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ABSTRACT

This dissertation discusses the development of an improved method for the static 

and dynamic analysis of driven piles for both forward and inverse solutions. Wave 

propagation in piles, which is the result of pile head (or toe) impact and the distributed 

mass and elasticity of the pile, was analyzed in two ways: forward (the hammer is 

modeled and the pile response and capacity for a certain blow count is estimated) or 

inverse (the force-time and velocity-or displacement-time history from driving data is 

used to estimate the pile capacity.) The finite element routine developed was a three 

dimensional model of the hammer, pile and soil system using the Mohr-Coulomb failure 

criterion, Newmark's method for the dynamic solution and a modified Newton method for 

the static solution. Soil properties were aggregated to simplify data entry and analysis. 

The three-dimensional model allowed for more accurate modeling of the various parts of 

the system and phenomena that are not well addressed with current one-dimensional 

methods, including bending effects in the cap and shaft response of tapered piles. Soil 

layering was flexible and could either follow the grid generation or be manually input. 

The forward method could either model the hammer explicitly or use a given force-time 

history, analyzing the pile response. The inverse method used an optimization technique 

to determine the aggregated soil properties of a given layering scheme. In both cases the 

static axial capacity of the pile was estimated using the same finite element model as 

the dynamic method and incrementally loaded. The results were then analyzed using 

accepted load test interpretation criteria. The model was run in test cases against current 

methods to verify its features, one of which was based on actual field data using current 

techniques for both data acquisition and analysis, with reasonable correlation of the 

results. The routine was standalone and did not require additional code to use.
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1

 CHAPTER I
 

INTRODUCTION

Before the Wave Equation

Driven piles are the oldest form of deep foundations for civil and military 

structures of all kinds, predating written civilization itself. The main purpose of 

driven piles, or any deep foundation for that matter, is to transfer loads from a 

structure situated in soft soils, over water, or both, to a more competent stratum 

than is available to the structure at its elevation. Until the last fifty years or so piles 

were configured to transmit primarily axial loads. These kinds of loads remain the 

predominant loads driven piles transmit, although lateral loads are also important. 

Anyone who is familiar with pile driving knows that, during installation, the early 

part of the driving is typically “easy” with the pile advancing several centimeters 

with each blow. As the pile goes further into the earth, the resistance increases and 

the advance of the pile with each blow decreases. Although soil strata are anything 

but uniform and consistent, this is the general trend.

Even without the benefit of analytical tools, there is an intuitive link between 

the resistance a pile-soil combination to driving and the resistance to the static load 

it was designed to bear. Beginning in the middle of the nineteenth century, there 

was an effort to quantify that link. As Chellis (1961) notes, the first attempt at this 

was the Sanders Formula:
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Equation 1, along with most of what came to be called dynamic formulae, 

were based on Newtonian rigid body mechanics. Sanders attempted to relate this 

distance a pile advanced per hammer blow to the resistance/capacity of the pile 

during installation and actual use.

As a matter of clarification, the advance of a pile into the earth can also be 

defined by its blow count, i.e., the number of blows per unit length of penetration. In 

its simplest form the relationship is

In countries such as the United States where the blow count is measured in 

feet, the blow count can be readily expressed as blows per 300 mm of penetration, or

Equation 1 introduced the concept of using the installation process itself as 

a form of load test for a driven pile. For this formula, the problem is that, as s → 0, 

R→.∞, which is obviously unrealistic. Further development lead to the most popular 

dynamic formula promulgated (in the United States at least,) the Engineering News 

Formula. Wellington (1893) first published Equation 4 in 1888:

This equation can be solved for the pile set as

Until the 1970’s dynamic formulae were the “state of the art” in pile 

dynamics, even though the proliferation of different formulae and correlation 
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difficulties (Parola (1970); Likins et. al. (2012)) suggested to many that something 

was basically wrong with these equations.

Application of the Wave Equation to Pile Driving

Early Attempts at a Solution

Until the end of the nineteenth century virtually all piles were timber piles 

driven with drop hammers. Between the introduction of Equation 4 and the First 

World War, steel and precast concrete piles were introduced, and steam driven 

hammers became more popular (Warrington (2007)). It was those improvements 

that detonated the first “crisis” for rigid body pile dynamics. During installation, 

concrete piles began to show extensive damage in the form of cracking, particularly 

at the mid-point of the piles. Rigid body mechanics were unable to explain these 

cracks; however, Isaacs (1931) proposed that what was taking place in piles was 

one-dimensional wave propagation, which in turn was generating tension stresses 

in piles due to wave reflections from the pile toe. Isaacs also saw that applying 

wave mechanics to piles could improve the correlation between observed driving 

parameters and pile capacity. He developed a graphical technique to analyze the 

time history of impact, as shown in Figure 1.
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Figure 1	 Velocity-Time History for Pile (after Isaacs (1931))

The 1930’s saw other advances in wave mechanics for piles, in particular 

from Glanville et.al. (1938). This research included the first comprehensive program 

to record the force-time curve of the hammer impact on the pile, as shown in Figure 

2. It also saw a heightened awareness of the limitations of dynamic formulae as 

predictors of pile capacity. Unfortunately applying wave mechanics to pile dynamics 

was hindered by the complexity of the problem, which included non-linear response 

of the soil and inextensible interfaces between the hammer, cap and pile.
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Figure 2	 Force-Time History of Pile at Pile Middle (after Glanville et.al. (1938))

Glanville et.al. (1938) also explicitly ascribed the one-dimensional wave 

equation as the governing equation for driven piles under impact. That equation is

Their solution was based in part on d’Alembert’s equation (Sobolev (1964))

Equation 7 appears routinely in the literature relating to the Case Method 

and CAPWAP (Rausche (1970); Rausche et.al. (1972); Rausche, Goble and Likins 

(1985)) and in alternative solutions such as Liang (2003). The advent of numerical 

methods has largely superseded the unaided use of d’Alembert type solutions; the 

“bookkeeping” necessary to keep up with the upward and downward traveling 

waves is considerable.



6

However, the problem with Equation 7 goes deeper than d’Alembert 

solutions. The most fundamental problem is that Equation 7 assumes no dampening 

or resistance of any kind along the shaft of the pile. Although many driven piles 

have exposed portions which do not contact the soil, it is the rare driven pile (or any 

other type of deep foundation) which lacks shaft resistance of any kind.

One way of incorporating shaft resistance to the problem is to employ the 

Telegrapher’s wave equation (Webster and Pimpton (1966)),

Obviously, if a = b =0, then Equation 8 reduces to Equation 6.

There are limitations to Equation 8 as well. First, it assumes a uniform cross-

section of the pile with no discontinuities. Both of these assumptions are present 

in the undamped solution as well. Neither of these is necessarily true of any driven 

pile, and discovery of the latter is the main driving force behind the application of 

wave propagation theory to pile integrity testing.

Beyond these limitations, the Telegrapher’s equation assumes a linear soil 

response for both elasticity and dampening along the pile shaft. Neither of these 

(especially the former) can be relied upon on with driven piles, and in reality the 

whole goal of pile driving is to stress the soil beyond its elastic limit and allow the 

pile to achieve a permanent set with each blow. This is the inherent weakness of 

such approaches as Pao and Yu (2011). As was the case with the application of 

Winkler theory to lateral pile loading and response, the soils simply do not respond 

to their mobilization in linear ways.



7

Nevertheless, in spite of these limitations, the Telegrapher’s equation is 

closer to the realities of driven piles than the undamped equation. This is significant 

in the development of new methods for the dynamic analysis of driven piles.

Smith’s Solution

Although World War II delayed progress for more than a decade, these 

problems were eventually solved by the work of Smith (1960). His computer-solved 

numerical analysis modeled the soil as an visco-elastic-plastic reaction for both 

shaft friction and toe resistance, and included special modeling for the pile driver 

and pile cushion. Some of these features are illustrated in Figure 3.

Figure 3	 One-Dimensional Wave Equation Model With Various Types of Pile 
Driving Equipment (after Hannigan et.al. (1997))
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The method detailed in Smith (1960) is a modified central-difference 

technique which sums forces for each mass, which are in turn lumped at the bottom 

of each pile segment.

The success of Smith’s scheme–and those that are based upon it–is such that, 

when most people in the deep foundations business refer to the “wave equation,” 

they are referring to a computer program of one kind or another. In the forward 

method, what the program does is solve a non-linear version of Equation 8 with 

appropriate modeling of the hammer cushion, driving accessory and pile toe 

response. The pile itself is discretized into finite segments, which also enables one 

to vary the soil properties along the shaft in a straightforward way, i.e., to assume 

that they are constant over the segment but perhaps different from one segment to 

the next.

Although the limitations of this numerical integration scheme were 

recognized early (Fischer (1960)), Smith’s basic scheme has endured for many years. 

An immediate result was that his code was further developed by several researchers 

both to improve usability and to model diesel hammers properly (Hirsch et.al. 

(1976); Goble and Rausche (1976)). This established the wave equation analysis as 

the “state of the art” predictive tool for driven piles and piles verified by high-strain 

dynamic testing, which it remains to this day.

Effect of System Parameters

No numerical model is any better than its input parameters, and the model 

of Smith (1960) is no exception. With the hammer and pile, the parameters can be 

established with reasonable accuracy, as these are made of conventional engineered 

materials and their configuration is generally well known. Turning to the soil 

parameters, inspection of Figure 3 shows that not only do the values of the soil 
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damping, quake and resistance need to be known, but also that these can and do 

vary along the shaft of the pile and at the toe. It makes sense that some parameters 

will have more effect on the performance of the system than others.

Meseck (1985) examined this problem using WEAP (Goble and Rausche 

(1976)). Running parametric studies, he concluded that factors such as hammer 

and cushion configuration and soil dampening were critical, while others such as 

quake and–most importantly–the distribution of resistance along the shaft and/

or the distribution of resistance between shaft and toe were not as critical, as were 

variations in pile length and elasticity.

These results emphasize the importance of a proper estimate of damping 

parameters. This is especially important in relating the results of dynamic analysis 

of any kind to the static performance of the system.

Method of Characteristics

One method employed for the analysis of wave propagation is the method 

of characteristics. This is described in some detail by Abbott (1966). According to 

Middendorp and Verbeek (2006), the concept of the method of characteristics was 

first proposed for driven piles with the soil resistance concentrated at the toe. In 

the course of the development of the HBG Hydroblok hammer, shaft resistance was 

added to the model and a practical method of analyzing wave propagation in piles 

was developed (Voitus van Hamme et.al. (1974)). The method of characteristics is 

embodied in the TNOWAVE program. The method has both forward and inverse 

application, and the latter is not restricted to TNOWAVE related applications, 

being used in CAPWAP-C. Horvath and Killeavy (1988) state that CAPWAP was 

improved by switching to the method of characteristics from the lumped-mass 

model.
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In its simplest form, the method of characteristics divides up the pile into 

segments, as is the case with the other numerical methods. The difference comes 

in that the method of characteristics solves Equation 6 for each segment and 

time step. Any other resistances or changes along the shaft or toe (soil resistance, 

change in pile impedance) are represented at the boundaries of each segment. 

Generally speaking, it is necessary to coordinate the segment length to the time 

step through the acoustic speed of the pile material. For uniform piles, this is fairly 

straightforward; where the pile has one or more changes in impedance, time step 

selection becomes more complicated.

The method of characteristics can thus avoid many of the stability problems 

inherent in the explicit methods; however, the comments related to Equation 8 

apply, to some extent, to the method of characteristics.

Use of the Wave Equation in Verification

The uncertainties inherent in geotechnical engineering have always 

encouraged the development of field verification methods for virtually any 

foundation structure. For deep foundations in axial loading, the “reference 

standard” method is static load testing. This, however, is expensive and time 

consuming, and this has encouraged the development of alternatives, such as the 

dynamic formulae. In fact, Equation 4 is the “verification” form of the dynamic 

formula; given a measured set after a hammer blow, a capacity can be estimated. 

Isaacs (1931) foresaw the use of the wave equation “inversely,” taking results from 

pile driving and applying them to wave mechanics to estimate the SRD or ultimate 

capacity of the pile (and the two are not identical.) One way to do this is to run a 

wave equation analysis “after the fact” of pile driving, and this is done from time to 

time (Rausche, Nagy and Webster (2009)). Nevertheless, as is the case with other 
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fields, the need for a more “direct” solution to what is in reality the inverse problem 

was recognized early on.

Inverse methods are more computationally costly than their forward 

counterparts. In the early years of their application, simplifications were made to 

reduce the computational cost. One common simplification with inverse methods 

is the concentration of the resistance–static or dynamic–of the pile at the toe. 

Obviously this goes against both the physical realities of the hammer-pile-soil 

system. Héritier and Paquet (1986) describe one study used in the development 

of an inverse method where the pile was set up to minimize shaft friction and to 

actually concentrate the resistance at the toe. It should also be noted that the CASE 

Method–the earliest attempt at a “back of the envelope” method of estimating static 

capacities from dynamic data–makes this assumption, and this is one reason why 

this method has been problematic in its implementation.

Development of CAPWAP

In reality the concept of using “a Newton-based approach to the dynamic 

determination of pile capacity” is almost contemporaneous to Smith’s work with 

the wave equation. According to Goble Raushe and Likins (1975), the idea was first 

studied by Robert Eiber at the Case Institute of Technology; his master’s thesis 

on the subject was published in 1958. The project continued during the 1960’s and 

a more comprehensive solution to the problem was proposed by Rausche (1970). 

Using theory derived from Saint-Venant and field test correlations, he developed a 

method that, when further developed, became CAPWAP (Case Pile Wave Analysis 

Program, Figure 4.) This, with subsequent improvements in both methodology and 

computer hardware, has become nearly ubiquitous in dynamic testing of driven 

piles and other deep foundations. It enables, by collecting data from accelerometers 

and strain gauges at the head of the pile during driving, an estimate of the static 
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capacity of the pile. The method is well embedded in the recommended methodology 

by the FHWA and other organizations (Hannigan et.al. (1997); Hannigan et. al. 

(2006)).

Figure 4	 Inverse Modeling of Pile Dynamics (after Hannigan et.al. (1997))
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Operation of CAPWAP

As noted the roots of CAPWAP’s methodology go back to the beginnings 

of practical stress-wave analysis in piles, and have been modified by both field 

experience and the adoption of a numerical model different from the lumped mass 

method of Smith (1960), namely that of Fischer (1960). The following analysis is 

based on a recent summary of CAPWAP’s methodology, namely that of Rausche 

et.al. (2010).

CAPWAP is essentially a signal matching routine, as illustrated in Figure 

5. The velocity-time history is input into a model whose pile properties are entered 

based on the pile configuration and whose soil properties are best initial guesses of 

the actual parameters. A force-time history is returned, and the soil properties are 

varied until the force-time history returned by the model matches that from the 

field data.
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Figure 5	 CAPWAP Signal Matching (after Hannigan et.al. (1997))

Rausche et.al. (2010) state that good correlations between CAPWAP results 

and static load testing can be expected under the following conditions:

The time after driving of the static and dynamic tests on the pile itself are 1.	

comparable, i.e., both procedures are run with the same state of pile set-

up;

The permanent pile set is at least 2.5 mm, for a comprehensive 2.	

mobilization of both pile shaft and toe resistance; and
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The pile is loaded to failure during the static load test and the results 3.	

evaluated by the Davisson criterion.

With CAPWAP the pile is divided into continuous, uniform segments which 

have the same travel time .t through the segments. As with the conventional wave 

equation programs, slack in the pile due to splicing, defects in the pile, etc., can be 

included.

CAPWAP uses a bi-linear, elastic/purely plastic model for the static deflection 

of the soil. The spring constant of the soil in elastic deformation is determined by 

the estimated failure load for a given portion of the pile divided by the soil quake, 

as opposed to elasticity being an input and quake/failure strain being a result as is 

the case with soil models such as that of Randolph and Simons (1986). In addition 

to quake values during loading, CAPWAP allows for an unloading which has a 

different force/displacement characteristic than during loading.

CAPWAP's soil damping model is similar to that used in conventional wave 

equation programs. As Meseck (1985) showed, the results of a wave equation 

analysis are very sensitive to the damping values chosen, and this applies to 

CAPWAP as well. CAPWAP also has an option to model radiation damping, and 

an option for residual stresses, as is the case with WEAP86 (Goble and Rausche 

(1986)).

Turning to the signal matching method, CAPWAP defines a “Match Quality” 

(MQ) which “is quantified by calculating the sum of the absolute values of the 

differences between calculated and measured quantity (normally wave-up) in four 

time periods,” (Rausche et.al. (2010)) one of which is the time before 2L/c and the 

other three after it. Using the match quality to translate the computed and actual 

signal correlation to a static load-deflection estimate of the pile is a fairly involved 

procedure that includes a great deal of data review.
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The extensive need for data review during the process makes any objective 

evaluation of CAPWAP's strengths and weaknesses as a numerical method difficult. 

With the current state of rheological understanding for both the static and dynamic 

case and the inherent complexity in the behavior of soils, an entirely “hands-off” 

type of model is unrealistic to expect. The goal, however, is to perform as much 

analysis as possible so to give the engineer reasonable choices and courses of action 

for the situation at hand.

Other Inverse/Verification Methods

It should be noted that CAPWAP is not the only implementation of an 

inverse method to estimate the capacity of piles from high-strain dynamic testing. 

Another example of this is the SIMBAT program, originally developed in France 

(Long (2001)). SIMBAT requires a more elaborate preparation of the pile head 

than the CAPWAP connection of strain gauges and accelerometers to the pile. 

Additionally a theodolite is used to track the displacement-time history of the pile 

head, which provides additional data for analysis (Osman et.al. (2013)). SIMBAT 

seems to rely more on empirical considerations than CAPWAP, especially with the 

variation in hammer energy during the test, which in principle at least gives a more 

comprehensive view of the force-time and force-displacement response of the pile. 

However, as is the case with the American system, there are limiting assumptions 

which, depending upon how the current state of the system treats them, may affect 

the quality of the results significantly.

Another system in use is the TNOWAVE system (Svinkin (2011)), developed 

in the Netherlands and related to the forward method of the same name. Svinkin 

(2011) notes accuracy-related differences among all three systems based on soil 

type.
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Objectives of the Dissertation

Pile dynamics, both forward and inverse, was one of the first civil engineering 

applications to use discrete numerical methods to analyze a non-linear problem. For 

the most part these methods were developed with much more limited computational 

capabilities than are available at present. It is reasonable to use these expanded 

capabilities to take both forward and inverse methods (especially the latter) to a 

high degree of both precision and accuracy. This dissertation has the following 

objectives to move this effort forward:

Development of a forward method that, either using a modeled hammer or •	

predetermined pile head force-time history, will predict the penetration of the 

pile into the soil. The method should use a pile and soil modeling technique that 

is a significant advance over the current model.

Development of an inverse method that, given a pile head force-time history, will •	

determine a soil profile that will return the measured velocity-time history and 

thus achieve signal-matching, with as little manual intervention as necessary. 

Although some limited comparisons to actual data will be done, a general 

correlation with an extensive database is beyond the scope of this dissertation. 

In order to develop a reasonable model, attention to the theoretical integrity of 

the model needs to come before its application and verification (or revision or 

even rejection) in comparison with field data.

Development of a static model that, using the same model as the dynamic case •	

uses, will determine the static capacity of the pile against accepted criteria for 

static load tests, or another criterion that the user might desire.
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 CHAPTER II
 

ONE-, TWO-AND THREE-DIMENSIONAL WAVE EQUATION ANALYSES

Up until now, all of the solutions described formulate the solution for wave 

propagation in piles as a one-dimensional problem. This is not physically the case 

for the following reasons:

For true one-dimensional propagation, the center as of the hammer and the 1.	

center axis of the pile must be the same. As anyone who was watched pile 

driving knows, this is not always the case.

Effects due to pile camber and bending during driving are not considered.2.	

The soil mass into which piles are driven can be considered (with some 3.	

limitations) to be a three-dimensional semi-infinite mass.

The last reason will be considered in this study. All of the models described 

earlier assume that the pile-soil interaction can be modeled using a one-dimensional 

type of model.

At the start of this discussion, two things need clarification.

The first is that, in pile dynamics, one-dimensional solutions are usually 

finite-difference and two-and three-dimensional ones finite element. This is a 

developmental phenomenon rather than a methodological necessity. It is possible 

for a finite element method for this class of problems to be based on either 1D or 

2D, and in fact Mitwally and Novak (1988) developed a 1D finite element analysis 

method which used the results of 2D soil modeling to improve the 1D model. Such 

a model was also used by Danzinger et.al. (1996). Conversely it is possible for two-
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and three-dimensional methods to be based on finite difference or even finite volume 

formulations. Although these (especially the latter) are not unknown in geotechnical 

engineering, they are not considered in this study.

The second is that the “two-dimensional” analysis under consideration is in 

fact a simplification of the true three-dimensional analysis, but using axisymmetry 

to reduce the problem to two dimensions for analytical purposes. Although it is 

possible, using Fourier Series, to violate the symmetry of the system for lateral 

displacement purposes (Smith and Griffiths (1988); Potts and Zdravkovic (1999)), 

this was not considered in this study.

Advantages of One-Dimensional, Finite-Difference Analysis

Although 2D analyses have some advantages over 1D methods, there are at 

least six reasons why 2D methods have not gained the acceptance of their 1D, finite 

difference counterparts.

Finite difference methods, especially the explicit ones, are easier to set up 1.	

mathematically. They do not necessarily require use of advanced linear algebra, 

and the complexities that this introduces into the methodology. This is not 

only the case with models such as Smith (1960) but also with many other early 

analysis routines for deep foundations, such as the p-y modeling of lateral loads 

and t-z modeling of axial loads (Parker and Radhakrishnan (1975)).

Many 2D methods have not modeled the hammer/cap/cushion system to any 2.	

degree. To do so in finite elements is more difficult than it has been using finite 

differences. Modeling inextensibilities is simpler in explicit, finite difference 

schemes than those using finite elements.

Finite elements have proven even more problematic than their finite-difference 3.	

counterparts in producing parasite oscillations (Smith and Chow (1982); Deeks 
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(1992); Warrington (1997)) and other undesired effects in the pile (Randolph and 

Simons (1986)).

Obtaining uniform results for the same input is more difficult with 2D 4.	

methods than with 1D methods. This is mostly an acceptance issue. Codes 

and specifications generally “like” an easily reproducible calculation; this is 

one reason why the wave equation struggled for acceptance vs. the dynamic 

formulae. The growing use of other 2D and 3D finite element codes for analysis 

of geotechnical problems should facilitate this acceptance.

Rheological issues arising in 2D and 3D implementations are far more complex 5.	

than with 1D codes (Pinto Grazina and Lourenço (2008)). Geotechnical engineers 

are well aware of the difficulties in accurately quantifying the response of soils, 

rocks, and materials in between for relatively simple problems such as bearing 

capacity and settlement.

The wave speed in the pile is much greater than that in the soil. To understand 6.	

the effects of this, consider the wave propagation schematic shown in Figure 6. 

The relative slowness of wavefront advance means that relatively little of the 

soil surrounding the pile is actually mobilized during driving. This makes a one-

dimensional analysis more justifiable from the standpoint of the physics of the 

problem rather than analytical convenience. The last reason may be the most 

compelling from a physical standpoint. This is subject to variation of the pile 

material, the nature of the soil and the level to which the soil is strained during 

the wavefront advance.
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Figure 6 Advance of Wavefront in Pile and Soil During Initial Impact (from 
Héritier and Paquet (1986))

Rationale for Two-Dimensional, Finite-Element Analysis

In commenting on Smith and Chow (1982), Goble (1983) states that “...the 

approach has the tremendous advantage of rationality and its use will probably 

expand.” Years later McVay and Kuo (1999) state that “(t)o overcome the problems, 

a rational model using soil mechanics parameters, such as shear modulus and fi nite 

element analysis may provide a better approach to solve the pile driving problems,” 

the application of both of which require a two-dimensional analysis. In spite of the 

strong points of one-dimensional analysis, a two-dimensional analysis has some 

signifi cant advantages that make it worth the additional effort:
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It allows the soil response to be modeled by the properties of the soil itself and 1.	

not abstractions of these properties in springs and dampers. Over the years 

several different combinations of spring constant, viscosity and mass modeling 

have been made for both shaft and toe resistance, in addition to the wide variety 

of values for the parameters. A two-dimensional analysis gives the opportunity 

to allow the soil's distributed mass, elasticity and plasticity to model its 

response.

Two-dimensional models can incorporate “far field” effects, i.e., reflections 2.	

and effects from soil layers that are near the pile but do not actually join to it. 

This is especially true at the toe; two-dimensional models can also incorporate 

the effects of thin layers at the toe for both static and dynamic analysis. Two-

dimensional models incorporate other phenomena that are impossible with 

one-dimensional methods. These include beam effects of the driving accessory 

and induced downdrag in compressive loading (more significant in static than 

dynamic analysis.)

Two-dimensional models can link the basic soil properties (friction, cohesion, 3.	

elasticity, etc.) with their dynamic response. This has been incorporated into 

some one-dimensional models (Corté and Lepert (1986); Randolph and Simons 

(1986)) but ultimately true two-and three-dimensional models are in principle 

more accurate.

