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INTRODUCTION 

Naval Construction Battalion (NCB) engineers and constructors are 
responsible for building and modifying advanced bases so that the Navy 
can carry out its mission. This building activity is usually outside 
the continental United States and in some cases must be accomplished 
quickly and without a thorough siting program. While many types of con- 
struction are undertaken, particular interest is shown for waterfront 
construction of permanent and advanced bases that require pilings. 
Because of the remoteness of many construction sites and the need to 
build quickly, most of these bases are planned and designed using pre- 
engineered drawings contained in the Advanced Base Functional Components 
system (NAVFAC (1982)). However, the foundation design must be site 
specific and therein lies a potential weakness. 

The thin layer of soil that covers the earth is highly variable 
making pre-engineered foundations difficult to achieve. Foundations 
that rest on or are embedded in soils require soil surveys, testing, and 
analyses so that specific designs can be made to accommodate the variety 
of conditions encountered. The Navy has prepared two manuals to assist 
the NCBs in designing foundation systems (NAVFAC (1971) and Rocker 
(Ca 1984)). Application of the design procedures provided by these 
manuals is successful when the soils encountered behave similar to ter- 
restrial soils. However, in the equatorial regions of the earth, a 
region of interest to the Navy, the soil is calcareous and engineering 
experience has shown that calcareous soils behave quite differently than 
terrestrial soils. In particular, pile foundations in calcareous soils 
have not always performed well even when designed with higher factors of 
safety than normally applied to designs in noncalcareous soils. The 
Naval Facilities Engineering Command has funded a project to investigate 
the performance of piles in calcareous soils, because of the expected 
additional construction of pile supported structures in equatorial 
regions. The intent of this program is to improve the technology related 
to pile behavior in calcareous soil and enhance the ~avy's ability to 
quickly and efficiently construct pile-supported facilities. 

BACKGROUND 

Calcareous soils are composed of calcium carbonate. They are pre- 
dominantly sedimentary and differ from terrigenous soils in several ways 
(McClelland Engineers, Inc., 1980; Noorany, 1982a; and Datta et al., 
1981). Calcareous soils are products of biological activity, having 
more intra-granular voids, are easier to crush, and are more susceptible 
to post-depositional physical and chemical alterations. Calcareous de- 
posits can have significant spatial variations and discontinuities such 
as cavities, solution channels, and highly cemented zones. 



S e v e r a l  r e s e a r c h e r s  ( D a t t a  e t  a l . ,  1979, 1980, 1981; hgarwal ,  1977; 
and Demars e t  a l . ,  1976) have i d e n t i f i e d  p a r a m e t e r s  t h a t  a f f e c t  t h e  e n g i -  
n e e r i n g  b e h a v i o r  of c a l c a r e o u s  s o i l s .  These p a r a m e t e r s  a r e  c a r b o n a t e  
c o n t e n t ,  c r u s h a b i l i t y ,  d e g r e e  of c e m e n t a t i o n ,  index  p r o p e r t i e s ,  and geo- 
l o g i c  p r o c e s s e s .  These p a r a m e t e r s  a r e  i n t e r r e l a t e d  and none of them 
a l o n e  p r o v i d e  a  unique r e l a t i o n s h i p  t o  e n g i n e e r i n g  b e h a v i o r .  

There  i s  no c l a s s i f i c a t i o n  system t h a t  a d e q u a t e l y  c h a r a c t e r i z e s  t h e  
e n g i n e e r i n g  b e h a v i o r  of c a l c a r e o u s  sed iments ;  s e v e r a l  have been proposed 
(Noorany, 1982a; Demars e t  a l . ,  1976; Demars, 1982; D a t t a  e t  a l . ,  1981, 
1982; Ber ingen e t  a l . ,  1982).  D a t t a  and o t h e r s  s u g g e s t e d  t h a t  is  i t  
premature  t o  propose e n g i n e e r i n g  c l a s s i f i c a t i o n  systems;  c i t e d  as r e a s o n s ,  
among o t h e r s ,  is t h a t  cementa t ion  and s u s c e p t i b i l i t y  t o  c r u s h i n g  cannot  
b e  q u a n t i f i e d .  Ber ingen and o t h e r s  proposed u s i n g  cone p e n e t r a t i o n  t e s t  
(CPT) d a t a  t o  q u a l i t a t i v e l y  measure cementa t ion  a s  a  f u n c t i o n  of cone 
r e s i s t a n c e  i n  c o n j u n c t i o n  w i t h  o t h e r  c l a s s i f i c a t i o n  d a t a .  While i t  i s  
a p p a r e n t  t h a t  p r o g r e s s  i n  c l a s s i f i c a t i o n  i s  b e i n g  made, i t  is  e q u a l l y  
a p p a r e n t  t h a t  y e a r s  of d a t a  g a t h e r i n g  w i l l  be  r e q u i r e d  b e f o r e  a  compre- 
h e n s i v e  and r e l i a b l e  c l a s s i f i c a t i o n  system w i l l  evo lve .  

A summary of e n g i n e e r i n g  a s p e c t s  of c a l c a r e o u s  s o i l s  t h a t  a r e  l i k e l y  
t o  be r e l e v a n t  t o  p i l e  b e h a v i o r  i s  prov ided :  

Index P r o p e r t i e s  

e Calcareous  s o i l s  have lower d e n s i t i e s  and h i g h e r  i n t r a - p a r t i c l e  
v o i d s  t h a n  t e r r i g e n o u s  s o i l s .  

Ca lca reous  s o i l s  c o n t a i n  s o f t  ca lc ium c a r b o n a t e  m i n e r a l s  and 
t h e i r  g r a i n s  a r e  s o f t e r  t h a n  q u a r t z  o r  s i l i c a  sand.  

The s p e c i f i c  g r a v i t y ,  Gs,  of  c a l c a r e o u s  sed iments  i s  u s u a l l y  
h i g h e r  t h a n  t e r r i g e n o u s  s o i l s .  For  example,  t h e  G v a l u e s  f o r  
t h e  c a l c a r e o u s  s a n d s  from F l o r i d a  and Guam ( ~ o o r a n ? ,  1982b) a r e  
a b o u t  2.8 o r  more, whereas t h e  G v a l u e  f o r  q u a r t z  i s  about  2.65. 

s 

C o m p r e s s i b i l i t y  and C r u s h a b i l i t y  

Ca lca reous  s o i l s  are more c o m p r e s s i b l e  t h a n  t e r r i g e n o u s  s o i l s ;  
t h e i r  c o m p r e s s i b i l i t y  r e s u l t s  from g r a i n  c r u s h i n g  and t h e  c o l -  
l a p s e  of g r a i n - s t r u c t u r e ,  t h e r e f o r e ,  volume changes  a r e  u s u a l l y  
permanent.  

Coarse r -g ra ined  c a l c a r e o u s  sed iments  show a more s i g n i f i c a n t  
d e g r e e  of d e g r a d a t i o n  and g r a i n  c r u s h i n g  t h a n  f i n e r - g r a i n e d  
sed iments .  

G r a i n  c r u s h i n g  and t h e  c o l l a p s e  of g r a i n - s t r u c t u r e  can  be  induced 
by a p p l y i n g  e i t h e r  c o n f i n i n g  o r  s h e a r i n g  s t r e s s e s .  

e Sediments  w i t h  h i g h  c a r b o n a t e  c o n t e n t  do n o t  compress t o  as low 
a f i n a l .  v o i d  r a t i o  a s  sed iments  w i t h  low c a r b o n a t e  c o n t e n t .  



St reng th  P r o p e r t i e s  

Calcareous s o i l s  have a  h ighe r  i n t e r n a l  f r i c t i o n  between gra in-  
to -gra in  con tac t  t han  t e r r i g e n o u s  s o i l s  (Horne and Deere, 1962). 

F r i c t i o n  angles  of ca l ca reous  s o i l s  decrease  w i t h  i n c r e a s i n g  
conf in ing  p re s su re .  This  r educ t ion  appears  t o  be t h e  r e s u l t  of 
g r a i n  c rushing  (Dat ta  e t  a l . ,  1980). Inc reas ing  g r a i n  c rushing  
induces decreas ing  shea r ing  r e s i s t a n c e  u n t i l  a l i m i t i n g  va lue  of 
shea r  r e s i s t a n c e  is  reached. 

Shearing can cause g r a i n  c rushing  and volumetr ic  con t r ac t ion .  

The summary of engineer ing  behavior  of ca l ca reous  s o i l s  r e p r e s e n t s  
t h e  state-of-knowledge a t  t h e  beginning of t h i s  p r o j e c t .  It i s  apparent  
t h a t  t h e  knowledge i s  meager and no t  w e l l  r e l a t e d  t o  p i l e s .  

STATE-OF-THE-ART PILE INSTALLATION PRACTICE 

P i l e s  used nearshore  and o f f s h o r e  a r e  u s u a l l y  open-ended, s t e e l  
p ipe  p i l e s .  These p i l e s  a r e  popular  because they  can be e a s i l y  app l i ed  
t o  achieve  long l eng th ,  o f f e r  a  good s trength-to-weight  r a t i o ,  minimize 
s o i l  d i s tu rbance  dur ing  i n s t a l l a t i o n ,  and minimize d r i v i n g  r e s i s t a n c e .  
Also, i t  i s  more economical t o  i n s t a l l  fewer long p i l e s  than  more s h o r t  
p i l e s .  

Seve ra l  t echniques  a r e  c u r r e n t l y  used f o r  i n s t a l l i n g  p i l e s  i n  c a l -  
careous s o i l s .  These techniques  a r e  l i s t e d  below i n  o r d e r  of p re fe rence  
(frequency of occurrence):  

Dr iv ing  w i t h  impact hammer (d r iven  p i l e s )  

D r i l l i n g  and g rou t ing  ( d r i l l e d  and grouted p i l e s )  

Dr iv ing ,  d r i l l i n g ,  and g rou t ing  combination 

D r i l l i n g  a n  en larged  base ,  then  g rou t ing  ( b e l l e d  p i l e s )  

Dr iv ing  wi th  v i b r a t o r y  hammers 

I n s t a l l i n g  p i l e s  w i th  an  impact hammer is  common because i t  i s  s imple  t o  
u se  and has  been s u c c e s s f u l l y  used f o r  a  wide v a r i e t y  of s o i l  cond i t i ons .  

D r i l l e d  and grouted p i l e s  a r e  o f t e n  used where rock  l a y e r s  and 
h igh ly  cemented s t r a t a  a r e  p re sen t  i n  t h e  sediment p r o f i l e  and p i l e s  
cannot be d r i v e n  t o  t h e  f i n a l  des ign  p e n e t r a t i o n ,  I n  t h e s e  cases ,  a 
p i l e  c a v i t y  i s  d r i l l e d  t o  f i n a l  p e n e t r a t i o n  and then  a p i l e  is i n s e r t e d  
and grouted t o  form a composite p i l e .  A d r i l l e d  and grouted p i l e  could  
b e  used from t h e  o u t s e t .  P i l e  d r i v i n g  has  caused s i g n i f i c a n t  degrada t ion  
of s k i n  r e s i s t a n c e  i n  ca l ca reous  s o i l s  (Angemeer e t  a l . ,  1975). The 
r e c e n t l y  completed p i le -suppor ted  POL p i e r  a t  t h e  Navy's Diego Garcia  
Advance Base i n  t h e  Ind ian  Ocean used d r iven ,  open-end p i p e  p i l e s  i n  



ca l ca reous  sediments  and experienced seve re  s o i l  degrada t ions .  Construc- 
t i o n  personnel  r epo r t ed  t h a t  p i l e s  would f r e e  drop a s  much a s  6 f e e t  
du r ing  d r i v i n g .  A s  a  r e s u l t  of t h e s e  exper iences ,  d r i l l i n g  and g rou t ing  
t h e  p i l e s  may be  p r e f e r r e d  i n s t e a d  of u s ing  an impact hammer t o  i n s t a l l  
t h e  p i l e s  i n  ca l ca reous  s o i l s .  

Be l led  p i l e  foundat ions  have been used f o r  a  t anke r  t e rmina l  p r o j e c t  
i n  Saudi  Arabia where ca l ca reous  sediments  a r e  predominant (Burt and 
H a r r i s ,  1980). This  method took advantage of t h e  h igh  end bea r ing  r e s i s -  
t ance  i n  carbonate  rocks  o r  h igh ly  cemented ca l ca reous  s o i l s .  

High capac i ty ,  low frequency v i b r a t o r y  hammers were used t o  d r i v e  
p i l e s  i n t o  a  ca l ca reous  sediment i n  Saudi  Arabia  (Fugro L td . ,  1982). 
I n s t a l l i n g  p i l e s  by such a  method appears  promising,  however, l i t t l e  o r  
no d a t a  a r e  a v a i l a b l e  t o  e v a l u a t e  t h e  e f f e c t  of t h i s  i n s t a l l a t i o n  method 
on t h e  load  c a r r y i n g  capac i ty  of p i l e s .  

Axia l  P i l e  Capaci ty  

There a r e  minimal d a t a  on t h e  a x i a l  load  c a p a c i t y  of p i l e s  i n  c a l -  
careous s o i l s .  The u l t i m a t e  a x i a l  c a p a c i t y  i s  determined by t h e  sum of 
s k i n  f r i c t i o n  r e s i s t a n c e ,  

9 
, and end ( t i p )  bea r ing  r e s i s t a n c e ,  Qp,  and 

can be  expressed  a s  fo l lows .  

where: f = u n i t  s k i n  f r i c t i o n  

A = s i d e  s u r f a c e  a r e a  of p i l e ,  which i s  i n  c o n t a c t  
S 

w i t h  sediment 

q = u n i t  end bea r ing  capac i ty  

A = c r o s s - s e c t i o n a l  a r e a  a t  p i l e  t i p  
P 

Very few exper imenta l  s t u d i e s  have been conducted t o  i n v e s t i g a t e  
t h e  behavior  of p i l e s  i n  ca l ca reous  sediments.  S t u d i e s  t h a t  a r e  a v a i l -  
a b l e  tend t o  concen t r a t e  on s k i n  f r i c t i o n .  The r e s u l t s  of s t a t i c  t e n s i l e  
p i l e  load  t e s t s  f o r  d r iven  p i l e s  and grouted  p i l e s  i n  ca l ca reous  s o i l s  
a r e  summarized i n  Table  1. Angemeer e t  a l .  (1973, 1975) i n d i c a t e d  t h a t  
t h e  a x i a l  c a p a c i t y  of d r iven  p i l e s  i n  ca l ca reous  s o i l s  can be  lower t han  
t h a t  of p i l e s  d r i v e n  i n  t e r r i g e n o u s  s o i l s .  They a l s o  found t h a t  s k i n  
f r i c t i o n  f o r  d r i v e n  p i l e s  v a r i e d  from s i t e  t o  s i t e  and thought t h i s  v a r i -  
a t i o n  probably r e f l e c t e d  d i f f e r e n c e s  i n  c r u s h a b i l i t y ,  cementat ion,  and 
d e n s i t y  of t h e  ca l ca reous  s o i l .  They concluded t h a t  ca l ca reous  s o i l s  
a r e  extremely s e n s i t i v e  t o  c rush ing  a s  evidenced by grouted p i l e s  y i e l d i n g  
a  f r i c t i o n a l  c a p a c i t y  on t h e  o r d e r  of 3 t o  5 t imes t h a t  f o r  d r i v e n  p i l e s .  
They a p p l i e d  c y c l i c  loads  t o  a  grouted  p i l e  t o  measure t h e  t h r e s h o l d  
p i l e  f r i c t i o n  r e s i s t a n c e  and observed no s i g n i f i c a n t  l o s s  i n  f r i c t i o n a l  
c a p a c i t y  a f t e r  about 90 cyc l e s .  Cont rad ic tory  obse rva t ions ,  though, 
have been r epo r t ed  i n  King e t  a l .  (1980) when performing smal l - sca le  
p i l e  segment f r i c t i o n  t e s t s  i n - s i t u .  King 's  l a r g e  displacement  c y c l i c  
t e s t s  ( i . e . ,  each c y c l e  d i s p l a c i n g  t h e  p i l e  t o  t h e  maximum r e s i s t a n c e )  



showed that the frictional resistance reduced substantially. A disparity 
in threshold frictional resistance, therefore, exists due to the sparsity 
of data and inconsistent testing procedures. End bearing is even less 
studied and very little data on end bearing capacity are reported. 
Figure 1 shows a plot of q determined from field pile tests in chalk and 
weak cemented calcareous soils versus standard penetration test (SPT) 
resistance value, N. The figure shows a wide scatter of data, indicating 
that the SPT, a popular in-situ test device, may not be a good tool for 
determining the q value for piles in calcareous soils as the CPT. 

Pile Design Methods 

The design of pile foundations is far more uncertain in calcareous 
soils than in terrigenous soils. Unfortunately the information available 
cannot be fully explained by conventional theory and does not aid in 
making necessary judgments. Where important facilities are planned, it 
is a normal practice to conduct pile load tests to confirm load predic- 
tions. These tests are costly, time-consuming, and impractical for most 
projects. Instead, large factors of safety are normally introduced to 
account for design uncertainty. However, this approach leads to costly 
over-design in many cases and unsafe designs in other cases. 

