this document downloaded from vulcanhammernet Since 1997, your complete online resource for information geotecnical engineering and deep foundations:

The Wave Equation Page for Piling

Online books on all aspects of soil mechanics, foundations and marine construction

Free general engineering and geotechnical software
And much more...

Terms and Condifions of Use:

All of the information, data and computer software ("information") presented on this web site is for general information only. While every effort will be made to insure its accuracy, this information should not be used or relied on for any specific application without independent, competent professional examination and verification of its accuracy, suitability and applicability by a licensed professional. Anyone making use of this information does so at his or her own risk and assumes any and all liability resulting from such use. The entire risk as to quality or usability of the information contained within is with the reader. In no event will this web page or webmaster be held liable, nor does this web page or its webmaster provide insurance against liability, for any damages including lost profits, lost savings or any other incidental or consequential damages arising from the use or inability to use the information contained within.

This site is not an official site of Prentice-Hall, Pile Buck, the University of Tennessee at Chattanooga, or Vulcan Foundation Equipment. All references to sources of software, equipment, parts, service or repairs do not constitute an endorsement.

FINITE ELEMENTS IN PLASTICITY: Theory and Practice

D. R. J. OWEN
E. HINTON
Department of Civil Engineering
University College of Swansea, U.K.

Pineridge Press Limited Swansea, U.K.

First published 1980 by
Pineridge Press Limited
91 West Cross Lane, West Cross, Swansea U.K.
ISBN 0-906674-05-2
Copyright © 1980 by
Pineridge Press Limited.
OWEN, D. R. J.
Finite Elements in Plasticity

1. Elasticity
2. Plasticity
3. Finite Element Method
I. Title II. HINTON, E.
620.1'123 TA418

ISBN 0-906674-05-2
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publishers.

Contents

PART I

1 Introduction 3
1.1 Introductory remarks 3
1.2 Aims and layout 3
1.3 Program structure 8
1.4 References 11
2 One-dimensional nonlinear problems 13
2.1 Introduction 13
2.2 Basic numerical solution processes for nonlinear problems 13
2.3 Systems governed by a quasi-harmonic equation 22
2.4 Nonlinear elastic problems 25
2.5 Elasto-plastic problems in one dimension 26
2.6 Problems 29
2.7 References 31
3 Structure of computer programs for the solution of nonlinear problems 33
3.1 Introduction 33
3.2 Input data subroutine, DATA 35
3.3 Subroutine NONAL 40
3.4 Subroutines for equation assembly and solution 42
3.5 Output of results 58
3.6 Subroutine INITAL 59
3.7 Load increment subroutine, INCLOD 60
3.8 The master or controlling segment 61
3.9 Program for the solution of one-dimensional quasi- harmonic problems by direct iteration 63
3.10 Program for the solution of one-dimensional quasi- harmonic problems by the Newton-Raphson method 68
3.11 Program for the solution of nonlinear elastic problems 74
3.12 Program for the solution of elasto-plastic problems 78
3.13 Pioblems 90
3.14 References 94
4 Viscoplastic problems in one dimension 95
4.1 Introduction 95
4.2 Basic theory 95
4.3 Numerical solution process 99
4.4 Limiting time-step length 102
4.5 Computational procedure 103
4.6 Program structure 104
4.7 Element stiffness subroutine STUNVP 106
4.8 Subroutine INCVP for the evaluation of end of time-step quantities and equilibrium correction terms 107
4.9 Convergence monitoring subroutine, CONVP 109
4.10 Subroutine INCLOD 110
4.11 The main, master or controlling segment 111
4.12 Numerical examples 113
4.13 Problems 117
4.14 References 119
5 Elasto-plastic Timoshenko beam analysis 121
5.1 Introduction 121
5.2 The basic assumptions of Timoshenko beam theory 122
5.3 Finite element idealisation for linear elastic Timoshenko beams 125
5.4 Elasto-plastic nonlayered Timoshenko beams 129
5.5 Elasto-plastic layered Timoshenko beams 141
5.6 Problems 148
5.7 References 152
PART II
6 Preliminary theory and standard subroutines for two-dimensional elasto-plastic applications 157
6.1 Introduction 157
6.2 Virtual work expression for various solid mechanics applications 162
6.3 Isoparametric finite element representation 169
6.4 Standard subroutines for linear elastic finite element analysis 174
6.5 Standard subroutines for elasto-plastic finite element analysis 205
6.6 Problems 214
6.7 References 214
7 Elasto-plastic problems in two dimensions 215
7.1 Introduction 215
7.2 The mathematical theory of plasticity 215
7.3 Matrix formulation 227
7.4 Alternative form of the yield criteria for numerical compu- tation 229
7.5 Basic expressions for two-dimensional problems 232
7.6 Singular points on the yield surface 234
7.7 Finite element expressions and program structure 235
7.8 Additional program subroutines 237
7.9 Numerical examples 262
7.10 Problems 265
7.11 References 268
8 Elasto-viscoplastic problems in two dimensions 271
8.1 Introduction 271
8.2 Theory of elasto-viscoplastic solids 272
8.3 Selection of the time-step length 276
8.4 Computational procedure 278
8.5 Evaluation of matrix \boldsymbol{H} 279
8.6 Program structure 281
8.7 Formulation of the tangential stiffness matrix 283
8.8 Subroutine STEPVP for the evaluation of end of time step quantities and equilibrium correction terms 289
8.9 Subroutine FLOWVP 294
8.10 Subroutine STRESS 295
8.11 Subroutine ZERO 297
8.12 Subroutine STEADY for monitoring steady state con- vergence 297
8.13 The main, master or controlling segment 299
8.14 General comparison of implicit and explicit time inte- gration schemes 302
8.15 The overlay method for improved material response 304
8.16 Numerical examples 310
8.17 Problems 315
8.18 References 317
9 Elasto-plastic Mindlin plate bending analysis 319
9.1 Introduction 319
9.2 Equilibrium equations 321
9.3 Discretisation 324
9.4 Solution of nonlinear equations 326
9.5 Software for the nonlayered approach 331
9.6 Software for the layered approach 355
9.7 Examples 370
9.8 Problems 372
9.9 References 373
PART III
10 Explicit transient dynamic analysis 377
10.1 Introduction 377
10.2 Dynamic equilibrium equations 378
10.3 Modelling of nonlinearities 381
10.4 Explicit time integration scheme 388
10.5 Critical time step 391
10.6 Program DYNPAK 392
10.7 Examples 420
10.8 Problems 428
10.9 References 429
11 Implicit-explicit transient dynamic analysis 431
11.1 Introduction 431
11.2 Implicit time integration 432
11.3 Implicit-explicit algorithm 434
11.4 Evaluation of the tangential stiffness matrix 439
11.5 Program MIXDYN 440
11.6 Examples 458
11.7 Problems 462
11.8 References 462
12 Alternative formulations and further applications 465
12.1 Introduction 465
12.2 List of subroutines 466
12.3 Alternative material models 476
12.4 Further applications 480
12.5 Equation solving techniques 490
12.6 Other enhancements in elasto-plastic analysis 493
12.7 Concluding remarks 495
12.8 References 496
Appendix I Instructions for preparing input data for one-dimensional problems 503
Appendix II Instructions for preparing input data for plane, axisym- metric and plate bending problems 511
Appendix III Instructions for preparing input data for dynamic transient problems 521
Appendix IV Sample input data and line printer output for one- and two-dimensional applications 529
Author Index 585
Subject Index 589

Preface

The purpose of this text is to present and demonstrate the use of finite element based methods for the solution of problems involving plasticity. As well as the conventional quasi-static incremental theory of plasticity, attention is given to the slow transient phenomenon of elasto-viscoplastic behaviour and also to dynamic transient problems. We make no pretence that the text provides a complete treatment of any of these topics but rather we see it as an attempt to present numerical solution techniques, which have been well tried and tested, for selected important areas of application.
In our earlier books on finite elements we have concentrated on linear applications. Here we attempt the much more daunting task of introducing, in detail, the use of finite elements for solving problems in which plasticity effects are present. To our knowledge it is the first such book. Our main idea is to present the theory and detailed algorithms in the form of modular routines written in FORTRAN which can be linked together to form 13 finite element plasticity programs.

Writing this book has been in itself, rather like solving a nonlinear finite element problem. We have gone through many iterations and we hope that we have now converged to a reasonable 'solution'. As in many real engineering situations our convergence criterion has been influenced by a deadline. In our case the deadline was largely self-imposed as we have already been engaged on this project for more than three years. We do not believe our solution to be unique or in any sense optimal. We merely offer it to fill a gap in the existing literature.

The text is arranged in three main parts. Part I is devoted to onedimensional problems. These relatively simple applications are possibly the most important in the book; since all the essential features of nonlinear finite element analysis are immediately recognisable without the distractions and complications that are present in general continuum problems. Part II deals with the two-dimensional applications of plane stress/strain and axisymmetric continua and plate bending problems. Finally in Part III we present some dynamic transient applications and briefly describe some further developments.

All of the programs presented in this text have been specially written by the authors. In the development of the subroutines for the solution algorithms described, a conflict inevitably arose between computational efficiency
and clarity of coding. Whatever sacrifices have been made have been biased towards satisfying the latter condition. However, we believe that the codes presented are both reasonably efficient and flexible and have potential usage in commercial as well as teaching and research environments. A total of 132 subroutines are presented which amount to more than 8,000 statements. The 13 assembled programs comprise approximately 20,000 statements. To aid readers wishing to implement the programs a magnetic tape of the computer codes together with the test input data listed in Appendix IV is available from the publishers. Although every attempt has been made to verify the programs, no responsibility can be accepted for their performance in practice.

A further feature of the book is that each chapter contains several exercises for further study.

We are indebted to many people for their direct or indirect assistance in the preparation of this text. This preface would not be complete without an acknowledgment of this debt and a record of our gratitude to the following: To Professor O. C. Zienkiewicz for his pioneering work and stimulating influence. To Professor G. C. Nayak whose work on numerical analysis of plasticity problems has significantly influenced the present text. To Dr. I. C. Cormeau whose thesis on viscoplasticity has been an invaluable source of information. To Professor K. J. Bathe for permission to use the profile equation solver included in Chapter 11. To N. Bicanic, D. K. Paul, H. H. Abdel Rahman and M. M. Huq for their generous assistance in the preparation of several chapters. To our colleagues and former research workers in the Department of Civil Engineering, University College of Swansea for helpful discussions and suggestions. To E. S. Caldis for his care in preparing annotated computer listings and, finally, to Mrs. M. J. Davies for her skill and patience in typing the manuscript.
D. R. J. OWEN
E. HINTON

Swansea, May 1980

Part I

Chapter 1
 Introduction

1.1 Introductory remarks

The finite element method is now firmly accepted as a most powerful general technique for the numerical solution of a variety of problems encountered in engineering. Applications range from the stress analysis of solids to the solution of acoustical, neutron physics and fluid dynamics problems.. Indeed the finite element process is now established as a general numerical method for the solution of partial differential equation systems, subject to known boundary and/or initial conditions.

For linear analysis, at least, the technique is widely employed as a design tool. Similar acceptance for nonlinear situations is dependent on two major factors. Firstly, in view of the increased numerical operations associated with nonlinear problems, considerable computing power is required. Developments in the last decade or so have ensured that high-speed digital computers which meet this need are now available and present indications are that reductions in unit computing costs will continue. Secondly, before the finite element method can be used in design, the accuracy of any proposed solution technique must be proven. The development of improved element characteristics and more efficient nonlinear solution algorithms and the experience gained in their application to engineering problems have ensured that nonlinear finite element analyses can now be performed with some confidence. Hence barriers to the common use of nonlinear finite element techniques are being rapidly removed and the process is already economically acceptable for selected industrial applications.

1.2 Aims and layout

The object of this book is to describe in detail the application of the finite element method to the solution of materially nonlinear engineering analysis problems. Unlike other texts on linear and nonlinear finite element analysis ${ }^{(1-4)}$ which have dealt predominantly with theoretical aspects, this book is intended to be more practical and therefore focuses attention on the computer implementation of nonlinear finite element schemes.

Nonlinearities arise in engineering situations from several sources. For example a nonlinear material response can result from elasto-plastic material behaviour or from hyperelastic effects of some form. Additionally nonlinear
characteristics can be associated with temporal effects such as viscoplastic behaviour or dynamic transient phenomena. Each of these nonlinearities may occur in a variety of structural types such as two- or three-dimensional solids, frames, plates or shells. Therefore it becomes clear that a textbook dealing with nonlinear finite element programming must at least be restricted to selected topics. For this reason three classes of problems will be examined in depth in the three parts of this text.

Part I: One-dimensional materially nonlinear problems. All the essential features of a nonlinear finite element solution can be described in relation to one-dimensional models. The applications considered are:

- Nonlinear quasi-harmonic problems
- Nonlinear elastic situations
- Elasto-plastic behaviour of axial bar systems
- Time dependent elasto-viscoplastic analysis of bar systems
- Elasto-plastic beam bending

Part II: Two-dimensional materially nonlinear problems. In this part the ideas developed in Part I are extended to continuum problems. The following applications are presented:

- Elasto-plastic analysis of plane stress, plane strain and axisymmetric solids
- Time dependent elasto-viscoplastic analysis of plane stress, plane strain and axisymmetric solids
- Elasto-plastic plate bending problems

Part III: Nonlinear transient dynamic problems. In this time-dependent class of problems inertia effects are included in the analysis. In this part, the following topics are considered:

- Elasto-plastic and geometrically nonlinear material behaviour
- Explicit and implicit time integration schemes
- Combined explicit/implicit algorithms

It should be pointed out that several different programming options are open for solution of the above problems and the methods presented in this text are the ones which are physically the most clear and which experience indicates give reliable results for a wide range of applications. An important feature of this text is the step-by-step development of thirteen finite element programs to deal with the above problems.

For the one-dimensional applications considered in Part I, only a 2-node element with linear displacement variation between nodes is considered. This allows the basic steps of a nonlinear finite element analysis to be presented without unnecessary distractions. In Parts II and III of the text, where two-dimensional continuum and plate bending problems are considered, isoparametric elements are exclusively employed. In particular, a

4 -node linear element and 8 - and 9 -node quadratic versions are used. These elements are illustrated in Fig. 1.1 and are extremely versatile, good performers which have been well tried and tested in both linear and nonlinear situations. A typical elasto-plastic application using 8 -node isoparametric elements is shown in Fig. 1.2 where the incremental loading of a notched beam is illustrated. The progressive development of plastic zones with increasing load levels are compared for a Tresca and Von Mises yield criterion.

Fig. 1.1 The two-dimensional isoparametric elements employed in the text:
(a) Linear 4-node; (b) Serendipity 8-node; (c) Lagrangian 9-node.

The layout of the book will now be briefly described. The remainder of Chapter 1 discusses the basic notation and style adopted in program presentation.

Chapter 2 discusses the general nonlinear problem and some solution techniques are outlined. For the one-dimensional applications to be considered, basic theoretical expressions are developed in a form suitable for numerical solution.

In Chapter 3, the solution techniques presented in Chapter 2 are programmed in FORTRAN and numerical examples are solved for each separate application.

Chapter 4 is devoted to one-dimensional elasto-viscoplastic problems. The basic theory for this time-dependent phenomenon is first presented. The process is then coded and the program used to solve some numerical examples.

In Chapter 5 elasto-plastic beam bending is considered. This topic forms a bridge between uniaxial and continuum applications since now more than one degree of freedom exists at each nodal point. Some measure of continuum behaviour is also introduced since a layered approach is used to trace the development of plasticity through the cross-section of the beam.

Fig. 1.2 Elasto-plastic analysis of a notched beam under bending showing plastic zone distributions for both a Von Mises and a Tresca yield criterion.

Chapter 6 forms an introduction to two-dimensional continuum problems. The basic theory for two-dimensional isoparametric elements is presented and some standard subroutines required for applications described in later chapters are listed. These include routines which perform some standard linear elastic operations, such as nodal load generation, equation solution, etc., as well as nonlinear subroutines common to more than one application.
Two-dimensional elasto-plastic problems are considered in Chapter 7. Basic theoretical expressions for a general continuum are first reviewed, and manipulated into forms convenient for numerical analysis. Particular expressions for plane stress/strain and axisymmetric situations are then developed and coded. Four different yield criteria are employed. The Tresca and Von Mises laws which closely approximate metal plasticity behaviour are considered and the Mohr-Coulomb and Drucker-Prager criteria, which are applicable to concrete, rocks and soil are presented.

Chapter 8 is concerned with the transient phenomenon of elastoviscoplasticity where again the situations of plane stress/strain and axial symmetry are considered. Both explicit and implicit time integration schemes are presented and the four yield criteria considered in Chapter 7 are employed. The FORTRAN program developed is illustrated by application to some numerical examples.

Elasto-plastic plate bending problems are discussed in Chapter 9. The basic theoretical expressions are presented in a form suitable for numerical analysis with both a layered and nonlayered approach to plastification through the plate thickness being considered. Treatment in this chapter is limited to the Tresca and Von Mises yield conditions.

Chapters 10 and 11 deal with the transient dynamic analysis of twodimensional continua. In this application inertia effects are included in the computation and problems such as blast loading and seismic phenomena are considered. Nonlinear effects due to both elasto-plastic material behaviour and gross geometric deformations are included. Both explicit and implicit techniques are employed for the time integration of the equations of motion as well as a combined implicit/explicit algorithm. The computer codes developed are applied to the solution of some practical problems.

Finally in Chapter 12 further aspects of nonlinear material behaviour are discussed. Alternative solution techniques and material models are referred to and some additional fields of application indicated.

Three appendices are included which contain user instructions for the computer programs described throughout the text. Appendices I and II provide user instructions for one-dimensional and two-dimensional continuum problems respectively. A user's guide for transient dynamic problems is provided in Appendix III. Finally in Appendix IV sample input data and lineprinter output are provided for both one- and two-dimensional applications.

1.3 Program structure

1.3.1 Introduction

This section describes the main features of the computer programs to be developed later in the book. A modular approach is adopted, in that separate subroutines are employed to perform the various operations required in a nonlinear finite element analysis. Generally each program consists of 9 modules, each with a distinct operational function. Each module in turn is composed of one or more subroutines relevant only to its own needs and, in some cases, of subroutines which are common to several modules. Control of the modules is held by the main or master segment.

The modules, shown schematically in Fig. 1.3, are described in relation to their general functions as follows:

1. Initialisation or zeroing module-this is the first module entered and its function is to initialise to zero various vectors and matrices at the beginning of the solution process.
2. Data input and checking module-this is the second module entered. It handles input data defining the geometry, boundary conditions and material properties. This data is checked using diagnostic routines and if errors occur they are flagged and the remainder of the input data is printed out before the program is terminated. For isoparametric elements, Gaussian integration constants and mid-side nodal coordinates for straight-sided elements are also evaluated in this section. Once used this module is not needed again.
3. Loading module-this module organises the calculation of nodal forces due to the various forms of loading for two-dimensional application. These include pressure, gravity and concentrated loadings.
4. Load incrementing module-Any materially nonlinear finite element solution must proceed on an incremental basis. Therefore the function of this section is to control the incrementing of the applied loads evaluated by the loading module. It also ensures that any specified displacement values are also incrementally applied.
5. Stiffness module-this is the next module entered and organises the evaluation of the stiffness matrix for each element. The stiffness matrices are stored on disc and ordered in the sequence required for equation assembly and reduction.
6. Solution module-the general purpose of this routine is to assemble, reduce and solve the governing set of simultaneous equations to give the nodal displacements and force reactions at restrained nodal points.
7. Residual force module-the function of this module is to calculate the residual or 'out of balance' nodal forces at each stage of the analysis.
8. Convergence module-in this module the convergence of the nonlinear solution is checked against criteria given in later chapters.
9. Output module-this module organises the output of the requested quantities.

Fig. 1.3 Program modules for nonlinear solution codes.

The main purpose of the main or master segment is to call the above modules and to control the load increments and iteration procedure according to the solution algorithm being employed and the convergence rate of the solution process.

1.3.2 Programming notation

In the programs presented in this text an attempt has been made to name variables in a logical manner. By choosing descriptive names, the use of many of the variables becomes self-apparent, thus assisting the reader in the task of program assimilation. All variable names are chosen to be 5 characters in length; this occasionally causes a little difficulty in abbreviation but has an advantage with regard to neatness of program presentation. For example, the following names will be èmployed.

NMATS	The Number of different MATerialS
PROPS ()	The array of material PROPertieS
NEVAB	The Number of Element VAriaBles
NNODE	The Number of NODes per Element
NDOFN	The Number of Degrees Of Freedom per Node

Furthermore a 'common root' principle will be adopted; where a single basic variable name is employed with different prefixes depending on its usage in the program. In particular:
i) Prefix I, J or L will be used to indicate a DO loop variable
ii) Prefix K will indicate a counter
iii) Prefix M will indicate a maximum value
iv) Prefix N will indicate a given number

For example IPOIN, NPOIN, MPOIN will indicate respectively a particular nodal point, the number of nodal points in the problem and the maximum permissible number of nodal points in the program.

Similarly, any DO loop will be of the general form

$$
\begin{aligned}
& \text { KEVAB = } \\
& \text { DO } 1 \text { INODE = 1, NNODE } \\
& \text { DO } 1 \text { IDOFN = } 1 \text {, NDOFN } \\
& 1 \text { KEVAB = KEVAB + }
\end{aligned}
$$

which indicates that the outer and inner DO loop indices range respectively over the number of nodes per element and the number of degrees of freedom per node. The prefix K is employed in KEVAB to indicate a counter over the number of element variables, NEVAB.

All programming is undertaken in standard FORTRAN IV. A listing is presented for all subroutines described in this text and detailed notes on each group of statements are provided. Comment cards have also been used to assist in the understanding of the programs.

1.4 References

1. Zienkiewicz, O. C. The Finite Element Method, McGraw-Hill, 1977.
2. Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, 1972.
3. Desai, C. S. and Abel, J. F., An Introduction to the Finite Element Method, Van Nostrand Reinhold, New York, 1972.
4. Gallagher, R. H., Finite Element Analysis-Fundamentals, Prentice Hall, 1975.
5. Hinton, E. and Owen, D. R. J., Finite Element Programming, Academic Press, 1977.
6. Hinton, E. and Owen, D. R. J., An Introduction to Finite Element Computations, Pineridge Press, Swansea, U.K., 1979.

Chapter 2
 One-dimensional nonlinear problems

2.1 Introduction

Several classes of nonlinear problems of interest in many branches of science and engineering can be reduced to the solution of a system of simultaneous equations in which the equation coefficients are dependent on some function of the prime variables. ${ }^{(1)}$ In this chapter some basic techniques for the numerical solution of such problems are examined. In order to introduce the essential details of the solution processes as simply as possible, the applications will be restricted to one-dimensional situations. In particular, elasto-plasticity, nonlinear elasticity problems and systems governed by a nonlinear quasi-harmonic equation will be considered. In each case a computer program will be developed and its use illustrated by application to simple problems. The aim of this chapter is to prepare the reader for the more comprehensive two-dimensional treatment of these topics which will be undertaken in Chapters 6-9. Indeed, all the essential features of nonlinear finite element analysis detailed in these later chapters will be recognisable from the simple treatment considered here. It should be emphasised that the subroutines developed in this chapter will not be used in the main finite element programs discussed in Parts II and III.

2.2 Basic numerical solution processes for nonlinear problems

The use of finite element discretisation in a large class of nonlinear problems results in a system of simultaneous equations of the form

$$
\begin{equation*}
\boldsymbol{H} \varphi+\boldsymbol{f}=0, \tag{2.1}
\end{equation*}
$$

in which φ is the vector of the basic unknowns, f is the vector of applied 'loads' and \boldsymbol{H} is the assembled 'stiffness' matrix. For structural applications, the terms 'load' and 'stiffness' are directly applicable, but for other situations the interpretation of these quantities varies according to the physical problem under consideration.

If the coefficients of the matrix \boldsymbol{H} depend on the unknowns φ or their derivatives, the problem clearly becomes nonlinear. In this case, direct solution of equation system (2.1) is generally impossible and an iterative scheme must be adopted. Many options remain open for the iterative
sequence to be employed. Some of the most generally applicable methods available will now be outlined.

2.2.1 Method of direct iteration (or successive approximations)

In this approach ${ }^{(2)}$ successive solutions are performed, in each of which the previous solution for the unknowns φ is used to predict the current values of the coefficient matrix $\boldsymbol{H}(\varphi)$. Rewriting (2.1) as

$$
\begin{equation*}
\varphi=-[H(\varphi)]^{-1} f \tag{2.2}
\end{equation*}
$$

then the iterative process yields the $(r+1)^{\text {th }}$ approximation to be

$$
\begin{equation*}
\varphi^{r+1}=-\left[H\left(\varphi^{r}\right)\right]^{-1} f \tag{2.3}
\end{equation*}
$$

If the process is convergent then in the limit as r tends to infinity φ^{r} tends to the true solution.

It is seen from (2.3) that it is necessary to recalculate the 'stiffness' matrix \boldsymbol{H} for each iteration. To commence the process, an initial guess for the unknown φ is required in order to calculate \boldsymbol{H}. Generally a value of φ^{0} based on the solution for an average material property throughout the region is found to be satisfactory. If the nonlinearity of the material properties is very marked at certain values of φ, an approximate prescription of the field variable at all nodes may be necessary.

For practical purposes, the iterative process is deemed to have converged when some measure (usually a norm of the nodal unknowns) of the change in the unknown φ between successive iterations has become tolerably small. The process is illustrated diagrammatically for a single variable in Figs 2.1 and 2.2 , in which case the matrix \boldsymbol{H} and vector φ reduce to the scalar equivalents H and ϕ. The assumed dependence of H on ϕ is a basic problem function which must be prescribed before solution can commence. This material property is included in Figs 2.1 and 2.2 and, for convenience, the relationship between $H(\phi) \cdot \phi$ and ϕ is prescribed rather than the $H(\phi)-\phi$ dependence. Figure 2.1 shows the convergence paths for initial trial values, ϕ^{0}, which are below and above the true solution, ϕ_{T}, and for a convex $H-\phi$ relation. From the initial trial value, ϕ^{0}, the corresponding value of H is immediately given from the prescribed $H(\phi) . \phi-\phi$ relationship, to be H^{0}. Equation (2.3) is then solved to give ϕ^{1}. The value of H corresponding to ϕ^{1} is then determined from the $H(\phi) . \phi-\phi$ relationship and (2.3) then resolved to obtain ϕ^{2}. This cycling process is continued until ϕ^{n-1} and ϕ^{n} are deemed to be sufficiently close, indicating that convergence has occurred. The quantity H^{r} is represented by the slope of the secant to the $H-\phi$ curve and decreases with increasing values of ϕ. Both the high and low initial trial solutions produce monotonic convergence paths. Figure 2.2 shows the unsuitability of the method for problems with a concave $H-\phi$ relationship. Both low and high initial trial solutions produce convergence paths which oscillate around the true solution. Although the solution converges for the

Fig. 2.1 Direct iteration method for a single variable problem-convex $H-\phi$ relation.
single variable case, in multi-degree of freedom problems the coupling of stiffness terms is likely to lead to instability of the iterative process. A disadvantage of the direct iteration method is that convergence of the solution scheme is not guaranteed and cannot be predicted at the initial solution stage.

2.2.2 The Newton-Raphson method

During any step of an iterative process of solution, (2.1) will not be satisfied unless convergence has occurred. A system of residual forces can be assumed

Fig. 2.2 Direct iteration method for a single variable problem-concave $H-\phi$ relation.
to exist, so that

$$
\begin{equation*}
\psi=H \varphi+f \neq 0 \tag{2.4}
\end{equation*}
$$

These residual forces ψ can be interpreted as a measure of the departure of (2.1) from equilibrium. Since \boldsymbol{H} is a function of φ and possibly its derivatives, then at any stage of the process, $\psi=\psi(\varphi)$.

If the true solution to the problem exists at $\varphi^{r}+\Delta \varphi^{r}$ then the NewtonRaphson approximation ${ }^{(2)}$ for the general term of the residual force vector, ψ^{r} corresponding to solution at φ^{r} is

$$
\begin{equation*}
\psi_{i} r=-\sum_{j=1}^{N} \Delta \phi_{j} r\left(\frac{\partial \psi_{i}}{\partial \phi_{j}}\right)^{r}, \tag{2.5}
\end{equation*}
$$

in which N is the total number of variables in the system and the superscript r denotes the $r^{\text {th }}$ approximation to the true solution. Substituting for ψ_{v} from (2.4), the complete expression for all the residual components can be written in matrix form as

$$
\begin{equation*}
\psi\left(\varphi^{r}\right)=-\boldsymbol{J}\left(\varphi^{r}\right) \Delta \varphi^{r} . \tag{2.6}
\end{equation*}
$$

in which a typical term of the Jacobian matrix J is

$$
\begin{equation*}
J_{i j}=\left(\frac{\partial \psi_{i}}{\partial \phi_{j}}\right)^{r}=h_{i j}^{r}+\sum_{k=1}^{m}\left(\frac{\partial h_{i k}}{\partial \phi_{j}}\right)^{r} \phi_{k}^{r}, \tag{2.7}
\end{equation*}
$$

where $h_{i j}$ is the general term of matrix \boldsymbol{H}. The last term in (2.7) gives rise to nonsymmetric terms in the Jacobian matrix. If these nonsymmetric terms are neglected in order to maintain symmetry, then substitution of (2.7) in (2.6) results in

$$
\begin{equation*}
\boldsymbol{H}\left(\varphi^{r}\right) \cdot \Delta \varphi^{r}=-\boldsymbol{\psi}\left(\varphi^{r}\right) . \tag{2.8}
\end{equation*}
$$

Or since

$$
\begin{equation*}
\Delta \varphi^{r}=\varphi^{r+1}-\varphi^{r}, \tag{2.9}
\end{equation*}
$$

equation (2.8) reduces, on use of (2.4), to

$$
\begin{equation*}
\boldsymbol{H}\left(\varphi^{r}\right) \cdot \varphi^{r+1}+\boldsymbol{f}=0 . \tag{2.10}
\end{equation*}
$$

This equation is identical to equation (2.3), Section 2.2.1, which governs the method of direct iteration. Therefore in order to achieve the better convergence rate associated with the Newton-Raphson process it is essential that the unsymmetric terms in \boldsymbol{J} be retained.

The explicit form of the nonlinear terms in (2.7) will clearly depend on the way in which the stiffness matrix coefficients, $h_{i j}$, depend on the unknowns, φ. The terms of the Jacobian matrix, given in (2.7), can be assembled to give the general expression

$$
\begin{equation*}
J(\varphi)=\boldsymbol{H}(\varphi)+H^{\prime}(\varphi), \tag{2.11}
\end{equation*}
$$

where the last term contains the unsymmetric terms only. The NewtonRaphson process can be finally written, using (2.6) and (2.11), in the form

$$
\begin{equation*}
\Delta \varphi^{r}=-\left[\boldsymbol{J}\left(\varphi^{r}\right)\right]^{-1} \cdot \psi\left(\varphi^{r}\right)=-\left[\boldsymbol{H}\left(\varphi^{r}\right)+\boldsymbol{H}^{\prime}\left(\varphi^{r}\right)\right]^{-1} \boldsymbol{\psi}\left(\varphi^{r}\right) \tag{2.12}
\end{equation*}
$$

This allows the correction to the vector of unknowns φ to be obtained from the residual force vector ψ for any iteration. Again an iterative approach must be followed, with the vector of unknowns φ being corrected at each stage according to (2.12) until convergence of the process is deemed to have occurred. The technique is illustrated schematically in Figs 2.3 and 2.4 for

Fig. 2.3 The Newton-Raphson method for a single variable problem-convex $H-\phi$ relation.

Fig. 2.4 The Newton-Raphson method for a single variable problem-concave $H-\phi$ relation.
a single variable situation. Solution to the nonlinear problem will be achieved when the residual force ψ vanishes, since this term directly measures the lack of equilibrium of the governing equation as indicated in (2.4). A trial value φ^{0} of the basic unknown is assumed and the material stiffness associated with this value calculated according to the prescribed $\boldsymbol{H}-\varphi$ relationship.

The residual force, ψ^{0} is then calculated from (2.4) and the Jacobian evaluated according to (2.7). The correction $\Delta \varphi^{0}$ to the first approximation for the basic unknown, can finally be found from (2.12). Thus an improved approximation to the solution has been found, as $\varphi^{1}=\varphi^{0}+\Delta \varphi^{0}$. This process can then be continually repeated until the residual force, ψ^{n}, is sufficiently small; or equivalently that φ^{r-1} and φ^{r} are sufficiently close. The Newton-Raphson process generally gives a more rapid and stable convergence path than the direct iteration method.

2.2.3 The tangential stiffness method

For structural applications the matrix \boldsymbol{H} can be interpreted physically as the stiffness matrix of the structure. For nonlinear situations, in which the stiffness depends on the degree of displacement in some manner, \boldsymbol{H} is equal to the local gradient of the force/displacement relationship of the structure at any point and is termed the tangential stiffness. The analysis of such problems must proceed in an incremental manner since the solution at any stage may not only depend on the current displacements of the structure, but also on the previous loading history. Consequently the problem can be linearised over any increment of load and therefore the matrix, which contains the nonlinear terms, can be discarded from (2.11) and (2.12). With this modification, the solution process is identical to that described in the previous section and for this reason the method is sometimes termed a generalised Newton-Raphson method.

The solution algorithm is illustrated in Fig. 2.5; again for a single variable situation. Solution is commenced from a trial value φ^{0} of the unknown (for structural problems the starting position of solution is almost invariably $\left.\varphi^{0}=\mathbf{0}\right)$. The tangential stiffness, $\boldsymbol{H}\left(\varphi^{0}\right)$, corresponding to this displacement state is then determined and the residual force ψ^{0} calculated according to (2.4). The correction, $\Delta \varphi^{0}$, to the trial value is computed according to the linearised form of (2.12), which is

$$
\begin{equation*}
\Delta \varphi^{r}=-\left[H\left(\varphi^{r}\right)\right]^{-1} \cdot \psi\left(\varphi^{r}\right) \tag{2.13}
\end{equation*}
$$

An improved approximation to the unknown is then obtained as $\varphi^{1}=\varphi^{0}+\Delta \varphi^{0}$. This iterative process is then continued until the solution converges to the nonlinear solution which is indicated by the condition that ψ^{r} practically vanishes.

2.2.4 The initial stiffness method

In the methods described in the three previous sections, the complete factorisation (or reduction) and solution of the full set of simultaneous equations describing the discretised structure is essential for each iteration. For the method of direct iteration the equation solution indicated by (2.3) is necessary, whilst the Newton-Raphson technique and tangential stiffness method demand the equation solutions indicated by (2.12) and (2.13)

Fig. 2.5 Tangential stiffness solution algorithm for a single variable situation.
respectively. If in (2.13) the tangential stiffness matrix is replaced, at all steps of the computation, by the stiffness corresponding to the initial trial value of φ a complete factorisation, or reduction, of the assembled equations can be avoided. ${ }^{(3)}$ In this case a complete equation solution need only be performed for the first iteration and subsequent approximations to the nonlinear solution performed, via the expression

$$
\begin{equation*}
\Delta \varphi^{r}=-\left[H\left(\varphi^{0}\right)\right]^{-1} \psi\left(\varphi^{r}\right) \tag{2.14}
\end{equation*}
$$

Since the same stiffness matrix $\boldsymbol{H}\left(\varphi^{0}\right)$ is employed at each stage, the reduced equations can be stored in their reduced or factored form and a second or subsequent solution merely necessitates the reduction of the right-hand side ($\psi\left(\varphi^{r}\right)$) terms, together with a backsubstitution. This has the immediate advantage of significantly reducing the computing cost per iteration but reduces the convergence rate as can be seen from Fig. 2.6 where the scheme is schematically illustrated. The iterative algorithm is identical to that described in the preceding section. This method can be shown to be unconditionally convergent ${ }^{(4)}$ and can even be employed in situations where the material exhibits negative stiffness. The relative economies of the initial stiffness and tangential stiffness methods depend to a large extent on the degree of nonlinearity inherent in the problem under consideration. The optimum algorithm is generally provided by an amalgamation of both processes, in which the stiffnesses are changed at selected iterative intervals only.

Fig. 2.6 Initial stiffness solution algorithm for a single variable situation.

2.3 Systems governed by a quasi-harmonic equation

Many physical situations in engineering science are governed by a quasiharmonic equation containing coefficients which are dependent on the unknown variable or its derivatives according to some prescribed law. The most common problem of this type occurs in heat conduction under steadystate conditions when the material conductivity is itself a function of temperature. This phenomenon also arises in diffusion problems where the diffusivity of the medium often varies with the concentration of the diffusing matter. Further physical examples are provided in Ref. (5).

For a one-dimensional situation the governing equation to be considered is

$$
\begin{equation*}
\frac{d}{d x}\left(K \frac{d \phi}{d x}\right)+Q=0, \tag{2.15}
\end{equation*}
$$

in which ϕ is the unknown function and the terms K and Q may be functions of the position coordinate, x. The problem becomes nonlinear if K and/or Q are also functions of the unknown ϕ or its derivatives, according to some prescribed function.
Two types of boundary condition will be considered:
(a) The value of the unknown specified on the boundary

$$
\begin{equation*}
\phi=\phi_{B} . \tag{2.16}
\end{equation*}
$$

(b) The gradient of the unknown at the boundary specified to be zero

$$
\begin{equation*}
\frac{d \phi}{d n}=\frac{d \phi}{d x}=0 \tag{2.17}
\end{equation*}
$$

(A more general form of this latter boundary condition is considered in Ref. 6.)
Equation (2.15) can be transformed to finite element form by suitable discretisation and use of the Galerkin weighted residual process. ${ }^{(5,6)}$ The scalar product of equation (2.15) with any arbitrary weighting function, W, must be zero if ϕ satisfies (2.15) throughout any region Γ, so that

$$
\begin{equation*}
\int_{\Gamma}\left(\frac{d}{d x}\left(K \frac{d \phi}{d x}\right)+Q\right) W d x=0 \tag{2.18}
\end{equation*}
$$

Integrating the first term by parts results in

$$
\begin{equation*}
\left[W K \frac{d \phi}{d x}\right]_{x_{1}}^{x_{2}}-\int_{\Gamma}\left(K \frac{d W}{d x} \frac{d \phi}{d x}-Q W\right) d x=0 \tag{2.19}
\end{equation*}
$$

where the limits of integration in the first term are the end points of the region Γ. The unknown function ϕ may be approximated as

$$
\begin{equation*}
\phi=\sum_{i=1}^{n} N_{i} \phi_{i}, \tag{2.20}
\end{equation*}
$$

in which n is the total number of nodes in the finite element idealisation and N_{i} are the global shape functions. In the Galerkin process the number of weighting functions must equal the total number of unknown nodal values. The weighting function W_{i} corresponding to node i can then be conveniently chosen such that $W_{i}=N_{i}$. It should be noted that at nodes where the values of ϕ are prescribed, there is no associated unknown and consequently the weighting function for such nodes is zero. Therefore the first term in (2.19) always vanishes since at the two end points of the interval either ϕ is prescribed according to (2.16), in which case the weighting function for that point is zero, or $d \phi / d x$ is specified as zero according to (2.17). Substituting for ϕ and W in (2.19) and assembling all element contributions in the usual manner results in

$$
\begin{equation*}
\boldsymbol{H} \varphi+f=\mathbf{0}, \tag{2.21}
\end{equation*}
$$

in which typical element components are

$$
\begin{align*}
h_{i j}{ }^{(e)} & =\int_{\Gamma^{(e)}} K \frac{d N_{i}{ }^{(e)}}{d x} \frac{d N_{j}(e)}{d x} d x, \tag{2.22}\\
f_{i}^{(e)} & =\int_{\Gamma^{(e)}} Q N_{i}^{(e)} d x, \tag{2.23}
\end{align*}
$$

where $N_{i}^{(e)}$ are the element shape functions specifying the distribution of the unknown, ϕ, over the element. For the specific case of a two-noded element with a linear variation in ϕ as shown in Fig. 2.7, the shape functions are simply

$$
\begin{equation*}
N_{1}{ }^{(e)}=\frac{1}{2}-\frac{x}{L}, \quad N_{2}^{(e)}=\frac{1}{2}+\frac{x}{L}, \tag{2.24}
\end{equation*}
$$

where L is the length of the element.

Fig. 2.7 One-dimensional two-noded element with linear variation of the unknown, ϕ, showing element shape functions.

Substituting in (2.22) and (2.23), and assuming no variation of K with position in the element, gives

$$
\boldsymbol{H}^{(e)}=\frac{K}{L}\left[\begin{array}{rr}
1 & -1 \tag{2.25}\\
-1 & 1
\end{array}\right],
$$

and

$$
\begin{equation*}
f_{1}^{(e)}=f_{2}^{(e)}=\frac{Q L}{2} . \tag{2.26}
\end{equation*}
$$

Provided that the variation of K with ϕ or its derivatives is specified, the problem falls into the category discussed in the previous section and can be solved by either the method of direct iteration or the Newton-Raphson approach.

In the numerical examples considered later in this chapter a specific form of nonlinearity will be considered, namely

$$
\begin{equation*}
K=K_{0}(a+b \phi), \tag{2.27}
\end{equation*}
$$

in which K_{0} is a reference value and a and b are known constants. For solution by the Newton-Raphson process the Jacobian matrix can be considered to be the sum of symmetric and nonsymmetric components as indicated in (2.11). The symmetric part has already been calculated in (2.25) and the nonsymmetric contribution must now be calculated according to the last
term in (2.7). From (2.7), (2.22) and (2.27) the general term is given as

$$
\begin{equation*}
h_{i j^{\prime}}=\sum_{k=1}^{2}\left(\frac{\partial h_{i k}}{\partial \phi_{j}}\right) \phi_{k}=\sum_{k=1}^{2}\left\{\phi_{k} K_{0} \int_{-L / 2}^{L / 2} \frac{\partial}{\partial \phi_{j}}[a+b \phi] \frac{d N_{i}{ }^{(e)}}{d x} \frac{d N_{k}(e)}{d x} d x\right\} . \tag{2.28}
\end{equation*}
$$

Noting that ϕ is given by (2.20) and that the shape functions are given by (2.24), the evaluation of (2.28) results in

$$
\boldsymbol{H}^{\prime}(e)=\frac{K_{0} b}{2 L}\left(\phi_{1}-\phi_{2}\right)\left[\begin{array}{rr}
1 & 1 \tag{2.29}\\
-1 & -1
\end{array}\right] .
$$

As expected, it is seen that the derivative matrix $\boldsymbol{H}^{\prime(e)}$ is unsymmetric.

2.4 Nonlinear elastic problems

The simplest case of nonlinear behaviour in structural problems arises from nonlinear elastic material action. The stress/strain relationship of the material is nonlinear but the material behaviour is elastic with all deformations and displacements recoverable on unloading. For example, this type of behaviour arises in hyperelastic problems ${ }^{(7)}$ where the stresses are functions of a strain dependent material modulus.

The nonlinear constitutive relation may be specified, for a one-dimensional situation, as

$$
\begin{equation*}
\sigma=\frac{d W}{d \epsilon}=E_{0} \cdot g(\epsilon) \tag{2.30}
\end{equation*}
$$

where σ is the stress, ϵ the strain and E_{0} some reference value of the material modulus. The material performance will be nonlinear according to the form of the specified strain energy function, $W(\epsilon)$.

Fig. 2.8 Forces and displacements for a two-node element.

The simplest form of one-dimensional finite element is the constant stress element shown in Fig. 2.8 in which a linear displacement variation is assumed between nodes 1 and 2. The force in the element is given, from (2.30), by

$$
\begin{equation*}
F=E_{0} \operatorname{Ag}(\delta / L) \tag{2.31}
\end{equation*}
$$

where A is the element cross-sectional area and δ the element extension. The tangential stiffness for the material is then

$$
\begin{equation*}
K_{T}=\frac{d F}{d \delta}=\frac{E_{0} A}{L} \frac{d g}{d \epsilon}=\frac{E_{0} A}{L} g^{\prime}(\epsilon) . \tag{2.32}
\end{equation*}
$$

Or, in particular, the element tangential stiffness matrix is given by

$$
K_{T^{(e)}}=\frac{E_{0} A}{L} g^{\prime}(\epsilon)\left[\begin{array}{rr}
1 & -1 \tag{2.33}\\
-1 & 1
\end{array}\right] .
$$

Provided that $g^{\prime}(\epsilon)$ is positive for all strain values, the tangential stiffness method of solution described in Section 2.2.3 can be employed in solution with $\boldsymbol{K}_{T}{ }^{(e)}$ being directly equivalent to $\boldsymbol{H}\left(\varphi^{r}\right)$. If the tangential stiffness matrix becomes zero, the assembled stiffness equations will become singular and the inversion process required by (2.13) cannot be undertaken. Solution for situations in which the material tangential stiffness becomes non-positive can be performed by use of the initial stiffness method described in Section 2.2.4. Since the initial material stiffness is employed throughout this latter process, the assembled stiffness matrix will remain positive definite throughout the computation.

