

$$\ddot{\delta}_{o.78} = 0.0033 \text{ f}(D_{f}F_{v}/m_{f})^{0.5} \qquad [4]$$

$$\ddot{\delta}_{o.37}/\ddot{\delta}_{o} = 0.278 \qquad [5]$$

$$\ddot{\delta}_{o.78}/\ddot{\delta}_{o} = 0.167 \qquad [6]$$

The last three equations are shown graphically in Figure 24 as the dotted line. An approximate equation for this line is: $\ddot{\mathcal{S}}_{r}/\ddot{\mathcal{S}}_{o} = (0.032)^{r}$

shown as the solid curve in the figure.

For Run No. 157, values of f, D_f , F_v , and m_f were put into Eq. [1] and give $\ddot{\mathcal{S}}_o = 18.6$ in. per \sec^2 . The experimental result of $\ddot{\mathcal{S}}_r = 0.773$ in. per \sec^2 at r = 1.34. The corresponding value of $\ddot{\mathcal{S}}_r/\ddot{\mathcal{S}}_o = 0.042$ is shown as Run No. 157 in Figure 24, and is very close to the curve from Eq. $\begin{bmatrix} 8 \end{bmatrix}$.

Combining Eq. [1] with Eq. [8] gives: $\ddot{\mathcal{E}}_r = 0.036 \text{ f} (D_f F_v/m_f)^{0.5} (0.032)^r, \text{ and for harmonic motion} \\ \ddot{\mathcal{E}} = \dot{\mathcal{E}}(2\pi f) \text{ and } \mathcal{E}_d = 2\dot{\mathcal{E}}/2\pi f. \text{ Therefore, three equations} \\ \text{which represent soil motions under vibrating foundations for the soil tested are:}$

$$\ddot{S}_r = 0.036 f(D_f F_v/m_f)^{0.5} (0.032)^r$$
 [9]

$$\dot{S}_{r} = (0.018/\pi) (D_{f}F_{v}/m_{f})^{0.5} (0.032)^{r}$$
 [10]

$$(\mathcal{S}_d)_r = (0.018/\pi^2 f) (D_f F_v/m_f)^{0.5} (0.032)^r$$
 [11]

Table 1. Test results for $D_f = 6.28$ in.

Run	Wf	Υ	0								
No.		1	R	F _m	Fv	f	Ad	Ad	$\frac{\mathcal{E}}{g} \times 10^4$	Sx 103	6 _d x 10 ⁵
	Ibm	in.	in.	lbf	lbf	cps	in.	in.	g 	ips	in.
1	6.02	7.75	0	62.1	10.4	42.0	0.22	0.53	415	60	47
2	1	1	1	60.7	12.9	29.6	0.15	0.72	208	42	45
3				60.3	15.1	22.4	0.15	0.94	160	43	62
2 3 4 5 6 7 8 9	1 2		1	60.1	17.0	17.1	0.14	1.23	114	41	78
- 5		1		60.1	20.0	10.1	0.15	1.99	75	45	143
6		7.75	1	60.2	22.2	5.5	0.19	3.32	57	64	366
7		5:83		60.3	10.4	41.8	0.22	0.53	415	60	46
8				59.6	13.1	29.6	0.17	0.72	236	48	52
9		1	1	59.6	15.4	22.2	0.16	0.95	169	. 46	66
10				59.3	17.5	17.0	0.14	1.23	114	41	76
11				59.4	20.2	10.1	0.08	1.99	40	24	76
12		5.83		59.4	22.3	5.5	0.08	3.34	24	27	156
13		3.90		60.9	10.6	41.4	0.35	0.54	649	96	75
14	1		1	60.4	13.1	30.2	0.26	0.71	366	75	-80
15 16				60.4	15.5	22.2	0.22	0.95	232	64	86
17			1	60.4	17.6	17.3	0.17	1.21	141	51	94
18	6.02	3.90	1	60.9	20.5	10.2	0.12	1.98	61	37	114
19	7.40	2.20		60.3	10.6	40.8	0.11	0.54	33 519	37 78	214
20	1.40	2.20	1	60.4	13.1	30.2	0.14	0.71	197	40	61
21				60.5	15.9	22.3	0.09	0.94	96	25	42 35
22				60.4	17.8	17.1	0.15	1.23	122	44	81
23	1		1	60.5	20.5	10.2	0.40	1.97	203	122	380
24		2.20		60.5	22.5	5.5	0.66	3.33	198	221	1270
25		1.61		60.0	10.9	40.9	0.30	0.54	555	83	65
26		1	1	60.0	13.4	29.7	0.12	0.72	167	34	36
27				60.0	15.8	22.3	0.15	0.34	160	43	60
28			1	59.9	17.9	17.0	0.26	1.23	211	76	142
29	1	1	1	60.1	20.6	10.1	0.57	1.99	286	172	542
30	7.40	1.61	0 .	60.0	22.5	5.5	0.90	3.34	269	300	1730

Table 1. (continued)

Run	₩f	Y	R	Fm	F _v	f	Ad	A'd	<u>ε</u> x 10 ⁴	έ _{x 10} 3	δ _d x 10 ⁵
No.	lbm	in.	in.	lbf	lbf	cps	in.	in.	$\frac{\mathcal{E}}{g} \times 10^4$	ips	in.
31	7.40	0.95	0	59.6	10.8	40.9	0.14	0.54	259	38	30
32		1		59.7 59.8	13.4 15.7	30.0	0.35	0.71 0.94	4 93 692	100 188	107 265
34				59.7	17.7	17.0	0.97	1.23	788	283	532
35		1		59.9	20.5	10.1	1.76	1.99	885	533	1685
36		0.95		59.8	22.5	5.5	2.77	3.34	830	930	5390
37		0.31		59.8	10.9	40.6	0.24	0.55	436	65	51
38				59.8	13.2	30.1	0.41	0.71	578	118	126
39		1		60.0 5 9.9	15.9	22.3	0.71	0.94	755 878	204 316	290
41		1	- 1	60.0	18.0 20.5	17.0	1.08	1.99	965	582	580 1840
42	7.40	0.31	o	60.1	22.5	5.5	3.01	3.34	900	1000	5800
43	6.02	7.90	4	60.9	10.7	41.6	0.10	0.53	189	28	22
44	1	1	1	60.9	13.5	29.4	0.08	0.72	111	23	24
45				61.1	15.9	22.3	0.07	0.94	75	20	28
46				61.2	18.0	17.0	0.05	1.23	41	15	27
47		7 00	!	61.2	20.6	10.1	0.09	1.99	45	27	85
48		7.90 7.95	4	61.3	22.6	5.5	0.12	3.34	36	40	231
49 50		7.93	ì	61.2	11.0 13.5	40.7	0.07	0.55	127 71	19	15 15
51			- 1	61.3	16.0	22.3	0.06	0.94	64	17	24
52			1	61.5	18.0	17.2	0.06	1.22	49	18	33
53		1	1	61.4	20.7	10.1	0.05	1.99	25	15	49
54		7.95	8	61.5	22.5	5.5	0.07	3.34	21	23	135
55		8.03	12	60.4	10.9	41.2	0.08	0.54	148	22	18
56				60.1	13.7	29.5	0.04	0.72	56	11	12
57 58			1	60.2	16.0 18.1	22.2	0.06	0.95	63 49	16 18	23 33
59		1		60.2	20.7	10.2	0.05	1.97	25	15	49
60	6.02	8.03	12	60.3	22.5	5.5	0.04	3.33	12	13	78