For tapered piles, using a 2D analysis eliminates the persistent problem of how 4.	

to accurately model a tapered surface. Generally soil failure around piles is in 

shear along the shaft and in compression at the toe; tapered regions incorporate 

both. Most static capacity methods do not have a straightforward way of taking 

this into consideration, although Nordlund's Method (Hannigan et. al. (2006)) 

is a notable exception. For both 1D static and dynamic methods, the pile can be 
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“step-tapered” analytically and “pile toes” can be distributed along the shaft. 

With a 2D method the geometry and its interaction with the soil–to say nothing 

of wave propagation in the pile–can be modeled directly without recourse to 

workaround such as intermediate pile toes.

These are some of the reasons for developing the two-dimensional 

axisymmetric model used in this study for both static and dynamic pile loading.

Survey of Two-Dimensional Solutions

Two-dimensional finite-element solutions first appeared in the United 

Kingdom in the early 1980’s, partly because of North Sea offshore oil exploration 

and the requirements of platform design in that demanding environment, which 

included platforms installed in deep water. A brief summary of the methods 

developed since that time is shown in Table 1.
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Table 1	 Summmary of Two-Dimensional Pile Wave Equation Models

Study Element 
Type

Integration 
Scheme

Plasticity Pile Interface 
Elements?

Code or 
Package?

Pore 
Water?

Typical Pile

Smith and 
Chow (1982) 8-Node Quad Implicit 

Wilson Theta
Mohr-

Coulomb No Code No 1.524 m 
O.D. Steel

To (1985) 8-Node Quad Implicit 
Wilson Theta

Mohr-
Coulomb Yes, 6-Node Code No 1 m O.D. 

Steel

Coutinho 
et.al. (1988) 6-Node Quad

Explicit 
Central 

Difference
Mohr-

Coulomb Yes, 6-Node Code No 1.422 m 
O.D. Steel

Nath (1990) 6-Node Quad
Explicit 
Central 

Difference

Hypo-elastic 
Bounding-

Surface 
Plasticity

Yes Code No 1 m O.D. 
Steel

Mabsout and 
Tassoulas 
(1994)

8-Node Quad
Implicit 

Constant 
Average 

Acceleration

Mohr-
Coulomb No Code No 1 m O.D. 

Concrete

Masouleh 
and 
Fakharian 
(2008)

Quad Unknown Mohr-
Coulomb Yes FLAC Yes

300 mm 
O.D. 

Concrete

Pinto 
Grazina and 
Lourenço 
(2008)

15-Node 
Triangle

Implicit 
Newmark

Mohr-
Coulomb No Plaxis No 500 mmO.D. 

Steel

Serdaroglu 
(2010) 8-Node Quad Explicit 

Newmark
Mohr-

Coulomb Yes ABAQUS Yes 1 m O.D. 
Steel

Some general comments on these methods are as follows:

Smith and Chow (1982): This was the first attempt at a two-dimensional model •	

of the pile in finite elements. A rectangular grid that was refined nearest to 

the pile was used. This type of grid is the most commonly one used in this type 

of analysis. A time-varying force to simulate a hammer impact was applied at 

the pile head. In addition to modeling the soil three-dimensionally using two-

dimensional axisymmetric elements, the pile was modeled in the same manner.

To (1985): This was a continuation and development of Smith and Chow (1982). •	

The pile hammer was directly modeled at the pile head for the first time, as 

opposed to simply giving the pile head a force-time relationship. In addition to 

impact driven piles, vibratory driven piles and surface footings were analyzed 
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using this code. This study also saw the first use of pile interface elements, based 

on the concept that the pile-soil interaction is fundamentally different than the 

interaction of the soil with itself.

Coutinho et.al. (1988): This was part of a long effort on the part of Petrobras, the •	

Brazilian state oil company, to develop new methods to predict pile drivability 

using methods more advanced than were available. The model was intended to 

simulate the driving of large (1422 mm) diameter steel pipe piles 97 m into the 

earth, which made it the largest pile simulated using 2D to date.

Nath (1990): Similar in many ways to Coutinho et.al. (1988), it represented an •	

attempt to replicate hyperbolic soil response. Additionally a mapping scheme for 

the elements was used. The results were compared with actual field data and 

good agreement was noted, although the sample was understandably small.

Mabsout and Tassoulas (1994): This study incorporated more complex soil •	

modeling than was previously used, especially more advanced types of failure 

theory. Both of these were primarily aimed at analyzing clay soils. The 

advancement of the model, however, ran into computational power limitations.

Masouleh and Fakharian (2008): The first study to use a software package (in •	

this case FLAC) it was also the first to attempt an inverse solution to the wave 

equation for piles. Extensive comparison with conventional 1D analyses was 

done.

Pinto Grazina and Lourenço (2008): This study actually analyzed wave •	

propagation in piles with both 1D and 2D models. Reasonable agreement was 

obtained between the two models. The 2D model was the first to get away from 

the rectangular grid that had been traditional with 2D pile models, in this case 

using triangular elements with conventional FEA type grid generation.
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Serdaroglu (2010): The primary purpose of this study was not to model for •	

pile performance but to estimate the ground vibrations that result during pile 

driving. However, an extensive comparison with conventional static capacity 

estimation methods was also undertaken, with emphasis on the effect of 

interface elements.

The history of 2D methods is thus one of incremental advances, assisted as 

with any numerical method by expansion of computer power. What has been lacking 

has been a comprehensive solution of the wave equation for piles in 2D to match 

that of 1D methods.
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 CHAPTER III
 

FORWARD AND INVERSE METHODS FOR DYNAMIC ANALYSIS

Prerequisites for a Solution

Driven piles are deep foundations that are installed at a high loading rate 

and used in service at a low loading rate. The latter are frequently characterized 

as “static loads” but loads with no time change at all are non-existent in civil 

engineering although “static” methods are used extensively in design. In addition, 

driven piles are frequently used with loads which are known beforehand to vary in 

time, such as dynamic loads due to vibrating machinery and seismic loads.

The validity of pile dynamics implies that, in the course of either predicting 

the performance of a hammer-pile-soil system or measuring the response of the 

pile-soil system to impact or vibratory excitation, the expected static (or low loading 

velocity) response of the pile can be extracted from or related to the dynamic data. 

To accomplish this requires three important prerequisites:

The consistency of the engineering properties of soil from static to dynamic 1.	

conditions, especially those related to the stress-strain response of the soil. The 

most important aspect of this is that the pile's ultimate capacity and its SRD 

(soil resistance to driving) are the same, both as a load-deflection comparison 

and the comparison of an “ultimate” capacity. In practical application the largest 

discrepancy observed is due to set-up effects in the pile; this is generally dealt 

with by analyzing the blow in a “restrike” situation after set-up has taken place. 

However, changes in soil properties from static to dynamic loading (especially 
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with the modulus of elasticity) cannot be completely discounted. This will be 

discussed in more detail below.

A consistent definition of the static load capacity of the pile. One object of 2.	

dynamic testing is to replace the necessity of static load testing, and frequently 

the results of the two have been compared so that the results of dynamic testing 

can be related to those of static testing. Generally speaking with CAPWAP 

Davisson's Method is used; however, if another method is common in a different 

region (and codes can dictate this kind of change) then the dynamic results must 

be interpreted differently.

A physically and mathematically meaningful method of extracting the static 3.	

response of the pile from the dynamic response obtained during impact or 

vibration.

Overview and Application to Pile Dynamics

Since this study incorporates both forward and inverse methods for solution 

of the wave equation for piles, some clarification of what is meant by these terms is 

necessary.

The simplest way to explain the difference is by using an example. Consider 

a simple frame structure to which loads are applied. Whether this problem is solved 

by “classical” methods (energy methods, etc.) or a method such as finite element 

analysis, a model of the structure is built and the loads applied to determine 

the deflections and stresses (the latter via the moments and axial forces) of the 

structure. Such a method is a forward method; the structure is modeled and the 

loads are applied, and from this, the result is obtained.

Now consider the case of an existing structure where the actual loads on 

the structure need to be determined. Again the structure is modeled, but then the 
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results (stress, deflection, etc.) are applied and from that, the loads are determined. 

Such an analysis employs an inverse method: given the results, the structure 

is analyzed to obtain the input data. In reality, such an analysis is useful if, for 

example, the structure is showing distress and it is necessary to determine the 

magnitude, direction and nature of the loads that might be causing this distress.

Broadly speaking, forward methods are used in design, and inverse methods 

in verification. Neither of these methods has to be numerical, but for complex 

systems (and especially non-linear ones) numerical methods are the methods of 

choice.

Turning to pile dynamics, the wave equation is the forward method used to 

analyze the driving of piles. The hammer, pile and soil system is modeled and the 

analysis is performed. Even here, however, the inverse methodology begins to take 

shape. The “bearing graph” is a method by which a variety of pile resistance profiles 

is analyzed. The object of this is to relate the performance of the system to a variety 

of possible results, in this case pile resistances. The uncertainties of both the ground 

itself and the static capacity methods in use make a rapid transition to inverse 

analysis a necessity. It is also possible to perform manually determined successive 

runs of the forward wave equation analysis to obtain an inverse result, as is shown 

in Rausche, Nagy and Webster (2009).

Use of forward wave equation programs is an imprecise method of 

determining the SRD of the pile. In most cases signal-matching routines of one 

kind or another are used, given actual pile head data. While these have been very 

useful over the years, there have been two persistent issues in pile dynamics that 

need to be understood completely: the issue of consistency of results and the issue 

of uniqueness. The first was touched on in the previous section; it is a necessary 
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condition for pile dynamics to relate to actual strength and service performance. 

The second has been a long-term issue, especially with inverse methods.

The Uniqueness Problem

As is the case with virtually any engineering problem, pile dynamics involves 

obtaining a result from a given set of data that is put through a certain process. For 

a solution to be unique, the process must return a consistent result with a given set 

of data.

With a forward method, given information about the hammer/pile/soil 

system, the results (blow counts, stresses, force-time and velocity-time history, etc.) 

should be the same. With one-dimensional simulation, the simplicity of the models 

makes uniqueness more attainable, although same simplicity may mask problems 

other than uniqueness. With the two-dimensional models, for elastic-purely plastic 

models there is no uniqueness theorem with non-associated flow rules (Isenberg 

(1972)).

With the inverse methods, uniqueness has been an issue since Rausche et.al. 

(1972), and specifically the response by Screwvala (1973). In reality his objections 

are broader than the issue of uniqueness, and the uniqueness of CAPWAP results 

have been challenged elsewhere (Holeyman (1986); Danzinger et.al. (1996); McVay 

and Kuo (1999)).

Part of the problem is the non-linear nature of the problem itself. Non-linear 

solutions are path and stress history dependent; different stress histories will yield 

different results. In many cases an iterative solution is necessary for non-linear 

problems; the iteration process itself suggests that the method employed is seeking 

the most likely solution to the problem as opposed to the only one.
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Inverse methods are by necessity iterative; some systematic method of testing 

a series of solutions is necessary to arrive at the best solution to the problem. How 

this is done varies, and the method chosen can significantly affect the results. 

Balthaus (1988), for example, recommends that a subjective method of solution 

search should be avoided. But this is not the only source of uniqueness difficulties 

with inverse methods and one-dimensional models; another comes from the basic 

visco-elastic rheology itself.

The easiest way to see this is to consider the pile head response for a uniform 

semi-infinite pile subject to a pile head force F0(t) and governed by Equation 8. The 

solution to this is (Warrington (1997))

In this case Z is the pile impedance and I0 is a Bessel function (Bowman 

(1958)), which appear frequently in analytical solutions of this kind.

Our objective is to determine a and b. The pile head force F0(t) can be 

determined from the strain gauges. The pile head displacement can be determined 

either a) directly through a high-speed theodolite (SIMBAT) or b) through double 

integration of the accelerometer data (CAPWAP). Z is a property of the pile cross-

sectional configuration and material properties.

Even in this relatively simple form, Equation 9 is difficult to solve 

analytically. For actual force-time curves, the simplest way is to use a root-finding 

method. Doing that, however, does not avoid the simple fact that there are two 

unknowns (a and b) and only one equation. It is thus impossible, using data from 

the pile head, to separate the static and dynamic components of the pile resistance.
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To put this rather surprising result into perspective, Equation 8 can be 

written in a broader form, thus

where two important changes are made. The first is that the functions 

of elasticity, viscosity, etc., along the shaft can vary with x. This is important 

because of of the things traditionally sought in dynamic testing is the distribution 

of resistance along the pile shaft, which is in turn based upon the distribution of 

elasticity and viscosity. The second is that a strain term is added to the equation.

Given proper conditions, it is possible, using data from one boundary 

of a system governed by Equation 10, to determine the properties of the 

system. However, with inverse methods such as Gelfand and Levitan (1951), 

implementations of same such as Ning and Yamamoto (2008) or methods such as 

boundary control, either a(x)=0 or b(x)=0. The inclusion of both creates the situation 

in Equation 9. Rausche et.al. (1972) recognized this problem at the beginning of 

modern dynamic analysis.

This does not mean that all hope is lost. This problem can be solved if a 

relationship between a(x) and b(x) can be established, or to be more precise if 

they are functions of each other. Once this is established Equation 9 becomes one 

equation in one unknown. What this means is that the portion of the resistance 

during driving ascribed to the dynamic portion depends upon our assumptions 

regarding the rheology of the soil and not the inverse methodology at hand. If all 

other components of the inverse methodology are correct, then the key decision in 

the process comes with the assignment of soil properties before the reduction of 

data.
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An example if this comes if the soil model of Randolph and Simons (1986) is 

considered,

and

The variables k and c are the soil stiffness and dampening along the shaft. To 

transform them to the a(x) and b(x) respectively of Equation 10 requires inclusion 

of the pile geometry; this is discussed in detail in Warrington (1997). In any case 

d(x)=0.

Examination of Equations 10, 11 and 12 show, however, that the spring 

and dampening constants are related by the shear modulus G, which in turn is 

a function of the modulus of elasticity E and Poisson’s Ratio. From a standpoint 

of input parameters, the only difference between the two, other than geometric 

considerations, is the soil density.

Usually, establishing linear dependence is not a positive development for 

numerical methods. In this case, however, it is helpful, as it can be shown that 

a(x) and b(x) are dependent upon each other, at least to some extent. Taking better 

advantage of this situation would solve one of the oldest problems in pile dynamics.

Having analyzed the effects of linear phenomena on uniqueness, the presence 

of non-linearity in both the elastic and viscous portions of the resistance must be 

considered. Equations 10 and 11 both have strong roots in the theory of elasticity; 

the introduction of non-linearity poses the threat of decoupling the two quantities, 

either entirely or (more likely) partially. Rausche, Goble and Likins (1985) state 
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that “...the uniqueness of the CAPWAP resistance distribution is proven under 

the assumption of an ideal plastic soil behavior.” Eliminating the elasticity of 

the system, however, makes the soil model inconsistent with those used in the 

forward methods such as are depicted in Figure 3 (Danzinger et.al. (1996)) and even 

CAPWAP itself as currently implemented (Rausche et.al. (2010)).
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 CHAPTER IV
 

DEVELOPMENT OF A STATIC/DYNAMIC FINITE ELEMENT CODE WITH 
MOHR-COULOMB PLASTICITY

Selection of a two-or three-dimensional method of analysis presented many 

challenges in code development.

Code Environment

The computer code for this study was written specifically for the application, 

and is referred to as STADYN (STAtic-DYNamic.) It was written in FORTRAN 77 

using the OpenWATCOM compiler for Windows (which also works under Linux as 

well.) The program was also compiled and run using gfortran under Linux. Thus 

two compilers were used alternately, which allowed for a more comprehensive 

debugging. In general most of the solutions presented in this study were executed 

using OpenWATCOM because, when properly optimized, it tended to be more 

efficient and ran more quickly. With either it was possible to compile the program 

in single or double precision. Which one was necessary depended upon the type of 

problem being solved; eventually double precision was adopted as standard.

The main physical basis of STADYN came from Smith and Griffiths (1988), 

with some assistance from Owen and Hinton (1980). Other sources of code for 

routines of a more general mathematical nature included Carnahan, Luther and 

Wilkes (1969), Chapra and Canale (1985), King (1984) and Press et. al. (1992). All of 

these were modified to work as a unit and were, to varying degrees, adapted to the 

problem at hand.
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Analytic Solutions for Static and Dynamic Pile Response to Loading

In development of any finite element code, it is very helpful to have analytic 

solutions available for simple load and configuration cases. Due to the non-linear 

nature of the problem, the applicability of analytic solutions is limited; nevertheless, 

there are two that are employed for comparison purposes to this problem.

Closed Form Solution of the Wave Equation for Piles: Warrington (1997)

Early projects such as Isaacs (1931) and Glanville et.al. (1938) used what 

amounted to closed form solutions of the wave equation for piles. The limitations of 

these became quickly evident; however, for the purposes of developing the dynamic 

code, such a solution is a necessity. The closed form solution of Warrington (1997) 

gives numerical solutions for simple, linear problems. Using semi-infinite pile 

theory, it also generates an analytical solution for the hammer impact on the pile 

(see also Deeks (1992)). For this study a fixed pile toe case was considered, and the 

“test case” pile/hammer configuration was the same as in the previous study.

Linear Solution for Pile Settlement: Randolph and Wroth (1978)

Analytical solutions for the capacity or settlement of deep foundations into 

a semi-infinite soil mass are, if anything, more difficult than a closed form solution 

of the wave equation. For non-plastic analysis probably the best one is that of 

Randolph and Wroth (1978), which uses Mindlin plate analysis and axisymmetric 

piles and soil mass. It was possible to use this as a “lower bound” check of pile head 

load vs. deflection behavior. The implementation of this method in STADYN was 

based on Randolph (1983).

The method defines a few constants as follows:
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The pile head displacement can then be computed as follows:

Obviously this method assumes a uniform pile cross-sectional area and 

outside diameter, which limited it to piles of this type. However, for model 

verification purposes the information from this method can be very useful.

Rationale for a Plasticity Model

As discussed earlier, soils are complex materials in their formation and 

structure. They are the result of an extended formation period not under the 

kinds of controlled conditions that characterize most engineering materials. They 

are also composed of soil particles, water and (when not saturated) air in varying 

proportions and material arrangements. Consequently modeling these for the 
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purpose of simulation presents challenges that are not present with many other 

materials. Compounding the problem further is that soils exist in what is considered 

a semi-infinite medium, where the response of the soil to both its own weight and 

external forces take place three-dimensionally.

The complexity of soil rheology has been recognized for many years, and 

many models of soil behavior have been proposed, analyzed and tested in both 

laboratory and field conditions (Šuklje (1969)). However, for analytical solutions, 

implementing these models on a consistent basis has been difficult because of the 

lack of a suitable framework for analysis. In practice this has led to a schizoid 

situation where soils are considered to be elastic for some analyses (Boussinesq 

stresses, Perloff’s Method for shallow foundations), non-linear for others (Terzaghi 

bearing capacity, slope stability) and a separate theory for still other applications 

(consolidation).

Adoption of the finite-element method enabled all of these states to be 

considered in one model, which is probably the most important advantage of finite 

elements in geotechnical engineering.

Elastic and Plastic Response

Part of the complexity of modeling soil response was that their stress-strain 

properties are, with few exceptions, non-linear, as illustrated in Figure 7.
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Figure 7 Typical Shear Stress-Strain Responses of Soil (from Department of the 
Army (1986))

One widely used approach to this problem is to model the soil response 

hyperbolically, as described in Duncan and Chang (1970). A typical stress-strain 

relationship of such a model is shown in Figure 8.
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Figure 8 Hyperbolic Soil Model (from Department of the Army (1990))

The problem with implementing such a model is that, to a large degree, all 

stresses are plastic and have an irrecoverable component that must be modeled 

properly. This adds to the complexity of the model.

Another model encompasses an elasto-plastic relationship, as shown 

in Figure 9. The soil is assumed to behave elastically (i.e., in a linear, path-

independent fashion) until it reaches the yield stress and strain. From here the 

stress (and that is broadly defi ned, with a two-dimensional model it has more than 

one component) remains constant (purely elasto-plastic,) increases (hardening) or 

decreases (softening.) Comparison with Figure 7 shows that this is a simplifi cation. 

Nevertheless it is one that has been used successfully with soils (and other 

materials) for many years. Its implementation is relatively straightforward, in large 

measure because there is a defi nite yield surface beyond which plasticity must be 

modeled.
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Figure 9 Elasto-Plastic Soil Response

Comparing Figure 9 with Figure 3, it is easy to see that much of the soil 

modeling used in pile dynamics, statically at least, is a pure elasto-plastic soil 

model. This includes not only the model of Smith (1960) but the more advanced 

ones such as Randolph and Simons (1986) and Corté and Lepert (1986) which 

are developed from axisymmetric models. On the other hand, Nath (1990) uses a 

hardening model to simulate the response of a hyperbolic model without the non-

linear complexities that come with that model.

The choice remaining was thus whether a pure elasto-plastic model, a 

hardening model, or a softening one would be adopted. The softening model was 

not considered because there is no theoretical or experimental data to support it 

in this application. Turning to a hardening model, while it can be used to simulate 

hyperbolic response, there is likewise little data to determine the degree of 

hardening that would be appropriate for pile dynamics. Also, the hardening model 
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can be non-conservative, especially at the toe, and may conceal plunging failure 

when it occurs.

Based on this and past practice in pile dynamics, in this study a purely 

elasto-plastic model was adopted, which means that, once the failure criterion was 

reached, unless the soil reverts to the elastic region with unloading, the stresses 

remained on the failure surface at a failure stress state. This was done for all static 

modeling, along with forward and inverse dynamic modeling.

Failure Theory

Having decided on a non-hardening model as shown in Figure 9, it was 

necessary to consider a failure theory, and thus determine the yield point of the 

material. Potts and Zdravkovic (1999) divide the failure theories possible for 

geotechnical finite element codes into two types:

Simple models such as Tresca, von Mises, Mohr-Coulomb, Drucker-Prager and 1.	

Cam Clay.

Advanced models such as limited tension, Lade's Double Hardening, the MIT 2.	

models and Bubble Models such as that of al-Tabbaa and Wood.

Since the application of these to dynamic methods is not common in practice, 

it made sense to use methods that do not require the evaluation of additional 

variables not commonly seen on soil boring logs. Based on this and the elasto-plastic 

discussion, the Mohr-Coulomb failure model was chosen. As Abbo et.al. (2011) 

point out: “The Mohr–Coulomb yield criterion provides a relatively simple model 

for simulating the plastic behavior of soil. Other more sophisticated constitutive 

models for predicting the behavior of soil have been developed over the past three 

decades, however the complexity of these models, as well as the additional testing 

required to determine the various soil parameters involved, minimizes their utility 
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for practicing geotechnical engineers. The Mohr–Coulomb yield function is also of 

importance to finite element researchers and practitioners as it forms the basis of 

many analytical solutions. These analytical solutions serve as crucial benchmarks 

for validating numerical algorithms and software.” This observation is supported by 

McCarron (2013).

The Mohr-Coulomb model also can be applied to a variety of soils. This 

is important as piles are driven into a wide range of soil types, cohesive and 

cohesionless alike.

In adopting this model, however, a few things need to be kept in mind:

Except for purely cohesive soils, a purely associated flow rule is to be avoided 1.	

for soil materials in the model. Such a rule is acceptable for many engineering 

materials but does not realistically model the dilation of soils, especially 

cohesionless ones. The downside to this is that the elasto-plastic constitutive 

matrix is non-symmetric, which, strictly speaking, will result in a non-symmetric 

stiffness matrix, increasing the cost of the problem solution. These are issues 

that will be dealt with in the course of the analysis.

Effective stress must be modeled, as the overburden acting on the frictional 2.	

resistance of the soil is the principal source of soil strength for purely 

cohesionless soils.

Matching the actual soil behavior with that predicted by the finite element code, 3.	

even with a highly developed soil model, can be very problematic, as Reid et.al. 

(2004) and Townsend et. al. (2001) demonstrated.
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Other Issues

One important issue with traditional wave-equation methods with piling is 

the nature and implementation of damping along both the shaft and the toe of the 

pile. Several different variations of damping modeling have been used, and, as is 

seen in Mukherjee and Nagarajub (2013), a wide variety of damping coefficients 

have been employed. However, most of the dampening around piles during driving 

is energy radiation into the semi-infinite soil mass. As a result the distributed 

mass in the model will serve as the modeling of the dampening in conjunction 

with the distributed elasticity/plasticity of the soil. Since the object of this study is 

not to model vibrations induced by pile driving the addition of velocity-dependent 

dampening to the model would primarily introduce complications into the 

simulation without necessarily adding to the accuracy of the model.

Another thing that should be noted here is that many issues with finite 

element codes in other geotechnical applications are absent here. These include 

excavation considerations, unlevel soil surfaces, and effects due to remolding of the 

soil. The absence of these allowed some simplification of STADYN.

Mohr-Coulomb Failure Theory

The following is a brief summary of the application of this theory to the 

problem at hand. It is not meant to be a comprehensive treatment of the subject. 

Much of it is drawn from Nayak and Zienkiewicz (1972) and Owen and Hinton 

(1980).

According to this theory, failure occurs when the combined stresses find 

themselves outside of the failure envelope defined by the equation
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This is illustrated in Figure 10.

Figure 10 Mohr-Coulomb Failure Theory (after Reid et.al. (2004))

It should be noted that both Equation 19 and Figure 10 are based on the 

typical geotechnical sign convention of positive compression. For this study, 

STADYN was written so that the compression is negative, in which case Equation 

19 becomes

and the graph is the mirror image of Figure 10 about the shear stress (τ-) 

axis.