2.5 Elasto-plastic problems in one dimension

In this section the essential features of elasto-plastic material behaviour are introduced, and the basic expressions are developed in a form suitable for numerical solution by some of the methods described in the previous sections.

Elasto-plastic behaviour is characterised by an initial elastic material response on to which a plastic deformation is superimposed after a certain level of stress has been reached. ${ }^{(8)}$ Plastic deformation is essentially irreversible on unloading and is incompressible in nature. The onset of plastic deformation (or yielding) is governed by a yield criterion and post-yield deformation generally occurs at a greatly reduced material stiffness. Basic theoretical expressions for a general continuum are provided in Chapter 7.

For one-dimensional situations, the material parameters required to completely define elasto-plastic behaviour are most conveniently obtained from a uniaxial tension test. Figure 2.9 shows an idealised stress-strain curve for a material and identical behaviour is assumed in tension and compression. The material initially deforms according to the elastic modulus, E, until the stress level reaches a value σ_{Y} designated the uniaxial yield stress. On increasing the load further, the material is assumed to exhibit linear strain-hardening, characterised by the tangential modulus, E_{T}.

At some stage after initial yielding, consider a further load application resulting in an incremental increase of stress, $d \sigma$, accompanied by a change of strain, $d \epsilon$. Assuming that the strain can be separated into elastic and plastic

Fig. 2.9 Elastic, linear strain-hardening stress-strain behaviour for the uniaxial case.
components, so that

$$
\begin{equation*}
d \epsilon=d \epsilon_{e}+d \epsilon_{p} \tag{2.34}
\end{equation*}
$$

we define a strain-hardening parameter, H^{\prime}, as

$$
\begin{equation*}
H^{\prime}=\frac{d \sigma}{d \epsilon_{p}} \tag{2.35}
\end{equation*}
$$

This can be interpreted as the slope of the strain-hardening portion of the stress-strain curve after removal of the elastic strain component. Thus

$$
\begin{equation*}
H^{\prime}=\frac{d \sigma}{d \epsilon-d \epsilon_{e}}=\frac{E_{T}}{1-E_{T} / E} \tag{2.36}
\end{equation*}
$$

With reference to Fig. 2.8, consider the behaviour of a linear displacement element, which has a cross-sectional area A, when it is subjected to a gradually increasing axial force, F, which results in an extension, δ. Provided that F / A is less than or equal to the uniaxial yield stress, σ_{Y}, the material behaviour will be elastic, exhibiting a stiffness of

$$
\begin{equation*}
K_{e}=\frac{F}{\delta}=\frac{E A}{L} \tag{2.37}
\end{equation*}
$$

then the element stiffness matrix is simply

$$
K_{e}{ }^{(e)}=\frac{E A}{L}\left[\begin{array}{rr}
1 & -1 \tag{2.38}\\
-1 & 1
\end{array}\right] .
$$

Suppose F is increased until the material has yielded. Consider a further incremental increase in load $d F$ which causes an additional element extension, $d \delta$. Then

$$
\begin{equation*}
d \delta=\left(d \epsilon_{e}+d \epsilon_{p}\right) L \tag{2.39}
\end{equation*}
$$

where L is the element length. Also, on use of (2.35)

$$
\begin{equation*}
d F=d \sigma A=A H^{\prime} d \epsilon_{p} \tag{2.40}
\end{equation*}
$$

The tangential stiffness for the material is then

$$
\begin{equation*}
K_{e p}=\frac{d F}{d \delta}=\frac{A H^{\prime} d \epsilon_{p}}{L\left(d \sigma / E+d \epsilon_{p}\right)} . \tag{2.41}
\end{equation*}
$$

Or, using (2.35) and rearranging

$$
\begin{equation*}
K_{e p}=\frac{E A}{L}\left(1-\frac{E}{E+H^{\prime}}\right) . \tag{2.42}
\end{equation*}
$$

Finally, the element stiffness for elasto-plastic material behaviour is given by*

$$
\boldsymbol{K}_{e p}{ }^{(e)}=\frac{E A}{L}\left(1-\frac{E}{E+H^{\prime}}\right)\left[\begin{array}{rr}
1 & -1 \tag{2.43}\\
-1 & 1
\end{array}\right] .
$$

In (2.42) it can be seen that the first term represents the elastic stiffness, as given by (2.38). The second term accounts for the reduction in stiffness from the elastic value due to yielding.

* The element stiffness matrix can be written in the standard finite element form

$$
\boldsymbol{K}_{e}^{(e)}=\int_{V} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{D} \boldsymbol{B} d V=A \int_{0}^{L} \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{D} \boldsymbol{B} d x
$$

where integration is made over the volume of the element. For this one-dimensional application, $D=E$ and

$$
\boldsymbol{B}=\left[\begin{array}{ll}
\frac{d N_{1}(e)}{d x}, & \frac{d N_{2}(e)}{d x}
\end{array}\right]=\left[\begin{array}{ll}
-\frac{1}{L}, & \frac{1}{L}
\end{array}\right],
$$

where $N_{1}{ }^{(e)}$ and $N_{2}{ }^{(e)}$ are given by (2.24). The tangential stiffness matrix for elastoplastic material behaviour is obtained by replacing D by

$$
D_{e p}=E\left(1-\frac{E}{E+H^{\prime}}\right) .
$$

For a perfectly plastic material behaviour, after initial yielding equation (2.36) implies that $H^{\prime}=0$ and it is then evident from (2.43) that $K_{e p}{ }^{(e)}=0$. This implies that the tangential (elasto-plastic) stiffness matrix for such a material is singular and the tangential stiffness method cannot generally be employed in solution. If a significant number of elements in the structure has yielded, the assembled tangential stiffness matrix will be singular, and the inversion or reduction demanded by (2.13) cannot be performed. This difficulty can be avoided by use of the initial stiffness method in which the elastic element stiffnesses are employed at every stage of the computation, thereby ensuring a positive definite assembled stiffness matrix.

2.6 Problems

In this section some tasks are set for the reader which illustrate some further points in connection with the topics discussed in the chapter.
2.1 Use the direct iteration method to solve the following one degree of freedom problem, $H \phi+f=0$ where $f=10$ and H depends on ϕ according to $H=10\left(1+e^{3 \phi}\right)$.
2.2 Repeat Problem 2.1 using the Newton-Raphson method. Compare the solutions and the computational effort required in each.
2.3 Solve the following one degree of freedom problem by both the tangential stiffness and initial stiffness method. Apply the total load f as two equal increments

$$
H \phi+f=0, \quad f=10, \quad H=20(1-\phi)
$$

2.4 The more general form of the boundary condition (2.17) in Section 2.3 is $d \phi / d x+q+\alpha \cdot \phi=0$, where q and a are constants and ϕ is the undetermined value of the unknown at the boundary point. Repeat the Galerkin process of Section 2.3 to include these additional terms. In particular, determine the additional nodal force contribution and the discrete 'external' nodal stiffness which arise.
2.5 For the two-noded element with linear variation in ϕ with shape functions as given by (2.24), evaluate the element stiffness matrix when K is a function of x. Assume that the spatial variation of K within the element is linear and obtained by interpolation of the specified nodal values by use of the element shape functions.
2.6 Suppose that a heat loss also occurs by convection from the surface area of an element, which is given by $h . \phi$ where h is the convection coefficient. If C is the circumference of the element, determine the additional contribution to $\boldsymbol{H}^{(e)}$ resulting from this. ${ }^{(9)}$
2.7 Determine the nonlinear portion, $\boldsymbol{H}^{\prime(e)}$, of the Jacobian matrix for a material dependence $K=K_{0}\left(1+e^{b \phi}\right)$. Assume a two-noded linear element.
2.8 Evaluate the stiffness matrix $\boldsymbol{H}^{(e)}$ for a three-noded element for a heat conduction problem. Assume that the element has shape functions

$$
\begin{aligned}
& N_{1}{ }^{(e)}=-\frac{2 x}{L^{2}}\left(\frac{L}{2}-x\right), \quad N_{2}{ }^{(e)}=\frac{4}{L^{2}}\left(\frac{L}{2}-x\right)\left(\frac{L}{2}+x\right), \\
& N_{3}{ }^{(e)}=\frac{2 x}{L^{2}}\left(\frac{L}{2}+x\right),
\end{aligned}
$$

and also that $K=K_{0}(a+b \phi)$ where K_{0}, a and b are constants.
2.9 Repeat.Problem 2.8 for the case where K_{0} is additionally a function of x. Assume that the nodal values of K_{0} are given.
2.10 Solve the nonlinear elastic problem of Fig. 2.10 by hand calculation. Use the tangential stiffness method and assume the total load to be applied in two equal increments.

$$
\begin{aligned}
& \mathrm{A}=1.0 \\
& \sigma=20\left(\epsilon-\epsilon^{2}\right)
\end{aligned}
$$

Fig. 2.10 Nonlinear elastic example-Problem 2.10.
2.11 Solve Problem 2.10 if the structure is loaded by incrementally increasing the prescribed value of displacement at node 2. Increase the applied displacement in two equal increments up to a maximum value of $\phi_{2}=3.0$. Since the element stiffnesses become negative at the higher increment, use the initial stiffness method.
2.12 A locking material is one in which the stiffness increases with increasing strains. For example, if $g(\epsilon)=\epsilon^{2}$ can both the tangential stiffness and the initial stiffness methods be used to solve such material problems?

Fig. 2.11 Elasto-plastic example-Problem 2.13.
2.13 Determine the nodal displacement of node 2 of the structure shown in Fig. 2.11 as the applied load is increased to 10 units in two equal increments. Assume elasto-plastic material behaviour and use the tangential stiffness approach for solution.

Fig. 2.12 Bimaterial elasto-plastic example-Problem 2.14.
2.14 Determine the displacement of node 2 of the elasto-plastic structure shown in Fig. 2.12. Assume the load to be applied in two equal increments. What happens if $H_{\mathrm{I}}{ }^{\prime}=200, \mathrm{H}_{\mathrm{II}^{\prime}}=-200$?

2.7 References

1. Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, London, 1977.
2. Booth, A. D., Numerical Methods, Butterworth, London, 1966.
3. Zienkiewicz, O. C., Valliappan, S. and King, I. P., Elasto-plastic solutions of engineering problems. Initial stress, finite element approach, Int. J. Num. Meth. Engng., 1, 75-100 (1969).
4. Argyris, J. H. and Scharpf, D. W., Methods of elasto-plastic analysis, ISD, ISSC Symp. on Finite Element Tech., Stuttgart (1969).
5. Lyness, J. F., Owen, D. R. J. and Zienkiewicz, O. C., The finite element analysis of engineering systems governed by a nonlinear quasi-harmonic equation, Computers and Structures, 5, 65-79 (1975).
6. Hinton, E. and Owen, D. R. J., An Introduction to Finite Element Computations, Pineridge Press, Swansea, U.K., 1979.
7. Oden, J. T:, Finite Elements of Nonlinear Continua, McGraw-Hill, New York, 1972.
8. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950.
9. Seegerlind, L. J., Applied Finite Element Analysis, John Wiley, New York, 1976.

Chapter 3 Solution of nonlinear problems

3.1 Introduction

A modular approach is adopted for the programs presented in this text, with the various main finite element operations being performed by separate subroutines. Any nonlinear finite element program must essentially contain all the subroutines necessary for elastic analysis. Briefly these consist of a subroutine to accept the input data, a subroutine for element stiffness formulation, subroutines for equation assembly and solution and a subroutine for output of the final results.

In order to implement the solution algorithms described in Section 2.2, additional subroutines are clearly necessary. In particular two primary DO LOOPS are necessary to iterate the solution until convergence of the solution occurs and to increment the applied loading, if appropriate. Subroutines must be included to evaluate the residual forces and also to monitor convergence of the solution. Figure 3.1 shows the organisation of the programs presented in this chapter, particularly the sequence in which the subroutines are accessed. Four separate programs are developed to solve the following specific situations.

- Solution of nonlinear quasi-harmonic situations by direct iteration.
- Solution of nonlinear quasi-harmonic situations by the NewtonRaphson method.
- Solution of nonlinear elastic problems by either the tangential stiffness or the initial stiffness method or a combination of both.
- Solution of elasto-plastic problems by either the tangential stiffness or the initial stiffness method or a combination of both approaches.
With reference to Fig. 3.1, most of the subroutines are common to all four programs presented; the only exceptions being the subroutines necessary for stiffness matrix generation, residual force calculation and solution convergence checking. The element stiffness formulation subroutines for quasiharmonic direct interation, quasi-harmonic Newton-Raphson, nonlinear elastic situations and elasto-plastic problems are respectively named STIFF1, ASTIF1, STIFF2 and STIFF3. The evaluation of residual forces is not required in the direct iteration method and the appropriate subroutines for the quasi-harmonic Newton-Raphson, nonlinear elastic and elasto-plastic

START

DATA
Input data defining geometry, loading, boundary conditions, material properties, etc.

INITIAL
Initialise various arrays to zero

Fig. 3.1 Program organisation for one-dimensional nonlinear applications.
situations are named respectively REFOR1, REFOR2 and REFOR3. Finally, since the basis of solution convergence differs for the direct iteration method from that of the other procedures, it requires a separate convergence
checking subroutine, termed MONITR. The equivalent subroutine for all other applications is named CONUND.

The programs presented in this chapter also form the basis of an elastoviscoplastic program for one-dimensional applications developed in Chapter 4 and an elasto-plastic beam bending program considered in Chapter 5. In order to allow several of the subroutines developed in this chapter to be used for beam bending applications it will be necessary to permit the number of degrees of freedom per nodal point to be variable and to dimension some arrays to accommodate additional quantities.

Sections 3.2 to 3.8 are devoted to the development of the subroutines which are common to the four programs presented.

3.2 Input data subroutine, DATA

For any finite element analysis the input data can be subdivided into three main classifications. Firstly the data required to define the geometry of the structure and the support conditions must be supplied. Secondly the material properties of the constituent materials must be supplied and finally the applied loading must be furnished.

To allow a subroutine to be employed in more than one application, several control parameters must be supplied as input data. For example, the number of properties required to define the behaviour of a material will differ between quasi-harmonic problems and elasto-plastic situations. The use of variables in place of specific numerical values also generally aids program clarity.

A list of control parameters required as input is now presented:
NPOIN Total number of nodal points in the structure.
NELEM Total number of elements in the structure.
NBOUN Total number of boundary points, i.e. nodal points at which the value of the unknown is prescribed. In this context an internal node can be a boundary node.
NMATS Total number of different materials in the structure.
NPROP The number of material parameters required to define the characteristics of a material completely:
4-For elasto-plastic problems,
2-For all other applications.
NNODE Number of nodes per element. For linear displacement onedimensional elements this equals 2 .
NINCS The number of increments in which the total loading is to be applied.
NALGO Indicator used to identify the type of solution algorithm to be employed:
1 -Direct iteration.

2-Newton-Raphson method for quasi-harmonic problems. Tangential stiffness method for structural problems (nonlinear elastic and elasto-plastic situations).
3-Initial stiffness method.
4-Combination of the initial and tangential stiffness methods, where the stiffnesses are recalculated on the first iteration of a load increment only.
5-Combination of the initial and tangential stiffness methods, where the stiffnesses are recalculated on the second iteration of a load increment only. This can aid the rate of convergence considerably, if on the application of an increment of load there is substantial further yielding. When calculating the element stiffnesses the total plastic strains evaluated during the previous iteration are used to indicate whether the element has yielded or not. If the element stiffnesses are recalculated on the first iteration, the elements which have now yielded may have been elastic at the end of the previous load increment and consequently the reformulated stiffness will be based on elastic behaviour. This can reduce the convergence rate of the process since generally $H^{\prime} \simeq 0.1 E$. From (2.42) the elasto-plastic stiffness is proportional to $E\left(1-E /\left(E+H^{\prime}\right)\right) \simeq E / 11$, whereas the elastic stiffness depends linearly on E. Hence the tangential stiffness calculated grossly overestimates the true material response. This problem can be alleviated by reformulating the element stiffnesses during the second iteration of a load increment rather than the first, since the plastic strain evaluated on the first iteration will indicate yielding to have initiated.
NDOFN The number of degrees of freedom per nodal point:
1-For uniaxial problems.
2-For beam bending problems (considered in Chapter 5).
The geometry of the structure is completely defined on prescription of the nodal point coordinates and the element nodal connections. The coordinate of each nodal point must be defined with reference to a global coordinate system. For the one-dimensional situation being currently considered, the position of each nodal point is completely defined by a single coordinate whose value will be stored in the array

COORD (IPOIN)

where IPOIN corresponds to the number of the nodal point.
The origin of the coordinate system can be arbitrarily chosen. The geometry of each individual element must be specified by listing in a systematic way the numbers of the nodal points which define its outline. For the two-noded linear displacement element the nodal numbers can obviously be read in any
order. The element topology is read into the array

LNODS (NUMEL, INODE)

where NUMEL corresponds to the number of the element under consideration and subscript INODE ranges from 1 to NNODE. Since each element may conceivably be assigned different material properties, a material property identification number is also allocated to each element and stored in the array

MATNO (NUMEL)

This implies that element number NUMEL has material properties of type MATNO (NUMEL).

The material properties required for solution will differ for the various applications considered, but the same array will be employed for storage of this information. Namely

PROPS (NUMAT, IPROP)

where NUMAT denotes the material identification number and the subscript IPROP the individual property. Each element is associated with a particular material type through the previously mentioned identification array MATNO (NUMEL). The relevant material properties associated with the different problem types considered here are listed below.
(a) Quasi-harmonic problems

PROPS (NUMAT, 1)-The reference value K_{0} of the coefficient K in equation (2.27).
PROPS (NUMAT, 2)-The constant b in equation (2.27) for a linear 'stiffness' variation.
(b) Nonlinear elastic problems

PROPS (NUMAT, 1)-The reference value E_{0} in (2.30).
PROPS (NUMAT, 2)-The cross-sectional area A, of the element. Each element with a different cross-sectional area must be assigned a different material property number.
(c) Elasto-plastic problems

PROPS (NUMAT, 1)--The elastic modulus, E, of the material.
PROPS (NUMAT, 2)-The cross-sectional area, A, of the element.
PROPS (NUMAT, 3)-The uniaxial yield stress of the material.
PROPS (NUMAT, 4)-The linear strain hardening parameter, H^{\prime}, for the material (equation (2.35)).

It should be mentioned here that the specific form of dependence of material stiffness'on the unknown function for cases (a) and (b) will be directly incorporated into the program by use of a FORTRAN FUNCTION statement.

Any nodal points at which a degree of freedom has a prescribed value must be identified by the temporary variable NODFX. To determine which degrees of freedom are to be prescribed at this node, the entries in the array

ICODE (IDOFN)

are set to either 0 or 1. (Variable IDOFN ranges over the number of degrees of freedom per node NDOFN. In the present case NDOFN $=1$, but later in Chapter 5, NDOFN has the value 2.) If ICODE (IDOFN) is equal to 1 , then degree of freedom IDOFN at node NODFX has a prescribed value. If NCODE (IDOFN) is equal to 0 then degree of freedom IDOFN at node NODFX is a free variable.

The value for a prescribed degree of freedom is given by

VALUE (IDOFN)

It should be noted that if ICODE (IDOFN) $=0$, then VALUE (IDOFN) is ignored.

In order to simplify the solution process, the information stored in arrays ICODE and VALUE is transferred to much larger arrays IFPRE (NPOSN) and PEFIX (NPOSN) respectively, where NPOSN ranges over all the degrees of freedom for the whole finite element mesh. Both IFPRE and PEFIX are initially set equal to zero and as data for each restrained boundary node is read, they are modified if necessary. Unit entries in IFPRE indicate that the associated variable is prescribed. The prescribed value is obtained from the corresponding position in PEFIX.

Finally, the loads applied to the structure must be specified. For the frontal method of equation solution employed in later chapters it is convenient to associate the applied loads with the elements on which they act. Thus for each element the nodal loads acting on the two nodes associated with the element must be input and these are stored in the array

RLOAD (IELEM, IEVAB)

where IELEM indicates the element number and IEVAB relates to the degrees of freedom of the element (IEVAB ranges from 1 to NEVAB, the number of element variables, which is equal to 2 in the present case but which equals 4 in the applications described in Chapter 5). It should be noted that a nodal load may be arbitrarily assigned to any one of the elements connected to that node, since before eventual şolution all element contributions are assembled to form a global load vector. Before entering the solution routines the loads are transferred to an array ELOAD (IELEM, IEVAB) as described later in Section 3.7.

Subroutine DATA is now presented and should be largely self-explanatory. Descriptive comments are provided immediately after the FORTRAN listing of the subroutine.

```
SUBROUTINE DATA
DATA
```



```
C
C *** INPUTS DATA DEFINING GEOMETRY,LOADING,BOUNDARY CONDITIONS...ETC. DATA
```

```
DATA
```

```
C
C***********************************************************************DATA
COMMON/UNIM1/NPOIN. NELEM,NBOUN, NLOAD,NPROP, NNODE, IINCS, IITER, DATA KRESL, NCHEK,TOLER,NALGO, NSVAB, NDOFN, NINCS, NEVAB, DATA NITER, NOUTP, FACTO, PVALU DATA
COMMON/UNIM2/PROPS \((5,4), \operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52), \quad\) DATA \(\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4), \quad \operatorname{DATA} 1\)
\(\begin{array}{lll}\cdot & \operatorname{MATNO}(25), \operatorname{STRES}(25,2), \operatorname{PLAST}(25), X D I S P \\ -\quad & \operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52), & \operatorname{DATA} 12 \\ 13\end{array}\)
- REACT 52 ), FRESV \((1352), \operatorname{PEFIX}(52), \operatorname{ESTIF}(4,4) \quad\) DATA 14
DIMENSION ICODE (2), VALUE (2), TITLE (18) DATA 15
READ (5,965)TITLE DATA 16
WRITE \((6,965)\) TITLE DATA 17
965 FORMAT (18A4) DATA 18
READ \((5,900)\) NPOIN, NELEM, NBOUN, NMATS, NPROP, NNODE, NINCS, NALGO, NDOFN DATA 19
900 FORMAT (9I5) DATA 20
WRITE \((6,905)\) NPOIN, NELEM, NBOUN, NMATS, NPROP, NNODE, NINCS, NALGO, NDOFN DATA 21
905 FORMAT (//1X, 'NPOIN \(=', I 5,3 X, '\) NELEM \(=', I 5,3 X,{ }^{\prime}\) NBOUN \(={ }^{\prime}, I 5,3 X, \quad\) DATA 22 'NMATS \(={ }^{\prime}, I 5 / / 1 X,{ }^{\prime}\) NPROP \(={ }^{\prime}, I 5,3 X,{ }^{\prime}\) NNODE \(=1, I 5,3 X, \quad\) DATA 23 'NINCS \(={ }^{\prime}, \mathrm{I} 5,3 \mathrm{X},{ }^{\prime}\) NALGO \(=', \mathrm{I} 5 / / 1 \mathrm{X},{ }^{\prime}\) NDOFN \(\left.=1, \mathrm{I} 5\right) \quad\) DATA 24
NEVAB \(=\) NDOFN*NNODE
DATA 25
NSVAB \(=\) NDOFN*NPOIN DATA 26
WRITE \((6,910)\) DATA 27
910 FORMAT ( \(1 \mathrm{HO}, 5 \mathrm{X}\), 'MATERIAL PROPERTIES') DATA 28
DO 10 IMATS \(=1\), NMATS DATA 29
READ (5,915) JMATS, (PROPS (JMATS, IPROP), IPROP=1,NPROP) DATA 30
10 WRITE \((6,915)\) JMATS, (PROPS (JMATS,IPROP), IPROP \(=1\), NPROP) DATA 31
915 FORMAT (I10,4F15.5) DATA 32
```

```
    WRITE (6,920)
```

 WRITE (6,920)
 920 FORMAT(1HO,3X,'EL NODES MAT.') DATA 34
 DO 20 IELEM=1,NELEM DATA 35
 READ (5,925) JELLEM, (LNODS(JELEM,INODE),INODE=1,NNODE),MATNO(JELEM)DATA 36
 20 WRITE(6,925) JELEM,(LNODS(JELEM,INODE),INODE=1,NNODE),MATNO(JELEM)DATA 37
 925 FORMAT(4I5) DATA 38
WRITE(6,930) DATA 39
930 FORMAT(1H0,5X, 'NODE',5X, 'COORD.') DATA 40
DO 30 IPOIN=1,NPOIN DATA 41
READ (5,935) JPOIN,COORD(JPOIN) DATA 42
30 WRITE (6,935) JPOIN,COORD(JPOIN) DATA }4
935 FORMAT(I10,F15.5)
DATA }4
DO 40 ISVAB=1,NSVAB DATA 45
IFPRE(ISVAB)=0 DATA 46
40 PEFIX(ISVAB)=0.0 DATA 47
IF(NDOFN.EQ.1) WRITE(6,940) DATA 48
940 FORMAT(1HO,1X,'RES.NODE',2X,'CODE',3X,'PRES.VALUES')
IF(NDOFN.EQ.2) WRITE(6.945) DATA 50
945 FORMAT(1HO,1X,'RES.NODE',2X,'CODE',3X,'PRES.VALUES',2X, DATA 51
. 'CODE',3X,'PRES.VALUES') DATA 52
DO }50\mathrm{ IBOUN=1,NBOUN DATA 53
READ (5,950) NODFX, (ICODE(IDOFN),VALUE(IDOFN),IDOFN=1,NDOFN) DATA 54
WRITE(6,950) NODFX,(ICODE(IDOFN),VALUE(IDOFN),IDOFN=1,NDOFN) DATA }5
950 FORMAT(I10,2(I5,F15.5))}\mathrm{ DATA 56
NPOSN=(NODFX-1)*NDOFN DATA 57
DO 50 IDOFN=1,NDOFN DATA 58
NPOSN=NPOSN+1
IFPRE(NPOSN)=ICODE (IDOFN) DATA 60
50 PEFIX(NPOSN)=VALUE(IDOFN) DATA 61
WRITE (6,955)
955 FORMAT(1HO,2X,'ELEMENT',10X,'NODAL LOADS') DATA 63
DO 60 IELEM=1,NELEM DATA 64

```
\begin{tabular}{|c|c|}
\hline D 60 IEVAB \(=1\), NEVAB & DATA 65 \\
\hline \(60 \mathrm{RLOAD}(\) IELEM, IEVAB \()=0.0\) & DATA 66 \\
\hline 70 READ ( 5,960 ) JELEM, (RLOAD (JELEM, IEVAB), IEVAB \(=1\), NEVAB) & DATA 67 \\
\hline IF(JELEM.NE.NELEM) GO TO 70 & DATA 68 \\
\hline DO 80 IELEM \(=1\), NELEM & DATA 69 \\
\hline 80 WRITE ( 6,960 ) IELEM, ( \(\mathrm{RLOAD}(\) IELEM, IEVAB), \(\mathrm{IEVAB}=1, \mathrm{NEVAB}\) ) & data 70 \\
\hline 960 FORMAT(I10,5F15.5) & data 71 \\
\hline RETURN & DATA 72 \\
\hline END & DATA 73 \\
\hline
\end{tabular}

DATA 16-18 Read and write the problem title.
DATA 19-24 Read and write the control parameters for the problem.
DATA 27-32 Read and write the material properties for each individual material.
DATA 33-38 Read and write the nodal connection numbers and material identification number of each element.
DATA 39-47 Read and write the coordinate of each nodal point. Also initialise the arrays for locating and recording prescribed values of the unknown.
DATA 48-61 Read and write the node number and prescribed value for each degree of freedom for each boundary node and store in the global arrays IFPRE and PEFIX.
DATA 62-71 Read and write the nodal loads for each element.

\subsection*{3.3 Subroutine NONAL}

The main function of this subroutine is to control the solution process according to the value of the solution algorithm parameter, NALGO, input in subroutine DATA. The subroutine sets the value of indicator KRESL to either 1 or 2 according to NALGO and the current value of the iteration number IITER and increment number IINCS. A value of KRESL \(=1\) indicates that the stiffnesses are to be reformulated and consequently a full system of simultaneous equations must be subsequently solved. If KRESL \(=2\) the stiffnesses are not to be redefined and therefore only equation resolution need be undertaken. In this the reduced equations from the previous solution are stored and only the terms associated with the new loading need be reduced in the solution process. This results in a considerable saving in computation time with equation resolution generally requiring only \(20 \%\) of the time required for complete analysis. For the algorithm options contained in the four programs presented, the value of KRESL is preset as follows.
(a) Direct iteration. For this case the stiffnesses must be reformulated, according to (2.3), for every iteration. Consequently \(\mathrm{KRESL}=1\) at all stages.
(b) Newton-Raphson method for quasi-harmonic problems and tangential stiffness method for structural problems. Again the stiffnesses must be reformulated for every iteration according to (2.12) for quasi-harmonic situations and (2.13) for structural applications. Therefore KRESL \(=1\) at all stages.
(c) Initial stiffness method. In this approach the stiffnesses are calculated once and for all at the beginning of the computation, according to (2.14) and this value is then used throughout. Consequently KRESL \(=1\) for the first iteration of the first load increment and is set equal to 2 thereafter.
(d) Combination of initial and tangential stiffness methods. In this algorithm the stiffnesses are recalculated only for the first iteration of any load increment and kept constant thereafter until convergence of solution under that particular loading is achieved. Therefore \(\mathrm{KRESL}=1\) for the first iteration of any load increment and is set to 2 at all other times. (Alternatively the element stiffnesses may be recomputed at the beginning of the second iteration as described in Section 3.2.)

The final role of subroutine NONAL is to set the vector of prescribed unknowns to the correct values. For the method of direct iteration the problem is completely reanalysed for every iteration and therefore the vector of prescribed unknowns must be introduced unchanged into the solution subroutines at each stage. However, for the three other solution algorithms considered, the processes are essentially accumulative with the value of the unknowns being totalled from the incremental values obtained for each iteration. Therefore, in order to maintain the fixed unknowns at their prescribed values, it is necessary to input the prescribed values into the solution routines for the first iteration of a load increment and then prescribe zero values for all subsequent iterations. In this way the final displacements will equal the prescribed values on convergence of the solution. If the structure is to be loaded by prescribing values of the unknowns then an incremental procedure may be adopted with factored values of the prescribed unknowns being applied sequentially. The prescribed displacements are factored by use of the variable FACTO, whose role is explained in terms of applied loads in Section 3.7. The prescribed values of the unknowns have been permanently stored in array PEFIX in subroutine DATA. These prescribed values, or zero values, required as described above, are transferred to the equation solution subroutines via the array FIXED.

Subroutine NONAL is now presented and explanatory notes provided.
\begin{tabular}{|c|c|c|}
\hline SUBROUTINE NONAL & NONL & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & \\
\hline C *** SETS INDICATOR TO IDENTIFY TYPE OF SOLUTION ALGORITHM & NONL & 4 \\
\hline & NONL & \\
\hline \multicolumn{3}{|l|}{C**********************************************************************NONL} \\
\hline COMMON/UNIM1/NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, & NONL & 7 \\
\hline KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, & NONL & 8 \\
\hline NITER, NOUTP, FACTO, PVALU & NONL & 9 \\
\hline COMMON/UNIM2/PROPS \((5,4), \operatorname{COORD}(26), \operatorname{LNODS}(25,2)\), IFPRE (52), & NONL & 10 \\
\hline \(\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & NONL & 11 \\
\hline MATNO(25), \(\operatorname{STRES}(25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\), & NONL & 12 \\
\hline
\end{tabular}
```