Table 1. (continued)

	1.7									• •	
Run No.	₩f	Y	R	Fm	Fv	f	^{A}d	Ad	$\frac{8}{9} \times 10^4$	Šx 10 ³	ε _d x 10 ⁵
	1bm	in.	in.	lbf	lbf	cps	in.	in.	9 ^ 10	ips	in.
61	6.02	6.25	4	61.2	10.9	40.1	0.09	0.55	164	25	19
62	1	1	Ì	61.0	13.4	30.0	0.07	0.71	99	20	21
63	1			60.9	15.9	22.3	0.07	0.94	74	20	29
64 65				61.1	18.0	17.1	0.06	1.23	49	18	33
66		6.25		61.3	20.7	10.1	0.16	1.99	80	48	150
67	1	4.21		61.3	22.5 10.9	5.5	0.24	3.33	72 240	82 36	480
68	1.	1		61.3	13.5	29.8	0.06	0.72	83	16	28 17
69	1			61.2	16.0	22.4	0.10	0.94	106	28	40
70				61.3	18.0	17.0	0.11	1.23	89	32	59
71		1		61.3	20.6	10.2	0.24	1.98	121	73	230
72	6.02	4.21		61.3	22.5	5.5	0.36	3.34	108	121	700
73	7.40	2.44		60.0	10.5	40.6	0.22	0.55	400	60	47
74	1	1		1	12.9	29.7	0.13	0.72	180	37	40
75	-	1		1	15.2	22.3	0.08	0.94	85	23	33
76				30 35	17.2	17.0	0.06	1.23	49	18	33
77	1	2 11		60 0	20.0	10.2	0.12	1.97	61	37	115
78 79		2.44		60.0 59.8	22.0 10.5	5.5	0.19	3.34	57	64	370
80	1	1.07		59.8	13.0	29.9	0.25	0.53	471 240	71 49	55 52
81				59.8	15.4	22.3	0.10	0.94	106	28	40
82	1	1		59.9	17.4	17.1	0.07	1.23	57	20	39
83				60.0	20.1	10.3	0.06	1.96	31	19	59
84	İ	1.67	4	60.0	22.0	5.5	0.11	3.34	33	37	215
85		0.95	2	60.1	10.6	40.8	0.26	0.54	481	72	56
86	1	1	1	60.1	13.2	29.9	0.13	0.71	183	38	40
87			i	60.1	15.7	22.3	0.12	0.94	128	34	48
88	1		1	60.2	17.6	17.1	0.18	1.23	146	53	97
89	1	ı	1	60.2	20.3	10.1	0.35	1.99	176	106	330
90	7.40	0.95	2	60.4	22.3	5.5	0.70	3.34	210	235	1350

Table 1. (continued)

Run No.	Wf	Y	R	Fm	F _v	f	Ad	A'd	$\frac{8}{9} \times 10^4$	Š x 10 ³	ε _d × 10 ⁵
	Ibm	in.	in.	Ibf	lbf	cps	in.	in.	g 	ips	in.
91	7.40	0.89	4	60.0	10.6	41.2	0.25	0.54	463	7 0	54
92	-1	1	1	59.8	13.2	29.8	0.17	0.72	236	48	52
93	1	1	1	60.0	15.6	22.4	0.15	0.94	160	43	61
94	1	1	1	60.0	17.6	17.1	0.12	1.23	98	35	65
95	1	- 1	1	60.0	20.1	10.1	0.11	1.99	55	33	103
96	1	0.89	1	60.0	22.1	5.5	0.09	3.34	27	31	180
97	1	0.27	- 1	59.6	10.5	40.8	0.22	0.54	408	61	48
98	1	1		59.6	13.0	30.0	0.16	0.71	225	46	49
99	1	1		59.6	15.4	22.4	0.12	0.94	128	34	48
100	1		- 1	59.6	17.5	17.0	0.11	1.23	89	32	59
101	1	1	1	59.7	20.1	10.1	0.10	1.99	50	30	94
102	1	0.27	4	60.0	22.0	5.5	0.08	3.33	24	27	155
103	1	0.26	3	59.3	10.8	40.6	0.33	0.55	600	90	70
104	1	1	1	59.3	13.2	29.8	0.23	0.72	319	65	70
105	1	4		59.2	15.5	22.3	0.16	0.94	170	46	64
106	1		1	59.5	17.6	17.1	0.15	1.23	122	44	81
107	1	1	1	59.6	20.2	10.1	0.07	1.99	35	21	67
108	1	1	3	59.6	22.1	5.5	0.06	3.32	18	20	116
109	1	1	2	59.9	10.9	40.6	0.20	0.55	364	55	42
110	- 1			60.0	13.3	29.6	0.09	0.72	125	26	27
111	ì	1	1	1	15.5	22.3	0.24	0.94	256	68	98
112	l	1	1		17.5	17.0	0.37	1.23	301	108	200
113	-	1		1	20.3	10.1	0.76	1.99	382	230	720
114	}	0.26	2		22.1	5.5	1.11	3.32	334	372	2150
115		0	0	1	10.7	41.0	0.40	0.54	741	111	87
116	1	1	1		13.2	29.8	0.76	0.72	1055	224	237
117	į		l		15.7	22.3	1.20	0.94	1280	351	490
118					17.7	17.1	1.65	1.23	1340	481	880
1119	}	1	l	1	20.4	10.1	2.90	1.99	1460	882	2730
120	7.40	0	0	60.0	22.3	5.5	4.70	3.34	1.410	1585	9200