Failure takes place when Mohr’s Circle for the stress state either intersects 

or goes above the failure line. The state of intersection, in terms of the principal 

stresses, is expressed by Verruijt and van Bars (2007) as
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For many applications, such as triaxial testing, this is sufficient, as the goal 

is to determine parameters c and φ from the tests. But what if it is necessary to 

analyze stress states other than those on the failure line, as is certainly the case 

with finite elements? For these cases the failure criterion can be defined as

This is illustrated in Figure 11.

Figure 11	 Mohr-Coulomb Failure Criterion

There are three possibilities for the right hand side:

F< 01.	 , failure has not been achieved.
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F =02.	 , failure has been achieved.

F> 03.	 , the stress state is beyond failure.

How the model responds to each of these states depends upon how the 

response is modeled. In any case, once F = 0, the effects of further stress are 

irrecoverable.

For use in finite element code, it is frequently more convenient to express 

these using invariants. For the case of plane strain/axisymmetry in this problem 

(and the general case for problems of this kind) it is assumed that

and the first invariant is

The deviator stresses are defined as

The second and third deviatoric invariants are

With all of this, Equation 22 can be restated thus:
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where

The Mohr-Coulomb failure criterion is frequently depicted using a three-

dimensional representation on the principal stress axes as is shown (along with 

the Drucker-Prager criterion) in Figure 12. On the left is the failure surface in true 

three-dimensional representation, and on the right is same in the octahedral plane. 

The significance of Lode’s Angle can also be clearly seen.

Figure 12	 Mohr-Coulomb Failure in Three Dimensions (after Owen and Hinton 
(1980))

Inspection of Equation 27 shows that the failure function F is not the result 

of a unique combination of stresses. Additional information is available in the 

plastic potential function, which in turn is a function of the dilitancy of the material. 
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The simplest way of determining this is by substituting the dilitancy angle ψ for the 

friction angle φ in Equation 27 (Griffiths and Willson (1986)), or

Elasto-Plasticity

With the Mohr-Coulomb failure criterion defined, the elasto-plastic 

constitutive matrix can be developed. As stated earlier, pure plasticity is assumed, 

i.e., once failure is reached F = 0 and the stresses can “rearrange” themselves to 

remain at the failure surface but cannot move from it unless the strains are reduced 

to the point where the stress state is within the failure surface and F  < 0.

To do this, both Equations 27 and 29 are differentiated. Considering that

for the two-dimensional model, then

where



52

and

Inspection of Equation 32 will show that C2 and C3 are undefined for values 

of θ = 30º. This is the well-known “corner” problem that has occupied the literature 

for many years, as summarized by Abbo et.al. (2011). For this study the “corner 

cutting” of Owen and Hinton (1980) is used, and
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Although the accuracy of this “corner cutting” can be improved with methods 

such as those of Abbo et.al. (2011), they come at more computational expense.

In like fashion for the plastic potential function,

where

and by extension

and the vectors a1 ,a2, a3 are the same as with Equation 31.

Now the elasto-plastic constitutive matrix can be considered. For any strain 

increment partially or totally beyond the yield surface, that strain increment will 

contain both elastic and plastic portions (Griffiths and Willson (1986)), or
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Strain increments occur normal to the plastic potential surface, thus

For elastic materials, the incremental stress-strain relationship is simply

where, for plane strain and axisymmetric problems (Owen and Hinton 

(1980)),

and, for axisymmetric problems only,

For a perfectly elasto-plastic material, i.e., one without hardening or 

softening, stress changes will take place only during elastic action. Thus in these 

cases Equations 38, 39 and 40 can be rearranged to yield



55

Since stresses on the failure surface can “rearrange” themselves without 

leaving same surface,

Combining and rearranging Equations 38 through 44 yields the following 

relationships:

 

or

where

and finally

from which

The first thing to note about Equation 49 is that, if same is used to 

reconstruct a tangent stiffness matrix KT in a true Newton stepping scheme, KT 

will not be symmetric if φ is not equal to ψ. For many engineering materials, and 

especially those where both of these quantities are zero, this is not an issue; the 

flow rule is associated, Dep is symmetric and KT will be also. “Regular” engineering 
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materials are used for the hammer and pile components of the system, but 

interest in plastic deformation of these components is of limited interest to most 

geotechnical engineers. It is also not an issue with purely cohesive soils. For 

situations with cohesionless soils, this is not the case; generally φ is much greater 

than ψ and a non-associated flow rule is necessary. This aspect will be important in 

many decisions regarding the structure and types of schemes used in the model.

Turning to the inclusion of plasticity itself, it is certainly possible to compute 

the plastic stresses from Equation 49, and possible to explicitly derive Equation 

48 (Griffiths and Willson (1986)). However, it is not always optimal to do so, either 

from the standpoint of a workable algorithm or from a computational efficiency 

standpoint. To compute the final stress state in a load or time step where failure 

takes place, some type of iteration or multiple steps are required. Potts and 

Zdravkovic (1999) state that there are two basic types of algorithms to accomplish 

this: substepping (such as Sloan (1987)) and return (Ortiz and Simo (1986)). For 

this study a return algorithm was chosen, and implemented as follows:

For a load or time step, the estimated incremental strain was computed.1.	

The estimated incremental stress was computed, based on the assumption that 2.	

the strains were still in the elastic region.

The resulting incremental stresses were added to the stresses at the beginning 3.	

of the step. If these were elastic, then plasticity was not considered and the 

incremental stresses were added to the original ones. If they were not, then the 

plasticity routine was invoked.

The plasticity routine began by computing a4.	 F , aQ, F , θ and aβ, the last given by 

the equation
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The plasticity constant 5.	 λ was determined by a modification to Equation 45, 

namely

The incremental strains in the return step were computed by the equation (see 6.	

Equation 43)

The return incremental stresses were thus7.	

Both of these were subtracted from the current estimated strain and stress, thus8.	

The current stress state was checked against the previous stress state. If the 9.	

norm of the vector difference of the two stress states was within the convergence 

tolerance, the iteration was stopped and the computed elasto-plastic stresses and 

strains were accepted. If not, the cycle was repeated.

Potts and Zdravkovic (1999) criticize the return algorithms because they 

obtain a result based on information and computations in illegal stress space. 

However, overall the experience in this study is that the return algorithm 

worked well, with most of the convergence to the new failure surface stress state 

taking place in the first iteration and the rest refinement steps. A fair way of 

differentiating between the two is that, with substepping, one starts with the 
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existing stress state and works one's way to the failure surface, while the return 

algorithm starts by overshooting the failure surface and then coming back to 

it. The goal in both cases is to return to the failure surface, and in principle the 

result should be the same. Another way of differentiating between the two is that 

substepping is, with its avoidance of illegal stresses, more of an engineering type of 

approach to the problem, while the return algorithm is a more strictly mathematical 

method of arriving at a solution.

One factor that differentiated the cases examined by Potts and Zdravkovic 

(1999) from this study was that their examples used Cam Clay soil modeling. 

Returning to the relative simplicity of Mohr-Coulomb without hardening or 

softening made the location of the failure surface considerably simpler.

Finite Element Implementation

Finite element analysis of geotechnical engineering problems is well 

established in theory and in practice. The most common method to implement 

finite elements for solid mechanics is the Bubnov-Galerkin method, which uses a 

weak formulation of the governing equation for each element. This is the method 

employed for this study; Hughes (2000) discusses the theory behind this in detail, 

along with the element implementation for the elements described below.

For each element two local matrices are developed. The first is the Jacobian, 

or stiffness matrix, which models the distributed elasticity and plasticity of the 

system. For two dimensional, quadrilateral elements, the stiffness matrix for each 

element is developed using the equation
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The constitutive matrix D, both elastic and plastic, has been discussed in 

detail. For the purposes of this study geometric nonlinearity was not considered, 

and so the B matrices were solely dependent upon the original geometry of the 

element.

For dynamic problems, there is also the mass matrix as well, developed using 

the equation

Except for the interface elements, all of the integration to form the local mass 

and stiffness matrices is done using Gauss quadrature. Once these are developed, 

they are added to assemble the global stiffness and mass matrices, using a global 

steering vector which links the local nodal system to the global one.

Element Type

It is interesting to note that, for all of the variety of elements available in 

two dimensions, eight-node serendipity quadrilaterals have predominated from 

To (1985) to Serdaroglu (2010). Many reasons for this have been given, from 

suitability in modeling collapse loads (Smith and Griffiths (1988)) to common use in 

commercial codes.

For this study, it was considered best to adopt a true Lagrangian element 

with full quadrature to match that of the element. To decrease the computational 

cost, reduced integration is commonly used in codes such as LS-DYNA, but it also 

leads to the “hourglassing” problem (Cook, Malkus and Plesha (1989)), which was 

a major issue with Reid et.al. (2004). Selecting a Lagrangian element was a more 
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involved process than originally anticipated, and three element types were tried 

before a “final” one was selected.

The first element considered was a six-node triangular element with three 

Gauss points for full integration. This element proved satisfactory in the early 

stages of development. With a generally orthogonal grid, the rectangles were simply 

divided into two right triangles and the resulting grid generation was relatively 

straightforward. The elements performed reasonably for both the static and implicit 

elastic dynamic (pile only) runs, in spite of their high aspect ratio in the pile. 

The problem came in when the explicit dynamic runs were developed. The main 

weakness of six-node triangles from a dynamic standpoint is their mass lumping. 

The most common type of mass lumping produces zero masses at the vertices (Fried 

and Malkus (1975)), and other mass lumping schemes produced unsatisfactory 

results.

Faced with this problem, it was a straightforward matter to convert the 

model to the nine-node quadrilateral; the nodes were the same, two right triangles 

became one quadrilateral, and the number of Gauss points for full integration 

increases to nine per element. For this element the weighting functions are shown 

in Figure 13.
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Figure 13	 Weighting Functions for Nine-Node Quadrilaterals

Probably the greatest advantage of using this element is that it mass lumps 

consistently, independent of method, as shown in Zienkiewicz and Taylor (2000a). 

When mass lumping is required, the global consistent mass matrix is formed and 

then multiplied by the unit vector to yield a lumped “vector” which, when the values 

are placed on the diagonal, becomes a lumped mass matrix that is readily inverted.

With the static analysis the nine-node quadrilateral was very successful, as 

was the case with the elastic dynamic pile-only runs. When plasticity was included, 

the results became unsatisfactory. As Cook, Malkus and Plesha (1989) note, “(i)n 

wave propagation problems, discontinuities of strain propagate throughout the 

model. Lower-order displacement elements are more adept at modeling these 

discontinuities than are higher-order elements, which tend to produce more 

numerical noise.” This certainly was the experience with the model developed. 

Higher order elements also tend to propagate these errors more rapidly to the 

boundary, which in turn makes that formulation more critical to the success of the 

model.
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This suggested the four-node quadrilateral with four quadrature points. 

Isenberg (1972) also used these elements. The weighting function is shown in 

Figure 14.

Figure 14	 Weighting Function for Four-Node Quadrilaterals

A comparison of the locations and number of Gauss integration points–along 

with the natural coordinates used–is shown in Figure 15.
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Figure 15	 Natural Coordinates and Quadrature Points for Four-and Nine-Node 
Quadrilaterals

The four-node quadrilateral is also a Lagrangian element, and mass lumping 

was done the same way as it was for the nine-node quadrilaterals.

For cases without interfaces, the problem of spurious numerical results was 

significantly reduced with a four-node quadrilateral element. Using this element 

combines the advantage of a simpler element (lower bandwidth, fewer nodes, 

fewer quadrature points, etc.) while at the same time allowing for full integration. 

The only drawback to the element is that it is slightly stiffer, but this can be 

compensated for by using more elements.
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Grid Generation

Compared with many finite element applications, grid generation was 

relatively straightforward, as the geometry was regular. However, because of 

the variations in material and configuration, there were a few challenges to be 

overcome.

In order to generate the rectangular grid convenient to the use of 

quadrilaterals, a region system was devised. Each region was defined by its 

geometry, the number of rows and columns of elements, the other regions it 

interfaced with, its material(s), the part of the system it is in (hammer, pile or 

soil) and other important parameters. To generate the grid within a region, the 

nodes and elements were defined using a natural coordinate system; then, a linear 

transformation was applied to map the natural coordinates into the physical region. 

A major advantage of this is that the regions, although quadrilateral, do not have to 

be orthogonal; this proves very useful when piles of non-uniform diameter (tapered 

piles) are modeled.

The “obvious” way to divide the regions is with regular rows and columns of 

nodes and elements. However, from Smith and Chow (1982) onward, the normal 

practice with rectangular grids has been to more closely space them as they 

approach the pile surface, both along the shaft and at the pile toe. To accomplish 

this the model allowed the grid to be “squeezed” in the following way:

The grid was defined with zero at one side of the region and unity at the other. 1.	

This was done in both directions.

This “natural” coordinate system was then taken to a specific power in the 2.	

direction the elements were to be squeezed. The program allowed elements to be 

squeezed at the left and top sides of the regions.
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The squeezed coordinates were then mapped to the actual geometry of the 3. 

region. The squeezing was also transferred to the adjacent elements to maintain 

a regular grid system.

Two examples of this are shown in Figure 16, concentrating on the region 

around the pile toe. On the left is a second order power squeeze to both the pile 

shaft and toe; on the right is a third order power squeeze to the shaft and toe. The 

pile is in red on the left (center axis) side of the grid.

Figure 16 Grid Generation for Finite Element Model
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Using the geometry of the nodes and elements, STADYN generated an 

IGES file, which colored the element boundaries according to the portion of the 

system and the soil layer for the element. The IGES file was then imported into the 

DesignCad program and the drawing was output in Adobe Acrobat, which made 

it possible to manipulate it graphically. Although this mating of finite element 

analysis with computer aided drawing was primitive, it was effective in that any 

irregularities in the geometry could be seen and dimensionally checked.

Once the grid was generated, a reordering of the degrees of freedom was 

performed, using a routine based on Cuthill and McKee (1969). This resulted 

in more than halving the required matrix size, even with the skyline Cholesky 

arrangement of the stiffness matrix. Because of this it is employed for both routines 

that require the use of a stiffness matrix (static, implicit dynamic) and those which 

do not (explicit dynamic.)

Boundary Conditions and Model Size

The need to model a “semi-infinite” soil mass is a necessity with many 

geotechnical problems. One approach has been to use special boundary conditions 

that absorb the waves emanating from the central pile, as was used in To (1985) 

and Mabsout and Tassoulas (1994). This allows for a reduced model size, since the 

reflections of the waves are undesirable.

Another approach (Nath (1990)) is to construct a model large enough so that 

the effects of pile loading, static or dynamic, do not reach the boundaries, or interact 

with them in a meaningful way. Such a model must be by necessity large. However, 

the continuous growth of available computer power makes a larger model more 

viable and simplifies the construction of the global stiffness matrix. The situation is 

ameliorated by the fact that, as the plasticity is concentrated around the pile, most 
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of the model remains elastic, and thus the time to analyze it is significantly reduced. 

This approach, which is based on the time taken for the stress wave to reach the 

boundary of the soil, was the one adopted for this study.

Related to the boundary condition selection was that of model size. The main 

objective in setting the model size for a problem such as this and with the boundary 

conditions used here was so that the stress waves in the soil would not reach the 

boundary during the time of the analysis. In the early stages of model development, 

the model was sized based upon the acoustic speed of water (for saturated soils). 

However, for soils themselves, the distance required to keep the stress wave in the 

soils from reaching the boundary is considerably less than this. On the other hand, 

when a significant reduction in model size was attempted, far field effects began to 

show and significant variations in the results were observed.

To bring this problem to resolution, a survey of the previous 2D efforts was 

done. The major outlier in this is Serdaroglu (2010), but this is because his objective 

was to model ground vibrations, which require a considerably larger model.

Based on this (and admittedly some of the proportions were measured or 

extrapolated) the decision was made to set the soil model up so that the right 

boundary was one pile length away from the pile and the bottom of the model one 

pile length away from the toe. Unless otherwise noted, this is the proportion that 

was adopted for grid generation of the model.

Interface Elements for Soil-Pile Interaction

If soil-pile interaction is the “stickiest wicket” of the whole problem of 

the wave equation for piles (and static loading, for that matter) the issue of 

interface elements is right at the center of the discussion. It is a good example of a 

phenomenon that is all too common with geotechnical engineering: no matter which 
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approach was chosen, the difficulties associated with that approach created as many 

problems as the approach solved.

Interaction between a geotechnical structure (pile, retaining wall, footing, 

etc.) and its surrounding soil is of one or two natures: compression or shear, as 

any such interface is intextensible. Compression is fairly easy to handle; the 

elements simply come up against each other and interact. One major issue here is 

the avoidance of tension, which can be handled either by the basic elasto-plastic 

soil model or by an interface element. With shear the problem is a little different, 

because once the shear strength of the soil-structure bond is exceeded there is 

relative movement of soil and structure, which violates a basic nodal assumption 

of a Galerkin finite element scheme such as the one in use here and in most 

geotechnical models.

Driven piles, both statically and dynamically, have both kinds of interface 

with the soils. The whole object of pile driving is to effect relative movement of the 

pile with the soil; thus, the breaking of the pile-soil bond is inevitable. To a lesser 

extent this is true in static testing, even that which is not done to plunging failure, 

as the partial mobilization of the resistance implies that the plastic limit of that 

portion has been exceeded and that relative movement has taken place.

Potts and Zdravkovic (1999) note that there are four solutions to this 

problem:

Use of thin continuum elements with the same types of constitutive laws as the 1.	

soil.

Linkage elements, where opposite nodes are connected by discrete springs.2.	
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Special interface elements of either zero or very small thickness with special 3.	

constitutive properties, such as described in To (1985). He additionally uses 

interface elements to model the inextensibilities of the hammer system as well.

Hybrid elements where soil and structure are linked via constraint equations.4.	

They spend some time discussing their own interface element. Interface 

elements also play a large role in Serdaroglu (2010), who did an extensive 

comparison of the static capacity of the pile from the finite element model with 

static capacity formulae. His study shows that the ultimate capacity of the pile (in 

his case, plunging failure) that is returned by the finite element model is strongly 

influenced (governed may not be too strong of a word) by the coefficient of friction 

he has chosen for the interface elements, relative both to different coefficients and 

models without interface elements. He concludes that “...modeling of the soil pile 

interface is critical to accurately compute the shaft capacity of a pile.”

Or is it? Having developed an interface element model, Potts and Zdravkovic 

(2001) analyze this model and conclude that “...a better alternative is probably not 

to use interface elements at all?” So what is to be done?

Part of the problem is that not all interface elements are the same. Some 

mostly model Coulombic friction, others include properties such as elastic and bulk 

moduli of soils. So, there is not always an exact comparison taking place.

Beyond that, Potts and Zdravkovic (2001) and Serdaroglu (2010) both show 

that the core properties of the interface element to a large extent drive the static 

shaft resistance of the pile. In the forward method, whatever properties are chosen, 

with or without interface elements or elements along the pile surface with different 

properties than the main body of the soil will determine the SRD. In the inverse 

method, however, any limiting assumptions made about the surface properties of 
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the soil will determine the SRD a priori, which defeats the entire purpose of the 

inverse method.

A further complicating factor, as pointed out by Potts and Zdravkovic (2001), 

is the issue of dilitancy. For the case where φ = ψ, the soil will dilate indefinitely 

without reaching a critical state condition. In response to this they varied the 

dilitancy of interface elements and the parent soil itself between ψ = 0 and ψ = φ. 

Although the interface elements still dominate the shaft capacity, when ψ = 0 their 

results are much improved, and that improvement continues when ψ = 0 for the 

parent soil as well.

Given these considerations, interface elements that are different in properties 

from the surrounding soils were not used. Using very thin elements at the soil 

interface, however, were used, and the effect of dilitancy was considered, and these 

two parameters were tested in the model.

Effective Stress Computations and Pore Water Pressures

Another issue of importance with geotechnical finite element codes is 

that of the effective stresses of the soils. This aspect of soil mechanics separates 

geotechnical finite element analysis from other solid mechanics almost as much as 

either the non-associative plasticity or replicating the three-phase nature of the 

medium. It became one of the major challenges of the development of this model.

If one constructs a finite element mesh using soils with typical properties of 

modulus of elasticity, Poisson’s Ratio and density, and applies gravity loading to 

the mesh, the first thing that will happen is that the mesh will “collapse,” possibly 

experiencing strains up to 5%. The reason for this is that actual soils, with a 

stress history, have already been “prestressed” by gravity and compacted by the 

deposition process. This is the case both for normally and pre-consolidated soils; 
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the latter simply have a higher internal stress due to previous external pressure. 

This magnitude of deflection will create serious difficulties in the analysis of pile 

movement, be it static or dynamic. If gravity is not applied, with cohesionless soils 

premature failure will take place, as all of the strength of the soil is derived from 

overburden pressures on the soil skeleton.

Although routines to deal with the problem are included in many 

geotechnical codes (such as CRISP; see Woods and Rahim (2008)) complete solutions 

to the problem are rare in the literature. The solution used in this routine is based 

on Naylor et. al. (1981) with some important modifications.

In this model the soils were prestressed in this fashion:

The location of every Gauss point in the mesh was determined. For this purpose 1.	

only the vertical axis is significant.

The soils were layered as desired. Because most piling is driven into a layered 2.	

stratum, the properties were varied with depth. Each stratum could have its own 

density, modulus of elasticity, Poisson's Ratio, friction angle and cohesion. For 

this study soil layers were horizontally uniform.

The effective stress for each Gauss point was determined. This was done in the 3.	

same way as one would do it in elementary soil mechanics (see Hannigan et. al. 

(2006)) considering the overburden above the point in question and the fact that 

the Gauss point was at an interior point in the layer.

The resulting vertical stresses were entered as the initial stresses for the soil 4.	

Gauss points only. The stresses and strains were kept track of separately from 

the primary variables on a Gauss point basis.

The two horizontal (radial and circumferential for our axisymmetric model) 5.	

stresses were computed and entered into the Gauss point stress data.
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Local force vectors were computed based on the effective stresses, using 6.	

Equation 58. These were then assembled into a global force vector to 

“counteract” the effect of the stresses. This became the initial internal force 

vector for the system.

Now that the stresses were “embedded” in the system, it was necessary to keep 7.	

this effective stress global force vector active and constant, adding it to the 

internal force vector every step.

Determining the vertical effective stresses sz is a fairly straightforward 

process, although the “bookwork” of the layers requires some care. The resulting 

horizontal stresses within the soil mass are another matter altogether. As Verruijt 

and van Bars (2007) point out, these horizontal stresses are very uncertain, and 

without either extensive testing, a good understanding of the stress history of the 

soil, or both they can be computed in a number of ways.

The first thing that can be noted is that, before disturbance, the three 

stresses in the soil can be considered to be the principal stresses with no shear in 

the soil. This can be expressed as

The two horizontal stresses can be assumed equal, thus

Using the relationships of Equations 59 and 60, the relationship between the 

horizontal and vertical stresses can be defined as
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The central problem is thus to define Ko for the effective stresses. Given 

the constitutive modeling of the soil during static loading or impact, Naylor et. al. 

(1981) recommended to use the theory of elasticity, in which case

Soil, however, is not a truly elastic material, and in any case its formation 

is generally complex. A more realistic (if theoretically weaker) expression for this 

relationship for at-rest earth pressures is Jaky’s Equation for normally consolidated 

soils, or

For this model, this is what was adopted for the horizontal earth pressures 

that result from effective stresses. It is used in the Plaxis finite element code 

(Townsend et. al. (2001)). It was also possible to use the pre-consolidated form of 

this equation for soils that require it, although this was not included in this model. 

Using Equation 63 rather than Equation 62 allows Ko =1 to apply to cohesive soils 

in general and soft cohesive soils in particular. Although this could be accomplished 

by setting ν = 1/2 in Equation (62), doing so created serious difficulties with De (see 

Equation 41.)

Complicating matters further was the inclusion of hydrostatic pore water 

pressure. Piles are more often than not driven into saturated soils. The relationship 

between total stresses and effective stresses is given by the equation
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With the vertical stresses, this was straightforward. The hydrostatic stresses 

are computed by the equation

and then applied to Equation 64. For the horizontal stresses, following 

Verruijt and van Bars (2007),

STADYN limits its modeling of pore water pressures to hydrostatic conditions 

without capillary rise. This is reasonably satisfactory for most cohesionless soils; 

however, it does not take into consideration excess pore water pressures that are 

generated during driving into low permeability, cohesive soils. The result of this is 

pile set-up, where the SRD up until the end of driving is lower than the ultimate 

capacity of the pile, sometimes by a factor of 2-5. A discussion of pile set-up can 

be found in Hannigan et. al. (2006). Including set-up effects in a pile dynamics 

algorithm is a highly desirable goal; in principle it could eliminate the need for pile 

restrikes. However, there are three main reasons why it was not included in this 

study.

The first is that, although the rise in pore water pressures is the most 

important factor in pile set-up, it is not the only one. Clay soils are also subject to 

thixotropy which can influence their behavior under impact and vibratory loads 

(Gumenskii and Komarov (1961)).

The second is that the rise in pore water is caused by the “low” permeability 

in the soils. Schümann and Grabe (2011), for example, model this in finite elements, 

and some of the previous models with piles did so. However–and this particularly 

applies to the inverse method–the wide variations in permeability, and the 
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difficulties in accurately quantifying it, add another variable which could drive the 

solution to unrealistic results.