TDISP(26,2),TREAC(26,2),\operatorname{ASTIF}(52,52),\operatorname{ASLOD}(52), NONL 13
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) NONL 14
KRESL=2
NONL }1
IF(NALGO.EQ.1) KRESL=1
NONL }1
IF(NALGO.EQ.2) KRESL=1 NONL }1
IF(NALGO.EQ.3.AND.IINCS.EQ.1.AND.IITER.EQ.1) KRESL=1
NONL 18
IF(NALGO.EQ.4.AND.IITER.EQ.1) KRESL=1 NONL 19
IF(NALGO.EQ.5.AND.IINCS.EQ.1.AND.IITER.EQ.1) KRESL=1 NONL 20
IF(NALGO.EQ.5.AND.IITER.EQ.2) KRESL=1
NONL }2
IF(IITER.EQ.1.OR.NALGO.EQ.1) GO TO 20 NONL 22
DO 10 ISVAB=1,NSVAB NONL 23
10 FIXED(ISVAB)=0.0 NONL 24
RETURN NONL 25
2 0 ~ D O ~ 3 0 ~ I S V A B = 1 . N S V A B ~ N O N L ~ 2 6 ~
30 FIXED (ISVAB)=PEFIX(ISVAB)*FACTO NONL 27
RETURN NONL 28
END
NONL 29

```

NONL 15 Preset KRESL to the condition of equation resolution.
NONL 16 For the direct iteration method set KRESL \(=1\) for recomputation of the stiffnesses at all stages.
NONL 17 For the Newton-Raphson method for quasi-harmonic problems or the tangential stiffness method for structural problems, recompute the stiffnesses at all stages.
NONL 18 For the initial stiffness method for structural problems, compute the stiffnesses only at the beginning of the computation procedure.
NONL 19 For the combined initial and tangential stiffness approach and NALGO \(=4\), recompute the stiffnesses at the first iteration of each load increment only.
NONL 20-21 For the initial/tangential approach with the option NALGO \(=5\) (Section 3.2), the stiffnesses are recalculated on the 2nd iteration of any load increment. However, at the start of the computation the stiffnesses must be evaluated.
NONL 22 For all stages of the direct iteration method or the first iteration of the other techniques, go to 20 to set the unknowns equal to the prescribed values.
NONL 23-25 Set the vector of prescribed unknowns to zero and return.
NONL 26-27 Set the vector of prescribed unknowns equal to the input prescribed values multiplied by a specified factor.

\subsection*{3.4 Subroutines for equation assembly and solution}

For finite element analysis by the displacement process, the stiffness and load contributions of each element must be assembled into the global stiffness matrix and load vector respectively. The resulting set of simultaneous equations must then be solved to give the unknown nodal values. These aspects have been dealt with in detail elsewhere \({ }^{(1-3)}\) and only the essential steps of the process will be reproduced here.

\subsection*{3.4.1 Numerical example of equation assembly and solution}

In order to introduce the global stiffness matrix assembly and equation solution process we consider the example of a simple axial load structure shown in Fig. 3.2. The structure is subdivided into four elements in each of which a linear displacement variation is assumed. At each node \(i\) of the element there is an axial displacement degree of freedom, \(\phi_{i}\).


Fig. 3.2 Structural example for illustration of equation solution process.

The stiffness matrix for this element has already been derived in Section 2.5 and is given, for elastic material behaviour, by equation (2.38). The element stiffness matrices can be written as
\[
\begin{gather*}
K_{\mathrm{I}}=k_{\mathrm{I}}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], \quad K_{\mathrm{II}}=k_{\mathrm{II}}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], \\
\boldsymbol{K}_{\mathrm{III}}=k_{\mathrm{III}}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], \quad K_{\mathrm{IV}}=k_{\mathrm{IV}}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], \tag{3.1}
\end{gather*}
\]
where
\[
\begin{equation*}
k_{\mathrm{I}}=\frac{E^{(\mathrm{I})} A^{(\mathrm{I})}}{L^{(\mathrm{I})}}, \text { etc. }, \tag{3.2}
\end{equation*}
\]
in which \(E^{(\mathrm{I})}, A^{(\mathrm{I})}\) and \(L^{(\mathrm{I})}\) are respectively the elastic modulus, crosssectional area and length of element \(I\). The vector of applied nodal forces for each element is
\[
f_{\mathrm{I}}=\left[\begin{array}{c}
P_{1}  \tag{3.3}\\
0
\end{array}\right], \quad f_{\mathrm{II}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad f_{\mathrm{III}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad f_{\mathrm{IV}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
\]

The vectors of the unknown nodal displacements for the elements are
\[
\boldsymbol{\delta}_{\mathrm{I}}=\left[\begin{array}{l}
\phi_{1}  \tag{3.4}\\
\phi_{3}
\end{array}\right], \quad \boldsymbol{\delta}_{\mathrm{II}}=\left[\begin{array}{l}
\phi_{2} \\
\phi_{3}
\end{array}\right], \quad \boldsymbol{\delta}_{\mathrm{III}}=\left[\begin{array}{l}
\phi_{3} \\
\phi_{4}
\end{array}\right], \quad \boldsymbol{\delta}_{\mathrm{IV}}=\left[\begin{array}{l}
\phi_{4} \\
\phi_{5}
\end{array}\right] .
\]

We also àssume the following prescribed displacement values
\[
\begin{equation*}
\phi_{2}=\phi_{p}, \quad \phi_{5}=0 . \tag{3.5}
\end{equation*}
\]

The Theorem of Minimum Total Potential Energy will now be used to derive the stiffness equations for this problem. The total potential energy for each element may be calculated separately. For example, the total potential energy of element \(I\) can be expressed as
\[
\begin{equation*}
\pi_{\mathrm{I}}=\frac{1}{2}\left[\delta_{\mathrm{I}}\right]^{T} K_{\mathrm{I}} \delta_{\mathrm{I}}-\left[\delta_{\mathrm{I}}\right]^{T} f_{\mathrm{I}}=\frac{k_{\mathrm{I}}}{2}\left(\phi_{1}-\phi_{3}\right)^{2}-P_{1} \phi_{1} . \tag{3.6}
\end{equation*}
\]

The augmented total potential energy of the assemblage is given by the sum of the individual element potentials plus extra terms to account for the prescribed values
\[
\begin{equation*}
\pi=\pi_{\mathrm{I}}+\pi_{\mathrm{II}}+\pi_{\mathrm{III}}+\pi_{\mathrm{IV}}-R_{2}\left(\phi_{2}-\phi_{p}\right)-R_{5}\left(\phi_{5}-0\right) \tag{3.7}
\end{equation*}
\]

Note that \(R_{2}\) and \(R_{5}\) are the associated nodal reactions.
Using the principle of minimum potential energy, we obtain
\[
\begin{align*}
& \frac{\partial \pi}{\partial \phi_{1}}=k_{\mathrm{I}}\left(\phi_{1}-\phi_{3}\right)-P_{1}=0, \\
& \frac{\partial \pi}{\partial \phi_{2}}=k_{\mathrm{II}}\left(\phi_{2}-\phi_{3}\right)=R_{2}, \\
& \frac{\partial \pi}{\partial \phi_{3}}=k_{\mathrm{I}}\left(\phi_{3}-\phi_{1}\right)+k_{\mathrm{II}}\left(\phi_{3}-\phi_{2}\right)+k_{\mathrm{III}}\left(\phi_{3}-\phi_{4}\right)=0,  \tag{3.8}\\
& \frac{\partial \pi}{\partial \phi_{4}}=k_{\mathrm{III}}\left(\phi_{4}-\phi_{3}\right)+k_{\mathrm{IV}}\left(\phi_{4}-\phi_{5}\right)=0, \\
& \frac{\partial \pi}{\partial \phi_{5}}=k_{\mathrm{IV}}\left(\phi_{5}-\phi_{4}\right)=R_{5} .
\end{align*}
\]

These equilibrium equations for the assembled elements of the structure can be expressed in matrix form as
\begin{tabular}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{tabular}\(\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\
k_{\mathrm{I}} & 0 & -k_{\mathrm{I}} & 0 & 0 \\
0 & k_{\mathrm{II}} & -k_{\mathrm{II}} & 0 & 0 \\
-k_{\mathrm{I}} & -k_{\mathrm{II}} & k_{\mathrm{I}}+k_{\mathrm{II}}+k_{\mathrm{III}} & -k_{\mathrm{III}} & 0 \\
0 & 0 & -k_{\mathrm{III}} & k_{\mathrm{III}}+k_{\mathrm{IV}} & -k_{\mathrm{IV}} \\
0 & 0 & 0 & -k_{\mathrm{IV}} & . k_{\mathrm{IV}}\end{array}\right]\left[\begin{array}{c}\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4} \\
\phi_{5}\end{array}\right]=\left[\begin{array}{c}P_{1} \\
R_{2} \\
0 \\
0 \\
R_{5}\end{array}\right]\)

The assembly process can be clearly appreciated by comparing the individual stiffness matrices (3.1), and load vectors (3.3), with the final assemblage. Obviously, the individual element contributions can be added directly into the overall stiffness matrix of the structure in positions appropriate to the element nodal connection numbers.

It is noted that the global stiffness matrix is both symmetric and banded. By banded we mean that all the non-zero stiffness coefficients lie within a band adjacent to the leading diagonal. Banding of the stiffness equations is a direct consequence of the order in which the nodal points are numbered.

In the equation solution subroutines presented later in Sections 3.4.2-3.4.5 no advantage will be taken of the banded symmetric form of the stiffness equations.

Some elementary concepts of equation solution are now introduced. In particular we describe the Gaussian direct elimination process which will be used in a more efficient form in the main solution routine described later in Chapter 6.

\subsection*{3.4.1.1 Gaussian direct elimination method for the solution of simultaneous equation systems}

Formulation of the global stiffness matrix resulted in equation system (3.9) which is of the general form
\[
\begin{align*}
& k_{11} \phi_{1}+k_{12} \phi_{2}+k_{13} \phi_{3}+\ldots k_{1 n} \phi_{n}=f_{1} \\
& k_{21} \phi_{1}+k_{22} \phi_{2}+k_{23} \phi_{3}+\ldots k_{2 n} \phi_{n}=f_{2} \\
& \cdots k_{n n} \phi_{n}=f_{n} . \tag{3.10}
\end{align*}
\]

The Gaussian direct elimination method seeks to reduce equation system (3.10) to the following triangular form \({ }^{(4)}\)
\[
\begin{aligned}
k_{11}^{\prime} \phi_{1}+k_{12}^{\prime} \phi_{2}+k_{13}{ }^{\prime} \phi_{3}+\ldots k_{1, n-1}^{\prime} \phi_{n-1}+k_{1}^{\prime}{ }_{1 n} \phi_{n} & =f_{1}^{\prime} \\
0+k_{22}^{\prime} \phi_{2}+k_{23}^{\prime} \phi_{3}+\ldots k_{2, n-1}^{\prime} \phi_{n-1}+k_{2 n}^{\prime} \phi_{n} & =f_{2}^{\prime} \\
0+0+k_{33}^{\prime} \phi_{3}+\ldots k_{3, n-1}^{\prime} \phi_{n-1}+k_{3 n}^{\prime}{ }_{3 n} \phi_{n} & =f_{3}^{\prime}
\end{aligned}
\]
\[
\begin{align*}
k_{n-1, n-1}^{\prime} \phi_{n-1}+k_{n-1, n}^{\prime} \phi_{n} & =f^{\prime} n-1 \\
k_{n n}^{\prime} \phi_{n} & =f_{n}^{\prime} . \tag{3.11}
\end{align*}
\]

Then all the unknowns can be systematically determined by taking these reduced equations in reverse order, since each new equation, proceeding in an upward direction, only introduces one additional unknown value. The last equation is solved for \(\phi_{n}\), then \(\phi_{n-1}\) can be recovered from the next equation and so on. This phase of the solution scheme is termed backsubstitution.

\subsection*{3.4.1.2 The equation reduction or elimination phase}

Reduction of system (3.10) to the form (3.11) can be accomplished by employing the \(i^{\text {th }}\) equation to eliminate \(\phi_{i}\) from all equations below, i.e. from equations \(i+1\) to \(n\). Formally this can be done by subtracting from the \(r^{\text {th }}\) equation ( \(i<r \leqslant n\) ), the \(i^{\text {th }}\) equation factored by \(k_{r i}{ }^{(i)} / k_{i i}{ }^{(i)}\), where the
superscript \(i\) indicates that these coefficients have been already modified \((i-1)\) times prior to the elimination of the \(i^{\text {th }}\) degree of freedom. For example, the first equation is used to eliminate \(\phi_{1}\) from equations 2 to \(n\) as follows:
\[
\begin{align*}
& k_{11} \phi_{1}+k_{12} \phi_{2}+k_{13} \phi_{3}+\ldots \quad k_{1 n} \phi_{n}=f_{1} \\
& 0 . \phi_{1}+\left(k_{22}-k_{12} \frac{k_{21}}{k_{11}}\right) \phi_{2}+\left(k_{23}-k_{13} \frac{k_{21}}{k_{11}}\right) \phi_{3}+\ldots\left(k_{2 n}-k_{1 n} \frac{k_{21}}{k_{11}}\right) \phi_{n}=f_{2}-f_{1} \frac{k_{21}}{k_{11}} \\
& 0 . \phi_{1}+\left(k_{n 2}-k_{12} \frac{\dot{k_{n 1}}}{k_{11}}\right) \phi_{2}+\left(k_{n 3}-k_{13} \frac{\dot{k_{n 1}}}{k_{11}}\right) \phi_{3}+\ldots\left(k_{n n}-k_{1 n} \frac{k_{n 1}}{k_{11}}\right) \phi_{n}=f_{n}-f_{1} \frac{\dot{k_{n 1}}}{k_{11}} . \tag{3.12}
\end{align*}
\]

Then the second equation is used to eliminate \(\phi_{2}\) from equations 3 to \(n\) and so on. Note that the modified terms in the equation system are still symmetric.

\subsection*{3.4.1.3 The case of a prescribed displacement}

If a displacement is prescribed its value is known. Therefore the nodal force necessary to maintain the specified displacement becomes the unknown value associated with the node. Suppose for example that \(\phi_{2}\) is prescribed to be some given value \(\phi_{p}\), in which case \(f_{2}\) is the reaction value. In this case the elimination of \(\phi_{2}\) is trivial and all that need be done is to substitute \(\phi_{2}=\phi_{p}\) in equations 3 to \(n\) and transfer the now known quantity
\[
k_{r 2}{ }^{\prime} \phi_{p} \quad(3 \leqslant r \leqslant n)
\]
to the right-hand side of each equation. This is illustrated below
\[
\begin{align*}
& k_{11} \phi_{1}+k_{12} \phi_{2}+k_{13} \phi_{3}+\ldots k_{1 n} \phi_{n}=f_{1} \\
& 0 . \phi_{1}+k_{22}{ }^{\prime} \phi_{2}+k_{23}{ }^{\prime} \phi_{3}+\ldots k_{2 n}{ }^{\prime} \phi_{n}=f_{2} \\
& 0 . \phi_{1}+0 . \phi_{2}+k_{33}{ }^{\prime} \phi_{3}+\ldots k_{3 n}{ }^{\prime} \phi_{n}=f_{3}-k_{32}{ }^{\prime} \phi_{p} \\
& 0 . \phi_{1}+0 . \phi_{2}+k_{n 3}{ }^{\prime} \phi_{3}+\ldots k_{n n^{\prime}} \phi_{n}=f_{n}-k_{n 2}{ }^{\prime} \phi_{p} . \tag{3.13}
\end{align*}
\]

For the particular case of a zero prescribed displacement value due to a pinned support, an alternative approach is to delete the row and column corresponding to the zero displacement from the equation system. The column can be deleted since it always multiplies a zero quantity and the row is removed since it only relates to equilibrium at the supported node. However this means that if the support reaction is required, it must be computed separately from the element forces meeting at the pinned node.

The complete solution process is best illustrated by application to a particular problem. We will now substitute explicit values for the terms contained in (3.9) in order to permit numerical solution. Assume that
\[
\begin{equation*}
k_{\mathrm{I}}=1, \quad k_{\mathrm{II}}=2, \quad k_{\mathrm{III}}=3, \quad k_{\mathrm{IV}}=4, \quad P_{1}=10, \quad \phi_{p}=2, \tag{3.14}
\end{equation*}
\]
then equations (3.9) can be written as
\[
\begin{align*}
& \phi_{1}+0 \cdot \phi_{2}-\phi_{3}+0 \cdot \phi_{4}+0 \cdot \phi_{5}=10  \tag{3.15a}\\
& 0 . \phi_{1}+2 \phi_{2}-2 \phi_{3}+0 \cdot \phi_{4}+0 \cdot \phi_{5}=R_{2} ; \quad \phi_{2}=2  \tag{3.15b}\\
& -\phi_{1}-2 \phi_{2}+6 \phi_{3}-3 \phi_{4}+0 \cdot \phi_{5}=0  \tag{3.15c}\\
& 0 \cdot \phi_{1}+0 \cdot \phi_{2}-3 \phi_{3}+7 \phi_{4}-4 \phi_{5}=0  \tag{3.15d}\\
& 0 \cdot \phi_{1}+0 \cdot \phi_{2}+0 \cdot \phi_{3}-4 \phi_{4}+4 \phi_{5}=R_{5} ; \quad \phi_{5}=0 . \tag{3.15e}
\end{align*}
\]
where \(R_{2}\) and \(R_{5}\) are the nodal reactions associated with the displacement values prescribed at nodes 2 and 5 . For example, \(R_{2}\) must balance the sum of the elastic forces provided by all the elements meeting at node 2 . We also imply by the notation adopted that \(\phi_{2}=2\).

To solve these equations by the Gaussian reduction process we first eliminate \(\phi_{1}\) from all equations, except (3.15a). Then we eliminate \(\phi_{2}\) from all equations below (3.15b), then \(\phi_{3}\) is eliminated from all equations below ( 3.15 c ) and so on. Therefore, we eliminate a particular variable only below the current or active equation. (If we are eliminating \(\phi_{r}\), the \(r^{\text {th }}\) equation is active.)

We commence the process by eliminating \(\phi_{1}\) from equations ( \(3.15 b\) )(3.15e) by using (3.15a). In fact, we need only operate on (3.15c) since \(\phi_{1}\) does not appear in the other equations. Thus we eliminate \(\phi_{1}\) from ( 3.15 c ) by adding ( 3.15 a ) to \((3.15 \mathrm{c}\) ). This gives the first reduced set of equations as
\[
\begin{align*}
& \quad \phi_{1}+0 . \phi_{2}-\phi_{3}+0 . \phi_{4}+0 . \phi_{5}=10  \tag{3.16a}\\
& 0 . \phi_{1}+2 \phi_{2}-2 \phi_{3}+0 . \phi_{4}+0 . \phi_{5}=R_{2} ; \quad \phi_{2}=2  \tag{3.16b}\\
& 0 . \phi_{1}-2 \phi_{2}+5 \phi_{3}-3 \phi_{4}+0 . \phi_{5}=10  \tag{3.16c}\\
& 0 . \phi_{1}+0 . \phi_{2}-3 \phi_{3}+7 \phi_{4}-4 \phi_{5}=0  \tag{3.16d}\\
& 0 . \phi_{1}+0 . \phi_{2}+0 . \phi_{3}-4 \phi_{4}+4 \phi_{5}=R_{5} ; \quad \phi_{5}=0 . \tag{3.16e}
\end{align*}
\]

Next we eliminate \(\phi_{2}\) from (3.16c)-(3.16e) by using (3.16b). In fact, since \(\phi_{2}\) is prescribed to be 2 , all we need do is substitute \(\phi_{2}=2\) directly into the remaining equations. We also do this for (3.16b) in this case.
\[
\begin{align*}
& \phi_{1}+0 . \phi_{2}-\phi_{3}+0 . \phi_{4}+0 . \phi_{5}=10  \tag{3.17a}\\
& 0 . \phi_{1}+0 . \phi_{2}-2 \phi_{3}+0 . \phi_{4}+0 . \phi_{5}=-4+R_{2} ; \\
& \phi_{2}=2 \tag{3.17b}
\end{align*}
\]
\[
\begin{align*}
& 0 . \phi_{1}+0 . \phi_{2}+5 \phi_{3}-3 \phi_{4} \mid 0 . \phi_{5}=14  \tag{3.17c}\\
& 0 . \phi_{1}+0 . \phi_{2}-3 \phi_{3}+7 \phi_{4}-4 \phi_{5}=0  \tag{3.17d}\\
& 0 . \phi_{1}+0 . \phi_{2}+0 . \phi_{3}-4 \phi_{4}+4 \phi_{5}=R_{5} ; \quad \phi_{5}=0 . \tag{3.17e}
\end{align*}
\]

We then use (3.17c) to eliminate \(\phi_{3}\) from (3.17d) and (3.17e). We need only operate on ( 3.17 d ), since \(\phi_{3}\) does not appear in (3.17e), and in particular we add ( 3.17 d ) to \(3 / 5\) of ( 3.17 c ).
\[
\begin{align*}
\phi_{1}+0 . \phi_{2}-\phi_{3}+0 . \phi_{4}+0 . \phi_{5} & =10  \tag{3.18a}\\
0 . \phi_{1}+0 . \phi_{2}-2 \phi_{3}+0 . \phi_{4}+0 . \phi_{5} & =-4+R_{2} ; \quad \phi_{2}=2  \tag{3.18b}\\
0 . \phi_{1}+0 . \phi_{2}+5 \phi_{3}-3 \phi_{4}+\phi_{5} & =14  \tag{3.18c}\\
0 . \phi_{1}+0 . \phi_{2}+0 . \phi_{3}+\frac{26}{5} \phi_{4}-4 \phi_{5} & =\frac{42}{5}  \tag{3.18d}\\
0 . \phi_{1}+0 . \phi_{2}+0 . \phi_{3}-4 \phi_{4}+4 \phi_{5} & =R_{5} ; \quad \phi_{5}=0 . \tag{3.18e}
\end{align*}
\]

To complete the elimination process, we eliminate \(\phi_{4}\) from (3.18e) by adding (3.18e) to \(20 / 26\) of (3.18d).
\[
\begin{align*}
\phi_{1}+0 . \phi_{2}-\phi_{3}+0 . \phi_{4}+0 . \phi_{5} & =10  \tag{3.19a}\\
0 . \phi_{1}+0 . \phi_{2}-2 \phi_{3}+0 . \phi_{4}+0 . \phi_{5} & =-4+R_{2} ; \quad \phi_{2}=2  \tag{3.19b}\\
0 . \phi_{1}+0 . \phi_{2}+5 \phi_{3}-3 \phi_{4}+\phi_{5} & =14  \tag{3.19c}\\
0 . \phi_{1}+0 . \phi_{2}+0 . \phi_{3}+\frac{26}{5} \phi_{4}-4 \phi_{5} & =\frac{42}{5}  \tag{3.19d}\\
0 . \phi_{1}+0 . \phi_{2}+0 . \phi_{3}+0 . \phi_{4}+\frac{12}{13} \phi_{5} & =\frac{84}{13}+R_{5} ; \quad \phi_{5}=0 . \tag{3.19e}
\end{align*}
\]

We now have a set of equations which can be solved directly if we take them in reverse order. Starting with (3.19e) we have \(R_{5}=-84 / 13\), since \(\phi_{5}=0\). Knowing \(\phi_{5}\) then (3.19d) gives \(\phi_{4}=21 / 13\). Having obtained \(\phi_{4}\) and \(\phi_{5}\) equation (3.19c) gives \(\phi_{3}=49 / 13\). Then knowing \(\phi_{3}, \phi_{4}, \phi_{5}\) and with \(\phi_{2}\) prescribed, (3.19b) gives \(R_{2}=-46 / 13\) immediately. Finally we complete the back substitution process by determining \(\phi_{1}\) from (3.19a) since \(\phi_{2}, \phi_{3}, \phi_{4}\) are known at this stage. This gives \(\phi_{1}=179 / 13\). Since the above procedure is quite systematic it can be readily programmed.

The global stiffness matrix must be assembled and the stiffness equations reduced only if the element stiffnesses have been changed for the current iteration. The full assembly and reduction process must be followed if

KRESL \(=1\), but only the global load vector need be formed and reduced if \(\operatorname{KRESL}=2\). In this way a considerable number of arithmetic operations are avoided if only equation resolution is to be undertaken. This facility is incorporated in the equation solution subroutines presented in the following sections.

The principles discussed in this section can now be repeated as a FORTRAN operation. Four subroutines are presented which undertake the respective tasks of equation assembly, equation reduction by Gaussian direct elimination, the back substitution process and reduction of subsequent load vectors for equation resolution.

\subsection*{3.4.2 Subroutine ASSEMB}

This subroutine assembles the element nodal loads to form the global load vector. Also, the contributions of individual elements are assembled to form the global stiffness matrix. The variables employed in the subroutine are listed below and descriptive notes are again provided immediately after the FORTRAN listing.

\section*{Dictionary of variable names (with dimensions)}
\begin{tabular}{ll} 
ASLOD (MSVAB) & ASsembled LOaD vector \\
ASTIF (MSVAB, MSVAB) & Assembled global STIFfness matrix \\
RLOAD (MEVAB) & Element load vector \\
ESTIF (MEVAB, MEVAB) & Element STIFfness matrix \\
IELEM, NELEM, MELEM & Index, Number, Maximum of \\
& ELEMents \\
IFILE & Input FILE \\
IDOFN, JDOFN, NODFN & Index, Index, Number of Degrees Of \\
& Freedom per Node \\
INODE, JNODE, NNODE, & Index, Index, Number, Maximum of \\
MNODE & NODes per Element \\
ISVAB, JSVAB, MSVAB, & Index, Index, Maximum, Number of \\
NSVAB & global Structural VAriaBles \\
JFILE & Output file \\
KRESL & Equation resolution index \\
LNODS (MELEM, MNODE) & ELement NODe numberS listed for \\
& each element \\
NODEI & NODE I \\
NODEJ & NODE J \\
NCOLS & Number of the COLumn in the global \\
& Structural stiffness matrix \\
NROWS & Number of the ROW in ihe global \\
& Structural stiffness matrix and load \\
& vector
\end{tabular}


ASEM 18 Rewind file ready for reading the individual element stiffness matrices.
ASEM 19-20 Set the global load vector, ASLOD, to zero.

ASEM 21-25 If only equation resolution is to be performed during this iteration, do not set the global stiffness coefficients to zero.
ASEM 29 Loop for each element.
ASEM 30 Read ESTIF for the current element.
ASEM 31 Loop for each node 'INODE' of current element.
ASEM 32 From LNODS array identify node number of current node 'INODE'.
ASEM 33 Loop for each degree of freedom of the current node 'INODE'.
ASEM 34 Establish the row position in the global stiffness matrix and load vector.
ASEM 35 Establish the row position in the element stiffness matrix and load vector.
ASEM 36 Add the contribution to the global load vector from the element load vector.
ASEM 40 If equation resolution is to be performed, avoid assembling the global stiffness matrix.
ASEM 41 Loop for each node 'JNODE' of the current element.
ASEM 42 From LNODS array identify node number of current node 'JNODE'.
ASEM 43 Loop for each degree of freedom of the current node 'JNODE'.
ASEM 44 Establish the column position in the global stiffness matrix.
ASEM 45 Establish the column position in the element stiffness matrix.
ASEM 46 Add the contribution to the global stiffness matrix from the element stiffness matrix.
ASEM 48 End element loop.
For the problem described in Section 3.4.1, the main variables have the following values
\[
\begin{gathered}
\text { NNODE }=2, \text { NELEM }=4, \text { NDOFN }=1, \text { NSVAB }=5, \\
\text { LNODS }=\left[\begin{array}{ll}
1 & 3 \\
2 & 3 \\
3 & 4 \\
4 & 5
\end{array}\right] \text { - Element I } \\
\text { - Element II } \\
\text { - Element III } \\
\text { Element IV. } .
\end{gathered}
\]

\subsection*{3.4.3 Subroutine GREDUC}

This subroutine undertakes the equation elimination process for equation solution by Gaussian reduction as outlined in Section 3.4.1. The additional variable names employed are defined below.

\section*{Dictionary of variable names}
```

ASLOD (MEQNS)
ASTIF (MEQNS, MEQNS)

```

ASembled LOaD vector.
Assembled global STIFfness matrix.

IEQNS, NEQNS, MEQNS
IFPRE (MEQNS)
FIXED (MEQNS)
ICOLS
IROWS
FACTR
FRESV ()
PIVOT

Index, Number, Maximum of EQuatioNS.
Vector of parameters defining the fixity of a node. 0 - free; 1 - fixed.
Vector of prescribed displacements (zero if not prescribed).
Index COLumn of Structural stiffness matrix.
Index ROW of Structural stiffness matrix.
Gaussian reduction FACToR.
Stored Gaussian reduction factors.
Diagonal term of variable which is currently being eliminated.
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE GREDUC & GRED & 1 \\
\hline \multicolumn{3}{|l|}{} & 2 \\
\hline C & & GRED & 3 \\
\hline C *** & GAUSSIAN REDUCTION ROUTINE & GRED & 4 \\
\hline C & & GRED & 5 \\
\hline \multicolumn{3}{|l|}{} & 6 \\
\hline & COMMON/UNIM1/NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, & GRED & 7 \\
\hline & KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, & GRED & 8 \\
\hline & NITER, NOUTP, FACTO, PVALU & GRED & 9 \\
\hline & COMMON/UNIM2/PROPS \((5,4), \operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52)\), & GRED & 10 \\
\hline & FIXED (52), \(\operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & GRED & 11 \\
\hline & MATNO(25),STRES \((25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\), & GRED & 12 \\
\hline & \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & GRED & 13 \\
\hline & REACT (52), FRESV(1352), PEFIX (52), \(\operatorname{ESTIF}(4,4)\) & GRED & 14 \\
\hline \multicolumn{2}{|l|}{C} & GRED & 15 \\
\hline C GA & GAUSSIAN REDUCTION ROUTINE & GRED & 16 \\
\hline \multirow[t]{5}{*}{C} & & GRED & 17 \\
\hline & KOUNT=0 & GRED & 18 \\
\hline & NEQNS=NSVAB & GRED & 19 \\
\hline & DO 70 IEQNS \(=1\), NEQNS & GRED & 20 \\
\hline & IF (IFPRE(IEQNS).EQ.1) GO TO 40 & GRED & 21 \\
\hline C & & GRED & 22 \\
\hline C R & REDUCE EQUATIONS & GRED & 23 \\
\hline \multirow[t]{12}{*}{C} & & GRED & 24 \\
\hline & PIVOT=ASTIF (IEQNS, IEQNS) & GRED & 25 \\
\hline & IF (ABS (PIVOT).LT. 1.0E-10) GO TO 60 & GRED & 26 \\
\hline & IF (IEQNS.EQ.NEQNS) GO TO 70 & GRED & 27 \\
\hline & IEQN1 = IEQNS +1 & GRED & 28 \\
\hline & DO 30 IROWS \(=\) IEQN1, NEQNS & GRED & 29 \\
\hline & KOUNT=KOUNT+1 & GRED & 30 \\
\hline & FACTR=ASTIF (IROWS. IEQNS)/PIVOT & GRED & 31 \\
\hline & FRESV(KOUNT) =FACTR & GRED & 32 \\
\hline & IF (FACTR.EQ.0.0) GO TO 30 & GRED & 33 \\
\hline & DO 10 ICOLS \(=\) IEQNS, NEQNS & GRED & 34 \\
\hline & ASTIF (IROWS, ICOLS \()=\) ASTIF ( IROWS, ICOLS ) -FACTR*ASTIF ( IEQNS, ICOLS & GRED & 35 \\
\hline \multirow[t]{2}{*}{10} & CONTINUE & GRED & 36 \\
\hline & ASLOD (IROWS \()=\) ASLOD ( IROWS) -FACTR*ASLOD ( IEQNS) & GRED & 37 \\
\hline \multirow[t]{2}{*}{30} & CONTINUE & GRED & 38 \\
\hline & GO TO 70 & GRED & 39 \\
\hline C & & GRED & 40 \\
\hline C AD & ADJUST RHS(LOADS) FOR PRESCRIBED DISPLACEMENTS & GRED & 41 \\
\hline
\end{tabular}
```

C

```

GRED
GRED 43 GRED 44 GRED 45 GRED 46 GRED 47 GRED 48 GRED 49 GRED 50 GRED 51 GRED 52

GRED 18 Set the counter over the Gaussian reduction factorisation terms to zero.
GRED 19 Set the number of equations to be solved equal to the total number of variables in the structure, NSVAB.
GRED 20 Loop for each equation-this equation is associated with the variable about to be eliminated.
GRED 21 If this variable is fixed, skip to 40.
GRED 25 Extract PIVOT-the leading diagonal term.
GRED 26 Check for zero PIVOT in which case write a message and stop the program.
GRED 27-38 Alter equations below equation 'IEQNS', not those above, according to (3.12). Note that the Gaussian factorisation terms are stored for use during equation resolution.
GRED 43-45 For prescribed variables adjust the R.H.S. (or load) terms according to (3.13).
GRED 47-49 For an invalid pivot value, write a message and terminate execution of the program.

For the problem considered in Section 3.4.1 the main variables have the following values:
\[
\text { NEQNS }=5, \quad \text { ASLOD }=\left[\begin{array}{c}
10 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \text { modified ASLOD }=\left[\begin{array}{c}
10 \\
-4 \\
14 \\
42 / 5 \\
84 / 13
\end{array}\right]
\]
modified
ASTIF \(=\left[\begin{array}{rrrrr}1 & 0 & -1 & 0 & 0 \\ 0 & 2 & -2 & 0 & 0 \\ -1 & -2 & 6 & -3 & 0 \\ 0 & 0 & -3 & 7 & -4 \\ 0 & 0 & 0 & -4 & 4\end{array}\right]\), ASTIF \(=\left[\begin{array}{ccccc}1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 5 & -3 & 1 \\ 0 & 0 & 0 & 26 / 5 & -4 \\ 0 & 0 & 0 & 0 & 12 / 13\end{array}\right]\)
\[
\text { IFPRE }=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right], \quad \text { FIXED }=\left[\begin{array}{l}
0 \\
2 \\
0 \\
0 \\
0
\end{array}\right] .
\]

The computational effort in this reduction process is proportional to \(n^{3}\). This can be approximately halved if we take advantage of the symmetry of the stiffness matrices.

\subsection*{3.4.4 Subroutine BAKSUB}

The object of this subroutine is to perform the back substitution process required after equation elimination by Gaussian reduction. This results in sequential solution for all the unknowns and reactions at nodal points at which values of the unknown have been prescribed. In the nonlinear solution processes described in Chapter 2, the values of the unknown determined during any iteration may or may not be the total values depending on the solution algorithm being employed. If the method of direct iteration is being used, then, according to equation (2.3), the value of \(\varphi\) determined during any iteration is the total value. For all other solution techniques considered the total values of the unknown are accumulated according to the corrections determined during each iteration, as indicated for example by (2.12).

Therefore, for the direct iteration process, it is simply necessary to transfer the calculated values of the unknowns and the reactions to the arrays TDISP (ISVAB, IDOFN) and TREAC (ISVAB, IDOFN) for output later. This transfer is only necessary to allow the same subroutine to be employed for output of results for all four programs.

Subroutine BAKSUB will now be presented in a form suitable for nonlinear solution dy direct iteration.

\section*{Dictionary of variable names}

ASLOD (MEQNS)
ASTIF (MEQNS, MEQNS)
IEQNS, NEQNS, MEQNS
IFPRE (MEQNS)
FIXED (MEQNS)

\section*{PIVOT}

REACT (MEQNS)
XDISP (MEQNS)

Reduced load vector.
Reduced global stiffness matrix.
Index, Number, Maximum of EQatioNS.
Vector of parameters defining the fixing of a node. 0 - free; 1 - fixed. Vector of prescribed displacements (zero if not prescribed).
Diagonal term of variable currently being evaluated.
REACTions at nodes with prescribed displacements.
Displacement at nodes.
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE BAKSUB & BAKS & 1 \\
\hline \multicolumn{3}{|l|}{C***********************************************************************BAKS} & 2 \\
\hline C & & BAKS & 3 \\
\hline C *** & BACK-SUBSTITUTION ROUTINE & BAKS & 4 \\
\hline C & & BAKS & 5 \\
\hline \multicolumn{4}{|l|}{C***********************************************************************BAKS 6} \\
\hline & COMMON/UNIM1/NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, & BAKS & 7 \\
\hline & - KRESL, NCHEK,TOLER, NALGO, NSVAB, NDOFN,NINCS, NEVAB, & BAKS & 8 \\
\hline & NITER,NOUTP,FACTO, PVALU & BAKS & 9 \\
\hline & COMMON/UNIM2/PROPS \((5,4), \operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52)\), & BAKS & 10 \\
\hline & FIXED (52), TLOAD \((25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & BAKS & 11 \\
\hline & MATNO(25), \(\operatorname{STRES}(25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\), & BAKS & 12 \\
\hline & \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & BAKS & 13 \\
\hline & \(\operatorname{REACT}(52), \operatorname{FRESV}(1352), \operatorname{PEFIX}(52), \operatorname{ESTIF}(4,4)\) & BAKS & 14 \\
\hline C & & BAKS & 15 \\
\hline C & BACK-SUBSTITUTION ROUTINE & BAKS & 16 \\
\hline C & & BAKS & 17 \\
\hline & NEQNS \(=\) NSVAB & BAKS & 18 \\
\hline & DO 10 IEQNS \(=1\), NEQNS & BAKS & 19 \\
\hline & REACT (IEQNS \()=0.0\) & BAKS & 20 \\
\hline \multirow[t]{2}{*}{10} & CONTINUE & BAKS & 21 \\
\hline & NEQN \(1=\) NEQNS +1 & BAKS & 22 \\
\hline & DO 40 IEQNS \(=1\), NEQNS & BAKS & 23 \\
\hline & NBACK=NEQN1-IEQNS & BAKS & 24 \\
\hline & PIVOT = ASTIF ( NBACK, NBACK) & BAKS & 25 \\
\hline & RESID = ASLOD ( NBACK) & BAKS & 26 \\
\hline & IF (NBACK.EQ.NEQNS) GO TO 30 & BAKS & 27 \\
\hline & NBAC1 \(=\) NBACK +1 & BAKS & 28 \\
\hline & DO 20 ICOLS \(=\) NBAC1, NEQNS & BAKS & 29 \\
\hline & RESID=RESID-ASTIF ( NBACK, ICOLS) *XDISP( ICOLS) & BAKS & 30 \\
\hline 20 & CONTINUE & BAKS & 31 \\
\hline \multirow[t]{3}{*}{30} & IF (IFPRE (NBACK) .EQ.0) XDISP(NBACK) =RESID/PIVOT & BAKS & 32 \\
\hline & IF (IFPRE ( NBACK).EQ.1) XDISP(NBACK) =FIXED (NBACK) & BAKS & 33 \\
\hline & IF (IFPRE(NBACK).EQ.1) REACT (NBACK) \(=-\mathrm{RESID}\) & BAKS & 34 \\
\hline \multirow[t]{2}{*}{40} & CONTINUE & BAKS & 35 \\
\hline & KOUNT \(=0\) & BAKS & 36 \\
\hline & DO 50 IPOIN \(=1\), NPOIN & BAKS & 37 \\
\hline & DO 50 IDOFN \(=1\), NDOFN & BAKS & 38 \\
\hline & KOUNT \(=\) KOUNT + \({ }^{\text {+ }}\) & BAKS & 39 \\
\hline & TDISP(IPOIN,IDOFN) \(=\) XDISP(KOUNT) & BAKS & 40 \\
\hline \multirow[t]{3}{*}{50} & TREAC (IPOIN,IDOFN) = REACT (KOUNT) & BAKS & 41 \\
\hline & RETURN & BAKS & 42 \\
\hline & END & BAKS & 43 \\
\hline
\end{tabular}

BAKS 19-21 Zero space for reactions.
BAKS 22-24 Loop backwards over each equation.
BAKS 25 Use the same PIVOT as in subroutine GREDUC.
BAKS 27 For the last equation (the first to be solved) we do not have any other variables to substitute (i.e. bypass the loop).
BAKS 28-31 Evaluate RESID from previously calculated variables.
BAKS 32 If the variable is not prescribed evaluate the variable.
BAKS 34 If the variable is prescribed evaluate the R.H.S. reaction.
BAKS 36-41 Store the solved variables and reactions in new arrays for output.

For the problem described in Section 3.4.1, the arrays employed in addition to those utilised in Subroutine GREDUC have the following values:
TDISP \(=\) XDISP \(=\left[\begin{array}{c}179 / 13 \\ 2 \\ 49 / 13 \\ 21 / 13 \\ 0\end{array}\right], \quad\) TREAC \(=\) REACT \(=\left[\begin{array}{c}0 \\ -46 / 13 \\ 0 \\ 0 \\ -84 / 13\end{array}\right]\).

It should be noted that nonzero reactions are obtained only for nodal positions at which the value of the unknown has been prescribed. For the Newton-Raphson, Tangential Stiffness and Initial Stiffness methods, the calculated unknowns and reactions must be accumulated from the values obtained during each iteration. Therefore, for these applications, statements BAKS 36-41 in the above listing must be replaced by
\begin{tabular}{ll} 
KOUNT \(=0\) & BAKS 36 \\
DO 50 IPOIN \(=1\), NPOIN & BAKS 37 \\
DO 50 IDOFN \(=1\), NDOFN & BAKS 38 \\
KOUNT=KOUNT+1 & BAKS 39 \\
TDISP(IPOIN,IDOFN) - TDISP(IPOIN,IDOFN)+XDISP(KOUNT) & BAKS 40 \\
50 TREAC(IPOIN,IDOFN \(=\) TREAC(IPOIN,IDOFN)+REACT(KOUNT) & BAKS 41
\end{tabular}
with the arrays TDISP and TREAC being initially set to zero at the beginning of the program.

For these three solution algorithms a final further programming addition must be made. When determining the residual forces according to (2.4), the contribution to \(f\) of the reactions at nodal points at which the value of the unknown is prescribed must be accounted for, since any reactions can be interpreted as additional applied loads necessary to maintain the prescribed value of the unknown. Therefore, the evaluated reactions must be added into the vector of applied nodal loads at every iteration. This task can be accomplished by the following coding inserted immediately before the RETURN statement:
\begin{tabular}{|c|c|}
\hline DO 90 IPOIN=1,NPOIN & BAKS 42 \\
\hline DO 60 IELEM=1, NELEM & BAKS 43 \\
\hline DO 60 INODE \(=1\), NNODE & BAKS 44 \\
\hline NLOCA=LNODS (IELEM, INODE) & BAKS 45 \\
\hline 60 IF (IPOIN.EQ.NLOCA) GO TO 70 & BAKS 46 \\
\hline 70 DO 80 IDOFN=1,NDOFN & BAKS 47 \\
\hline NPOSN \(=(\) IPOIN -1\() *\) NDOFN+IDOFN & BAKS 48 \\
\hline IEVAB \(=(\) INODE -1\() *\) NDOFN + IDOFN & BAKS 49 \\
\hline 80 TLOAD ( IELEM, IEVAB) = TLOAD (IELEM, IEVAB) +REACT ( NPOSN) & BAKS 50 \\
\hline 90 CONTINUE & BAKS 51 \\
\hline
\end{tabular}

BAKS 42 Loop over each nodal point.
BAKS 43-46 Search through the element nodal connections until one is found corresponding to the nodal point currently under consideration. As soon as one is found, abandon the search. Note that it is immaterial in which element the node is found since all element contributions will be finally assembled.

BAKS 47-50 Add the nodal reaction into the appropriate position in the array of applied element loads.

\subsection*{3.4.5 Subroutine RESOLV}

As stated in Section 3.4.1, for equation resolution (indicated by KRESL \(=2\) ) only the global load vector need be formed and reduced. Subroutine RESOLV merely reduces the R.H.S. (or load) terms by standard Gaussian elimination using the same operations as employed in Subroutine GREDUC, Section 3.4.3. The Gaussian factorisation terms were evaluated and stored in GREDUC and are now utilised in this subroutine. The programming logic follows that of Subroutine GREDUC and can be readily understood by reference to Section 3.4.3.
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE RESOLV & RSLV & 1 \\
\hline \multicolumn{4}{|l|}{C******************************************************************RSLV} \\
\hline C & & RSLV & 3 \\
\hline C *** & RESOLVING GAUSSIAN REDUCTION ROUTINE & RSLV & 4 \\
\hline C & & RSLV & 5 \\
\hline \multicolumn{4}{|l|}{C*********************************************************************RSLV} \\
\hline & COMMON/UNIM1/NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, & RSLV & 7 \\
\hline & KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, & RSLV & 8 \\
\hline & NITER, NOUTP, FACTO, PVALU & RSLV & 9 \\
\hline & COMMON/UNIM2/PROPS (5,4) , \(\operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52)\), & RSLV & 10 \\
\hline & FIXED (52) , \(\operatorname{TLOAD}(25,4)\), \(\operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & RSLV & 11 \\
\hline & MATNO(25), \(\operatorname{STRES}(25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\), & RSLV & 12 \\
\hline & \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & RSLV & 13 \\
\hline & \(\operatorname{REACT}(52), \operatorname{FRESV}(1352), \operatorname{PEFIX}(52), \operatorname{ESTIF}(4,4)\) & RSLV & 14 \\
\hline & KOUNT=0 & RSLV & 15 \\
\hline & NEQNS=NSVAB & RSLV & 16 \\
\hline & DO 40 IEQNS=1.NEQNS & RSLV & 17 \\
\hline & IF(IFPRE(IEQNS).EQ.1) GO TO 20 & RSLV & 18 \\
\hline C & & RSLV & 19 \\
\hline C & REDUCE RHS & RSLV & 20 \\
\hline \multirow[t]{8}{*}{C} & & RSLV & 21 \\
\hline & IF(IEQNS.EQ.NEQNS) GO TO 40 & RSLV & 22 \\
\hline & IEQN1=IEQNS +1 & RSLV & 23 \\
\hline & DO 10 IROWS=IEQN1, NEQNS & RSLV & 24 \\
\hline & KOUNT=KOUNT+1 & RSLV & 25 \\
\hline & FACTR=FRESV(KOUNT) & RSLV & 26 \\
\hline & IF(FACTR.EQ.O) GO TO 10 & RSLV & 27 \\
\hline & ASLOD (IROWS) \(=\) ASLOD ( IROWS)-FACTR*ASLOD (IEQNS) & RSLV & 28 \\
\hline \multirow[t]{2}{*}{10} & CONTINUE & RSLV & 29 \\
\hline & GO TO 40 & RSLV & 30 \\
\hline C & & RSLV & 31 \\
\hline C & ADJUST RHS TO PRESCRIBED DISPLACEMENTS & RSLV & 3 \\
\hline \multirow[t]{3}{*}{} & & RSLV & 33 \\
\hline & DO 30 IROWS \(=\) IEQNS, NEQNS & RSLV & 34 \\
\hline & ASLOD (IROWS) \(=\) ASLOD (IROWS)-ASTIF (IROWS, IEQNS)*FIXED (IEQNS) & RSLV & 35 \\
\hline \multirow[t]{3}{*}{40} & CONTINUE & RSLL \(V\) & 37 \\
\hline & RETURN & RSLV & 38 \\
\hline & END & RSLV & 3 \\
\hline
\end{tabular}

\subsection*{3.4.6 Improved numerical algorithm for equation solution}

Substantial economies can be achieved in both core storage requirements and execution times if advantage is taken of the banded symmetric form of the global stiffness matrix. Since:
- By recognising that the global stiffness matrix is symmetric, it is necessary only to store the upper (or lower) triangular part of the stiffness matrix.
- By noting that all the non-zero coefficients in the global stiffness matrix occur in a band adjacent to the leading diagonal, further reductions in the core storage requirements can be made, as well as a significant reduction in the number of arithmetic operations undertaken in the equation reduction and backsubstitution phases.

In order to introduce these enhancements it is convenient to store the global stiffness matrix as a one-dimensional array. The necessary programming changes required to the subroutines presented in Sections 3.4.2-3.4.5 are fully documented in Ref. 5.

\subsection*{3.5 Output of results}

The next subroutine common to all four programs presented is subroutine RESULT whose function is to output the results at a frequency governed by a parameter input in Subroutine INCLOD described in Section 3.7. In order to make the subroutine applicable to all four cases, quantities will be output for some situations which are physically meaningless. In particular for quasi-harmonic problems, output items termed stress and plastic or nonlinear strain are output as zero values for this reason. For nonlinear elastic problems the latter term is the total strain, \(\epsilon\), defined in Section 2.4 and for elasto-plastic situations it is the plastic strain component, \(\epsilon_{p}\), defined in Section 2.5. For both cases the stress quantity output is the axial stress existing in each constant stress element employed.

Subroutine RESULT will now be listed.

```

900 FORMAT(1HO,5X,'NODE',4X,'DISPL.',12X,'REACTIONS') RSLT 16
IF(NDOFN.EQ.2) WRITE(6.910) RSLT
17
910 FORMAT(1HO,5X,'NODE',4X,'DISPL.',12X,'REACTION', RSLT 18
7X,'DISPL.',12X,'REACTION') RSLT 19
DO }10\mathrm{ IPOIN=1,NPOIN RSLT 20
10 WRITE(6,920) IPOIN,(TDISP(IPOIN,IDOFN),TREAC(IPOIN,IDOFN), RSLT }2
.IDOFN=1,NDOFN)
RSLT }2
920 FORMAT(I10,2(E14.6,5X,E14.6)) RSLT 23
IF(NDOFN.EQ.2) WRITE(6.930) RSLT }2
930 FORMAT(1H0,2X,'ELEMENT',12X,'STRESSES',12X,'PL.STRAIN')
IF(NDOFN.EQ.1) WRITE(6.940) RSLT 26
940 FORMAT(1HO,2X,'ELEMENT',5X,'STRESSES',5X,'PL.STRAIN') RSLT 27
DO 20 IELEM=1,NELEM RSLT
RSLT 28
20 WRITE(6,950) IELEM,(STRES(IELEM,IDOFN),IDOFN=1,NDOFN), RSLT 29
. PLAST(IELEM) RSLT 30
950 FORMAT(I10,3E14.6) RSLT 31
RETURN RSLT 32
END RSLT
33

```

RSLT 15-23 Write titles and output the calculated unknown and reaction at each nodal point. Non-zero reactions are only obtained for nodal points at which the value of the unknown is prescribed.
RSLT 24-31 Write titles and output the stress and plastic or nonlinear elastic strain for each element.

Note that provision is made for output of results for the beam bending application of Chapter 5.

\subsection*{3.6 Subroutine INITAL}

The function of this subroutine is to initialise to zero some arrays used by other subroutines.

```

10 STRES(IELEM, IDOFN)=0.0
10 STRES(IELEM, IDOFN)=0.0
DO 20 IEVAB=1,NEVAB
10 STRES(IELEM, IDOFN)=0.0
INTL }2
20 TLOAD(IELEM,IEVAB)=0.0 INTL 21
DO 30 IPOIN=1,NPOIN INTL 22
DO 30 IDOFN=1,NDOFN INTL 23
TDISP(IPOIN,IDOFN)=0.0 INTL 24
30 TREAC(IPOIN,IDOFN)=0.0 INTL 25
RETURN
END
INTL 26
INTL 27

```

INTL 15-18 Initialise to zero the plastic or nonlinear strain vector and the stress vector.
INTL 20 Initialise the array, ELOAD, which will contain the out of balance loading to be applied in solution for any iteration. For techniques other than the direct iteration method, this vector will contain the residual nodal forces and thus differs from the vector of applied loads.
INTL 21 Initialise the vector of applied loads.
INTL 22-25 Initialise the vector of total unknowns and total reactions to zero.

\subsection*{3.7 Load increment subroutine, INCLOD}

This subroutine controls the incrementing of the applied loads. For each increment of load, data is input to this segment to control the upper limit to the number of iterations, the output frequency, the size of load increment and the convergence tolerance limit. These quantities are specifically input as:

NITER Maximum permissible number of iterations. This is a safety measure to cover situations where the solution process does not converge. After performing NITER iteration cycles the program will' then stop.
NOUTP This parameter controls the frequency of output of results. In order to examine the iterative procedure the user may wish to obtain results at stages other than the converged solution.
0 - Print the results on convergence to the nonlinear solution only, for each load increment.
1 - Print the results after the first iteration and after convergence for each load increment.
2 - Print the results after every iteration for each load increment.
FACTO This quantity controls the magnitude of any load increment. The applied loading is input in subroutine DATA into the array RLOAD as described in Section 3.2. The size of any load increment is then defined to be FACTO*RLOAD
(IELEM, INODE) with the increment size factor, FACTO, being input for each increment. This permits unequal load increments to be taken. It should be noted that the applied loading at any instant is accumulative. Therefore, if FACTO is input for the first three increments as respectively \(0.5,0.3\) and \(0 \cdot 1\), the total loading applied to the structure during the third increment is 0.9 times the loading input in subroutine DATA. The above also holds for loading by incremental prescribed displacements.
TOLER This item of data controls the tolerance permitted on the convergence process. Its use will be described in detail in Sections 3.9.2 and 3.9.3.
Subroutine INCLOD is now presented and described:


INCL 15-19 Read and write the input data required for each load increment as described previously in this section.
INCL 20-24 Add the current increment of load into the out of balance load array ELOAD and the total applied load vector TLOAD.

\subsection*{3.8 The master or controlling segment}

The final portion of the program which will be common to all four programs (subject to the minor differences indicated in Fig. 3.1) is the master segment which controls the calling, in order, of the other subroutines. This program segment also controls the iterative process and also the incrementing of the applied loads, where appropriate.

The following channel numbers are employed by the programs: 5 (card reader), 6 (line printer), 1 (scratch file).

The MASTER segment will now be presented in the form required in the next section for the solution of one-dimensional quasi-harmonic problems by direct iteration. For other applications it is only necessary to arrange for the calling of appropriate subroutines as indicated in Fig. 3.1.


QUIT 15 Call the subroutine which reads the input data as described in Section 3.2.
QUIT 16 Call the subroutine which initialises various arrays to zero.
QUIT 17 Enter the DO LOOP over the number of load increments.
QUIT 18 Call the subroutine which increments the applied loads.
QUIT 19 Enter the DO LOOP over the maximum permissible number of iterations.
QUIT 20 Call the subroutine which controls the solution process as described in Section 3.3.
QUIT 21 If the element stiffnesses are to be reformulated, call the appropriate subroutine.

QUIT 22-25 Call the subroutines which assemble the element stiffnesses and solve for the unknowns and reactions.
QUIT 26 Call the subroutine which monitors the convergence process. This subroutine differs for the direct iteration method from that for the three other cases.
QUIT 27 If the solution has converged, abandon the iterative process.
QUIT 28-29 Output the results according to the display code, NOUTP, supplied as input for this particular load increment.
QUIT 31-33 If the solution procedure reaches the maximum number of iterations permitted without convergence occurring, write a message and stop the program.
QUIT 34 Otherwise output the converged results.
QUIT 35 Return to process the next increment of load.

\subsection*{3.9 Program for the solution of one-dimensional quasi-harmonic problems by direct iteration}

We now assemble a computer program which permits the solution of onedimensional problems governed by a nonlinear quasi-harmonic equation. The behaviour of several physical situations can be described by such a model and some numerical examples will be provided at the end of this section.

Most of the subroutines required for this program have been already described in the preceding sections of this chapter and, in particular, the master segment which controls the entire numerical process was described in Section 3.8. The additional subroutines, pertinent only to this application which must be developed, are the element stiffness generation subroutine, STIFF1, and the solution convergence monitoring subroutine, MONITR. Detailed 'user instructions', listing the required input data, are included in Appendix I.

\subsection*{3.9.1 Element stiffness subroutine, STIFF1}

The purpose of this subroutine is to formulate the stiffness matrix for each element in turn and store this data on a disc file. For solution by the method of direct iteration, the stiffness matrix for a one-dimensional element with a linear variation of the unknown is given by equation (2.25). The term \(K\) is, however, a specified function of the unknown or its derivatives which must be accounted for when formulating the element stiffnesses for each iteration of the solution sequence. In particular, \(K\) is assumed to vary according to
\[
\begin{equation*}
K=K_{0} f\left(\phi, \quad \frac{d \phi}{d x}\right), \tag{3.20}
\end{equation*}
\]
where \(K_{0}\) is a reference value of \(K\) and is specified as material property PROPS (NUMAT, 1) in subroutine DATA. The function \(f(\phi, d \phi / d x)\) is
defined by means of a FORTRAN FUNCTION statement and must be appropriately specified for each application.

Subroutine STIFFI is now presented and descriptive notes provided.
\begin{tabular}{|c|c|c|}
\hline & SUBROUTINE STIFF1 & STF1 \\
\hline \multicolumn{3}{|l|}{C***********************************************************************STS} \\
\hline C & & STF1 \\
\hline C *** & CALCULATES ELEMENT STIFFNESS MATRICES & STF1 \\
\hline C & & STF1 \\
\hline \multicolumn{3}{|l|}{C**********************************************************************STF} \\
\hline & COMMON/UNIM1/NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE. IINCS, IITER, & STF1 \\
\hline & KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, & STF1 \\
\hline & NITER, NOUTP, FACTO, PVALU & STF1 \\
\hline & COMMON/UNIM2/PROPS \((5,4), \mathrm{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52)\), & STF1 \\
\hline & \(\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & STF1 \\
\hline & MATNO(25), STRES 25,2\(), \operatorname{PLAST}(25), \mathrm{XDISP}(5 \hat{2})\), & STF1 \\
\hline & \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26.2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & STF1 \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{REWIND 1 REACT 52\()\), FRESV(1352), PEFIX (52), ESIIF (4,4)}} & STF1 \\
\hline & & STF1 \\
\hline \multicolumn{2}{|r|}{DO 10 IELEM \(=1\), NELEM} & STF1 \\
\hline \multicolumn{2}{|r|}{LPROP=MATNO (IELEM)} & STF1 \\
\hline \multicolumn{2}{|r|}{STERM=PROPS (LPROP, 1)} & STF1 \\
\hline \multicolumn{2}{|r|}{NODE1 \(=\) LNODS (IELEM, 1)} & STF1 \\
\hline \multicolumn{2}{|r|}{NODE2=LNODS( IELEM,2)} & STF1 \\
\hline \multicolumn{2}{|r|}{ELENG=ABS (COORD (NODE1) -COORD (NODE2) )} & STF1 \\
\hline \multicolumn{2}{|r|}{AVERG \(=(\) TDISP \((\) NODE1, 1) + TDISP \((\) NODE2, 1 ) )/2.0} & STF1 \\
\hline \multicolumn{2}{|r|}{FMULT=STERM*VARIA (AVERG)/ELENG} & STF 1 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(1,1)=\mathrm{FMULT}\)} & STF 1 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(1,2)=-\operatorname{MULT}\)} & STF1 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(2,1)=-\operatorname{FMULT}\)} & STF1 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(2,2)=\mathrm{FMULT}\)} & STF 1 \\
\hline \multicolumn{2}{|r|}{WRITE(1) ESTIF} & STF1 \\
\hline \multirow[t]{3}{*}{10} & CONTINUE & STF1 \\
\hline & RETURN & STF 1 \\
\hline & END & STF 1 \\
\hline
\end{tabular}

STF1 15 Rewind the file on which the stiffness matrix for each element will be stored in sequence.
STF1 16 Loop over each element.
STF1 17 Identify the material property of each element.
STF1 18 Set STERM equal to \(K_{0}\).
STF1 19-20 Identify the node numbers of the element.
STF1 21 Calculate the element length.
STF1 22 Calculate the element temperature as the average of the nodal values.
STF1 23 Calculate the temperature gradient.
STF1 24-27 Compute the components of the element stiffness matrix according to (2.25) with the function \(f(\phi, d \phi / d x)\) being VARIA (AVERG).
STF1 28 Write the element stiffness matrix on to disc file.
STF1 29 Termination of DO LOOP over each element.
The function \(f(\phi, d \phi / d x)\) must be defined for each application. Below we show, for example, the appropriate function for the variation \(K=K_{0}(1+10 \phi)\).
```

 FUNCTIGN VARIA(AVERG) STF1 32
    ```

```

C*****32
C MULTIPLYING FUNCTION FOR QUASI-HARMONIC STIFFNESS VARIATION STF1 34
C**** STF1 35
VARIA=1.0+10.0*AVERG STF1 36
RETURN STF1 37
END STF1 3

```

\subsection*{3.9.2 Solution convergence monitoring subroutine, MONITR}

Convergence of the numerical process to the nonlinear solution must be monitored by comparing, in some way, the values of the unknowns \(\varphi\) determined during each iteration. One possible method is to compare each individual nodal value with the corresponding value obtained on the previous iteration. Then, provided that this change is negligibly small for all nodal points, convergence can be deemed to have occurred. In this chapter we will employ a global convergence check rather than such a local one. We will assume that the numerical process has converged if
\[
\begin{equation*}
\frac{\mid \sqrt{\left[\sum_{i=1}^{N}\left(\phi_{i}^{r}\right)^{2}\right]-\sqrt{\left[\sum_{i=1}^{N}\left(\phi_{i}^{r-1}\right)^{2}\right]}} \sqrt{\sqrt{\left[\sum_{i=1}^{N}\left(\phi_{i}\right)^{2}\right]}} \times 100 \leqslant \text { TOLER }, \text {, } 10}{} \tag{3.21}
\end{equation*}
\]
where \(N\) denotes the total number of nodal points in the problem and \(r-1\) and \(r\) denote successive iterations. It is assumed that the positive root is always considered and \(|\mid\) signifies the absolute value of the numerator. The multiplication factor of 100 on the left-hand side allows the specified tolerance factor TOLER to be considered as a percentage term. Equation (3.21) states that convergence is assumed to have occurred if the difference in the norm of the unknowns between two successive iterations is less than or equal to TOLER times the norm of the unknowns on the first iteration. In practical situations a value of TOLER \(=1.0\) (i.e., \(1 \%\) ) is found to be adequate for the majority of applications. Convergence of the solution is indicated by the parameter NCHEK. A value of NCHEK \(=1\) indicates that convergence has not yet occurred, whereas NCHEK \(=0\), denotes a converged solution. Subroutine MONITR is now presented and descriptive notes provided.

```

 - MATNO(25),STRES(25,2),PLAST(25),XDISP(52), MNTR 12
 - TDISP(26.2),TREAC(26,2),ASTIF(52,52),ASLOD(52), MNTR 13
 NCHEK=0
 REACT(52),FRESV(1352), PEFIX(52),ESTIF(4,4)
 MNTR }1
 MNTR 15
 RCURR=0.0
 MNTR 16
 DO }10\mathrm{ IPOIN=1,NPOIN
 MNTR }1
 10 RCURR=RCURR+TDISP(IPOIN,1)*TDISP(IPOIN,1)
MNTR 18
IF(IITER.EQ.1) RINTL=RCURR MNTR 19
IF(IITER.EQ. 1) NCHEK=1
MNTR 20
IF(IITER.EQ.1) GO TO 20
MNTR 21
RATIO=100.0*SQRT(ABS(RCURR-PVALU))/SQRT(RINTL) MNTR 22
IF(RATIO.GT.TOLER) NCHEK=1 MNTR 23
20 PVALU=RCURR MNTR 24
WRITE(6,900) NCHEK,RATIO MNTR 25
900 FORMAT(1HO,5X,18HCONVERGENCE CODE =,I4,3X,28HNORM OF RESIDUAL SUM MNTR 26
.RATIO =,E14.65 MNTR 27
RETURN MNTR 28
END MNTR 29

```

MNTR 15 Set the indicator monitoring convergence to zero. If convergence has not yet occurred this will be set to 1 later in the subroutine.
MNTR 16-18 Compute the norm of the unknowns

for the current iteration.
MNTR 19 For the first iteration only compute the denominator of (3.21).
MNTR 20-21 Convergence cannot possibly have occurred on the first iteration, therefore set NCHEK \(=1\) and skip the remainder of the checking procedure by going to 20 .
MNTR 22 Compute the left-hand side of (3.21).
MNTR 23 If (3.21) is not satisfied (i.e., convergence not taken place), set NCHEK \(=1\).
MNTR 24 Store the current value of the norm of the unknowns for use as

during the next iteration.
MNTR 25-27 Output the value of NCHEK and the left-hand side of (3.21).