Design practice for determining the ultimate axial capacity of piles 
in calcareous sediments can be divided into the following categories: 

1. Use of conventional theory with modifications to account for 
certain aspects of calcareous soils. 

2. Empirical correlation with penetration resistance during 
driving . 

3. Correlation with in-situ tests. 

4. Correlation with full scale pile load tests. 

The features of these methods are summarized in Table 2. 

Conventional Theory. The conventional theory for predicting axial 
capacity of piles in terrigenous soils is used with modifications to 
account for various engineering aspects of calcareous soils. Table 3 
shows design parameters presently used for estimating axial capacity of 
driven piles in calcareous sands; parameters for silica sands are also 
shown for comparison. The parameters can be used to show that predicted 
pile capacity for calcareous sands is only about one-third of that for 
silica sands for similar conditions. Similarly, for piles subjected to 
tensile loading, the capacity predicted for calcareous soils may be only 
20% of that predicted for silica sands. Unfortunately, the design param- 
eters in Table 3 do not relate the degree of cementation to measurable 
soil properties. 

Agarwal et al. (1977) recommended design parameters based on carbon- 
ate content that are significantly higher than those in Table 3. The 
use of these parameters would lead to higher predicted capacities. Datta 
et al. (1980) recommended coefficients of lateral pressure for calculating 



s k i n  f r i c t i o n s  t h a t  would a l s o  lead  t o  h ighe r  p red ic t ed  s k i n  f r i c t i o n .  
These procedures  have n o t  found favor  because of t h e  u n c e r t a i n t y  i n  de- 
s ign ing  p i l e s  i n  ca l ca reous  s o i l s .  

The des ign  of d r i l l e d  and grouted p i l e s  i n  ca lcareous  sands appears  
t o  be so  s i t e - s p e c i f i c  t h a t  recommended des ign  parameters  do no t  appear  
i n  t h e  l i t e r a t u r e .  The l a c k  of p rog res s  i n  t h e  development of g e n e r a l  
des ign  procedures  is undoubtedly due t o  t h e  l i m i t e d  amount of exper i -  
mental work. 

Empir ical  C o r r e l a t i o n  With Res is tance  To Driving. The empi r i ca l  
c o r r e l a t i o n  approach c o r r e l a t e s  t h e  d r i v i n g  r e s i s t a n c e  t o  t h e  a x i a l  capa- 
c i t y  of p i l e s  i n  accordance wi th  an empi r i ca l  formula. A v a r i e t y  of 
t h e s e  formulas a r e  a v a i l a b l e ,  among them i s  t h e  Engineering News Record 
formula : 

= weight of t h e  d r i v i n g  ram 
= d i s t a n c e  of t h e  ram t r a v e l  

R = r e s i s t a n c e  of t h e  p i l e  t o  d r i v i n g  
S = d i s t a n c e  t h e  p i l e  t i p  p e n e t r a t e s  t h e  s o i l  

Each of t h e  formulas equate  t h e  d r i v i n g  energy w i t h  t h e  r e s i s t a n c e  t h e  
s o i l  o f f e r s  t o  p i l e  pene t r a t ion .  Th i s  approach was used i n  t h e  p i e r  
cons t ruc t ed  a t  Diego Garcia .  Based on Equation ( 2 ) ,  t h e  determined shea r  
s t r e n g t h  p rope r ty  from s e l e c t e d  s o i l  samples and a  p i l e  l oad  t e s t ,  a  
blows pe r  f o o t  c r i t e r i a  f o r  p i l e  d r i v i n g  procedures  and t h e  es t imated  
p i l e  embedment depth  was e s t a b l i s h e d  t o  reach t h e  designed p i l e  capacfty.  
The es t imated  depth was about 65 f e e t .  Based on t h e  unpublished p i l e  
d r i v i n g  record ,  many of t h e  p i l e s  r equ i r ed  two t o  t h r e e  t imes t h i s  depth  
t o  meet t h e  blow count c r i t e r i a .  The r e s u l t s  of t h e  work a t  Diego Garcia ,  
t h e r e f o r e ,  i n d i c a t e d  t h a t  t h e  d r i v i n g  r e s i s t a n c e  i s  n o t  a  good i n d i c a t i o n  
f o r  p r e d i c t i n g  p i l e  capac i ty  i n  ca lcareous  s o i l s .  

C o r r e l a t i o n  With In-Si tu P e n e t r a t i o n  Tes t s .  Standard p e n e t r a t i o n  
r e s i s t a n c e  has  been used f o r  c a l c u l a t i n g  p i l e  capac i ty  i n  cha lk .  A s  
i n d i c a t e d  i n  F igure  1, t h i s  c o r r e l a t i o n  y i e l d s  a  wide s c a t t e r  of r e s u l t s .  
I n  a d d i t i o n  SPT r e s u l t s  a r e  n o t  r ep roduc ib l e  and as a r e s u l t  t h i s  method 
must be  used wi th  caut ion .  

Ful l -Scale  Pile-Load Tes t .  The i n - s i t u ,  f u l l - s c a l e  p i le - load  t e s t  
i s  t h e  b e s t  method f o r  t ak ing  s i t e - s p e c i f i c  parameters  i n t o  cons ide ra t ion .  
However, ca l ca reous  sediments  vary  s i g n i f i c a n t l y  i n  composition and engi- 
nee r ing  behavior  between nearby l o c a t i o n s  and i s  d i f f i c u l t  t o  e x t r a p o l a t e  
r e s u l t s .  Thus, t h e  number of p i l e  load tests requi red  f o r  ca l ca reous  
s o i l s  may be  l a r g e r  t han  f o r  t e r r i g e n o u s  s o i l s .  This  can be very  c o s t l y .  
Research and development i n  understanding s o i l - p i l e  i n t e r a c t i o n  might 
reduce t h e  number of t e s t s  r equ i r ed .  



LABORATORY TESTS OF SOIL-PILE INTERACTION BEHAVIOR 

Purpose and Approach 

The preceding background has  shown t h e  l a c k  of knowledge of c a l c a r -  
eous s o i l s ,  t h e i r  engineer ing  behavior ,  and des igning  p i l e s  f o r  u s e  i n  
ca l ca reous  s o i l s .  

The problem confront ing  t h e  Navy is t h a t  t h e  des ign  of p i l e s  i n  
ca l ca reous  s o i l s  cannot b e  done w i t h  confidence and t h i s  poses a t h r e a t  
t o  t h e  s u c c e s s f u l  completion of expedient  ope ra t ions .  Planning f o r  t h e s e  
ope ra t ions  becomes extremely d i f f i c u l t  when, f o r  example, i t  i s  n o t  known 
how much p i l i n g  t o  send w i t h  a n  e l e v a t e d  causeway t h a t  must be  cons t ruc t ed  
i n  o rde r  t o  suppor t  an amphibious opera t ion .  

A program f o r  improving p i l e  des ign  c a p a b i l i t y  i n  ca l ca reous  s o i l s  
was presented  by Ba i l a rd  and McCarel (1981). They recommended a four -  
p o i n t  program t h a t  included:  l a b o r a t o r y  and f i e l d  s t u d i e s  t o  determine 
t h e  geo techn ica l  behavior  of p i l e s  d r i v e n  i n  ca l ca reous  sediments;  devel-  
opment of improved p i l e  technology f o r  ca l ca reous  s o i l s ;  and, development 
of geo techn ica l  des ign  procedures  f o r  p i l e s  used i n  ca l ca reous  s o i l s .  
The corner  s tone  of t h e  program was a comprehensive r e s e a r c h  program 
aimed a t  ga in ing  a b e t t e r  understanding of t h e  geo techn ica l  behavior  of 
p i l e s  dur ing  i n s e r t i n g  and loading  i n  ca l ca reous  s o i l s ,  and how t h i s  
behavior  d i f f e r s  from t h a t  i n  t e r r igenous  s o i l s .  The g o a l  of t h i s  pro- 
gram was t o  d i scove r  what s p e c i f i c  f a i l u r e  mechanisms cause t h e  widely 
d ive rgen t  behavior .  P a r t i c u l a r  a t t e n t i o n  was g iven  t o  t h e  r e l a t i v e  i m -  
por tance  of cementat ion,  g r a i n  c r u s h a b i l i t y ,  carbonate  c o n t e n t ,  and 
crushed g r a i n  f r a c t i o n  i n  governing t h e  behavior .  Because of t h e  d i f -  
f i c u l t y  and expense of conduct ing f u l l - s c a l e  f i e l d  experiments ,  t h e  bulk  
of t h i s  work has  been conducted i n  t h e  l abo ra to ry .  L a t e r ,  v e r i f i c a t i o n  
of t h e s e  r e s u l t s  w i l l  be  obta ined  by p a r t i a l  and f u l l - s c a l e  f i e l d  t e s t s  
us ing  instrumented p i l e s .  

The purpose of t h i s  r e p o r t  i s  t o  document t h e  r e s u l t s  of t h e  labora-  
t o r y  i n v e s t i g a t i o n s  designed t o  determine t h e  f a c t o r s  i n f luenc ing  p i l e  
behavior  i n  ca l ca reous  s o i l s  and t o  examine a l t e r n a t i v e  p i l e  concepts  
f o r  ca l ca reous  s o i l s .  A g e n e r a l  i n v e s t i g a t i o n  designed t o  bound t h e  
problem and provide  guidance f o r  t h e  o t h e r  i n v e s t i g a t i o n s  w a s  performed 
by t h e  Naval C i v i l  Engineering Laboratory (NCEL). A s tudy  of f r i c t i o n a l  
behavior ,  p a r t i c u l a r l y  i n  regard  t o  crushed f r i c t i o n  was performed by 
D r .  I r a j  Noorany (Noorany, 1982b). The s tudy  of g r a i n  c rushing  and t h e  
s tudy  of a l t e r n a t i v e  p i l e  concepts  were performed by Ea r th  Technology 
Corporat ion (ERTEC, 1983a and b ) .  

General I n v e s t i g a t i o n  

The background informat ion  c l e a r l y  p o i n t s  ou t  t h a t  a n  unders tanding  
of t h e  ca l ca reous  s o i l - p i l e  i n t e r a c t i o n  and t h e  a b i l i t y  t o  provide  ade- 
qua te  p i l e  des ign  and i n s t a l l a t i o n  g u i d e l i n e s  o r  procedures  i s  n o t  a v a i l -  
a b l e  t o  t h e  engineer ing  community. NCEL conducted a s e r i e s  of l a b o r a t o r y  
experiments t o  g a i n  a b e t t e r  understanding of t h e  g e n e r a l  behavior  of 
t h e  ca l ca reous  s o i l - p i l e  i n t e r a c t i o n ,  and t o  bound t h e  geo techn ica l  
parameters  c o n t r o l l i n g  t h i s  i n t e r a c t i o n .  The i n v e s t i g a t o r s  determined 
t h a t  a v i s u a l  r e p r e s e n t a t i o n  of t h e  ca l ca reous  sand media dur ing  p i l e  



d r i v i n g  would meet t h e s e  g o a l s .  By v a r y i n g  t h e  s o i l  m e d i a ' s  c o n s i s t e n c y  
( i . e . ,  d e n s i t y  and d e g r e e  of i n d u r a t i o n ) ,  t h e  d i f f e r e n t  b e h a v i o r s  of t h e  
c a l c a r e o u s  sand d u r i n g  model p i l e  embedment c o u l d  b e  compared t o  a  con- 
t r o l l e d  sand ( s i l i c a  sand)  hav ing  s imilar  c o n s i s t e n c i e s .  The b e h a v i o r  
d i f f e r e n c e  and t h e  i n f l u e n c i n g  f a c t o r s  were  more c l e a r l y  d e f i n e d .  

Program - 

The model s e l e c t i o n  c r i t e r i a  used f o r  t h i s  exper iment  r e q u i r e d  t h a t  
t h e  model b e  manageable i n  t h e  l a b o r a t o r y  and b e  f r e e  o f  a s  many l a b o r a -  
t o r y  induced e f f e c t s  a s  p o s s i b l e  y e t  p r o v i d e  t h e  d e s i r e d  r e s u l t s .  A 
t e c h n i q u e  had t o  be  developed t h a t  would a l l o w  a view of t h e  change 
o c c u r r i n g  i n  a  s o i l  mass as a p i l e  was d r i v e n  i n t o  t h e  s o i l  w i t h o u t  i n -  
f l u e n c i n g  i t s  b e h a v i o r .  The s o l u t i o n  t o  t h e  problem w a s  found by u s i n g  
rad iography .  Radiography i s  e x p e n s i v e  t o  u s e  because  of t h e  equipment 
and t h e  s p e c i a l  accommodatioris r e q u i r e d  t o  conduct  t h e  exper iment  and 
p r o v i d e  a g a i n s t  x-ray exposure .  The method, t h e r e f o r e ,  i s  n o t  commonly 
used.  N e v e r t h e l e s s ,  a  GE 250, 5 Ma, 210 kV power a p p a r a t u s  normal ly  
used f o r  n o n d e s t r u c t i v e  t e s t i n g  was a v a i l a b l e  a t  t h e  A e r o n a u t i c a l  Me-  
c h a n i c a l  P r o t o t y p e  Suppor t  Branch a t  t h e  P a c i f i c  Missile T e s t i n g  C e n t e r ,  
P o i n t  Mugu, C a l i f .  

Radiography p r o v i d e s  a n  image of a n  o b j e c t  s u b j e c t e d  t o  x-rays.  An 
exposed f i l m ,  s e n s i t i v e  t o  x - rays ,  shows t h e  i n t e r n a l  s t r u c t u r e  of t h e  
o b j e c t  and h i g h l i g h t s  a r e a s  of h i g h  d e n s i t y .  High d e n s i t y  m a t e r i a l  w i l l  
e i t h e r  absorb  t h e  x-ray o r  s low down t h e i r  t r a n s m i s s i o n  t i m e .  S i n c e  t h e  
f i l m  i s  exposed t o  a n  x-ray s o u r c e  f o r  a p rede te rmined  l e n g t h  o f  t i m e ,  
t h e  h i g h  d e n s i t y  a r e a s  p r o j e c t e d  o n t o  t h e  f i l m  i s  c o n t r a s t e d  r e l a t i v e  t o  
t h e  s u r r o u n d i n g  material. A f t e r  exposure  no r e s i d u e  r a d i a t i o n  i s  p r e s e n t  
s i n c e  l e a d  s h i e l d e d  w a l l s  s u r r o u n d i n g  t h e  o b j e c t i v e  area a b s o r b s  a l l  
x-ray s c a t t e r  i n s t a n t l y .  

Applying t h e  rad iography  p r i n c i p a l  t o  t h e  c a l c a r e o u s  sed iment  model 
s t u d y  he lped  t o  s e l e c t  t h e  l a b o r a t o r y  components. They i n c l u d e d  a  ply-  
wood box (6  by 12 by 24 i n c h e s  d e e p ) ,  l e a d  s h o t  p e l l e t s ,  and a s t e e l  
model p i l e  (24 i n c h e s  l o n g  by 1-1/2 i n c h e s  diam).  Other  a n c i l l i a r y  
equipment such  a s  a s s o r t e d  d r i v i n g  w e i g h t s ,  t e m p l a t e s  f o r  l e a d  s h o t  
p lacement ,  and a  p i l e  g u i d e  f o r  v e r t i c a l  p e n e t r a t i o n  were p rov ided  ( s e e  
F i g u r e  2 ) .  

T e s t  M a t e r i a l s  

Two t e s t  m a t e r i a l s  were used f o r  t h i s  s t u d y :  (1)  c a l c a r e o u s  sand 
and ( 2 )  s i l i c a  sand .  Ca lca reous  sand i s  n o t  abundant  i n  t h e  c o n t i n e n t a l  
Uni ted  S t a t e s  and t h e  most l i k e l y  area t o  f i n d  t h e  material i s  i n  F l o r i d a .  
I n  t h e  p a s t ,  abundant s u p p l i e s  o f  t h e  sand were  a v a i l a b l e  on beaches  
l o c a t e d  i n  t h e  F l o r i d a  Keys a s  w e l l  as s o u t h e r n l y  beaches  on t h e  mainland. 
However, many of t h e s e  beaches  have been  expanded w i t h  imported s i l i c a  
s a n d ,  t h e r e b y ,  c o n t a m i n a t i n g  t h e  s o u r c e .  Also ,  s i l i c a  sand i s  used on 
e r o d i n g  b e a c h e s ,  which i s  a n o t h e r  c a u s e  of con tamina t ion .  F o r t u n a t e l y ,  
a  c l e a n  s o u r c e  of c a l c a r e o u s  sand was l o c a t e d  a t  t h e  Key West Naval A i r  
S t a t i o n .  An abandoned f o r t ,  l o c a t e d  on t h e  b a s e ,  had rooms f i l l e d  w i t h  
100% c a l c a r e o u s  sand.  S e v e r a l  c u b i c  y a r d s  o f  t h e  sand  were  sh ipped  t o  



P o r t  Hueneme a f t e r  i t  had been examined and found t o  be  pure .  Th i s  sand 
has  a  s p e c i f i c  g r a v i t y  of 2.72 and a  carbonate  con ten t  of 86.17% w i t h  
1.45% o rgan ic s .  The g r a i n  s i z e  a n a l y s i s  i s  shown i n  F igure  3 .  