The third is that the rise in pore water pressures is also influenced by the 

number, frequency and intensity of blows that precede the blow under study. It 

would require multiple blows to properly analyze which certainly can be done but 

which increase the overall computational cost of the analysis.

These reasons not only led to the exclusion of elevated pore water pressures 

in this model; they also insure that restrikes will continue to be performed in pile 

dynamics for the foreseeable future.

Engineering Properties of Soils

General Considerations

As is evident from Figure 3, most pile dynamic modeling consists of defining 

properties such as soil spring constant, quake, and damping. Although some 1D 

solutions include common soil properties (Corté and Lepert (1986); Randolph and 

Simons (1986)), with a 2D finite element implementation, the direct consideration of 

these properties is unavoidable.

Given the foregoing discussion on elasto-plastic theory and effective stress 

implementation, the following soil properties are essential to know for each soil 

element in the model:

Modulus of Elasticity •	 E

Poisson’s Ratio •	 ν

Dry Density of Soil •	 ρ

Cohesion •	 c
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Yield Strength of Soil •	 syield. This is in reality

Internal Friction Angle of Soil •	 φ

Dilitancy Angle of Soil •	 ψ. This was discussed earlier; it is either set to zero or is 

a function of φ.

Acoustic Speed of Soil or Other Material •	 ca, which is determined by

Specific Gravity of the soil particles, •	 Gs.

For the purposes of this study, there were six (6) independent soil property 

variables to consider. In the forward method, each of these properties was assigned 

to each layer, taking into consideration whether the layer is under the water table 

(saturated) or not. These can be obtained either directly from laboratory tests or 

from field test correlations (Townsend et. al. (2001)).

A more complicated issue was the inverse method. Here all six independent 

properties had to be determined for each layer from the dynamic data. (One 

assumption made in this study is that the water table level is known, generally 

the case with soil borings.) Since virtually every soil into which piles are driven is 

layered and the differences in soil properties can vary widely from one layer to the 

next, ultimately the number of unknowns that must be solved for was six times the 

number of layers. Clearly the number of variables would become very large very 

quickly.

Ideally the layering that should be used would be the horizontal divisions in 

the pile and soil shaft layers, which only made the proliferation of variables worse. 
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One way of addressing this issue is to use the soil’s known stratigraphy to mark out 

layers which actually correspond to geological reality, and in doing so reduce the 

layer numbers. STADYN allowed for this expedient.

The layer issue addressed, the next evident question was this: since some 

of the soil properties were shown to be dependent on others in some way, was it 

possible to show other dependencies and thus reduce the number of independent 

variables? The answer was a qualified “yes” and a method of doing so follows.

The “xi-eta” Method of Soil Property Aggregation

The wide variety of soil properties, coupled with varying geological histories 

and the presence or absence of water, make geological rheology one of the major 

challenges of civil engineering. Having said that, there are many commonalities 

in the properties of soil that allow the use of simplifications to estimate soil 

properties. The best known of these are the “typical” density (cohesionless soils) and 

consistency (cohesive soils) that are widely disseminated in the literature and used 

frequently in practice. These are especially important with deep foundations, as 

the extraction of undisturbed samples necessary for tests such as consolidation or 

triaxial tests becomes more problematic with increasing depth.

The method used in this study–which is entitled the “xi-eta” method, for 

reasons which will become evident–is not meant to be comprehensive or applicable 

to all soils. It is designed to be applied to a wide variety of soils that are found in 

the earth. It represents a first attempt at reducing the size and complexity of the 

problem, especially the inverse problem, although the forward problem can benefit 

from this also, given that “typical” values are frequently used in actual practice.

In the broadest terms soil properties can be said to vary in two important 

ways:
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In terms of degree of cohesion, which were designated by the dimensionless •	

variable ξ. Deep foundation practice tends to classify soils as one or the other, 

but the reality is that there is a continuum from very cohesionless soils (gravels, 

clean sands) to very cohesive soils (clays). An inspection of a gradation chart of a 

well-graded silty sand or sandy silt illustrates this.

In terms of density or consistency, which were designated by the dimensionless •	

variable η. For cohesionless soils there are soils that range from very loose to 

dense, a range that affects both the density of the soil and the internal friction 

angle. For cohesive soils there are soils which range from very soft to hard, 

a range that affects both the density of the soil and the cohesion/unconfi ned 

compression strength/yield strength.

To graphically understand these concepts, consider the four-node 

quadrilateral “element” in natural coordinates as shown in Figure 17.

Figure 17 Four-Node Quadrilateral Adapted to Soil Properties

As is the case with the four-node quadrilateral elements that were used in 

this study, the natural coordinates of this system were defi ned on the ξ and η axes. 
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Given that the basic dimensionless values vary from -1 to 1, these variables relate 

to actual soil properties in this way:

A soil with a •	 ξ = -1 was completely cohesionless, thus c =0; one with ξ =1 was 

completely cohesive with φ =0.

A soil with •	 η = -1 was very loose or very soft; a soil with η. =1 was very dense or 

hard.

The values at the corners with entries as shown were then defined in a 

simple 2 × 2 matrix. Each of the five soil parameters could thus be defined for 

general purposes as a function of two variables, or f (ξ, η). Using the standard shape 

functions for this element and the corner values as shown, the value of any of the 

variables could be expressed as

Equation 69 shows that, if the corner values were known for each property 

and a value of ξ and η were given, the actual properties for the soil could be 

determined. Conversely, if the soil properties were known values of ξ and η could 

be computed, if the actual soil properties did not stray from the “standard” values. 

(One way of addressing this issue would be to define corner properties based on 

local experience.)

In this way the number of independent variables was reduced from six (6) 

to two (2) times the number of layers, which is both a considerable reduction and 

a potential benefit to the inverse problem. It is worth noting that pile dynamics 
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aggregates the soil properties into the classic quake/resistance/damping framework; 

this simplification is not as novel in concept as it may appear.

One thing that Figure 17 “implies” is that values of ξ and η cannot exist 

outside of the quadrilateral. Obviously Equation (69) returns values when |ξ| > 1 

or |η| > 1. Whether these values have any validity depends upon the soil property 

under considerations.

Generally speaking, soil properties that are solely a function of ξ must stay 

within bounds, i.e., |ξ|= 1.

The following sections deal with the way in which the various properties are 

mapped into the “xi-eta” framework, which in turn depends upon the nature of the 

properties themselves.

Modulus of Elasticity

The use of an elasto-plastic model is a simplification; the ramifications of that 

simplification need to be well understood. Of all of the soil properties relevant to 

this study, the soil modulus of elasticity poses some of the “knottiest” problems in 

geotechnical finite element simulation.

To begin the discussion, consider a “less radical” simplification of the soil 

model, namely the hyperbolic soil model as shown in Figure 8. Taking the derivative 

of the deviator stress-strain curve yields

This relationship is neither constant nor linear. It shows that, for ε1 =0, E(ε1) 

= 1/ah, and the modulus of elasticity decreases until, as ε1 → . ∞, E(ε1) → 0. Therefore 

the maximum elastic modulus of a soil is at zero stress and strain and decreases 
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until complete plastic yield is experienced. This general trend of the elastic modulus 

is demonstrated experimentally in studies such as Builes et.al. (2008), and a 

complete discussion of this issue relative to shear moduli and testing techniques 

can be found in Massarsch (1983). Equation 70 only considers the hyperbolic 

simplification; other factors such as the stress history of the soil should be taken 

into consideration.

Since the slope of the curve decreases with increasing strain, the modulus of 

elasticity is likewise continuously changing with strain. Small-strain applications, 

such as are found in geophysical methods, “experience” a higher modulus of 

elasticity than large-strain applications such as pile dynamics. Because of Equation 

68, this affects the acoustic speed of the soil. This carries over into the static 

modeling of the pile-soil system because, for the whole analogy between dynamic 

stresses and strains in piles and soils and static strains in piles and soils to be 

meaningful, not only do the static and dynamic moduli of elasticity need to be 

the same, the stress and strain level in both must also essentially be the same. 

This is why the mobilization degree of shaft and toe resistance is crucial to proper 

dynamic testing. Without that correspondence the whole validity of pile dynamics 

as a method of estimating static capacity begins to come unraveled. Conversely, the 

similarity of those two stress-strain levels is a large reason why pile dynamics, with 

the large dynamic stresses it causes, is viable at all.

Having said that, as discussed earlier in a qualitative way, the object of 

elasto-plastic modeling is to superimpose a model such as shown in Figure 9 on a 

soil that behaves more as shown in Figure 8. That process affects the quantification 

of the modulus of elasticity.

Another approach is to include a hardening cap (Townsend et. al. (2001)). 

This tends to force the model to “act more hyperbolically” than without the cap. 
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Under these conditions it makes sense to use a tangent modulus (the Eti shown 

in Figure 8). With a purely elasto-plastic approach, a “secant modulus,” where 

the elastic stress-strain line is a chord across the actual soil behavior is more 

appropriate.

These considerations indicate that the standard elastic moduli used with this 

program should be on the “soft” side. Since it is sometimes difficult to determine 

how standard elastic moduli were determined, establishing either standard values 

for the “xi-eta” approach or values for a specific case can be challenging.

The values for modulus of elasticity were subject to wide research, including 

sources such as Samtani and Nowatski (2006), Winterkorn and Fang (1975) and 

some of the previous 2D studies. For cohesionless soils probably the best values 

were found in Reid et.al. (2004); although the application was different, the method 

used in testing had a strain rate that was closer to that experienced in driven piles 

than is normal with direct shear testing.

All of this considered, the elastic values for the corners are in Equation 71 

and the plot is in Figure 18.
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Figure 18	 Modulus of Elasticity as a Function of ξ and η

Values of E could be computed if either |ξ| > 1 or |η| > 1 from Equation 69; 

however, the program had a lower bound of E so that it is not zero, negative or very 

small positive. Although it is tempting with the complexities of the elastic modulus 

to dismiss the whole elastic concept with soils, as Powrie (2014) observes, “...elastic 

calculations, combined with judiciously selected elastic parameters, can often lead 

to reasonable estimates of the soil settlements associated with foundations and 

other near surface loads.”
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Poisson’s Ratio

This was independent of η. For this study ν (-1, η)= 1 and  ν (1, η)= 9/20 . 

The lower bound was primarily per Reid et.al. (2004). The upper bound was to 

prevent problems with Equation 41; a value in this range is justified by Equation 

63. The program was set up so that the minimum value is enforced if ξ < 1 and the 

maximum value enforced if ξ > 1. There are no restrictions for any value of η. A plot 

of this is shown in Figure 19.

Figure 19	 Poisson’s Ratio as a Function of ξ and η
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Internal Friction Angle

While the friction angle f is always zero for purely cohesionless soils with ξ =1 

(thus φ(1, η)=0,) it obviously varies with the density and thus η. The survey resulted 

in setting φ(-1, -1) =27.3º and φ(-1, 1) =42º. The results are plotted in Figure 20. In 

any case for all values of ξ and η, φ > 0.

Figure 20	 Friction Angle as a Function of ξ and η.
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Cohesion

This was almost the mirror image of the friction angle, with c (-1, η)=0 for 

purely cohesionless soils. On the opposite side of the quadrilateral, Das (1985) 

states that the cohesion and modulus of elasticity relate as follows:

He gives a variety of values for βr, but in general 500 < βr < 1500. Winterkorn 

and Fang (1975) set βr at 250 <  βr < 500. For this study βr = 375, which is more of 

a result of the survey than a pre-posed parameter. Based on this, c (1, -1) = 20 kPa 

and c (1, 1) = 200 kPa. The results are plotted in Figure 21.

Figure 21	 Cohesion as a Function of ξ and η
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Cohesion was never allowed to fall below zero for any ξ or η.

Dry Density

This varied with both ξ and η. The values at the corners are shown in 

Equation 73, and the plot is shown in Figure 22.

Figure 22	 Dry Density as a Function of ξ and η
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For layers under the water table, the pores were basically “filled up with 

water” and the saturated density becomes

for all values of ξ and η. The effects of phenomena such as capillary action 

were not included in this study.

Specific Gravity of Solids

As was the case with Poisson’s Ratio, the specific gravity of soils mostly 

varies with ξ, and for this model it is assumed to be independent of η. Using values 

from Reid et.al. (2004), Gs (-1, η)=2.65 and Gs (1, η)=2.78. Values were not permitted 

to go outside of this range. This quantity was essential for the proper computation 

of Equation 74, although the variation is minimal. A graphical representation of 

this is shown in Figure 23.
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Figure 23	 Specific Gravity as a Function of ξ and η.

Static Analysis

Analytical Static Capacity Estimates

Before discussing STADYN’s methodology for estimating static capacity in 

the context of the load-deflection characteristics of the pile, some mention should be 

made of current “closed form” methodologies in the estimation of pile capacity.

The development of static methods to estimate the ultimate or unfactored 

bearing capacity of piles and other deep foundations has occupied the geotechnical 

literature for a long time. There has been a proliferation of formulae and methods to 
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estimate the ultimate static capacity of piles (Finno (1989)), with a variety of results 

for different types of piles in different applications. It is tempting to use these as an 

analytical comparison with finite element results, as Serdaroglu (2010) does. As will 

be seen below, the concepts inherent in the finite element analysis of pile response 

to axial load–to say nothing of other t-z methods–and those of static methods are 

widely different, and divergent results are to be expected.

Because one-dimensional methods such as the classic wave equation for piles 

and CAPWAP use the results of static methods for their analysis, such methods 

will appear below. The use of Meyerhof’s Method is simply to establish a far upper 

bound for loading purposes, not to give an estimate of static capacity.

Stepping Scheme for Static Analysis

Returning to STADYN’s own model, it was necessary to formulate a method 

of performing both static and dynamic analysis. Since this was a problem of pile 

dynamics, the dynamic analysis is self-evident. Static analysis enabled the routine 

to estimate the static capacity of the pile, as was previously discussed.

To perform a truly static analysis of the pile, as is the case with actual static 

load testing it is necessary to apply a stepwise increasing force at the pile head. 

With physical testing, the load is applied in such a way that time-dependent effects 

are ideally not present in the load-displacement curve of the pile head. In the model 

the dynamic component (principally distributed mass) is not modeled; only the 

elasto-plastic stiffness of the system was modeled.

For each load step Newton’s Method was employed to model the system, 

solving the equation
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The procedure was as follows:

The right hand side of Equation 75 was nulled.1.	

The external forces on the system were computed, in this case the downward 2.	

forces at the pile head. “Forces” is accurate because the pressure of the 

load testing “apparatus” is assumed to be uniform; it is then distributed 

proportionally to the pile head nodes. This was substituted into Equation 75 as 

the vector f.

The internal force vector for all of the nodes was computed, considering the 3.	

effects of plasticity. This was substituted into Equation 75 as the vector p.

The compensating loads for effective stress were substituted into Equation 75 as 4.	

the vector s. The Gauss point stresses induced by effective stresses were added 

at the beginning of the analysis.

Equation 75 was solved for 5.	 Δd by back substitution. The stiffness matrix K 

was reduced after its initial formulation and not changed during the loading 

sequence. Strictly speaking, in Newton’s Method the stiffness matrix must 

be altered each time a Newton step is run. This occasions the reassembly 

and reduction of K each step, which is both a costly operation and, with non-

linear and non-associative materials, results in a non-symmetric K. There are 

a number of ways to deal with this, including quasi-Newton methods (Healy, 

Pecknold and Dodds (1992)), by producing a symmetric stiffness matrix which 

is “close” to the non-symmetric stiffness matrix for the purpose of Newton 

convergence, or by not altering the stiffness matrix at all from its initial, elastic 

formation. It is the last option that is used in this program; the downside of 

this is a relatively large number of Newton steps, especially for loads beyond 

Davisson’s criterion. This two-step direct solution used Cholesky factorization. 

Potts and Zdravkovic (1999) state that iterative methods such as conjugate 
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gradient are less efficient than banded solvers (Sewell (1985)) due to non-

linearity considerations. In fact, a reduction/back substitution method is their 

preferred method for problems such as this. Given the number of nodes and 

elements in the system, this is reasonable.

The resulting 6.	 Δd was added to the displacement vector d.

The Euclidean norm of 7.	 Δd was compared to the tolerance. If the result was 

less than the tolerance, Newton stepping was stopped, the load increased, and 

the process begun again. If not, the internal force vector was updated with the 

current displacements d and another Newton step was performed with the same 

pile head load.

In order to anticipate a maximum possible load given the soil conditions, an 

adaptation of Meyerhof’s SPT method (Hannigan et.al. (1997)) was used to develop 

an upper bound for load stepping. In theory, the number of steps was irrelevant. 

In practice, step size had a significant effect on the results of the model, as will be 

seen.

Static Load Testing Considerations

Once a static model is built and run, it was necessary to interpret the results.

Traditionally geotechnical analysis and design has been divided into two 

parts: design for strength and design for service. The division is well embedded in 

practice, from the pedagogy in basic geotechnical courses to the implementation 

of LRFD (Federal Highway Administration (2001)). A good example of this is 

the design of shallow foundations, which is commonly divided into two aspects: 

bearing capacity (strength) for shear failure on a surface, and settlement (service) 

by excessive movement of the structure under load, be that movement total (all of 

the structure at once) or differential (parts of the structure more than others.) If 
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a purely elasto-plastic soil response is considered, the settlement movement takes 

place in the elastic portion of the soil response and the bearing capacity failure 

takes place during the plastic portion of the soil response. Analysis to strength 

failure is not uncommon in geotechnical finite element analysis (Griffiths and Lane 

(1999)).

This approach suffers from several shortcomings:

Much of the settlement in soils is not, strictly speaking, due to elastic 1.	

deflection, although the theory of elasticity is often applied to describe the 

phenomenon (Verruijt and van Bars (2007)). The most obvious example of this is 

consolidation, which itself is divided into primary and secondary consolidation. 

With driven piles and other deep foundations, the situation is further blurred 2.	

by the interaction between the soil, the shaft and the toe. In general, the shaft 

interface is a frictional one, and so the failure interface is that of the pile surface 

itself, although deflections in the soils can produce effects such as downdrag. The 

whole concept of bearing capacity failure at the toe, enshrined in many static 

formulas, has been justifiably criticized (Fellenius (2011)). The pile toes are so 

deep and the effects of overburden are so pronounced that development of a 

clear-cut failure surface is difficult if not impossible.

Deep foundations seldom experience plunging failure loads in service, except 3.	

in the case of gross misunderstanding of the stratigraphy by the designer. This 

is intentional, but it shifts the primary question in design from “What load will 

produce plunging failure?” to “How much deflection is produced by a certain 

load?” and “Is this deflection excessive for the structure the deep foundation 

supports?” With this paradigm shift, the whole concept of a single “ultimate 

load” for a deep foundation loses much of its relevance, a fact that is not given 

full consideration by many current design concepts.
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Complicating the issue further with deep foundations is the nature of both 

load testing and the interpretation of the results. There is more than one loading 

sequence allowed for statically testing a pile, even within the ASTM D1143 

standard (Kyfor et. al. (1992)). Although ideally any proper static load testing 

sequence should produce the same results, in reality the nature of the stratigraphy, 

the presence or absence of ground water, and other factors will make variations 

inevitable. Once the pile head load-deflection curve is obtained, there are many 

ways to determine the “ultimate” capacity of the pile. The most common method 

used in the United States is Davisson’s Method, which is outlined in Figure 24.
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Figure 24	 Davisson’s Method of Interpreting Static Load Tests (after Naval 
Facilities Engineering Command (1986))

Davisson’s Method, being an “offset yield” method, does not require that the 

pile be tested to plunging failure. It is also relatively straightforward to interpret, 

although if done graphically it can be very sensitive to plotting errors.
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Other methods do in fact either require some degree of plunging failure 

or attempt to anticipate it in their methodology. Given the different approaches 

to static load interpretation, which are represented in different codes, it makes 

sense to incorporate more than one interpretation criterion in the static routine. 

Unfortunately many methods were developed for hand processing of load-deflection 

curves, and their implementation with numerically generated results is not always 

clear.

That being the case, in this study five different methods are used to interpret 

static load tests. Information on these can be found in Kyfor et. al. (1992) and 

Fellenius (2014). They are as follows:

Davisson's Method, described in Figure 24. For all methods the load-deflection 1.	

curve is considered as a piecewise linear interpolation of the data points; 

Davisson's ultimate load is determined where the two lines (Davisson's Line and 

the piecewise interpolated line) intersect.

Brinch-Hansen's 80% Method, where the ultimate load is where 80% of that 2.	

load takes place at 25% of the ultimate deflection. Although methods have been 

developed to mathematically approximate the load-deflection curve (and thus 

make the determination more accurate,) in this case actual data points were 

used to determine the load at which the criterion was met.

Brinch-Hansen's 90% Method, where the ultimate load is where 90% of that load 3.	

takes place at 50% of the ultimate deflection. Analysis procedures are similar to 

the 80% Method.

Maximum Curvature Method. As piecewise linear interpolation is used, the 4.	

point at which the slopes of the two lines connected to it have the greatest 

difference is the point of maximum curvature.
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Slope-Tangent Method. In this method the intersection of two lines is considered. 5.	

One is the first piecewise line whose slope exceeds 142.7 × 10-9 m/N. The other 

is the initial slope of the load-deflection curve. Since this can be difficult to 

determine accurately, Davisson’s Line was moved upwards so that it intersected 

the origin.

Given the variety methods used, wide variations in the results are reasonable 

to expect and in fact take place (Kyfor et. al. (1992)). For methods other than 

Davisson’s, linear interpolation to determine slopes and ultimate points was 

avoided. This forced more data points to be taken than the plasticity methodology 

actually required, but illustrates an advantage of computer generated load-

deflection results over field data: the former has greater flexibility in determining 

the load step. The end result is that the static axial capacity (ultimate, allowable or 

factored) from static load tests is not univocal.

Dynamic Analysis

Now that the methodology–and the shortcomings–of static methods have 

been discussed, the dynamic implementation of the model can be described.

Explicit and Implicit Schemes

The scheme presented in Smith (1955) is an “explicit” scheme. So what does 

this mean? It is a little easier to explain this in terms of finite difference methods 

with uniform spatial and temporal differences. As an example of this, the “one-way” 

(semi-infinite) undamped wave equation, as shown by Warrington (1997), will be 

used. It is given by the expression
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Use of this equation also allows the development of numerical schemes 

without the complications of either the second derivatives or dampening/elastic 

terms. LeVeque (1992) refers to this as the time-dependent Cauchy problem, and 

the following treatment of the solution is based on his presentation.

Because this is a dynamic (time-varying) phenomenon, time as well as 

distance must be discretized. This is done through what are referred to as “time-

marching” schemes of one kind or another. For one-dimensional analyses of 

pile dynamics, the whole process is relatively simple compared to two-or three-

dimensional problems in such fields as fluid dynamics or solid mechanics. The 

time step chosen depends upon both the nature of the system and the numerical 

integration scheme.

When the Explicit or Backward Euler scheme is applied to Equation 76, the 

result is

The time discretization can be seen on the left-hand side, and the spatial 

discretization can be seen on the right. Schemes such as this can be (and usually 

are) derived for ordinary or partial differential equations using Taylor series 

expansions, which would include consideration of higher order terms.

In this case n, n +1 are not powers but represent the point in time where the 

system is “marching,” n being the current time step and n +1 being the next one. 

The subscript i is the data point; the point i +1 is the data point “in front of” the one 

under consideration and i - 1 is the one behind it.

Knowing the conditions of the current point in time n, Equation 77 can be 

explicitly solved for the value of u (x, t) for the next time step, thus the designation 

explicit:
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At this point the Courant-Friedrichs-Lewy (CFL) number is defined,

and substituting Equation 79 into 78,

The consistency of Equations 76 and 77 (and thus Equation 80) is easy to see. 

Unfortunately, although the method is certainly consistent, in order for the scheme 

to converge it must, by the Lax Equivalence Theorem for linear equations, be stable. 

Unfortunately, it can be shown that Equation 80 is unstable for any value of νCFL.

A more satisfactory result takes place when an “upwind” scheme is used. 

Equation 76 is thus expressed discretely in the following way:

Equation 81 can be solved to

It can be shown that this scheme is conditionally stable, the condition being 

that

It is interesting to note that, in some ways, the scheme used by Smith (1955) 

is similar to Equation 82. Upwind schemes, as the name implies, are most effective 
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when the wave propagation is unidirectional, which is not the case with driven 

piles.

As seen here, explicit schemes are widely variable in their performance. 

However, Lomax et. al. (2003) note that none of the explicit schemes are “A-stable,” 

which means that “it is unconditionally stable for all ODE’s (ordinary differential 

equations) that are stable.” This not only includes schemes such as explicit 

Euler but also predictor-corrector methods such as the well-known Runge-Kutta 

techniques, one of which was employed by Bossard and Corté (1983). This means 

that all explicit schemes have limitations on their time steps to insure stability, 

unless of course, like the original explicit Euler scheme, they are unconditionally 

unstable, in which case there is no time step that will insure stability.