\subsection*{3.9.3 Numerical examples}

The first numerical example considered is illustrated in Fig. 3.3. The situation shown could physically represent the diffusion of a gas through a membrane in which case \(\phi\) is the gas concentration and \(K\) is the diffusivity of the membrane. Alternatively, the problem also represents the conduction of heat through a one-dimensional solid in which case \(\phi\) is the temperature and \(K\) the thermal conductivity. The boundary conditions assumed are
(
Fig. 3.3 Quasi-harmonic equation example-Problem of gas diffusion through a permeable membrane.
specified values of the unknown at the two boundaries. The term \(K\) is assumed to vary with the unknown \(\phi\) according to
\[
\begin{equation*}
K=K_{0}(1+10 \phi)=K_{0}(1+g(\phi)) . \tag{3.22}
\end{equation*}
\]

An analytical solution \({ }^{(6)}\) exists for this problem which enables \(\phi\) to be determined from
\[
\begin{equation*}
\frac{\phi_{A}+F\left(\phi_{A}\right)-\phi-F(\phi)}{\phi_{A}+F\left(\phi_{A}\right)-\phi_{B}-F\left(\phi_{B}\right)}=\frac{x}{L}, \tag{3.23}
\end{equation*}
\]
where
\[
\begin{equation*}
F(\phi)=\int_{0}^{\phi} g\left(\phi^{\prime}\right) d \phi^{\prime} . \tag{3.24}
\end{equation*}
\]

In the present case, \(g(\phi)=10 \phi\) which gives on substitution in (3.24) and then in (3.23)
\[
\begin{equation*}
\frac{6-\phi-5 \phi^{2}}{6}=\frac{x}{10}, \tag{3.25}
\end{equation*}
\]
which allows \(\phi\) to be determined for any value of \(x\) and is shown as the full line in Fig. 3.3. The initial finite element solution (i.e., after the first iteration) is shown in Fig. 3.3 as the broken line and, as expected, is linear. The results upon convergence, after 10 iterations, of the process are then included as circles and it is seen that the numerical solution coincides with the theoretical values. For example, for \(x=6\), the theoretical solution is \(\phi=0 \cdot 6\), whilst the finite element analysis yieds \(\phi=0.599999\) (see Appendix IV).

The second example considered includes the effect of the term \(Q\) in (2.15). For thermal problems this can be physically interpreted as a heat generation/ unit length and must be specified as a loading, according to (2.26), in subroutine DATA. Figure 3.4 shows the problem to be considered. A bar with its surface insulated generates heat internally and the temperature at its ends is maintained at zero value. Due to symmetry only one half of the problem is analysed with the symmetry condition \(d \phi / d x=0\) at the centreline being invoked. The initial solution corresponding to \(K=K_{0}\) is shown and is practically identical to the theoretical value. The process converged to the nonlinear solution after 12 iterations with the temperature being markedly reduced. The reduction is greater in regions of higher initial temperature due to the comparatively greater increase in material 'stiffness' in these areas.

\subsection*{3.10 Program for the solution of one-dimensional quasi-harmonic problems by the Newton-Raphson method}

As seen in Section 2.3, use of this method results in the assembled stiffness equations being nonsymmetric. The equation assembly and solution routines developed in Section 3.4 made no use of the symmetry properties of the

Fig. 3.4 Quasi-harmonic equation example-Heat generation in an axial bar.
stiffness matrices. They are therefore applicable to this method of analysis without modification.
Three additional subroutines need to be developed. These are the element stiffness subroutine ASTIF1 and, since solution convergence is now based on the elimination of the residual forces, subroutine REFOR1 must be formed to calculate these forces and subroutine CONVER to monitor their convergence to zero. The master segment controlling the solution process is again that developed in Section 3.8 and the remaining subroutines accessed by this segment have also been described previously.

\subsection*{3.10.1 Element stiffness formulation subroutine, ASTIF1}

For solution by the Newton-Raphson process, the 'stiffness' equations which require solution are summarised in (2.12) where it is seen that the total stiffness is the sum of symmetric, \(\boldsymbol{H}\), and nonsymmetric, \(\boldsymbol{H}^{\prime}\), contributions. The symmetric stiffness matrix is given by (2.25) and the nonsymmetric terms depend on the particular form of material nonlinearity. For a material nonlinearity of the form (2.27), the nonsymmetric portion of the stiffness matrix is given by (2.29). The subroutine which evaluates and sums these separate contributions is now presented below.
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE ASTIF1 & \multicolumn{2}{|l|}{ASTF} \\
\hline \multicolumn{4}{|l|}{C******************************************************************ASTF} \\
\hline C & & ASTF & \\
\hline C *** & CALCULATES ELEMENT STIFFNESS MATRICES & ASTF & 4 \\
\hline C & & ASTF & \\
\hline \multicolumn{4}{|l|}{C**********************************************************************ASTF} \\
\hline \multicolumn{4}{|c|}{COMMON/UNIM1/NPOIN. NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, ASTF} \\
\hline & KRESL, NCHEK, TOLER, NALGO. NSVAB, NDOFN, NINCS, NEVAB, & ASTF & 8 \\
\hline & NITER. NOUTP, FACTO, PVALU & ASTF & \\
\hline & COMMON/UNIM2/PROPS ( 5.4 ) , COORD (26), LNODS \((25,2)\), IFPRE(52) , & ASTF & 10 \\
\hline & \(\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & ASTF & 11 \\
\hline & MATNO(25), \(\operatorname{STRES}(25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\). & ASTF & 12 \\
\hline & \(\operatorname{TDISP}(26.2), \operatorname{TREAC}(26.2) \cdot \operatorname{ASTIF}(52,52) \cdot \operatorname{ASLOD}(52)\). & ASTF & 13 \\
\hline & REACT (52) , FRESV(1352), PEFIX (52), \(\operatorname{ESTIF}(4.4)\) & ASTF & 14 \\
\hline \multicolumn{2}{|r|}{REWIND 1 R} & ASTF & 15 \\
\hline & DO 10 IELEM=1,NELEM & ASTF & 16 \\
\hline \multicolumn{2}{|r|}{LPROP=MATNO (IELEM)} & ASTF & 17 \\
\hline \multicolumn{2}{|r|}{STERM=PROPS(LPROP,1)} & ASTF & 18 \\
\hline \multicolumn{2}{|r|}{GRADU \(=\) PROPS(LPROP, 2)} & ASTF & 19 \\
\hline \multicolumn{2}{|r|}{NODE1=LNODS(IELEM, 1)} & ASTF & 20 \\
\hline \multicolumn{2}{|r|}{NODE2=LNODS (IELEM.2)} & ASTF & 21 \\
\hline \multicolumn{2}{|r|}{ELENG \(=\) ABS (COCRD (NODE1) - \(C O O R D\) (NODE2) )} & ASTF & 22 \\
\hline \multicolumn{2}{|r|}{} & ASTF & 23 \\
\hline \multicolumn{2}{|r|}{FMULT \(=\) STERM*VARIA (AVERG)/ELENG} & ASTF & 24 \\
\hline \multicolumn{2}{|r|}{DIFFR=TDISP(NODE1.1)-TDISP( \(\mathrm{NODE2}, 1\) )} & ASTF & 25 \\
\hline \multicolumn{2}{|r|}{COEFF=STERM*GRADU*DIFFR/ (2.0*ELENG)} & ASTF & 26 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(1,1)=\) FMULT \(+\operatorname{COEFF}\)} & ASTF & 27 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(1,2)=-\mathrm{FMULT}+\operatorname{COEFF}\)} & ASTF & 28 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(2,1)=-\operatorname{FMULT}-\operatorname{COEFF}\)} & ASTF & 29 \\
\hline \multicolumn{2}{|r|}{\(\operatorname{ESTIF}(2,2)=\) FMULT-COEFF} & ASTF & 30 \\
\hline & WRITE (1) ESTIF & ASTF & 31 \\
\hline \multirow[t]{3}{*}{10} & Continue & ASTF & 32 \\
\hline & RETURN & ASTF & 33 \\
\hline & END & ASTF & 34 \\
\hline
\end{tabular}

ASTF 15 Rewind the file on which the stiffness matrix of each element will be stored.
ASTF 16 Loop over each element.
ASTF 17 Identify the material property of each element.
ASTF 18 Set STERM equal to \(K_{0}\) in (2.27).
ASTF 19 Set GRADU equal to \(b\) in (2.27).
ASTF 20-21 Identify the node numbers of the element.
ASTF 22 Calculate the element length.
ASTF 23 Calculate the element temperature as the average of the nodal values.
ASTF 24 Calculate the multiplying term in (2.25) by use of FUNCTION statement VARIA.
ASTF 25-26 Evaluate the multiplying term in (2.29).
ASTF 27-30 Compute the components of the total stiffness matrix.
ASTF 31 Write the element stiffness matrix on to disc file.
ASTF 32 Termination of DO LOOP over each element.

\subsection*{3.10.2 Residual force calculation subroutine REFOR1}

The residual forces after any step of the process are obtained from (2.4). The applied nodal forces, \(f\), are known and it only remains to evaluate the 'equivalent nodal forces', \(H \varphi\), which are the nodal forces consistent with the unknowns, \(\varphi\). It should be noted that \(\boldsymbol{H}\) is the linear symmetric matrix defined in (2.25). The equivalent nodal forces at the nodes 1 and 2 of the linear element can be explicitly written, using (2.25), as
\[
\begin{align*}
& f_{1}=\frac{K}{L}\left(\phi_{1}-\phi_{2}\right), \\
& f_{2}=-\frac{K}{L}\left(\phi_{1}-\phi_{2}\right) . \tag{3.26}
\end{align*}
\]

The subroutine which cvaluates these forces for each element is now presented.
\begin{tabular}{|c|c|c|}
\hline RFR1 & \multicolumn{2}{|l|}{RFR1} \\
\hline C********************************************************************** & RFR1 & \\
\hline C & RFR1 & \\
\hline C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES & RFR1 & \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{C**********************************************************************RFR1}} \\
\hline & & \\
\hline COMMON/UNIM1/NPOIN. NELEM, NBOUN, NLOAD, NPROP, NNODE. IINCS, IITER, & RFF1 & \\
\hline KRESL, NCHEK, TOLER, NALGO. NSVAB, NDOFN, NINCS. NEVA & RFR1 & \\
\hline NITER, NOUTP, FACTO, PVALU & RFR1 & \\
\hline COMMON/UNIM2/PROPS (5.4), \(\operatorname{COORD}\) (26), LNODS \((25,2)\), IFPRE(52), & RFR1 & 10 \\
\hline \(\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & RFR1 & 11 \\
\hline MATNO(25), \(\operatorname{STRES}(25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\). & RFR1 & 12 \\
\hline \(\operatorname{TDISP}(26.2), \operatorname{TREAC}(26.2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & RFR1 & 13 \\
\hline REACT (52) , FRESV(1352), PEFIX (52), \(\operatorname{ESTIF}\) (4.4) & RFR1 & 14 \\
\hline DO 10 IELEM=1, NELEM & RFR1 & 15 \\
\hline DO 10 IEVAB=1, NEVAB & RFR1 & 16 \\
\hline
\end{tabular}
```

10 ELOAD(IELEM,IEVAB)=0.0 RFR1 17
DO 20 IELEM=1. NELEM
RFR1 18
LPROP=MATNO(IELEM)
RFR1 19
STERM=PROPS(LPROP.1)
RFR1 20
NODE1=LNODS(IELEM,1)
RFR1 c'1
NODE2=LNODS(IELEM,2)
RFR1 }2
ELENG=ABS(COORD(NODE1)-COORD(NODE2))
RFR1 23
AVERG=(TDISP(NODE1.1)+TDISP(NODE2,1))/2.0
RFR1 }2
STIFF=STERM*VARIA(AVERG)/ELENG RFR1 25
ELOAD(IELEM,1)= STIFF*(TDISP(NODE1,1)-TDISP(NODE2,1)) RFR1 26
20 ELOAD(IELEM,2)=-STIFF*(TDISP(NODE1,1)-TDISP(NODE2,1)) RFR1 27
RETURN
RFR1 }2
END RFR1 29

```

RFR1 15-17 Initialise to zero the array in which the equivalent nodal forces for each element will be stored.
RFR1 18 Loop over each element.
RFR1 19 Identify the material property of each element.
RFR1 20 Set STERM equal to \(K_{0}\) in (2.27).
RFR1 21-22 Identify the node numbers of the element.
RFR1 23 Calculate the element length.
RFR1 24 Calculate the element temperature as the average of the nodal values.
RFR1 25 Calculate the multiplying term in (2.25).
RFR1 26-27 Compute the equivalent nodal forces according to (3.26).

\subsection*{3.10.3 Solution convergence monitoring subroutine, CONUND}

This subroutine must essentially differ from subroutine MONITR described in Section 3.9.2 since convergence is now based on the residual force values rather than values of the unknowns. The convergence criterion employed is similar to that described in (3.21) and is
\[
\begin{equation*}
\frac{\sqrt{ }\left[\sum_{i=1}^{N}\left(\psi_{i} r\right)^{2}\right]}{\sqrt{ }\left[\sum_{i=1}^{N}\left(f_{i}\right)^{2}\right]} \times 100 \leqslant \text { TOLER } \tag{3.27}
\end{equation*}
\]
where \(N\) is the total number of nodal points in the problem and \(r\) denotes the iteration number. This criterion states that convergence occurs if the norm of the residual forces becomes less than TOLER times the norm of the total applied forces. Again the parameter NCHEK is used to indicate whether or not convergence has occurred. Three values of NCHEK are utilised:

NCHEK \(=0 \quad\) Solution has converged.
\(=1\) Solution converging, with the norm of the residual forces being less for the \(r^{\text {th }}\) iteration than the \((r-1)^{\text {th }}\) iteration.
\(=999\) Solution diverging. The norm of the residual forces is greater for the \(r^{\text {th }}\) iteration than the \((r-1)^{\text {th }}\) iteration.

Subroutine CONUND is now listed and descriptive notes provided.


COND 16 Initialise the convergence indicator to zero. If convergence has not occurred during this iteration this value will be reset later in the subroutine.
COND 17 Initialise to zero the norm of the residual forces.
COND 18 Initialise to zero the norm of the total applied loads.
COND 19-21 Initialise the arrays which will contain the equivalent nodal forces and the applied loads for each nodal point.

COND 22-30 Assemble the equivalent nodal forces and applied load contributions of each element to give the total nodal values, as required for use in (3.27). This manipulation is necessary as we have decided to associate loads with an element rather than nodal points.
COND 32 Calculate the nodal residual force according to (2.4).
COND 33 Evaluate the norm of the residual forces.
COND 34 Evaluate the norm of the total applied forces.
COND 35-37 Calculate the residual nodal forces for each element, for application as forces for the next iteration according to (2.12).
COND 38
COND 39 Compute the left-hand side of (3.27)-the residual sum ratio. If (3.27) is not satisfied reset NCHEK \(=1\) to indicate that convergence has not yet occurred.
COND 40-41 For second and subsequent iterations check to see if the residual sum ratio has decreased from the previous iteration. If not, set NCHEK \(=999\).
COND 42 Store the residual sum ratio, in order to perform the check indicated in COND 41 during the next iteration.
COND 43-46 Write the convergence code and the residual sum ratio.

\subsection*{3.10.4 Numerical examples}

The numerical example considered in Section 3.9.3 and illustrated in Fig. 3.3, was reanalysed using the Newton-Raphson approach. The process converged to the nonlinear solution in 5 iterations compared to the 10 cycles required for the direct iteration method. The reduction in the number of iterations must, however, be balanced against the increased computing effort required for the solution of nonsymmetric equations. This remark is applicable only when advantage of the symmetric property of the equations is taken in solution as is the case in the more sophisticated equation solver described later in Chapter 6. The numerical results are practically identical to those obtained by the method of direct iteration and consequently both solutions are represented by the full circles in Fig. 3.3. The problem of Fig. 3.4 was also reanalysed and a similar improvement in convergence behaviour was obtained with only 7 iterations being required in place of the 12 necessitated by direct iteration.

\subsection*{3.11 Program for the solution of nonlinear elastic problems}

In this section a program is developed which permits the solution of nonlinear elastic problems by either the tangential stiffness or the initial stiffness approach or by a combination of both methods. The options open are controlled by the parameter NALGO, the possible values of which are described in Section 3.2.

The structure of this program is identical to that described in Section 3.10 and it is only necessary to develop appropriate subroutines for element stiffness formulation, STIFF2, and residual force evaluation, REFOR2.

\subsection*{3.11.1 Element stiffness subroutine, STIFF2}

For any value of the total strain, \(\epsilon\), in an element, the tangential stiffness matrix is explicitly given by (2.33). It is seen from this expression that the first derivative of the strain function must be known. For the calculation of the residual forces, the strain function itself must be input. Since the computer cannot perform even the simplest differentiation it is necessary to supply both quantities in the form of FUNCTION statements. As an example, the strain function will be assumed to be of the form
\[
\begin{equation*}
g(\epsilon)=\epsilon-5 \epsilon^{2} \tag{3.28}
\end{equation*}
\]
in which case
\[
\begin{equation*}
g^{\prime}(\epsilon)=1-10 \epsilon \tag{3.29}
\end{equation*}
\]

Subroutine STIFF2 is now listed below.
\begin{tabular}{|c|c|}
\hline SUBROUTINE STIFF2 & STF2 \\
\hline \multicolumn{2}{|l|}{C***********************************************************************STF2 2} \\
\hline C & STF2 \\
\hline C *** CALCULATES ELEHENT STIFFNESS MATRICES & STF2 4 \\
\hline C & STF2 5 \\
\hline \multicolumn{2}{|l|}{C***********************************************************************STE2 6} \\
\hline COMPION/UNIM / /JPOIN, NELEH, NBOUN, NLOAD , NPROP, INNODE, IINCS, IITER, & STF2 7 \\
\hline KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN,NINCS, NEVAB, & STF2 8 \\
\hline NITER, NOUTP, FACTO, PVALU & STF2 9 \\
\hline COIMNON/UNIM2/PROPS \((5,4), \operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52)\), & STF2 10 \\
\hline \(\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & STF2 11 \\
\hline MATNO(25), STKES (25,2), PLAST (25), XDISP(52), & STF2 12 \\
\hline \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & STF2 13 \\
\hline REACT (52), FRESV(1352), PEFIX (52), \(\operatorname{ESTIF}(4,4)\) & STF2 14 \\
\hline REUIND 1 & STF2 15 \\
\hline DO 10 IELEM=1, NELEI & STF2 16 \\
\hline LPROP=MATNO ( IELENi) & STF2 17 \\
\hline YOUNG=PROPS (LPROP, 1) & STF2 18 \\
\hline XAREA=PROPS (LPROP, 2) & STF2 19 \\
\hline INODE1=LNODS (IELEH,1) & STF2 20 \\
\hline NODE2=LNODS (IELEH,2) & STF2 21 \\
\hline ELENG=ABS (COORD (NODE1)-COORD (NODE2)) & STF2 22 \\
\hline PTRAN=PLAST ( IELEM) & STF2 23 \\
\hline COEFF=YOUNG*XAREA/ELENG & STF2 24 \\
\hline FMULT \(=\) COEFF* \({ }^{\text {STDIV ( }}\) (TRAN) & STF2 25 \\
\hline \(\operatorname{ESTIF}(1,1)=\) FMULT & STF2 26 \\
\hline \(\operatorname{ESTIF}(1,2)=-\operatorname{FMULT}\) & STF2 27 \\
\hline \(\operatorname{ESTIF}(2,1)=-\mathrm{FMULT}\) & STF2 28 \\
\hline \(\operatorname{ESTIF}(2,2)=\mathrm{FHULT}\) & STF2 29 \\
\hline WRITE (1) ESTIF & STF2 30 \\
\hline 1C CONTINUE & STF2 31 \\
\hline RETURN & STF2 32 \\
\hline EIVD & STF2 33 \\
\hline
\end{tabular}

STF2 15 Rewind the file on which the stiffness matrix of each element will be stored.
STF2 16 Loop over each element.
STF2 17 Identify the material property of each element.
STF2 18 Set YOUNG equal to the reference value of the material modulus, \(E_{0}\).
STF2 19 Set XAREA equal to the cross-sectional area.
STF2 20-21 Identify the node numbers of the element.
STF2 22 Calculate the element length.
STF2 23 Set PTRAN equal to the total strain, \(\epsilon\).
STF2 24-25 Compute the multiplying term in (2.33) with \(g^{\prime}(\epsilon)\) given by STDIV (PTRAN).
STF2 26-29 Compute the components of the stiffness matrix.
STF2 30 Write the element stiffness matrix on to disc file.
STF2 31 Termination of DO LOOP over each element.
For a strain derivative function as defined by (3.29), the appropriate function statement is provided below.
```

FUNCTIURS STDIV(PTRAN) STF2 34
C\#\#%:% STF2 35
C STRAIN DERIVATIVE FUINCTION STF2 36
C***** STF2 37
STDIV=1.0-10.0*PTRAAH STF2 38
RETURN STF2 39
EHD STF2 40

```

\subsection*{3.11.2 Residual force calculation subroutine REFOR2}

The residual forces existing at the end of any iteration must be calculated according to (2.4). The first step in this calculation entails the evaluation of the equivalent nodal forces, which are the forces required to produce the total displacements existing in the element. The element strain is simply
\[
\epsilon_{E}=\left\{\begin{array}{lll}
\left(\phi_{2}-\phi_{1}\right) / L & \text { for } & x_{2}>x_{1}  \tag{3.30}\\
\left(\phi_{1}-\phi_{2}\right) / L & \text { for } & x_{2}<x_{1},
\end{array}\right.
\]
where \(x_{1}\) and \(x_{2}\) denote the coordinates of the element nodes. This notation is required to ensure that tensile strains are positive and enables the nodal connections to be assigned in any order.

Then from (2.30) the stress in the element is given by
\[
\begin{equation*}
\sigma_{E}=E_{0} g\left(\epsilon_{E}\right), \tag{3.31}
\end{equation*}
\]
and the equivalent nodal forces are
\[
f_{1}=-f_{2}=\left\{\begin{array}{rll}
-\sigma_{E} A & \text { for } & x_{2}>x_{1}  \tag{3.32}\\
\sigma_{E} A & \text { for } & x_{2}<x_{1} .
\end{array}\right.
\]

Subroutine REFOR2 is now listed and described.
```

SUBROUTINE REFOR2
RFR2

```

C RFRZ̈3
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFR2 4

    COHMON/UNIM / NPOIN, NELEH, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, RFR2 7
    - KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NIKCS,NEVAE, RFR2 8
    - NITER,NOUTP,FACTO, PVALU RFR2 9
    COMAON/UNIM2/PROPS \((5,4), \operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52), \quad\) RFR2 10
    - \(\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4), \quad \operatorname{RFR} \hat{1} 11\)
    - MATNO (25), STRES \((25,2), \operatorname{PLAST}(25), X D I S P(52), \quad\) RFR̂́c \(1 \hat{2}\)
    - \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52), \quad\) RFR2 13
    - REACT(52),FRESV(1352), PEFIX(52), ESTIF (4,4) RFR2 14
    DO 10 IELE \(4=1\), NELEM \(\quad\) RFR2 15
    DO 10 IEVAB=1,NEVAB \(\quad\) RFFíc 16
    10 ELOAD (IELEIf, IEVAB) \(=0.0 \quad\) RFR2 17
    DO 30 IELEY \(=1\), NELE 1 RFR2 18
    LPROP=MATNO (IELEI-1) RFR2 19
    YOUNG = PROPS (LPROP, 1) RER2 20
    XAREA \(=\) PROPS (LPROP,2) FFRZ 21
    NODE1 = LNODS (IELEト1, 1) RFRá 22
    NODE2 =LNODS (IELEM,2) RFK2 23
    ELENG=ABS (COORD (NODE1)-COORD (NODE2)) RFR2 24
    IF (COORD (NODE2).GT . COORD (NODE1)) STRAN = (XDISP (NODE2) -XDISP (NODE1))RFR2 25
    - /ELENG RFR2 26
    IF (COORD (NODE2) .LT . COORD (NODE1)) STRAN = (XDISP (NODE1) -XDISP (NODE2))RFR2 27
    - /ELENG 28
    PLAST \((\) IELEM \()=P L A S T(I E L E M)+S T R A N ~ R F R 229\)
    PTRAN=PLAST (IELEM) RFR2 30
    STRES (IELEM, 1) =YOUNG*STNFN(PTRAN) FFR2 31
    IF (COORD (NODE2).GT.COORD (NODE1)) GO TO \(20 \quad\) RFR2 32
    ELOAD (IELEM, 1)=STRES (IELEM, 1)*XAREA \(\quad\) RFR2 33
    ELOAD (IELEM,2)=-STRES (IELEM,1)*XAREA RFR2 34
    GO TO 30 RFR2 35
    20 ELOAD (IELEM, 1)=-STRES (IELEM, 1)*XAREA \(\quad\) RFR2 36
    ELOAD (IELEM, 2) =STRES (IELEM, 1)*XAREA RFR2 37
    30 CONTINUE \(\quad\) RFR2 38
    RETURN RFR2 39
    END
    RFR2 40

RFR2 15-17 Initialise to zero the array in which the equivalent nodal forces for each element will be stored.
RFR2 18 Loop over each element.
RFR2 19 Identify the material property of each element.
RFR2 20 Set YOUNG equal to the reference value of the material modulus, \(E_{0}\).
RFR2 21 Set XAREA equal to the cross-sectional area.
RFR2 22-23 Identify the node numbers of the element.
RFR2 24 Calculate the element length.
RFR2 25-28 Calculate the increase in element strain which occurred during the current iteration according to (3.30) (since XDISP measures the displacement change only).
RFR2 29 Compute the total strain.
RFR2 30-31 Compute the element stress according to (3.31).
RFR2 32-37 Compute the equivalent nodal forces according to (3.32).
RFR2 38 Termination of DO LOOP over the elements.

For calculation of the element stress in steps RFR2 30-31 (equation (3.31)) the strain function \(g(\epsilon)\) must be defined. The FUNCTION statement appropriate to the variation indicated in (3.28) is provided below.


The equivalent nodal forces evaluated here are converted into residual forces \(\psi\) in subroutine CONUND as described in Section 3.10.3.

\subsection*{3.11.3 Numerical examples}

The first example considered is the uniaxial loading of a two-element system. The stress/strain relationship is assumed to be defined in terms of the nonlinear expression (3.28). The applied load is incrementally increased and the combined tangential/initial stiffness solution algorithm, NALGO \(=4\), is employed. Figure 3.5 shows the solution behaviour during iteration to the nonlinear solution. The element stiffnesses are initially assembled at the beginning of a load increment and then kept constant during iteration to the nonlinear solution. The convergence path is plotted and it is seen that the process converges within 7 iterations for the first load increment. For the second load increment the process requires 9 iterations before convergence takes place. The process diverged rapidly on further increase of load to a total value of 11 ; which is expected since no solution can exist for this load value.
As an illustration of the application of the initial stiffness method to strain-softening problems, the above problem was reanalysed with the structure being loaded by prescribing an increasing value of displacement to node 3, rather than incrementing an applied load. For strain values at and beyond the peak load, the structural stiffness is either zero or negative and an initial stiffness approach must be employed. Figure 3.6 shows the results when the structure is strained beyond the peak load value.

\subsection*{3.12 Program for the solution of elasto-plastic problems}

A computer program is now developed for the solution of one-dimensional elasto-plastic problems. Once again a tangential stiffness, initial stiffness or combined approach is permitted for solution. The program differs only from that described in the previous section in the explicit form of the element stiffness and residual force subroutines.

\subsection*{3.12.1 Element stiffness subroutine, STIFF3}

Before yielding, the stiffness matrix of an element with linear displacement variation is given by (2.38). After the onset of plastic deformation, as


Fig. 3.5 Load/extension response of a nonlinear elastic bar under applied axial loading.
governed by the uniaxial yield stress \(\sigma_{Y}\), the material stiffness is reduced and the elasto-plastic stiffness matrix is explicitly given by (2.43). Thus when forming the stiffness matrix for each element, it is first necessary to check whether the element behaviour is elastic or elasto-plastic. This can best be monitored by recording the plastic strain component, \(\epsilon_{p}\), for each element and noting that this will be zero for a completely elastic material response.


Fig. 3.6 Solution for a nonlinear elastic tar by initial stiffness, incremented prescribed displacement approach.

Subroutine STIFF3 can now be presented.

```

 COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, STF3 }
 KRESL,NCHEK,TOLER, NALGO,NSVAB,NDOFN,NINCS,NEVAB, STF3 }
 NITER, NOUTP, FACTO, PVALU STF3 9
 COMMON/UNIM2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), STF3 10
FIXED(52),TLOAD(25,4),\operatorname{RLOAD}(25,4),\operatorname{ELOAD}(25,4), STF3 }1
MATNO(25),STRES(25,2),PLAST(25),XDISP(52), STF3 12
M MDISP(26,2),TREAC(26,2),\operatorname{ASTIF}(52,52),\operatorname{ASLOD}(52), STF3 13
R REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) STF3 14
REWIND 1
STF3 15
DO 10 IELEM=1,NELEM STF3 16
LPROP=MATNO(IELEM) STF3 17
YOUNG=PROPS(LPROP,1) STF3 18
XAREA=PROPS(LPROP,2) STF3 19
HARDS=PROPS(LPROP,4) STF3 20
NODE1=LNODS(IELEM,1) STF3 }2
NODE2=LNODS(IELEM,2) STF3 22
ELENG=ABS(COORD(NODE1)-COORD(NODE2)) STF3 23
FMULT=YOUNG*XAREA/ELENG STF3 24
IF(PLAST(IELEM).GT.0.0) FMULT=FMULT*(1.0-YOUNG/(YOUNG+HARDS)) STF3 25
ESTIF(1,1)=FMULT STF3 26
ESTIF(1,2)=-FMULT STF3 27

```

```

ESTIF(2,2)=FMULT STF3 29
WRITE(1) ESTIF STF3 30
10 CONTINUE STF3 31
RETURN STF3 32
END STF3 33

```

STF3 15 Rewind the file on which the stiffness matrix of each element will be stored.
STF3 16 Loop over each element.
STF3 17 Identify the material property of each element.
STF3 18 Set YOUNG equal to the material elastic modulus.
STF3 19 Set XAREA equal to the cross-sectional area.
STF3 20 Set HARDS equal to the strain hardening parameter, \(H^{\prime}\).
STF3 21-22 Identify the node numbers of the element.
STF3 23 Calculate the element length.
STF3 24 Compute the multiplying term in (2.38) as FMULT.
STF3 25 Check if the element has yielded. If yes, compute FMULT as the multiplying term in (2.43).
STF3 26-29 Compute the components of the stiffness matrix.
STF3 30 Write the element stiffness matrix on to disc file.
STF3 31 Termination of DO LOOP over each element.

\subsection*{3.12.2 Residual force subroutine, REFOR3}

The purpose of this subroutine is to calculate the equivalent nodal forces from which the residual nodal forces will be evaluated in subroutine CONUND. In view of the essentially incremental nature of the equations of plasticity, the subroutine is somewhat more intricate than the residual force
subroutines developed to date. All stress and strain components must be accumulated from the values obtained during each iteration. The situation is further complicated by the fact that an element may yield when the residual forces are applied as loads for any iteration. The precise load at which yielding begins will generally lie somewhere between the total load corresponding to the previous iteration and the total load for the present cycle. Consequently the yield load must be determined and the plastic strain computed for only the post yield portion of the load. The general procedure adopted is to determine the stress in each element so that the yield criterion is satisfied. If the actual stress in any element is greater than this permissible value, then the additional part is removed but is included in the residual force vector to maintain equilibrium.

Consider the situation existing for the \(r^{\text {th }}\) iteration of any particular load increment. The solution algorithm employed is presented below.

Step a The applied loads for the \(r^{\text {th }}\) iteration are the residual forces \(\psi^{r-1}\) calculated at the end of the \((r-1)^{\text {th }}\) iteration according to (2.4). These applied loads give rise to displacement increments, \(\Delta \varphi^{r}\), according to (2.12). Hence calculate the corresponding increment of strain \(\Delta \epsilon^{r}\). For the general element denote this value by \(\Delta \epsilon^{\tau}\) and it is shown in Fig. 3.7.

Step \(b\) Compute the incremental stress change assuming linear elastic behaviour. This will introduce errors if the element has yielded and the material is behaving elasto-plastically. However, we will correct any discrepancy when the residual forces are calculated. Therefore we calculate the stress change according to \(\Delta \sigma_{e}{ }^{r}=E \Delta \epsilon^{r}\), where the subscript \(e\) is used to denote that this stress is based on elastic behaviour.

Step c Accumulate the total stress for each element as \(\sigma_{e}{ }^{r}=\sigma^{r-1}+\Delta \sigma_{e}{ }^{r}\). The stress \(\sigma^{r-1}\) will have been determined to satisfy the yield condition during the \((r-1)^{\text {th }}\) iteration. Consequently, the error in the stress \(\sigma_{e}{ }^{r}\) is limited to \(\Delta \sigma_{e}{ }^{r}\). Again the subscript \(e\) denotes that \(\sigma_{e}{ }^{r}\) is based on an elastic behaviour.

Step d The next step in the process depends on whether or not the element had previously yielded on the \((r-1)^{\text {th }}\) iteration. This can be checked from the known value of the yield stress for the \((r-1)^{\text {th }}\) iteration. The stress limit for this cycle is given from Fig. 2.9 as
\[
\sigma_{Y}{ }^{r-1}=\sigma_{Y}+H^{\prime} \epsilon_{p}^{r-1} .
\]

Since the plastic strain \(\epsilon_{p}\) will differ from element to element, each element will generally have a different permissible stress level.


Fig. 3.7 Incremental stress and strain changes in a one-dimensional elasto-plastic material. (a) Initial yielding of material. (b) Material previously yielded.

Therefore we check if \(\sigma^{r-1}>\sigma_{Y}+H^{\prime} \epsilon_{p^{\prime}}^{r-1}\). If the answer is:
which implies that the element had already yielded during the previous iteration, then check to see if \(\sigma_{e}^{r}>\sigma^{r-1}\). If the answer is:

NO YES
The element is unloading which according to plasticity theory must take place elastically, and no further action need be taken. Go directly to Step g.

The element had reached the threshold stress during the previous iteration and the stress is still increasing. Therefore all the excess stress \(\sigma_{e}{ }^{r}-\sigma^{r-i}\) must be reduced to the yield value as indicated in Fig. 3.7(b). Therefore the factor, \(R\), which defines the portion of the stress which must be modified to satisfy the yield condition, is equal to 1 in this case as shown in
Fig. 3.7(b).

No
which implies that the element had not previously yielded. We now check to see if \(\sigma_{e}^{r}>\sigma_{Y}\). If the answer is:

NO YES
\begin{tabular}{|c|c|}
\hline The element is still elastic and no further action need be taken. Go directly to Step g. & \begin{tabular}{l}
The element has yielded during the application of load corresponding to this iteration as illustrated in Fig. \\
3.7(a). Therefore the portion of the stress greater than the yield value must be reduced to the elasto-plastic line. The removed portion will be included in the residual force vector. The reduction factor, \(R\), is found, with reference to Fig. 3.7(a) to be
\end{tabular} \\
\hline
\end{tabular}
\[
R=\frac{A B}{A C}
\]
\[
=\frac{\sigma_{e}^{r}-\sigma_{Y}}{\sigma_{e}^{r}-\sigma^{r-1}} .
\]

Step e For yielded elements only, calculate the increment of stress \(\Delta \sigma_{e p}{ }^{k}\), which is the portion after yielding, permitted by elasto-plastic theory. This stress value is shown in Fig. 3.7 for the two cases when (a) yielding has commenced during this iteration and (b) when the element had previously yielded. Using (2.4) we have
\[
\begin{equation*}
\Delta \sigma_{e p}^{r}=E\left(1-\frac{E}{E+H^{\prime}}\right) \Delta \epsilon_{e p}^{r} \tag{3.33}
\end{equation*}
\]
where the subscript ep denotes elasto-plastic behaviour. For the above to be generally true we must restrict ourselves to small increments of stress and strain. For the situation of Fig. 3.7(a), noting that triangles ADC and AEB are similar, we have
\[
\begin{equation*}
\Delta \epsilon_{e p}{ }^{r}=R \Delta \epsilon^{r} . \tag{3.34}
\end{equation*}
\]

Defining \(R=1\) for the situation of Fig. 3.7(b), then (3.34) is still correct. Therefore
\[
\begin{equation*}
\Delta \sigma_{e p} r=E\left(1-\frac{E}{E+H^{\prime}}\right) R \Delta \epsilon^{r} . \tag{3.35}
\end{equation*}
\]

The total current stress is given by
\[
\begin{equation*}
\sigma^{r}=\sigma^{r-1}+(1-R) \Delta \sigma_{e}{ }^{r}+\Delta \sigma_{e p}{ }^{r}, \tag{3.36}
\end{equation*}
\]
where the second term accounts for the elastic portion of the stress increment occurring before the onset of yielding.

Step \(f\) For yielded elements only, evaluate the total plastic strain for the element as \(\epsilon_{p}^{r}=\epsilon_{p}{ }^{r-1}+\Delta \epsilon_{p}{ }^{r}\) where the plastic strain increment for the iteration is calculated as follows. For the elastic component of strain, \(\Delta \epsilon_{e}{ }^{r}\), we have
\[
\begin{equation*}
\Delta \epsilon_{e}^{r}=\frac{\Delta \sigma^{r}}{E} \tag{3.37}
\end{equation*}
\]

Substituting for \(\Delta \sigma^{r}\) from the linearised form of (2.35) into (3.37) and then using (2.34) we obtain
\[
\begin{equation*}
\Delta \epsilon_{p}^{r}=\frac{\Delta \epsilon^{r}}{1+H^{\prime} / E} \tag{3.38}
\end{equation*}
\]

Since the plastic strain component must be calculated for the part of the strain after the element yields, then, with reference to Fig. 3.7, \(\Delta \epsilon^{r}\) must be replaced by \(\Delta \epsilon_{e p}{ }^{r}\). Or, using (3.34), we have
\[
\begin{equation*}
\Delta \epsilon_{p}^{r}=\frac{R \Delta \epsilon^{r}}{1+H^{\prime} / E} . \tag{3.39}
\end{equation*}
\]

Then the total current plastic strain for the element is
\[
\begin{equation*}
\epsilon_{p}^{r}=\epsilon_{p}^{r-1}+\frac{R \Delta \epsilon^{r}}{1+H^{\prime} / E} \tag{3.40}
\end{equation*}
\]

Step \(g\) For elastic elements only, store the correct current stress as
\[
\begin{equation*}
\sigma^{r}=\sigma^{r-1}+\Delta \sigma_{e}^{r} . \tag{3.41}
\end{equation*}
\]
(This in fact repeats Step c.)
Step \(h\) Finally, calculate the equivalent nodal forces from the element stress according to
\[
f_{1}=-f_{2}=\left\{\begin{array}{rll}
-\sigma^{r} A & \text { for } & x_{2}>x_{1}  \tag{3.42}\\
\sigma^{r} A & \text { for } & x_{2}<x_{1}
\end{array}\right.
\]

Subroutine REFOR3 is now presented below and explanatory notes provided.