S i l i c a  sand was ob ta ined  from a  commercial source .  Th i s  sand was 
from Monterey and i s  r e f e r r e d  t o  a s  Monterey sand. For t h e  purpose of 
t h i s  r e p o r t ,  t h e  sand w i l l  be  r e f e r r e d  t o  simply a s  s i l i c a  sand. The 
s p e c i f i c  g r a v i t y  f o r  t h i s  sand i s  2.65. The g r a i n  s i z e  a n a l y s i s  i s  shown 
i n  Figure 4 .  

Model P repa ra t i on  Procedures '  - 

The program's phi losophy was t o  bound t h e  geo techn ica l  parameters  
of t h e  s o i l - p i l e  i n t e r a c t i o n .  The o b j e c t i v e  was t o  view t h e  behavior  of 
t h e  two sands dur ing  p i l e  d r i v i n g .  For each s o i l ,  two d e n s i t i e s  ( a  l oose  
and tamped s o i l )  and seven l e v e l s  of cementat ion (0%, 0.25%, 0.50%, 1%,  
2%, 4 % ,  8%) were used. Furthermore, a  l i m i t e d  s u i t e  of samples were 
t e s t e d  c o n s i s t i n g  of a  50-50 mix ture  of t h e  two sands w i th  t h e  0%, I%,  
and 2% cementat ion l e v e l s .  

Three parameters :  (1 )  d e n s i t y ,  (2) cementat ion l e v e l ,  and ( 3 )  ca r -  
bonate  con ten t ,  were viewed a s  important  f a c t o r s  c o n t r o l l i n g  t h e  behavior  
of ca l ca reous  sand. F i r s t ,  d e n s i t y  v a r i a t i o n s  were used s i n c e  engineer ing  
p r o p e r t i e s  of t e r r e s t r i a l  sands behave d i f f e r e n t l y  a t  d i f f e r e n t  void 
r a t i o s  ( d e n s i t y ) .  For example, a  dense sand undergoing s h e a r  l oad ing  
w i l l  expand a t  f a i l u r e  whi le  a  l oose  sand w i l l  u s u a l l y  compress i n t o  a  
more compact s t a t e .  S ince  t h i s  i s  a  prominent phenomenon occu r r ing  wi th  
sand,  t h e  a p p l i c a t i o n  of d e n s i t y  v a r i a n t s  appeared app rop r i a t e .  

Second, t h e  vary ing  cementat ion l e v e l s  were a p p r o p r i a t e  because 
ca1c:areous sand d e p o s i t s  e x i s t  i n  uncemented and weak-to-medium cemented 
s t a t . e s .  The use  of t h e  cement v a r i a n t s  w i l l  d i s p e l  ques t i ons  of how t h e  
so i l . -p i le  i n t e r a c t i o n  changes w i t h  d i f f e r e n t  s t a g e s  of i n d u r a t i o n .  

L a s t ,  a s  was s t r e s s e d  e a r l i e r  (Demars e t  a l . ,  1.976), t h e  p o s s i b i l i t y  
e x i s t s  t h a t  carbonate  con ten t  could be used a s  an  index p rope r ty .  Thus, 
f o r  purposes  of bounding t h e  e f f e c t s  of t h i s  p r o p e r t y ,  t h e  carbonate  
con ten t  was v a r i e d  a t  t h r e e  l e v e l s :  0%, 50%, and 100%. 

The s o i l  p r e p a r a t i o n  procedure r equ i r ed  t h a t  enough moi s tu re  was 
a v a i l a b l e  i n  t h e  mixture  t o  hyd ra t e  t h e  Type I11 cement. The ca l ca reous  
sand was brought up t o  19% mois ture  con ten t  (weight of water  d iv ided  by 
weight  of s o l i d s  t i m e s  100) and t h e  s i l i c a  sand t o  10% ( t h e s e  mois ture  
c o n t e n t s  remained t h e  same f o r  a l l  t h e  combination of s o i l  samples) .  
The reason  f o r  t h e  d i s p a r i t y  of mois ture  c o n t e n t s  i s  because t h e  c a l c a r -  
eous g r a i n s  have a  h igh  a f f i n i t y  f o r  absorb ing  t h e  i n t e r s t a t i a l  water  
b e f o r e  hyd ra t ion  i s  allowed t o  commence, t hus ,  a d d i t i o n a l  mois ture  was 
needed. The amount of cement added t o  t h e  mix ture  was measured a s  a  
pe rcen t  of t o t a l  sample weight .  A f t e r  mixing thoroughly,  t h e  s o i l  sample 
was placed i n t o  t h e  c o n t a i n e r  a s  expla ined  below and cured i n  a  100% 
humidity c o n t r o l l e d  environment f o r  7 days.  

A r a i n i n g  technique ,  common t o  s o i l  l a b o r a t o r y  t e s t i n g ,  was used 
f o r  t h e  h igh  void r a t i o  (volume of voids/volume of s o l i d s )  s o i l  p lace-  
ment. The prepared s o i l  was p laced  i n  a  r e t a i n i n g  hopper above t h e  con- 
t a i n e r  and r e l e a s e d ,  and was atomized a s  i t  passed through a  s i e v e  
sc reen .  For t h i s  s t udy ,  a  d i s b u r s i n g  box and a  112-inch Ty le r  s c r e e n  
were used. The s o i l  was placed i n  1-inch depth  increments  ( i . e . ,  l i f t s ) .  



The con ta ine r  ho ld ing  t h e  s o i l  was 6 by 12 by 24 inches  high.  The depth  
of s o i l  was 18 inches  l eav ing  6 inches  a v a i l a b l e  a t  t h e  con ta ine r  top  
f o r  p i l e  p o s i t i o n i n g  equipment. 

The low void r a t i o  s o i l  placement procedure a l s o  used a  d i sbu r s ing  
box and a 1/2-inch Ty le r  s i e v e  sc reen .  I n  o r d e r  t o  achieve  a  1-inch 
h ighe r  d e n s i t y  l i f t ,  a d d i t i o n a l  s o i l  was added and tamped by a  
3- by 3-inch squa re  wooden hammer. The fo l lowing  void  r a t i o s  were ob- 
t a i n e d  f o r  t h e  s u i t e  of s o i l  models: 

Model High Void Ra t io  Low Void Ra t io  

Calcareous Sand 2.0 2 0.1 1.4 2 0.1 

~ a l c a r e o u s / ~ i l i c a  Sand 1.43 2 0.01 0.94 2 0.02 

S i l i c a  Sand 0.75 + 0.1 0.6 2 0.1 

A t o t a l  of 18 inches  of s o i l  r equ i r ed  18 l i f t s .  I n  between each 
even l i f t ,  13 l e a d  s h o t  p e l l e t s  were placed on t h e  s u r f a c e  of t h e  l i f t .  
Three p e l l e t s  were p laced ,  112 inch  a p a r t ,  d i r e c t l y  on t h e  c e n t e r  l i n e  
of t h e  p i l e  d r i v i n g  pa th  wi th  t h e  c e n t e r  p e l l e t  on t h e  c e n t e r  l i n e  of 
t h e  p i l e .  The remaining 10 p e l l e t s  were placed symmetr ical ly  on each 
s i d e  of t h e  p i l e  i n  a  geometr ic  progress ion  manner s t a r t i n g  wi th  114 inch  
from t h e  p i l e  s u r f a c e  and s topping  a t  4  inches.  The f i n i s h e d  model, had 
e i g h t  l a y e r s  of 13  l e a d  s h o t  p e l l e t s  f o r  a  t o t a l  of 104 d i s c r e t e  p o i n t s .  
The s i z e  of t h e  p e l l e t s  was compatible  w i t h  t h e  median s o i l  g r a i n  s i z e  
determined from t h e  g r a i n  s i z e  d i s t r i b u t i o n  curve  (F igure  3 ) .  

Tes t  Procedures  

Thi r ty- four  sand models were cons t ruc t ed  and t e s t e d  t o  determine 
t h e  d r i v i n g  energy r equ i r ed  t o  p e n e t r a t e  t h e  sand and t o  monitor  t h e  
v e r t i c a l  and h o r i z o n t a l  movement of each l e a d  s h o t  p e l l e t  by radiography. 
Cured sand models were taken t o  t h e  Aeronautical-Mechanical Pro to type  
Support Branch a t  Po in t  Mugu and s e t  up i n  f r o n t  of t h e  x-ray equipment. 
A meta l  g r i d ,  f o r  monitor ing r e l a t i v e  movement, was tacked t o  t h e  back 
of t h e  wooden c o n t a i n e r  (model) and a  p i l e  gu ide  secured over  t h e  s o i l .  
An x-ray* w a s  taken showing t h e  i n i t i a l  p o s i t i o n  of t h e  l e a d  p e l l e t s .  
The p i l e  d r i v i n g  mechanism was placed i n  t h e  guide  and a  s e l e c t e d  weight 
f e l l  30 inches  and impacted t h e  t o p  of t h e  p i l e .  A second x-ray was 
taken a f t e r  t h e  p i l e  w a s  d r iven  2 inches  (F igure  5 ) .  This  p roces s  was 
repea ted  u n t i l  t h e  p i l e  had been d r iven  14 inches.  I n  a  few cases ,  t h e  
h igh  cementation sand models were too  hard f o r  t h e  p i l e s  t o  be  d r iven  
14 inches .  The hardened m a t e r i a l  caused seve re  c racking  of t h e  s o i l  
mass and con ta ine r  f a i l u r e  from t h e  d r i v i n g  energy. When t h i s  occurred ,  
p i l e  d r i v i n g  was s topped.  A f t e r  t h e  p i l e  reached f u l l  p e n e t r a t i o n ,  a  
p u l l o u t  test was done b u t  t h e  load  was no t  measured. 

*The word "x-ray" imp l i e s  t h a t  f i l m ,  placed behind t h e  model, was 
exposed t o  t h e  x-ray source  t h a t  recorded t h e  p o s i t i o n  of t h e  g r i d ,  
l ead  s h o t  p e l l e t s ,  and t h e  p i l e .  



Resu l t s  

The o b j e c t i v e  of t h e  NCEL l abora to ry  program was q u a l i t a t i v e  and 
at tempted t o  provide a v i s u a l  r e p r e s e n t a t i o n  of t h e  s o i l - p i l e  i n t e r a c -  
t i o n  behavior .  To t h a t  e x t e n t ,  t h e  o b j e c t i v e  was met. The only param- 
e t e r  measured was t h e  d r i v i n g  energy, which was c o r r e l a t e d  wi th  t h e  
parameters  of void r a t i o ,  cementat ion,  and carbonate  con ten t .  

Regarding t h e  s e l e c t e d  range of cementat ion l e v e l s ,  t h e  f i n d i n g s  
i n d i c a t e d  t h a t  t h e  ca l ca reous  sand p r a c t i c a l l y  reached an  indura ted  s t a t e  
where t h e  bulk  s o i l  sample cracked and behaved a s  cemented chunks. The 
in f luence  of t h e  s t a t e  of i n d u r a t i o n  on t h e  m a t e r i a l  behavior  was n o t ,  
t h e r e f o r e ,  o u t s i d e  t h e  t e s t i n g  boundary of s l i g h t  t o  medium cementation. 
Any e f f e c t s  due t o  t h i s  parameter would be seen.  For s i l i c a  sand,  t h i s  
s t a g e  was reached a t  t h e  2% cementat ion l e v e l ,  t h e r e f o r e ,  t e s t s  on t h e  
4% and 8% cementat ion f o r  s i l i c a  sand were no t  conducted because of t h i s  
f i nd ing .  

F igures  6 through 13 show complete s u i t e s  of x-rays f o r  s e l e c t e d  
s o i l  models. A l l  p o i n t s  i n  each x-ray were computer d i g i t i z e d  t o  reduce 
t h e  d a t a  f o r  comparing t h e  v a r i o u s  behaviors .  Table 4 summarizes t h e  
t o t a l  d r i v i n g  energy f o r  each s o i l  model t e s t e d .  F igures  14 through 16 
show t h e  v a r i a t i o n  between cementat ion,  carbonat ion ,  and vo id  r a t i o .  
Based on t h e  model s tudy  a t  NCEL t h e  fo l lowing  obse rva t ions  were made: 

1. The amount of ca l ca reous  sand i n  a sample appeared t o  c o n t r o l  
t h e  amount of r e s i s t a n c e  t h e  s o i l  mobi l izes  dur ing  p i l e  d r i v i n g  f o r  dense 
soi .1  samples. F igure  14  shows t h a t  f o r  t h e  dense models con ta in ing  100% 
s i1 : ica  sand,  t h e  s l o p e  of t h e  inpu t  energy curve was l a r g e r  than  samples 
conta in ing  100% ca lcareous  sand. The s l o p e  of i n p u t  energy f o r  s i m i l a r  
dense models conta in ing  50% s i l i c a  sand and 50% ca l ca reous  sand resembled 
t h e  100% ca lca reous  sand model s lope .  Th i s  became ev iden t  when t h e  loose  
d e n s i t y  curves  were analyzed i n  Figure 14. A l l  t h e  curves  show t h a t  
i npu t  energy inc reased  w i t h  cementation, however, each one shows a d i f -  
f e r e n t  s lope .  Closer  examination shows t h a t  t h e  t o t a l  energy s l o p e s  of 
t h e  loose  d e n s i t y  mixtures  appear  l i n e a r  and a s  t h e  composition of t h e  
model changed so  d i d  t h e  r a t e  of energy. That i s ,  a s  opposed t o  dense 
s o i l  model, t h e  amount of ca l ca reous  sand does no t  c o n t r o l  t h e  amount of 
r e s i s t a n c e  t h e  s o i l  mobi l izes  dur ing  p i l e  d r iv ing .  

2. The p u l l o u t  r e s i s t a n c e  parameter was not  measured i n  t h i s  t e s t .  
It was noted dur ing  t h e  t e s t  t h a t  t h e  ca lcareous  sand ' s  p u l l o u t  r e s i s -  
t ance  d i d  n o t  appear  t o  i n c r e a s e  wi th  increased  d r i v i n g  energy, nor  d id  
i t  i n c r e a s e  wi th  increased  cementation. C o n t r a r i l y ,  t h e  p u l l o u t  resis- 
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tanc:e f o r  s i l i c a  sand inc reased  s u b s t a n t i a l l y  w i t h  inc reased  cementat ion,  
and a t  t h e  h ighe r  cement con ten t s  t h e  p i l e  was very  d i f f i c u l t  t o  remove 
from t h e  sand model. This  sugges t s  t h a t  ca lcareous  sand ' s  d r i v i n g  energy 
is i.ndependent of p u l l o u t  tens ion .  

3. F igu res  15 and 16 show t h e  h o r i z o n t a l  and v e r t i c a l  movement of 
t h e  l ead  s h o t  p e l l e t s  r e l a t i v e  t o  t h e i r  d i s t a n c e  from t h e  p i l e  su r f ace .  
Seve ra l  g e n e r a l  obse rva t ions  can be  made: 



a .  The motion of p e l l e t s  i n  t h e  ca lcareous  sand model was 
l a r g e r  than  i n  t h e  s i l i c a  sand models. Since t h e  s i l i c a  sand showed 
more d r i v i n g  r e s i s t a n c e ,  perhaps t h e  ca l ca reous  sand r equ i r ed  more move- 
ment t o  mobil ize i t s  s t r e n g t h .  

b .  The t o t a l  motion i n  t h e  cemented sand models was sma l l e r  
than  i n  noncemented models. This  sugges ts  t h a t  cement bonding, a l though 
sma l l ,  was t y i n g  g r a i n s  t oge the r  causing t h e  mass t o  respond more a s  a  
u n i t .  

c .  The motion of t h e  lead  sho t  was g r e a t e r  i n  t h e  low vo id  
r a t i o  (dense) then i n  t h e  high void r a t i o  sand models. This  was expected 
because h igh  void r a t i o  sand compacts i n  o rde r  t o  mobi l ize  i t s  shea r  
s t r e n g t h  whereas low void r a t i o  sand t r a n s f e r s  t h e  shea r  load  f u r t h e r  
i n t o  t h e  sand medium enabl ing  t h e  medium t o  mobi l ize  more s t r e n g t h .  

d.  The downward v e r t i c a l  movement of t h e  high void  r a t i o  ca l -  
careous sand exceeded t h a t  of t h e  s i l i c a  sand. I n  t h e  low void r a t i o  
sand models, t h e  ma jo r i t y  of v e r t i c a l  movement was i n  an  upward d i r e c t i o n  
sugges t ing  t h a t  more p a r t i c l e s  were involved wi th  producing a  g r e a t e r  
mobilized s t r e n g t h .  Furthermore, t h e  increased  upward v e r t i c a l  movements 
of t h e  low void  r a t i o  s i l i c a  sand model i nd ica t ed  t h a t  t h i s  sand responded 
more e f f e c t i v e l y  and wi th  h ighe r  s t r e n g t h  t o  r e s i s t  loading .  