Table 1. (continued)

Run No.	₩f	Y	R	Fm	F _v	f	Ad	A'd	$\frac{6}{g} \times 10^4$	Ėx 10 ³	8 _d x 10 ⁵
	bm	in.	in.	lbf	lbf	cps	in.	in.	9	ips	in.
121	7.40	0	0	60.0	10.7	41.0	1.20	0.54	2222	335	260
122	1	1	1		13.2	29.8	1.30	0.72	1807	376	406
123					15.7	22.3	1.40	0.94	1490	405	560
124	1	- 1			17.7	17.1	1.60	1.23	1300	465	870
125	1	1			20.4	10.1	2.20	1.99	1106	670	2100
126	1	0	1		22.3	5.5	3.20	3.34	958	1060	6200
127		0.75			10.7	41.0	0.34	0.54	630	95	74
128	i				13.2	29.8	0.73	0.72	1013	217	230
129	1				15.7	22.3	1.20	0.94	1280	350	490
130	1	İ	1		17.7	17.1	1.63	1.23	1325	478	880
131	1	1	1		20.4	10.1	2.78	1.99	1398	843	2600
132		0.75			22.3	5.5	4.60 0.24	3.34	1380	1540	8900
133			1		10.7	41.0	0.24	0.54	445	67	52
134	1		1		13.2	29.8	0.38	0.72	528	111	120
135	1	1			15.7	22.3	0.63	0.94	670	182	250
136	1		1		17.7	17.1	0.94	1.23	765	274	508
137	1		1		20.4	10.1	1.60	1.99	804	486	1520
138	1	1.42			22.3	5.5	2.53	3.34	758	840	4900
139	1	2.09			10.7	41.0	0.30	0.54	555	83	65
140	i			į.	13.2	29.8	0.12	0.72	167	34	36
141					13.2 15.7 17.7	29.8 22.3 17.1	0.22	0.94	234	63	86
142	1	1	1		17.7	17.1	0.30 0.12 0.22 0.37	1.23	301	107	200
143	ı	0 00	1		20.4	10.1	0.72	1.99	362	220	680
144	1	2.09			22.3	5.5	1.10	3.34	329	370	2110
145		2.62			10.7	41.0	0.32	0.54	593	89	69
146					13.2	29.8	0.18	0.72	250	51	54
147	1				15.7	22.3	0.10	0.94	106	29	40
148			1		17.7	17.1	0.15	1.23	122	44	81
149	7 40	0 00	1	000	20.4	10.1	0.35	1.99	176	105	330
150	7.40	2.62	0	60.0	22.3	5.5	0.56	3.34	168	187	1070

Table 1. (continued)

Run No.	Wf	Y	R	Fm	F _v	f	Ad	A'd	$\frac{6}{9} \times 10^4$	Ėx 10 ³	S _d x 10 ⁵
	lbm	in.	in.	lbf	lbf	cps	in.	in.	g x 10	i ps	in.
151 152 153 154 155 156 157 158 160 161 163 164 165 166	7.40 6.02 6.02 6.02 7.40	3.31 8.40 6.51 4.52 3.01 1.97 1.57 1.18 0.79 0.39	0	60.0 60.0 61.3 61.2 61.1 59.7 59.1 59.4 59.4 59.8 60.0	10.7 13.2 15.7 17.7 20.4 22.3 21.9 22.2	41.0 29.8 22.3 17.1 10.1 5.5	0.30 0.19 0.11 0.09 0.22 0.37 0.04 0.05 0.11 0.16 0.35 0.38 0.40 0.69 0.80	0.54 0.72 0.94 1.23 1.99 3.34 1.99	555 264 117 73 111 111 20 25 55 80 176 191 176 201 346 3640	83 54 31 26 67 123 22 28 61 89 196 214 196 226 385 4040	65 57 43 48 220 720 130 162 355 520 1140 1240 1140 1300 2240 23300
167	7.40	0	0	59.3	22.2	5.5	0.35	0.22	1590	1770	10100

Table 2. Test results for $D_f = 5$ in.

Run No.	W _f	Υ	R	Fm	F _V	f	A _d	A'd	$\frac{\ddot{\delta}}{g} \times 10^4$	έ _{χ 10} 3	S _d x 10 ⁵
	1 Dm	ın.	In.	IDT	IDT	cps	ın.	ın.		IPS	in.
168 169 171 172 173 174 177 178 178 178 188 188 188 191	7.15	2.08 1.98	0 O 4	1bf 44.5 42.3 40.5 37.5 30.3 43.5 48.3 43.5 4	1bf 23.0 20.5 15.5 13.0 15.8 15.8 14.0 14.0 15.8 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	cps 5.6 10.3 17.4 23.4 5.6 6.6 10.3 17.5 17.5 17.5 17.5 223.1 230.6 6.6 10.3 10.3 5.6 6.6 10.3	1.01 0.72 0.39 0.24 0.29 0.12 0.35 0.19 0.14 0.22 0.30 0.27 0.46 0.31 0.52 0.07 0.08 0.07	1.98 1.55 1.00 1.98 1.98 1.98 1.98 1.98 1.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	510 464 3238 349 6177 1187 1187 1180 1187 12598 451 23747 255 40 45	565 277 1153 71 448 1935 70 1122 760 139 44 27	3300 880 215 87 75 260 395 1140 1220 350 76 121 167 73 98 165 81 142 163 230 260 84
	7.15	1.98	4.	24.0 42.0 46.0 41.9 43.7 41.7 41.7 46.3	7.0 13.8 20.1 11.8 17.1 10.4 14.8 8.7 12.7	10.3 10.2 10.3 17.4 17.4 23.4 22.9 30.3 30.3	0.09 0.12 0.14 0.15 0.16 0.13 0.19	1.55 1.55 1.55 1.20 1.20 1.00 1.01 0.83 0.83	45 58 77 117 125 120 158 157 229	27 356 42 45 22 42 42 42 42 42 42 42	84 110 145 77 83 44 58 34

Table 3. Test results for $D_f = 6$ in.