RFR3 15-17 Initialise to zero the array in which the equivalent nodal forces for each element will be stored.
RFR3 18 Loop over each element.
RFR3 19 Identify the material property of each element.
RFR3 20 Set YOUNG equal to the elastic modulus, \(E\), of the material.
RFR3 21 Set XAREA equal to the cross-sectional area.
RFR3 22 Set YIELD equal to the uniaxial yield stress, \(\sigma_{1}\), of the material.
RFR3 23 Set HARDS equal to the hardening parameter, \(H^{\prime}\), of the material.
RFR3 24-25 Identify the node numbers of the element.
RFR3 26 Calculate the element length.
RFR3 27-30 Calculate the element strain, so that a tensile strain is positive.
RFR3 31 Calculate \(\Delta \sigma_{e}{ }^{r}\) according to Step b.
RFR3 32 Calculate \(\sigma_{e} r\) according to Step c.
RFR3 33-34 Check if the element had yielded on the previous iteration, i.e., if \(\sigma^{r-1}>\sigma_{Y}+H^{\prime} \epsilon_{p}{ }^{r-1}\) which is the first operation of Step d. The absolute value of \(\sigma^{r-1}\) is taken to account for yielding in compression.
RFR3 35-36 If the element was previously elastic, check to see if it has yielded during this iteration.
RFR3 37 For an element which yields during this iteration, calculate
\[
R=\frac{\sigma_{e} e^{r}-\sigma_{Y}}{\sigma_{e}{ }^{r}-\sigma^{r-1}}
\]
(Fig. 3.7(a)). The absolute value sign is taken to account for compressive loading.
RFR3 39-40 Check to see if an element which had previously yielded is unloading during this iteration. If yes, go to 40 .
RFR3 41 Otherwise, set \(R=1\).
RFR3 42 Evaluate, ( \(1-R\) ).
RFR3 43-44 For plastic elements, calculate the correct current stress, \(\sigma^{r}\), according to (3.36).
RFR3 45 Also calculate the plastic strain, \(\epsilon_{p}{ }^{r}\), according to (3.40).
RFR3 47 For elastic elements, calculate the current stress, \(\sigma^{r}\), according to Step g.
RFR3 48-53 Evaluate the equivalent nodal forces, according to Step \(h\).
RFR3 54 Termination of DO LOOP over the elements.

\subsection*{3.12.3 Numerical examples}

The first example considered is the yielding of a bar under self weight loading. The problem and finite element idealisation employed is illustrated in Fig. 3.8. Progressive yielding is induced in the system by increasing the gravitational field incrementally. The gravitational force due to self weight


Fig. 3.8 Load/displacement response of a vertical bar loaded by a progressively increasing self-weight.
acting on each element is equally distributed to its two nodes. The structure is capable of carrying load beyond first yield, due to the strain hardening characteristic of the material.

The second example considered is the compound bar shown in Fig. 3.9. The two bars have a different yield stress and cross-sectional area in order to induce differential yielding. The structure is loaded by an end load, \(P\), which is systematically incremented. The load/extension characteristics for the system are shown in Fig. 3.9. It is seen that there is an initial loss of stiffness corresponding to yielding of the first bar followed by a further reduction when the second bar becomes plastic.

This simple example suggests a method by which more complex material responses can be generated. By connecting two bars with different properties in parallel we obtain a material behaviour made up of three linear portions.


By connecting \(n\) bars in parallel and choosing the yield stress and crosssectional area of each appropriately we can approximate any arbitrary stress/strain response piecewise linearly by \((n+1)\) intervals. This is the basis of the 'overlay method' \({ }^{(7)}\) which will be described later in Chapter 8.

Also included in Fig. 3.9 are the results for the case when the load is cycled. First the load is incremented in tension up to a certain level, then removed and applied compressively, before final removal. It is immediately seen that a Bauschinger effect \({ }^{(8)}\) is obtained with initial yield in compression taking place at a reduced value. This occurs even though we have assumed an equal yield stress in tension and compression. This behaviour is attributable to the differential straining of the two components and is a phenomenon evident in real materials.

\subsection*{3.13 Problems}
3.1 Reanalyse the problem of Fig. 3.3, Section 3.9.3, for the case where the term \(K\) is assumed to vary with the unknown \(\phi\) according to
\[
K=10\left(1+e^{3 \phi}\right)
\]

Use the direct iteration solution code QUITER, user instructions for which are provided in Appendix I, Section A1.1, for solution.
3.2 Resolve Problem 3.1 using the Newton-Raphson procedure which is coded in program QUNEWT. User instructions for this program are provided in Appendix I, Section A1.2. Compare the computation times required for the two different solution procedures.
3.3 The quasi-harmonic equation described in Section 2.3 is also applicable to groundwater flow problems. \({ }^{(5)}\) In this application \(\phi\) is the pressure head potential, \(K\) is the material permeability and \(Q\) is the rate at which water is being injected per unit volume of material. The flow velocity at any point is then given by \(v=-K(d \phi / d x)\). Figure 3.10 illustrates the problem of water seeping through two permeable strata whose permeabilities depend on the seepage velocity as shown. By treating the problem as one-dimensional in the vertical direction obtain a numerical solution for the steady state potential and velocity distribution in the two strata.
3.4 Following the approach of Section 2.3, develop the stiffness matrix \(\boldsymbol{H}^{(e)}\) and the load vector \(\boldsymbol{f}^{\left({ }^{(e)}\right.}\) for the one-dimensional axisymmetric situation. In this application all quantities are symmetric with respect to a central axis and the radial coordinate \(r\) now replaces \(x\).
3.5 Implement the formulation of Problem 3.4 in program QUITER.
3.6 Use the computer code developed in Problem 3.5 to solve the problem of water flow in the horizontal place of the confined aquifer shown in Fig. 3.11. In this case \(\phi\) is the piezometric head, \(K\) is the material permeability and \(Q\) is the rate at which water is being injected per unit volume of material.


Fig. 3.10 Groundwater flow example-Problem 3.3.


Fig. 3.11 Water flow in a confined aquifer-Problem 3.6.

The circular region shown in Fig. 3.11 has a central well point at which water is being extracted at a rate of \(200 \mathrm{~m}^{3} /\) day. Determine the steady state potential distribution for this system assuming the material permeability to be nonlinear in the manner shown.
3.7 The relationship between stress, \(\sigma\), and strain, \(\epsilon\), for a certain locking material is given by the relationship
\[
\begin{equation*}
\sigma=\frac{E_{0} \epsilon}{\epsilon_{L}\left(\epsilon_{L}-\epsilon\right)}, \tag{3.43}
\end{equation*}
\]
in which \(E_{0}\) is the elastic modulus and \(\epsilon_{L}\) is the limiting strain value of the material. Implement this relation in program NONLAS documented in Appendix I, Section A1.3, by modifying the strain derivative function in Section 3.11.1. Also allow the behaviour of certain elements to be linear elastic. Use this modified program to determine the force displacement/relationship of the central node in Fig. 3.12 for a total applied load of 100 units.


Fig. 3.12 Nonlinear elastic example-Problem 3.7.
3.8 Use program ELPLAS, for which user instructions are provided in Appendix I, Section A1.4, to solve the one-dimensional elasto-plastic problem shown in Fig. 3.13.
3.9 Develop the elastic stiffness matrix, \(K^{(e)}\), for a two-node finite element in the form of a thin disc of thickness \(t\) which is to be subjected to axisymmetric in-plane loading. Assume a linear variation between nodes, as shown in Fig. 2.7, and note the following relationships
\[
\begin{align*}
& \epsilon_{r}=\frac{d u}{d r}=\frac{1}{E}\left(\sigma_{r}-\nu \sigma_{\theta}\right) \\
& \epsilon_{\theta}=\frac{u}{r}=\frac{1}{E}\left(\sigma_{\theta}-\nu \sigma_{r}\right), \tag{3.44}
\end{align*}
\]


Fig. 3.13 Elasto-plastic example-Problem 3.8.
in which \(u\) is the radial displacement and \(E\) and \(\nu\) are respectively the elastic modulus and Poisson's ratio of the material. Also express the stresses \(\sigma_{r}\) and \(\sigma_{\theta}\) in terms of the nodal displacements \(\phi_{1}\) and \(\phi_{2}\).
3.10 Use the stiffness matrix evaluated in Problem 3.9 to modify program ELPLAS to allow solution of one-dimensional axisymmetric problems by the initial stiffness method. Assume a Tresca yield criterion (discussed in Chapter 7) where yielding is assumed to begin when the maximum shearing stress reaches a critical value. For the present application this implies commencement of yielding when either \(\sigma_{r}\) or \(\sigma_{0}\) reaches the uniaxial yield stress, \(\sigma_{Y}\).
3.11 Employ the program developed in Problem 3.10 to determine the elasto-plastic stress distribution in a thin disc, of thickness 1 mm , subjected to internal pressure loading. Take the internal and external


Fig. 3.14 Axisymmetric membrane element-Problem 3.9
radii of the disc as 5 cm and 10 cm respectively, the elastic modulus \(E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}\), Poisson's ratio \(\nu=0.3\) and the uniaxial yield stress, \(\sigma_{Y}=300 \mathrm{~N} / \mathrm{mm}^{2}\). Compare your solution with the theoretical expressions given in Ref. 8.

\subsection*{3.14 References}
1. Ralston, A., A First Course in Numerical Analysis, McGraw-Hill, 1965.
2. Jennings, A., Matrix Computation for Engineers and Scientists, John Wiley, 1977.
3. Hinton, E. and Owen, D. R. J., Finite Element Programming, Academic Press, London, 1977.
4. Salvadori, M. G. and Baron, M. L., Numerical Methods in Engineering, Prentice-Hall, New Jersey, 1964.
5. Hinton, E. and Owen, D. R. J., An Introduction to Finite Element Computations, Pineridge Press, Swansea, U.K., 1979.
6. Barrer, R. M., Measurement of diffusion and thermal conductivity 'constants' in non-homogeneous media, and in media where these constants depend respectively on concentration or temperature, Proc. Phys. Soc. 58, 321-331 (1946).
7. Owen, D. R. J., Prakash, A. and Zienkiewicz, O. C., Finite element analysis of non-linear composite materials by use of overlay systems, Computers and Structures, 4, 1251-1267 (1974).
8. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950.

\section*{Chapter 4 Viscoplastic problems in one dimension}

\subsection*{4.1 Introduction}

In this chapter the basic concepts of viscoplasticity are introduced by the consideration of one-dimensional situations. This topic is then studied further in Chapter 8 where the case of a general continuum is treated.

Viscoplastic theory allows the modelling of time rate effects in the plastic deformation process. Thus after initial yielding of the material the plastic flow, and the resulting stresses and strains, are time dependent. Such effects are always present to some degree in all materials but they may or may not be significant depending on the physical situation being considered.

The basic theory of viscoplasticity in one dimension is developed and a numerical solution process is then described. All the essential features of viscoplasticity can be demonstrated with reference to one-dimensional behaviour. Finally the solution process is coded in FORTRAN to form a working program and the basic characteristics of a viscoplastic material response are illustrated by the solution of numerical examples.

\subsection*{4.2 Basic theory}

The concept of viscoplastic material behaviour is best introduced by means of the one-dimensional rheological model illustrated in Fig. 4.1. The friction slider component develops a stress \(\sigma_{p}\), becoming active only if \(\sigma>Y\), where \(\sigma\) is the total applied stress and \(Y\) is some limiting yield value. The excess stress \(\sigma_{d}=\sigma-\sigma_{p}\) is carried by the viscous dashpot. Instantaneous elastic response is, of course, provided by the linear spring. The presence of the dashpot allows the stress level to instantaneously exceed the value predicted by plasticity theory, the solution tending to this equilibrium level as steady state conditions are achieved in the system.

The total strain in the model is given by the sum of the elastic and viscoplastic components as
\[
\begin{equation*}
\epsilon=\epsilon_{e}+\epsilon_{v p} . \tag{4.1}
\end{equation*}
\]

The stress in the linear spring is equal to the total applied stress and is


Fig. 4.1 Basic one-dimensional elastic-viscoplastic model.
related to the elastic strain by
\[
\begin{equation*}
\sigma_{\rho}=\sigma=E \epsilon_{e} \tag{4.2}
\end{equation*}
\]
where \(E\) is the elastic modulus of the linear spring.
The stress level in the friction slider depends on whether or not the threshold or yield stress, \(Y\), has been reached. The onset of viscoplastic deformation is governed by a uniaxial yield stress \(\sigma_{Y}\). The stress level for continuing viscoplastic flow depends on the strain-hardening characteristics of the material. Restricting discussion to a linear strain-hardening response as discussed in Section 2.5, the stress level for viscoplastic yielding at any stage is given by
\[
\begin{equation*}
Y=\sigma_{Y}+H^{\prime} \epsilon_{\cdot p} \tag{4.3}
\end{equation*}
\]
in which \(H^{\prime}\) is the slope of the strain hardening portion of the stress-strain curve after removal of the elastic strain component and \(\epsilon_{v} p\) is the current viscoplastic strain. Thus the stress in the friction slider is
\[
\begin{align*}
\sigma_{p} & =\sigma \quad \text { if } \quad\left\{\begin{array}{l}
\sigma_{p}<Y \\
\\
\end{array}=Y\right. \tag{4.4}
\end{align*} \quad\left\{\sigma_{p} \geqslant Y\right.
\]

The stress in the viscous dashpot, \(\sigma_{d}\), is related to the viscoplastic strain by
\[
\begin{equation*}
\sigma_{d}=\mu \frac{d \epsilon_{v p}}{d t} \tag{4.5}
\end{equation*}
\]
where \(\mu\) is a viscosity coefficient and \(t\) denotes the time. We note that
\[
\begin{equation*}
\sigma=\sigma_{d}+\sigma_{p} \tag{4.6}
\end{equation*}
\]

Before the onset of viscoplastic yielding \(\epsilon_{v p}=0\), giving \(\sigma_{d}=0\) from (4.5) and consequently \(\sigma_{p}=\sigma\). It now remains to establish the constitutive relationship for the model under both elastic and elasto-viscoplastic conditions.

Before viscoplastic yielding, \(\epsilon_{v p}=0\) and from (4.1) and (4.2) we have the elastic stress-strain relation to be
\[
\begin{equation*}
\sigma=E \epsilon \tag{4.7}
\end{equation*}
\]

Substituting from (4.4) and (4.5) in (4.6) gives
\[
\begin{equation*}
\sigma_{Y}+H^{\prime} \epsilon_{r p}+\mu \frac{d \epsilon_{l p}}{d t}=\sigma \tag{4.8}
\end{equation*}
\]

Substituting for \(\epsilon_{v p}\) from (4.1) and using (4.2) results in
\[
\begin{equation*}
H^{\prime} E \epsilon+\mu E \frac{d \epsilon}{d t}=H^{\prime} \sigma+E\left(\sigma-\sigma_{Y}\right)+\mu \frac{d \sigma}{d t} \tag{4.9}
\end{equation*}
\]
which is a first order ordinary differential equation defining the timedependent relationship between stress and strain under viscoplastic conditions. At this stage we introduce a fluidity parameter, \(\gamma\), such that
\[
\begin{equation*}
\gamma=\frac{1}{\mu} \tag{4.10}
\end{equation*}
\]

Substituting in (4.9) and rearranging
\[
\begin{equation*}
\dot{\epsilon}=\frac{\dot{\sigma}}{E}+\gamma\left[\sigma-\left(\sigma_{Y}+H^{\prime} \epsilon_{v p}\right)\right] \tag{4.11}
\end{equation*}
\]
in which (•) denotes derivative with respect to time, \(t\). Or
\[
\begin{equation*}
\dot{\epsilon}=\dot{\epsilon}_{e}+\dot{\epsilon}_{v p} \tag{4.12}
\end{equation*}
\]
where
\[
\begin{equation*}
\dot{\epsilon}_{e}=\frac{\dot{\sigma}}{E} \tag{4.13}
\end{equation*}
\]
and
\[
\begin{equation*}
\dot{\epsilon}_{v p}=\gamma\left[\sigma-\left(\sigma_{Y}+H^{\prime} \epsilon_{v p}\right)\right] . \tag{4.14}
\end{equation*}
\]

Expression (4.14) defines the viscoplastic strain rate in terms of the portion of stress in excess of the steady state yield value.

It is instructive to consider the closed form solution to (4.9). Consider the case when a constant applied stress \(\sigma=\sigma_{A}\) is applied to the model. Then (4.9) reduces, (using (4.10)), to
\[
\begin{equation*}
\gamma H^{\prime} \epsilon+\frac{d \epsilon}{d t}=\frac{\gamma H^{\prime}}{E} \sigma_{A}+\gamma\left(\sigma_{A}-\sigma_{Y}\right) . \tag{4.15}
\end{equation*}
\]

The solution to this first-order ordinary differential equation is elementary and is
\[
\begin{equation*}
\epsilon=\frac{\sigma_{A}}{E}+\frac{\left(\sigma_{A}-\sigma_{Y}\right)}{H^{\prime}}\left[1-\mathrm{e}^{-H^{\prime} \gamma t}\right], \tag{4.16}
\end{equation*}
\]

(a)

(b)

Fig. 4.2 Strain response with time for the model of Fig. 4.1 due to a constant applied load. (a) Linear strain hardening material. (b) Perfectly plastic material.
provided that \(H^{\prime}\) is nonzero. The form of the response is shown in Fig. 4.2(a). Following an initial elastic response, the strain in the model attains the steady state value indicated in an exponential fashion.

The case of a perfectly viscoplastic material in which \(H^{\prime}=0\), can be obtained by taking the limit as \(H^{\prime}\) tends to zero in (4.16) and applying L'Hopital's rule. This results in
\[
\begin{equation*}
\epsilon=\frac{\sigma_{A}}{E}+\left(\sigma_{A}-\sigma_{Y}\right) \gamma t \tag{4.17}
\end{equation*}
\]

This response is shown in Fig. 4.2(b). In this case it is seen that a steady state condition is not achieved and that viscoplastic deformation continues indefinitely at a constant strain rate. The different behaviour shown in Figs. 4.2(a) and 4.2(b) arises from the fact that for a strain hardening material the viscoplastic yield stress increases according to (4.3) until it reaches tie applied stress level \(\sigma_{A}\) at which stage the viscoplastic strain rate becomes zero. On the other hand, for a perfectly viscoplastic material there is always a stress imbalance of \(\sigma_{A}-\sigma_{Y}\) in the system which does not reduce and consequently steady state conditions cannot be achieved.

We note that in (4.16) and (4.17) that the time \(t\) only enters the expressions through the term \(\gamma t\). Therefore the solution for a material with a different fluidity parameter \(\gamma\) can be obtained by a simple adjustment of the time scale.

\subsection*{4.3 Numerical solution process}

Viscoplasticity is a transient phenomenon and therefore the essential objective of a numerical solution process is to determine the displacement, strains and stresses throughout the time interval of interest. Consequently some time stepping or time marching scheme must be introduced in order to allow the solution to be advanced from a time \(t_{n}\) to time \(t_{n+1}=t_{n}+\Delta t_{n}\), where subscripts \(n\) and \(n+1\) denote successive times and \(\Delta t_{n}\) the interval between. The simplest method of incrementing quantities over a time interval is afforded by Euler's rule. In this the mean rate of change over the interval is taken as the value at the beginning of the interval and thus the predicted value of some quantity \(X\) at time \(t_{n+1}\) is extrapolated from the value at time \(t_{n}\) to be
\[
\begin{equation*}
X^{n+1}=X^{n}+(\dot{X})^{n} \Delta t_{n} \tag{4.18}
\end{equation*}
\]

This scheme becomes unstable for time steps exceeding a critical value and estimation of the limiting step length is discussed in Section 4.4. The Euler method, however, remains attractive due to its simplicity.

With the viscoplastic strain rate defined by (4.14) we can define the strain increment \(\Delta \epsilon_{v p}{ }^{n}\) occurring in a time interval \(\Delta t_{n}=t_{n+1}-t_{n}\), using (4.18), as
\[
\begin{equation*}
\Delta \epsilon_{v p} n=\dot{\epsilon}_{v p}^{n} \Delta t_{n} \tag{4.19}
\end{equation*}
\]

We note that the time step length can, in general, be different for each time interval.


Fig. 4.3 One-dimensional two-noded element with linear displacement variation.

With reference to Fig. 4.3, consider the behaviour of a linear displacement element, which is of length \(L\) and has a cross-sectional area, \(A\). The change of length in this element associated with strain increment (4.19) is
\[
\begin{equation*}
\Delta \phi^{n}=\Delta \epsilon_{v p}{ }^{n} L, \tag{4.20}
\end{equation*}
\]
or adding the displacement change due to a change in applied loading \(\Delta f^{n}\) occurring between times \(t_{n}\) and \(t_{n+1}\) we obtain the total change in element length to be
\[
\begin{equation*}
\Delta \phi^{n}=\Delta \epsilon_{v p}{ }^{n} L+\frac{L}{A E} \Delta f^{n} . \tag{4.21}
\end{equation*}
\]

This can be rewritten in matrix form, in terms of the nodal displacements and forces as
\[
\begin{equation*}
\Delta \varphi^{n}=[K]^{-1} \Delta V^{n} \tag{4.22}
\end{equation*}
\]
where
\[
\Delta \varphi^{n}=\left[\begin{array}{l}
\Delta \phi_{1}{ }^{n}  \tag{4.23}\\
\Delta \phi_{2}{ }^{n}
\end{array}\right]
\]
\[
\Delta V^{n}=A E \dot{\epsilon}_{v p}^{n} \Delta t_{n}\left[\begin{array}{r}
1  \tag{4.24}\\
-1
\end{array}\right]+\Delta f^{n}
\]
and
\[
K^{(e)}=\frac{E A}{L}\left[\begin{array}{rr}
1 & -1  \tag{4.25}\\
-1 & 1
\end{array}\right] .
\]

In the above, \(\Delta V^{n}\) are termed the pseudo forces and \(\Delta \varphi^{n}\) and \(\Delta f^{n}\) are respectively the incremental changes in the nodal displacements and applied forces for the element.

We note in passing that expressions (4.24) and (4.25) could be written in the standard finite element form
\[
\begin{align*}
& \Delta V^{n}=\int_{V} \boldsymbol{B}^{T} \boldsymbol{D} \boldsymbol{\epsilon} d V+\Delta f^{n} \\
& \boldsymbol{K}^{(e)}=\int_{V} \boldsymbol{B}^{T} \boldsymbol{D} \boldsymbol{B} d V, \tag{4.26}
\end{align*}
\]
since for the linear element considered
\[
\begin{align*}
\boldsymbol{B} & =\left[-\frac{1}{L}, \frac{1}{L}\right] \\
\boldsymbol{D} & =E \\
\int_{V} d V & =A L . \tag{4.27}
\end{align*}
\]

The displacements at time \(t_{n+1}\) are then obtained by simple accumulation as
\[
\begin{equation*}
\varphi^{n+1}=\varphi^{n}+\Delta \varphi^{n} . \tag{4.28}
\end{equation*}
\]

The stress increment is given from (4.1) and (4.7) to be
\[
\begin{equation*}
\Delta \sigma^{n}=E \Delta \epsilon_{e}{ }^{n}=E\left(\Delta \epsilon^{n}-\Delta \epsilon_{v p}{ }^{n}\right) \tag{4.29}
\end{equation*}
\]
or
\[
\begin{equation*}
\Delta \sigma^{n}=E\left(\frac{\Delta \phi_{1}{ }^{n}-\Delta \phi_{2}{ }^{n}}{L}-\dot{\epsilon}_{v p^{n}} \Delta t_{n}\right), \tag{4.30}
\end{equation*}
\]
where \(\Delta \phi_{1}{ }^{n}\) and \(\Delta \phi_{2}{ }^{n}\) are the displacement changes at the nodes of the element.

The stress at time \(t_{n+1}\) is then given by
\[
\begin{equation*}
\sigma^{n+1}=\sigma^{n}+\Delta \sigma^{n} . \tag{4.31}
\end{equation*}
\]

The total viscoplastic strain at time \(t_{n+1}\) is
\[
\begin{equation*}
\epsilon_{v p}{ }^{n+1}=\epsilon_{v p^{n}}+\Delta \epsilon_{v p^{n}}, \tag{4.32}
\end{equation*}
\]
and finally the viscoplastic strain rate at \(t_{n+1}\) is given, from (4.14) as
\[
\begin{equation*}
\dot{\epsilon}_{v p} n^{n+1}=\gamma\left[\sigma^{n+1}-\left(\sigma_{Y}+H^{\prime} \epsilon_{v p}{ }^{n+1}\right)\right] . \tag{4.33}
\end{equation*}
\]

In employing the Euler scheme for time-stepping, we are effectively linearising the variation of quantities over the increment. Therefore the total stresses \(\sigma^{n+1}\) obtained by accumulating all such stress increments may not be in exact equilibrium with the applied forces. It is therefore necessary to introduce an equilibrium correction procedure into the numerical solution algorithm. The simplest approach is to evaluate the out-of-balance nodal forces at the end of each time step and consider these forces as additional forces to be applied at the beginning of the next time increment.

The out-of-balance or residual forces, \(\psi\), for the general element are given as the algebraic sum of the applied nodal loads and the nodal forces equivalent to the element stress, so that
\[
\psi^{n+1}=A \sigma^{n+1}\left[\begin{array}{r}
1  \tag{4.34}\\
-1
\end{array}\right]+f^{n+1}
\]
in which \(\sigma^{n+1}\) is the element stress and \(f^{n+1}\) are the total applied forces at time \(t_{n+1}\). These residual forces are then added to the pseudo forces to give for the next time increment
\[
\Delta V^{n+1}=A E \dot{\epsilon}_{v p}^{n+1} \Delta t_{n+1}\left[\begin{array}{r}
1  \tag{4.35}\\
-1
\end{array}\right]+\Delta f^{n+1}+\psi^{n+1}
\]

This sequence is repeated for each time step until solution is either obtained for the desired time duration or until steady state conditions are achieved. Steady state conditions are deemed to have been achieved when the viscoplastic strain rate, \(\dot{\epsilon}_{v p}{ }^{n}\), becomes tolerably small.

\subsection*{4.4 Limiting time-step length}

The critical time-step length for viscoplastic solution using the Euler time marching scheme has been established by Cormeau. \({ }^{(1)}\) For the uniaxial case considered in this chapter the limiting value is
\[
\begin{equation*}
\Delta t \leqslant \frac{\sigma_{Y}}{\gamma E} . \tag{4.36}
\end{equation*}
\]

Alternatively the time-step length can be limited according to a semiempirical relationship. Such an approach is essential for some general continuum problems where a theoretical value of the critical time-step length may not exist. The most obvious procedure is to limit the viscoplastic strain increment to be some specified factor, \(\tau\), of the total current strain,
\[
\begin{equation*}
\dot{\epsilon}_{v p}{ }^{n} \Delta t_{n} \leqslant \tau \epsilon^{n} . \tag{4.37}
\end{equation*}
\]

Since each element generally has a different strain level, expression (4.37) will yield a different limiting step value when applied to each element in turn. Therefore the limiting value is restricted according to
\[
\begin{equation*}
\Delta t_{n} \leqslant \tau\left[\frac{\epsilon^{n}}{\dot{\epsilon}_{v p} n}\right]_{\min }, \tag{4.38}
\end{equation*}
\]
where the minimum value of \(\Delta t_{n}\) obtained after considering each element is taken. Stability of the solution process is also aided by restricting the length of successive time steps according to
\[
\begin{equation*}
\Delta t_{n+1} \leqslant k \Delta t_{n}, \tag{4.39}
\end{equation*}
\]
where \(k\) is a specified constant generally chosen in the range \(1 \cdot 5-2 \cdot 0\).

\subsection*{4.5 Computational procedure}

Before proceeding with the development of a computer code for the solution of one-dimensional viscoplastic problems we will first summarise the essential steps of the computation. Solution to the problem must commence from the known initial conditions at time \(t=0\) which of course correspond to the initial elastic response. At this stage \(\varphi^{0}, f^{0}, \epsilon^{0}, \sigma^{0}\) are known and \(\epsilon_{v p}{ }^{0}=0\). The general procedure for advancing the solution from a time \(t_{n}\) to time \(t_{n+1}\) is the following.
Stage 1 At time \(t=t_{n}\) the values of \(\sigma^{n}, \epsilon^{n}, \epsilon_{v p}{ }^{n}\) and \(f^{n}\) are known for each element and the nodal displacements are also known. The viscoplastic strain rate for each element is then evaluated according to (4.14) as
\[
\begin{equation*}
\dot{\epsilon}_{v p}{ }^{n}=\gamma\left[\sigma^{n}-\left(\sigma_{Y}+H^{\prime} \epsilon_{v p}{ }^{n}\right)\right] . \tag{4.40}
\end{equation*}
\]

Stage 2 (a) Compute the displacement increments, \(\Delta \varphi^{n}\), according to (4.22)-(4.25), as
\[
\Delta \varphi^{n}=[K]^{-1} \Delta V^{n},
\]
where
\[
\Delta V^{n}=A E \dot{\epsilon}_{v p} p^{n} \Delta t_{n}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+\Delta f^{n},
\]
and the stiffness matrix for an individual element is
\[
K^{(e)}=\frac{E A}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] .
\]
(b) Calculate the stress increment \(\Delta \sigma^{n}\) and the viscoplastic strain increment \(\Delta \epsilon_{v p}{ }^{n}\) for each element as
\[
\begin{aligned}
\Delta \sigma^{n} & =E\left(\frac{\Delta \phi_{1}^{n}-\Delta \phi_{2}^{n}}{L}-\dot{\epsilon}_{v} p^{n} \Delta t_{n}\right) \\
\Delta \epsilon_{v p^{n}} & =\dot{\epsilon}_{v p} p^{n} \Delta t_{n}
\end{aligned}
\]

Stage 3 Determine the total displacements, stresses and viscoplastic strain
\[
\begin{aligned}
\varphi^{n+1} & =\varphi^{n}+\Delta \varphi^{n}, \\
\sigma^{n+1} & =\sigma^{n}+\Delta \sigma^{n}, \\
\epsilon_{v p}{ }^{n+1} & =\epsilon_{v p}{ }^{n}+\Delta \epsilon_{v p} .
\end{aligned}
\]

Stage 4 Calculate the viscoplastic strain rate for each element
\[
\dot{\epsilon}_{v p}^{n+1}=\gamma\left[\sigma^{n+1}-\left(\sigma_{Y}+H^{\prime} \epsilon_{v p}^{n+1}\right)\right]
\]

Stage 5 Apply the equilibrium correction. Evaluate the residual forces, for each element, as
\[
\psi^{n+1}=A \sigma^{n+1}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+f^{n+1}
\]

Add these into the vector of incremental pseudo loads for use in the next time step
\[
\Delta V^{n+1}=A E \dot{\epsilon}_{v} p^{n+1} \Delta t_{n+1}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+\Delta f^{n: 1}+\psi^{n+1}
\]

Stage 6 Check to see if the viscoplastic strain rate \(\dot{\epsilon}_{v p}{ }^{n+1}\) in each element has become tolerably small. If so, steady state conditions have been reached and the solution is either terminated or the next load increment is applied. If \(\dot{\epsilon}_{v p}{ }^{n+1}\) is non-zero return to Stage 1 and repeat the entire procedure for the next time step.

\subsection*{4.6 Program structure}

The organisation of the one-dimensional viscoplastic program is shown in Fig. 4.4 where, in particular, the order in which subroutines are accessed is indicated. The operations undertaken by the program are those described in Section 4.5. Many of the subroutines employed are common to the onedimensional plasticity application described in Chapter 3 and, since they are used in the present program without modification, the reader will be referred to the appropriate section for details. Only the additional subroutines necessary to complete the computer package will be described in this chapter.

With reference to Fig. 4.4 the following subroutines have been already described where indicated below:

Subroutine ASSEMB -Section 3.4.2
Subroutine GREDUC-Section 3.4.3
Subroutine BAKSUB -Section 3.4.4
Subroutine RESOLV -Section 3.4.5
Subroutine RESULT -Section 3.5
Subroutine INITAL -Section 3.6*
Also, Subroutine DATA described in Section 3.2 is used with some minor modifications. A viscoplastic material in one dimension requires five individual quantities to describe it completely. Thus NPROP becomes 5 and the following quantities must be specified as material properties.
PROPS (NUMAT, 1)-The elastic modulus, \(E\), of the material
PROPS (NUMAT, 2)-The cross-sectional area, \(A\), of the element
PROPS (NUMAT, 3)-The uniaxial yield stress, \(\sigma_{Y}\), of the material
PROPS (NUMAT, 4)-The linear strain hardening parameter, \(H^{\prime}\), for the material
PROPS (NUMAT, 5)-The fluidity parameter, \(\gamma\), controlling the viscoplastic strain rate.

\footnotetext{
* Subroutine NONAL, described in Section 3.3, is also employed but with IITER now replaced by the time step index, ISTEP.
}


Fig. 4.4 Operational sequence for the one-dimensional viscoplastic stress analysis program.

Input data are also received by this segment which controls the timestepping algorithm. The following information is input:

TAUFT The parameter \(\tau\) discussed in Section 4.4
DTINT The time-step length for the first time step
FTIME The factor \(k\) defined in (4.39) which limits the relative length of successive time steps
The additional subroutines which are required will now be described in turn.

\subsection*{4.7 Element stifiness subroutine STUNVP}

In all stages of the viscoplastic solution the elastic element stiffness matrix is employed, as indicated in (4.25). Consequently the structure of subroutine STUNVP, which evaluates the stiffness matrix for each element in turn, is straightforward and can be presented without further comment.
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE STUNVP & SNVP & \\
\hline \multicolumn{4}{|l|}{C***********************************************************************SNVP} \\
\hline C & & SNVP & 3 \\
\hline C *** & CALCULATES ELEMENT STIFFNESS MATRICES & SNVP & 4 \\
\hline C & & SNVP & 5 \\
\hline \multicolumn{4}{|l|}{C***********************************************************************SNV} \\
\hline & COMMON/UNIM1/NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, ISTEP, & SNVP & 7 \\
\hline & KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, & SNVP & 8 \\
\hline & NSTEP, NOUTP, FACTO, TAUFT, DTINT, FTIME, FIRST, PVALU, & SNVP & 10 \\
\hline & DTIME,TTIME & SNVP & 10 \\
\hline & COMMON/UNIM2/PROPS \((5,5), \operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52)\), & SNVP & 11 \\
\hline & FIXED (52), \(\operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)\), & SNVP & 12 \\
\hline & MATNO(25), STRES \((25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\), & SNVP & 13 \\
\hline & \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & SNVP & 14 \\
\hline & REACT (52), \(\operatorname{FRESV}(1352), \operatorname{PEFIX}(52), \operatorname{ESTIF}(4,4), \operatorname{VIVEL}(25)\) & SNVP & 15 \\
\hline \multicolumn{2}{|r|}{REWIND 1 ,} & SNVP & 16 \\
\hline & DO 10 IELEM=1,NELEM & SNVP & 17 \\
\hline & LPROP=MATNO (IELEM) & SNVP & 18 \\
\hline & YOUNG=PROPS (LPROP, 1) & SNVP & 19 \\
\hline & XAREA=PROPS (LPROP, 2) & SNVP & 20 \\
\hline & NODE1=LNODS ( IELEM, 1) & SNVP & 21 \\
\hline & NODE2=LNODS( IELEM,2) & SNVP & 22 \\
\hline & ELENG=ABS (COORD (NODE1)-COORD (NODE2)) & SNVP & 23 \\
\hline & FMULT=YOUNG*XAREA/ELENG & SNVP & 24 \\
\hline & \(\operatorname{ESTIF}(1,1)=\mathrm{FMULT}\) & SNVP & 25 \\
\hline & \(\operatorname{ESTIF}(1,2)=-\operatorname{FMULT}\) & SNVP & 26 \\
\hline & \(\operatorname{ESTIF}(2,1)=-\operatorname{FMULT}\) & SNVP & 27 \\
\hline & \(\operatorname{ESTIF}(2,2)=\mathrm{FMULT}\) & SNVP & 28 \\
\hline & WRITE(1) ESTIF & SNVP & 29 \\
\hline 10 & CONTINUE & SNVP & 30 \\
\hline & RETURN & SNVP & 31 \\
\hline & END & SNVP & 32 \\
\hline
\end{tabular}

SNVP 16 Rewind the file on which the stiffness matrix of each element will be stored.
SNVP 17 Loop over each element.
SNVP 18 Identify the material property of the current element.
SNVP 19-20 Set YOUNG equal to the material elastic modulus and XAREA equal to the cross-sectional area.
SNVP 21-22 Identify the node numbers of the element.
SNVP 23 Calculate the element length.
SNVP 24 Compute \(E A / L\) as FMULT.
SNVP 25-28 Evaluate the components of the element stiffness matrix according to (4.25).
SNVP 29 Write the element stiffness matrix on to disc file.
SNVP 30 End of loop over each element.

\subsection*{4.8 Subroutine INCVP for the evaluation of end of time-step quantities and equilibrium correction terms}

This subroutine evaluates quantities such as stresses and viscoplastic strains at the end of the current time step and also calculates the loading to be applied during the next time step. Essentially it undertakes Stages 3-5 described in Section 4.5. All quantities at the end of time step \(n\) are calculated as ( \()^{n+1}\).

The program presented is restricted to loading which is applied in discrete increments and is assumed to remain constant during the time-stepping process for any given increment. Thus in (4.35) \(\Delta f^{n}=0\) for all stages other than the first time step of a particular load increment.

Subroutine INCVP is now presented and described.


```

 DTIME=DNEXT
 INVP }4
 IF(ISTEP.EQ.1) DTIME=DTINT INVP 47
 DO 50 IELEM=1,NELEM INVP 48
 LPROP=MATNO(IELEM) INVP 49
 YOUNG=PROPS(LPROP,1) INVP 50
 XAREA=PROPS(LPROP,2) INVP }5
 FACTR=(YOUNG*VIVEL(IELEM)*DTIME-STRES(IELEM,1))*XAREA INVP 52
 IF(COORD(NODE2).GT.COORD(NODE1)) GO TO 40 INVP }5
 ELOAD(IELEM,1)= FACTR INVP 54
 ELOAD(IELEM,2) =-FACTR INVP }5
 GO TO 50 INVP 56
 40 ELOAD(IELEM,1)=-FACTR INVP }5
ELOAD(IELEM,2) = FACTR INVP 58
CONTINUE INVP }5
DO 60 IELEM=1,NELEM INVP 60
DO 60 IEVAB=1,NEVAB INVP 61
60 ELOAD(IELEM,IEVAB)=ELOAD(IELEM,IEVAB)+TLOAD(IELEM,IEVAB) INVP 62
RETURN INVP 63
END
INVP }6

```

INVP 16-18 Zero the array in which the pseudo loads for the next time step will be stored.
INVP 20 Loop over each element.
INVP 21 Identify the element material property number.
INVP 22-26 Store the elastic modulus as YOUNG, the cross-sectional area as XAREA, the uniaxial yield stress as YIELD, the uniaxial hardening parameter as HARDS and the fluidity parameter as GAMMA.
INVP 27-28 Identify the element node numbers.
INVP 29 Evaluate the length of the element.
INVP 30-33 Calculate the element strain so that a tensile strain is positive.
INVP 34 Evaluate the total current stress \(\sigma^{n+1}\) according to (4.30) and (4.31).

INVP 35 Evaluate the total viscoplastic strain \(\epsilon_{v p}{ }^{n+1}\), according to (4.32).
INVP 36 For a compressive stress take a negative value of the initial yield stress.
INVP 37 Compute the current yield level \(\sigma_{Y}+H^{\prime} \epsilon_{v p}{ }^{n+1}\).
INVP 38 If the current stress is less than the current yield stress, avoid evaluation of the viscoplastic strain rate.
INVP 39 Otherwise evaluate the viscoplastic strain rate according to (4.33).

INVP 40-42 Evaluate the next time-step length according to (4.38).
INVP 44 For elastic elements set the viscoplastic strain rate to zero.
INVP 45 End of element loop.
INVP 47 For the first timestep of a load increment choose the timestep as the initial value.
INVP 48 Enter element loop to evaluate pseudo loads, \(\Delta V^{n+1}\), for the next time step.
INVP 49 Identify the element material property number.

INVP 50-51 Store the elastic modulus as YOUNG and the cross-sectional area as XAREA.
INVP 52 Evaluate the factor \(A E \dot{\epsilon}_{v p}{ }^{n+1} \Delta t_{n+1}+A \sigma^{n+1}\).
INVP 53-62 Evaluate \(\Delta V^{n+1}\) according to (4.34) and (4.35), taking the appropriate signs for tensile or compressive stresses and strains. Note that \(f^{n+1}+\Delta f^{n+1}\) is the total load applied for time step \(n+1\) which is stored as TLOAD.

\subsection*{4.9 Convergence monitoring subroutine, CONVP}

Convergence of the numerical process to the steady state solution must be monitored by comparing, in some way, the values of the viscoplastic strain rate determined during each time step. This can be done in several ways and in this section we describe a procedure based on a global convergence check only. In particular we will assume that steady state conditions have been achieved if
\[
\begin{equation*}
\frac{\sum_{i=1}^{M}\left|\left(\Delta \epsilon_{v p^{n}}\right)_{i}\right|}{\sum_{i=1}^{M}\left|\left(\Delta \epsilon_{v p^{1}}{ }^{1}\right)\right|} \times 100 \leqslant \text { TOLER } \tag{4.41}
\end{equation*}
\]
where \(M\) denotes the total number of elements in the problem and || denotes the absolute value. The multiplication factor of 100 on the left-hand side allows the specified tolerance factor TOLER to be considered as a percentage term. Equation (4.41) states that steady state conditions are deemed to have been achieved if the sum of the absolute values of the strain increment for any time step is less than or equal to TOLER times the corresponding value for the first time step. For practical purposes a value of TOLER \(\leqslant 1.0\) (i.e. \(1 \%\) ) is generally adequate. Parameter NCHEK indicates convergence of the solution to steady state, where;

NCHEK \(=1\) indicates that the solution is converging to steady state, with the viscoplastic strain increment reducing between two successive time steps.
NCHEK \(=999\) indicates a divergence, with the viscoplastic strain increment increasing between two successive time steps.
NCHEK \(=0\) indicates that steady state conditions have been achieved.
Subroutine CONVP is now presented and described.

```

 NSTEP,NOUTP,FACTO,TAUFT,DTINT,FTIME,FIRST,PVALU, CNVP 9
 DTIME TTIME CNVP
 10
 COMMON/UNIM2/PROPS(5,5),COORD(26),\operatorname{LNODS(25,2),IFPRE(52), CNVP }11
 . FIXED(52),TLOAD(25,4),\operatorname{RLOAD}(25,4),\operatorname{ELOAD}(25,4), CNVP 12
 - MATNO(25),STRES(25,2),PLAST(25),XDISP(52),
 - TDISP(26,2),\operatorname{TREAC}(26,2),\operatorname{ASTIF}(52,52),\operatorname{ASLOD}(52),
 - REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4),VIVEL(25) CNVP 15
 NCHEK=1
 CNVP 16
 TOTAL=0.0 CNVP 17
 DO 10 IELEM=1,NELEM CNVP 18
 10 TOTAL=TOTAL+ABS(VIVEL(IELEM))*DTIME CNVP 19
IF(ISTEP.EQ.1) FIRST=TOTAL CNVP 20
IF(FIRST.EQ.0.0) GO TO 20 CNVP 21
RATIO=100.0*TOTAL/FIRST CNVP 22
GO TO 30 CNVP 23
20 RATIO=0.0 CNVP 24
30 CONTINUE CNVP 25
IF(RATIO.LE.TOLER) NCHEK=0 CNVP }2
IF(RATIO.GT.PVALU) NCHEK=999 CNVP 27
40 PVALU=RATIO
CNVP 28
WRITE(6,900) TTIME
CNVP 29
900 FORMAT(1H0,5X, 12HTOTAL TIME =, E17.6) CNVP 30
WRITE (6,910) NCHEK, RATIO CNVP }3
910 FORMAT (1HO,5X,18HCONVERGENCE CODE =,I4,3X,28HNORM OF RESIDUAL SUM CNVP 32
.RATIO =,E14.6) CNVP 33
RETURN CNVP 34
END CNVP 35

```

CNVP 16 Set the indicator monitoring convergence to 1 . This will be reset later in the subroutine if necessary.
CNVP 17-19 Compute
\[
\sum_{i=1}^{M}\left|\left(\Delta \epsilon_{v p}\right)_{i}\right|
\]
for the current time step as required in (4.41).
CNVP 20 For the first time step evaluate the denominator in (4.41).
CNVP 21-25 Evaluate the left-hand side in (4.41). If the denominator is zero there is no viscoplastic flow for the particular load increment, therefore set RATIO \(=0\) indicating a steady state condition.
CNVP 26 If (4.41) is satisfied, set NCHEK \(=0\) indicating a steady state condition.
CNVP 27 If the viscoplastic increment has increased from the value obtained on the previous time step set NCHEK \(=999\).
CNVP 28 Store the current value of the left-hand side of (4.41) for use in Statement CNVP 27 during the next time step.
CNVP 29-30 Output the current time.
CNVP 31-33 Output the value of NCHEK and the left-hand side of (4.41).