There are also “implicit” schemes as well. Starting again with Equation 76, 

the Implicit Euler scheme can be written as follows:

which can be rearranged (the CFL number being defined by Equation 79) to 

become

Note that the desired quantity u(x, t)i
n +1 cannot be solved for from terms in 

time n, thus the designation implicit. In simple terms, explicit schemes predict the 

future by computing the next step from present data, and implicit schemes compute 

the next step from both present and future data. It can be shown that Equation 85 

is stable for any value of νCFL, i.e. it is unconditionally or “A” stable. There is no limit 

on the time step except that peaks in the results may be missed with an excessively 

high time step. Not all implicit schemes are unconditionally stable, but most in 
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practical use are, and incur a higher computational cost that accompanies their use 

relative to explicit schemes.

Both implicit and explicit schemes exist for finite element analysis as well as 

finite difference, and many of the same stability considerations apply to both. So it 

is necessary to consider both in approaching the problem of pile dynamics.

Implicit schemes are not unknown in wave propagation analysis in piles; 

one (Wilson’s Theta Method) was used by Smith and Chow (1982) and To (1985). 

Although in principle implicit methods should be advantageous because they allow 

longer time steps (and thus fewer computational steps,) in reality there is a trade-

off between the number of computational steps, the cost for each step, and time 

accuracy. With an implicit method it is necessary (directly or indirectly) to invert 

the entire stiffness and mass matrices (or some combination) and perform complete 

matrix multiplications.

With an explicit method, this is unnecessary; the computations can be 

done using local stiffness matrices only, and the mass matrix can be lumped 

(diagonalized,) which makes its inversion trivial. Additionally, in principle the CFL 

criterion for maximum time step requires extraction of the eigenvalues from the 

stiffness and mass matrices. This is a tedious procedure, even from the standpoint 

of linear algebra. A more expeditious method is to combine the geometry of the 

elements with the acoustic speed of the material and limit the time step to the 

shortest time required for the stress wave to traverse an element at its “shortest” 

distance (Cook, Malkus and Plesha (1989)). Mathematically this can be expressed as

The value for Lmin is taken to be the shortest side length of the element; that 

length is then multiplied by the maximum CFL criterion and then divided by the 
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acoustic speed of the element material to determine the time step that element 

“recommends” to the model. The smallest time step found in the model becomes the 

time step for the system. Because the determination of Lmin is inexact and due to 

other factors, Cook, Malkus and Plesha (1989) recommend that νCFL should be set 

between 0.95-0.98. Another explanation of minimum time steps for such methods is 

given in Hughes (2000).

How the computational cost comparison works out depends upon the nature 

of the model. While Smith and Chow (1982) and To (1985) come down on the side of 

implicit methods, Randolph and Simons (1986) find explicit methods advantageous. 

Although an implicit scheme was included in STADYN, ultimately an explicit 

scheme was chosen for the dynamic analysis of this study based on a more 

compelling consideration: the non-linearity of the problem.

Consider the elasto-plastic model as depicted in Figure 9. At low values 

of strain, elasticity applies and the relationship between stress and strain is 

determined by the slope of the line, the modulus of elasticity. In the elasto-plastic 

models considered, the reality is that the relationship between stress and strain 

is always linear; the key difference between the elastic and plastic regions is that, 

upon entrance into the plastic region, there are irrecoverable strains which take 

place. Cook, Malkus and Plesha (1989) observe that, in the plastic region, there is a 

plastic modulus, which is less than the elastic modulus and, in the case of softening 

materials, actually negative. They also observe that, in this region, the acoustic 

speed is lower than that in the elastic region, according to Equation 68. This is 

a similar phenomenon to that of the variations in elastic modulus and acoustic 

speed based on strain, which complicated the determination of the applicable soil 

properties.
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With a purely elasto-plastic model, the plastic modulus is zero, and thus the 

acoustic speed is also zero. This effectively decouples the mass from the elasticity 

in the purely plastic region. This result is more pronounced as the time (and thus 

the distance) step is increased; the model tends to “skip over” the elastic region and 

the inertial effects in that region. Thus with larger time steps inertial effects are 

significantly reduced, and their ability to resist pile movement is likewise reduced.

This phenomenon was actually encountered during the development of the 

model. As long as an elastic test case was being performed, the implicit method 

performed well, obtaining results very close to the analytical solution and virtually 

invariant with changes in time step. When plasticity was introduced, the time step 

had a great deal of effect on the performance of the model. This type of result is not 

unique to this study; it also appears in McNamara (1974).

This phenomenon significantly reduces the potential utility of implicit 

methods. Unless time steps determined by very small elements in the hammer 

are much less than the time steps determined by the rest of the system, the 

back substitution and Newton stepping required by implicit methods make 

them uneconomical compared to explicit methods. Since the non-linear physics 

of the problem restrict the time step to time steps in the same range as the 

CFL requirement for explicit schemes, the additional cost of implicit schemes 

is questionable at best. Thus an explicit scheme was used for all of the dynamic 

analysis in this study.

One possible alternative to this binary decision would have been to use a 

mixed formulation with both in the same routine (Hughes and Liu (1978)), but 

this was not used in this study due to the continued need for matrix inversion with 

small time steps.
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Newmark Explicit Stepping Scheme for Dynamic Analysis

With dynamic analysis, the obvious choice for an integration scheme was 

Newmark’s (Newmark and Rosenbleuth (1971)). The explicit method used was 

adapted from Hughes (2000), taking plasticity into consideration.

For both explicit and implicit methods, the Newmark coefficients are defined 

as

In both cases the Newmark constant γ = 1/2. For the explicit case the 

Newmark constant β =0.

To set up the explicit method, the time step .t was computed by the procedure 

noted earlier, except that, in solving Equation 86, νCFL = 3/4, based on experience 

with the model. After this, the stiffness and consistent mass matrices are developed. 

For an explicit method, the stiffness matrix is, strictly speaking, unnecessary, but 

since the two matrices are generated together using the same shape functions it is 

more convenient to do them both. The consistent mass matrix is then lumped into a 

diagonal matrix.

Having computed the effects of effective stress, the time stepping can begin. 

The Newmark method is a predictor-corrector method; considering time 0 as the 

beginning of the time step and time 1 as the end, the predictor equations are
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The recursion relationship is similar to Equation 75 and is

To solve for the acceleration vector, the external force, internal force and 

effective stress vectors are computed in the same fashion as they are with static 

loading (the internal force vector uses the results of Equation 92) and then the 

inverted lumped mass matrix is multiplied by the right hand side to produce a1. The 

corrector equations are

Because the time steps are so small, it is certainly possible but generally 

unnecessary to Newton step with explicit methods, so the next time step is 

proceeded to directly with the time 1 of the previous step becoming time 0 of the 

next one.

Newmark Implicit Stepping Scheme for Dynamic Analysis

In some ways, the implicit method combines the explicit method’s dynamic 

predictor-corrector methodology with the static method’s Newton stepping. Because 

β = 1/4, unconditional stability with any time step is obtained, which in principle can 

save a great deal of computational effort. The effects of plasticity, however, affect 

this significantly.

The method used comes from Owen and Hinton (1980). The stiffness and 

consistent mass matrices are assembled; however, the stiffness matrix is reduced 
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for back substitution and the mass matrix remains consistent. Using the Newmark 

coefficients in Equations 87-91, for each time step the predictor relationship is

The recursion relationship is

As before, this is solved using values from Equation 95 and the result is 

inserted into the corrector equation

The result for Δd is then checked for convergence. If convergence had not 

been achieved, then Equation 96 was solved again. As noted earlier, this routine 

was not used in the actual analysis.

Inputs at the Pile Head

From a physical standpoint, what actually drives the pile is the force 

generated by the hammer upon impact. There are two ways of modeling this in this 

routine.
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The first was to explicitly model the pile hammer, hammer cushion, driving 

accessory and pile cushion. Not all of these components will be a part of every 

hammer system.

The second was to input an external time-varying force f into the recursion 

relationships (Equations 93 and 96.) Assuming a uniform pressure q on the pile 

head, the force was distributed among the pile head nodes and then directly applied 

using the recursion relationships. This done, the response of the model could be 

recorded.

Although an assumed or field force-time relationship can be used for single 

runs, the most important application of assumed force-time and velocity-time 

histories is the inverse method. In these cases, since force-time and velocity-time 

histories are known, the explicit modeling of the hammer is unnecessary. Although 

it is possible to “match” the hammer with the data (Dolwin and Poskitt (1982)), 

to do so requires that the hammer system being modeled be the same as the one 

used to drive the pile, and given the variations in hammer configuration this can be 

difficult. A more common matching problem is to match the soil properties with the 

data, which will be discussed below.

If the force-time data are matched in time with each time step of the model, 

it can be used directly. For many cases this is not possible; thus, an interpolation 

technique is necessary. The interpolation technique used in this model is a cubic 

spline as implemented by King (1984). This technique produced force-time and 

velocity-time results with the optimum combination of smoothness and accuracy. 

This minimized spurious artifacts in the data that degrade accuracy and introduce 

numerical noise into the system.
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Modeling of the Pile Hammer

The description of the dynamic stepping scheme is an appropriate place to 

describe the inclusion of the last part of the physical system under investigation: 

the pile hammer. Pile dynamics is an interdisciplinary field that draws from 

geotechnical engineering, engineering mechanics, computational engineering and 

equipment design and simulation, and no where is this more evident than in the 

modeling of the pile hammer.

The variations in hammer construction and operation principle are numerous 

(Warrington (2007)). Their modeling has been a major part of the development of 

successful wave equation analysis, especially the inclusion of diesel hammers (Goble 

and Rausche (1976)). In order to focus the efforts on the research at hand, the types 

of hammers were restricted as follows:

All the hammers analyzed were external combustion hammers (Hannigan et. 1.	

al. (2006)), although with the extensible interface developed addition of the 

combustion pressures is not a difficult task.

Hammers with hammer cushions and simple cross-sections were included.2.	

Hammers without cushions can be modeled. This includes the “standard” ram-3.	

cap configuration and a “direct-drive” anvil type of configuration.

Interface Elements for the Hammer and Cap Portion of the Model

Earlier the use of special interface elements for the pile-soil interface was 

ruled out for this study. With the inextensible interfaces between the driving 

accessory and the pile head and those between the ram and the driving accessory 

(with or without hammer cushion) some kind of interface element was unavoidable.
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Studies in the past that used interface elements, such as To (1985), were 

forced to mate the eight-node serendipity elements with six-node interface 

elements, as the latter had no depth. One additional advantage of using four-node 

quadrilaterals is that the interface elements are likewise four-node, which means 

that the stiffness and mass matrix assembly procedures are uniform. Although 

Isenberg (1972) developed interface elements for use with four-node quadrilaterals, 

for this study these elements were developed using the method of Zeevaert (1980). 

Consider the interface element shown in Figure 25.

Figure 25	 Four-Node Interface Element (format after Zeevaert (1980))

The analysis can be simplified from a general development with the following 

assumptions:

The interface elements in the hammer were always horizontal, thus there is no 1.	

angle from the horizontal axis.
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The development was only for axisymmetric elements.2.	

Using the same local coordinate system employed for both the four-node 

quadrilateral elements themselves and the xi-eta soil property system, the nodal 

forces were

Using the appropriate shape functions applied to the appropriate nodes, the 

interface nodal forces were

where the subscripts of F were local degrees of freedom and the integrated 

constants are

where

and
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At this point, there were two ways the spring constants could be determined. 

Zeevaert (1980) uses the interface elements in the semi-infinite soil mass, so he uses 

the coefficient of subgrade reaction, thus

Although in theory the shear and normal spring constants are the same, 

in reality the shear constants were not very relevant physically for the interfaces 

under study. To reduce any spurious oscillations due to these, they were softened by 

assuming ks = k
n/10.

The coefficient of subgrade reaction was dependent on the material properties 

of the semi-infinite mass and the geometry of the pressure-bearing member. Using 

Boussinesq theory with an applied ring load (Verruijt and van Bars (2007)), the 

coefficient of subgrade reaction for an interface with a given material is

This was the initial approach for uncushioned interfaces such as the driving 

accessory-pile interface with steel piling.

With a hammer cushion, however, there is a body with elasticity and 

thickness. For elements with a known thickness, the “coefficient of subgrade 

reaction” can be computed using

The approach of Equation 104 assumes that the elements had no thickness. 

However, as can be seen in Desai et.al. (1984), all interface elements had some kind 
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of thickness, expressed or implied. Equating Equations 104 and 105 yielded this 

implied thickness as

Variation of this implied thickness became important in the control of 

parasite oscillations.

The spring constants that appear in Equation 103 suggested the construction 

of a diagonal local stiffness matrix

However, the primary variable is displacement; the spring constants were 

based on the difference in displacements between two degrees of freedom. To 

convert from one to another required a transformation matrix, thus

The local stiffness matrix for an interface element could be computed as 

follows:
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which could then be used in the same way as all the other local stiffness 

matrices. The local stiffness matrix thus developed was symmetric and has no 

zeroes on the diagonal.

During time stepping, when the vertical forces acting on the interface 

element put the element in tension, they were zeroed out, as are the corresponding 

horizontal forces. In this way, the element is inextensible.

One place where intextensible elements could be useful is at the pile toe. 

For this study, since all of the static testing was in compression and all of the 

dynamic impact was downward, this was not employed. Had either or both of these 

conditions been included, then toe inextensibility would have to be included.

Pile Hammer Model

An example of a pile hammer model is shown in Figure 26.

Figure 26	 Pile Hammer Model
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The interface between the pile and the driving accessory was an inextensible 

interface as previously described. Although a hammer cushion is shown, that 

interface could also be a “steel on steel” impact interface as well. The ram had a 

uniform cross-section, although the program could be modified for non-uniform cross 

sections. The hammer cushion thickness was not reflected in the finite element 

geometry but it was modeled as an inextensible interface. The “half section,” which 

is how the system is modeled using symmetry, has been mirrored for clarity.

The ram was given an initial velocity based on its actual or equivalent stroke 

and a mechanical efficiency. Effects due to gravity were not included in this model, 

as they would further complicate the situation with the effective stresses.

The modeling of the driving accessory made it possible to model beam effects 

in the cap. When the diameter of the cushion/impact point is much smaller than the 

inside diameter of the pile (assuming the latter is hollow) and the cap is relatively 

thin, plate effects can become significant. These are not considered at all in the one-

dimensional model unless the cap stiffness includes beam effects; the model shown 

here is obviously more detailed and reduces the number of assumptions. The cap 

geometry was kept simple for ease of program operation and to prevent further 

reduction of the time step due to small elements; it certainly could be modeled in 

more detail if the situation calls for it.

Parasite Oscillations

One place where the limitations of dynamic numerical integration schemes 

manifest themselves is a phenomenon noted by Bossard and Corté (1983): “parasite 

oscillations” where the numerical model exhibits high-frequency vibrations that 

largely do not correspond to physical reality. They are the result of the confluence of 
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two factors, one coming from the nature of the loading and the other the nature of 

numerical integration in general and the Newmark numerical integration scheme 

in particular.

Absent from Equation 7 are the Heaviside step functions (Rausche, Goble 

and Likins (1985); Warrington (1997)), which denote a sharp discontinuity between 

what is ahead of the leading edge of the stress-wave (no stress) and behind it 

(stress.) This means that each blow of the hammer sends what amounts to a shock 

wave down the pile. These are a challenge to any discretization and numerical 

integration system. With a given pile head force, this phenomenon is mitigated 

by the fact that the driving accessory’s inertia will soften the rate of increase of 

the pile head force and stresses. Thus, in the inverse method parasite oscillations, 

although present, are more easily managed. With the hammer explicitly modeled, 

the interface between the hammer and the driving accessory or anvil–cushioned or 

not–has an instantaneous ram point velocity on one side and zero initial velocity 

on the other. Under these conditions, especially with cushionless impact, parasite 

oscillations are unavoidable.

Newmark’s integration scheme, although the most popular integration 

scheme in dynamic finite element analysis, is subject to parasite oscillations, 

especially with secondary variables such as stress, force and velocity. This difficulty 

is discussed in detail by Deeks (1992).

Probably the most practical approach to dealing with parasite oscillations is 

to manage them as opposed to requiring their complete elimination. Attempting the 

latter runs the risk of creating one set of system distortions in order to eliminate 

another. Having said that, there are three measures that were or can be taken to 

eliminate these spurious effects:
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Substituting the four-node quadrilaterals for the higher-order elements, which 1.	

eliminated much of the general numerical noise of the system, even before the 

effect of interface elements was included.

Adding dampening or other non-linearity (such as a “coefficient of restitution”) 2.	

to the interfaces, to say nothing of the rest of the model. This is common with 

the finite-difference methods in use today. All materials have some degree of 

material dampening in them; however, the relationship between the actual 

material dampening and the amount added to the numerical models is not clear. 

This is especially true with the impact interfaces; very little work as been done 

on studying the nature of these in pile driving.

Changing the numerical method to one that includes some type of algorithmic 3.	

dampening which attenuates high-frequency parasite oscillations. Most of these 

integration schemes are implicit and the difficulties with using an implicit 

scheme in this application have already been discussed in detail.

Given the limitations of the system, having switched the type of element, 

probably the best solution is to include some kind of dampening in the places 

where spurious oscillations are generated. Up until now, no velocity-dependent 

dampening coefficients have been included in this system. All dissipative effects 

have taken place with the Mohr-Coulomb plasticity. To add this–especially with the 

small number of elements in question–is not difficult, but another approach may 

be more appropriate for this system: the inclusion of Rayleigh (or more precisely 

pseudo-Rayleigh) dampening at the interfaces through the inclusion of mass in the 

interface elements which is associated with the stiffness.

To see how this might work, consider Equation 98 and, instead of the uniform 

pressure q on the surface, the interface element is a plate with a constant density . 

and a constant thickness tinter. Equation 98 would then be rewritten
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The masses would then be

The shape function based constants are the same for both. Since the 

directionality of the masses is already determined and the nodal accelerations 

are absolute and not relative to another node, a diagonal mass matrix can be 

constructed as follows:

Although it is possible to use transformation matrices to construct a 

consistent mass matrix, given that explicit methods are used for dynamic analysis, 

the effort is not worthwhile.

For hammer and pile cushions, the mass matrix of Equation 112 is physically 

meaningful; the cushion material has physical mass and this is reflected in the 

mass matrix for the element. Modeling cushion mass is generally not done with 

piling wave equation routines, but it certainly appears here. Also, examination of 
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Equations 105 and 111 shows that element thickness has the opposite effect on 

stiffness than it does on mass; as tinter increases, the stiffness decreased while the 

mass increased, which for hammer and pile cushion corresponds with reality.

With other interfaces, the mass is physically artificial, but so is the stiffness 

as well. The idea of including mass in these types of interfaces is that, if the 

stiffness must be reduced to smooth parasite oscillations, the mass increases to 

compensate for the loss of resistance of the interface. How well this works out will 

be shown below.
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 CHAPTER V
 

INVERSE METHOD AND OPTIMIZATION

With the basic configuration of the model confirmed, the inverse problem is 

now considered. Some of the basic difficulties–uniqueness, non-linearity, and the 

like–have been discussed in a preliminary way. Now it is necessary to put these to 

some kind of application, even if that application is very elementary.

Overview of the Problem

Generally speaking, determination of pile capacities and resistances from 

dynamic tests are taken from pile head data. In the “classic” setup for CAPWAP, 

for example, strain gauges and accelerometers are mounted at the top of the pile. 

During the impact time, these measure material strain and acceleration. The 

former is converted into pile head force by including the elastic modulus and pile 

head cross-sectional area of the pile; the latter is integrated to velocity. With 

some methods (such as SIMBAT) a theodolite is mounted at the pile head which 

measures pile head displacement. Although instrumenting piles at points below the 

pile head (especially the pile middle and pile toe) has a long history going back to 

Glanville et.al. (1938), and there are certainly advantages to doing so, this practice 

is generally restricted to research work. For the majority of actual job-site dynamic 

pile monitoring only the pile head is instrumented.

Once the data are gathered, there are two basic approaches to for reduction. 

The first is to take the velocity-time data and successively modify the pile-soil model 

so that the computed force-time data match that taken from the strain gauges 
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(Goble (1983)). The second is to do the opposite, to take the force-time curve as a 

model input and match the computed velocity-time curve with the relationship 

given by the field data.

This is deceptively simple; pile-soil responses to impact are complex. It is 

first necessary to model the pile properly, both in terms of segment length (piles 

can change in both cross-sectional area and material) and material properties. With 

steel the material properties are fairly consistent; with concrete and especially 

wood, more variability can be expected. Failure to do so will result in it being 

impossible to obtain a proper signal match under any conditions.

Use of Optimization and Signal Matching Techniques

Overview

From a purely mathematical standpoint, the existence of multiple input 

variables (the soil properties at various points along the pile shaft and at the toe) 

and the possibility of aggregating them into one result (the difference between 

the computed and actual velocity-time or displacement-time histories) make 

optimization techniques a natural for the application. However, due to both 

the nature of the problem and optimization techniques themselves, actually 

implementing that successfully has many pitfalls which must be navigated 

carefully.

Gill, Murray and Wright (1981) describe three basic elements to an 

optimization problem:

The objective function, which is the function to be minimized. For this problem, 1.	

it is the result of the dynamic simulation of the pile under a predetermined 



121

force-time relationship, which is then aggregated into the difference between the 

computed and actual velocity-time or displacement-time history.

The input variables for the objective function, which are in this case the xi-eta 2.	

soil properties for various segments of the pile shaft and at the pile toe. The use 

of the xi-eta soil model is largely aimed at use in optimization. By aggregating 

the soil properties into two relatively simple variables, the objective function is 

in turn simplified and more precisely defined.

The constraints, which are on the input variables. These constraints and the 3.	

objective function are referred to as the problem function. Problems without 

constraints on the input variables are, obviously, unconstrained optimizations, 

and have the most general techniques, although there are ways to constrain the 

input variables even with these types of techniques.

To arrive at a result, the optimization method inputs initial values for the 

input variables into the objective function, which returns a result. The optimization 

technique then adjusts the input variables subject to the constraints (if any) and 

recomputes the objective function. This process is repeated until the objective 

function is minimized. It is thus necessary to set up the objective function so that 

the desired result is a minimum (or maximum.)

Implementation in STADYN

For each optimization step, using the pile geometric and material properties 

and the xi-eta soil inputs, the stiffness and mass matrices are constructed, as 

varying the soil properties will change both. Then the dynamic model is run with 

the force-time history as an input and the computed velocity-time history as an 

output. This is reversed from CAPWAP; however, the nature of finite element 
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analysis, with the external forces as a right-hand input and the velocities as an 

output, make this arrangement more natural to the solution technique.

With the computed velocity-time history in hand, a comparison with the 

actual data is necessary to achieve the result of the optimization step. There are 

two ways of accomplishing this. The first is to compare the computed velocity-time 

history with the actual one, which is interpolated from the data. The second is, 

using the trapezoidal rule, to integrate the actual data to an actual displacement 

time history and compare this to the computed displacement-time history. The 

former method has the advantage of using the data directly, albeit integrated in the 

field; the latter has the advantage of using a primary variable in the finite element 

analysis.

Depending upon which comparison is being done, computed and field data 

are compared to arrive at a least mean squared difference between the two. Manley 

(1945) defines this as:

One can also take the square root of the sum and produce a Euclidean norm, 

thus for displacement and velocity,

Using a Euclidean norm approach makes the difference function essentially 

linear. Linearity of difference function is also the case with CAPWAP’s Match 

Quality (Rausche et.al. (2010)). The advantage of this is that the descent in the 
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early portion of the optimization is not as steep as with a true least-squares 

approach, which is one method of avoiding selecting a local minimum. The scale 

factor can also be placed under the square root, although the best way to keep 

comparison between runs comparable is to retain the same scale factor/number of 

data points for all the runs optimized.

Once this is computed new values for input variables can be computed 

and the run repeated until convergence is achieved, i.e., a variation tolerance is 

achieved. Although unconstrained optimization techniques are used, the input 

variables themselves are constrained. This was discussed in the description of the 

soil properties.

In the early portion of the research, an attempt was made to reduce the cost 

somewhat by stopping the analysis at a point which is at a time 2L/c later than the 

first maximum peak of the velocity-time curve after impact. (For most pile dynamics 

problems, the first force-time and velocity-time maxima take place simultaneously.) 

By this time stress waves from all parts of the pile have had a chance to be reflected 

from various points along the pile shaft and from the pile toe and be modified 

by both changes in the pile profile (including both material and cross-sectional 

changes) and modifications due to pile-soil interaction. However, the interaction 

between pile and soil proved more complex than originally anticipated; there was 

valuable information in the velocity-time history after the original stopping point 

and divergence was noted in some runs after that time. Thus, for completeness 

virtually all of the signal available was included in the analysis.

Also, in the earlier portion of the research, both velocity-and displacement-

matching techniques (Equations 114 and 115) were attempted. Although in 

principle either should be satisfactory, velocity matching produced more consistent 

results, and thus Equation 115 was used for most of the study.
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Selection of an Optimization Technique

With the ability to produce a scalar value to minimize, it is necessary to 

select an optimization technique. As is the case with many things in geotechnical 

engineering, this is not as straightforward of a process as it may seem.

An early attempt to use optimization techniques for this problem was 

Dolwin and Poskitt (1982). They employed a Newton type of optimization, but their 

objective was a little different from conventional inverse methods for this type of 

problem in that they attempted to size an optimum hammer for a given pile-soil 

system. Although they, as is the case here, applied constraints to the variables, the 

difficulty in optimizing the pile hammer is that pile hammer parameters are not 

an arbitrary combination of the variables but a limited combination of them for the 

various hammer sizes, types and driving accessory and cushion combinations. It 

is easy under these conditions to specify a hammer that does not exist. Although 

some customization of hammers is common in this industry, even with the largest 

hammers there is only a fixed number of models to choose from.