Run No.	W _f	Υ	R	Fm	F _v	f	Ad	A'd	$\frac{\ddot{s}}{g} \times 10^4$	Šx 10 ³	S _d x 10 ⁵
	lbm	in.	in.	lbf	lbf	срѕ	in.	in.	g	ips	in.
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227	7.28	0 2.21 2.21	0	1bf 22.0 49.0 21.5 41.5 46.5 41.5 42.0 41.5 4	1bf 8.0 15.5 22.5 7.0 14.0 20.5 6.0 12.0 17.5 13.3 8.0 15.5 23.3 7.3 14.3 6.0 12.3 18.5 6.0 11.0 16.3 4.8 9.3 13.8	5.6 5.6 5.6 10.3 17.2 17.4 22.9 22.6 22.9 29.5 5.6 10.3 17.5 17.5 17.5 22.9 22.8 30.1 30.2	0.30 0.60 0.91 0.22 0.46 0.70 0.12 0.38 0.10 0.16 0.22 0.18 0.12 0.21 0.31 0.25 0.35 0.35 0.36 0.35 0.36 0.37	1.98 1.98 1.98 1.55 1.55 1.55 1.20 1.21 1.01 1.02 1.01 1.02 1.01 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.9	9 152 303 460 142 295 452 100 215 316 99 157 218 214 61 106 157 90 160 226 158 248 358 218 218 219 215 216 217 218 218 218 218 218 218 218 218	169 335 508 86 179 273 35 77 114 26 43 58 44 68 117 174 54 96 136 57 89 122 58 122 58 122 103 130	980 1950 3000 265 560 860 65 141 210 36 58 80 46 395 680 1010 170 300 420 104 164 225 80 122 169 64 110 140
228 229	7.28	5.40	0	34.0	7.5 15.0	5.6 5.6	0.07	1.98	35 51	39 57	228 330

Table 3. (continued)

Run No.	W _f	Y in.	R in.	F _m Ibf	F _v Ibf	f cps	A _d in.	Ad in.	$\frac{\mathcal{E}}{g} \times 10^4$	έχ 10 ³ ips	ε _d x 10 ⁵
230 231 233 233 233 233 233 233 233 233 233	7.28 7.28 5.90	5.40 9.54		59.5 34.0 59.5 34.0 59.5 34.0 59.0 54.0 59.0 54.0 59.0 54.0 59.0 54.0 59.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54	22.0 7.0 13.5 20.0 6.0 11.5 17.3 5.5 9.0 13.8 7.5 14.8 22.5 7.5 14.8 22.5 7.5 10.3 10.3 10.3 11.3 1	5.6 10.3 10.4 10.3 17.4 17.6 17.4 22.6 22.8 30.3 29.9 30.5 42.4 5.6 5.6 10.3 10.3 17.1 17.4 22.8 30.3 17.1 17.4 22.8 30.3 17.4 22.8 30.3 17.4 5.6 10.3 17.4 22.8 30.3 17.4 5.6 10.3 17.4 22.8 30.3 17.4 5.6 10.3 17.4 22.8 30.3 17.4 5.6 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 17.4 22.8 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30	0.13 0.10 0.13 0.13 0.18 0.16 0.25 0.11 0.25 0.11 0.26 0.27 0.14 0.27 0.14 0.27 0.15 0.15 0.17 0.19 0.19 0.19 0.11 0.19 0.11	1.98 1.555 1.555 1.20 1.19 1.01 1.02 1.01 1.02 1.03 0.884 0.865 0.665 1.49 1.49 1.49 1.49 1.26 1.02 1.02 1.03 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	66 65 84 116 100 134 208 109 176 258 157 262 329 216 424 631 71 95 111 97 137 186 91 172 175	73 39 50 70 35 47 49 47 49 49 49 49 49 49 49 49 49 49 49 49 49	425 123 160 220 65 88 138 40 65 95 34 56 71 25 68 350 650 133 180 210 65 90 123 348 64 33 38

Table 3. (continued)

Run No.	Wf	Υ	R	Fm	F _v	f	Ad	A'd	$\frac{\ddot{s}}{g} \times 10^4$	Šx 10 ³	δ _d × 10 ⁵
	Ibm	in.	in.	lbf	lbf	cps	in.	in.	g ^ 10	ips	in.
260	5.90	9.54	0	59.8	13.0	30.6	0.20	0.79	253	52	55
261	5.90	9.54	0	42.3	7.0	41.5	0.20	0.66	303	46	37
262	5.90	9.54	0	59.3	10.5	42.0	0.23	0.65	354	53	41
263	7.28	2.11	4	41.8	15.3	5.5	0.07	1.99	35	39	226
264	1	Į.	- 1	51.0	22.5	5.6	0.08	1.98	40	44	260
265	- 1	1		41.6	13.8	10.2	0.09	1.55	58	35	110
266	1	1	1	50.0	20.5	10.3	0.10	1.55	65	39	124
267		- 1	1	41.5	11.5	17.4	0.13	1.20	108	38	71
268 269	1	1	1	48.8	17.3	17.3	0.15	1.20	125	45	83
270	-	4	1	41.5	10.3 15.3	22.9 23.0	0.14	1.01	139 178	37 47	51
271	1	1	1	41.5	8.5	30.2	0.10	0.83	205	41	65 44
272	7.28	2.11	4	46.2	13.0	30.2	0.22	0.83	267	54	57
273	4.57	15.00	0	72.7	22.5	5.5	0.15	1.99	75	84	480
274	4.57	14.03	ĭ	73.7	23.5	1	0.15	1.00	75	84	480
275	4.57	12.80	1	72.7	23.0	1	0.16	İ	80	89	515
276	4.91	11.62	1	73.8	24.0		0.17	1	85	95	550
277	4.91	10.50	1	72.3	23.0	1	0.17	Í	85	95	550
278	5.90	9.22	- 1	71.8	1	1	0.17	1	85	95	550
279	1	8.12	- 1	71.5		1	0.19	1	95	106	610
280	1	6.95	1	71.5	1	1	0.21		105	118	680
281		5.76		71.3	1		0.24	1	120	133	760
282	5.90	4.64	1	71.3	23.0		0.21		105	118	680
283	7.28	3.48		70.3	22.8	1	0.29	1	145	162	940
284	i	2.28	1	70.0	23.0		0.16	1.99	80	89	515
285		0.95	1	69.8	22.8	1	1.09	0.19	5730	6400	37100
286		0	1	69.3	22.7		0.60	1.99	300	335	1940
287		0		69.0	22.8		1.16	1	580	648	3800
288	Į	0.65		69.3	22.7		0.38		190	211	1220
289		1.83	1	70.0	22.8		0.12		60	67	385
290	7.28	2.89	0	68.7	22.7	5.5	0.08	1.99	40	44	260

Table 4. Test results for $D_f = 7$ in.