\subsection*{4.10 Subroutine INCLOD}

Subroutine INCLOD described in Section 3.7 is employed for this application with one minor change: The iteration limit NITER is now replaced by the time-step limit NSTEP.

For each increment of load, data is accepted by INCLOD to control the upper limit to the number of time steps, the output frequency, the size of load increment and the convergence tolerance limit. These quantities are specifically input as:

NOUTP This parameter controls the frequency of output of results:
0 -Print the results on convergence to steady state conditions only, for each load increment.
1 —Print the results after the first time step and at steady state, for each load increment.
2-Print the results for each time step for each load increment.
FACTO This quantity controls the magnitude of any load increment. The applied loading is accepted by subroutine DATA and stored in array RLOAD. The size of any load increment is then RLOAD factored by FACTO. Therefore if FACTO is input for the first three increments as respectively \(0 \cdot 3,0.3\) and \(0 \cdot 1\), the total loading applied to the structure during the third increment is 0.7 times the loading input in subroutine DATA.
TOLER This item of data controls the tolerance permitted on the steady state convergence process, and has been described in Section 4.9.
Subject to the replacement of NITER by NSTEP, the form of this subroutine for the present application is identical to that provided in Section 3.7.

\subsection*{4.11 The main, master or controlling segment}

This master segment controls the calling, in order, of the other subroutines. This program segment also controls the time-stepping process and also the incrementing of the applied loads, where appropriate.

The following channel numbers are employed by the program: 5 (card reader), 6 (line printer), 1 (scratch file).
\begin{tabular}{|c|c|}
\hline MASTER UNVISC & UVIS \\
\hline  & WVIS 2 \\
\hline C & UVIS 3 \\
\hline C \({ }^{\text {n }}\) 员 PROGRAM FOR THE 1-D SOLUTION OF NONLINEAR PROBLEMS & UVIS 4 \\
\hline C & UVIS 5 \\
\hline  & *UVIS 6 \\
\hline COMMON/ UNIM1/ NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, ISTEP, & UVIS 7 \\
\hline KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, & UVIS 8 \\
\hline NSTEP, NOUTP, FACTO, TAUFT, DTINT,FTIME,FIRST, PVALU, & UVIS 9 \\
\hline DTIME, TTIME & UVIS 10 \\
\hline COMMON/UNIM2/PROPS \((5,5)\), COORD \((26)\), LNODS \((25,2)\), IFPRE \((52)\), & UVIS 11 \\
\hline FIXED (52), TLOAD ( 25,4 , \(\operatorname{\operatorname {RLOAD}}(25,4), \operatorname{ELOAD}(25,4)\), & UVIS 12 \\
\hline MATNO( 25), STRES \((25,2), \operatorname{PLAST}(25), \mathrm{XDISP}(52)\), & UVIS 13 \\
\hline \(\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)\), & UVIS 14 \\
\hline REACT ( 52), \(\operatorname{FRESV}(1352), \operatorname{PEFIX}(52), \operatorname{ESTIF}(4,4), \operatorname{VIVEL}(25)\) & UVIS 15 \\
\hline
\end{tabular}
```

 TTIME=0.0 UVIS 16
 CALL DATA
 UVIS 17
CALL STUNVP UVIS 19
DO 30 IINCS=1,NINCS UVIS 20
CALL INCLOD UVIS 21
DTIME=0.0 UVIS
UVIS 22
DTIME=0.0
UVIS 23
TTIME=TTIME+DTIME UVIS 24
CALL NONAL UVIS 25
CALL ASSEMB UVIS 26
IF(KRESL.EQ.1) CALL GREDUC UVIS 27
IF(KRESL.EQ.2) CALL RESOLV UVIS 28
CALL BAKSUB UVIS 29
CALL INCVP
UVIS }3
CALL CONVP UVIS 31
IF(NCHEK.EQ.O) GO TO 20 UVIS }3
IF(ISTEP.EQ.1.AND.NOUTP.EQ.1) CALL RESULT UVIS }3
IF(NOUTP.EQ.2) CALL RESULT UVIS 3
10 CONTINUE UVIS 35
WRITE(6,900)
UVIS 36
900 FORMAT(1HO,5X,'STEADY STATE NOT ACHIEVED') UVIS 37
CALL RESULT
UVIS }3
UWIS }3
30 CONTINUE UVIS 40
STOP UVIS 41
END UVIS
168

```
19
CALL STUNVP
```0
```

CALD INCLOD ..... 21
22

```DTI 10
```

DO 10 ISTEP $=1$,NSTEP ..... 3

```CALL NONALUVIS
```

CALL ASSEMB

```UVIS
```

IF(KRESL.EQ.2) CALL RESOLV ..... UVIS
CALL INCVP

```UVIS 30
```

CALL CONVP

```UVIS 32
```

IF(ISTEP.EQ.1.AND.NOUTP.EQ.1) CALL RESULT

```UVIS 34
```

10 CONTINUE

```UVIS
```

900 FORMAT(1H0,5X,'STEADY STATE NOT ACHIEVED')

```UVIS
```

```30 CONTINUEUVIS 40UVIS 41
```

END ..... UVIS 42

UVIS 16 Initialise the total time to zero.
UVIS 17 Call the subroutine which reads the input data as described in Section 3.2.
UVIS 18 Call Subroutine INITAL which:
(i) Initialises to zero the viscoplastic strain vector and the stress vector.
(ii) Initialises the array, ELOAD, which will contain the pseudo loads to be applied during each time step.
(iii) Initialises the vector of applied loads.
(iv) Initialises the vector of total displacements and total reactions.
UVIS 19 Call the subroutine which evaluates the stiffness matrix for each element.
UVIS 20 Enter the DO LOOP over the number of load increments.
UVIS 21 Call Subroutine INCLOD which:
(i) Reads and writes the input data required for each load increment as described previously in Section 4.10.
(ii) Adds the current increment of load into the pseudo load vector, ELOAD, and into the total applied load vector, TLOAD.
UVIS 23 Begin the time-stepping process.
UVIS 24 Calculate the total time elapsed (note that the first time step corresponds to the elastic solution).
UVIS 25 Call the subroutine which sets the parameter KRESL controlling equation resolution facility.

UVIS 26-29 Call the subroutines which assemble the element stiffnesses and solve for the unknown displacements and reactions.
UVIS 30 Call the subroutine which evaluates quantities at the end of the time step and evaluates the loads for the next time step.
UVIS 31 Check whether or not steady state conditions have been achieved.
UVIS 32 If so, terminate the time-stepping process for the current load increment.
UVIS 33-34 Output the results at a frequency controlled by parameter, NOUTP.
UVIS 35 End of time-stepping loop.
UVIS 36-38 If steady state conditions have not been achieved when the upper time-step limit has been reached, write a message and terminate the execution.
UVIS 40 End of load increment loop.

### 4.12 Numerical examples

The first example considered is the viscoplastic deformation of a single element under constant applied loading. The element is of length 10 units and the applied load is 15 units. The material properties assumed are included in Fig. 4.5, where it is noted that the strain hardening parameter is taken to be zero. The finite element prediction is seen to be in excellent agreement with the theoretical result (4.17) for this problem.

The problem was then reanalysed for a strain-hardening material with $H^{\prime}=5000$. The finite element results are compared with the theoretical expression (4.16) in Fig. 4.6 for three different values of the time-stepping parameter, $\tau$, defined in Section 4.4. For a value of $\tau=0.01$ excellent agreement is obtained, but as the time-step length is increased ( $\tau=0.05$ and $\tau=0.1$ ) comparison with the theoretical solution deteriorates. In particular, an increase in the time-step length progressively overestimates the viscoplastic strain increment, which is a characteristic of the Euler method of time stepping. It is noted that the time-step length is not so critical in the perfectly viscoplastic case of Fig. 4.5 since the exact viscoplastic strain increment is in fact linear for this case.

For the material properties assumed, the theoretical value of the limiting time step is given from (4.36) to be $1 \cdot 0$. It is seen from Figs. 4.5 and 4.6 that the time-step lengths employed in solution are well within this critical value. However, Fig. 4.6 shows that to achieve an accurate result even smaller time-step lengths must be taken. Thus although the theoretical value of the limiting time-step length guarantees numerical stability of the solution process it may not always lead to an accurate solution.

The second example considered illustrates the redistribution of stress with time which generally takes place in viscoplastic problems. Figure 4.7 shows two members in parallel which are subjected to an end load $P$ which


Fig. 4.5 End displacement with time for a single viscoplastic element under constant applied load-No strain hardening.


Fig. 4.6 End displacement with time for a single viscoplastic element under constant applied load showing finite element results for different time-step lengths-Linear strain hardening.

Fig. 4.7 End displacement with time for an elasto-viscoplastic parallel bar model subjected to an incrementally applied end load showing the attainment of steady state conditions.
is incrementally applied. The material properties for each element are included in Fig. 4.7 with the only difference between the two members being the initial yield stress of the materials. The load is applied in four increments and steady state conditions are allowed to develop for each increment before application of further load. The end displacement with time is shown in Fig. 4.7. Steady state conditions are achieved for the first three load increments but not for the fourth since both elements, which behave perfectly plastically, have become yielded at this stage.

### 4.13 Problems

4.1 Develop the relationship between the applied stress, $\sigma$, and the total strain, $\epsilon$, for the rheological model shown in Fig. 4.8. Plot the strain response with time when the model is subjected to a constant applied stress, $\sigma_{A}$.
4.2 Repeat Problem 4.1 for the rheological model shown in Fig. 4.9. In this case the friction slider becomes active for $\sigma \geqslant Y$ where, for a linear strain hardening material, $Y=\sigma_{Y}+H^{\prime} \epsilon_{v p}$.


Fig. 4.8 Problem 4.1.


Fig. 4.9 Problem 4.2.
-4.3 Use the unidimensional computer code developed in this chapter to determine the stress relaxation with time when the Maxwell model shown in Fig. 4.10 is subjected to a constant displacement condition. The critical time-step length for this model can be shown to be
$\Delta t=2 / \gamma E$. Solve the problem for several time-step lengths up to the critical value, thereby showing that numerical divergence occurs as soon as the limiting value is reached. For computation let $E=100$, $\gamma=0.01$ and $\phi_{p}=0.1$.


Fig. 4.10 Problem 4.3.
4.4 Modify the computer code developed in this chapter to allow solution of the material model of Problem 4.1.
4.5 In Section 4.9, Subroutine CONVP, monitoring convergence to steady state conditions, was based on a global criterion. Modify this subroutine so that convergence is based upon the condition

$$
\begin{equation*}
\left.\frac{\left|\Delta \epsilon_{v p} n\right|}{\left|\Delta \epsilon_{v p}\right|} \right\rvert\,>100 \leqslant \text { TOLER, } \tag{4.42}
\end{equation*}
$$

for each individual element.
4.6 Develop the elastic stiffness matrix, $K^{(e)}$, for a two-node finite element in the form of a sphere and which is to be subjected to spherically symmetrical radial loading only. Assume a linear variation between nodes and note the following relationships

$$
\begin{align*}
& \epsilon_{r}=\frac{\partial \hat{\partial} u}{\partial r r}=\frac{1}{E}\left[\sigma_{r}-\nu\left(\sigma_{\theta}+\sigma_{\phi}\right)\right] ; \quad \sigma_{\theta}=\sigma_{\phi} ; \\
& \epsilon_{\theta}=\epsilon_{\phi}=\frac{u}{r}=\frac{1}{E}\left[(1-\nu) \sigma_{\theta}-\nu \sigma_{r}\right], \tag{4.43}
\end{align*}
$$

in which $u$ is the radial displacement and $\epsilon_{r}, \epsilon_{\theta}, \epsilon_{\phi}$ and $\sigma_{r}, \sigma_{\theta}, \sigma_{\phi}$ are respectively the strain and stress components. Also express the stress components in terms of the nodal displacements.
4.7 Use the stiffness matrix evaluated in Problem 4.6 to modify the onedimensional viscoplastic program UNVIS to allow solution of spherically symmetrical problems. Assume a Tresca yield criterion which implies commencement of yielding when $\sigma_{r}-\sigma_{\theta}=\sigma_{Y}$.
4.8 Employ the program developed in Problem 4.7 to determine the variation of the elasto-viscoplastic stress distribution with time in a sphere which is instantaneously loaded by an internal pressure of $500 \mathrm{~N} / \mathrm{mm}^{2}$. The internal and external radii of the sphere are 10 cm and 25 cm
respectively, the elastic modulus $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio $\nu=0.3$, the uniaxial yield stress $\sigma_{Y}=300 \mathrm{~N} / \mathrm{mm}^{2}$, hardening paramater, $H^{\prime}=0$ and take the fluidity parameter $\gamma=0.001$. Compare your steady state solution with the theoretical elasto-plastic results of Ref. 2.

### 4.14 References

1. Cormeau, I., Numerical stability in quasistatic elasto-visco-plasticity, Int. J. Num. Meth. Engng., 9, 109-127 (1975).
2. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950.

# Chapter 5 <br> Elasto-plastic Timoshenko beam analysis 

Written in collaboration with H. H. Abdel Rahman

### 5.1 Introduction

In this chapter we introduce some elasto-plastic beam formulations which are useful in their own right but which also provide insight into the elastoplastic plate formulations presented later.

There are two main beam theories on which we could base our studies:
(i) Euler-Bernoulli beam theory. This theory, which is usually favoured by engineers because of its simplicity, takes no account of transverse shear deformation. The simplest Euler-Bernoulli beam element based on the displacement method is the well-known Hermitian element ${ }^{(1)}$ with cubic displacements. Bending moments may vary linearly over this element.
(ii) Timoshenko beam theory. This theory allows for transverse shear deformation effects. The simplest Timoshenko beam element is the Hughes element ${ }^{(2)}$ with linear displacements and normal rotations. Bending moments are constant over this element.

Although the Euler-Bernoulli theory is frequently adopted we choose the Timoshenko beam theory as a basis for our study of the elasto-plastic analysis of beams since we may make use of a finite element which involves constant bending moments and is more in keeping with the presentations given in the previous chapters. Furthermore, Timoshenko beam theory can rightly be considered as the one-dimensional precursor of Mindlin plate theory which is used in Chapter 9.

Firstly in this chapter the basic assumptions of Timoshenko beam theory are outlined. The Hughes element formulation is then presented for the elastic case.

There are two approaches to the elasto-plastic analysis of Timoshenko beams:
(i) Non-layered approach. In this method, when the bending moment reaches the yield moment, the whole cross-section of the beam is assumed to become plastic instantaneously. This is however a convenient fiction as in reality there is always a gradual plastification of the beam with the outer
fibres becoming plastic initially. The zone of plasticification then spreads inwards until the whole section ultimately becomes plastic.
(ii) Layered approach. In this method we attempt to capture the spread of plasticity over the depth of the beam. The beam is thus divided into a number of layers each of which may become plastic separately. As the number of layers is increased, this model provides a more realistic representation of the gradual spread of plasticity over the beam cross-section.

Both non-layered and layered approaches are described in detail and program TIMOSH for the non-layered beams and program TIMLAY for the layered beams are presented and their use is illustrated with the aid of some examples.

### 5.2 The basic assumptions of Timoshenko beam theory

### 5.2.1 Introductory comments

There are several basic assumptions adopted-in the derivation of the governing equations of Timoshenko beam theory. Here we reiterate these assumptions for elastic, small deflection analysis and then in later sections we present some extensions of the theory to allow for elasto-plastic analysis.

### 5.2.2 Assumed displacement field

In a typical Timoshenko beam, such as the one shown in Fig. 5.1, it is usual to assume that normals to the neutral axis before deformation remain straight but not necessarily normal to the neutral axis after deformation. This implies that the axial displacement $\bar{u}$ at any point ( $x, z$ ) may be expressed directly in terms of $\theta(x)$ the rotation of the normal so that

$$
\begin{equation*}
\bar{u}(x, z)=-z \theta(x) \tag{5.1}
\end{equation*}
$$

Note that the normal rotation $\theta(x)$ is equal to the slope of the neutral axis $d w / d x$ minus a rotation $\beta$ which is due to the transverse shear deformation.


Fig. 5.1 Timoshenko beam.

Thus we have

$$
\begin{equation*}
\theta(x)=\frac{d \bar{w}}{d x}-\beta \tag{5.2}
\end{equation*}
$$

Notice also that the lateral displacement $\bar{w}$ at any point $(x, z)$ is given by the lateral displacement at the neutral axis so that

$$
\begin{equation*}
\bar{w}(x, z)=w(x) \tag{5.3}
\end{equation*}
$$

### 5.2.3 Stress-strain relationships

In Timoshenko beam theory, the elastic stress-strain relationships used for plane stress analysis are usually adopted in a slightly modified form. For convenience we assume that the beam is loaded in the $x z$ plane and thus for an isotropic elastic material the relevant stress-strain relationships are

$$
\left.\left[\begin{array}{c}
\sigma_{x}  \tag{5.4}\\
\sigma_{z} \\
\tau_{x z} \\
\hdashline
\end{array}\right\} \begin{array}{c:ccc}
1 & \nu & 0 \\
\nu & 1 \\
0 & 0 & \frac{(1-\nu)}{2}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{x} \\
\epsilon_{z} \\
\gamma_{x z} \\
\end{array}\right]
$$

where $E$ is the Young's modulus and $\nu$ is the Poisson's ratio.
If $\sigma_{z}$ is assumed to be equal to zero then

$$
\begin{equation*}
\epsilon_{z}=-\nu \epsilon_{x} \tag{5.5}
\end{equation*}
$$

and by eliminating $\epsilon_{z}$ from (5.4) and (5.5), it is possible to write the following stress-strain retationship

$$
\begin{equation*}
\sigma_{x}=E \epsilon_{x} \quad \text { and } \quad \tau_{x z}=G \gamma_{x z} \tag{5.6}
\end{equation*}
$$

where for an isotropic material $G=E /[2(1+v)]$ is the shear modulus.

### 5.2.4 Strain-displacement relationships

Usually small deflection theory is adopted and the axial strain $\epsilon_{x}$ is given as

$$
\begin{equation*}
\epsilon_{x}=\frac{\dot{c} \bar{u}}{\dot{c} \dot{x}} . \tag{5.7}
\end{equation*}
$$

If approximation (5.1) is adopted then this strain can be written as

$$
\begin{equation*}
\epsilon_{x}=-=\frac{d \theta}{d x} . \tag{5.8}
\end{equation*}
$$

Similarly the shear strain $\gamma_{x z}$ is given as

$$
\begin{equation*}
\gamma_{x z}=\frac{c \bar{u}}{\dot{c} z}+\frac{\dot{c} \bar{w}}{\bar{c} x} \tag{5.9}
\end{equation*}
$$

and if approximation (5.2) is adopted we obtain

$$
\begin{equation*}
\gamma_{x z}=-\theta+\frac{d w}{d x}=\beta \tag{5.10}
\end{equation*}
$$

### 5.2.5 Virtual work expression

Consider a Timoshenko beam of depth $t$ in which the breadth $b$ varies with depth symmetrically about the neutral axis. The beam is subjected to a distributed loading of intensity $q$. If the beam undergoes a set of virtual lateral displacements $\delta w$, virtual normal rotations $\delta \theta$ and associated virtual curvatures $-z[d(\delta \theta) / d x]$ and virtual shear strains $\delta \beta$ then the virtuil work equation can be written as

$$
\begin{equation*}
\int_{0}^{l} \int_{-t / 2}^{t / 2} \int_{b(-t / 2)}^{b(t / 2)}\left\{-z \frac{d(\delta \theta)}{d x} \sigma_{x}+\delta \beta \tau_{x z}\right\} d y d z d x-\int_{0}^{l} \delta w q d x=0 \tag{5.11}
\end{equation*}
$$

or

$$
\int_{0}^{l}\left(-\frac{d(\delta \theta)}{d x} M+\delta \beta Q\right) d x-\int_{0}^{l} \delta w q d x=0
$$

where the bending moment

$$
\begin{equation*}
M=\int_{-t / 2}^{t / 2} \int_{b(-t / 2)}^{b(t / 2)} z \sigma_{x} d y d z \tag{5.12}
\end{equation*}
$$

and the shear force

$$
\begin{equation*}
Q=\int_{-t / 2}^{t / 2} \int_{b(-t / 2)}^{b(t / 2)} \tau x z d y d z . \tag{5.13}
\end{equation*}
$$

Using (5.12) and (5.13), if we substitute for $\sigma_{x}$ and $\tau_{x z}$ in (5.6) respectively we obtain

$$
\begin{equation*}
M=\left(\int_{-t / 2}^{t / 2} \int_{b(-t / 2)}^{b(t / 2)} z^{2} E d y d z\right)\left(-\frac{d \theta}{d x}\right)=E I\left(-\frac{d \theta}{d x}\right) \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\left(\int_{-t / 2}^{t / 2} \int_{b(-t / 2)}^{b(t / 2)} G d y d z\right)(\beta)=G A \beta \tag{5.15}
\end{equation*}
$$

where $E I$ is the flexural rigidity and $G A$, the shear rigidity, is replaced by $G \hat{A}$ where the area $A$ is replaced by $A / \alpha$. The parameter $\alpha$ is a correction factor to allow for cross-sectional warping. For a rectangular section $\alpha$ is usually taken as 1.5.*

* Many different definitions of $\alpha$ have been presented in the various papers on Timoshenko beams. Cowper ${ }^{(3)}$ summarises some definitions for beams of various cross-sections. For example, he shows that $\alpha$ may be taken as $(12+11 \nu) /(10+10 \nu)$ for rectangular cross-sections and $(7+6 v) /(6+6 v)$ for circular cross-sections. Here we take $\alpha=1.5$ unless otherwise stated.

If we substitute for $M$ and $Q$ from (5.14) and (5.15) we can rewrite the virtual work equation (5.11) as

$$
\begin{equation*}
\int_{0}^{l}\left(\frac{d(\delta \theta)}{d x} E I \frac{d \theta}{d x}+\delta \beta G \hat{A} \beta-\delta w q\right) d x=0 \tag{5.16}
\end{equation*}
$$

### 5.2.6 A comparison of various beam approximations

In order to compare the various beam approximations consider a simply supported beam of rectangular cross-section, flexural rigidity EI, Poisson's ratio $\nu$, depth $t$ and length $L$ which is subjected to a uniformly distributed loading q . The lateral deflection in the elastic range is given as

$$
\begin{equation*}
w=\frac{q L^{4}}{24 E I}\left\{\left[\left(\frac{x}{L}\right)^{4}-\frac{3}{2}\left(\frac{x}{L}\right)^{2}+\frac{5}{16}\right]+\left(\frac{t}{L}\right)^{2}\left[\frac{12}{5}+\frac{3 v}{2}\right]\left[\frac{1}{4}-\left(\frac{x}{L}\right)^{2}\right]\right\} \tag{i}
\end{equation*}
$$

when plane stress (PS) assumptions are adopted,
(ii) $\quad w=\frac{q L^{4}}{24 E I}\left\{\left[\left(\frac{x}{L}\right)^{4}-\frac{3}{2}\left(\frac{x}{L}\right)^{2}+\frac{5}{16}\right]+\left(\frac{t}{L}\right)^{2}[2 \alpha(1+\nu)]\left[\frac{1}{4}-\left(\frac{x}{L}\right)^{2}\right]\right\}$
when Timoshenko beam (TB) assumptions are adopted and
(iii) $w=\frac{q L^{4}}{24 E I}\left\{\left[\left(\frac{x}{L}\right)^{4}-\frac{3}{2}\left(\frac{x}{L}\right)^{2}+\frac{5}{16}\right]\right\}$
when Euler-Bernoulli (EB) assumptions are adopted.
Thus, for long slender beams in which $(t / L)$ is small, EB theory is adequate If we take Cowper's value ${ }^{(3)}$ of $a=(12+11 \nu) /(10+10 v)$ then the ratio of the second-order additional lateral deflections due to shear deformation obtained under TB and PS assumptions is $(24+22 v) /(24+15 v)$ which varies from 1.00 to 1.11 as $\nu$ varies from 0.0 to 0.5 . Thus TB theory is an accurate theory for beams of all dimensions.

### 5.3 Finite element idealisation for linear elastic Timoshenko beams

### 5.3.1 Introduction

The theoretical and programming aspects of the finite element analysis of linear elastic Timoshenko beams have been dealt with in detail in previous books by the authors ${ }^{(1,5)}$. Here we derive the stiffness matrix and consistent load vector for a linear element and set the scene for the analysis of elasto-plastic Timoshenko beams which will be discussed later.

### 5.3.2 Displacement and strain representation

In the Hughes element representation, the lateral displacement $w$ is represented by the relationship

$$
\begin{equation*}
w^{(e)}=N_{1}^{(e)} w_{1}^{(e)}+N_{2}^{(e)} w_{2}^{(e)} \tag{5.18}
\end{equation*}
$$

where $w_{1}{ }^{(e)}$ and $w_{2}{ }^{(e)}$ are the nodal lateral displacements at local nodes 1 and 2 of element $e$ and the shape functions (shown in Fig. 5.2) are

$$
N_{1}^{(e)}=\left(x_{2}^{(e)}-x^{(e)}\right) / l^{(e)}
$$

and

$$
N_{2}^{(e)}=\left(x^{(e)}-x_{1}^{(e)}\right) / l^{(e)}
$$

in which $x_{1}{ }^{(e)}$ and $x_{2}{ }^{(e)}$ are the $x$-coordinates of local nodes 1 and $2, x^{(e)}$ is the $x$-coordinate of a point within the element and $l^{(e)}$ is the length of the element.


Fig. 5.2 Beam element shape functions.

Similarly the normal rotation $\theta^{(e)}$ within element $e$ is represented as

$$
\begin{equation*}
\theta^{(e)}=N_{1}{ }^{(e)} \theta_{1}{ }^{(e)}+N_{2}{ }^{(e)} \theta_{2}{ }^{(e)} \tag{5.19}
\end{equation*}
$$

where $\theta_{1}{ }^{(e)}$ and $\theta_{2}{ }^{(e)}$ are the normal rotations at local nodes 1 and 2 of element $e$.

The curvature-displacement relationship can be expressed as

$$
\begin{equation*}
-\left(\frac{d \theta}{d x}\right)^{(e)}=-\left(\frac{d N_{1}}{d x}\right)^{(e)} \theta_{1}^{(e)}-\left(\frac{d N_{2}}{d x}\right)^{(e)} \theta_{2}^{(e)} \tag{5.20}
\end{equation*}
$$

or

$$
\epsilon_{f}^{(e)}=\left[0, \frac{1}{l^{(e)}}, 0,-\frac{1}{l^{(e)}}\right]\left[\begin{array}{l}
w_{1}^{(e)} \\
\theta_{1}^{(e)} \\
\boldsymbol{w}_{2}^{(e)} \\
\theta_{2}^{(e)}
\end{array}\right]=B_{f}^{(e)} \varphi^{(e)}
$$

where $\boldsymbol{B}_{f}{ }^{(e)}$ is the curvature-displacement matrix.

The shear strain-displacement relationship is given as

$$
\begin{equation*}
\left(\frac{d w}{d x}-\theta\right)^{(e)}=\left(\frac{d N_{1}}{d x}\right)^{(e)} w_{1}^{(e)}-N_{1}{ }^{(e)} \theta_{1}{ }^{(e)}+\left(\frac{d N_{2}}{d x}\right)^{(e)} w_{2}^{(e)}-N_{2}^{(e)} \theta_{2}^{(e)} \tag{5.21}
\end{equation*}
$$

or

$$
\epsilon_{s}^{(e)}=\left[-\frac{1}{l^{(e)}},-\frac{\left(x_{2}^{(e)}-x^{(e)}\right)}{l^{(e)}}, \frac{1}{l^{(e)}},-\frac{\left(x^{(e)}-x_{1}^{(e)}\right)}{l^{(e)}}\right]\left[\begin{array}{c}
w_{1}^{(e)} \\
\theta_{1}(e) \\
w_{2}^{(e)} \\
\theta_{2}(e)
\end{array}\right]=\boldsymbol{B}_{8}^{(e)} \varphi^{(e)}
$$

where $\boldsymbol{B}_{s}{ }^{(e)}$ is the shear strain-displacement matrix.

### 5.3.3 Stiffness matrix evaluation

Given the element strain-displacement relationships outlined in Section 5.3.2, Hughes has shown that using a virtual work approach the governing equations can be expressed as

$$
\begin{equation*}
\left[\boldsymbol{K}_{\boldsymbol{f}}+\boldsymbol{K}_{s}\right] \boldsymbol{\varphi}-\boldsymbol{f}=0 \tag{5.22}
\end{equation*}
$$

where the submatrices of $K_{f}$ and $K_{s}$ and subvectors of $f$ for element $e$ can be written as

$$
\begin{align*}
\boldsymbol{K}_{f}{ }^{(e)} & =\int_{x_{1}{ }^{(e)}}^{x_{2}(e)}\left[\boldsymbol{B}_{f}{ }^{(e)}\right]^{T}(E I)^{(e)} \boldsymbol{B}_{f}{ }^{(e)} d x \\
\boldsymbol{K}_{s}{ }^{(e)} & =\int_{x_{1}{ }^{(e)}}^{x^{(e)}}\left[\boldsymbol{B}_{s}{ }^{(e)}\right]^{T}(G \hat{A})^{(e)} \boldsymbol{B}_{s}{ }^{(e)} d x \\
\boldsymbol{f}^{(e)} & =\int_{x_{1}{ }^{(e)}}^{x_{2}{ }^{(e)}}\left[N_{1}(e), 0, N_{2}{ }^{(e)}, 0\right]^{T} q d x . \tag{5.23}
\end{align*}
$$

The flexural element stiffness matrix can be evaluated using a 1 -point Gauss-Legendre rule and takes the form

$$
K_{f}{ }^{(e)}=\left(\frac{E I}{l}\right)^{(e)}\left[\begin{array}{rrrr}
0 & 0 & 0 & 0  \tag{5.24}\\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

If $\boldsymbol{K}_{\boldsymbol{s}}{ }^{(e)}$ is evaluated exactly using a 2-point Gauss-Legendre rule we obtain

$$
K_{s}^{(e)}=\left(\frac{G \hat{A}}{l}\right)^{(e)}\left[\begin{array}{rrrr}
1 & \frac{l}{2} & -1 & \frac{l}{2}  \tag{5.25}\\
\frac{l}{2} & \frac{l^{2}}{3} & -\frac{l}{2} & \frac{l^{2}}{6} \\
-1 & -\frac{l}{2} & 1 & -\frac{l}{2} \\
\frac{l}{2} & \frac{l^{2}}{6} & -\frac{l}{2} & \frac{l^{2}}{3}
\end{array}\right]
$$

Unfortunately it has been shown that with this formulation, overstiff solutions are obtained. This phenomenon, known as locking, may be 'cured' by integrating $K_{8}{ }^{(e)}$ with a 1 -point Gauss-Legendre rule. If such a selectively integrated element is adopted we find that

$$
K_{8}^{(e)}=\left(\frac{G \hat{A}}{l}\right)^{(e)}\left[\begin{array}{cccc}
1 & \frac{l}{2} & -1 & \frac{l}{2}  \tag{5.26}\\
\frac{l}{2} & \frac{l^{2}}{4} & -\frac{l}{2} & \frac{l^{2}}{4} \\
-1 & -\frac{l}{2} & 1 & -\frac{l}{2} \\
\frac{l}{2} & \frac{l^{2}}{4} & -\frac{l}{2} & \frac{l^{2}}{4}
\end{array}\right]
$$

and the results obtained are excellent.
The consistent nodal force vector is given as

$$
\begin{equation*}
f^{(e)}=\left[\frac{(q l)^{(e)}}{2}, 0, \frac{(q l)^{(e)}}{2}, 0\right] \tag{5.27}
\end{equation*}
$$

which, unlike the Euler-Bernōulli cubic Hermitian element, only has lateral nodal point forces.
For the nonlayered elasto-plastic Timoshenko beam finite element analysis, when the beam bending moment reaches the yield moment $M_{0}$, the whole element becomes plastic and acts as a plastic hinge. In such a situation the flexural rigidity $E I$ is replaced by an elasto-plastic flexural rigidity ( $E I)_{e p}$ whereas the shear rigidity $G \hat{A}$ is assumed to be unchanged.

### 5.3.4 Element stress resultants

We can obtain expressions which enable us to calculate the bending moments and shear forces within each element using (5.14) and (5.15). The
bending moment, which is constant in each element $e$, is given as

$$
\begin{align*}
M^{(e)} & =(E I)^{(e)} \boldsymbol{B}_{f}{ }^{(e)} \varphi^{(e)}=(E I)^{(e)}\left[0, \frac{1}{l^{(e)}}, 0,-\frac{1}{l^{(e)}}\right]\left[\begin{array}{c}
w_{1}{ }^{(e)} \\
\theta_{1}(e) \\
w_{2}{ }^{(e)} \\
\theta_{2}(e)
\end{array}\right] \\
& =\left(\frac{E I}{l}\right)^{(e)}\left(\theta_{1}{ }^{(e)}-\theta_{2}^{(e)}\right) . \tag{5.28}
\end{align*}
$$

The shear force varies linearly over each element but we evaluate it at

$$
x=\frac{x_{1}{ }^{(e)}+x_{2}^{(e)}}{2}
$$

and assume it to be constant over the element. This is consistent with the practice of using selective integration in the evaluation of $K^{(e)}$. The shear force is therefore given as

$$
\begin{align*}
Q^{(e)} & =(G \hat{A})^{(e)} \boldsymbol{B}_{5}{ }^{(e)} \varphi^{(e)}=(G \hat{A})^{(e)}\left[-\frac{1}{l^{(e)}},-\frac{1}{2}, \frac{1}{l^{(e)}},-\frac{1}{2}\right]\left[\begin{array}{c}
w_{1}^{(e)} \\
\theta_{1}(e) \\
w_{2}(e) \\
\theta_{2}^{(e)}
\end{array}\right] \\
& =(G \hat{A})^{(e)}\left\{\left(\frac{W_{2}^{(e)}-w_{1}^{(e)}}{l^{(e)}}\right)-\left(\frac{\theta_{1}^{(e)}+\theta_{2}(e)}{2}\right)\right\} . \tag{5.29}
\end{align*}
$$

### 5.4 Elasto-plastic nonlayered Timoshenko beams

### 5.4.1 The yield moment

Consider a Timoshenko beam subjected to a bending moment. Timoshenko's assumptions imply that the axial stress and strain vary linearly across the depth of the section. As the bending moment is increased the yield stress is attained at the top and bottom fibres and with a further increase the yield will spread from these outer fibres inwards until the two zones of yield meet. The cross-section is then said to be fully plastic. It should be noted that the interaction of $\sigma_{x}$ and $\tau_{x z}$ has been ignored during yield. This is inexact, but experience shows that the effect is not of prime importance especially when thin beams are considered.

The value of this ultimate moment in the fully plastic condition can be calculated in terms of the yield stress $\sigma_{0}$.* Thus

$$
\begin{equation*}
M_{0}=\int_{b(-t / 2)}^{b(t / 2)} \int_{-t_{i} 2}^{t / 2} z \sigma_{0} d z d y \tag{5.30}
\end{equation*}
$$

[^0]and for a rectangular beam of breadth $b, M_{0}=\sigma_{0}\left(b t^{2} / 4\right)$. However, it should be noted that the assumption used in the finite element solution implies that the whole cross-section becomes plastic as soon as the bending moment reaches its yield value $M_{0}$. This means that, for the beam case shown in Fig. 5.3, the whole cross-section is assumed to be plastic when the bending moment of situation (c) becomes equal to the bending moment of situation (d)-in which case the extreme fibre stress in situation (c) exceeds the actual yield stress of the material.


Fig. 5.3 Yielding of non-layered beam.

### 5.4.2 Elasto-plastic bending

As mentioned earlier, elasto-plastic behaviour is characterised by an initial elastic material response with an additional plastic deformation when the bending moment $|M|$ exceeds the yield moment $M_{0}$. The plastic deformation is irreversible on unloading and its onset is governed by a very simple yield criterion. Post-yield deformation usually occurs with a considerably reduced material stiffness.

The moment-curvature relationship for a Timoshenko beam of elastoplastic material is shown in Fig. 5.4. The beam initially deforms elastically with a flexural rigidity of $E I$ until the ultimate bending moment is reached at which stage the whole beam, cross-section becomes plastic. On increasing the load further, the material is assumed to exhibit linear strain-hardening characterised by the tangential flexural rigidity $(E I)_{T}$.

At some stage after initial yielding consider a further load application resulting in an incremental increase of bending moment accompanied by a change of curvature $d_{\epsilon_{f}}$. Assuming that the curvature can be separated into elastic and plastic components, so that

$$
\begin{equation*}
d \epsilon_{f}=\left(d \epsilon_{f}\right)_{e}+\left(d \epsilon_{f}\right)_{p} \tag{5.31}
\end{equation*}
$$

we define as a strain hardening parameter


Fig. 5.4 Moment curvature relationship for a Timoshenko beam.

$$
H^{\prime}=\frac{d M}{\left(d \epsilon_{f}\right)_{p}} .
$$

This can be interpreted as the slope of the strain-hardening portion of the moment-curvature curve after the removal of the elastic curvature component. Thus

$$
\begin{equation*}
H^{\prime}=\frac{d M}{d \epsilon_{f}-\left(d \epsilon_{f}\right)_{e}}=\frac{(E I)_{T}}{1-\left[(E I)_{T} / E I\right]} . \tag{5.32}
\end{equation*}
$$

It is therefore possible to rewrite (5.31) as

$$
\begin{equation*}
d \epsilon_{f}=\frac{d M}{E I} \cdot \frac{d M}{H^{\prime}}=\frac{d M\left(H^{\prime}+E I\right)}{E I H^{\prime}} \tag{5.33}
\end{equation*}
$$

and then the incremental moment-curvature relationship can be written in the form

$$
\begin{equation*}
d M=\frac{E I H^{\prime}}{\left(E I \div H^{\prime}\right)} d \epsilon_{f} . \tag{5.34}
\end{equation*}
$$

Thus during yielding the incremental stress-strain resultant relationship is

$$
\begin{align*}
d M & =E I\left(1-\frac{E I}{E I+H^{\prime}}\right) d \epsilon_{f} \\
d Q & =G \hat{A} d \epsilon_{s} \tag{5.35}
\end{align*}
$$

The shear force/shear strain relationship is always elastic whereas the moment-curvature relationship is elasto-plastic. After yielding the flexural rigidity $E I$ is replaced by

$$
E I\left(1-\frac{E I}{E I+H^{\prime}}\right)
$$

If the hardening parameter $H^{\prime}$ is equal to zero then the material behaviour is elasto-perfectly plastic and as mentioned in Section 3.5 for elasto-plastic axial bar elements this may lead to tangential stiffness matrices which are singular. This difficulty can also be avoided by use of the initial stiffness method in which the elastic element stiffnesses are employed at every stage of the computation thereby guaranteeing a positive definite assembled stiffness matrix.

### 5.4.3 Solution of nonlinear equations

Let us now generate the nonlinear equilibrium equations using the virtual expression (5.11). In order to do this we require the global rather than the element expressions for the lateral displacements, rotation, curvature and shear strain. At any point in the finite element mesh the lateral displacement and rotation can be obtained from the expression

$$
\left[\begin{array}{l}
w  \tag{5.36}\\
\theta
\end{array}\right]=N \varphi
$$

where the shape function matrix is

$$
N=\left[\begin{array}{lllll}
N_{1}, & 0, & N_{2}, & 0, & \ldots,  \tag{5.37}\\
0, & N_{n}, & 0 \\
0, & N_{1}, & 0, & N_{2}, & \ldots, \\
0, & N_{n}
\end{array}\right]
$$

and the vector of nodal displacements is

$$
\begin{equation*}
\varphi=\left[w_{1}, \theta_{1}, w_{2}, \theta_{2}, \ldots, w_{n}, \theta_{n}\right]^{T} \tag{5.38}
\end{equation*}
$$

where $w_{i}, \theta_{i}$ and $N_{i}$ are the lateral displacement, rotation and global shape functions associated with node $i$.

The curvature and shear strafn at any point within the entire finite element mesh is given as

$$
\begin{equation*}
-\frac{d \theta}{d x}=\boldsymbol{B}_{f} \varphi \quad \text { and } \quad \frac{d w}{d x}-\theta=\boldsymbol{B}_{\delta} \varphi \tag{5.39}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{B}_{f}=\left[0,-\frac{d N_{1}}{d x}, 0,-\frac{d N_{2}}{d x}, \ldots, 0,-\frac{d N_{n}}{d x}\right] \tag{5.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{B}_{s}=\left[\frac{d N_{1}}{d x},-N_{1}, \frac{d N_{2}}{d x},-N_{2}, \ldots, \frac{d N_{n}}{d x},-N_{n}\right] \tag{5.41}
\end{equation*}
$$

Virtual curvatures and shear strains are given as

$$
\begin{equation*}
-\frac{d(\delta \theta)}{d x}=\boldsymbol{B}_{f} \delta \varphi \quad \text { and } \quad \frac{d(\delta w)}{d x}-\delta \theta=\boldsymbol{B}_{s} \delta \varphi \tag{5.42}
\end{equation*}
$$

respectively, where the vector of virtual nodal displacements is written as

$$
\begin{equation*}
\delta \varphi=\left[\delta w_{1}, \delta \theta_{1}, \delta w_{2}, \delta \theta_{2}, \ldots, \delta: v_{n}, \delta \theta_{n}\right]^{T} . \tag{5.43}
\end{equation*}
$$

Thus the virtual work expression (5.11) can now be written as

$$
\begin{align*}
& \int_{0}^{l}[\delta \varphi]^{T}\left[\boldsymbol{B}_{f}\right]^{T} M d x+\int_{0}^{l}[\delta \varphi]^{T}\left[\boldsymbol{B}_{8}\right]^{T} Q d x \\
&-\int_{0}^{l}[\delta \varphi]^{T}[\overline{\mathbf{N}}]^{T} q d x=0  \tag{5.44}\\
& \overline{\mathbf{N}}=\left[N_{1}, 0, N_{2}, 0, \ldots, N_{n}, 0\right] . \tag{5.45}
\end{align*}
$$

where
Since (5.44) must be true for any set of virtual displacements $\delta \varphi$ then we have

$$
\begin{equation*}
\left\{\int_{0}^{l}\left[\boldsymbol{B}_{f}\right]^{T} M d x+\int_{0}^{l}\left[\boldsymbol{B}_{s}\right]^{T} Q d x\right\}-\int_{0}^{l}[\overline{\mathbf{N}}]^{T} q d x=0 \tag{5.46}
\end{equation*}
$$

or

$$
p-f=0 .
$$

In fact this equation is identical to (5.22) when there is no plasticity.
Unfortunately in elasto-plastic problems $M$ is a nonlinear function and in general we can only predict the vector $\boldsymbol{p}$ approximately. Thus (5.46) is nonlinear and since $\boldsymbol{p}$ is only approximately known than $\boldsymbol{p}-\boldsymbol{f}$ will equal a residual value $\psi(\varphi)$ which we attempt to reduce to zero in our solution procedure.

We evaluate contributions to $\boldsymbol{p}$ element by element and assemble in the usual manner. The contribution from element $e$ has the form

$$
\begin{align*}
\boldsymbol{p}^{(e)}= & \int_{x_{1}{ }^{(e)}}^{x_{2}{ }^{(e)}}\left[\begin{array}{c}
0 \\
\frac{1}{l^{(e)}} \\
0 \\
-\frac{1}{l^{(e)}}
\end{array}\right] M^{(e)} d x+\int_{x_{1}{ }^{(e)}}^{x_{2}{ }^{(e)}}\left[\begin{array}{c}
-\frac{1}{l^{(e)}} \\
\frac{x^{(e)}-x_{2}^{(e)}}{l^{(e)}} \\
\frac{1}{l^{(e)}} \\
\frac{x_{1}^{(e)}-x^{(e)}}{l^{(e)}}
\end{array}\right] Q^{(e)} d x \\
& =\left[-Q^{(e)}, M^{(e)}-\frac{(Q)^{(e)}}{2}, Q^{(e)},-M^{(e)}-\frac{(Q)^{(e)}}{2}\right]^{T} \tag{5.47}
\end{align*}
$$

*The second integral evaluation is equivalent to using a 1-point Gauss rule.


Fig. 5.5 Overall structure of program TIMOSH.

Note that the appropriate value of bending moment $M^{(e)}$ is inserted in (5.47).

Table 5.1 shows the complete sequence of nonlinear equation solving which is very similar to the one adopted for the axially-loaded bars in Chapter 3.