Use of a Newton type of optimization is obviously a desirable objective, and 

to that end the original idea of this project was to use the UNCMIN optimizer 

(Schnabel, Koontz and Weiss (1985)). In this way the optimizer would be integral to 

STADYN and not require a separate routine for optimization.

The difficulty with this type of optimization is in the nature of the functions 

themselves. The objective function, the result of a finite element run, is not a simple 

one, and there is no guarantee of things such as differentiability, smoothness, 

etc., of either the functions or its derivatives. The finite difference gradients (and 

Hessians if necessary) are tedious to generate and may yield undesirable results 

in the event differentiability is a problem. A more serious problem is that of local 

minima; it is easy for a routine such as this to find a local minimum when in fact 
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the global minimum is at another location and for a different set of variable values. 

This is one reason why grid optimizations are often found in geotechnical routines, 

but grid optimization is simply too inefficient for this application.

With Newton type unconstrained minimization shown unsatisfactory, 

other optimization techniques have been used, including genetic algorithms 

(Balthaus (1988)) and neural networks (Chow et.al. (1995); Shahin, Jaksa and 

Maier (2001)). Both of these are considerably more complex–and slower–than 

Newton type methods. Since speed is to be compromised, a simpler approach was 

finally arrived at for this routine, namely a polytope algorithm (Gill, Murray and 

Wright (1981)). An overview of direct search methods in general and the polytope 

method in particular can be found in Lewis, Torczon and Trosset (2000). STADYN’s 

implementation was modified from Press et.al. (1992). In addition to getting around 

the formal requirements for differentiability, etc., a major advantage of the polytope 

algorithm is that, at the beginning of the optimization, it is necessary to form the 

polytope, i.e., a set of initial combinations of the variables, in the number of the 

number of variables plus one. Selection of starting variables in a broad range of xi 

and eta values reduces the possibility that a local minimum will be arrived at and 

increases the possibility of finding the true minimum of the problem function.

Even with the broad starting point the polytope method afforded, some of 

the results suggested that some further search for a real minimum was in order. To 

accomplish this annealing was added to the polytope routine using a code modified 

from Press et.al. (1992). Both unannealed and annealed optimizations were 

performed.

Once the optimization technique was run and the properties of the soil layer 

were established, complete dynamic and static analyses (with extensive output) 

were performed. Because of both typical American load testing practice and the 
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development of CAPWAP, the Davisson criterion is emphasized in analysis of the 

static test.
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 CHAPTER VI
 

MODEL TEST CASES

STADYN developed, a test case was necessary to verify some of its basic 

features. The test case was based on that in Warrington (1997). The basic 

parameters are as follows:

Pile. All of the cases incorporated the same pile configuration.1.	

1000 mm O.D. x 40 mm wall thickness steel pipe pile, uniform cross-section.(a)	

50 m long.(b)	

Open ended pile.(c)	

Pile divided into fifty (50) 1 meter long elements.(d)	

Soil Cases. Two soil cases were considered:2.	

No soil, no shaft resistance, pile fixed at toe. This was primarily to compare (a)	

the results with an analytical solution.

Uniform soil starting 1 m below the pile head. The phreatic surface is 25 m (b)	

below the soil surface. Soil properties will vary as detailed below.

Hammer Cases. Two hammer cases were considered:3.	

Hammer as detailed in Warrington (1997), with a 15,000 kg mass ram, (a)	

3,000 kg mass driving accessory, single-acting with a 1.5 m stroke and 80% 

mechanical efficiency. There is an optional micarta and aluminum cushion (E 

=2.413 GPa, . = 1827 kg/m3) which is 750 mm O.D. (as is the ram) and 435 

mm in thickness. The hammer system is shown in Figure 26.
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Pile top force-time and velocity-time curve based on semi-infinite pile theory. (b)	

The idea behind this is well detailed elsewhere (Warrington (1987); Deeks 

(1992); Warrington (1997)). The actual equation for the pile head force (the 

force is set to zero after t = L/c) is

and the velocity is simply this quantity divided by the pile impedance. The 

hammer used to generate Equation 116 is, of course, the same as detailed above.

Many plots and graphs will be included in the results. The various types in 

this chapter are as follows:

Line Graphs1.	

y-displacement-time graphs at pile head, middle and toe and force-time (a)	

graphs at the pile head (pile toe displacement does not apply to fixed base 

runs.)

Stress-time graphs at pile head, middle and toe.(b)	

Pile top load-displacement graphs for static runs (do not apply to fixed base (c)	

runs.)

CAD representations of the system.(d)	

Two-dimensional Plots2.	

y-displacement-time graphs for length of pile.(a)	

y-stress-time graphs for length of pile(b)	

Stress plots ((c)	 σx-, σy-, σz-, σ1-, σ3- and τxy) at end of a static load test, not all 

stresses are shown for every case, does not apply to fixed base runs as there is 

no soil.



129

There are also plot types that only apply to optimization runs; these will be 

discussed below.

Semi-Infinite Theory Pile Head Force Cases

All of these cases incorporated the Hammer Case 3(b).

Fixed Base

The analysis started with the fixed base analysis, Soil Case 2(a). The first 

result was the displacement-time graphs, shown in terms of dimensionless L/c time 

in Figure 27.

Figure 27	 Semi-Infinite Pile Head Force, Displacement-Time Results

The force was an impulse complete by time 2L/c, which was a constraint 

in Warrington (1997). The resulting values for actual pile head and middle 



130

displacement values corresponded nearly exactly with those from the analytical 

solution in Warrington (1997) for a fixed base and no shaft resistance. The ideal pile 

head displacement was strictly based on semi-infinite pile theory; it and the actual 

displacement separated at 2L/c, which is also to be expected, as semi-infinite pile 

theory does not provide for reflections from the pile. Comparison of pile head and 

middle displacements with the results of Warrington (1997) shows a nearly exact 

correlation between the two; the plots are no different.

The stresses–which were actually extrapolated to the same nodes as the 

displacements– are shown in Figure 28.

Figure 28	 Semi-Infinite Pile Head Force, Stress-Time Results

Although these too tracked closely with Warrington (1997), they showed 

initial signs of parasite oscillations. This was especially true of the pile head 

stresses; they should have been zero for time greater than L/c.
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Both the displacements and the stresses could be tracked two-dimensionally 

as well; the displacement-time relationship for the entire pile can be seen in Figure 

29.

Figure 29	 Semi-Infinite Pile Head Force, Two-Dimensional Displacement-Time 
Results

Using the axis marker in the lower left hand corner, the “x” axis is actually 

a time axis, proceeding from the starting time to the end of the run, in this case 
4L/c  (as seen also in Figure 27. The “y” axis is the position along the pile; the bottom 

edge of the graph is at the pile toe and the top edge of the graph is the pile head. 

The alternating downward (positive) and upward (negative) displacements are to be 

expected with a stress wave that was reflected off the free end of the pile head. As 

one approached the fixed pile toe, the displacements decrease to zero.
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In a similar way, the pile stresses are shown in Figure 30.

Figure 30	 Semi-Infinite Pile Head Force, Two-Dimensional Stress-Time Results

The stress wave comes into the pile compressively in early time, and then 

was reflected off the pile toe while essentially doubling (and not changing sign) at 

the fixed end. When the stress wave reached the pile head, the magnitude of the 

stresses were unchanged but the sign was reversed from compressive to tensile, and 

the doubling effect was repeated at the pile toe for the tensile stresses.

Dilitancy and Element Squeeze Study

This case used Soil Case 2(b) with ξ = -1, η =0. The use of a completely 

cohesionless soil was a maximum test of the finite element code in one respect: it 

was the most non-associated flow rule encountered in Mohr-Coulomb plasticity. 
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Both dilitancy and element squeeze are important parameters which relate to 

the way the soil is modeled and actually responds to the downward movement of 

the pile, whether that movement be part of a dynamic analysis or the movement 

associated with a static load test.

To begin the analysis, the CAD file of the model was imported from the IGES 

file generated by the program, and is shown in Figure 31.

Figure 31	 CAD Representation of the Pile-Soil Model, Element Squeeze = 3

The pile is the long, narrow vertical part in the upper left-hand corner 

of Figure 31. The shaft soil was divided by the phreatic surface and the toe soil 
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was modeled as a separate layer; both of these can be clearly seen. In addition to 

inputting the program for these large layers, the program was checked to insure 

that the results would be the same even if each row of soil elements above the toe 

were made individual layers (the results were the same.)

A selected displacement-time history at the pile head, middle and toe, along 

with data for the pile head velocity, is shown in Figure 32 for ξ = -1, η =0.

Figure 32	 Displacement-Time, Element Squeeze = 3

The classic downward movement and subsequent rebound of a pile can be 

clearly seen. Also clearly seen is the effect of the delay induced by the length of 

the pile; the pile middle began deflecting at L/2c and the pile toe at L/c. In this case 

the three points on the pile came to a similar deflection. Eventually the deflections 

will stop and the pile will come to rest, usually before the next blow. As the study 

progressed, longer runs were found necessary in order to approach this rest point.
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The “theoretical pile head velocity” is the theoretical pile head force from the 

method of Warrington (1997) divided by the pile head impedance. This type of plot 

is common with CAPWAP output, as will be shown. The computed pile head velocity 

is from STADYN; it includes the effects of overall pile movement and rebound. In 

the very early portion of the impulse, before L/2c, the two are very close, and this 

reflects the reality that the pile head in this region is governed by semi-infinite pile 

theory. As the pile moves downward, the results can be expected to diverge from 

this theory, and in fact this is the case.

Switching to the two-dimensional plot, the pile stresses for this case are 

shown in Figure 33.

Figure 33	 Stress-Time, Element Squeeze = 3
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Comparing this with Figure 30 immediately shows the effect of the soil: the 

stress wave was dissipated into the soil through both plasticity and radiation, and 

the intermediate reflections of the soil layers can be seen as well. Noteworthy also 

are the relatively low stresses at the toe of the pile; in this case the toe was acting 

almost as a free end.

Including the soil also began the calculation of static capacity. The static run 

was performed after the dynamic one is complete; the pile head results are shown in 

Figure 34.

Figure 34	 Pile Load Test Results

The following should be noted about this:

Three lines were plotted: the actual pile head load-deflection curve, the Davisson 1.	

displacement line, and the Randolph and Wroth (1978) displacement line.
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The Davisson failure load took place at the intersection of the Davisson 2.	

displacement line and the pile head load-deflection curve.

The Randolph and Wroth (1978) curve is the “lower bound” (i.e., deflection 3.	

is greater with plasticity) of the pile head load-deflection curve. This was as 

one would expect; intersection of the two curves at any point would indicates 

severe stiffness in the finite element model. It is also interesting to note that 

the Randolph and Wroth (1978) curve is “flatter” (i.e., stiffer) than its Davisson 

counterpart. The slope of the Davisson line is the stiffness of the pile with a 

fixed toe and no shaft resistance. Although the soil is much softer than the pile, 

the soil “grabs” the pile all along the length, thus reducing the effective length 

of the pile for elastic purposes, a phenomenon incorporated into semi-empirical 

methods for settlement such as Vesic (Naval Facilities Engineering Command 

(1986)).

Stress and displacement graphics–which are standard for this type of two-

dimensional finite-element analysis–were also generated. The first presented is the 

first principal stress plot, shown in Figure 35. The principal stresses are plotted for 

the first load point after the Davisson load. Frequently after that, point the model 

collapses, violating the small displacement assumption of the methodology.
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Figure 35	 First Principal Stress Plot for Static Load Test

Because the elevated stresses extended little beyond the pile itself, the stress 

levels shown in the soil do not vary much. This result was anticipated by Potts and 

Martins (1982). A more interesting result came if the pile head area was focused 

upon as it is in Figure 36.
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Figure 36	 First Principal Stress Plot, Pile Head Region

At the pile head, the stresses were uniform. By the time the pile reaches the 

mudline, the stresses were not uniform in the cross-sectional area of the pile. The 

stresses along the outside diameter of the pile matched those of the soil; on the 

inside diameter, they were much higher. With one-dimensional assumptions (static 

and dynamic) it is assumed that the cross-section of the pile experiences uniform 

forces and stresses; this is not always the case.
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Another interesting result was the very small affected zone in the soil of the 

pile movement. The plasticity in the soil is restricted to a region very close to the 

pile-soil interface.

The third principal stress for the static case is shown in Figure 37.

Figure 37	 Third Principal Stress Plot
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Since the values of σ3 for the pile were minimal, it is easy to see the increase 

in effective stress in the model with increasing depth. It is even possible to discern 

the transition induced by the phreatic surface halfway down the pile.

Displacements in the y-direction are shown in Figure 38.

Figure 38	 y-displacements for Static Test

The displacements around the pile were the most pronounced, more 

extensive than the stresses. It is interesting to note that, although the region 
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affected plastically by the pile (as shown in Figure 36) was relatively small, the 

progressive effect of the downward shear induced downward displacement in the 

soil surrounding the pile. Downward displacements such as this are generally 

associated with pile downdrag, although in most cases of interest the downward 

deflections were induced by external surcharges and other effects. In this case, the 

apparent downdrag was induced by the progressive downward loading of the pile 

itself.

The basic parameters established, a study of the effects of varying dilitancy 

and shaft element squeeze was undertaken using static analysis. The dilitancy ratio 

was varied with values of zero, 0.1, 0.2 and 0.3. At the same time the soil squeeze 

exponent was varied with values of 1, 2, and 3, 1 being evenly spaced element 

columns between the pile shaft surface and the right edge of the model and 2 and 3 

“squeezed” towards the pile, with the elements closer to the pile being progressively 

narrower than those at the right edge of the model.

The results with Davisson’s criterion are shown in Figure 39.

Figure 39	 Dilitancy-Squeeze Study Using Cohesionless Soil
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With the squeeze, the largest difference came between a squeeze of 1 and 2; 

going to 3 did not have that much effect. Thus, a squeeze of 3 was used for the rest 

of the study for both static and dynamic runs. The apparent stability of the results 

(the 3-squeeze model’s soil elements along the pile shaft were 2 mm thick and 1 m 

long) was consistent with Pande and Sharma (1979).

With dilitancy, progressively increasing the dilitancy ratio (and thus the 

dilitancy angle) resulted in increasing the resistance of the soil to axial force on the 

pile head. It did so in a way that did not vary with the element squeeze, although it 

was understood that the two were not necessarily related.

The quantification of dilitancy in geomechanics is an issue with surprisingly 

little research, although some work has been done (Bolton (1986)). Standard 

values for ψ, to say nothing of specific values for various soils, are scarce, and 

frequently assigned on an ad hoc basis. Although it can be tested for, such tests 

are not frequent in practice. It can also be estimated from the difference between 

the maximum and critical friction angle of the soil, although having both of these 

quantities on hand is not frequent either. Its effect on model response is evident in 

Figure 39. For the remainder of this study Rdil =0.

Static Load Test Interpretation

As before, this case used Soil Case 2(b) with ξ = -1, η = 0. The hammer model 

is not relevant here. The variations in static load test interpretation methods using 

the same force-deflection curves is now of interest.

The methods were applied to the results, which were a series of load steps. 

The load steps varied to a “maximum” load based on Meyerhof’s method. This final 

load was not necessarily meant to be an absolute upper limit as much as it was to 
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prevent endless looping of the static load routine. This maximum load was divided 

by the number of steps desired; that quotient was the increase in load at each load 

step.

In the early stages of model development, there were 40 steps to the 

maximum Meyerhof load. For Davisson results, this is satisfactory. For other 

methods, the relatively large load steps resulted in significant inaccuracies in the 

determination of static loads. This is especially true since linear interpolation 

was not used for any of these methods except for Davisson’s and the slope-tangent 

method. Thus, to “catch” the load-deflection relationships of, say, the Brinch-

Hansen methods, or the maximum curvature, more load steps were required. Thus 

the number of maximum load steps was increased to 100.

In Figure 34, static loads up to the Davisson criterion are shown. In reality, 

this static load analysis was performed for higher loads so that other load testing 

criteria could be used. The static load test results for the various methods applied to 

Figure 34 are shown in Table 2.

Table 2	 Static Load Results for Various Methods

Interpretation Method Static Load, kN
Davisson Load 17416
Brinch-Hansen 80% Load 19556
Brinch-Hansen 90% Load 18774
Maximum Curvature Load 18774
Slope-Tangent Load 18602

The result is reasonably consistent for all of the methods, which is not always 

the case with static load testing (Fellenius (2014)). This is especially remarkable 

when one considers that Davisson’s Method is based upon limiting the deflections 
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from soil plastic failure, i.e. finding a “yield” point in the pile. This is a similar 

concept with offset-yield methods used with other materials. The other methods, to 

varying degrees, attempt to find a true ultimate failure point. Although the pattern 

seen above is not consistently replicated with other pile and soil configurations, 

from an ideal standpoint it is instructive. Both Davisson and the Brinch-Hansen 

methods are embodied in various building codes, but each is based on a different 

concept of “ultimate” pile loads.

In other STADYN runs some of the methods yielded inconsistent results or 

no results at all. This was especially true with the Brinch-Hansen methods. In this 

study, of the non-Davisson methods the Slope-Tangent method produced the most 

consistent results.

Modeled Hammer Cases

At this point Hammer Model 2(a) began to be used, as shown in Figure 26. 

This applies to both cushioned and cushionless hammers, since the thickness of any 

interface elements was not geometrically represented in the finite element model.

Fixed End Runs, Cushioned Hammer

Using the fixed end model of the pile (Soil Case 2(a)) made it possible to 

both verify the basic integrity of the model and to check it for variations caused 

by changes in important parameters. In this case the most important addition to 

the model was the inextensible interface elements. There are two of these, one 

between the driving accessory and the pile head and the other between the ram 

and the driving accessory. With a cushioned hammer, the stiffness of the latter was 

determined by the stiffness of the cushion material. The former, however, could be 

varied according to its effective thickness, defined in Equation 106. The implied 
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thickness in this formula was based on the response of a semi-infinite mass to static 

loading. The actual thickness used to compute the “subgrade reaction” coefficient in 

Equation 105 is related to the nominal thickness computed by Equation 106 by the 

quantity

For the cushioned hammer, the only thickness that was being varied is that 

of the pipe top interface. This thickness determined both the stiffness and the 

imputed mass of the interface. As ITR increases, the stiffness decreased and the 

mass increased.

Figures 40, 41 and 42 show the force-time and displacement-time 

relationships with varying values of ITR. All of the variables are plotted as a 

function of L/c; however, the displacements are scaled with the primary (left) y-axis 

and the pile head forces scaled with the secondary (right) y-axis.

Figure 40	 Force-and Displacement-Time Relationships, ITR=4
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Figure 41	 Force-and Displacement-Time Relationships, ITR=1

Figure 42	 Force-and Displacement-Time Relationships, ITR=0.25
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These should be compared with Figure 27, where the force-time curve is 

determined analytically, as opposed to being a product of the finite element model 

here. A comparison of the maximum pile head force results for the various models 

can be seen in Table 3.

Table 3	 Maximum Pile Head Forces for Analytical and Finite Element Models

Model Maximum Pile Head Force, kN
Analytical (Warrington (1997)) 15569.72
FEA, ITR = 4 15465.12
FEA, ITR = 1 15369.49
FEA, ITR = 0.25 15465.12

The finite element solution is very close to the analytical solution, at worst 

1.3% less. It should be noted that the analytical solution assumed a rigid cap while 

the finite element solution allows for flexibility in the cap; perfect agreement was 

not to be expected.

This agreement is also reflected in examination of Figures 40, 41 and 42; 

there was little difference among the three. In addition to pile head and middle 

displacements, the displacement of the ram point is also included. It deflected 

ahead of the pile head in phase, then begins to rebound due to the cushion material. 

When the stress wave came back to the pile head at 2L/c, the pile head was again 

in compression and the rebound pushed the cap, cushion and ram upwards. When 

the cushion force reached zero, the ram went into a free rise at a constant velocity. 

In this case the remaining energy in the pile oscillated between pile head and toe; 

comparison with Figure 27 shows that the energy in the pile was significantly 

diminished since much of it was used to push the ram upwards.
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A similar consistency of results can be seen in the pile stresses as shown in 

Figures 43, 44 and 45.

Figure 43	 Pile Stresses, ITR = 4

Figure 44	 Pile Stresses, ITR = 1
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Figure 45	 Pile Stresses, ITR = 0.25

The intensity of the parasite oscillations–especially at the pile head–was 

greater than is seen in Figure 28. To some extent, this was to be expected, given 

the rebound force of the pile head in addition to the initial impulse. However, even 

here some noise was being injected into the system by replacing a smooth force-

time curve with a modeled hammer. The stresses in the pile were considerably 

diminished in the later times than they were for the purely analytical force-time 

relationship.

Generally, use of cushion materials in impact pile drivers is to lessen the 

stresses in both the ram and frame of the hammer. Looked at another way, the 

cushion material prevents the generation of high frequency (and high intensity) 

vibrations that come from “steel on steel” impact. This is helpful both for the 

physical reality and for the finite element model; with a cushioned hammer, 

modeling the hammer produces a relatively smooth force-time curve. If a pile 
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cushion is added as is done with concrete piles, more decrease in high frequency 

vibrations can be expected.

The effect of varying the effective thickness of the pile head-driving accessory 

interface was minimal. It should be noted, however, that the relatively low cushion 

material stiffness might be dominant and mask those variations. Thus, it is 

necessary to examine this with cushionless hammers, where two stiff interfaces are 

encountered.

Fixed End Results, Cushionless Hammer

When the hammer cushion was removed, both interfaces were subject to 

changes in their implicit thickness, which was varied in the same way as it was 

with the cushioned hammer. Figures 46, 47 and 48 show the displacement and force 

results when this was done.

Figure 46	 Force-and Displacement-Time Relationships, ITR = 4
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Figure 47	 Force-and Displacement-Time Relationships, ITR = 1

Figure 48	 Force-and Displacement-Time Relationships, ITR = 0.25
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Figures 46, 47 and 48 document two different parameters–force and 

displacement–and the trends in both need to be discussed.

With the ITR values of 0.25 and 1, the force-time relationship shows 

considerable instability, which indicates a great deal of “chattering” at that part of 

the model. Increasing the ITR to 4 significantly attenuates those instabilities.

Turning to the displacements, the instabilities of the force-time curves are 

not replicated to the same degree in the ram point or pile head displacements. It is 

interesting to note that the ripple in the ram point displacement is most pronounced 

at ITR=4; this is most likely because the softer springs and higher masses at the 

interface tend to result in lower frequency, higher displacement oscillations. All 

three of the curves show an increase in displacement until approximately 2L/c; 

however, the peak displacement is larger with ITR=4. This is again most likely 

because of the relatively soft spring and higher mass nature of the interface; the 

mass is acting as a temporary energy storage “device,” the energy to be released 

on rebound. The subsequent track of the pile head velocity indicates that this 

modulation of the impact energy by the interface elements does not have a 

deleterious effect on the results, which was one objective with the configuration 

of the interface elements. One of the advantages of using Rayleigh type damping 

for model stabilization is that smoothing effects can be introduced without energy 

dissipation (unless, of course, the damping is at the boundaries of the model.) Using 

a dissipative type of damping at an interface, be that velocity based or the bi-linear 

“coefficient of restitution” approach common in wave equation code, always runs the 

risk of misrepresenting the energy transfer between the hammer and the pile.

Comparing the ram point and pile head displacements between each other, in 

all three cases the two tracked each other until the ram point and driving accessory 

separated from each other and the ram achieved uniform upward or rebound 
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velocity. This indicated that the effects of driving accessory flexibility, either axial 

or plate/beam, were minimal.

The effect on the stress-time relationships is shown in Figures 49, 50 and 51.

Figure 49	 Pile Stresses, ITR = 4

Figure 50	 Pile Stresses, ITR = 1
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Figure 51	 Pile Stresses, ITR = 0.25

The results for the stresses paralleled those for the displacements. The 

parasite oscillations were definitely attenuated with higher values of ITR, and some 

variations took place both in peak stresses and in the timing of those peak stresses.

Given the results in this portion of the study, it was decided that, for 

subsequent work, ITR=1. This seems to be a reasonable balance of the desire for 

stability and accuracy in the model.

Bearing Graph Study

One common use of wave equation analysis is the so-called “bearing graph” 

study (Hannigan et. al. (2006)). In this type of study the resistance of the soil is 

varied with a common hammer-pile system to determine the blow counts and 

stresses during driving, thus constructing a “bearing graph.” A typical bearing 

graph is shown in Figure 52.
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Figure 52	 Bearing Graph for Air-Steam Hammer

In this study, the Rult vs. blow count will be emphasized. The simple way of 

varying the static capacity of the pile is to vary ξ and η using Soil Model 2(b).

First the relationship was established between the parameters ξ and η and 

the capacity that results using Davisson’s method, and this is shown in Figure 53.
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Figure 53	 ξ and η vs. Ultimate Davisson Capacity

As anticipated, the increase in η for a given ξ results in an increase in the 

capacity/resistance of the pile. This is more pronounced in the purely cohesive soil (ξ 

=1) and the mixed soil (ξ =0) than in the purely cohesionless soil (ξ = -1.)