FRICTIONAL BEHAVIOR TESTS 

A s tudy  (Noorany, 1982a) i n v e s t i g a t e d  t h e  i n t e r n a l  f r i c t i o n  and 
so i l -meta l  f r i c t i o n  of two ca l ca reous  sands ,  and eva lua ted  t h e  in f luence  
of p a r t i c l e  c rush ing  on t h e s e  p r o p e r t i e s .  

The s tudy d id  o b t a i n  a  c l e a r e r  view of t h e  f r i c t i o n a l  behavior  of 
ca l ca reous  sands wi th  p a r t i c u l a r  emphasis on t h e  e f f e c t  of p a r t i c l e  
c rush ing  on t h e  i n t e r n a l  f r i c t i o n  angle ,  $, and on t h e  so i l -meta l  f r i c -  
t i o n  angle ,  6 .  

Tes t  Plan 

F i r s t ,  t h e  f r i c t i o n  angle  of each sand was measured by t r i a x i a l  
compression t e s t s  i n  l oose  a s  w e l l  a s  dense cond i t i ons .  Next, each ca l -  
careous  sand was crushed and t e s t e d  aga in  t o  determine t h e  e f f e c t  c rush ing  
had on t h e  s o i l  f r i c t i o n  angle ,  $, i n  l oose  and dense s t a t e s .  

The so i l -meta l  f r i c t i o n  was measured f o r  bo th  ca l ca reous  sands i n  
loose  a s  w e l l  a s  dense cond i t i ons .  The e f f e c t  of p a r t i c l e  c rush ing  on 
so i l -meta l  f r i c t i o n  ang le  was a l s o  i n v e s t i g a t e d .  

For comparison, a  s i l i c a  sand was a l s o  t e s t e d .  The r e s u l t s  of t h e  
t e s t s  were analyzed t o  e v a l u a t e  t h e  in f luence  of  s o i l  c rush ing  on shea r  
behavior  and f r i c t i o n a l  r e s i s t a n c e  of ca l ca reous  sands. 

Tes t  Ma te r i a l s  

Two ca l ca reous  sands,  from Guam and F l o r i d a ,  and a  Ottawa sand,  
were t e s t e d .  The ca lcareous  sand from Guam was uniformly graded c o r a l i n e  
m a t e r i a l  w i th  a  D = 0.45 mm and a  uni formi ty  c o e f f i c i e n t ,  
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C = D / D  = 1.8. The n a t u r a l  g r a i n  s i z e  d i s t r i b u t i o n  curve  f o r  t h e  
60 10 sgnd i s  shown i n  F igure  17. The sand conta ined  bo th  rounded and elon- 

ga t ed  p a r t i c l e s .  Microscopic examinat ion i n d i c a t e d  t h a t  most of t h e  
p a r t i c l e s  were porous and had a  rough t e x t u r e .  Even t h e  ve ry  s m a l l  par-  
t i c l e s  were porous,  and some were even hollow. The s p e c i f i c  g r a v i t y  of 
s o l i d s  measured 2.80. The g r a i n  s i z e  d i s t r i b u t i o n  curves  f o r  t h e  crushed 
sand,  compared wi th  t h e  n a t u r a l  sand,  are a l s o  shown i n  F igure  17. 

The ca l ca reous  sand from F l o r i d a  was t h e  same m a t e r i a l  used i n  t h e  
prev ious  l a b o r a t o r y  s tudy .  It was a  uniform ca l ca reous  sand wi th  a  
DS0 = 0.4 mm and a  un i formi ty  c o e f f i c i e n t ,  CU = D / D  = 2.8. This  
sand was f i n e r  than t h e  Guam sand and conta ined  ag8ut19% by weight  silt- 
s i z e d  p a r t i c l e s  ( f i n e r  than s i e v e  No. 200). The g r a i n  s i z e  d i s t r i b u t i o n  
curve f o r  t h e  sand i s  shown i n  F igure  18. The s p e c i f i c  g r a v i t y  of s o l i d s  
measured 2.72. The sand conta ined  f l a t  p i e c e s  of broken s h e l l s  a s  w e l l  
a s  bulky p a r t i c l e s .  Under t h e  microscope, t h e  t e x t u r e  of t h e  p a r t i c l e s  
appeared rough. The sand was a l s o  t e s t e d  a f t e r  c rush ing .  The g r a i n  
s i z e  d i s t r i b u t i o n  of  t h e  crushed sands ,  compared w i t h  t h a t  of t h e  n a t u r a l  
sanjd, a r e  a l s o  shown on F igure  18. 

The Ottawa sand is  a  uniformly graded s i l i c a  sand w i t h  a  D = 0.45 mm 
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and a  un i formi ty  c o e f f i c i e n t ,  C = D ID = 2.0 .  The g r a i n  s i z e  d i s t r i -  
60 10 b u t i o n  curve  f o r  t h i s  sand i s  &own I n  F lgure  19. The sand c o n s i s t e d  of 

bulky p a r t i c l e s  t h a t  under t h e  microscope appeared t o  have smooth, 
po l i shed  s u r f a c e s .  The s p e c i f i c  g r a v i t y  of s o l i d s  f o r  t h i s  s o i l  mea- 
sured  2.61. The purpose f o r  us ing  t h e  Ottawa sand was t o  compare t h e  
r e s u l t s  of t h e  ca l ca reous  sand t o  a  t y p i c a l  non-calcareous sand. 

Tes t  Procedures  - 
The i n t e r n a l  f r i c t i o n  a n g l e  of each sand was measured by means of 

t r i a x i a l  compression tests. T e s t  specimens had a  c r o s s - s e c t i o n a l  a r e a ,  
Ao,  of 10 cm2 and were prepared i n  bo th  l oose  and dense cond i t i ons .  The 
loose  samples were made by a  r a i n i n g  technique  where t h e  d ry  sand i s  
poured through a  funne l  i n t o  a  c y l i n d r i c a l  sample mold. The d i s t a n c e  
between t h e  funne l  and t h e  accumulat ing sand was kep t  c o n s t a n t .  Dense 
samples were prepared by p l a c i n g  t h e  sand i n  f i v e  l a y e r s  and compacting 
each l a y e r  w i th  a  sma l l ,  hand-held tamper. The i s o t r o p i c  compression 
behavior  was s t u d i e d  when con f in ing  s t r e s s e s  were a p p l i e d  t o  t h e  samples.  
This  was done by observ ing  volume changes under t h e  compression loads .  

A l l  t r i a x i a l  compression tests were cons t an t - r a t e -o f - s t r a in  tests 
a t  cons t an t  l a t e r a l  p r e s s u r e  u n t i l  s t r e s s - s t r a i n  curve  passed a  peak 
va lue .  The r a t e  of deformation f o r  a l l  tests was 0.03 inch  p e r  minute. 
The a x i a l  load  was measured by means of an e l e c t r o n i c  l oad  c e l l ,  and t h e  
a x i a l  d e f l e c t i o n  was measured by a  s t r a i n  i n d i c a t o r .  

The m a j o r i t y  of t r i a x i a l  compression t e s t s  were performed on d ry  
sand wi thout  volume change measurements. However, f o r  each of t h e  c a l -  
careous sands  used i n  t h i s  s t udy ,  a test was made under s a t u r a t e d  condi- 
t i o n s  and t h e  sample volume change was measured du r ing  d ra ined  s h e a r  
( i . e . ,  no excess  pore  p r e s s u r e  bui ld-up) .  This  was done t o  observe t h e  
d i l a t a n c y  c h a r a c t e r i s t i c s  of t h e  sands.  

The f r i c t i o n  c o e f f i c i e n t  of each sand a g a i n s t  me ta l  was measured 
d i r e c t l y  by s l i d i n g  a  r i g i d  f l a t  s t e e l  p l a t e  on t h e  s u r f a c e  of sand.  
The p l a t e  was 3-112 inches  by 3-112 inches ,  and was p laced  on a  bed of 
sand 1 inch  deep. A f t e r  t h e  d e s i r e d  normal stress was a p p l i e d ,  t h e  p l a t e  
was sub jec t ed  t o  s h e a r  l oads  i n  sma l l  increments  u n t i l  s l i d i n g  occurred.  



Resu l t s  

The r e s u l t s  of t h e  t r i a x i a l  shea r  t e s t s  a r e  presented  i n  Table 5. 
The r e s u l t s  show t h a t  t h e  f r i c t i o n  ang le  of t h e  ca l ca reous  sands was 
about 10 degrees h ighe r  than  t h a t  of t h e  Ottawa sand. This  was t r u e  f o r  
both sands i n  l oose  and dense condi t ions .  The range of v a r i a t i o n  of 
f r i c t i o n  ang le  of t hese  ca l ca reous  sands from loose-to-dense cond i t i on  
was narrow. The i n c r e a s e  i n  f r i c t i o n  ang le  from loose-to-dense cond i t i on  
was only 3 t o  4 degrees  f o r  bo th  sands.  The h igh  f r i c t i o n  ang le s  of t h e  
ca lcareous  sands t e s t e d  were no t  due t o  d i l a t i o n a l  behavior  dur ing  
shear ing .  I n  t h e  loose  cond i t i on ,  bo th  sands showed volume decrease ,  
y e t  had f r i c t i o n  ang le s  i n  t h e  range of 44 t o  46 degrees.  

Some p a r t i c l e  c rush ing  occurred dur ing  shea r ing  of t h e s e  ca lcareous  
sands i n  t h e  t r i a x i a l  compression t e s t s  (Figure 20).  When a d d i t i o n a l  
t e s t s  were made on t h e  crushed sand,  t he  amount of f u r t h e r  c rush ing  
dur ing  shea r  was s u b s t a n t i a l l y  reduced. 

The f r i c t i o n  ang le  of t h e s e  ca lcareous  sands decreased as t h e  con- 
f i n i n g  p re s su re  was increased .  A t  a' conf in ing  p re s su re  of 8,000 l b / f t 2  
t h e  amount of r educ t ion  i n  @ va lue  f o r  ca lcareous  sands was 2 t o  4 de- 
g rees .  Even p a r t i a l l y  crushed sand showed some r educ t ion  i n  t h e  @ va lue  
when t e s t e d  under h igh  conf in ing  p re s su res .  

T e s t s  on t h e  crushed and recompacted ca l ca reous  sands i n d i c a t e d  
t h a t  t h e  crushed sand was no t  weaker than  t h e  n a t u r a l  sand. When t h e  
f r i c t i o n  ang le  of n a t u r a l  sand a t  a  given void r a t i o  was compared wi th  
t h e  f r i c t i o n  ang le  of p a r t i a l l y  crushed o r  ground ca lcareous  sand a t  t h e  
same void r a t i o ,  i t  was found t h a t  they were about t h e  same va lue  
(Table 5 ) .  

The r e s u l t s  of i s o t r o p i c  compression t e s t s  i n d i c a t e  t h a t  t h e  ca l ca r -  
eous sands t e s t e d  a r e  more compressible  than  t h e  Ottawa sand (F igure  2 1 ) .  
This  could be due t o  t h e  presence of i n t r a p a r t i c l e  v o i d s ,  and crushing 
of t h e  sharp  edges and co rne r s  of h igh ly  i r r e g u l a r  p a r t i c l e s .  

The r e s u l t s  of t h e  s o i l - s t e e l  f r i c t i o n  t e s t s  a r e  presented  i n  
Table 6 .  These d a t a  i n d i c a t e  t h a t  f o r  t h e  two ca l ca reous  sands,  t h e  
s o i l - s t e e l  f r i c t i o n  angle  appears  independent of s o i l  d e n s i t y ,  and in-  
c reased  s l i g h t l y  a f t e r  c rush ing .  For t h e  Ottawa sand t h e  f r i c t i o n  ang le  
is  independent of s o i l  d e n s i t y .  No t e s t s  were done w i t h  crushed Ottawa 
sand. 

CRUSHABILITY 

The behavior  work performed by NCEL provided a  c l e a r e r  understanding 
of t h e  s o i l - p i l e  i n t e r a c t i o n ,  and a  b e t t e r  understanding of t h e  c rushing  
phenomena. However, answers t o  ques t ions  such a s  t h e  l o c a t i o n  and e x t e n t  
of c rush ing  r e l a t i n g  t o  v a r i o u s  cementat ion l e v e l s  and void  r a t i o s ,  and 
what e f f e c t  c rush ing  has  on d r i v i n g  energy and p u l l o u t  t ens ion  would 
provide a  b e t t e r  understanding of t h e  o v e r a l l  s o i l - p i l e  i n t e r a c t i o n  and 
t h e  shea r  t r a n s f e r  mechanism ope ra t ing  i n  ca l ca reous  sands.  To s tudy  
t h e s e  ques t ions ,  NCEL awarded a  c o n t r a c t  t o  ERTEC Western, Inc . ,  Long 
Beach, C a l i f .  



ERTEC Program 

In an effort to correlate the findings from this study with those 
from previous studies, ERTEC1s work was developed around varying void 
ratios and cementations, and driving a model pile into two different 
sands. The objective of this investigation was to qualitatively examine 
the following items related to piles in calcareous sands: 

The effect of pile driving on the degree of grain crushing. 

The effect of grain crushing on the frictional resistance 
characteristic of piles in calcareous sands. 

The effect of cementation.on the crushability and frictional 
resistance characteristics. 

The test setup and equipment used for this investigation were spe- 
cifically designed and built to meet the project goals. Figure 22 is an 
illustration of the complete test setup. The test setup consisted of 
the following systems: 

e Model pile and pile driving stem 

a Sample retention system (red barrel) 

Sample preparation system 

Pullout load test system 

Instrumentation and data acquisition system 

The model pile and the driving assembly was the same as that used 
in the NCEL program, i.e., a.1-112-inch diam pile driven into the sand 
by free weights falling through a guide rod and impacting on top of the 
pile. The sample was placed in a 30-inch diam by 30-inch high, hollow 
steel cylinder test drum with end plates bolted to both ends of the 
cylinder. The test drum was equipped with a pressurization system that 
could apply up to 100 psi pressure to simulate overburden and lateral 
stress conditions. For this study, an overall confining pressure of 
20 psi was applied in every test, simulating a pile driven about 50 to 
60 feet below the seafloor. The pullout load test included a hydraulic 
loading system and load frame. The hydraulic system consisted of a 
hydraulic actuator, a hydraulic pump, and a flow rate adjuster. This 
system was used to pull out the pile at a slow rate. 

Test Procedures 

A total of 20 laboratory tests were performed on the two different 
sands prepared at different densities, moisture contents, and cement 
contents. Each test was done in the following sequence: 



1. Prepare  and cu re  each sample. 

2. P l ace  t h e  sample i n  t h e  t e s t  drum and apply a con f in ing  pres-  
s u r e  of 20 p s i .  

3 .  Drive t h e  model p i l e  i n t o  t h e  sample. 

4. Perform a p u l l o u t  t e s t .  

5. Subsample specimens a t  v a r i o u s  depths  and d i s t a n c e s  from t h e  
s o i l - p i l e  i n t e r f a c e .  

Two methods of sample p repa ra t ion ,  tamping, and r a i n i n g  were used 
i n  t h i s  i n v e s t i g a t i o n .  Both methods were based on t h e  procedure used i n  
t he  previous  behavior  t e s t  t o  achieve  an in-place low and h igh  void r a t i o  
dens i ty .  

A l l  prepared samples were cured i n  a 100% humidity room f o r  3 days 
be fo re  they were placed i n  t h e  t e s t  drum. This  cu r ing  per iod  was d e t e r -  
mined on t h e  b a s i s  of unconfined compression t e s t s  t h a t  i nd ica t ed  t h a t  
3- and 7-day s t r e n g t h s  of t h e  samples were about t h e  same. A f t e r  cu r ing ,  
t h e  t e s t  sample was placed on top of a prepared bed of s i l i c a  sand i n  
t he  t e s t  drum. The space between the  t e s t  sample and t h e  drum wa l l  was 
then  f i l l e d  wi th  s i l i c a  sand compacted i n  l a y e r s  w i t h  a d e n s i t y  s i m i l a r  
t o  t h e  t e s t  sample t o  main ta in  compliance. The drum was then  covered 
and a l l  p r e s su re  l i n e s  connected. A h y d r o s t a t i c  conf in ing  p re s su re  of 
20 p s i  was app l i ed  t o  t h e  sample. 

The p i l e  d r i v i n g  assembly was a t t ached  a f t e r  t h e  sample was i n  p l ace  
and t h e  conf in ing  p re s su re  app l i ed .  P i l e  d r i v i n g  was done by manually 
dropping a 15-pound deadweight 12 inches above t h e  p i l e  head. P i l e  
d r i v i n g  continued u n t i l  t h e  model p i l e  pene t r a t ed  12 inches .  Pu l lou t  
t e s t s  were performed wi th  t h e  hydrau l i c  p u l l i n g  system. The p i l e  was 
connected t o  t h e  v e r t i c a l  ram of t h e  hydrau l i c  a c t u a t o r  and pu l l ed  ver- 
t i c a l l y  a t  a speed of about 0.04 inch  per  second. The p u l l o u t  t e s t  con- 
t i nued  u n t i l  a maximum p u l l o u t  f o r c e  was reached. The p u l l o u t  r e s i s t a n c e  
f o r c e  and p i l e  displacement were cont inuously monitored on an X-Y-Y- 
recorder .  