Thm In. In. Ibf Ibf Cps In. In. In. Ips Ips In.	The state of the s														
292 40.0 15.5 5.6 0.56 1.98 283 314 1840 293 294 22.5 5.6 0.92 1.98 465 520 3000 294 23.5 7.0 10.3 0.22 1.55 142 86 270 295 40.0 14.0 10.3 0.46 1.55 297 179 560 296 42.0 20.5 10.3 0.68 1.55 438 264 830 297 23.3 5.8 17.4 0.11 1.20 91 33 61 298 40.0 12.0 17.1 0.25 1.22 205 74 135 299 40.5 17.5 17.2 0.40 1.21 331 119 220 300 23.5 5.0 23.0 0.06 1.01 59 16 21 301 30.8 15.3 22.9 0.23 1.01 167 44 61 302 38.8 15.3 22.9										$\frac{\ddot{\delta}}{g} \times 10^4$		δ _d × 10 ⁵			
317	292 293 294 295 296 297 298 299 300 301 302 303 304 305 307 308 311 312 313 314 315 317 318 319		2.30		40.0 42.5 40.0 42.0 42.0 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.6	15.5 22.5 7.0 14.0 20.5 5.8 12.0 17.5 10.5 15.3 12.5 16.0 23.3 14.5 21.0 6.3 12.5 10.9 16.6 9.3 13.5 7.8	5.6 10.3 10.3 17.4 17.1 17.2 22.8 22.8 22.9 30.3 5.6 10.3 10.4 17.5 17.5 22.8 22.9 30.3 10.4 17.5 17.5 22.8 22.9 30.3 5.6 6 30.3 30.3 30.6 6	0.56 0.92 0.46 0.68 0.11 0.25 0.40 0.17 0.23 0.19 0.19 0.42 0.13 0.22 0.44 0.15 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.45	1.98 1.98 1.55 1.55 1.55 1.20 1.22 1.01 1.01 0.83 1.98 1.98 1.55 1.55 1.20 1.20 1.21 1.01 1.01 1.01 1.01 1.01	283 465 142 297 438 91 205 331 59 167 228 217 51 96 212 84 142 284 125 233 358 178 307 475 253 410 647 51	314 520 86 179 264 33 74 119 16 44 57 107 236 85 170 45 83 127 82 84 130 57	135 220 21 61 84 46 330 620 1380 160 265 535 83 154 235 612 176 55			

Table 4. (continued)

Run No.	₩f	Y	R	F _m .	F _v	f	A _d	A'd	$\frac{\ddot{\mathcal{S}}}{g} \times 10^4$	$\dot{\mathcal{S}}$ x 10 3	$\mathcal{E}_{d} \times 10^{5}$
	Ibm	in.	in.	lbf	lbf	cps	in.	in.	9	ips	in.
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341	7.42 7.42 6.05	5.50 5.50 9.66	in.	49.8 23.3 42.0 49.8 23.0 42.0 49.5 23.0 42.0 49.5 23.0 42.0 49.5 23.0 42.0 49.5 23.0 42.0	22.8 7.3 14.0 20.8 6.0 12.0 18.0 5.5 10.8 15.8 4.5 9.0 13.3 3.5 7.5 10.8 15.0 22.5 7.0	5.6 10.4 10.3 10.3 17.5 17.5 17.4 22.9 23.0 22.9 30.3 30.3 30.3 41.6 41.6 5.6 5.6 5.6	0.21 0.11 0.18 0.22 0.11 0.22 0.29 0.11 0.20 0.28 0.13 0.23 0.23 0.18 0.29 0.18 0.29 0.12 0.07	1.98 1.55 1.55 1.55 1.20 1.20 1.01 1.01 1.01 1.01 0.83 0.83 0.65 0.66 0.66 0.66 1.49 1.49 1.49 1.26	106 71 116 142 92 183 241 109 198 277 157 277 350 278 429 636 47 81 81 63	117 43 70 85 33 66 86 29 53 74 32 56 71 42 64 95 53 90 90 38	680 134 220 265 62 120 160 40 72 102 34 59 76 33 50 74 305 525 525 120
342 343 344 345 346 347 348 349 350	6.05	9.66	0	45.1 61.3 25.3 45.1 61.3 24.8 44.8 61.3 25.1 44.9	13.8 20.0 6.0 11.8 17.5 5.0 10.0 15.5 4.3 8.6	10.3 10.3 17.3 17.5 17.3 22.7 22.8 22.6 30.5 30.3	0.11 0.12 0.06 0.10 0.19 0.07 0.11 0.14 0.07 0.15	1.25 1.26 1.03 1.02 1.03 0.91 0.91 0.91 0.79	88 95 58 98 184 77 121 154 89 190	53 57 21 35 66 20 32 41 18 39	165 180 39 65 120 28 45 57 19

Table 4. (continued)

Run No.	₩f	Y	R	Fm	F _v	f	A _d	A'd	<u>s</u> × 10 ⁴	Ėx 103	8 _d × 10 ⁵
	1bm	in.	in.	lbf	lbf	cps	in.	in.	g ^ 10	ips	in.
351 352 353	6.05	9,66	0	60.8 25.1 44.8	13.0 3.5 7.0	30.5 42.4 41.6	0.19 0.07 0.16	0.79 0.65 0.66	241 108 242	49 16	52 12
354 355	6.05 7.42	9.66	0	60.6	10.8	41.5	0.23	0.66	348 51	36 52 57	28 41 330
356 357 358				24.0 41.0 49.5	7.0 13.5 20.0	10.3 10.3 10.2	0.06 0.10 0.11	1.55 1.55 1.55	39 65 71	23 39 43	73 123 133
359 360	7.40			48.8 48.0	17.3 15.0	17.4 22.9	0.15	1.20	125 188	45 50	83 70
361 362 363	7.42 6.05	2.24 9.73	4 8 16	47.5 21.5 21.5	13.0 6.5 6.5	30.3 12.6 12.6	0.22 0.13 0.04	0.83 1.17	267 111 34	54 54 17	57 135 42
364 365			16 8 16	42.5	13.5	12.6 12.6	0.16		137 77	67 37	168 94
366 367	6.05	9.73	8 16	57.5 59.0	20.5	12.6 12.6	0.25	1.17	214 128	104 62	26 16