The blow count vs. Davisson capacity is shown in Figure 54.



158

Figure 54	 Blow Count vs. Davisson Capacity

There were two methods used to determine the blow count. The first was the 

standard method used in STADYN, i.e., the average of the pile middle displacement 

for the last half of the analysis, in this case times between 8L/c and 16L/c. The 

second used the method of GRLWEAP, which is to subtract a quake value from 

the maximum pile toe displacement (Goble and Rausche (1986)). The pile toe used 

quake, appropriate for an open ended pipe pile, is 2.54 mm.

With the STADYN method, the blow count trended for the mixed and 

cohesive soils, as one would expect. The purely cohesionless soil, however, actually 

saw a decrease in blow count with an increase in capacity, although there was little 

real variation in that blow count.

With the GRLWEAP criterion, for the purely cohesionless soil both criteria 

are in near agreement until a blow count of about 50 blows/300 mm, after which the 
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GRLWEAP criterion predicted a higher blow count for a given capacity. With the 

mixed soil, the GRLWEAP method produced an even flatter blow count curve. The 

purely cohesionless soil saw a mirror-image reversal of the trend from the STADYN 

method, which was an improvement; however, the capacity did not increase enough 

to see how the trend follows through.

Possible reasons for these phenomena include deficiencies in the blow 

count criterion and residual effects not modeled, even when the runs were taken 

to 16L/c. This suggested that the pile set criterion requires further refinement. 

For this study, however, and especially with the optimization study, the pile set 

per blow was not of primary interest, although the displacement-time history is 

certainly important. It is interesting to note that McVay et.al. (2002) state that the 

implementation of their instrumentation system “would allow the elimination of 

the current driving criterion based on blow count, which does not handle changing 

driving conditions (soil, rock hammer, etc.)”
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 CHAPTER VII
 

CASE WITH STATIC LOAD TEST

One of the most extensive comparisons performed between static analytic 

methods and static load tests for driven and bored piles is that of Finno (1989). It is 

an excellent case to study and compare with the results from STADYN, especially 

the static ones.

Although four (4) different piles and drilled shafts were analyzed, for this 

study the pipe pile will be considered. The pile outside diameter is 457.2 mm with 

a wall thickness of 9.52 mm. The pile was driven closed ended with a bottom plate 

19.1 mm thick. The pile penetrated 15.24 m into the soil. The soil was divided into 

two layers as follows:

Loose Silicaceous Sand, 1.	 φ = 30.5º. γdry = 1610 kg/m
3 , γsat = 2002.5 kg/m

3 ,c =0. The 

layer was 7.315 m thick and the water table was 5.182 m below the surface. For 

STADYN, ξ = -1, η = -0.56.

Soft Clay, c = 24 kP a. For STADYN, 2.	 ξ =0, η = -0.6.

The piles were driven with a Vulcan 06 hammer, properties are given in 

Table 4.
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Table 4	 Properties of Vulcan 06 Hammer

Property Value Hammer Photo
Ram Mass 2948 kg

Hammer Equivalent Stroke 914 mm

Hammer Efficiency 67%

Ram Velocity at Impact 3.46 m/sec

Ram O.D. 285.8 mm

Ram I.D. 0 mm

Cross-Sectional Area of Ram 0.0642 m2

Ram Length 5831 mm

Mass of Cap 464.94 kg

Cap O.D. 482.6 mm

Cap I.D. 0 mm

Cap Body Thickness 322.5 mm

Cushion Thickness 127 mm

Cushion Material Micarta & Aluminum

Some important notes about Table 6 are as follows:

The hammer efficiency used was the “standard” GRLWEAP efficiency. Air/1.	

steam hammers have widely variable efficiencies based upon the condition of the 

equipment, its lubrication and the batter angle (if any) of the piles being driven. 

The last was not an issue here as the piles were driven plumb.

The “Ram O.D.,” “Ram Length” and “Cross-Sectional Area of Ram” were 2.	

based on a cylindrical ram the same diameter as the cushion material. With 

conventional Vulcan hammers, this is not the case, as is evident from the photo 

in Table 6. The effect of ram shape with cushioned hammers (cushionless 
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hammers are another matter altogether) has been a matter of dispute for a 

long time; for this study, the effects of ram shape for cushioned hammers were 

neglected.

The “Cap O.D.,” “Cap I.D.,” and “Mass of Cap” were based on factory data. The 3.	

“Cap Body Thickness” is derived from those data and may be different for the 

actual cap being used.

The “Cushion Thickness” and “Cushion Material” were from Finno (1989). 4.	

STADYN did not model cushion plasticity/bilinearity.

The static load tests are considered first. For this case, these were performed 

at two (2) weeks, five (5) weeks, and forty-three (43) weeks after installation. The 

first and last static load tests were compared with STADYN static results and are 

shown in Figure 55.

Figure 55	 Comparison of STADYN results with Static Load Test Results from 
Finno (1989)
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There were two STADYN results: one with one hundred load steps to the 

Meyerhof load and one with one thousand. This was done in order to output two-

dimensional plots; with the larger load steps, the static load point immediately 

after the Davisson line is crossed showed collapse, giving results with excessive 

deflection. The two simulated static load test sequences resulted in virtually 

identical results until the “knee” in the static load curve, at which point the smaller 

steps extended the knee outward. The result was that, while the one hundred step 

static load curve had a Davisson capacity of 933 kN (very close to the original static 

load test) the one thousand step test increased the Davisson capacity to 976 kN.

The STADYN results showed good agreement with the longer-term result. 

STADYN did not have the capability to estimate either the effects of thixotropy or 

the elevation of pore water pressures during driving. The most significant difference 

between STADYN and the static load tests was that the former had a lower 

deflection in the lower load range. This indicates that STADYN’s estimate of the 

modulus of elasticity may have been too low in this case. The value of the modulus 

of elasticity, as discussed earlier, was the most problematic soil property in this 

application.

It is interesting to note that, with twenty-four static predictions, the mean for 

these predictions for the pipe pile was 956 kN and the standard deviation was 294 

kN. It is also interesting to note that Finno (1989) does not explicitly calculate the 

Davisson static failure load.

For the load step just beyond the Davisson failure criterion, the pile head 

load was 981 kN and the toe load 10 kN. Although this did not represent a great 

deal of toe loading–although the pile has technically failed by this time–a look at 
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the results around the toe is in order. The first principal stresses around the toe are 

shown in Figure 56.

Figure 56	 First Principal Stresses at Pile Toe, Simulation of Finno (1989)

The angled pile toe plate was due to STADYN’s requirement for “smooth” 

transitions between pile sections. The results showed elevated stresses directly 

under the pile toe but not far away from that. This is confirmed if the y-and 

x-stresses are examined in Figures 57 and 58 respectively. The x-displacements in 
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particular indicated that the area under the pile toe is attempting to expand, only to 

be resisted by the soil mass.

Figure 57	 y-direction Displacements at Pile Toe, Simulation of Finno (1989)
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Figure 58	 x-direction Displacement at Pile Toe, Simulation of Finno (1989)

Turning to the dynamic analysis, STADYN predicted the final blow count at 

around 18 blows/300 mm. Driving logs from the installation of the pile indicate a 

blow count of around 10 blows/300 mm at the end of driving. This differential was 

sensible since, as is evident from Figure 55, the resistance of the pile at the time of 

driving was considerably lower (due to set-up effects) than the long-term resistance. 

STADYN’s result was more of a “restrike” type of result, and a restrike was not 

performed in the course of this study. The low blow counts also made comparison 

difficult; low blow counts will also play an important part in the optimization study.
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The y-displacement-time history is shown in Figure 59 and the y-stress-time 

history is shown in Figure 60. As before, with these plots the x-axis is a time axis.

Figure 59	 y-displacement-time History, Simulation of Finno (1989)

Focusing first on the pile head, the pile displaced in two steps. Ultimately 

the differences between the displacements of the various points along the pile (the 

cross-section is uniform except for the pile toe) began to fade as the hammer energy 

is dissipated into the soil.
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Figure 60 y-stress-time History, Simulation of Finno (1989)

For this case, the toe showed less of the “free-end” characteristics than the 

earlier case, with substantial compressive stresses extending to the pile toe itself. 

This refl ected the difference between the closed toe of this simulation and the open 

toe of the earlier case. The refl ection was likewise not as strongly tensile and was 

more affected by the intermediate refl ections of the shaft. Examination of both pile 

head (top edge of the graph) and pile toe (bottom edge of the graph) show more local 

variations in time than the regions between the two. This is because the parasite 

oscillations were for the most part generated at the boundaries of the pile.

Visible in both fi gures but especially Figure 60 is an additional stress wave 

in the middle of the diagram. This was probably due to an additional striking of the 

pile head by the driving accessory. This also added to the parasite oscillations.
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 CHAPTER VIII
 

COMPARISON WITH GRLWEAP

Another interesting comparison to make was with GRLWEAP, a widely used 

one-dimensional wave equation program. The test case was a notional soil profile 

from Southeast Asia, into which a 150 m long pile was driven 70 m into the sea bed 

for a conventional offshore oil platform. The pile was a 1372 mm O.D. × 51 mm wall 

thickness open ended pipe pile. Neither plugging nor set-up effects were considered 

for this analysis.

The soil profile is given in Table 5.

Table 5	 Soil Profile for GRLWEAP Comparison

Soil Characterization Layer Thickness, m Submerged Unit 
Weight, kN/m

3 Cohesion, kPa ξ η Saturated Unit Mass, 
kg/m

3

Very Soft Clay 3 5 10 1 -1 1510.2

Medium Clay 10 7 40 1 -0.65 1714.3

Very Stiff Clay 16 8 120 1 0.2 1816.3

Stiff to Very Stiff 
Clay 25 9 80 1 -0.25 1918.4

Hard Clay 8 8 200 1 1 1816.3

Very Stiff Clay 8+ 8 160 1 0.6 1816.3

The differences between the submerged unit weight (based on the soil data) 

and the saturated unit mass was due to the fact that the latter are based on as close 

a match of ξ and η as possible. The cohesion was most closely matched, but the soil 

properties scheme had difficulty replicating the high void ratios of the original soil. 

For cohesive soils, this is not as much a difficulty as it is with those with friction 
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angle, as the Mohr-Coulomb failure criterion is based strictly on the cohesion when 

φ =0.

In performing the two types of analyses, the differences between the 

GRLWEAP analysis and the STADYN analysis quickly become evident. With 

GRLWEAP, it was first necessary to use soil properties to perform a static analysis 

on the pile. From there the SRD was estimated and then additional values above 

and below were added to arrive at a “bearing graph” (see Figure 52) type of analysis. 

With STADYN, the soil properties were directly applied to the model, which used 

these in the dynamic and static analysis to model the dynamic performance of the 

system and estimated the SRD through a simulated static load test.

GRLWEAP Results

The first step in the GRLWEAP analysis was to construct the hammer, 

pile and soil model in the program. The pile was straightforward, being uniform 

in diameter and cross-section. The hammer selected was a Vulcan 5110, with 

properties shown in Table 6.
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Table 6	 Properties of Vulcan 5110 Hammer

Property Value Hammer View
Ram Mass 49896 kg
Hammer Equivalent Stroke 1524 mm
Hammer Efficiency 67%
Ram Velocity at Impact 4.47 m/sec

Ram O.D. 793.7 mm
Ram I.D. 0 mm
Cross-Sectional Area of Ram 0.495 m2

Ram Length 12796 mm
Mass of Cap 17872 kg
Cap O.D. 1905 mm
Cap I.D. 0 mm
Cap Body Thickness 795.6 mm
Cushion Thickness 787.4 mm
Cushion Material Micarta & Aluminum

With the soil properties, static methods were employed to estimate the SRD. 

Although these are not always ideal (SRD and ultimate pile capacity are not always 

identical) it is a reasonable start. For offshore piling, two methods were used for this 

purpose: the Dennis and Olson (1983) method for clay and the API RP2A method 

(American Petroleum Institute (2002)), which is widely used and recommended 

by Mukherjee and Nagarajub (2013) in the region under consideration. Applying 

the soil properties and pile geometry, the ultimate capacities (which are then used 

for the SRD) are shown in Table 7. Both methods indicated that most (~99%) of 

the SRD was shaft resistance, which is typical for this type of pile. All other soil 

properties entered into GRLWEAP followed the recommendations of the software 

instructions except for the shaft damping, which was set at either 0.2 sec/m or 0.3 

sec/m, following the recommendations of Mukherjee and Nagarajub (2013).



174

The blow count results at the SRD computed for both static methods and 

damping parameters are shown in Table 7.

Table 7	 SRD and Blow Count Results from GRLWEAP Calculations

Parameter Dennis and Olson (1983) American Petroleum 
Institute (2002)

SRD, kN 20,279 26,417
Blow Count, 0.3 sec/m 
damping, blows/m

72.5 142.3

Blow Count, 0.2 sec/m 
damping, blows/m

61.2 109.3

Blow Count, 0.3 sec/m 
damping, blows/0.3 m

21.8 42.7

Blow Count, 0.2 sec/m 
damping, blows/0.3 m

18.4 32.8

Decreasing the damping by a third resulted in a 20-30% change in the blow 

count, which illustrates the sensitivity of the results to the damping.

The bearing graph that resulted for damping of 0.3 sec/m is shown in Figure 

61.
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Figure 61	 Bearing Graph Results for GRLWEAP Comparison

The force and velocity time curves for the same damping are given in Figure 

62.
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Figure 62	 Force-and Velocity-Time Results for GRLWEAP Comparison

It should be noted that the pile head velocity was multiplied by the 

impedance of the pile to enable it to be plotted with the force, in accordance with 

semi-infinite pile theory (Warrington (1997)). It should also be noted that the force-

time history was for an SRD higher than either of the computed estimates.

STADYN Results

The input for STADYN used the same method as before. The model is shown 

in Figure 63.



177

Figure 63 STADYN Model for GRLWEAP Comparison



178

The dynamic run was done first and the results were shown in Figure 64.

Figure 64	 STADYN Force-, Velocity-and Displacement-Time Results for 
GRLWEAP Comparison

The pile, within internal oscillations, stabilized after about 3L/c. Thus, a more 

reasonable result for the permanent set/blow count could be expected. Using the 

STADYN criterion developed earlier, the blow count was 51.6 blows/300 mm, or 172 

blows/meter.

Static load test results are shown in Figure 65.
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Figure 65	 STADYN Static Load Results for GRLWEAP Comparison

The static load test was run two ways. One was with the load at the pile 

head. The other was a “mudline” test, i.e., if the pile was cut off at the mudline and 

statically load tested there. The latter variant, which is shown in Figure 65, was 

done for two reasons:

To have results which corresponded with the method of Randolph and Wroth 1.	

(1978), which assumes a pile starting at the mudline. The Davisson line is for 

the mudline case.

To investigate the effects of the unsupported length of the pile on the static load-2.	

deflection test.

The interpretations of those static load tests are summarized in Table 8.



180

Table 8	 Static Load Interpretations for GRLWEAP Comparison

Interpretation Method Mudline Test, kN Actual Pile Head Test, kN
Davisson Load 34285 34290
Brinch-Hansen 80% Load 35627 37111
Brinch-Hansen 90% Load 35627 35627
Maximum Curvature Load 35627 35627
Slope-Tangent Load 35253 35253

The results vary little between the two cases, and for that matter are 

consistent among themselves.

Comparison of the Results

The following observations are made in comparing the force and velocity 

results of the two methods:

The peak pile head force for GRLWEAP was 21856 kN and for STADYN 22158 1.	

kN, a difference of 1.4%.

The peak pile head velocity for GRLWEAP was 2.48 m/sec and for STADYN 2.59 2.	

m/sec, a difference of 4.2%.

One possible explanation as to why STADYN's values for force and velocity were 3.	

higher than GRLWEAP's is that the latter uses a dissipative model (coefficient 

of restitution) model at the interfaces. Another source of difference may be beam 

effects in the cap, which would have increased the cap's flexibility and thus its 

spring constant.

The most divergent results were those of the blow count and SRD. STADYN's 

blow count was 21% greater than GRLWEAP's at the higher (0.3 sec/m) damping 

value and using the method of the American Petroleum Institute (2002). STADYN's 
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SRD was even more divergent, being 31% higher than the method of the American 

Petroleum Institute (2002). The blow count results are considered first.

Figure 61 shows a range of possible SRD's and blow counts, as is typical with 

bearing graphs. The whole rationale for the bearing graph approach is to allow for 

variations in actual SRD and to quantify those variations using the actual blow 

count results. If STADYN's actual predicted blow count was replicated in the field, 

using Figure 61 and linear interpolation the SRD would be estimated to be 26,577 

kN, which is 1.7% greater than the SRD estimated by the method of the American 

Petroleum Institute (2002). So the significance of this blow count variation at this 

range of SRD's is not great.

This variation should be compared with the variations induced by changing 

the damping coefficient. If the damping coefficient is increased less than 10% 

from its upper bound value of 0.3 sec/m, then the SRD estimated by the method 

of the American Petroleum Institute (2002) would allow GRLWEAP to replicate 

STADYN's blow count estimate. This should be compared with the effects of 

decreasing the damping coefficient to its lower bound values, which can be seen in 

Table 7.

This leaves the divergence in SRD between STADYN and the method of 

American Petroleum Institute (2002) and even more the method of Dennis and 

Olson (1983). At this point, some important factors need to be considered.

First, it is admitted that Davisson's Method, for all of its virtues, is not 

entirely relevant for offshore piling. However, Table 8 shows that the results from 

the other methods–which are more intended to determine a plunging failure point–

are not that different from Davisson's.

Second, static load testing is uncommon in offshore piling due to their size 

and the cost of testing. Most piles for offshore structures, be they driven or suction 
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piles, are primarily loaded laterally or in tension. The lateral capacity of piles is 

beyond both GRLWEAP and STADYN; the tension capacity for high frictional 

piles such as this one is very close to the compressive. Further complicating the 

comparison is, as Audibert and Banford (1989) noted about static methods of pile 

capacity, “...the effects of pile plugging, the time after driving, and the increase 

with time in the shear transfer capacity (commonly referred to as set-up), were not 

considered.” The American Petroleum Institute (2002) method was one of those 

static methods explicitly discussed by Audibert and Banford (1989). In offshore 

piling, set-up can take years to complete, and was not included in the STADYN 

model.

Third, the static load tests at the mudline and when the pile's protrusion 

is included had virtually identical static load capacities but very different force-

deflection characteristics. For the SRD's estimated by Dennis and Olson (1983) 

and the API RP2A methods, the deflections of the mudline case and the actual 

pile head case vary by approximately 40-47 mm, which is a significant difference. 

With a conventional offshore platform, a static load test would be run from the top 

(before the platform is grouted to the pile) and in service, the mudline case would 

be more relevant to the actual performance of the pile. Irrespective of the merits 

of STADYN's method for estimated static load capacity and SRD, this was another 

illustration of the fallacy of divorcing the load-deflection characteristics of the pile 

from its capacity, which traditional static load capacity methods tend to do.

Finally, for cohesive soils one thing that would bring down STADYN's SRD 

would be to apply an alpha factor to the soil cohesion. With this type of a method, 

the SRD and capacity are assumed independent of effective stress and solely 

dependent upon cohesion, which complies with Mohr-Coulomb theory (see Equation 

19.) However, other static methods are “beta” methods, which include the effects 

of effective stress. The API RP2A method attempts to combine the two. One way to 
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model this in STADYN would be to include some friction by making ξ < 1, either in 

the entire soil mass or in the elements adjacent to the pile (interface elements.) This 

must be done carefully, however, because STADYN includes effects of soil elasticity 

and the deflection that results therefrom, and may require different adjustments 

than is conventionally done with static methods. This issue was discussed in 

Serdaroglu (2010) and needs further investigation.

An important conclusion is that the static methods used in conjunction with 

GRLWEAP and the static load interpretation methods used to reduce STADYN’s 

methodology to “a number” are not always directly comparable, especially with the 

long offshore piles under consideration. On the other hand, using the same hammer, 

soil and pile data to define the system, both routines arrive at comparable blow 

count results within the limits of the methodology being employed.
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 CHAPTER IX
 

OPTIMIZATION RUNS AND CAPWAP COMPARISON

With the basic integrity of the model established, it is necessary to test 

STADYN’s signal matching capabilities. For this case, actual field data were made 

available for meaningful comparison.

Overview of Field Data

The field data were taken from Mondello and Killingsworth (2014). The 

pile driven was a test pile to verify the performance of the Vulcan SC-9 hammer, 

which is a relatively new type of air/steam hammer. There were no soil boring 

logs available for this test site; however, for a location less than 500 meters from 

the test pile, a soil boring was available and is shown–along with the key for soil 

consistency–in Figure 66. The key for the Unified System of soil classification is 

shown in Figure 67.
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Figure 66 Soil Boring Logs for Nearby Job (from USACE Solicitation W912P8-10-
R-0011)

Figure 67 Unifi ed Soil System Key for Figure 66 (from USACE Solicitation 
W912P8-10-R0011)
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The actual force-and velocity-time curves are shown in Figure 68 and the 

estimated static load test results (based on CAPWAP data) are shown in Figure 69. 

A photo of the test setup, showing the hammer and pile, can be seen in Figure 70.

Figure 68	 Force-time and Velocity-time histories for SC-9 Test (from Mondello 
and Killingsworth (2014))
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Figure 69	 Estimated Static Load Test Results (from Mondello and Killingsworth 
(2014))
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Figure 70	 Test Setup for Mondello and Killingsworth (2014)

There are some things to note about this test and the data:

The pile is somewhat unusual in that it is a 172 mm O.D. x 13 mm wall 1.	

thickness steel pipe pile, 13.72 meters long, which then has a timber pile 

“stinger” on the end 305 mm in diameter at the top, 254 mm at the butt, and 

10.67 m long. This means that the pile is composite, with two different cross 
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sections and acoustic speeds. Many theoretical methods (such as Liang (2003)) 

and even new signal matching techniques such as iCAP® (Likins, Liang and 

Hyatt (2012)) only permit uniform piles. This is an additional challenge to the 

signal-matching algorithm. Also, since the wood pile “stinger” is larger than 

the pipe pile (it is unusual for a stinger to be larger than the parent pile) it is 

reasonable to expect that the resistance along the shaft of the steel segment will 

be reduced in a sort of “solid jetting” procedure.

The results in Figure 69 include an estimated static load. It is not explicitly 2.	

stated which static load test criterion was used to arrive at this number, or the 

methodology employed, although traditionally CAPWAP has been correlated 

with the Davisson criterion (Rausche et.al. (2010)). The ultimate resistance 

obtained by the method used is 146.3 kN. CAPWAP achieved a Match Quality of 

3.96, which is near the upper limit of typical values for this parameter.

The observed set for the blow being analyzed is 11.73 mm, which translates into 3.	

a blow count of 26 blows/300 mm. While this is not unusual for pile driven into 

the stratigraphy of the New Orleans area, this is a fairly low blow count both for 

pile driving in general and for analysis using pile dynamics in particular. The 

large displacements further add to the variability of the results. It is interesting 

to note that the CAPWAP computed set is 8.33 mm, or a blow count of 36 

blows/300 mm, which is considerably different from the observed blow count. 

One persistent danger in the result is that, with the soil as soft as it is, the 

model always operated close to the collapse load, a characteristic exacerbated 

by the purely plastic nature of the soil’s response beyond the elastic limit (see 

Figure 9.)

The available boring logs indicate that the soils are predominantly soft to 4.	

medium fat clays with some silts and organic material. Based on these data and 
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experience with the soils in the area, the water table was assumed to be 1 meter 

below the ground surface. Static load tests were not available for this job site or 

pile.

For best results using dynamic analysis, measured data are typically taken in 5.	

a “restrike” condition. This is to allow pore water pressures around the pile, 

which are elevated during driving, to dissipate to the state they would be in 

during service. Chen et.al. (2011) show that this process is a consolidation 

process, which involves the elevation and dissipation of pore water pressures. 

Unfortunately in this case the data were taken during driving; the set-up 

factor is unknown. Although this tends to depress the ultimate resistance 

during driving, the effect this has on the correlation introduces yet another 

uncertainty. Wang, Verma and Steward (2009) performed an extensive study 

on set-up factors on a South Louisiana job site; however, they note that “...the 

predictability of the models still needs to be improved with more dynamic and 

static testing data.”

Although Mondello and Killingsworth (2014) state that “(t)he hammer was 6.	

reportedly operated at the maximum 3.0 feet ram stroke height during testing”, 

video taken of the hammer during operation do not indicate that this is the case. 

Since the SC-9 is a closed hammer, i.e., the ram is internal, it is more difficult 

to determine the stroke without instrumentation than it is with an open-style 

hammer.

While many of the aspects of this test project were less than ideal for 

correlation purposes, it was judged suitable because of the availability of a complete 

CAPWAP report on the results.
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Summary of Results

The field recorded pile head force-time curve was input into STADYN and 

the resulting velocity-time traces were compared with field data. This was done 

repetitively, varying the soil parameters with the polytope method, until the 

tolerance of the optimization method was achieved.

To obtain a broad scope of results, the shaft layering was divided in a number 

of ways. A separate layer for the toe resistance was always maintained. The shaft 

layering was divided as follows:

One shaft layer for the entire length of the shaft.1.	

Two shaft layers, one for the upper, steel portion of the shaft and one for the 2.	

lower, wood portion of the shaft.