1. Begin load increment.

Set $\mathbf{f}=\mathbf{f}+\Delta \mathbf{f}$, iteration counter $i=0$ and $\psi^{i}=\Delta \mathbf{f}+\boldsymbol{\psi}$ (that is, include equilibrium correction from previous increment).
2. Evaluate the new tangential stiffiness matrix $K_{T}$ if necessary.
3. Solve $\psi^{i}=\mathbf{K}_{T} \Delta \varphi^{i}$
4. Evaluate $\varphi=\varphi+\Delta \varphi^{i}$.
5. For each element evaluate $M^{(e)}$ and $Q^{(e)}$. Check $M^{(e)}$ and adjust its valuc accordingly to account for any plastic behaviour. Evaluate the element residual force vector $\left[\psi^{(e)}\right]^{i+1}=\mathbf{p}^{(e)}-\mathbf{f}^{(e)}$ and assemble into the global residual force vector $\psi^{i+1}$.
6. Check $\Delta \varphi^{i}$ for convergence.
7. If solution has converged set $\boldsymbol{\psi}=\boldsymbol{\psi}^{i+1}$ and go to step 1, otherwise set $i=i+1$ and go to step 2.

Table 5.1 Solution procedure for elasto-plastic nonlayered Timoshenko beam analysis.

### 5.4.4 Overall program structure of TIMOSH

A modular approach is adopted for program TIMOSH. In fact the overall structure is identical to the structure in the programs of Chapter 3. Figure 5.5 shows the overall structure of TIMOSH. Routines DATA, INITAL, INCREM, NONAL, ASSEMB, GREDUC, BAKSUB, CONUND, RESOLV and RESULT have already been described in Chapter 3. The only new routines are STIFFB, REFORB and, of course, the MASTER routine BEAM.

### 5.4.5 New routines for nonlayered elasto-plastic Timoshenko beam analysis

 Master BEAM The master calling routine BEAM simply organises the calling of the main routines as described in Fig. 5.5.

```
 TDISP(26,2),TREAC(26,2),\operatorname{ASTIF}(52,52),\operatorname{ASLOD}(52), EPBM
 REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) EPBM
 13
 CALL DATA
 EPBM
 EPBM
 CALL INITAL EPBM
 MO 30 IINCS=1,NINCS EPBM 17
 CALL INCLOD EPBM
 DO 10 IITER=1,NITER EPBM 19
 CALL NONAL EPBM
 IF(KRESL.EQ.1) CALL STIFFB EPBM 21
 CALL ASSEMB
 IF(KRESL.EQ.1) CALL GREDUC EPBM
 IF(KRESL.EQ.2) 'CALL RESOLV EPBM }2
 CALL BAKSUB EPBM 25
 CALL. REFORB EPBM
 CALL CONUND EPBM
 IF(NCHEK.EQ.0) GO TO 20 EPBM
 EPBM }2
 IF(IITER.EQ.1.AND.NOUTP.EQ.1) CALL RESULT EPBM 29
 IF(NOUTP.EQ.2) CALL RESULT EPBM }3
10 CONTINUE EPBM 31
 WRITE(6,900) EPBM
900 FORMAT(1HO,5X, 'SOLUTION NOT CONVERGED') EPBM 33
 STOP EPBM
 34
20 CALL RESULT EPBM 35
30 CONTINUE EPBM 36
 STOP EPBM }3
 END EPBM 38
```

Subroutine STIFFB The purpose of this routine is to evaluate the element stiffness matrices and store them on disc prior to their use in the assembly and equation solving routines.

```
 SUBROUTINE STIFFB STFB
```



```
C STFB
C *** CALCULATES ELEMENT STIFFNESS MATRICES STFB
C STFB
C***STFB
 COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, STFB 7
 KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, STFB }
 NITER,NOUTP,FACTO STFB }
 COMMON/UNIM2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), STFB 10
 - FIXED(52),TLOAD(25,4),RLOAD(25,4),\operatorname{ELOAD}(25,4), STFB 11
 M MATNO(25),STRES(25,2),PLAST(25),XDISP(52), STFB }1
 - TDISP(26,2),TREAC(26,2),\operatorname{ASTIF(52.52),ASLOD(52), STFB 13}
 - REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) STFB 14
 REWIND 1 STFB
 DO 20 IELEM=1,NELEM STFB 16
 LPROP=MATNO(IELEM) STFB 17
 EIVAL=PROPS(LPROP,1) STFB 18
 SVALU=PROPS(LPROP,2) STFB 19
 HARDS=PROPS(LPROP,4) STFB 20
 NODE1=LNODS(IELEM,1) STFB. 21
 NODE2=LNODS(IELEM,2) STFB }2
 ELENG=ABS(COORD(NODE2)-COORD(NODE1)) STFB }2
 IF(PLAST(IELEM).NE.0.0) EIVAL=EIVAL*(1.0-EIVAL/(EIVAL+HARDS)) STFB 24
 VALU1=0.5*SVALU STFB 25
 VALU2=SVALU/ELENG STFB 26
 VALU3=EIVAL/ELENG STFB 27
 VALU4=0.25*SVALU*ELENG STFB 28
 ESTIF(1,1)= VALU2 STFB 29
 ESTIF(1,2)= VALU1 STFB 30
```

```
 ESTIF}(1,3)=-VALU2 STFB 31
 ESTIF(1,4)= VALU1 STFB 32
 ESTIF}(2,2)= VALU3+VALU4 STFB 33
 ESTIF(2,3)=-VALU1 STFB 34
 ESTIF}(2,4)=-VALU3+VALU4 STFB 35
 ESTIF}(3,3)= VALU2 STFB 36
 ESTIF}(3,4)=-VALU1 STFB 37
```



```
 DO 10 ISTIF=1,4 STFB 39
 DO 10 JSTIF=ISTIF,4 STFB 40
10 ESTIF(JSTIF,ISTIF)=ESTIF(ISTIF,JSTIF)
STFB }4
WRITE(1) ESTIF STFB 42
20 CONTINUE STFB 43
RETURN STFB 44
END STFB 45
```

STFB 15 Rewind disc ready for writing element stiffnesses.
STFB 16-38 For each element evaluate the upper triangular portion of the element stiffness matrix $K^{(e)}$. Note that if plasticity has taken place the elastic $E I$ is replaced by the elasto-plastic $(E I)_{T}$.
STFB 39-41 Obtain using symmetry the lower triangular portion of $\boldsymbol{K}^{(e)}$.
STFB 42 Write all element stiffness matrices on to disc.
Subroutine REFORB This routine evaluates the equivalent nodal forces.


```
\(\begin{array}{ll}\text { ESCUR }=A B S(S T C U R)-P R E Y S & \text { RFRB } 36 \\ \text { RFRB } & 37\end{array}\)
\(\begin{array}{ll}\text { IF (ESCUR.LE.0.0) GO TO } 40 & \text { RFRB } 37 \\ \text { RFACT=ESCUR/ABS(STLIN) } & \text { RFRB } 38\end{array}\)
GO TO 30
RFRB
20 IF(STRES(IELEM,1).GT.0.0.AND.STLIN.LE.0.0) GO TO 40 RFRB 40
IF(STRES(IELEM,1).LT.0.0.AND.STLIN.GE.0.0) GO TO 40 RFRB 41 RFACT \(=1.0\)
30 REDUC \(=1.0-\) RFACT
STRES (IELEM, 1) =STRES (IELEM, 1) +REDUC*STLIN+
RFACT*EIVAL*(1.0-EIVAL/(EIVAL+HARDS))*STRAN
RFRB
RFRB 43
PLAST (IELEM) \(=\) PLAST (IELEM) +RFACT*STRAN*EIVAL/(EIVAL+HARDS) RFRB 46
GO TO 50
40 STRES (IELEM,1)=STRES (IELEM,1)+STLIN
RFRB 47
40 STRES (IELEM,1)=STRES (IELEM,1)+STLIN RFRB 48
50 STRES(IELEM,2)=STRES(IELEM,2)+(SVALU/ELENG)*(WNOD2-WNOD1) RFRB 49
\(-0.5 * S V A L U *(T H T A 1+T H T A 2)\) RFRB 50
ELOAD (IELEM, 1)=ELOAD (IELEM,1)-STRES(IELEM,2) RFRB 51
ELOAD (IELEM,2) =ELOAD (IELEM,2) +STRES (IELEM, 1) RFRB 52
-0.5*ELENG*STRES(IELEM,2)
\(\operatorname{ELOAD}(\) IELEM, 3) \(=\operatorname{ELOAD}(\) IELEM, 3) +STRES (IELEM, 2) RFRB 54
ELOAD (IELEM, 4) =ELOAD (IELEM, 4)-STRES(IELEM, 1) RFRB 55
\(\begin{array}{ll}70^{\circ} \text { CONTINUE } & \text { RFRB } 56 \\ \text { RETURN } & \text { RFRB } 57 \\ \text { RFRB } 58\end{array}\)
END RFRB 59
```

RFRB 15-17 Zero space for storing $p$.
RFRB 18-57 For each element evaluate $\boldsymbol{p}^{(e)}$ and assemble into $\boldsymbol{p}$.

### 5.4.6 Examples of nonlayered elasto-plastic Timoshenko beam analysis

Two numerical examples are considered. The first example, Example 5.1, involves the yielding of a rectangular simple beam under uniformly distributed load. The beam material has the following properties:

$$
\begin{aligned}
E & =210.0 \mathrm{kN} / \mathrm{mm}^{2} \\
\nu & =0.3 \\
\sigma_{0} & =0.25 \mathrm{kN} / \mathrm{mm}^{2} \\
H^{\prime} & =0.0
\end{aligned}
$$

and the beam proportions are:

$$
\begin{aligned}
b & =150 \mathrm{~mm} \\
t & =300 \mathrm{~mm} \\
l & =3000 \mathrm{~mm}
\end{aligned}
$$

Typical input data is provided in Appendix IV.
The problem, finite element idealisation employed and the results are illustrated in Fig. 5.6, which shows that the beam fails as soon as a plastic hinge forms at the centre of the beam. Note that the beam material is assumed to have no strain hardening.

The second example considered, Example 5.2, is the clamped I beam shown in Fig. 5.7. The beam has the same material properties as those of Example 5.1.

The dimensions and finite element discretisation of the beam are given in Fig. 5.7; the load-displacement relationship at the beam centre is also provided. It is seen that there is an initial loss of stiffness corresponding to the
1400 - Applied load (KN)
1400 Applied load (KN)



10
Fig. 5.6 Nonlayered elasto-plastic simply supported beam.


Fig. 5.7 Nonlayered elasto-plastic clamped beam.
yielding of the end sections followed by a further reduction when the central section becomes plastic resulting in a beam failure mechanism.

### 5.5 Elasto-plastic layered Timoshenko beams

### 5.5.1 Yielding of layered beams

In the 'layered' approach the beam or the plate is subdivided into a chosen number of layers, as shown in Fig. 5.8.


Fig. 5.8 Layered subdivision of beam and plate.

In the finite element solution it is assumed that as soon as the stress in the middle of the outer layers reaches the yield value, then the outer layers become plastic, while the rest of the layers remain elastic, as shown in


Fig. 5.9 Yielding of layered beam.

Fig. 5.9. Then, as plastification propagates, more layers become plastic, until the whole cross-section eventually becomes plastic.

### 5.5.2 Formation of the stiffness matrix in the layered approach

In the layered approach, we work in terms of stresses and not in terms of stress resultants as in the nonlayered approach. The state of stress at the middle of a layer is taken as representative for the entire layer.

Contributions to the stress resultants $M$ and $Q$ are found for each layer separately by integrating over the layer thickness only. The bending moments and shear forces are then found from the contributions of all the layers of the beam element.

The displacement field, stress-strain relationship and strain-displacement relationship are given in (5.1)-(5.10).

The virtual work expression is given by (5.11) and when we evaluate the bending moment $M$ and shear force $Q$ we use a mid-ordinate rule as follows:

$$
\begin{equation*}
M=E I\left(-\frac{d \theta}{d x}\right) \text { and } \quad Q=G \hat{A} \epsilon_{s} \tag{5.48}
\end{equation*}
$$

where

$$
\begin{equation*}
E I=\sum_{l} E_{l} b_{l} z_{l}^{2} t_{l} \tag{5.49}
\end{equation*}
$$

and

$$
\begin{equation*}
G \hat{A}=\sum_{l} G_{l} b_{l} t_{l} \tag{5.50}
\end{equation*}
$$

and where $\quad b_{l}$ is the layer breadth
$t_{l}$ is the layer thickness
$z_{l}$ is the $z$-coordinate at the middle of the layer
$E_{l}$ is the Young's modulus of the layer material
and $G_{l}$ is the Shear modulus of the layer material.

However, if the stress at the middle surface of a layer reaches the uniaxial yield stress of the layer material, the whole layer is considered to be plastic and $E_{l}$ is replaced by

$$
E_{l}\left(1-\frac{E_{l}}{E_{l}+H^{\prime}}\right),
$$

where $H^{\prime}$ is the uniaxial strain hardening parameter. As mentioned before, the shear force-shear strain relationship is always elastic.

### 5.5.3 Solution of nonlinear equations

Recall that the virtual work expression (5.11) has the form

$$
\begin{equation*}
\int_{0}^{l} \int_{-t / 2}^{t / 2} \int_{b(-t / 2)}^{b(t / 2)}\left\{-z \frac{d(\delta \theta)}{d x} \sigma_{x}+\delta \beta \tau_{x z}\right\} d y d z d x-\int_{0}^{l} \delta w q d x=0 . \tag{5.51}
\end{equation*}
$$

The mid-ordinate rule is again used to evaluate the first two integrals in (5.51) so that we obtain

$$
\begin{equation*}
[\delta \varphi]^{T}\left[\boldsymbol{p}_{f}+\boldsymbol{p}_{s}\right]-[\delta \varphi]^{T} \boldsymbol{f}=0 \tag{5.52}
\end{equation*}
$$

where

$$
\boldsymbol{p}_{f}=\int_{0}^{l}\left[\boldsymbol{B}_{f}\right]^{T} \bar{M} d x
$$

and

$$
\boldsymbol{p}_{s}=\int_{0}^{1}\left[\boldsymbol{B}_{s}\right]^{T} \bar{Q} d x
$$

in which $\boldsymbol{B}_{f}, \boldsymbol{B}_{s}$ and $\delta \boldsymbol{\varphi}$ have been defined in (5.40), (5.41) and (5.43) respectively and in which

$$
\begin{equation*}
\bar{M}=\sum_{l} b_{l} \sigma_{x l} z_{l} t_{l} \tag{5.53}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{Q}=\sum_{l} b_{l} \tau_{x z l} t_{l} \tag{5.54}
\end{equation*}
$$

Note that $\sigma_{x l}$ and $\tau_{x z l}$ are the direct and shear stresses in the layer respectively. Since (5.52) is true for any arbitrary set of virtual displacements then

$$
\begin{equation*}
\boldsymbol{p}_{f}+\boldsymbol{p}_{s}-\boldsymbol{f}=0 . \tag{5.55}
\end{equation*}
$$

Contributions to $\boldsymbol{p}_{\boldsymbol{f}}$ and $\boldsymbol{p}_{\boldsymbol{s}}$ may be evaluated separately from each element so that

$$
\begin{align*}
\boldsymbol{p}_{f}{ }^{(e)} & =\int_{x_{1}{ }^{(e)}}^{x_{2}^{(e)}}\left[\boldsymbol{B}_{f}^{(e)}\right]^{T} \bar{M}^{(e)} d x=\int_{x_{1}{ }^{(e)}}^{x_{2}^{(e)}}\left[0,\left(\frac{\bar{M}}{l}\right)^{(e)}, 0,-\left(\frac{\bar{M}}{l}\right)^{(e)}\right]^{T} d x \\
& =\left[0, \bar{M}^{(e)}, 0,-\bar{M}^{(e)}\right]^{T} \tag{5.56}
\end{align*}
$$

and

$$
\begin{align*}
\boldsymbol{p}_{s}{ }^{(e)} & =\int_{x_{1}{ }^{(e)}}^{x_{2}^{(e)}}\left[B_{s}{ }^{(e)}\right]^{T} \bar{Q}^{(e)} d x=\int_{x_{1}{ }^{(e)}}^{x_{2}^{(e)}}\left[-\frac{1}{l^{(e)}},-\frac{1}{2}, \frac{1}{l^{(e)}},-\frac{1}{2}\right]^{T} \bar{Q}^{(e)} d x \\
& =\left[-\bar{Q}^{(e)},-\frac{(\bar{Q} l)^{(e)}}{2}, \bar{Q}^{(e)},-\frac{(\bar{Q} l)^{(e)}}{2}\right]^{T} \tag{5.57}
\end{align*}
$$

The complete sequence of nonlinear equation solving is very similar to the one adopted in Table 5.1 for the nonlayered beam. Step 5 is now written as:
5. For each element evaluate for each layer $\sigma_{x l}{ }^{(e)}$ and $\tau_{x z l}{ }^{(e)}$. Check $\sigma_{x l}{ }^{(e)}$ and adjust its value accordingly to account for any plastic behaviour. Evaluate the stress resultants $\bar{M}^{(e)}$ and $\bar{Q}^{(e)}$ and hence evaluate the residual force vector $\left[\psi^{(e)}\right]^{i+1}=\boldsymbol{p}^{(e)}-f^{(e)}$. Assemble $\left[\psi^{(e)}\right]^{i+1}$ into the global residual force vector $\psi^{i+1}$.

### 5.5.4 Overall structure of layered beam program TIMLAY

The overall structure of the layered beam program is exactly the same as that of the nonlayered beam program given in Fig. 5.5. Subroutine STIFBL replaces STIFFB and subroutine RFORBL replaces REFORB. Subroutine STIFBL calls a further new routine called LAYER. The master routine BEML has minor changes as shown in the next section.

### 5.5.5 Modified and new routines

Master BEML This routine is almost identical to routine BEAM described earlier.


```
 IF(KRESL.EQ.2) CALL RESOLV LYBM 25
 CALL BAKSUB LYBM
 25
 CALL RFORBL LYBM 27
 CALL CONUND LYBM
 28
 IF(NCHEK.EQ.0) GO TO 20 LYBM 29
 IF(IITER.EQ.1.AND.NOUTP.EQ.1) CALL RESULT LYBM }3
 IF(NOUTP.EQ.2) CALL RESULT LYBM }3
10 CONTINUE
 MONIN(6,900) 32
 WRITE(6,900) LYBM }3
900 FORMAT(1HO,5X,'SOLUTION NOT CONVERGED') LYBM 34
STOP LYBM 35
20 CALL RESULT LYBM 36
30 CONTINUE LYBM 37
STOP LYBM 38
END LYBM 39
```

Subroutine STIFBL This routine calculates the element stiffness matrices for the elasto-plastic layered Timoshenko beam element.


STBL 19 Call routine LAYER which evaluates approximate values of $E I$ and exact values of $G \hat{A}$ using a mid-ordinate rule. Note that certain layers may be plastic.

Subroutine RFORBL This routine evaluates $p$ for the layered beam using the mid-ordinate rule.


```
 RFACT=ESCUR/ABS(STLIN)
 GO TO }3
20 IF(STRSL(KLAYR,1).GT.O.0.AND.STLIN.LE.0.0) GO TO 40
 IF(STRSL(KLAYR,1).LT.0.0.AND.STLIN.GE.0.0) GO TO 40
 RFACT=1.0
30 REDUC=1.0-RFACT
 STRSL(KLAYR,1)=STRSL(KLAYR,1)+REDUC*STLIN+
 RFACT*YOUNG*(1.0-YOUNG/(YOUNG+HARDS))*STRAN(1)*ZMIDL
 PLAST(KLAYR)=PLAST(KLAYR)+RFACT*STRAN(1)*YOUNG/ (YOUNG+HARDS)
 **ZMIDL
 GO TO 45
40 STRSL(KLAYR,1)=STRSL(KLAYR,1)+STLIN
45 STRSL(KLAYR,2)=STRSL(KLAYR,2)+STRAN(2)*SHEAR
 STRES(IELEM,1)=STRES(IELEM,1)+STRSL(KLAYR,1)*
 BRDTH*THICK*ZMIDL
 STRES(IELEM, 2) =STRES(IELEM,2)+STRSL(KLAYR,2)*
 BRDTH*THICK
 ZMIDL=ZMIDL+THICK/2.0
50 CONTINUE
 ELOAD(IELEM, 1)=ELOAD(IELEM, 1)-STRES(IELEM, 2)
 ELOAD(IELEM,2)=ELOAD(IELEM, 2)+STRES(IELEM,1)
 -0.5*ELENG*STRES(IELEM,2)
 ELOAD (IELEM,3)=ELOAD (IELEM,3) +STRES (IELEM,2)
 ELOAD(IELEM,4)=ELOAD(IELEM,4)-STRES(IELEM,1)
 -0.5*ELENG*STRES(IELEM,2)
70
 RETURN
 END
```

RFRL55

RFRL 56
RFRL 57
RFRL 58
RFRL 59
RFRL 60
RFRL 61
RFRL 62
RFRL 63
RFRL 64
RFRL 65
RFRL 66
RFRL 67
RFRL 68
RFRL 69
RFRL 70
RFRL 71
RFRL 72
RFRL 73
RFRL 74
RFRL 75
RFRL 76
RFRL 77
RFRL 78
RFRL 79
RFRL 80
RFRL 81
RFRL 82

Subroutine LAYER This routine evaluates EI and GA using the midordinate rule. Note that certain layers may be plastic and therefore have a modified $E$.

	SUBROUTINE LAYER(IELEM, EIVAL, SVALU)	LAYR	1
C		LAYR	3
	CALCULATES INTEGRATED VALUES FOR EI AND GA THROUGH DEPTH	LAYR	4
C		LAYR	5
	COMMON/UNIM1/NPOIN, NELEM, NBOUN, NLAYR, NPROP, NNODE, IINCS, IITER,	LAYR	7
	KRESL, NCHEK, TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB,	LAYR	8
	NITER, NOUTP, FACTO	LAYR	9
	COMMON/UNIM2/PROPS $(5,25), \operatorname{COORD}(26), \operatorname{LNODS}(25,2), \operatorname{IFPRE}(52)$,	LAYR	10
	- $\operatorname{FIXED}(52), \operatorname{TLOAD}(25,4), \operatorname{RLOAD}(25,4), \operatorname{ELOAD}(25,4)$,	LAYR	11
	MATNO(25), $\operatorname{STRES}(25,2), \operatorname{PLAST}(250), \mathrm{XDISP}(52)$,	LAYR	12
	$\operatorname{TDISP}(26,2), \operatorname{TREAC}(26,2), \operatorname{ASTIF}(52,52), \operatorname{ASLOD}(52)$,	LAYR	13
	- REACT(52), FRESV(1352), PEFIX (52), $\operatorname{ESTIF}(4,4)$,	LAYR	14
	STRSL $(250,2)$	LAYR	15
EIVAL $=0.0$		LAYR	16
$\text { SVALU }=0.0$		LAYR	17
LPROP=MATNO (IELEM)		LAYR	18
KLAYR=( IELEM-1)*NLAYR		LAYR	19
SHEAR=PROPS (LPROP, 2)		LAYR	20
HARDS $=$ PROPS (LPROP, 4)		LAYR	21
THKTO=PROPS (LPROP,5)		LAYR	22
ZMIDL $=-$ THKTO/2.0		LAYR	23
KOUNT=5		LAYR	24
DO 10 ILAYR $=1$, NLAYR		LAYR	25
KLAYR $=K L A Y R+1$YOUNG $=$ PROPS $(L P R O P ~ 1) ~$		LAYR	26
		LAYR	27
	IF (PLAST (KLAYR) .NE.0.0) YOUNG=YOUNG* (1.0-YOUNG/(YOUNG+HARDS))	LAYR	28

```
 KOUNT=KOUNT+1 LAYR 29
 BRDTH=PROPS(LPROP,KOUNT) LAYR 30
 KOUNT=KOUNT+1 LAYR 31
 THICK=PROPS(LPROP,KOUNT) LAYR 32
 ZMIDL=ZMIDL+THICK/2.0 LAYR 33
 EIVAL=EIVAL+YOUNG*BRDTH*THICK*ZMIDL*ZMIDL LAYR 34
 SVALU=SVALU+SHEAR*BRDTH*THICK LAYR 35
 ZMIDL=ZMIDL+THICK/2.0 LAYR 36
10 CONTINUE
 LAYR }3
 RETURN LAYR 38
 END LAYR 39
```


### 5.5.6 Examples of layered elasto-plastic Timoshenko beam analysis

The third example considered in this chapter is the elasto-plastic analysis of the simple beam of Example 5.1. The layered solution is adopted in this case. A typical input data listing is provided in Appendix IV.

The results for both nonlayered and layered solutions to this beam problem are reproduced in Fig. 5.10.

The last example to be considered here is the layered solution of the clamped $I$-beam given in Example 5.1.

Again, both nonlayered and layered solution results are illustrated in Fig. 5.11.

From Figs. 5.10 and 5.11 it is obvious that the layered solution is more realistic. Yielding takes place gradually through the layers, resulting in smoother curves representing the load-displacement relationship.

### 5.6 Problems

5.1 Derive the main expressions for the elasto-plastic analysis of Timoshenko beams using elements with
(i) Quadratic shape functions

$$
\begin{align*}
& N_{1}^{(e)}=\frac{\left(x^{(e)}-x_{2}^{(e)}\right)\left(x^{(e)}-x_{3}{ }^{(e)}\right)}{\left(x_{1}^{(e)}-x_{2}^{(e)}\right)\left(x_{1}^{(e)}-x_{3}^{(e)}\right)} \\
& N_{2}^{(e)}=\frac{\left(x^{(e)}-x_{1}^{(e)}\right)\left(x^{(e)}-x_{3}{ }^{(e)}\right)}{\left(x_{2}^{(e)}-x_{1}^{(e)}\right)\left(x_{2}^{(e)}-x_{3}^{(e)}\right)} \\
& N_{3}^{(e)}=\frac{\left(x^{(e)}-x_{1}^{(e)}\right)\left(x^{(e)}-x_{2}^{(e)}\right)}{\left(x_{3}^{(e)}-x_{1}^{(e)}\right)\left(x_{3}^{(e)}-x_{2}^{(e)}\right)} \tag{5.58}
\end{align*}
$$


Fig. 5.10 Load-deflection diagrams for simply supported beam.

Fig. 5.11 Load-deflection diagrams for clamped beam.
(ii) Cubic shape functions

$$
\begin{align*}
& N_{1}{ }^{(e)}=\frac{\left(x^{(e)}-x_{2}{ }^{(e)}\right)\left(x^{(e)}-x_{3}{ }^{(e)}\right)\left(x^{(e)}-x_{4}{ }^{(e)}\right)}{\left(x_{1}{ }^{(e)}-x_{2}{ }^{(e)}\right)\left(x_{1}^{(e)}-x_{3}{ }^{(e)}\right)\left(x_{1}{ }^{(e)}-x_{4}^{(e)}\right)} \\
& N_{2}{ }^{(e)}=\frac{\left(x^{(\rho)}-x_{1}{ }^{(\rho)}\right)\left(x^{(e)}-x_{3}{ }^{(\rho)}\right)\left(x^{(e)}-x_{4}^{(\rho)}\right)}{\left(x_{2} \underline{2}^{(\rho)}-x_{1}{ }^{(\rho)}\right)\left(x_{2} 2^{(e)}-x_{3}{ }^{(e)}\right)\left(x_{2}{ }^{(e)}-x_{4}{ }^{(e)}\right)} \\
& N_{3}{ }^{(\rho)}=\frac{\left(x^{(\rho)}-x_{1}^{(e)}\right)\left(x^{(\rho)}-x_{2}{ }^{(\rho)}\right)\left(x^{(e)}-x_{4}{ }^{(\rho)}\right)}{\left(x_{3}{ }^{(e)}-x_{1}{ }^{(\rho)}\right)\left(x_{3}^{(\rho)}-x_{2}{ }^{(\rho)}\right)\left(x_{3}{ }^{(\rho)}-x_{4}^{(\rho)}\right)} \\
& N_{4}^{(e)}=\frac{\left(x^{(\rho)}-x_{1}^{(\rho)}\right)\left(x^{(\rho)}-x_{2}{ }^{(\rho)}\right)\left(x^{(\rho)}-x_{3}{ }^{(\rho)}\right)}{\left(x_{4}{ }^{(\rho)}-x_{1}{ }^{(\rho)}\right)\left(x_{1}^{(e)}-x_{2}{ }^{(\rho)}\right)\left(x_{4}{ }^{(\rho)}-x_{3}{ }^{(\rho)}\right)} \tag{5.59}
\end{align*}
$$

For the quadratic and cubic clements use 2-point and 3-point GaussLegendre integration rules respectively.
5.2 Develop a layered finite element Timoshenko beam program which allows for combined in-plane and bending behaviour of axially loaded beams or beams with cross-sections which are nonsymmetric about the neutral axis. Choose a displacement representation of the form

$$
\begin{equation*}
\bar{u}(x, z)=u_{0}(x)-z \theta_{x}(x) \tag{5.60}
\end{equation*}
$$

in which $u_{0}(x)$ is the axial displacement at the neutral axis.
5.3 Use the concepts developed in Chapters 4 and 5 to develop the necessary relationships for layered and nonlayered elasto-viscoplastic Timoshenko beam analysis.
5.4 (i) Evaluate the additional stiffness terms required to represent the Winkler foundation by a 2 -node linear Timoshenko beam element. For a foundation modulus $k$ note that the additional virtual work term associated with the clastic foundation is

$$
\int_{0}^{l} \delta w k w d x
$$

in which $\delta w$ is the virtual lateral displacement.
(ii) Modify programs TIMOSH and TIMLAY to allow for beams on elastic foundations.
(iii) Use the program to analyse a uniformly loaded, simply supported beam on a Winkler foundation. The elastic closed form solution for an Euler-Bernoulli beam predicts lateral displacements

$$
\begin{equation*}
\cdots=\sum_{n=1,3,5 \ldots}^{\infty} \frac{4 q L^{4} /\left(n^{5} \pi^{5} E I\right)}{1+k L^{4} /\left(n^{4} \pi^{4} E I\right)} \sin \frac{n \pi x}{L} \tag{5.61}
\end{equation*}
$$

and bending moments

$$
\begin{equation*}
M=\sum_{n=1,3,5, \ldots}^{\infty} \frac{4 q L^{2} /(n \pi)^{3}}{1+k L^{4} /\left(n^{4} \pi^{4} E I\right)} \sin \frac{n \pi x}{L} \tag{5.62}
\end{equation*}
$$

Compare the elastic results from the modified programs with the above solution for various values of $k L^{4} / E I$ and $t / L$ where $E I$ is the flexural rigidity, $t$ is the thickness and $L$ is the length of the beam.
(iv) For a given yield stress, $\sigma_{0}$, evaluate the ultimate load for various values of $k L^{4} / E I$ and $t / L$.
5.5 (i) Consider the problem of finding the elastic deflections of a simply supported beam of length $L$, flexural rigidity $E I$, shear rigidity $G A$ which is subjected to a uniform load $q$. The beam is elastically supported at mid-span by a single linear spring of stiffness $K$. Modify programs TIMOSH and TIMLAY to solve this problem. Check your finite element solutions by noting that the elastic Euler-Bernoulli solution is given as

$$
\begin{align*}
w= & \frac{4 q L^{4}}{E I} \sum_{n=1,3,5, \ldots}^{\infty} \frac{\sin (n \pi x / L)}{n^{5}} \\
& -\frac{2 K S L^{3}}{\pi^{4} E I} \sum_{n=1,3,5, \ldots}^{\infty}\left(\frac{\sin (n \pi / 2) \sin (n \pi x / L)}{n^{4}}\right) \tag{5.63}
\end{align*}
$$

in which

$$
\begin{equation*}
S=\frac{5 q L^{4}}{384 E I} /\left(1+\frac{K L^{3}}{48 E I}\right) . \tag{5.64}
\end{equation*}
$$

(ii) When the load carried by the elastic support reaches a value $F$ the supported beam becomes perfectly plastic. How can this be catered for in the modified version of TIMOSH and TIMLAY?
5.6 Use program TIMLAY to examine the effects of choosing
(i) different load incrementations
(ii) various convergence tolerances
(iii) various numbers of layers
on the example given in Section 5.4 and also Problems 5.4 and 5.5.

### 5.7 References

1. Hinton, E. and Owen, D. R. J., An Introduction to Finite Element Computations, Pineridge Press, Swansea, U.K., 1979.
2. Hughes, T. J. R., Taylor, R. L. and Kanoknukulchai, S., A simple and efficient finite element for bending, Int. J. Num. Meth. Engng., 11, 1529-1543 (1977).
3. Cowper, G. R., The shear coefficient in Timoshenko's Beam Theory, J. Appl. Mech., 33, 335 (1966).
4. Dym, C. L. and Shames, I. H., Solid Mechanics: A Variational Approach, McGraw-Hill, New York, 1973.
5. Hinton, E. and Owen, D. R. J., Finite Element Programming, Academic Press, London, 1977.

## Part II

## Chapter 6

## Preliminary theory and standard subroutines for two-dimensional elasto-plastic applications

### 6.1 Introduction

In Part II of this text we extend the concepts and techniques developed in Part I for one-dimensional situations to now permit the solution of twodimensional problems. In particular the following applications are presented:

- Chapter 7 discusses the solution of elasto-plastic problems conforming to either plane stress, plane strain or axially symmetric conditions.
- Chapter 8 deals with plane stress/strain and axisymmetric problems where the material exhibits a time-dependent elasto-viscoplastic behaviour.
- Chapter 9 covers elasto-plastic plate bending situations.

The nonlinear algorithms developed in Chapter 2 will be employed in solution. These processes are general and the main modifications necessary are those appropriate to two-dimensional continuum theory or plate bending expressions which must now be used. For example the level of initial yielding will now be dependent on three or more independent stress components in place of the uniaxial case considered earlier.

The development of an elasto-plastic stress analysis program requires all of the basic features of the corresponding elastic program. In particular the same basic element formulation is employed and a wide choice of element types is available. In this text we consider three different element types all based on an isoparametric formulation. The elements included are illustrated in Fig. 6.1 and are:

- The 4-node isoparametric quadrilateral element with linear displacement variation, Fig. 6.1(a).
- The 8 -node Serendipity quadrilateral element with curved sides and a quadratic variation of the displacement field within the element, Fig. 6.1(b).
- The 9-node Lagrangian quadrilateral element which additionally has a central node, Fig. 6.1(c).

The basic theoretical expressions for these elements are provided in Section 6.3. The use of these higher order elements leads to particularly efficient


$$
N_{1}(\xi, \eta)=1 / 4\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right) .
$$



Local node   number	$\boldsymbol{\xi}$	$\boldsymbol{\eta}_{1}$
1	-1	-1
2	1	-1
3	1	1
4	-1	1

Fig. 6.1(a) The 4-node isoparametric quadrilateral element and shape functions.
elasto-plastic solution packages. In order to simplify matters as much as possible consideration is restricted to isotropic situations.*

For all the plasticity applications presented in this text the classical incremental theory is employed with the full elasto-plastic material response being reproduced. Thus we are not concerned with limit state behaviour as predicted by rigid-plastic theories, etc.

Consideration is limited to small deformation situations where the strains can be assumed to be infinitesimal and Lagrangian and Eulerian geometric descriptions then coincide.

[^1]

8-node Serendipity element


9 -node Lagrangian element

- for corner nodes

$$
N_{i}^{(e)}=1 / 4\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right)\left(\xi \xi_{i}+\eta \eta_{i}-1\right), \quad i=1,3,5,7,
$$

- for midside nodes

$$
N^{(\cdot)}=\frac{\xi_{i}^{2}}{2}\left(1+\xi \xi_{i}\right)\left(1-\eta^{2}\right)+\frac{\eta_{i}^{2}}{2}\left(1+\eta \eta_{i}\right)\left(1-\xi^{2}\right), \quad i=2,4,6,8 .
$$



Fig. 6.1(b) The 8 -node Serendipity quadrilateral element.


- for comer nodes

$$
N\left(^{\prime \prime}=1 /\left(\xi^{2}+\xi \xi_{i}\right)\right)\left(\eta^{2}+\eta \eta_{i}\right), \quad i=1,3, \quad 5,7,
$$

- for midside nodes

$$
N j^{(0)}=1 / 2 \eta_{i}^{2}\left(\eta^{2}-\eta \eta_{i}\right)\left(1-\xi^{2}\right)+1 / 2 \xi_{i}^{2}\left(\xi^{2}-\xi \xi_{i}\right)\left(1-\eta^{2}\right), \quad i=2,4,6,8,
$$

- for central node

$$
N^{\left(e^{\prime \prime}\right.}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) .
$$



Fig. 6.1(c) The 9-node Lagrangian quadrilateral element.


Fig. 6.1(c) The 9-node Lagrangian quadrilateral element (continued).

For each application, a computer code is developed which allows the solution of practical problems. The computation times of elasto-plastic problems are relatively high with solution costs being typically ten times those of the corresponding linear elastic analysis. Of course a direct comparison would depend on the extent of plastic yielding and how close to the ultimate load carrying capacity a solution is sought. In view of these relatively high computer costs it is essential that the codes developed should be as efficient as possible and that any numerical techniques which reduce the computational requirements be employed. Since the main aim of this text is to fulfil a teaching role some compromise must however be inevitably made between program clarity and efficiency. The applicability of the programs presented is demonstrated by the solution of practical examples. Detailed user instructions for all of the computer programs presented in Part II of this text are provided in Appendix II.

In Section 6.2 the basic expressions for the linear elastic finite element analysis of two-dimensional continua and plate bending problems are presented. Section 6.3 outlines the principles of isoparametric element formulation with particular attention being given to the role of numerical integration. Standard subroutines pertaining to linear elastic finite element analysis are reviewed in Section 6.4 and some subroutines common to the three nonlinear applications considered in Chapters 7,8 and 9 are presented in Section 6.5.

### 6.2 Virtual work expressions for various solid mechanics applications

### 6.2.1 Introduction

In this section we briefly describe various two-dimensional solid mechanics finite element applications in the elastic range only. Later in Chapters 7-9 we demonstrate how elasto-plastic or elasto-viscoplastic behaviour may be included in these applications using finite elements.

In Part I we presented some very simple finite element representations. By contrast, in Part II we include numerically integrated isoparametric quadrilateral elements.

### 6.2.2 Virtual work expression

If a body is subjected to a set of body forces $\boldsymbol{b}$ then by the Virtual Work Principle we can write

$$
\begin{equation*}
\int_{\Omega}[\delta \mathbf{\epsilon}]^{T} \sigma d \Omega-\int_{\Omega}[\delta \boldsymbol{u}]^{T} \boldsymbol{b} d \Omega-\int_{\Gamma_{\mathbf{t}}}[\delta \boldsymbol{u}]^{T} \boldsymbol{t} d \Gamma=0, \tag{6.1}
\end{equation*}
$$

where $\sigma$ is the vector of stresses, $\boldsymbol{t}$ is the vector of boundary tractions, $\delta \boldsymbol{u}$ is the vector of virtual displacements, $\delta \boldsymbol{\epsilon}$ is the vector of associated virtual strains, $\Omega$ is the domain of interest, $\Gamma_{t}$ is that part of the boundary on which boundary tractions are prescribed and $\Gamma_{u}$ is that part of the boundary on which displacements are prescribed.

### 6.2.3 Plane stress

Consider some typical plane stress problems shown in Fig. 6.2. Typically a thin plate is subjected to loads applied in the $x y$ plane, that is the plane of the structure. ${ }^{(2)}$ The thickness of the plate is assumed to be small compared with the plan dimensions in the $x y$ plane. Stresses are assumed to be constant through the thickness of the plate and $\sigma_{z}, \tau_{z x}$ and $\tau_{z y}$ are ignored. Thus the displacements may now be expressed as

$$
\begin{equation*}
\boldsymbol{u}=[u, v]^{T}, \tag{6.2}
\end{equation*}
$$

where $u$ and $v$ are the in-plane displacements in the $x$ and $y$ directions respectively.

The strain components may be listed in the vector

$$
\begin{equation*}
\boldsymbol{\epsilon}=\left[\epsilon_{x}, \epsilon_{y}, \gamma_{x y}\right]^{T} \tag{6.3}
\end{equation*}
$$

where for small displacements the normal strains are given as

$$
\epsilon_{x}=\frac{\partial u}{\partial x}, \quad \epsilon_{y}=\frac{\partial v}{\partial y},
$$



Fig. 6.2 Typical plane stress problems.
and the shear strain is given as

$$
\gamma_{x y}=\frac{\dot{c} u}{\partial y} \div \frac{\dot{c}}{\dot{c} x} .
$$

Note that virtual displacements are listed in the vector

$$
\begin{equation*}
\delta \boldsymbol{u}=[\delta u, \delta v]^{T}, \tag{6.4}
\end{equation*}
$$

and the associated virtual strains are

$$
\begin{equation*}
\delta \boldsymbol{\epsilon}=\left[\frac{\dot{c}(\delta u)}{\dot{c} x}, \frac{\partial(\delta v)}{\dot{c} y}, \frac{\dot{c}(\delta u)}{\dot{c} y}+\frac{\dot{c}(\delta v)}{\dot{c} x}\right]^{T} . \tag{6.5}
\end{equation*}
$$

The relevant stress-strain relationships may be written as

$$
\begin{equation*}
\sigma=D \epsilon, \tag{6.6}
\end{equation*}
$$

where

$$
\sigma=\left[\sigma_{x}, \sigma_{y}, \tau_{x y}\right]^{\top}
$$

in which $\sigma_{x}$ and $\sigma_{y}$ are the normal stresses and $\tau_{x y}$ is the shear stress.
For linear elastic situations the stress-strain or constitutive matrix is given as

$$
\boldsymbol{D}=\frac{E}{\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0  \tag{6.7}\\
\nu & 1 & 0 \\
0 & 0 & \frac{(1-\nu)}{2}
\end{array}\right]
$$

in which $E$ and $\nu$ are the elastic modulus and Poisson's ratio respectively.
The body forces $b$ are written as

$$
\begin{equation*}
\boldsymbol{b}=\left[b_{x}, b_{y}\right]^{T}, \tag{6.8}
\end{equation*}
$$

in which $b_{x}$ and $b_{y}$ are the body forces per unit volume in the $x$ and $y$ directions respectively.

Boundary tractions $t$ may be expressed as

$$
\begin{equation*}
\boldsymbol{t}=\left[t_{x}, t_{y}\right]^{T} \tag{6.9}
\end{equation*}
$$

in which $t_{x}$ and $t_{y}$ are the boundary tractions per unit length.
An element of volume $d \Omega$ is given as

$$
\begin{equation*}
d \Omega=t d x d y \tag{6.10}
\end{equation*}
$$

where $t$ is the plate thickness.

### 6.2.4 Plane strain

For plane strain problems the thickness dimension normal to a certain plane (say the $x y$ plane) is large compared with the typical dimensions in the $x y$ plane and the body is subjected to loads in the $x y$ plane only. For plane strain problems ${ }^{(2)}$ it may be assumed that the displacements in the $z$ direction are negligible and that the in-plane displacements $u$ and $v$ are independent of $z$. Figure 6.3 illustrates some typical plane strain problems.

The displacements are then listed in the vector

$$
\begin{equation*}
\boldsymbol{u}=[u, v]^{T}, \tag{6.11}
\end{equation*}
$$


(a)

(b)

Fig. 6.3 Typical plane strain problems.
in which $u$ and $v$ are the in-plane displacements in the $x$ and $y$ directions respectively.

The in-plane strain components may be expressed as

$$
\begin{equation*}
\epsilon=\left[\epsilon_{x}, \epsilon_{y}, \gamma_{x y}\right]^{T}, \tag{6.12}
\end{equation*}
$$

where $\epsilon_{x}, \epsilon_{y}$ and $\gamma_{x y}$ have the same meaning as the strain components in plane stress applications.

Again the virtual displacements and associated virtual strains are respectively given as

$$
\begin{equation*}
\delta \boldsymbol{u}=[\delta u, \delta v]^{T}, \tag{6.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \boldsymbol{\epsilon}=\left[\frac{\partial(\delta u)}{\partial x}, \frac{\partial(\delta v)}{\partial y}, \frac{\partial(\delta u)}{\partial y}+\frac{\partial(\delta v)}{\partial x}\right]^{T} . \tag{6.14}
\end{equation*}
$$

The stress-strain relationships may be written in the form

$$
\begin{equation*}
\sigma=\boldsymbol{D} \epsilon, \tag{6.15}
\end{equation*}
$$

where the stresses $\sigma=\left[\sigma_{x}, \sigma_{y}, \tau_{x y}\right]^{T}$ have the same meaning as the stresses in plane stress applications.

For linear elastic materials the stress-strain or constitutive matrix $D$ is given as

$$
\boldsymbol{D}=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
(1-\nu) & \nu & 0  \tag{6.16}\\
\nu & (1-\nu) & 0 \\
0 & 0 & \frac{(1-2 \nu)}{2}
\end{array}\right]
$$

Note that the stress normal to the $x y$ plane is nonzero and may be evaluated as

$$
\begin{equation*}
\sigma_{z}=\nu\left(\sigma_{x}+\sigma_{y}\right) \tag{6.17}
\end{equation*}
$$

The body forces $b$ and surface tractions $t$ have the same meaning as those adopted for plane stress problems.

A typical element of volume is given as

$$
\begin{equation*}
d \Omega=d x d y \tag{6.18}
\end{equation*}
$$

under the assumption that a unit slice of the problem is being analysed.