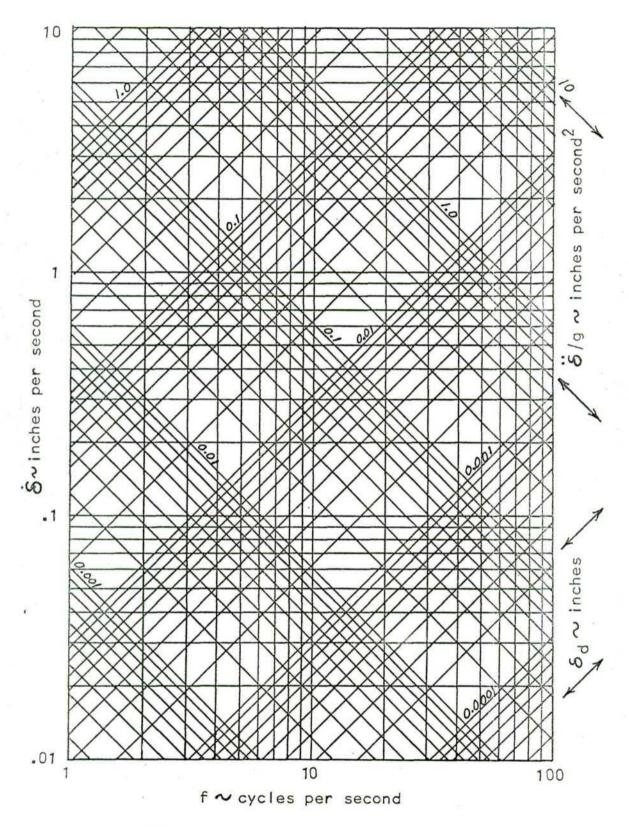


Figure 22. Vibration nomograph.

Table 5.	Foundation	settlement	S.
Run Nos. inclusive	H	Hbcm	S
1 - 6 7 - 12 13 - 18 19 - 24 25 - 30 31 - 36 37 - 42 43 - 48 49 - 54 55 - 60 61 - 66 67 - 72 73 - 78 79 - 84 85 - 90 91 - 96 97 - 102 103 - 108 109 - 114 157 158 159 160 161 162 163 164 165	60.00 55.00 50.00 43.00 41.00 39.00 60.00 60.00 55.00 41.00 41.00 41.00 39.00 39.00 39.00 41.00 41.00 41.00 41.00 41.00 41.00 39.00 39.00	58.50 53.60 48.70 44.30 42.75 40.70 38.80 58.40 58.60 54.10 48.90 44.40 42.45 40.60 40.45 38.85 59.35 54.55 49.50 41.75 40.80 39.80 38.80 39.80 38.80	1.50 1.40 1.30 0.70 0.25 0.30 0.20 1.70 1.60 1.40 0.90 1.10 0.60 0.55 0.40 0.55 0.10 0.15 0.65 0.45 0.35 0.30 0.20 0.20

Table 6.

Calibration curve
and run correspondence.

		Nos. sive	Cc
1	-	156	A
		165	B
		167	none *
168	-	245	В
246	-	262	C
263	-	284	В
	28	5	none∗
286	-	336	В
337	-	354	C
355	-	361	В
362	-	367	C

★ Calibration was made immediately after run.

The difference between curves A, B, and C, was due to the electrical setup (Appendix D) and to the discharge of the batteries (Figure 15).

Table 7. Dimensionless values.

Run No.	Sm _f F _v	$\frac{f^2D_{f^mf}}{F_{v}}$	Y D _f	Key for Figure 23
121 122 123 124 125 126	0.154 0.102 0.070 0.054 0.040 0.032 0.0050	18.90 8.10 3.80 2.00 0.60 0.16 0.23	0 0 37	
215 217 218 220 221 222 223 224	0.0049 0.0081 0.0077 0.0147 0.0141 0.0264 0.0218 0.0203 0.0452	0.15 0.82 0.56 2.72 1.87 9.88 5.11 3.61 20.90	0 27	\
227 319 320 321 322 323 324 326 327 329 330	0.0331 0.0049 0.0039 0.0035 0.0072 0.0062 0.0051 0.0113 0.0099 0.0136 0.0130	7.46 0.54 0.27 0.19 1.99 1.02 0.69 3.43 2.26 6.59 4.46 27.20	0.37	0
332 333 334 339 340 341 342 343 344	0.0228 0.0195 0.0590 0.0022 0.0055 0.0039 0.0029 0.0059 0.0050 0.0050	13.60 9.15 67.80 0.15 1.66 0.84 0.58 5.47 2.84 11.30 5.71	0.78	$\left.\begin{array}{c}\\\\\\\\\end{array}\right\}$
449 50 51 53	0.0060 0.0125 0.0134 0.0112 0.0209	3.61 23.70 11.70 7.85 27.10	1.38	

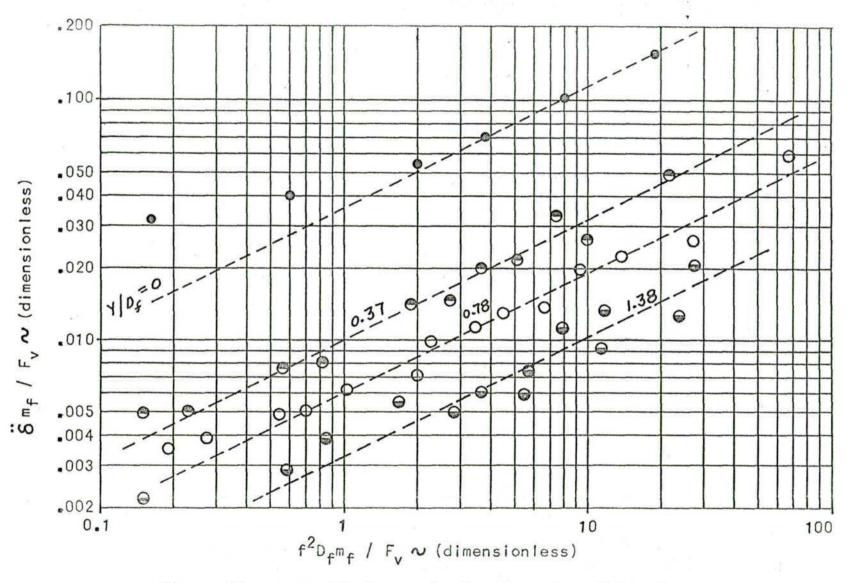


Figure 23. Logarithmic graph of values from Table 7.