I t  was hypothesized t h a t  t h e  degree of g r a i n  c rushing ,  i f  any, would 
be more seve re  a t  o r  near  t h e  p i l e  and decrease  s i g n i f i c a n t l y  a s  t h e  
d i s t a n c e  away from t h e  p i l e  increased .  I t  was necessary ,  t h e r e f o r e ,  t o  
o b t a i n  s o i l  specimens a t  o r  near  t h e  p i l e  w a l l  dur ing  t h i s  t e s t .  Nine 
s o i l  specimens were taken from each t e s t  sample a t  t h r e e  h o r i z o n t a l  d i s -  
t ance  i n t e r v a l s  of 0 t o  1 /4 ,  1 t o  2 ,  and 2 t o  3 inches  from t h e  p i l e  
per imeter  and a t  t h r e e  depth i n t e r v a l s  between 0 t o  4 ,  4 t o  8 ,  and 8 t o  
12 inches  from t h e  s o i l  s u r f a c e  i n  each h o r i z o n t a l  d i s t a n c e  i n t e r v a l .  

Specimens from the  cemented samples were analyzed f o r  g r a i n  s i z e .  
I n  o rde r  t o  do t h i s ,  t h e  cementing agent  and sand g r a i n s  would have t o  
b e  sepa ra t ed  t o  a s s e s s  t h e  changes i n  g r a i n  s i z e  d i s t r i b u t i o n .  The 
r e g u l a r  s e p a r a t i o n  method of u s ing  p h y s i c a l  o r  mechanical f o r c e s  was no t  
accep tab le  s i n c e  it could break  and crush  t h e  s o f t  ca lcareous  sand g r a i n s .  
Chemicals could no t  be used because they could d i s s o l v e  t h e  ca lcareous  
sand g r a i n s  a s  w e l l  a s  t h e  cement agent .  In s t ead ,  t h e  ca lcareous  sand 
and t h e  cement agent  was separa ted  by hand. Extreme c a r e  was taken t o  



prevent  c rush ing  t h e  sand g r a i n s .  A f t e r  t h e  specimens were sepa ra t ed ,  
they were soaked i n  d i s t i l l e d  water  f o r  24 hours.  Sieve ana lyses  were 
then  performed on t h e  s o i l  specimens i n  accordance wi th  ASTM D422-63 
procedures  (ASTM, 1981). 

Resu l t s  

Of t h e  20 t e s t s  performed, 5 were nonscheduled and 15 were sched- 
u led .  The nonscheduled t e s t s  were "shakedown t e s t s "  t o  c a l i b r a t e  and 
modify v a r i o u s  t e s t  procedures .  Relevant d a t a  and c h a r a c t e r i s t i c s  of 
a l l  t e s t  samples, a s  w e l l  a s  c e r t a i n  t e s t  r e s u l t s ,  a r e  summarized i n  
Table 7 .  The shakedown test d a t a  were inc luded  i n  Table 7 f o r  complete- 
nes s  and t o  q u a l i t a t i v e l y  supplement t h e  r e s u l t s  of t h e  scheduled tests. 

An examination of t h e  p i l e  d r i v i n g  energy d a t a  i nd ica t ed  t h a t :  

1 .  A s  expected,  h ighe r  d r i v i n g  energy was r equ i r ed  t o  i n s t a l l  t h e  
p i l e  i n t o  h ighe r  d e n s i t y  sand samples. 

2 .  For h ighe r  d e n s i t y  samples of ca l ca reous  and s i l i c a  sand,  t h e  
fo l lowing  obse rva t ions  were made: 

The d r i v i n g  energy r equ i r ed  t o  i n s t a l l  t h e  p i l e  increased  
wi th  increased  cement con ten t .  

A t  each p re sc r ibed  cement con ten t ,  p i l e  d r i v i n g  r e s i s t a n c e s  
were on t h e  same o rde r  of magnitude f o r  h ighe r  d e n s i t y  s i l i c a  
and ca lcareous  sand samples. 

3 .  For lower d e n s i t y  samples of e i t h e r  s i l i c a  o r  ca l ca reous  sand,  
an i n c r e a s e  i n  cement con ten t  d i d  not  i n c r e a s e  p i l e  d r i v i n g  
r e s i s t a n c e .  

The r e s u l t s  of maximum p u l l o u t  r e s i s t a n c e  and corresponding p i l e  
displacement d a t a  a r e  a l s o  summarized i n  Table 7 .  A summary p l o t  of t h e  
maximum p u l l o u t  f o r c e  ve r sus  t h e  number of blows r equ i r ed  t o  advance t h e  
p i l e  12 inches  i s  provided i n  F igure  2 3 .  Based on t h e s e  r e s u l t s ,  s e v e r a l  
observa t ions  were made: 

1. Although t h e  p i l e  d r i v i n g  r e s i s t a n c e s  f o r  t h e  h ighe r  d e n s i t y  
s i l i c a  sand and ca l ca reous  sand samples a r e  s i m i l a r ,  t h e  p u l l o u t  r e s i s -  
t ance  of t h e  s i l i c a  sand was two t o  f i v e  t i m e s  g r e a t e r  than  of t h e  p u l l -  
ou t  r e s i s t a n c e  of t h e  ca lcareous  sand. The d i f f e r e n c e  of t h e  p u l l o u t  
r e s i s t a n c e  appeared t o  i n c r e a s e  wi th  t h e  i n c r e a s e s  of cement con ten t s  
and p i l e  d r i v i n g  r e s i s t a n c e .  

2 .  I n  lower d e n s i t y  ca l ca reous  sand,  p i l e  p u l l o u t  r e s i s t a n c e  
appeared t o  i nc rease  wi th  t h e  i n c r e a s e  of p i l e  d r i v i n g  r e s i s t a n c e .  

3 .  I n  s i l i c a  sand,  p i l e  p u l l o u t  r e s i s t a n c e  inc reased  w i t h  t h e  
inc rease  of p i l e  d r i v i n g  r e s i s t a n c e .  



Based on t h e s e  obse rva t ions ,  i t  appeared t h a t  p i l e  d r i v i n g  r e s i s -  
t ance  may not  be a  r a t i o n a l  parameter f o r  use  i n  p u l l o u t  capac i ty  ( o r  
f r i c t i o n a l  p i l e  capac i ty )  p r e d i c t i o n s  f o r  p i l e s  i n  ca l ca reous  sands. 

A s  descr ibed  e a r l i e r ,  subsamples of t h e  s o i l  samples were taken a t  
va r ious  depths  and d i s t a n c e s  from t h e  p i l e  w a l l  a f t e r  each p u l l o u t  t e s t .  
The f i n e s  content  ve r sus  d i s t a n c e  from t h e  p i l e  w a l l  ( s o i l - p i l e  i n t e r -  
f ace )  a r e  presented  i n  Table 8. These r e s u l t s  show t h a t  most of t h e  
g r a i n  c rushing  took p l ace  a t  o r  near  t h e  p i l e  wa l l .  The degree of g r a i n  
c rushing  decreased away from t h e  p i l e  w a l l .  The g r a i n  s i z e  ana lyses  f o r  
t he  specimens show t h a t :  

1. A t  o r  near  t h e  p i l e  w a l l ,  more g r a i n  c rushing  occurred along 
t h e  bottom 8 inches  of t h e  p i l e  than  t h e  top  4 inches .  

2. P i l e  d r i v i n g  crushes  more g r a i n s  of t h e  h ighe r  d e n s i t y  ca l ca r -  
eous sand samples while  i t s  e f f e c t  on s i l i c a  sand and lower 
d e n s i t y  ca l ca reous  sand samples was l e s s  pronounced. 

The observa t ion  i n  i tem 1 appears  ques t ionab le  s i n c e  one would t h i n k  
t h a t  g r a i n  c rushing  would be more pronounced near  t h e  s o i l  s u r f a c e  where 
more shea r  s t r e s s  c y c l e s  a r e  imposed by t h e  p i l e  d r iv ing .  This  could be  
caused by t h e  phys i ca l  l i m i t a t i o n  of t h e  red  b a r r e l  and p r e s s u r i z a t i o n  
system. The top  4 inches  of t h e  p i l e  were sub jec t ed  t o  less complete 
confinement than  t h e  bottom 8 inches  of t h e  p i l e ,  t h u s ,  i t  can be hypoth- 
e s i zed  t h a t  g r a i n  c rushing  a l s o  depends on t h e  app l i ed  conf in ing  s t r e s s .  

ALTERNATIVE PILE CONCEPTS 

I n  t h e  p a s t ,  t h e  most popular  p i l e s  used i n  ca l ca reous  sand have 
been t h e  open-ended p i p e  p i l e s .  The reasons  f o r  t h i s  were d iscussed  i n  
t h e  BACKGROUND s e c t i o n .  However, i t  has been hypothesized t h a t  d r i v e n  
p ipe-p i les  c r e a t e  problems i n  ca l ca reous  sand,  p a r t i c u l a r l y  i n  regard t o  
developing s k i n  r e s i s t a n c e .  These hypotheses have been v e r i f i e d  by ERTEC, 
1983a. The recognized problems do no t  r u l e  out  t h e  u s e  of p ipe  p i l e s ,  
b u t  o t h e r  p i l i n g  concepts  might be more a p p r o p r i a t e  f o r  some cases .  

ERTEC was funded t o  i n v e s t i g a t e  t h e  p o s s i b i l i t y  of us ing  a l t e r n a t i v e  
p i l i n g  systems t h a t  could be used i n  ca l ca reous  s o i l s .  Conceptual sys- 
tems were developed on t h e  b a s i s  of t h e  c u r r e n t  understanding of t h e  
p i l e  behavior  i n  ca l ca reous  sands. Because t h e  behavior  of p i l e s  i n  
ca l ca reous  sands i s  complex and t h e  understanding meager, i t  was neces- 
s a r y  t o  p o s t u l a t e  v a r i o u s  behav io ra l  a s p e c t s  on t h e  b a s i s  of engineer ing  
understanding and judgment. Attempts were made t o  extend beyond t h e  
s t a t e -o f - the -a r t ,  t hus ,  some of t h e  developed systems involve  s u b s t a n t i a l  
r i s k s  and r e q u i r e  development work i n  o r d e r  t o  prove t h e i r  v i a b i l i t y .  

I n  developing t h e  improved p i l i n g  systems f o r  ca l ca reous  sediment 
a p p l i c a t i o n s ,  t h e  fo l lowing  p r i n c i p l e s  were considered:  

1. Recognized t h e  v a r i o u s  s p e c i a l  behav io ra l  a s p e c t s  of p i l e s  i n  
ca l ca reous  s o i l s  based on our  knowledge. 

2. Pos tu l a t ed  t h e  mechanisms behind t h e s e  a s p e c t s  i n  accordance 
wi th  good engineer ing  judgment and assumptions i f  t h e  knowledge 
was nonexistent. .  



3 .  Improved v a r i o u s  behav io ra l  a s p e c t s  t h a t  y i e l d  low load  c a r r y i n g  
c a p a c i t y ,  and maintained o r  enhanced v a r i o u s  behav io ra l  a s p e c t s  
t h a t  y i e l d  r e l a t i v e l y  h igh  load  c a r r y i n g  c a p a c i t y  s i m i l a r  t o  
those  i n  comparable t e r r i g e n o u s  s o i l s .  

4 .  Developed p r a c t i c a l  systems t h a t  were p r a c t i c a l ,  a ch i evab le  and 
involved minimal r i s k  and development. 

5.  Applied f e a s i b l e ,  proven techniques ,  t h a t  were s u c c e s s f u l  else- 
where. 

I n s t a l l i n g  and loading  p i l e s  i n  ca l ca reous  sediments  w i l l  i n t roduce  
vary ing  degrees  of g r a i n  c rush ing  and volumet r ic  c o n t r a c t i o n s  n e a r  t h e  
p i l e .  The e x t e n t  of g r a i n  c rush ing  and volumet r ic  c o n t r a c t i o n  depends 
on t h e  p i l i n g  system, i n s t a l l a t i o n  method, c h a r a c t e r i s t i c s  of  ca l ca reous  
sediments ,  s ta te  of stress, loading  c h a r a c t e r i s t i c s ,  and o t h e r  f a c t o r s .  
A f t e r  examining t h e  key b e h a v i o r a l  a s p e c t s ,  i t  was c l e a r  t h a t  any improved 
p i l i n g  system must i nco rpo ra t e  one o r  a  combination of t h e  fo l lowing  
f e a t u r e s :  

1. Must i n c r e a s e  t h e  e f f e c t i v e  l a t e r a l  stress on p i l e  s h a f t .  

2 .  Must f o r c e  t h e  p i l e  t o  t r a n s f e r  load  t o  t h e  zone of s o i l s  where 
deg rada t ion  due t o  g r a i n  c rush ing  is  minimal. 

3 .  Should have an en la rged  base  a r e a .  

4 .  Should e l i m i n a t e  o r  reduce t h e  e f f e c t  of g r a i n  c rush ing  and 
a s s o c i a t e d  vo lume t r i c  c o n t r a c t i o n  a s  w e l l  a s  s o i l  a r ch ing .  

5. Should i n c r e a s e  c o n t a c t  a r e a  between p i l e  and sediments.  

Numerous v a r i a t i o n s  of  p i l i n g  systems e x i s t  t h a t  can i n c o r p o r a t e  
one o r  a  combination of t h e  above f e a t u r e s .  Most of t h e  convent iona l  
p i l i n g  systems (except  d r i v e n  p i l e s )  do i n c o r p o r a t e  some of t h e s e  f ea -  
t u r e s .  These f e a t u r e s  a r e  c o s t l y  and a r e  ou t  of t h e  scope of  t h i s  con- 
c e p t u a l  development work. 

The fo l lowing  improved p i l i n g  systems were concep tua l ly  developed 
fo l lowing  t h e  approaches and p r i n c i p l e s  desc r ibed  i n  prev ious  s e c t i o n s :  

Back f i l l ed  p i l e s  (BP) 

Vibra tory  i n s t a l l e d  b a c k f i l l e d  p i l e s  (VBP) 

P re s su r i zed  p i l e s  (PP) 

B a c k f i l l e d  and p r e s s u r i z e d  p i l e s  (BPP) 

P i l e s  w i t h  en la rged  t i p s  (PET) 

Modified d r i l l e d  and grouted  p i l e s  (MDGP) 

Keyed-in p i l e s  (KIP) 

a D r i l l e d  and screwed p i l e s  (DSP) 

Other  p o t e n t i a l  p i l i n g  systems 



These concepts  a r e  d i f f e r e n t  from convent iona l  p i l i n g  systems t o  a  
varying e x t e n t  and were eva lua ted  on t h e  b a s i s  of t h e  l i m i t e d  under- 
s tanding  p r e s e n t l y  possessed,  v a r i o u s  p o s t u l a t i o n s  regard ing  ca l ca reous  
s o i l - p i l e  i n t e r a c t i o n ,  and engineer ing  judgment. These concepts  and 
t h e i r  e f f e c t i v e n e s s  of improving load ca r ry ing  capac i ty  i n  ca l ca reous  
sediments s t i l l  need t o  be proven. In  a d d i t i o n ,  most of t h e  procedures  
and equipment requi red  f o r  deploying t h e s e  "improved" p i l i n g  systems 
need f u r t h e r  development. Some of t h e  p i l i n g  systems a r e  presented  wi th  
v a r i o u s  a l t e r n a t e s  depending on s i t e  cond i t i ons  and a p p l i c a t i o n s .  

Backf i l l ed  P i l e s  (BP) 

A s  shown i n  F igures  24 through 26, t h i s  system i n s t a l l s  t h e  p i l e  i n  
an  overs ized  h o l e  and then  b a c k f i l l s  t h e  annulus between t h e  p i l e  and 
t h e  h o l e  w i th  g ranu la r  m a t e r i a l .  The g ranu la r  m a t e r i a l  can be  d e n s i f i e d  
by i n t e r n a l  underwater v i b r a t o r s  o r  by v i b r a t i o n  f o r c e  provided from t h e  
p i l e  top  o r  by o t h e r  means. Th i s  procedure i s  very  s i m i l a r  t o  t h e  
d r i l l e d  and grouted p i l e s  except  g ranu la r  m a t e r i a l  i s  used i n s t e a d  of 
grout .  

Using g ranu la r  m a t e r i a l  a s  b a c k f i l l  o f f e r s  t h e  fol lowing advantages: 

1. Inc reases  t h e  e f f e c t i v e  l a t e r a l  s t r e s s  on t h e  p i l e  s h a f t ,  t h u s ,  
i n c r e a s i n g  t h e  s k i n  f r i c t i o n  r e s i s t a n c e .  

2 .  E l imina tes  g r a i n  c rushing  and s o i l  a r ch ing  e f f e c t  i n  t h e  ca l -  
careous sands. 

3 .  F i l l s  t h e  c a v i t i e s  w i t h  g ranu la r  m a t e r i a l .  