Four shaft layers, two evenly divided layers for the upper portion and two for the 3.	

lower portion.

Eight shaft layers, four evenly divided layers for the upper portion and four for 4.	

the lower portion.

Each finite element row as a layer, which worked out for twelve (12) layers for 5.	

the upper portion and the same number for the lower.

The two-shaft layer model is shown in Figure 71. The top “layer” was in fact 

the upper layer above the water table and the one under it the upper layer below 

the water table. It should be noted, however, that values of ξ and η are maintained 

at the same value on both sides of the phreatic surface.
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Figure 71 Two Shaft Layer Model for Mondello and Killingsworth (2014) 
Comparison

A summary of the results is given in Table 9. Graphical representation of the 

RMS differences is shown in Figure 72 and the static load test results in Figure 73.
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Table 9	 Overall Results of Mondello and Killingsworth (2014) Comparison

Method Number of 
Shaft Layers

Davisson 
Ultimate 

Capacity, kN

Number of 
Optimization 

Steps
RMS 

Difference

Standard 
Polytope 2 269.5 3000 0.00155

Standard 
Polytope 4 186.2 2996 0.00192

Standard 
Polytope 8 118.1 3000 0.00194

Standard 
Polytope 24 23.0 3000 0.00207

Annealed 
Polytope 2 No Result No Result No Result

Annealed 
Polytope 4 187.1 2515 0.00149

Annealed 
Polytope 8 28.5 2493 0.00200

Annealed 
Polytope 24 160.7 2876 0.00175
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Figure 72	 RMS Differences of Mondello and Killingsworth (2014) Comparison

Figure 73	 Static Load Test Results of Mondello and Killingsworth (2014) 
Comparison
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The single shaft layer runs produced no meaningful result. The optimization 

methods drifted into unrealistic values of η, which given the soft soils was always a 

danger. In any case single layer runs for this particular pile configuration were not 

realistic; the stratigraphy may justify using it, but the vast differences in the pile 

profile did not. The annealed two-layer run likewise did not produce a meaningful 

result; the perturbations induced by the annealing method produced unrealistic soil 

properties from which the optimization routine could not recover.

Details of Standard Two-Layer Case

The two-layer standard (non-annealed) optimization produced the lowest 

RMS difference between the actual and computed velocity-time histories for the 

standard runs and is the simplest from the standpoint of visualizing the results. 

The first data produced will be the two velocity-time histories, shown in Figure 74.

Figure 74	 Velocity-Time Histories, Two-Layer Standard Polytope Case
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The tracking of the computed values with the actual values was reasonable 

if not exact. Parasite oscillations can be seen with the computed velocity, although 

their effect is largely self-canceling in the computation of RMS difference. It is 

important to note that, as opposed to the modeled hammer runs, the parasite 

oscillations were not due to interface effects.

The optimization history is shown in Figure 75.

Figure 75	 Optimization History, Two-Layer Standard Polytope Case

The values for ξ and η have their axis on the left. To simplify passing the 

parameters to the dynamic analysis routine during optimization, they were given 

integer indices. To translate them to actual soil parameters, ξ values are odd and 

η values are even; the layer number for the η value is half of the index and the 

corresponding ξ value is one less. Thus, parameters 1 and 2 are for the layer facing 

the steel portion, parameters 3 and 4 are for the wood portion, and 5 and 6 are for 

the toe. The RMS difference has its axis on the right. The x-axis is the number for 

the optimization step.
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The initial steps at the left show the routine forming the initial polytope. 

This is essential for this type of routine, and in this case, the range of values is 

important, as it needs to be as broad as practicable to avoid local minima. In this 

case, the goal was to cover the region shown in Figure 17 as completely as possible. 

Once this initial polytope was formed, the routine continued until the RMS values 

reached the tolerance. It is important to note that the minimum case for RMS value 

was not necessarily the last one, but for the standard run could be any of the last 

six cases considered (six being the number of parameters, which can vary with other 

layering schemes.) The case with the lowest RMS value was chosen as the result of 

the optimization.

One major difficulty with the standard runs (as inspection of Table 9 

indicates) is that the tolerance chosen was too tight. As is evident from Figure 75, 

the values for ξ, η and the RMS difference converged fairly quickly, but very small 

oscillations of the RMS difference kept the differences outside of the tolerance 

without improving the result.

The layer-by-layer results can be seen more easily in Figure 76.
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Figure 76 Layer-by-Layer Results, Two-Layer Standard Polytope Case

The static load test result is shown in Figure 77. The SRD of this case was 

the highest of any of the cases.
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Figure 77	 Static Load Test Result, Two-Layer Standard Polytope Case

Turning to the two-dimensional results, the stress-time history (similar to 

Figure 60) is shown in Figure 78.

Figure 78	 Stress-Time History, Two-Layer Standard Polytope Case
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The effect of the cross-section and material change from steel to wood can be 

seen very clearly here. The stress levels in the wood were much lower than they are 

in the steel. The reflections from the pile toe, the interface between steel and wood 

and the shaft resistance made the response of this pile to impact very complex.

The displacement-time history (similar to Figure 59) is shown in Figure 79.

Figure 79	 y-displacement-time History, Two-Layer Standard Polytope Case

The change in acoustic speed from steel to wood can be seen, along with the 

effects of the reflections. The change in displacement along the pile axis was not as 

pronounced as the pile stresses.

The first principal stresses for the static case immediately after Davisson’s 

failure criterion are shown in Figure 80.
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Figure 80	 First Principal Stresses, Two-Layer Standard Polytope Case

The variation in the stresses was minimal. Of interest is the point at the 

splice between steel and wood, shown in Figure 81.
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Figure 81	 First Principal Stresses at Pile Splice, Two-Layer Standard Polytope 
Case

The change in stress and cross section–which so affected the dynamic 

results–was very evident here. Also evident was the way in which it is necessary to 

effect transitions in the pile cross-section, as was the case in Figure 58.

The vertical displacements are shown for the entire system in Figure 82.
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Figure 82	 Vertical Displacements, Two-Layer Standard Polytope Case

The significant vertical displacements at the elevation of the steel pile were 

due to the fact that the optimization routine set the η value of the second layer 

(Parameter 4 in Figure 75) low, and thus the unit weight of the soil was low, leading 

to downward displacement of the upper regions. This illustrates the difficulties in 

analyzing such soft soils.

The vertical displacements at the pile splice are shown in Figure 83 and at 

the pile toe in Figure 84.
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Figure 83	 Vertical Displacements, Two-Layer Standard Polytope Case, Steel-
Wood Interface

The soil displacements near the soil-wood pile interface were greater than 

those of the pile at the same elevation. This indicated a down-drag effect; whether 

this is actually taking place or is simply an effect of the property layering results 

was not clear.
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Figure 84	 Vertical Displacements, Two-Layer Standard Polytope Case, Pile Toe

The pile and soil almost formed a continuum in this case. This illustrates 

the fact that with wood piles (and to a lesser extent concrete) the properties of the 

soil and the soil are not as divergent as they are with steel. This influences the way 

these materials interact with the soils.
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Other Optimization Cases

Inspection of Figures 72 and 73 showed that, for the standard runs, the RMS 

difference tended to increase with the number of layers analyzed and the SRD 

tended to decrease. The addition of layers tended to make signal matching harder, 

which is not a usual result in an optimization problem.

This result, however, should be considered in view of the annealed runs, also 

shown in Figures 72 and 73. Two of the better matches are at both “ends” of the 

annealed cases, i.e., the four-and 24-layer cases. In fact, the four-layer case had the 

best RMS matching of all of the runs, standard or annealed. The 8-layer case was 

something of an outlier, having both the highest RMS result and the lowest SRD 

of any annealed case (only the 24-layer standard case was outside of these results.) 

Of greater interest is the fact that, for both of the four-layer cases, the SRD was 

virtually identical, although the RMS matching was not.

To examine this further, first the velocity-time history for the four-layer 

annealed case is shown in Figure 85.
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Figure 85	 Velocity-Time Histories, Four-Layer Annealed Polytope Case

The results are similar to those in Figure 74. Again the largest divergence 

came in the region between L/c and 2L/c, which may indicate spurious shifting of the 

accelerometers during rebound. Poskitt and Yip-Wong (1991) discuss the possible 

effects of accelerometer mounting and resonance effects in pile instrumentation.

The optimization history of the four-layer annealed case is shown in Figure 

86. The layer numbering is similar to that in Figure 75.
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Figure 86	 Optimization History, Four-Layer Annealed Polytope Case

Comparison of Figure 75 with Figure 86 shows the much broader range of 

values of η (and thus the RMS difference) which the annealing technique explored. 

However, one of the major challenges (especially for the annealed cases) was to 

select an appropriate stopping tolerance. As is evident, the stopping tolerance was 

too small for this and the other annealed cases.

The values of ξ and η for both the standard and polytope four-layer cases are 

shown in Figure 87.



210

Figure 87 Layer-by-Layer Results, Four-Layer Standard and Annealed Polytope 
Cases

There is considerable divergence for the ξ results for the odd-numbered layers 

and the toe. The η results were similar until the last shaft layer and the toe. It 

seems that the model varied in its assignment of pile end resistance between shaft 

layer four and the toe. With the standard run, the difference between the two was 

not as pronounced as with the annealed model; this shifted the resistance almost 

entirely to the toe. This was also the case with the standard two-layer model, as can 

be seen in Figure 76. It should be noted that the lower layer(s) faced a tapered wood 

pile; as noted earlier, tapered pile sections are not true shaft or toe interfaces but 

are somewhere between the two.

In spite of this difference, the SRD for both four-layer cases were very close, 

and this related to the uniqueness issue.
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 CHAPTER X
 

DISCUSSION

Revisiting the Uniqueness Issue

As discussed earlier, the issue of uniqueness has been a contentious one 

since Rausche et.al. (1972) and Screwvala (1973). Using a methodology that is as 

significantly different as STADYN’s is from CAPWAP can, perhaps, put a new 

perspective on this problem.

In a sense, finite element models such as STADYN only add to the 

uniqueness problem because of their multiple iterations. This takes place in 

STADYN at several levels; it iterates to find the stress state at the failure 

surface if the failure criterion exceeds zero, and for the static runs it iterates the 

incremental displacements until they too reach a certain tolerance. Such iterations 

are unavoidable with plasticity models such as this, and are common with finite 

element analyses. They raise uniqueness issues of their own, but the objective is to 

find the most likely set of elastic and plastic stress states in the system. This allows 

the analysis of the soil as a continuum with distributed mass and elasticity rather 

than as a simplified rheology.

Once the method of analyzing plasticity is determined, the issue of arriving at 

a pile capacity given the data from dynamic testing can be addressed. Here, in spite 

of the considerable differences between STADYN and CAPWAP, the similarities can 

be highlighted. A reasonable approach to understanding is to consider both methods 

as linear transformations (Bowen and Wang (1976)) of dimension
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Here n represents the number of parameters being varied in the system, be 

they quakes, dampings and resistances (CAPWAP) or ξ and η (STADYN.) On the 

right hand side is the signal matching parameter. For CAPWAP, this is the Match 

Quality; for STADYN, it is the least squares result of Equation 115.

Now consider the inverse of this transformation,

In both cases, the number of system parameters (a vector) exceeds the 

number of signal matching parameters (a scalar.) Without a lengthy discussion 

of linear transformations, neither transformation is isomorphic, and thus the 

transformation shown in Equation 118 is not invertible. The system parameters 

can be taken and (with a given model) obtain a specific signal matching parameter, 

but a signal matching parameter cannot be taken to generate a unique set of 

system parameters as shown in Equation 119. The same difficulty occurs if the 

right hand side of Equations 118 and 119 is the SRD of the pile. The issue is further 

complicated by the fact that there is no relationship that can be established between 

a signal matching parameter and a static pile capacity or resistance. Thus, it is 

likely that, with a given signal matching, more than one possible pile capacity can 

be determined. This is essentially the conclusion of Danzinger et.al. (1996), albeit 

they came to this conclusion through a different process.

At first glance, this makes the solution impossible. In reality, a great deal of 

optimization relies on the satisfaction of one output parameter with multiple input 

parameters. In solving for an SRD, what is being sought is not the unique solution 

to the problem, but the most likely solution to the problem. On the other hand, 

construction of a unique soil profile along the pile shaft and at the toe is impossible 
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because of the difficulties of Equation 119. This is illustrated in Figure 87, where 

two different soil profiles generate nearly identical values for SRD.

As far as the problems surrounding Equation 9 are concerned, there are a 

number of ways this can be dealt with. As discussed earlier, the parameters are 

dependent of one another. It is also possible to eliminate the first derivative term 

with Rayleigh damping, although this must be done in the context of the frequency 

range of the impulse from the pile. In a sense, STADYN did this on a number of 

levels. It models the soil with only mass and elasticity, and it models the interfaces 

in the same way. STADYN also has the advantage of being capable of matching the 

velocity-time history given a force-time one rather than the other way around, as 

CAPWAP does. Matching the velocity-time history, and thus through integration 

the displacement-time history, eliminates the blow count discrepancies that 

Danzinger et.al. (1996) noted. This advantage was not achieved through conscious 

decision but through the nature of the finite element model itself.

If the physical modeling of the system replicates its physical reality, then the 

force-time and velocity-time histories of both at the pile head should be the same. 

The object of signal matching is to achieve this goal. The method used for signal 

matching does not have to involve the mathematics of the modeling, but it does 

need to arrive at its objective with as little intervention as possible. The best way to 

achieve this goal is to have the physical modeling of the system accurately represent 

the behavior in actual driving and loading. If the limitations and uncertainties 

of the method relative to the results obtained are understood, then the issue of 

uniqueness is less significant.

There are two other issues that need mention here: the issue of initial 

conditions and the use of data collection from the pile head only.
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Variations in results from optimization or matching schemes due to different 

initial conditions is a persistent problem in a problem such as this one where 

multiple local minima are present. The use of the polytope method, annealed 

and non-annealed, was an attempt to cast as wide of a net as possible and avoid 

being trapped in these local minima. Investigation of alternate starting points 

was very limited in this study, and requires further research. With the expanded 

computational power available, problems such as this can be investigated 

more readily than in the past. This also touches on another issue that was not 

investigated in this study: residual stresses. With residual stresses, the initial 

conditions are determined by means other than only effective stresses. This will 

obviously have an effect on the results, although convergence with multiple runs 

should be expected.

All of the modeling and results for both systems are based on pile head data 

collection. As was the case many years ago with Glanville et.al. (1938), monitoring 

dynamic parameters at points along the pile other than the head produces useful 

results that make it possible to better quantify the performance of the system. 

Fellenius (2014) advocates this for static testing, and dynamic testing would benefit 

from it as well. McVay et.al. (2002) and Alvarez, Zuckerman and Lemke (2006) 

made significant progress in demonstrating the viability of this concept with field 

testing.

Rheology

The rheology of soils is a complex subject which has led to a variety of models 

(Šuklje (1969); Tuma and Abdel-Hady (1973)). One-dimensional pile dynamics 

has further complicated matters by introducing soil models that are specific to the 

application, such as that of Smith (1960). Progress in the field will be hindered 

without applying improved rheologies to the problem.
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The Smith (1960) model has been used for many years in both forward and 

inverse applications; however, it has shortcomings, some of which are as follows:

At this point, there is no definite connection between the Smith properties of 1.	

the soil and the more conventional properties which geotechnical engineers are 

familiar with and which are tested for during site investigation. McVay and 

Kuo (1999) attempted to improve this situation but obtaining a definitive result 

ran into several significant barriers, not the least of which was the uniqueness 

issue based on Equations 118 and 119. No where is this more apparent than 

the damping property, whose variations are well documented (Mukherjee and 

Nagarajub (2013)) and whose importance is well understood (Meseck (1985)). 

The nature of the “damping” that is modeled is not entirely clear. Much of 2.	

the damping that takes place during driving is in fact radiation of the stress 

wave from the pile into the distributed mass and elasticity/plasticity of the 

surrounding soil. This is explicitly stated for models such as Randolph and 

Simons (1986) and Corté and Lepert (1986), but radiation damping is an 

additional option for CAPWAP (Rausche et.al. (2010)).

The use of a fixed soil quake for most shaft cases and many toe cases implies an 3.	

invariant failure strain, which is counterintuitive.

One advantage of any 1D model is the lowered cost of computation. This is 

especially advantageous with a signal matching routine such as CAPWAP. This 

advantage becomes less of a factor with rising computational resources.

In including the soil mass, STADYN (along with any other 3D FEA method) 

addressed these problems with a more comprehensive modeling of the soil response. 

But the elasto-plastic Mohr-Coulomb model used in STADYN had difficulties of its 

own, some of which were as follows:
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It was difficult to accurately evaluate the modulus of elasticity of the soil. The 1.	

soil is not elastic to start with; the elasto-plastic model is a crude attempt 

(Massarsch (1983)) to replicate what is in reality closer to a hyperbolic model. 

Because of this and other factors, including the issue of matching strains 

between static and dynamic loading, the modulus of elasticity remained the 

single largest source of error in the soil model.

Lateral stresses due to effective stresses do not have a consistent method 2.	

of evaluation. In principle, a theory of elasticity approach is the best, but in 

practice, other approaches (such as Jaky’s Equation) obtain better results. Since 

the soil exerts a lateral pressure on the pile and that lateral pressure influences 

both shaft and toe resistance, it makes sense that an accurate evaluation of 

these stresses is important.

The properties of the soil mass and the properties of the soil at the pile interface 3.	

are not the same. For the forward method, an expedient method to deal with this 

is the use of interface elements (Serdaroglu (2010)). With the inverse method, 

when the interface properties are assumed, so is the solution, which defeats 

the whole purpose of the inverse method. As the analysis of the Mondello and 

Killingsworth (2014) results shows, even in stratigraphies that are “obviously” 

cohesive, the inverse method returned soils with a degree of friction. The 

alternative to interface elements is to project the interface properties back into 

the soil mass for the purpose of pile dynamics; how much this would influence 

the results is not clear.

The use of the “ ξ - η” system to define soil properties introduces another 

potential inaccuracy into the system. Although the properties that result may be 

“typical,” they may not be the actual soil properties in the field. It is a simplification 

to reduce the number of variables for optimization and to head off results that are 
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physically unlikely if not impossible. How significant the variations from actual 

soil properties are depends upon the property. For some (specific gravity, Poisson’s 

Ratio) the difference may not be great; for others (cohesion, modulus of elasticity) 

the difference may be very important.

One possible improvement to STADYN would have been to include other soil 

models (Potts and Zdravkovic (1999)). As mentioned earlier, the applicability issue 

would come into play; many of these models are designed for specific soil types, and 

with driven piles, the presence of soils of widely varying cohesion and friction is not 

unusual. The lack of common testing methodology has also hindered the advance of 

these models in other applications.

Numerical Method

The selection of appropriate numerical methods has been a significant one 

since Smith (1955). The use of finite-difference methods with the mass concentrated 

at the bottom of each segment is common for wave equation routines; others use 

the method of characteristics or a method more closely related to Equation 7. Given 

the variations possible in the hammer-pile portion of the system, for modeling 

flexibility the requirement that L/c be constant for each pile segment should be 

unnecessary. The main requirement for a successful finite difference method is 

that it be consistent and stable, which by the Lax equivalence theorem guarantees 

its convergence, at least for linear equations. Runge-Kutta methods such as those 

employed by Bossard and Corté (1983) would satisfy this requirement without 

excessive discretization constraints, although segments that produce excessively 

small time steps should be avoided.

The use of explicit methods in finite difference techniques carried over 

into the finite element realm. This was due to two factors: the efficiency of the 
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computation and the issue of “plasticity overrun” discussed earlier. The largest 

departure in STADYN, however, was the use of four-node quadrilaterals in the 

analysis, as opposed to the eight-node serendipity elements common in geotechnical 

engineering. This eliminated some but not all of the numerical noise in the solution.

One of the goals in configuring STADYN was to avoid the application of 

“material damping” which is based primarily on numerical considerations and 

not on material properties. Although more work needs to be done to improve the 

parasite oscillations, the basic configuration of the program is a reasonable platform 

from which to progress.

Optimization Techniques

Mondello and Killingsworth (2014) was not the ideal case for either CAPWAP 

or STADYN for two principal reasons: the low blow count/high set/low SRD of the 

pile, and the lack of either “restrike” data or static load testing, which left elevated 

pore pressures not adequately considered. Nevertheless, some results could be 

obtained from the data, both actual and simulated.

The use of signal-matching techniques that operate according to Equation 

118 have been used for a long time and the discussion on uniqueness applies here. 

In a sense, the use of the word “optimization” was a misnomer in this application; 

the objective was not as much to optimize the design of the pile as to match 

the actual velocity-time history to the simulated one. In both cases, however, a 

parameter was being minimized. Since the search techniques common to this 

problem are referred to as optimization techniques, this usage was retained for this 

study.

In many presentations of pile dynamics, the goal is stated to be the 

separation of the dynamic resistance from the static one. This is explicit in the Case 
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Method (Fellenius (2014)). However, optimization techniques ignore the physics of 

the problem; the match is purely a mathematical construct. This shifts the accuracy 

issue to the modeling of the system. The physics of the problem must be modeled 

realistically and the solution technique must converge properly.

Having chosen to perform signal matching in this way, generally the first 

option to consider was a gradient method of some kind. Problems such as this, 

however, are not well suited for gradient methods because of the presence of 

numerous local minima, to say nothing of the problematic differentiability of the 

function in question. In this respect, the polytope method, simplistic as it is, proved 

a major benefit in searching for the optimum signal match. This was because it 

could “cast a wide net” initially in the construct of the initial polytope, thus reducing 

the dependence of the solution on the selection of the starting point. Being a 

derivative-free method also addressed the nature of the function more reasonably 

than a gradient-based method.

Ultimately, however, the polytope method by itself was not completely 

effective in finding the minimum. By adding annealing, a still wider variety of cases 

could be considered in the search for the best signal matching. The four-and 24-

layer annealed cases produced similar results to each other, and the two four-layer 

cases matched each other well. This suggests that, in the interim of finding the 

“best” method for search, more than one method be applied to the problem to insure 

that the optimum matching has taken place.

Varying the methodology also brings up two other parameters: the 

discretization (layering) of the pile and the aggregation of the soil properties. 

Optimization techniques work best with fewer parameters to optimize. In the case 

of the soil properties, the “ ξ - η “ system has been discussed; further refinement of 

this is needed. Layering soils, however, by assuming that the properties in certain 
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regions of the stratum are uniform, is a well-established practice in soil mechanics 

and foundation design. Too few layers result in an oversimplified soil profile that 

does not properly represent the soils at hand; too many layers risk overloading the 

optimization technique. Part of any search for an optimum signal match should 

include varying the way the soils are layered in the model. Here some help from the 

soil borings would be a legitimate form of intervention.

One major disadvantage of the polytope method (especially in its annealed 

form) was the slowness of the convergence. It is possible that a gradient method 

coupled with annealing, would speed up the search while at the same time avoid 

local minima through the annealing process. This was not tried in this study. The 

major source of the slowness, however, was the costly nature of the 3D FEA. These 

techniques could be just as easily be applied to a Smith (1960) model, although the 

limitations of that model would still apply.
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 CHAPTER XI
 

CONCLUSION AND RECOMMENDATIONS FOR FURTHER STUDY

The finite element method is a well-established method for the analysis of 1.	

piles under high rate strain analysis. In spite of the numerical difficulties, the 

method has been successfully applied to the problem since the early 1980’s, and 

STADYN is yet another code for this purpose.

The addition of features to STADYN specific to the application, such as soil 2.	

layering and hammer modeling, were very useful for proper running of the 

model, especially in the inverse method. Also, the use of four-node quadrilateral 

elements, while unusual for geotechnical applications, proved to be effective for 

high-strain dynamic methods. These improvements illustrate that the use of 

packaged, general purpose codes, while very much the norm in this application 

for the last twenty years, may not be the best way to implement the finite 

element method in pile dynamics.

Explicit methods for dynamic analysis gave the most satisfactory results due 3.	

to plasticity considerations. An invariant stiffness matrix also performed 

satisfactorily for the static analysis; this is especially true if the “load test” is 

stopped after the Davisson criterion is reached.

In spite of its limitations, the Mohr-Coulomb model is arguably the best for this 4.	

application. This is due to the variations in soils into which piles are driven. 

The greatest weakness shown in STADYN was with purely cohesionless soils. 

Cohesive soils generally have received the most attention; however, from a finite 

element analysis standpoint their behavior is closest to conventional Tresca type 
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failure and their elasto-plastic matrix is, in the purely cohesive state, symmetric. 

More study is necessary on this topic.

The use of the “same” model for both static and dynamic analysis in the forward 5.	

mode was successfully developed and demonstrated. Good results were obtained 

when compared with actual static load test data. The largest discrepancy 

between STADYN and GRLWEAP came in the definition of the static load of the 

pile.

Although the case under consideration was not ideal, the polytope method–6.	

standard and annealed–showed potential as a signal-matching technique for 

the inverse method, although much work needs to be done using cases with both 

static load test results and higher blow counts.

There are many issues which were not resolved in this study but which need to 7.	

be addressed for STADYN to be used in actual practice. They include residual 

stress analysis, pile set-up and the effect (and estimation) of elevated pore 

water pressures and thixotropic effects, a better method of final set estimation, 

plasticity in hammer and pile cushions, and studies using concrete piles.
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