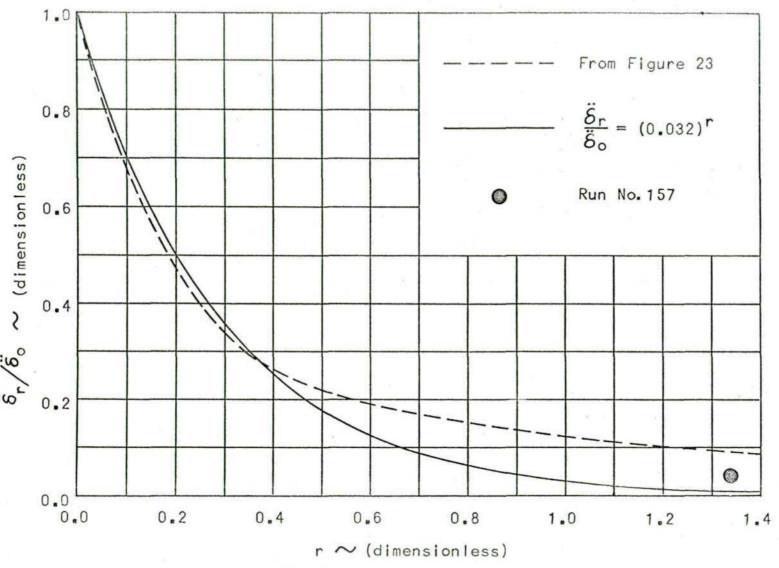


Figure 24. Graph of $\ddot{\mathcal{S}}_{\rm r}/\ddot{\mathcal{S}}_{\rm o}$ versus r, from Figure 23 and Equation 8.

CHAPTER V

CONCLUSIONS

The steady state soil motions, for standard 20 - 30 Ottawa sand, under vibrating foundations are represented by Equations [9], [10], and [11]. These equations give values for maximum acceleration, velocity, and displacement, respectively.

The best technique for placing the accelerometer in the sand was; on a piece of filter paper and in contact with the bottom of the foundation when the motion of the foundation is desired, and supported only by the sand when motion of the sand is to be found.

Applying a kinetic energy approach to determine the mass of soil that vibrates with a foundation (Chapter I), and neglecting soil motion as a function of R, this gives kinetic energy = $\propto Y$, where $\propto = \frac{1}{2}(81 \,\mathrm{pD}_f^3 \mathrm{F}_v/\mathrm{gm}_f \pi) \times 10^{-6}$, for r=0. The differential kinetic energy at Y is $\propto (0.032)^{2r}$ dY, and the total of the soil is $\int_0^\infty \propto (0.032)^{2r} \mathrm{dY}$. Remembering that $r=Y/D_f$, the integration gives $\propto D_f/6.88$. Therefore, $Y=r_0/3.44$ and agrees rather closely with the theoretical, $Y=r_0/\pi$ from Chapter I.

CHAPTER VI

RECOMMENDATIONS

This investigation should be continued to include different soils and different soil properties. A 330-ohm resistor placed in series with the primary of the transformer (Figure 15) will give better response to low frequencies(9). This should be done before additional studies are made with the experimental equipment.

Further investigations should include the following:

- 1. Different instrumentation techniques.
- Comparison of laboratory results with those of an actual soil-foundation system.
- Determining the phase angle and soil motion relationships of a system.
- 4. Studies similar to this using miniature soil strain gages under development by United ElectroDynamics.
- 5. Experimentation with frequencies below 5 cps and above 50 cps, also in the vicinity of a soil-foundation system's natural frequency.
- The effect of foundation vibrations on adjacent foundations.
- 7. The effects of using different shaped footings.
 - 8. Dynamic loading of pile type foundations.

- 9. Systems having dynamic loads acting along three orthogonal axes and dynamic couples acting in the three planes formed by these axes.
- 10. Detailed analysis of oscillograph records at frequencies in 5 and with the film speed set at about 50 in. per sec. This speed would aid the study of phase angles.

REFERENCES

- Symposium on Dynamic Testing of Soils, ASTM Special Technical Publication No. 156, American Society for Testing and Materials, Philadelphia 3, Pa., 1953.
- 2. Richart, F.E., Jr., Foundation Vibrations, University of Florida Technical Paper No. 192, Gainsville, Fla., Oct 1960, p 9.
- 3. Allnutt, R.B., Mintz, F., Ormondroyd, J., and Specht, R.D., "Motion Measurements," Handbook of Experimental Stress Analysis, John Wiley and Sons, Inc., New York, N. Y., 1950, pp 301-389.
- Ibid., Langer, B.F., "Electrical Inductance Gages," pp 238-300.
- 5. Ibid., Meier, J.H., "Strain Rosettes," pp 390-437.
- 6. The Aluminum Data Book, Reynolds Metals Co., Richmond 18, Va., 1958, pp 41 and 91.
- 7. Specifications and Instructions for Accelerometer Model 2221C, Endevco Corp., Pasadena, Calif., 1960.
- 8. Model 2614B Amplifier Instruction Manual, Endevco Corp., Pasadena, Calif., 1961.
- 9. Specifications and Instruction Manual for 2609.1 Transformer, Endevco Corp., Pasadena, Calif., 1961.
- 10. ASTM C190-59, "Standard Method of Test for Tensile Strength of Hydraulic Cement Mortars," ASTM Standards Part 4, American Society for Testing and Materials, Philadelphia 3, Pa., 1961, pp 196-197.
- 11. Taylor, D.W., Fundamentals of Soil Mechanics, John Wiley and Sons, Inc., New York, N. Y., 1954.
- 12. Werner, R.R., A Study of Poisson's Ratio and the Elastic and Plastic Properties of Ottawa Sand, a thesis at Texas A and M College, 1957.
- 13. Oldenburger, R., Mathematical Engineering Analysis, The Macmillian Co., New York, N. Y., 1950, pp 60-65.

- 14. ASTM D653-60, "Standard Definitions of Terms and Symbols Relating to Soil Mechanics," ASTM Standards Part 4, American Society for Testing and Materials, Philadelphia 3, Pa., 1961, pp 1402-1419.
- 15. Ibid., ASTM D1707-60T, "Tentative Definitions of Terms Relating to Soil Dynamics," pp 1396-1401.
- 16. Terzaghi, Karl and Peck, R.B., Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc., New York, N. Y., 1948, pp 111-113.
- Terzaghi, Karl, <u>Theoretical Soil Mechanics</u>, John Wiley and Sons, Inc., New York, N. Y., 8th Printing, August 1956, pp 434-479.