4. E l imina tes  t h e  need f o r  g rou t .  

The major disadvantages a r e :  (1) Granular m a t e r i a l  must be qua r r i ed  
and placed underwater,  and (2)  d r i l l i n g  equipment must be  used t o  d r i l l  
t h e  overs ized  hole .  There a r e  s e v e r a l  a l t e r n a t e s  t h a t  a r e  capable  of 
d r i l l i n g  an overs ized  hole .  They a r e  descr ibed  a s  fol lows:  

A l t e r n a t e  A - Conventional D r i l l i n g .  This  a l t e r n a t e  i s  shown i n  
F igure  24.  The overs ized  h o l e  can be d r i l l e d  by convent iona l  d r i l l i n g  
techniques.  For noncemented o r  l i g h t l y  cemented ca l ca reous  s o i l s ,  d r i l -  
Ping mud may be r equ i r ed  t o  s t a b i l i z e  t h e  d r i l l  ho l e .  I n  t h i s  ca se ,  a  
g ranu la r  m a t e r i a l ,  such a s  sand s l u r r y ,  can be pumped i n  under p re s su re  
t o  f o r c e  out  t h e  d r i l l i n g  mud. 

Fu r the r  r e sea rch  and development work i s  necessary  f o r  t h i s  a l t e r -  
na t e .  This  i nc ludes  determining:  

e The types  of g ranu la r  m a t e r i a l s  s u i t a b l e  f o r  u se  a s  b a c k f i l l .  

e The e x t e n t  of mud contaminat ion and i t s  e f f e c t  on t h e  g ranu la r  
b a c k f i l l  and p i l e  capac i ty .  

Procedures  and equipment needed t o  p l ace  and compact t h e  g r a n u l a r  
m a t e r i a l .  



The best size of the backfilled annulus to minimize the effects 
of soil arching on the lateral stress. 

The pile behavior under static and cyclic loadings. 

From a construction viewpoint this system is applicable with cemented 
or solidified calcareous sediments, where the drilled hole will stay 
open without using drilling mud. Installing piles under these conditions 
would be relatively simple and straightforward. 

Alternate B - Cased Drill Hole Using a Withdrawal Tube. Contamina- 
tion by drilling mud can reduce the load carrying capacity significantly. 
To avoid this complication, an alternative, which eliminates the need 
for drilling mud, is needed. This alternate (Figure 25) involves at- 
taching a drill bit to the tip of a withdrawable tube slightly smaller 
than the oversized drilled hole. The drill bit and tube are advanced 
until the correct depth is reached. The drill bit is then withdrawn 
while holding the tube stationary followed by inserting the pile using a 
centralizer. Granular material is placed (or pumped in) into the annulus 
between the pile and the wall of the oversized hole. The tube is slowly 
withdrawn during backfilling and used to compact the granular material 
at regular intervals. Installation is completed when the tube is fully 
withdrawn. 

Alternate C - Driving a Withdrawal Tube With an Expendable End Plate. 
This alternate is similar to Alternate B except the oversized hole is 
created by driving a withdrawal tube with an expendable end plate attach- 
ment (Figure 26). After the tube is driven to the correct depth the 
pile is inserted. Backfilling and compacting are done by following the 
same procedures as those described for Alternate B. 

The development work required for Alternates B and C are similar to 
those described for Alternate A except for the problem of contamination. 

Vibratory-Installed Backfilled Piles (VBP) 

This system can also be used to avoid using drilling mud in nonce- 
mented and lightly cemented calcareous sediments. As shown in Figure 27, 
this system installs of an inverted and slightly tapered pile using vi- 
bratory hammers. The gap between the tapered piles and hole created by 
the pile tip can be filled with granular material from a supply reservoir 
or pumping in granular (sand) slurry. Vibratory hammers are used to 
drive the piles and compact the backfill materials at the same time. 

Again, the procedures and equipment to install this system require 
further development. However, the effort is expected to be minimal. 
Further development work as described for the BP system (except for the 
drilling mud problem) is also needed. 

Pressurized Piles (PP) 

This system uses artificial imposition of a high lateral stresses 
on the pile shaft. This can be done in several ways. One method would 
be to use split-designed piles that can be expanded through hydraulic or 



mechanical systems. Explosives  can a l s o  be  used t o  f o r c e  t h e  p i l e  s h a f t  
t o  expand outward and key i n t o  t h e  sediments  and c a v i t i e s .  Another method 
would be  t o  des ign  t h e  p i l e  w i t h  weak segments t h a t  a r e  expanded by exces- 
s i v e  d r i l l i n g  f o r c e s .  

A l t e r n a t e  A. For t h i s  system, t h e  s t r u c t u r a l  i n t e g r i t y  of p i l e s  
du r ing  i n s t a l l a t i o n ,  p r e s s u r i z a t i o n ,  and loading  h a s  t o  be  c a r e f u l l y  
cons idered  i n  t h e  des ign .  

The above PP a l t e r n a t e s  a r e  unconvent ional .  Development work is  
needed i n  p i l e  des ign ,  i n s t a l l a t i o n  procedures ,  and conf i rmat ion  of t h e i r  
load  c a r r y i n g  capac i ty .  The f i r s t  a l t e r n a t e  i nvo lves  i n s t a l l i n g  an ex- 
pandable p i l e  c o n s i s t i n g  of two over lapping  h a l f  s e c t i o n s  a s  shown i n  
F igure  28.  The p i l e  could b e  i n s t a l l e d  by us ing  e i t h e r  impact hammers 
o r  d r i l l i n g  and i n s e r t i n g .  Hydraul ic  p r e s s u r e  o r  mechanical systems can 
be used t o  f o r c e  t h e  p i l e  t o  expand outward. There a r e  a  number of sys- 
tems t h a t  can be  designed f o r  t h i s  purpose. The c r i t e r i a  f o r  s e l e c t i n g  
t h e  c o r r e c t  system should be  based on c o s t  and complexity of t h e  appl ica-  
t i o n s .  Two sample mechanical systems a r e  shown i n  F igure  28; one system 
expands t h e  p i l e  by apply ing  a  v e r t i c a l  downward f o r c e  and t h e  second 
system by apply ing  a  t o r s i o n a l  f o r c e .  

A l t e r n a t e  B. The second a l t e r n a t e  (F igure  29) i nvo lves  u s ing  explo- 
s i v e  charges  a t  r e g u l a r  i n t e r v a l s  and l o c a t i o n s  where c a v i t i e s  a r e  ad ja -  
c e n t  t o  t h e  p i l e  s h a f t .  A r e g u l a r ,  t u b u l a r  s t e e l  p i l e  ( e i t h e r  open-ended 
o r  close-ended) can be used. A f t e r  t h e  p i l e  i s  i n s t a l l e d ,  t h e  exp los ive  
i s  de tona ted .  (A s p e c i a l  p i l e  cap may be  r equ i r ed  t o  maximize t h e  
b l a s t i n g  e f f e c t . )  Exploding t h e  p i l e  w i l l  expand t h e  w a l l  and cause i t  
t o  f i l l  t h e  vo ids  o r  c a v i t i e s .  Th i s  system w i l l  i n c r e a s e  t h e  l a t e r a l  
p r e s s u r e  on t h e  p i l e  s h a f t  a s  w e l l  a s  c r e a t e  s p u r r i n g  c o n t a c t s  w i th  t h e  
c a v i t y  w a l l s  when t h e  p i l e  i s  sub jec t ed  t o  a x i a l  compression o r  u p l i f t  
( i . e . ,  i n c r e a s e  t h e  s k i n  f r i c t i o n  r e s i s t a n c e ) .  

A l t e r n a t e  C. Th i s  a l t e r n a t e  i nvo lves  i n s t a l l i n g  s p e c i a l l y  designed 
and f a b r i c a t e d ,  open-ended p i l e s  t h a t  have segments of weak s e c t i o n s  (by 
s l o t t i n g  t h e  o r  using-  t h i n n e r  w a l l  t h i cknes s )  a s  shown i n  F igure  30. 
The p i l e s  can be  i n s t a l l e d  by impact hammers o r  d r i l l i n g  and i n s e r t i n g  
procedures .  I f  impact hammers a r e  used,  i t  i s  impor tan t  t o  ensu re  t h a t  
t h e  impact energy is  s t r o n g  t o  i n s t a l l  t h e  p i l e  t o  t h e  proper  depth ,  b u t  
w i l l  n o t  damage t h e  weaker segments ( s e c t i o n )  of t h e  p i l e .  A f t e r  t h e  
p i l e  has  been i n s t a l l e d ,  a  h ighe r  impact energy i s  used t o  buckle  t h e  
weaker segments and f o r c e  them t o  f i l l  any v o i d s  o r  c a v i t i e s .  

Back f i l l ed  and P re s su r i zed  P i l e s  (BPP) 

Th i s  system combines t h e  b a c k f i l l i n g  procedures  d i s cus sed  above 
w i t h  t h e  p r e s s u r i z e d  p i l e  technique.  The o v e r s i z e  h o l e  would be  d r i l l e d  
and b a c k f i l l e d .  The expandable p i l e  would t hen  expand a g a i n s t  t h e  newly 
placed b a c k f i l l .  



P i l e s  With Enlarged Tips  (PET) 

Th i s  system is  s i m i l a r  t o  t h e  b e l l e d  p i l e s  used i n  t h e  i n d u s t r y  t o  
ach ieve  an  i nc reased  end-bearing r e s i s t a n c e  o r  u p l i f t  c apac i ty .  However, 
b e l l e d  p i l e s  f o r  nearshore  and o f f s h o r e  a p p l i c a t i o n s  a r e  ve ry  c o s t l y  and 
time consuming. The PET developed f o r  t h i s  s t udy  b a s i c a l l y  fo l l ows  t h e  
proven techniques  used on land.  Two a l t e r n a t e s  were developed and a r e  
descr ibed .  

A l t e r n a t e  A - P i l e s  I n s t a l l e d  With a  Withdrawable Tube. F igu re  31 
i s  a  conceptua l  drawing of t h i s  system. T h i s  system i s  very  s i m i l a r  t o  
t h e  Franki  p i l e s ,  t h e  Alpha p i l e s  o r  t h e  p e d e s t a l  p i l e s  (Tomlinson, 1 9 7 7 ) .  
To use  t h i s  system: 

Lower t h e  tube  t o  t h e  sediment s u r f a c e .  

Dr ive  t h e  t ube  down t o  t h e  c o r r e c t  dep th  by us ing  an i n t e r n a l  
drop hammer. 

Hold t h e  tube  s t a t i o n a r y  and pour i n  g r a v e l  o r  c o n c r e t e  cement 
t o  form a  p lug  a t  t h e  bottom of t h e  tube .  

Use t h e  hammer on t h e  p lug  t o  form a  bu lb  (expanded) end. 

Use t h e  hammer t o  d r i v e  t h e  p i l e  i n t o  t h e  bu lb  end. 

e Use t h e  hammer t o  compress t h e  conc re t e ,  g r o u t ,  o r  g r a n u l a r  back- 
f i l l  whi le  removing t h e  tube.  

The p i l e  is  i n s t a l l e d  when t h e  tube  and hammer a r e  removed. This  system 
can be e a s i l y  i n s t a l l e d  i n  most ca l ca reous  sands  except  i n  h i g h l y  s o l i d -  
i f i e d  ca l ca reous  rock (such a s  l imes tone) .  S ince  s i m i l a r  systems have 
been s u c c e s s f u l l y  used elsewhere,  i t  i s  a n t i c i p a t e d  t h a t  t h i s  system can  
b e  r e a d i l y  used f o r  ca l ca reous  a p p l i c a t i o n  wi th  a  minimal amount of 
development work. The development work should c o n c e n t r a t e  on under- 
s t and ing  t h e  pi le-sediment  mechanisms and t h e  v e r i f i c a t i o n  of load 
c a r r y i n g  c a p a c i t y  i n c r e a s e .  

A l t e r n a t e  B - Modified Bel led-Pi les  (MBP). Th i s  system d i f f e r s  
from t h e  convent iona l  b e l l e d  p i l e s  (F igure  32 ) .  A r e g u l a r  open-ended 
s t e e l  p i l e  can be  used wi th  t h i s  system. To i n s t a l l  a  p i l e :  

e U s e  an  impact o r  v i b r a t o r y  hammer t o  d r i v e  t h e  p i l e  t o  t h e  cor- 
r e c t  depth.  

I n s e r t  an i n t e r n a l  expandable d r i l l  b i t  and underream a b e l l e d  
end. 

Remove t h e  d r i l l  b i t .  

e Pour conc re t e  o r  g r o u t ,  through t h e  p i l e ,  i n t o  t h e  b e l l e d  end. 



a Use a  hammer ( o r  ano the r  means) t o  f o r c e  t h e  end of p i l e  i n t o  
t h e  conc re t e  o r  g rou t .  

e Pour i n  more conc re t e  o r  g rou t  t o  compl.ete t h e  p i l e  i n s t a l l a t i o n .  

The equipment used t o  remove t h e  i n t e r n a l  p lug  and t o  form a b e l l e d  end 
i s  a v a i l a b l e  and can be  e a s i l y  adapted f o r  t h i s  system. 

Modified D r i l l e d  and Grouted P i l e s  (MDGP) 

A s  shown i n  F igure  33, t h i s  system i s  a s l i g h t l y  modif ied v e r s i o n  
of t h e  convent iona l  d r i l l e d  and grouted  p i l e s .  The p i l e  w a l l  i n  t h i s  
system i s  p e r f o r a t e d  and an ove r s i zed  d r i l l  b i t  i s  a t t a c h e d  a t  t h e  t i p  
of t h e  p i l e .  The p i l e  and d r i l l  b i t  a r e  moved forward a t  t h e  same time 
t o  t h e  c o r r e c t  depth.  (No d r i l l i n g  mud i s  used,  t h u s  avoid ing  mud con- 
tamina t ion . )  The d r i l l  b i t  i s  removed and g r o u t  from i n s i d e  t h e  p i l e  i s  
forced  ou t  through t h e  h o l e s  t o  f i l l  t h e  annulus .  On some occas ions  t h e  
ho l e  could c o l l a p s e  du r ing  d r i l l i n g  and prevent  t h e  p i l e  be ing  i n s e r t e d .  
I f  t h i s  happens e i t h e r  a  v i b r a t o r y  o r  impact f o r c e  may have t o  be  used 
t o  i n s e r t  t h e  p i l e s .  

Keyed-in P i l e s  (KIP) 

A s  shown i n  F igure  34, t h i s  system u s e s  a  s p e c i a l l y  designed p i l e  
w i t h  a  mechanical keying-in system equipped w i t h  l a t e r a l  ex t ens ion  
branches t h a t  a r e  pushed ou t  through t h e  p i l e s  and i n t o  t h e  surrounding 
sediment a f t e r  t h e  p i l e  h a s  been d r iven  o r  i n s t a l l e d  by v i b r a t o r y  hammers. 
E i t h e r  h y d r a u l i c  o r  mechanical systems can be  used t o  push o u t  t h e  ex- 
t e n s i o n  branches.  Ax ia l  load ing  w i l l  f o r c e  t h e  extended branches t o  
form a d i f f e r e n t  and more complicated f a i l u r e  p a t t e r n  i n  t h e  s o i l  than  
t h e  convent iona l  p i l e s .  Add i t i ona l  load  c a r r y i n g  c a p a c i t y  i n  e i t h e r  
a x i a l  compression o r  p u l l o u t  i s  expected f o r  t h i s  system. 

More development work i s  needed b e f o r e  t h i s  system can be  used. 
Seve ra l  a s p e c t s  r e q u i r e  f u r t h e r  eva lua t ion ;  they  inc lude ,  bu t  a r e  n o t  
l i m i t e d  t o ,  t h e  fo l lowing  items: 

a Understand t h e  f a i l u r e  mechanism governing t h e  load  c a r r y i n g  
c a p a c i t y  of t h i s  p i l i n g  system i n  a  v a r i e t y  of ca l ca reous  
sediments .  

Determine what e f f e c t s  t h e  keying-in system w i l l  have on t h e  
a x i a l  behavior  of t h i s  system. 

Design and implementation of keying-in and pushing-in systems. 

D r i l l e d  and Screwed P i l e s  (DSP) 

This  system i s  v e r y  s i m i l a r  t o  t h e  Fundex p i l e s  used i n  Europe 
(Tomlinson, 1977).  Th i s  system (Figure 35) u s e s  an expandable h e l i c a l l y -  
screwed d r i l l  p o i n t  h e l d  by a bayonet j o i n t  a t  t h e  lower end of a  tube. 
The tube  is  r o t a t e d  by a  h y d r a u l i c  motor o r  r o t a r y  t a b l e  a t  t h e  same 
time i t  i s  fo rced  down by h y d r a u l i c  rams. A f t e r  reaching  t h e  c o r r e c t  



depth ,  t h e  p i l e  i s  i n s e r t e d  and e i t h e r  g r o u t ,  g r anu la r  m a t e r i a l ,  o r  con- 
c r e t e  i s  poured i n t o  t h e  annulus.  The tube  i s  then  withdrawn. While 
withdrawing, t h e  tube  can a l s o  be used t o  compact t h e  b a c k f i l l  m a t e r i a l .  

The techniques  and equipment f o r  t h i s  system have been deployed 
elsewhere.  It i s  expected t h a t  t h e  e f f o r t  r equ i r ed  t o  develop necessary  
i n s t a l l a t i o n  equipment and techniques  f o r  t h i s  system w i l l  b e  minimal. 
However, t h e  e x t e n t  of improvement i n  i t s  load  c a r r y i n g  capac i ty  r e q u i r e  
f u r t h e r  eva lua t ion  and confirmation.  

DISCUSSION 

General  P i l e  Behavior 

The g e n e r a l  behavior  of p i l e s  i n  ca l ca reous  sands can be hypothesized 
based on obse rva t ions  and engineer ing  judgment. The d r i v i n g  energy in-  
c reased  wi th  increased  cementat ion (F igure  14) .  F igure  36 i s  a p l o t  of 
t h e  s l o p e s  of t h e  curves  from Figure  14. These s i x  curves  were combined 
i n t o  two groups - a h igh  and low void  r a t i o .  From Figure  36,  t h e  h igh  
void r a t i o  curve shows t h a t  a s  t h e  s i l i c a  content  f o r  a composition in-  
c r e a s e s ,  s o  d id  t h e  energy r equ i r ed  t o  d r i v e  t h e  p i l e ,  i n d i c a t i n g  l i n e a r -  
i t y .  The low void r a t i o  curve d id  not  i n d i c a t e  t h i s  w i th  t h e  amount of 
d a t a  a v a i l a b l e .  For t h e  low void r a t i o ,  t h e  d r i v i n g  energy d i d  no t  i n -  
c r e a s e  u n t i l  t h e  m a t e r i a l  composition was c l o s e  t o  100% s i l i c a  sand. 
This  imp l i e s  t h a t  t h e  behavior  of ca l ca reous  and s i l i c a  sand compositions 
i s  inf luenced  by t h e  presence  of ca l ca reous  sand. 

More d a t a  w i l l  be needed t o  v e r i f y  t h e  behavior  i n f l u e n c e  t h a t  c a l -  
careous sand p l ays  i n  ca l ca reous  and s i l i c a  sand composi t ions.  Applying 
some fundamental c h a r a c t e r i s t i c s  of shea r  s t r e n g t h  i n  sand s o i l s  may 
provide a pre l iminary  explana t ion  a s  t o  why ca l ca reous  sand can c o n t r o l  
t h e  behavior .  From s o i l  mechanics, we know t h a t  f o r  s t r o n g  p a r t i c l e s  i n  
an  i n i t i a l l y  l oose  a r r a y  t h a t  t h e  a r r a y  becomes denser  dur ing  shea r  (Peck 
e t  a l . ,  1974). This  occurs  because dur ing  t h e  a p p l i c a t i o n  of shea r  t h e  
p a r t i c l e s  move and assume a t i g h t e r  a r r a y .  I f  t h e  a r r a y  i s  t i g h t ,  t h e  
p a r t i c l e s '  grain- to-grain con tac t  f o r c e  w i l l  i n c r e a s e  t o  a p o i n t  where 
g r a i n  ove r r id ing  begins.  A t  t h i s  p o i n t  t h e  a r r a y  w i l l  exper ience  volume 
expansion provided t h e  g r a i n s  a r e  s t r o n g  and do no t  c rush .  The s o i l  
mobi l izes  g r e a t e r  s t r e n g t h  through g r a i n  ove r r id ing  than  by d e n s i f i c a t i o n .  

I n  compositions of s i l i c a  and ca l ca reous  sand,  s t r o n g  p a r t i c l e s  
( s i l i c a  sand) and weak p a r t i c l e s  (ca lcareous  sand) a r e  blended toge the r .  
During p i l e  d r i v i n g ,  t h e  shea r ing  s t r e n g t h  of t h e  composition i s  mobi- 
l i z e d  t o  resist t h e  p i l e .  For t h e  dense compositions,  t h e  g r a i n  over- 
r i d i n g ,  which normally occurs  f o r  mobi l iz ing  t h e  s t r e n g t h ,  may no t  occur  
due t o  t h e  presence of t h e  weaker g r a i n s .  Where t h e  s t r o n g  s i l i c a  sand 
g r a i n s  can support  h igh  c o n t a c t  p r e s s u r e s  and t r a n s f e r  exces s ive  pres-  
s u r e s  t o  neighboring g r a i n s ,  t h i s  redundant loading  a r r a y  system breaks  
down when t h e  weak ca l ca reous  g r a i n s  c rush  and l eave  a void  and no 
t r a n s f e r  of shea r  s t r e n g t h .  With i n s u f f i c i e n t  s i l i c a  g r a i n  a v a i l a b l e  t o  
provide  an  adequate  t r a n s f e r  system, t h e  composition behaves l i k e  a ca l -  
careous  sand. 



F r i c t i o n a l  Behavior 

Despi te  t h e  f a c t  t h a t  ca l ca reous  sands a r e  composed of c rushable  
g r a i n s  and have h ighe r  o v e r a l l  void r a t i o s  than  noncalcareous sands,  a t  
comparable s t a t e  of compaction they e x h i b i t  cons iderably  h ighe r  f r i c t i o n  
ang le s  (about  10 degrees h ighe r )  both i n  l oose  and dense condi t ions .  
This  r e s u l t  can be gene ra l i zed  t o  t h e  f a c t  t h a t  t h e  f r i c t i o n  ang le s  of 
ca lcareous  sands a r e  s i g n i f i c a n t l y  h ighe r  than  t h e  va lues  of most non- 
ca l ca reous  t e r r e s t r i a l  sands. The h igh  va lues  f o r  l oose  sand a r e  par- 
t i c u l a r l y  s u r p r i s i n g .  Other in format ion  (Dat ta  e t  a l . ,  1979 and 1980; 
Beringen e t  a l . ,  1982) confirms t h i s  r e s u l t .  

High f r i c t i o n  ang le s  a r e  o f t e n  a s s o c i a t e d  wi th  d i l a t i o n a l  behavior  
(volume i n c r e a s e  dur ing  s h e a r ) ,  bu t  t h e  h igh  f r i c t i o n  ang le s  of t h e  c a l -  
careous  s o i l s  t e s t e d  were no t  due t o  d i l a t i o n a l  behavior  dur ing  shear ing .  
In  loose  s t a t e ,  bo th  s o i l s  (Guam and F l o r i d a  ca l ca reous  sands)  exh ib i t ed  
volume decrease ,  y e t  they had f r i c t i o n  ang le s  i n  t h e  range of 44 t o  
46 degrees.  Sur face  roughness a t  g r a i n  con tac t  p o i n t s ,  and t h e  re in-  
f o r c i n g  e f f e c t s  of e longated  and/or  f l a t  p a r t i c l e s  i n  t h e  s o i l  ma t r ix  
might be f a c t o r s  c o n t r i b u t i n g  t o  high f r i c t i o n a l  r e s i s t a n c e  of ca l ca r -  
eous sands. 

The v a r i e t y  of f r i c t i o n  ang le s  of ca l ca reous  s o i l s  from loose  t o  
dense cond i t i on  i s  s u r p r i s i n g l y  narrow. For both s o i l s  t e s t e d ,  t h e  in-  
c r e a s e  i n  f r i c t i o n  ang le  form loose  t o  dense cond i t i on  was only 3 t o  
4 degrees.  

Some p a r t i c l e  c rush ing  occurred dur ing  shea r ing  of t h e s e  ca l ca reous  
sands i n  t h e  t r i a x i a l  compression t e s t s .  When t e s t s  were made on crushed 
s o i l ,  f u r t h e r  c rush ing  dur ing  shea r  was reduced. 

Grain c rushing  a l s o  seemed t o  p l ay  a  r o l e  i n  decreas ing  t h e  f r i c t i o n  
ang le  of ca l ca reous  sands observed wi th  i n c r e a s e s  i n  con f in ing  p re s su re .  
The r educ t ion  i n  f r i c t i o n  angle  (2 t o  4 degrees)  appeared t o  be t h e  
r e s u l t  of t h i s  phenomenon, and is  more i n t e n s e  a t  h ighe r  conf in ing  pres-  
s u r e s  (Dat ta  e t  a l . ,  1979 and 1980). Even p a r t i a l l y  crushed s o i l  showed 
some r educ t ion  i n  t h e  ang le  of i n t e r n a l  f r i c t i o n  when t e s t e d  under h igh  
conf in ing  p re s su res .  

Although p a r t i c l e  c rush ing  t h a t  occurs  dur ing  shea r ing  caused some 
r educ t ion  i n  f r i c t i o n a l  r e s i s t a n c e ,  i t  cannot be  concluded t h a t  ind iv id-  
u a l  crushed p a r t i c l e s  have lower f r i c t i o n a l  r e s i s t a n c e .  T e s t s  on de l ib -  
e r a t e l y  crushed and recompacted ca l ca reous  sands i n d i c a t e d  t h a t  t h e  
crushed s o i l  w a s  n o t  weaker than  t h e  n a t u r a l  s o i l .  This  is  probably 
because of two compensating f a c t o r s :  ( I )  a  tendency f o r  s o i l  s t r e n g t h  
t o  decrease  because a t  a  g iven  void r a t i o  t h e  n e t  i n t e r p a r t i c l e  void 
space i n  t h e  crushed sand i s  h ighe r  than  i n  n a t u r a l  s o i l ;  and (2) a  
tendency f o r  s o i l  s t r e n g t h  t o  i n c r e a s e  because p a r t i a l l y  crushed s o i l  
g r a i n s  w i l l  break up l e s s  dur ing  shear ing .  

The r e s u l t s  of t h e  i s o t r o p i c  compression t e s t s  i n d i c a t e d  t h a t  t h e  
ca lcareous  sands t e s t e d  were more compressible  than  t h e  noncalcareous 
sand (F igure  21).  This  could be due t o  t h e  presence of i n t r a p a r t i c l e  
vo ids ,  and crushing  of h ighly  i r r e g u l a r  p a r t i c l e s .  

The r e s u l t s  of t h e  s o i l - s t e e l  f r i c t i o n  t e s t s  a r e  presented  i n  
Table 6 .  These d a t a  i n d i c a t e  t h a t  f o r  t h e  ca l ca reous  sands ,  t h e  s o i l -  
s t e e l  f r i c t i o n  ang le  appears  t o  be independent of s o i l  d e n s i t y ,  and 
seemed t o  i n c r e a s e  s l i g h t l y  a f t e r  be ing  crushed,  For t h e  Ottawa sand,  



the friction angle also seemed independent of soil density. No tests 
were done on the crushed silica sand. This result is in agreement with 
the work done by Beringen, et al. (1982). 

The contribution of skin resistance developed on the surface of a 
pile to total pile capacity was given in Equation (1) as f A , where f 
is the unit skin friction and A is the side surface area ofSthe pile in 
contact with the soil. As showg in Figure 37, f can be expressed as: 

f = a' tan 6 - K a: tan 6 n 

where: a' = effective lateral stress acting on the pile surface 
n 

a' = effective vertical stress (overburden pressure) 
v 

K = coefficient of lateral earth pressure 

6 = soil-pile friction angle 

The results of these tests demonstrated that calcareous soils have 
very high friction angles. They also have soil-steel friction angles 
that are higher and are comparable to silica sands. Furthermore, grain 
crushing caused by pile driving does not reduce the soil-steel friction 
angle. It seems, therefore, that the reason for the low capacities of 
piles in calcareous soils might be the low effective lateral stress, a' 
acting perpendicular to the pile surface. 

n ' 
It is hypothesized that when a pile is driven into a noncalcareous 

sand, pile vibration helps densify the sand around the pile which in- 
creases lateral pressure on the pile. In calcareous soils, the soil 
matrix does not densify around the pile under vibration, and the earth 
pressure coefficient, K, is small. Consequently, the developed skin 
resistance is much lower than expected. Soil cementation may further 
influence the soil-pile interaction (Agarwal et al., 1977). Laboratory 
model pile tests and full-scale field tests can help clarify the in- 
fluence of lateral pressure and soil cementation on the behavior of piles 
in calcareous sands. 

Crushability During Pile Driving 

A study was conducted to investigate the relationship of grain 
crushing to pile-soil driving friction as a function of cementation, 
density, and carbonate content of a soil. The results clearly indicate 
that the behavior of piles in calcareous sand is complex. The results 
establish certain definitive behavior patterns with respect to crush- 
ability, degree of cementation, density, driving resistance, and pullout 
resistance, It is clear that the frictional characteristics of a pile 
in calcareous sand depend on the interrelated effects of these items and 
none of these items alone can adequately explain the behavior. 

The frictional characteristics of a pile in calcareous sands are 
functions of the friction parameter between the pile and soil, and the 
lateral soil stress on the pile. As discussed earlier, grain crushing 
might reduce the coefficient of friction between the soil and pile 



(Noorany, 1982a). But this reduction alone cannot fully explain the 
extremely low pullout resistance values of piles in calcareous sand. It 
is reasonable to postulate that grain crushing also reduces the lateral 
soil stress on the piles. However, no reasonable design methodology can 
be established without well-documented, realistic pile-load test data 
(laboratory and field data). These data should include measurements of 
axial shear transfer and lateral stress at or near the pile wall. The 
results of the studies thus far are not sufficient to develop a pile 
design method. The results do indicate that crushing takes place near 
the pile wall and has an adverse affect on frictional resistance. The 
results also clearly indicate that driving resistance is a poor indicator 
of load capacity. It should be recalled that this (blow count criteria) 
had been the state-of-the-art design procedure used for the Diego Garcia 
pier. 

It is apparent that friction capacity of hammer-driven piles in 
cemented calcareous sands is poor. In order to achieve adequate capacity 
pile loads will have to be either transferred to the pile tip or trans- 
ferred by friction, probably by using a pile installation method that 
can develop friction capacity. 

Alternate Pile Concepts 

The conceptual piling systems are different from conventional piling 
systems to varying extents. These systems and their effectiveness in 
improving load carrying capacity in calcareous sediments still need to 
be verified. In addition, most of the procedures and equipment required 
for deploying these "improved" piling systems need further development. 

After further development and confirmation tests (either in the 
laboratory by centrifuge tests or in the field), some of these developed 
systems may be more applicable to certain types of calcareous sediments 
than others. It is anticipated that various systems might work well in 
certain calcareous sediments but not well in others. The ultimate goal 
is to achieve the ideal scenario that the pile makeup will consist of 
various standardized segments and features arranged to maximize its load 
carrying capacity in any specific type of calcareous sediments. 

These systems have not been evaluated for the Navy's missions and 
capabilities. Some of the systems might be discarded for operational 
reasons. Certainly the complexities of installing these piling systems 
make the simplicity of hammer-driven pipe piles attractive. 

CONCLUSIONS 

In general the state of knowledge of the engineering behavior of 
calcareous sediments is meager and the understanding of pile behavior in 
calcareous sediments is even less. However, improvements are being made. 
The work reported herein adds to the knowledge on frictional behavior, 
the processes occurring near driven piles, and the frictional resistance 
of driven piles in calcareous sands. 

The complexity of the depositional process, grain-structure arrange- 
ments, discontinuities, and post-depositional alterations dictate that a 
significant spatial variation in composition and behavior of calcareous 



sediments can exist within a very small distance. The most significant 
parameters affecting the behavior of calcareous soils seem to include 
(1) carbonate content, (2) grain crushability and associated volumetric 
changes, (3) degree of cementation, (4) index properties, and (5) geo- 
logic process. Several relevant behavior aspects of calcareous soils 
are summarized as follows: 

Soil is softer and more compressible after grain crushing and 
volumetric change induced by confining or shearing stresses. 

a Friction angles decrease with increasing confining pressure. 

Friction angles are higher than or similar to the values for 
terrigenous soils, before being crushed. 

Long, open-ended, steel-pipe piles are used for nearshore and off- 
shore applications. Installation techniques include: (1) driving by 
impact hammer, (2) drilling and grouting, and (3) driving by vibratory 
hammers. A review of the state-of-the-art and the alternate pile sys- 
tems suggests that the open-ended, pipe piles is still a popular solu- 
tion to foundation problems in calcareous soils. 

Present design methods rely heavily on either empirical approaches 
or expensive field pile load tests. Further work and a better under- 
standing of pile-sediment interaction mechanism of piles in a calcareous 
sediment is necessary to develop improved design methods. 

FINDINGS 

1. Calcareous sands exhibit higher friction angles than silica sands. 

2. The high friction angles of calcareous sands are not the result of a 
dilatent behavior. 

3 .  The friction angles of calcareous sands decrease with increasing 
confining stress. 

4. The friction angles of calcareous sands and the angles between cal- 
careous sand and steel are not changed by grain crushing. 

5. The friction angles between calcareous sands and steel are comparable 
to silica sand and steel. 

6. Calcareous sands are more compressible than silica sands. 

RECOMMENDATIONS 

1. Continued laboratory work is needed for developing a rational design 
methodology for installing piles in calcareous sands using the large 
drum described above. The work needs to determine contributions to total 
pile resistance from end bearing and side friction and the shear transfer 



mechanism f o r  i npu t  t o  t h e  new des ign  methodology. An a d d i t i o n a l  p o r t i o n  
of t h e  work should inc lude  ob ta in ing  cone penetrometer  d a t a  f o r  c o r r e l a -  
t i o n  wi th  s t a t i c  p i l e  load capac i ty .  Analysis  of t h e  cone d a t a  may l e a d  
t o  improved i n - s i t u  s o i l  survey methods f o r  ca l ca reous  sand depos i t s .  
The end product  of t h i s  work should be  a p r e d i c t i v e  methodology f o r  
d r iven  p i l e s  i n  ca lcareous  sand i n  t h e  form of g u i d e l i n e s  and formulas 
based on i n - s i t u  s o i l  survey d a t a  of s p e c i f i c  s i t e s .  