APPENDIX A

Force Gage Calibration (Figures 3, 4, and 13)

Compression test with loading rod zeroed out.

(microinches / inch)

Load		Loading	¥7		Unloading	
Ibm	1st	2nd	3rd	1st	. 2nd	3rd
0 10 20 30 40 50 60 70 80 90	7750 7880 8010 8140 8270 8405 8535 8670 8800 8935	7760 7890 8015 8145 8280 8410 8540 8670 8805	7760 7890 8015 8145 8275 8410 8540 8670 8800 8930	7760 7890 8015 8150 8280 8410 8540 8670 8805 8935	7765 7895 8020 8150 8285 8415 8545 8675 8805	7765 7890 8020 8150 8280 8410 8540 8670 8805 8935
100	9065	9065	9065	9065	9065	9065

Average is 13.05 microinches / inch-pound

Spring Calibration (Figure 5)

Spring	Follower Position	Indicator (# in/in)	Change (#in/in)	Force (1bf)	k (Ibf/in)
Gold	down up down up	7885 8110 7885 8110 7885	225 225 225 225 225	17.24 17.24 17.24 17.24	51.62 51.62 51.62 51.62
Black	up down up down up	7880 8105 7880 8105 7880	225 225 225 225	17.24 17.24 17.24 17.24	51.62 51.62 51.62 51.62
Clear	up down up down up	7875 8105 7875 8105 7875	230 230 230 230	17.62 17.62 17.62 17.62	52.75 52.75 52.75 52.75
AII	down down down up	8130 8810 8130 8810 8130	680 680 680 680	52.11 52.11 52.11 52.11	156.0 156.0 156.0 156.0

APPENDIX B

Endevco Accelerometer

Type VI Piezite $\stackrel{(R)}{}$ element Model 2221C, Serial EB 12 Sensitivity in (peak mv/peak g), $E_s = 14.0 \%$ Sensitivity in (RMS mv/peak g), $E_c = 9.90 \%$ Accelerometer capacity in pf, $C_p = 686$ Sensitivity in (peak p coulombs/peak g), $E_s(C_p + 300) \times 10^{-3} = 13.8$

Maximum transverse sensitivity = 3.3%

Frequency,	(cps)	Deviation,	(%)
20	20 7	-1.0	
50		0.0	
100		+1.0	11.
200		+1.0	
400		+1.0	1
1000		+1.0	
2000		+1.0	
4000		+1.0	

* 300 pf total external capacity added for all sensitivity calibrations

Standardization of accelerometer to E = 8 RMS mv/peak g:

$$C_t = (E_c/E)(C_p + C_{cal}) - C_p$$
 $C_t = (9.90/8.00)(686 + 300) - 686 = 534 \,\mu\mu f$
 $318 \,\mu\mu f$, 10 ft cable (factory tagged)

 $30 \,\mu\mu f$, residual amplifier capacity

 $91 \,\mu\mu f$, 3 ft cable (factory tagged)

 $5 \,\mu\mu f$, Tee box (assumed)

 $444 \,\mu\mu f$

534 - 444 = 90 MMf, added to step capacity adjustment in amplifier.

APPENDIX C

Sand Weight

W ~ 1bm	H∼ cm	W/H ~ Ibm/cm
1411	38.5	36.66
1614	44.0	36.69
1916	52.1	36,77
2319 2826	63.2	36.70
2020	77.0	36.71

Average is 36.71 lbm/cm

Weights of Soil Loading Parts

Part	Grams
Follower with bearings	222.7
Springs: Gold	13.5
Black	13.2
Clear	13.2
Loading bar with bearings and adapter	393.3
Column Adapter	166.6
Columns: Long	1294.7
Intermediate	978.0
Short	525.3
Locking nut	52.1
Threaded rods: Long	834.2
Intermediate	526.7
Short	371.8
Force transducer with lead wire supported	130.0
Force transducer adapter	165.8
Plywood disk with steel loading plate:	
5 inch diameter	205.3
6 inch diameter	267.3
6.28 inch diameter	319.9
7 inch diameter	329.0

APPENDIX D

Accelerometer Placement

Run Nos.	
inclusive	Method Used
1 - 114	On filter paper
115 - 120	Screwed to foundation
121 - 156	On filter paper
157 - 166	In sand only
167	Screwed to foundation
168 - 172	Screwed on fiber washer to foundation
173 - 199	Slipped over insulated rod
200 - 212	Screwed on fiber washer to foundation
213 - 285	Slipped over insulated rod
286	Screwed on fiber washer to foundation
287	Screwed to foundation
288 - 290	Screwed to aluminum disk, 3 in. in dia.
291 - 303	Screwed on fiber washer to foundation
304 - 367	Slipped over insulated rod

Electrical Information

Run Nos.	Cc	Galvanometer Used	Oscillograph Channel	Amplifier Gain
1 - 156	A	X9970	7	3
157 - 165	В	X6797	2	10
166 - 167	none	X6797	2	1
168 - 284	B,C	X6797	2	10
285	none	X6797	2	1
286 - 367	B,C	X6797	2	10

APPENDIX E

Determining the Foundation Mass (Table 1 and Figur	e 12)
For Runs 1 through 18:	
Loading bar with bearings and adapter 393.3	gms
Column adapter 166.6	gms
Column, intermediate 978.0	gms
Locking nut 52.1	gms
Threaded rod, intermediate 526.7	
$W_{a} = 2116.7$	gms
Force transducer/lead wire supported 130.0	
Force transducer adapter 165.8	gms
6.28 in. dia. disk/steel plate 319.9	gms
$W_{b} = 615.7$	gms
$W_f = W_a + W_b = 2732.4 \text{ gms} = 6.02 \text{ lbm}$	
For Runs 19 through 42:	
Loading bar with bearings and adapter 393.3	gms
Column adapter 166.6	gms
Column, long 1294.7	gms
Locking nut 52.1	gms
Threaded rod, long 834.2	gms
$W_a = 2740.9$	gms
No change in Wb	
$W_{f} = 3356.6 \text{ gms} = 7.40 \text{ lbm}$	
Determining F _m for Run No. 291 (Table 4 and Figure	20)
$F_{m} = (F_{1} + F_{2})/(2) - W_{a}$	
$F_{\rm m} = (21.6 + 36.8)/(2) - 6.0$	
$F_{\rm m} = 23.2 \text{ lbf}$	