2. Scaled up t e s t s  us ing  c e n t r i f u g e  t e s t i n g  i s  recommended t o  i n i t i a t e  
v a l i d a t i o n  of t h e  new des ign  methodology and t o  e v a l u a t e  conceptua l  
a l t e r n a t i v e  p i l e  systems. This  method of t e s t i n g  avoids  s i m i l i t u d e  
problems a s s o c i a t e d  wi th  t e s t i n g  sma l l  s i z e  models under e a r t h ' s  g r a v i t y ,  
i . e . ,  t h e  s t r e s s  and s t r a i n  i n  t h e  c e n t r i f u g e  model a r e  i d e n t i c a l  t o  
those  i n  t h e  pro to type .  S ince  s o i l  has  s t ress-dependent  behavior  and 
the  r a t i o  of body f o r c e s  t o  g r a v i t y  f o r c e s  has  a s i g n i f i c a n t  i n f luence  
on both  t h e  mechanism and magnitude of f a i l u r e  s t r e s s ,  a c e n t r i f u g e  t e s t  
program w i l l  b e  a good i n t e r i m  s t e p  from t h e  l abo ra to ry  t o  t h e  expensive 
f u l l  s c a l e  t e s t i n g .  Resu l t s  of t h i s  program w i l l :  (1) improve t h e  con- 
f i dence  l e v e l  of t h e  new des ign  methodology, (2 )  provide informat ion  f o r  
des igning  a more e f f e c t i v e  p i l e  load t e s t  program, and (3) reduce t h e  
c o s t  of t h e  f u l l  s c a l e  p i l e  load  t e s t  program. 

3. A f u l l  s c a l e  p i l e  load t e s t  program i s  recommended t o  complete v a l i -  
d a t i o n  and provide  t h e  s p e c i f i c a t i o n s  and gu ide l ines .  This  program may 
r e q u i r e  two sites depending on t h e  c e n t r i f u g e  t e s t  r e s u l t s  t o  confirm 
v a l i d  des ign  methodologies: a non-cemented ca l ca reous  sand d e p o s i t  
wi thout  v o i d s ,  and a weakly cemented d e p o s i t s  w i th  l a r g e  vo ids  f i l l e d  
wi th  loose  ca l ca reous  sediments.  
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Table 1. Resu l t s  of P i l e  Load Tests i n  Calcareous Sands ( a f t e r  Da t t a  e t  a l .  1980) 

where: f = u n i t  f r i c t i o n  
av 

q = u n i t  end bearing 

* = N > 40 where q = (qo)(Nq); qo = e f f e c t i v e  overburden pressure  and N = bearing 
q - q 

capac i ty  f a c t o r  

q 
(kg/cm2 

58.6 t o  97.6 

--- 

--- 

* 

S i t e  

Bass S t r a i t  
Aus t r a l i a  
(Ref. Angemeer 
e t  a l . ;  1973) 

North West 
She l f ,  
A u s t r a l i a  
(Ref. Angemeer 
e t  a l . ;  1975) 

Arabian Gulf 
Saudi Arabia 
(Ref. Fu l l e r ;  
1979) 

Remarks 

Cy l ind r i ca l  s t e e l  p i l e ,  d r iven;  
embedded l eng th  = 45 t o  82 m 
below mudline 

Cy l ind r i ca l  s t e e l  p i l e  s ec t ion ,  
dr iven  11 m i n  a 73 m deep 
oversized s leeved hole  

D r i l l e d  and grouted p i l e s  

Concrete p recas t  c y l i n d r i c a l  
p i l e ,  placed i n  an oversized 
p r e d r i l l e d  ho le  and dr iven  2 m 
below p r e d r i l l e d  depth. T o t a l  
p i l e  l eng th  = 12.2 t o  15.3 m 
below mudline. P i l e  f a i l u r e  
d id  not  occur. 

Number 
of 

Tests 

5 

1 

--- 

3 

S t r a t a  

Sand s i l t y ,  showing 
nonuniform degree of 
cementation; s k e l e t a l  
deb r i s ,  crushes e a s i l y  

Sandy s i l t  t o  s i l t y  
sand, showing vary ing  
degree of cementation, 
s h e l l  fragments present  

Sand, cemented, some 
s h e l l s  and c o r a l  f rag-  
ments 

f 
(kg?zm2> 

0.11 t o  0.16 

0.38 

1.0 

Grea ter  than  
0.32 



Table 2. Current Practice to Predict Ultimate Capacity 
of Single Piles in Calcareous Sediments 

where: f = unit skin friction resistance 

K = coefficient of lateral earth pressure 

6 = soil-pile friction angle 

qo = effective overburden 

N = f ($), bearing capacity factor 
P 
q = unit end bearing resistance 

$I = internal friction angle 

J 

Remarks 

1. Limiting f and q values are 
empirical in nature 
2. Limited experimental data base 
3. Does not account for 
variability 

1. Resistance to driving is not 
a good parameter in predicting 
skin friction resistance and up- 
lift resistance 
2. Empirical in nature 
3. Disregard the true nature of 
grain crushing and variability in 
calcareous sediment 
4. The potential of over or under 
design exists 

1. Installation effects are not 
differentiated 
2. Lack of data bases for cor- 
relation 
3. Empirical in nature 
4. Site specific in nature 
5. The potential of over and 
under design exists 

1. Data are site specific 
2. Higher confidence level of use 
in design 
3. Costly - a significant number 
of tests is required for piles in 
calcareous sediments 

References 

Datta et al. 
(1980) 

Lyon Associate 
(1976, 1978) 

Datta et al. 
(1980) 

Angemeer 
et al. 

(1973, 1975) 

Methods 

Conventional theory with 
modifications 

Empirical correlation with 
penetration resistance to 
driving 

Correlation with in-situ 
tests 

Correlation work on field 
pile load tests 

Features 

f = K qo tan 6 q = q N with 
imposed limiting f a:d 1 
values and/or with higher 
factors of safety used in 
design 

Pile capacity is corrected to 
require energy to penetrate 
pile or pile head forcetime 
history measurements during 
driving 

Correlation with SPT results 

Interpretation of field pile 
load tests and application or 
results to design 



Table 3.  Recommended Values of Design Parameters f o r  Calcareous 
and Noncalcareous Sands ( a f t e r  Da t t a  e t  a l . ,  1980) 

"implied although not  s p e c i f i c a l l y  s t a t e d  

where : 6 = f r i c t i o n  angle  between p i l e  and s o i l ,  degrees 

f  = u n i t  s k i n  f r i c t i o n ,  kg/cm2 

N = bear ing  capac i ty  f a c t o r  
q 
q = u n i t  end bear ing ,  kg/cm2 

1.c. = a s  per  l o c a l  condi t ions  



Table 4. Summary of NCEL Tes t  Program and Resu l t s  

Type of 
Sand Model 

Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 
Calcareous 

S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  
S i l i c a  

High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  

Mode o f .  
In-Place 

Sand 

High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
Low void  r a t i o  
Low vo id  r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void r a t i o  
Low void  r a t i o  

Cementation 
(%I 

High void  r a t i o  
High void  r a t i o  
High void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  
Low void  r a t i o  

Voida 
Ra t i o  

Moisture 
Content 

f o r  Sand 
Placement 

( X I  

T o t a l  Energy 
f o r  12-in. 

Pene t r a t i on  
(f t - l b )  

T o t a l  Energy 
f o r  14-in. 

Pene t r a t i on  
( f  t - l b )  

140 
142 
255 
440 
978 

1,410 
2,620 
1,688 
2,000 
2,890 
2,120 
3,440 
6,520 
7,920 

230 
762 
610 

1,325 
2,990 
3,580b 
3,920 
1,840 
1,550 
1,840 
3,500 
4,22: 

-- 
C -- 

228 
615 

1,510 
2,780 
3,930 
4,580 

a ~ o l u m e  voids:volume s o l i d s  

b ~ a t a  f o r  8-inch p e n e t r a t i o n  only.  Box began s e p a r a t i n g  a t  t h i s  po in t .  

'sample n o t  mixed o r  t e s t e d  because cement l e v e l  s o l i d i f i e d  composition. 



Table 5 .  Measured I n t e r n a l  F r i c t i o n  Angles 
f o r  Calcareous and Ottawa Sands 

Table  6. So i l -S t ee l  F r i c t i o n  Angles f o r  
Ottawa, and Calcareous Sands 

S o i l  Type 

Loose Calcareous Sand 

Dense Calcareous Sand 

Loose, Crushed Calcareous 
Sand 

Dense, Crushed Calcareous 
Sand 

Loose Calcareous Sand 

Medium Dense Calcareous 
Sand 

Dense Calcareous Sand 

Medium Dense, Crushed 
Calcareous Sand 

Dense Crushed Calcareous 
Sand 

Loose Ottawa Sand 

Dense Ottawa Sand 

Dry Unit  
Weight 

(pcf 

74.0 

80.0 

-- 

-- 

-- 
- - 

-- 
-- 

- - 

85.5 

94.1 

Sand 

Ottawa 

Guam 

F l o r i d a  

Void 
Ra t io  

1.36 

1.18 

1.32 

1.12 

1.44 

1.30 

1.19 

1.30 

1.06 

0.905 

0.73 

S o i l  Condi t ion  

Loose 
Dense 

Loose 
Dense 

Loose crushed 
Dense crushed 

Loose 
Dense 

Loose crushed 
Dense crushed 

Range of 
Confining 

S t r e s s  
(kg/cm2) 

0 . 5 t o 4  

1 t o  4 

0 . 6 t o 4  

1.2 t o  4 

0 . 5 t o 4  

1 t o  3 

1 t o  4 

1 t o  4 

1 t o  4 

0.5 t o  4 

1 t o  4 

Void 
Ra t io  

0.905 
0.73 

1.36 
1.18 
1.32 
1.12 

1.44 
1.19 
1.30 
1.06 

Range of 
F r i c t i o n  

Angle 
(deg) 

4 3 t o 4 6  

45 t o  49 

4 2 t o 4 6  

45 t o  48 

4 3 t o 4 4  

43 t o  45 

43 t o  47 

44.5 

46 t o  49 

35 

40 

So i l -S t ee l  
F r i c t i o n  Angle 

(deg) 

2 1 
2 0 

18 
18 
2 1 
2 2 

20 
2 0 
2 3 
23 
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@ Angemeer, et d (1973) 
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cemented calcareous sands 

Figure  1. Re la t ion  between u n i t  end bea r ing  capac i ty  and s tandard  
p e n e t r a t i o n  r e s i s t a n c e  i n  c h a l k  ( a f t e r  Datta e t  a l . ,  1980). 



Figure  2 .  Equipment used i n  ca l ca reous  sediment behavior  s tudy .  





Figure 4. Grain size distribution of Monterey silica sand. 
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Figure  5. X-ray of t h e  g r i d ,  l ead  s h o t  p e l l e t s  and model p i l e .  
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0 0% cement 

A 112% cement 

0 1% cement 

0 2% cement 

Distance From Edge of Pile (in.) 

(a) Loose Calcareous Sand 

Figure 15. Horizontal soil displacements after pile driving in cal- 
careous and silica sands. 
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F igure  15. Cont inued.  
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( c )  Dense Calcareous Sand 

Figure 1 5 .  Continued. 
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Figu re  15. Cont inued.  
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( a )  Loose Calcareous Sand 

Figure  16. V e r t i c a l  s o i l  displacement a f t e r  p i l e  d r i v i n g  i n  ca lcareous  
and s i l i c a  sand. 
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F i g u r e  1 6 .  Cont inued.  
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F i g u r e  1 6 .  Continued. 
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(d)  Dense S i l i c a  Sand 

Figure 1 6 .  Continued. 



Mesh Opening - I n s  S ieve  S i z e s  Hydrometer Anal y s i  s 
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Figure  17.  Grain s i z e  d i s t r i b u t i o n  curves f o r  crushed and natural cal- 
careous sand from Guam. 
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Mesh Opening - I n s  S ieve  S i z e s  Hydrometer A n a l y s i s  
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Figure  18. Grain s i z e  d i s t r i b u t i o n  curves  f o r  crushed and n a t u r a l  c a l -  
careous sand from F lo r ida .  
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Mesh Opening - ins Sieve  S i z e s  Hydrometer A n a l y s i s  
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Figure 19. Grain s i ze  distribution curve of Ottawa sand. 
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Figure 20. Grain size distribution curves of calcareous sand before 
and after triaxial compression test. 

b 

GRAYEL 

Coarse F i n e  

-- -- 
SAND 

Coarse1 Medi urn 1 F i n e  

1 

Sl LT and CLAY 



Axial Strain, e 

Figure  21. S t r e s s - s t r a i n  diagram f o r  i s o t r o p i c  compression of s i l i c a  
and ca l ca reous  sands. 



pile driving mechanism 

{I 1.5-in. + pile 

silica sand 

1- 29.5-in. diarn 

lateral pressure applied 

 flata able membrane 

F igure  22. Diagram showing p i l e  l oad  t e s t  on t h e  ca l ca reous  and s i l i c a  
. sand. 



NOTE: Arrow directions indicate 
cement contents: 

Figure 23. Maximum pullout resistance versus pile driving resistance. 



f 
slurry filled (if necessary) 

voids or cavities 

Step 1 : drill oversize hole 

(a) Top-Mounted Vibrator (b) Internal-Mounted Vibrator 

Step 2: insert pile, pour and compact 
backfill materials 

Figure 24. Conceptual drawing of a backfilled pile - Alternate A. 



L withdrawable tube 

Step 1: drill oversize hole with withdrawable tube 

Step 2: insert pile, backfill and 
compact while slowly 
removing tube 

Step 3: installed pile 

Figure 25.  Conceptual drawing of a backf i l led p i l e  - Alternate B .  



x withdrawable tube 

voids or cavities 

Step 1 : drive in tube with an 

, -tube 

Step 2: insert pile, backfill and 
compact while slowly 
removing tube 

plate 

expendable end plate 

pile 

Step 3 : installed pile 

Figure 26. Conceptual drawing of a backfilled pile - Alternate C. 



high capacity, low frequency 
vibratory hammer 

Step 1': install inverted tapered pile, backfill and compact with vibratory hammer 

I inverted-tapered pile 

Step 2: installed pile 

Figure  27.  Conceptual drawing of v i b r a t o r y - i n s t a l l e d  b a c k f i l l e d  p i l e s .  



(a) Mechan 

lateral extension branches , 
activated by vertical down- 
ward force on center member 

.cal System 

h 

branches force pile out and 

(b) Lateral Extension Branches System 

expandable helically-screwed 
system activated by rotary 
table 

(c) Helically-Screwed System 

Figure 28. Conceptual drawing of a pressurized pile - Alternate A. 
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impact 
energy 

Step 1 : drive pile 

cavities 

Step 2: clean soil plug for 
open-ended pile 

Step 3: place and detonate 
explosive 

Step 4: installed pile 

Figure 29. Conceptual drawing of a pressurized pile - Alternate B. 



smaller impact hammer to 
drill and insert pile 

voids or 

Step 1 : insert pile with weaker segments 

overdrive or 
explosive 

,T- pile 

Step 2: installed pile 

Figure 30. Conceptual drawing of a pressurized pile - Alternate C. 



concrete 
base 

& l i n g  ropes 

I 

I 
pile 

Step: (1) drive tube and plug 
(2) compact to create bulb base 
(3) place pile and backfill material while removing tube 
(4) installed pile 

Figure 31. Conceptual drawing of pile with enlarged tip - Alternate A. 



Step 1 : drill or drive pile 
Step 2: underream with expandable tip 

Step 3: installed pile 

Figure 32 .  Conceptual drawing of p i l e  with enlarged t i p  - Alternate 8. 



Step 1: drill and insert pile Step 2: pour in grout 

Step 3: installed pi!e 

Figure 33. Conceptual drawing of modified drilled-and-grouted pile. 



voids or cavil 

before 

Step 1 : drive in pile and insert 
keyingin extension 

details of keying-in extension 

after 

U 

Step 2: installed pile 

Figure 34. Conceptual drawing of keyed-in p i l e .  



d 
withdrawable tube 

expendable helical 

Step 1: drill and screw in tube 

pile 

. withdrawable tube 

/ /withdrawable tube 

Step 2: insert pile 

!-.- backfill material 
or mout 

-expendable helical 
drilling point 

Step 3: pour in backfill materials or grout 
and compact while removing tube 

Step 4: installed pile 

Figure 35. Conceptual drawing of drilled and screwed pile. 



0 50 100 

Silica Content (%) 

Figure 36. Comparison of high and low void ratio with change of silica 
content. 



f = oh tan 6 = K o'v tan 6 

where f = frictional resistance 
a', = effective lateral stress 
a', = effective vertical stress 
K = earth pressure coefficient 
S = soil-pile friction angle 

Figure 3 7 .  S t r e s s  condi t ion  on p i l e  sur face .  
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