### 6.2.5 Axisymmetric solids

For a three-dimensional solid which is symmetrical about its centreline axis (which coincides with the $z$ axis) and which is subjected to loads and boundary conditions that are symmetrical about this axis, then the behaviour ${ }^{(2)}$ is independent of the circumferential coordinate $\theta$. Figure 6.4 shows a typical axisymmetric solid.


Fig. 6.4 A typical axisymmetric solid.

The displacements may here be expressed as

$$
\begin{equation*}
u=[u, w]^{T} \tag{6.19}
\end{equation*}
$$

where $u$ and $w$ are the displacements in the $r$ and $z$ directions respectively.
The nonzero strains are given as

$$
\begin{equation*}
\boldsymbol{\epsilon}=\left[\epsilon_{r}, \epsilon_{\theta}, \epsilon_{z}, \gamma_{r z}\right]^{T} \tag{6.20}
\end{equation*}
$$

where for small displacements, the normal strains are given as

$$
\epsilon_{r}=\frac{\partial u}{\partial r}, \quad \epsilon_{0}=\frac{u}{r} \quad \text { and } \quad \epsilon_{z}=\frac{\partial w}{\partial z},
$$

and the shear strain is

$$
\gamma_{r z}=\frac{\hat{\partial} u}{\partial z}+\frac{\hat{c} w}{\partial r} .
$$

Virtual displacements and associated virtual strains are respectively given as

$$
\begin{equation*}
\delta u=[\delta u, \delta w]^{T}, \tag{6.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \boldsymbol{\epsilon}=\left[\frac{\dot{c}(\delta u)}{\dot{\partial} r}, \frac{\delta u}{r}, \frac{\dot{c}(\delta w)}{\dot{\partial} z}, \frac{\dot{\partial}(\delta u)}{\dot{\delta} z}+\frac{\dot{c}(\delta w)}{\hat{c} r}\right]^{T} . \tag{6.22}
\end{equation*}
$$

The stress-strain relationships are given as

$$
\begin{equation*}
\sigma=D \epsilon \tag{6.23}
\end{equation*}
$$

where $\sigma=\left[\sigma_{r}, \sigma_{\theta}, \sigma_{z}, \tau_{r z}\right]^{T}$, in which $\sigma_{r}, \sigma_{\theta}$ and $\sigma_{z}$ are the normal stresses in the $r, \theta$ and $z$ directions respectively and $\tau_{r z}$ is the shear stress in the $r z$ plane.

For linear elastic materials, the stress-strain matrix is given as

$$
D=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{cccc}
(1-\nu) & \nu & 0 & 0  \tag{6.24}\\
\nu & (1-\nu) & \nu & 0 \\
0 & \nu & (1-\nu) & 0 \\
0 & 0 & 0 & \frac{(1-2 \nu)}{2}
\end{array}\right]
$$

The boly forces are given as

$$
\begin{equation*}
\boldsymbol{b}=\left[b_{r}, b_{z}\right]^{T}, \tag{6.25}
\end{equation*}
$$

where $b_{r}$ and $b_{z}$ are the body forces/unit volume in the $r$ and $z$ direction respectively.

The boundary tractions may be expressed as

$$
\begin{equation*}
\boldsymbol{t}=\left[t_{r}, t_{z}\right]^{T} \tag{6.26}
\end{equation*}
$$

where $t_{r}$ and $t_{z}$ are the boundary tractions/unit surface in the $r$ and $z$ directions.

An elemental volume is given as

$$
\begin{equation*}
d \Omega=2 \pi r d r d z \tag{6.27}
\end{equation*}
$$

### 6.2.6 Mindlin plates

In Mindlin plate theory it is possible to allow for transverse shear deformation. It thus offers an alternative to classical Kirchhoff thin plate theory. The main assumptions are that:
(a) displacements are small compared with the plate thickness,
(b) the stress normal to the midsurface of the plate is negligible,
(c) normals to the midsurface before deformation remain straight but not necessarily normal to the midsurface after deformation.

A typical Mindlin plate is shown in Fig. 6.5. Note that Mindlin plate theory is the two-dimensional equivalent of Timoshenko beam theory which was discussed in Chapter 5.

The main displacement parameters can be expressed

$$
\begin{equation*}
\boldsymbol{u}=\left[w, \theta_{x}, \theta_{y}\right]^{T} \tag{6.28}
\end{equation*}
$$

in which $w$ is the lateral plate displacement normal to the $x y$ plane and variables $\theta_{x}$ and $\theta_{y}$ are the normal rotations in the $x z$ and $y z$ planes. Here it should be noted that

$$
\begin{equation*}
\theta_{x}=\frac{\dot{c} w}{\partial x}-\phi_{x} \quad \text { and } \quad \theta_{y}=\frac{\dot{c} w}{c y}-\phi_{y}, \tag{6.29}
\end{equation*}
$$

where $\theta_{x}$ and $\theta_{y}$ are the rotations of the normal in the $x z$ and $y z$ planes


Fig. 6.5 A typical Mindlin plate.
respectively and are integrated measures of the transverse shear strain. In thin plate theory it is assumed that shear rotations $\phi_{x}$ and $\phi_{y}$, defined below, are equal to zero.

The strains, or more exactly the strain resultants, may be expressed as

$$
\begin{equation*}
\boldsymbol{\epsilon}=\left[r_{x}, r_{y}, r_{x y}, \phi_{x}, \phi_{y}\right]^{T} \tag{6.30}
\end{equation*}
$$

where the curvatures are given as

$$
r_{x}=-\frac{\partial \theta_{x}}{\partial x} \quad \text { and } \quad r_{y}=-\frac{\partial \theta_{y}}{\partial y}
$$

and the twisting curvature is

$$
r_{x y}=-\left(\frac{\partial \theta_{y}}{\partial x}+\frac{\partial \theta_{x}}{\partial y}\right)
$$

The shear strains are expressed as

$$
\begin{equation*}
\phi_{x}=\left(\frac{\partial w}{\partial x}-\theta_{x}\right) \quad \text { and } \quad \phi_{y}=\left(\frac{\partial w}{\partial y}-\theta_{y}\right) \tag{6.31}
\end{equation*}
$$

Virtual displacements and rotations and associated virtual curvatures and shear strains are respectively given as

$$
\begin{equation*}
\delta u=\left[\delta w, \delta \theta_{x}, \delta \theta_{y}\right]^{T} \tag{6.32}
\end{equation*}
$$

and

$$
\begin{gather*}
\delta \epsilon=\left[-\frac{\partial\left(\delta \theta_{x}\right)}{\partial x},-\frac{\partial\left(\delta \theta_{y}\right)}{\partial y},-\frac{\partial\left(\delta \theta_{x}\right)}{\partial y}-\frac{\partial\left(\delta \theta_{y}\right)}{\partial x}\right. \\
\left.\frac{\partial(\delta w)}{\partial x}-\delta \theta_{x}, \frac{\partial(\delta w)}{\partial y}-\delta \theta_{y}\right]^{T} \tag{6.33}
\end{gather*}
$$

The constitutive relationships are given in the form

$$
\begin{equation*}
\sigma=D \epsilon, \tag{6.34}
\end{equation*}
$$

where

$$
\sigma=\left[M_{x}, M_{y}, M_{x y}, Q_{x}, Q_{y}\right]^{T},
$$

in which $M_{x}$ and $M_{y}$ are the direct bending moments and $M_{x y}$ is the twisting moment. The quantities $Q_{x}$ and $Q_{y}$ are the shear forces in the $x z$ and $y z$ planes.

For an isotropic elastic material

$$
\boldsymbol{D}=\left[\begin{array}{ccccc}
D & \nu D & 0 & 0 & 0  \tag{6.35}\\
\nu D & D & 0 & 0 & 0 \\
0 & 0 & \frac{(1-\nu)}{2} D & 0 & 0 \\
0 & 0 & 0 & S & 0 \\
0 & 0 & 0 & 0 & S
\end{array}\right]
$$

in which for a plate of thickness $t$

$$
D=\frac{E t^{3}}{12\left(1-\nu^{2}\right)} \quad \text { and } \quad S=\frac{G t}{1.2}
$$

where $G$ is the shear modulus and the factor 1.2 is a shear correction term.
Here we will not consider surface tractions. For a more complete discussion of this and other aspects of Mindlin plate theory the reader is directed to the work of Hughes and his coworkers. ${ }^{(3)}$ We will only consider body forces of the form

$$
\begin{equation*}
\boldsymbol{b}=[q, 0,0]^{T}, \tag{6.36}
\end{equation*}
$$

where $q$ is the lateral distributed loading per unit area.
An elemental plate area is given as

$$
\begin{equation*}
d \Omega=d x d y \tag{6.37}
\end{equation*}
$$

### 6.3 Isoparametric finite element representation

### 6.3.1 Governing equations

In this section we present the discretised governing equations for the solid mechanics applications described in Sections 6.2.3-6.2.6. In a finite element representation, the displacements and strains and their virtual counterparts may be expressed by the relationships

$$
\begin{equation*}
u=\sum_{i=1}^{n} N_{i} d_{i}, \quad \delta u=\sum_{i=1}^{n} N_{i} \delta d_{i} \tag{6.38}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{\epsilon}=\sum_{i=1}^{n} \boldsymbol{B}_{i} \boldsymbol{d}_{i}, \quad \delta \mathbf{\epsilon}=\sum_{i=1}^{n} \boldsymbol{B}_{i} \delta \boldsymbol{d}_{i}, \tag{6.39}
\end{equation*}
$$

where, for node $i, \boldsymbol{d}_{i}$ is the vector of nodal variables,* $\delta \boldsymbol{d}_{i}$ is the vector of virtual nodal variables, $N_{i}=I N_{i}$ is the matrix of global shape functions $\dagger$ and $\boldsymbol{B}_{\boldsymbol{i}}$ is the global strain-displacement matrix. The total number of nodes in the whole mesh is $n$.

If (6.38) and 6.39) are substituted into the virtual work expression (6.1) then we obtain

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\delta \boldsymbol{d}_{i}\right]^{T}\left\{\int_{\Omega}\left[\boldsymbol{B}_{i}\right]^{T} \sigma d \Omega-\int_{\Omega}\left[\boldsymbol{N}_{i}\right]^{T} b d \Omega-\int_{\Gamma_{t}}\left[N_{i}\right]^{T} \boldsymbol{t} d \Gamma\right\}=0, \tag{6.40}
\end{equation*}
$$

and since (6.40) must be true for an arbitrary set of virtual displacements $\delta d_{i}$ then we have for each node $i$ an equation of the form

$$
\begin{equation*}
\int_{\Omega}\left[B_{i}\right]^{T} \sigma d \Omega-\int_{\Omega}\left[N_{i}\right]^{T} b d \Omega-\int_{\Gamma_{t}}\left[N_{i}\right]^{T} t d \Gamma=0 . \tag{6.41}
\end{equation*}
$$

If we use $C(0)$ isoparametric finite element representations we can evaluate contributions to (6.41) separately from each element.

The displacements can be expressed in the usual way as

$$
\begin{equation*}
\boldsymbol{u}^{(e)}=\sum_{i=1}^{r} \boldsymbol{N}_{i}^{(e)} \boldsymbol{d}_{i}^{(e)}, \tag{6.42}
\end{equation*}
$$

where, for local node $i$ of element $e, N^{(e)}=I N^{(e)}$ is the matrix of shape functions and the vector of variables is $\boldsymbol{d}_{i}{ }^{(e)}$. There are $r$ local nodes in each element $e$.

Typical 4-, 8- and 9-node isoparametric element shape functions are shown and listed in Figs. 6.1(a), (b) and (c) respectively.

Note that in an isoparametric representation we may use the following representation for the $x$ and $y$ coordinates within an element

[^2]\[

\left[$$
\begin{array}{l}
x^{(e)}  \tag{6.43}\\
y^{(e)}
\end{array}
$$\right]=\sum_{i=1}^{r}\left[$$
\begin{array}{cc}
N_{i}^{(e)} & 0 \\
0 & N_{i}^{(e)}
\end{array}
$$\right]\left[$$
\begin{array}{l}
x_{i}^{(e)} \\
y_{i}^{(e)}
\end{array}
$$\right]
\]

in which $N_{i}{ }^{(e)}$ are the same shape functions used in the displacement representation. We may then evaluate the Jacobian matrix as

$$
J^{(e)}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi}  \tag{6.44}\\
\frac{\partial x}{\overline{\partial \eta}} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{r} \frac{\partial N_{i}^{(e)}}{\dot{\partial \xi}} x_{i}{ }^{(e)} & \sum_{i=1}^{r} \frac{\partial N_{i}^{(e)}}{\partial \xi} y_{i}^{(e)} \\
\sum_{i=1}^{r} \frac{\partial N_{i}(e)}{\partial \eta} x_{i}^{(e)} & \sum_{i=1}^{r} \frac{\partial N_{i}^{(e)}}{\partial \eta} y_{i}^{(e)}
\end{array}\right] .
$$

The inverse of $J^{(e)}$ is then evaluated using the expression

$$
\left[\boldsymbol{J}^{(e)}\right]^{-1}=\left[\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x}  \tag{6.45}\\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y}
\end{array}\right]=\frac{1}{\operatorname{det} \boldsymbol{J}^{(e)}}\left[\begin{array}{cc}
\frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\
-\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi}
\end{array}\right] .
$$

The strain displacement relationships are expressed as

$$
\begin{equation*}
\boldsymbol{\epsilon}^{(e)}=\sum_{i=1}^{r} \boldsymbol{B}_{i}{ }^{(e)} \boldsymbol{d}_{i}^{(e)}, \tag{6.46}
\end{equation*}
$$

in which $\boldsymbol{B}_{\boldsymbol{i}}{ }^{(e)}$ is the strain matrix.
The discretised elemental volume (or area in the case of Mindlin plates) is given as

$$
\begin{equation*}
d \Omega^{(e)}=h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)} d \xi d \eta, \tag{6.47}
\end{equation*}
$$

where $h^{(e)}$ has been defined in Table 6.1 in which we also summarise the expressions for $\boldsymbol{d}_{i}{ }^{(e)}, \boldsymbol{B}_{\boldsymbol{i}}{ }^{(e)}$ and $d \Omega^{(e)}$ for the four applications.

The Cartesian shape function derivatives used in the strain-displacement matrices in Table 6.1 may be obtained using the chain rule of differentiation

$$
\begin{equation*}
\frac{\partial N_{i}^{(e)}}{\partial x}=\frac{\partial N_{i}^{(e)}}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial N_{i}{ }^{(e)}}{\partial \eta} \frac{\partial \eta}{\partial x}, \tag{6.48}
\end{equation*}
$$

[^3]| Application $\boldsymbol{d i}^{(e)}$ | $B_{i}{ }^{(e)}$ | $d \Omega^{(e)}$ |
| :---: | :---: | :---: |
| Plane stress $\quad\left[\begin{array}{l}u_{i}{ }^{(e)} \\ v_{i}{ }^{(e)}\end{array}\right]$ | $\left[\begin{array}{cc}\left(\frac{\partial N_{i}}{\partial x}\right)^{(e)} & 0 \\ 0 & \left(\frac{\partial N_{i}}{\partial y}\right)^{(e)} \\ \left(\frac{\partial N_{i}}{\partial y}\right)^{(e)} & \left(\frac{\partial N_{i}}{\partial x}\right)^{(e)}\end{array}\right]$ | $t^{(e)} \operatorname{det} J^{(e)} d \xi d \eta$ |
| Plane strain $\left[\begin{array}{l}u_{i}{ }^{(e)} \\ v_{i}{ }^{(e)}\end{array}\right]$ | $\left[\begin{array}{cc}\left(\frac{\partial N_{i}}{\partial x}\right)^{(e)} & 0 \\ 0 & \left(\frac{\partial N_{i}}{\partial y}\right)^{(e)} \\ \left(\frac{\partial N_{i}}{\partial y}\right)^{(e)} & \left(\frac{\partial N_{i}}{\partial x}\right)^{(e)}\end{array}\right]$ | $\operatorname{det} J^{(e)} d \xi d \eta$ |
| Axial symmetry $\left[\begin{array}{l}u_{i}{ }^{(e)} \\ w_{i}{ }^{(e)}\end{array}\right]$ | $\left[\begin{array}{cc} \left(\frac{\partial N_{i}}{\partial r}\right)^{(e)} & 0 \\ \left(\frac{N_{i}}{r}\right)^{(e)} & 0 \\ 0 & \left(\frac{\partial N_{i}}{\partial z}\right)^{(e)} \\ \left(\frac{\partial N_{i}}{\partial z}\right)^{(e)} & \left(\frac{\partial N_{i}}{\partial r}\right)^{(e)} \end{array}\right]$ | $\pi r^{(e)} \operatorname{det} J^{(e)} d \xi d \eta$ |
| Mindlin plate $\left[\begin{array}{c}w_{i}{ }^{(e)} \\ \theta_{x i}{ }^{(e)} \\ \theta_{y i}{ }^{(e)}\end{array}\right]$ | $\left[\begin{array}{ccc} 0 & \left(-\frac{\partial N_{i}}{\partial x}\right)^{(e)} & 0 \\ 0 & 0 & \left(-\frac{\partial N_{i}}{\partial y}\right)^{(e)} \\ 0 & \left(-\frac{\partial N_{i}}{\partial y}\right)^{(e)} & \left(-\frac{\partial N_{i}}{\partial x}\right)^{(e)} \\ \left(\frac{\partial N_{i}}{\partial x}\right)^{(e)} & -N_{i}^{(e)} & 0 \\ \left(\frac{\partial N_{i}}{\partial y}\right)^{(e)} & 0 & -N_{i}^{(e)} \end{array}\right]$ |  |

Table 6.1 Nodal displacements, strain matrices and elemental volumes or areas for two-dimensional solid mechanics applications.
and

$$
\frac{\partial N_{i}^{(e)}}{\partial y}=\frac{\partial N_{i}^{(e)}}{\partial \eta} \frac{\partial \eta}{\partial y}+\frac{\partial N_{i}^{(e)}}{\partial \xi} \frac{\partial \xi}{\partial y}
$$

in which the terms $\partial \xi / \partial x, \partial \eta / \partial x, \partial \eta / \partial y$ and $\partial \xi / \partial y$ may be obtained from the inverse of the Jacobian matrix given in (6.45).

Since we have a linear stress-strain relationship within each element of the form

$$
\begin{equation*}
\boldsymbol{\sigma}^{(e)}=D^{(e)} \boldsymbol{\varepsilon}^{(e)}=D^{(e)}\left(\sum_{j=1}^{r} \boldsymbol{B}_{j}^{(e)} \boldsymbol{d}_{j}^{(e)}\right), \tag{6.49}
\end{equation*}
$$

then the contribution from element $e$ to the first term in (6.41) is given as

$$
\begin{equation*}
\sum_{j=1}^{r} \boldsymbol{K}_{i j}^{(e)} \boldsymbol{d}_{j}^{(e)} \equiv \int_{\Omega}\left[\boldsymbol{B}_{i}^{(e)}\right]^{T} D^{(e)}\left(\sum_{j-1}^{r} \boldsymbol{B}_{j}^{(e)} \boldsymbol{d}_{j}^{(e)}\right) d \Omega \tag{6.50}
\end{equation*}
$$

where $K_{i j}{ }^{(e)}$ is the submatrix of element stiffness matrix $K^{(e)}$.
The contribution from element $e$ to the second term in (6.41) is given as

$$
\begin{equation*}
{f_{B_{i}}}^{(e)}=\int_{\Omega^{(e)}}\left[N_{i}^{(e)}\right]^{T} b^{(e)} d \Omega \tag{6.51}
\end{equation*}
$$

For the third term, the contribution from element $e$ is

$$
\begin{equation*}
f_{T_{i}}{ }^{(e)}=\int_{V_{t}{ }^{(e)}}\left[N_{i}{ }^{(e)}\right]^{T} t^{(e)} d \Gamma \tag{6.52}
\end{equation*}
$$

where $\Gamma_{t}{ }^{(e)}$ is that part of $\Gamma_{t}$ which coincides with a boundary of element $e$. Of course for many elements there will be no contribution to $f_{T i}{ }^{(e)}$.

### 6.3.2 Evaluation of the stiffness matrix and consistent load vector

Let us now consider the evaluation of $K$.
The integration is now performed in the natural coordinate system. Thus the submatrix of the stiffness matrix $K^{(e)}$ linking nodes $i$ and $j$ has the form

$$
\begin{equation*}
\boldsymbol{K}_{i j}(e)=\int_{-1}^{+1} \int_{-1}^{+1}\left[\boldsymbol{B}_{i}{ }^{(e)}\right]^{T} \boldsymbol{D}^{(e)} \boldsymbol{B}_{j}^{(e)} h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)} d \xi d \eta . \tag{6.53}
\end{equation*}
$$

The elements of $K_{i j}{ }^{(e)}$ are evaluated numerically. If the integrand in (6.53) is denoted as

$$
\begin{equation*}
\left[\boldsymbol{B}_{i}{ }^{(e)}\right]^{T} D^{(e)} \boldsymbol{B}_{j}{ }^{(e)} h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)}=\boldsymbol{T}_{i j}{ }^{(e)} \tag{6.54}
\end{equation*}
$$

then

$$
\begin{equation*}
K_{i j}(e)=\int_{-1}^{+1} \int_{-1}^{+1} T_{i j}(e) d \xi d \eta \tag{6.55}
\end{equation*}
$$

The numerical integration for a quadrilateral element with $n \times n$ sampling points leads to

$$
\begin{equation*}
K_{i j}{ }^{(e)}=\sum_{p-1}^{n} \sum_{q=1}^{n} \boldsymbol{T}\left(\xi_{p}, \bar{\eta}_{q}\right)_{i j} W_{p} W_{q}, \tag{6.56}
\end{equation*}
$$

where $W_{p}$ and $W_{q}$ are weighting factors and $\left(\xi_{p}, \bar{\eta}_{q}\right)$ is a sampling position.
The consistent nodal forces at node $i$ caused by body forces are

$$
\begin{equation*}
f_{B_{i}}{ }^{(e)}=\int_{-1}^{+1} \int_{-1}^{+1}\left[N_{i}^{(e)}\right]^{T} b^{(e)} h^{(e)} \operatorname{det} J^{(e)} d \xi d \eta \tag{6.57}
\end{equation*}
$$

The components of $f_{B i}{ }^{(e)}$ are evaluated numerically. If the integrand in (6.57) is denoted as

$$
\begin{equation*}
\boldsymbol{g}_{i^{(e)}}=\left[N_{i}^{(e)}\right]^{T} \boldsymbol{b}^{(e)} h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)}, \tag{6.58}
\end{equation*}
$$

then

$$
\begin{equation*}
f_{B_{i}}{ }^{(e)}=\int_{-1}^{+1} \int_{-1}^{+1} g_{i}{ }^{(e)} d \xi d \eta \tag{6.59}
\end{equation*}
$$

The numerical integration for a quadrilateral with $n \times n$ sampling points leads to

$$
\begin{equation*}
f_{B_{i}}{ }^{(e)}=\sum_{p=1}^{n} \sum_{q=1}^{n} \boldsymbol{g}\left(\bar{\xi}_{p}, \bar{\eta}_{q}\right)_{i}^{(e)} W_{p} W_{q}, \tag{6.60}
\end{equation*}
$$

where $W_{p}$ and $W_{q}$ are weighting factors and $\left(\xi_{p}, \bar{\eta}_{q}\right)$ is a sampling position.
The consistent nodal forces for boundary tractions have been dealt with in the authors' previous book ${ }^{(4)}$ and will be summarised in Section 6.4.5.

The computer implementation of numerically integrated isoparametric elements has been described in detail in the text of Finite Element Programming. ${ }^{(4)}$ Here we simply summarise in Fig. 6.6 the main steps involved in evaluating the element stiffness matrix.

### 6.4 Standard subroutines for linear efastic finite element analysis

Many of the subroutines required for elasto-plastic finite element analysis are common to the corresponding linear elastic application. In this section we present all the standard linear elastic subroutines required for later use in Chapters 7, 8 and 9. The function of each subroutine is explained and a FORTRAN listing is provided. The subroutines presented are drawn from Ref. 4 where a detailed description is provided.

In order to make all subroutines modular in form we have adopted a type of dynamic dimensioning. Thus no COMMON blocks are used in the programs in Part II. Dimensions are fixed in the main or master routine and all necessary information is transmitted between routines by the use of

## SUBROUTINE STIF2D

Dimensions and common blocks.
$\rightarrow$ Enter loop over all elements.
Retrieve element geometry and material properties for the current element.

Zero the stiffness array.
Call a routine which sets up $D^{(e)}$ the constitutive matrix.
$\longrightarrow$ Enter loops covering all integration points.
Look up sampling position for the current integration point $\left(\bar{\xi}_{p}, \bar{\eta}_{q}\right)$.
Call shape function routine $\operatorname{SFR} 2-$ given $\left(\bar{\xi}_{p}, \bar{\eta}_{q}\right)$ this will return the shape functions $N_{i}{ }^{(e)}$ and their derivatives $\partial N_{i}{ }^{(e)} / \partial \xi$ and $\partial N_{i}^{(e)} / \hat{\eta} \eta$ at the point $\left(\bar{\xi}_{p}, \bar{\eta}_{q}\right)$.
Call JACOB2-given $N_{i}^{(e)}, \partial N_{i}^{(e)} / \partial \xi$ and $\partial N_{i}^{(e)} / \partial \eta$ at point $\left(\xi_{p}, \bar{\eta}_{q}\right)$; this will return Cartesian shape function derivatives $\partial N_{i}^{(e)} / \partial x$ and $\ddot{\partial} N_{i}^{(e)} / c y$, the Jacobian matrix $J^{(e)}$, its inverse $\left[J^{(e)}\right]^{-1}$ and its determinant det $J^{(e)}$ and the $x$ and $y$ (or $r$ and $z$ ) coordinates all at the point $\left(\bar{\xi}_{p}, \bar{\eta}_{q}\right)$.
Call strain matrix routine-given $N_{i}{ }^{(e)}, \partial N_{i}{ }^{(e)} / \partial x$ and $\partial N_{i}{ }^{(e)} / \partial y$ at ( $\bar{\xi}_{p}, \bar{\eta}_{q}$ ) this will return the strain matrix $\boldsymbol{B}_{i}{ }^{(e)}$.

Call a routine to evaluate $\boldsymbol{D}^{(e)} \boldsymbol{B}^{(e)}$.
Evaluate $\left[\boldsymbol{B}_{i}{ }^{(e)}\right] \boldsymbol{D}^{(e)} \boldsymbol{B}_{j}^{(e)} \operatorname{det} \boldsymbol{J}^{(e)} \times$ integration weights and assemble them into the element stiffness array $\boldsymbol{K}_{i j}{ }^{(e)}$.

Assemble $\boldsymbol{D}^{(e)} \boldsymbol{B}^{(e)}$ into a stress array for later evaluation of stresses from the nodal displacements.

End integration loops.
Write stiffness matrix and stress matrix onto file for use in the solution routine.

End element loop.
RETURN
END

Fig. 6.6 Evaluation of element stiffness matrices for numerically integrated isoparametric elements.
arguments (and also peripherals in certain instances). Apart from the modularity, this approach has the advantage that maximum dimensions can be updated in a very simple and straightforward manner. Only the DIMENSION statement in the main segment and some statements in a subroutine which sets the maximum dimensions sizes need modification.

As an example, the relevant statements in a dynamically dimensioned program are listed below.

PROGRAM	FRED $\left(\begin{array}{l}\text { PR }\end{array}\right.$
DIMENSION	AMATX $(200,5), \ldots *$

## CALL DIMENS (MROWS, MCOLS)

CALL DUMMY (AMATX, MROWS, MCOLS)

STOP
END
SUBROUTINE DIMENS (MROWS, MCOLS)
MROWS $=200^{*}$
MCOLS $=5^{*}$
RETURN
END
SUBROUTINE DUMMY (AMATX, MROWS, MCOLS)
DIMENSION

RETURN
END

Note that AMATX ( ) has fixed dimensions in the main routine FRED. Subroutine DIMENS assigns values of 200 and 5 to the dimensions MROWS and MCOLS respectively. $\dagger$ In subroutine DUMMY we transmit AMATX,

[^4]MROWS and MCOLS via the argument and therefore the DIMENSION statement in DUMMY refers to AMATX (MCOLS, MROWS) and not AMATX (200, 5). To update FRED for arrays AMATX with different maximum dimensions, we simply modify those statements indicated by an asterisk.

Note also that the use of such arguments is not very expensive since only the address of the first term of an array is passed through the argument and not of all the terms in the array.

More sophisticated versions of this approach can be implemented as illustrated in the book by Irons and Ahmad. ${ }^{(5)}$ Such approaches undoubtedly save core storage but they do require careful housekeeping and checking procedures.

In Part III we have generally dispensed with the use of maximum dimension variables in the programs. Thus main segment FRED would then be written as
PROGRAM FRED ( )
DIMENSION AMATX $(200,5), \ldots$

## CALL <br> DUMMY (AMATX)

STOP
END

SUBROUTINE	DUMMY (AMATX)
DIMENSION	AMATX $(200,1) \dagger$

## RETURN <br> END

Although this approach uses nonstandard FORTRAN IV it does work on most machines and it has been adopted elsewhere in the literature. ${ }^{(6)}$ If more than one subroutine such as DUMMY uses AMATX then the relevant dimensions must be identical in all of these subroutines.

The list of variables in the argument list will differ between linear and nonlinear applications. For each subroutine presented in this section the form of the argument list and the dimension statements will be those required for two-dimensional elasto-plastic applications.
$\dagger$ Note that AMATX (number, 1) will also workprovided that number $\leqslant 200$.

### 6.4.1 Subroutine NODEXY for generating coordinate values for midside nodes

For the quadratic 8- and 9-node elements described in Section 6.3 subroutine NODEXY checks each midside node (a midside node being recognisable from the element topology cards). If both coordinates of a midside node are found to be zero, its coordinates are linearly interpolated between the two adjacent corner nodes. Subroutine NODEXY is common to plane stress/strain, axisymmetric and plate bending situations.

```
 SUBROUTINE NODEXY(COORD,LNODS,MELEM,MPOIN,NELEM,NNODE) NODE
```



```
C NODE
C**** THIS SUBROUTINE INTERPOLATES THE MDDE SIDE NODES OF STRAIGHT NODE
c SIDES OF ELEMENTS AND THE CENTRAL NODE OF 9 NODED ELEMENTS NODE 5
C NODE 6
```



```
 DIMENSION COORD(MPOIN,2),LNODS(MELEM,9) NODE 8
 IF(NNODE.EQ.4) RETURN NODE
C NODE
C*** LOOP OVER EACH ELEMENT NODE 11
C NODE 12
 DO 30 IELEM=1,NELEM NODE 13
C NODE 14
C*** LOOP OVER EACH ELEMENT EDGE NODE 15
C NODE 16
 NNOD1=9
NODE }1
 IF(NNODE.EQ.8) NNOD1=7 NODE 18
 DO 20 INODE=1,NNOD1,2 NODE 19
 IF(INODE.EQ.9) GO TO 50 NODE 20
```

```
C
```

C
NODE 21
NODE 21
C*** COMPUTE THE NODE NUMBER OF THE FIRST NODE NODE 22
C NODE 23
NODST=LNODS(IELEM, INODE) NODE 24
IGASH=INODE+2 NODE 25
IF(IGASH.GT.8) IGASH=1 NODE 26
C
C*** COMPUTE THE NODE NUMBER OF THE LAST NODE
NODFN=LNODS(IELEM,IGASH)
MIDPT=INODE+1
C*** COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE - NODE
COMPUIE THE NODE NUMBER OF THE INTERMEDIATE NODE NODE }
NODMD=LNODS(IELEM,MIDPT) NODE 3
TOTAL=ABS(COORD(NODMD,1))+ABS(COORD(NODMD,2)) NODE 36
C NODE }3
C*** IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO NODE 38
C INTERPOLATE BY A STRAIGHT LINE NODE 39
C NODE 40
IF(TOTAL.GT.0.0) GO TO 20 NODE 41
KOUNT=1
NODE }4
10 COORD(NODMD,KOUNT)=(COORD(NODST,KOUNT)}+\operatorname{COORD(NODFN,KOUNT))/2.0 NON NODE 4, 43
IF(KOUNT EQ 2) GO TO 10 N

```

```

    CONTINUE NODE 46
    GO TO 30
        50 LNODE=LNODS(IELEM, INODE)
    TOTAL=ABS(COORD(LNODE,1))+ABS(COORD(LNODE,2))
    NODE 48
    NODE }4
    IF(TOTAL.GT.0.0) GO TO 30
    NODE 50

```
```

    LNOD1=LNODS(IELEM,1) NODE 51
    LNOD3=LNODS(IELEM,3) NODE 52
    LNOD5=LNODS(IELEM,5) NODE 53
    LNOD7=LNODS(IELEM,7) NODE 54
    KOUNT=1 NODE 55
    40 COORD(LNODE,KOUNT) =(COORD(LNOD1,KOUNT)+COORD(LNOD3,KOUNT) NODE 56
- +COORD(LNOD5,KOUNT)+COORD(LNOD7,KOUNT))/4.0 NODE 57
KOUNT=KOUNT+1 NODE 58
IF(KOUNT.EQ.2) GO TO 40 NODE 59

```

```

    RETURN
    NODE }6
    END NODE 62
    ```

\subsection*{6.4.2 Subroutine GAUSSQ for generating Gaussian quadrature data}

The function of this subroutine is to set up the sampling point positions and weighting factors for numerical integration. The Gauss quadrature processes utilised in this text are restricted to either two or three point integration rules.* The role of numerical integration in the isoparametric formulation was discussed in detail in Section 6.3. The order of integration rule to be employed is defined by NGAUS and the sampling point positions and weighting factors are stored respectively in arrays POSGP () and WEIGP ().
\begin{tabular}{|c|c|}
\hline SUBROUTINE GAUSSQ(NGAUS, POSGP, WEIGP) & GAUS 1 \\
\hline C** & GAUS 2 \\
\hline C & GAUS 3 \\
\hline C**** THIS SUBROUTINE SETS UP THE GAUSS-LEGENDRE INTEGRATION CONSTANTS & GAUS 4 \\
\hline C & GAUS 5 \\
\hline & GAUS 6 \\
\hline DIMENSION POSGP(4), WEIGP(4) & GAUS 7 \\
\hline IF (NGAUS.GT. 2) GO TO 4 & GAUS 8 \\
\hline \% \(2 \operatorname{POSGP}(1)=-0.577350269189626\) & GAUS 9 \\
\hline \(\operatorname{WEIGP}(1)=1.0\) & GAUS 10 \\
\hline GO TO 6 & GAUS 11 \\
\hline \(4 \operatorname{POSGP}(1)=-0.774596669241483\) & GAUS 12 \\
\hline \(\therefore \operatorname{POSGP}(2)=0.0\) & GAUS 13 \\
\hline WEIGP(1) \(=0.555555555555556\) & GAUS 14 \\
\hline WEIGP(2) \(=0.888888888888889\) & GAUS 15 \\
\hline 6 KGAUS=NGAUS/2 & GAUS 16 \\
\hline DO 8 IGASH \(=1\), KGAUS & GAUS 17 \\
\hline JGASH \(=\) NGAUS +1 -IGASH & GAUS 18 \\
\hline POSGP (JGASH \()=-\mathrm{POSGP}(\) IGASH \()\) & raUS 19 \\
\hline WEIGP(JGASH) =WEIGP (IGASH) & GAUS 20 \\
\hline 8 CONTINUE & GAUS 21 \\
\hline RETURN & GAUS 22 \\
\hline END & GAUS 23 \\
\hline
\end{tabular}

\subsection*{6.4.3 Subroutine SFR2 for evaluating the element shape functions}

The role of this subroutine is to evaluate the shape functions \(N_{i}{ }^{(e)}(\xi, \eta)\) and their derivatives \(\partial N_{i}{ }^{(e)} / \partial \xi, \partial N_{i}^{(e)} / \hat{\eta}\) at any sampling point \(\xi_{P}, \eta_{P}\) within the element for each of the 4 -, 8 - or 9 -noded elements described in Section 6.1. The shape functions for these elements are listed in Figs. 6.1(a), (b) and (c). The sampling point coordinates \(\xi_{P}, \eta_{P}\) are specified as EXISP and ETASP respectively. The evaluated shape functions for each node of an element are stored in array SHAPE (INODE) and their derivatives in

\footnotetext{
- Except for selectively integrated 4-node Mindlin plates in which we modify GAUSSQ so that if NGAUS \(=1\) then POSGP(1) - \(\mathbf{0 . 0}\) and WEIGP(1) \(=\mathbf{2 . 0}\).
}
array DERIV (INODE, IDIME) where INODE ranges over the element nodes and IDIME over the coordinate dimensions.
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE SFR2(DERIV,ETASP, EXISP, NNODE, SHAPE) & \begin{tabular}{l}
SFR2 \\
SFR2
\end{tabular} & 1 \\
\hline C & & SFR2 & 3 \\
\hline C*** \({ }^{\text {² }}\) & THIS SUBROUTINE EVALUATES SHAPE FUNCTIONS AND THEIR DERIVATIVES & SFR2 & 4 \\
\hline C & FOR LINEAR, QUADRATIC LAGRANGIAN AND SERENDIPITY & SFR2 & 5 \\
\hline C & ISOPARAMETRIC 2-D ELEMENTS & SFR2 & 6 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
C \\

\end{tabular}}} & SFR2 & 7 \\
\hline & & SFR2 & 8 \\
\hline & DIMENSION DERIV \((2,9)\),SHAPE(9) & SFR2 & 9 \\
\hline & S=EXISP & SFR2 & 10 \\
\hline & T=ETASP & SFR2 & 11 \\
\hline & IF(NNODE.GT.4) GO TO 10 & SFR2 & 12 \\
\hline & ST \(=S^{*}\) T & SFR2 & 13 \\
\hline \multicolumn{2}{|l|}{C} & SFR2 & 14 \\
\hline & SHAPE FUNCTIONS FOR 4 NODED ELEMENT & SFR2 & 15 \\
\hline \multirow[t]{5}{*}{C} & & SFR2 & 16 \\
\hline & SHAPE (1) \(=(1-\mathrm{T}-\mathrm{S}+\mathrm{ST}) * 0.25\) & SFR2 & 17 \\
\hline & \(\operatorname{SHAPE}(2)=(1-T+S-S T) * 0.25\) & SFR2 & 18 \\
\hline & SHAPE (3) \(=(1+\mathrm{T}+\mathrm{S}+\mathrm{ST}) * 0.25\) & SFR2 & 19 \\
\hline & SHAPE (4) \(=(1+\mathrm{T}-\mathrm{S}-\mathrm{ST}) * 0.25\) & SFR2 & 20 \\
\hline C & & SFR2 & 21 \\
\hline \multirow[t]{11}{*}{\[
\begin{aligned}
& C^{* * *} S \\
& C
\end{aligned}
\]} & SHAPE FUNCTION DERIVATIVES & SFR2 & 22 \\
\hline & & SFR2 & 23 \\
\hline & \(\operatorname{DERIV}(1,1)=(-1+T) * 0.25\) & SFR2 & 24 \\
\hline & \(\operatorname{DERIV}(1,2)=(+1-\mathrm{T}) 40.25\) & SFR2 & 25 \\
\hline & \(\operatorname{DERIV}(1,3)=(+1+\mathrm{T}) * 0.25\) & SFR2 & 26 \\
\hline & \(\operatorname{DERIV}(1,4)=(-1-T) * 0.25\) & SFR2 & 27 \\
\hline & \(\operatorname{DERIV}(2,1)=(-1+S) * 0.25\) & SFR2 & 28 \\
\hline & \(\operatorname{DERIV}(2,2)=(-1-S) * 0.25\) & SFR2 & 29 \\
\hline & \(\operatorname{DERIV}(2,3)=(+1+S) * 0.25\) & SFR2 & 30 \\
\hline & \(\operatorname{DERIV}(2,4)=(+1-\mathrm{S}) * 0.25\) & SFR2 & 31 \\
\hline & RETURN & SFR2 & 32 \\
\hline \multirow[t]{9}{*}{10} & IF(NNODE.GT.8)GO TO 30 & SFR2 & 33 \\
\hline & \(\mathrm{S} 2=\mathrm{S}^{\text {\# }} 2.0\) & SFR2 & 34 \\
\hline & T2 2 T*2.0 & SFR2 & 35 \\
\hline & \(S S=S * S\) & SFR2 & 36 \\
\hline & \(T T=T{ }^{*} T\) & SFR2 & 37 \\
\hline & ST \(=\mathrm{S}^{*} \mathrm{~T}\) & SFR2 & 38 \\
\hline & SST \(=S^{*} S^{*} T\) & SFR2 & 39 \\
\hline & \(S T T=S^{*} T^{*}\) & SFR2 & 40 \\
\hline & ST2=S*T*2.0 & SFR2 & 41 \\
\hline \multirow[t]{11}{*}{\[
\mathrm{C}
\]
\[
C * *:
\]
\[
\mathrm{C}
\]} & & SFR2 & 42 \\
\hline & SHAPE FUNCTIONS FOR 8 NODED ELEMENT & SFR2 & 43 \\
\hline & & SFR2 & 44 \\
\hline & SHAPE (1) \(=(-1.0+S T+S S+T T-S S T-S T T) / 4.0\) & SFR2 & 45 \\
\hline & SHAPE (2) \(=(1.0-\mathrm{T}-\mathrm{SS}+\mathrm{SST}) / 2.0\) & SFR2 & 46 \\
\hline & \(\operatorname{SHAPE}(3)=(-1.0-S T+S S+\) TT-SST + STT \() / 4.0\) & SFR2 & 47 \\
\hline & SHAPE (4) \(=(1.0+S-T T-S T T) / 2.0\) & SFR2 & 48 \\
\hline & SHAPE (5) \(=(-1.0+\mathrm{ST}+\mathrm{SS}+\mathrm{TT}+\mathrm{SST}+\mathrm{STT}) / 4.0\) & SFR2 & 49 \\
\hline & SHAPE (6) \(=(1.0+\mathrm{T}-\mathrm{SS}-\mathrm{SST}) / 2.0\) & SFR2 & 50 \\
\hline & SHAPE (7) \(=(-1.0-S T+S S+T T+S S T-S T T) / 4.0\) & SFR2 & 51 \\
\hline & \(\operatorname{SHAPE}(8)=(1.0-S-T T+S T T) / 2.0\) & SFR2 & 52 \\
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
& C^{* * *} \\
& C
\end{aligned}
\]} & SHAPE FUNCTION DERIVATIVES & SFR2 & 53 \\
\hline & SHAPE FUNCTION DERIVATIVES & SFR2 & 54 \\
\hline & & SFR2 & 55 \\
\hline & \(\operatorname{DERIV}(1,2)=-\mathrm{S}+\mathrm{ST}-\mathrm{ST} 2-\mathrm{T}) / 4.0\) & SFR2 & 56 \\
\hline & \(\operatorname{DERIV}(1,3)=(-\mathrm{T}+\mathrm{S} 2-\mathrm{ST} 2+\mathrm{TT}) / 4.0\) & SFR2 & 57
58 \\
\hline & \(\operatorname{DERIV}(1,4)=(1.0-T \mathrm{~T}) / 2.0\) & SER2 & 58 \\
\hline & \(\operatorname{DERIV}(1,5)=(T+32+S T 2+T T) / 4.0\) & SFR2 & 60 \\
\hline & \(\operatorname{DERIV}(1,6)=-S-S T\) & SFR2 & 61 \\
\hline
\end{tabular}
```

    DERIV (1,7)=(-T+S2+ST2-TT)/4.0 SFR2 62
    DERIV (1,8) =(-1.0+TT)/2.0 SFR2
    DERIV (2,1)=(S+T2-SS-ST2)/4.0 SFR2 6
    DERIV}(2,2)=(-1.0+SS)/2.0 SFR2 65
    DERIV (2,3)=(-S+T2-SS+ST2)/4.0 SFR2 66
    DERIV (2,4)=-T-ST SFR2 67
    DERIV (2,5)=(S+T2+SS+ST2)/4.0 SFR2 68
    ```

```

    DERIV (2,7) =(-S+T2+SS-ST2)/4.0 SFR2 70
    DERIV(2,8)=-T+ST SFR2 }7
    RETURN SFR2 72
    30 CONTINUE SFR2 73
    SS=S*S SFR2 }7
    ST=S*T SFR2}
    TT=T*T
    S1=S+1.0
    T1=T+1.0
    S2=S*2.0
    T2=T*2.0
    S9=S-1.0
    T9=T-1.0
    C
C*** SHAPE FUNCTIONS FOR }9\mathrm{ NODED ELEMENT
C
SHAPE (1) =0.25*S9*ST*T9
SHAPE(2)=0.5*(1.0-SS)*T*T9
SHAPE(3)=0.25*S1*ST*T9
SHAPE(4)=0.5*S*S1*(1.0-TT)
SHAPE (5) =0.25*S1*ST*T1
SHAPE(6) =0.5*(1.0-SS)*T*T1
SHAPE (7) =0.25*S9*ST*T1
SHAPE(8)=0.5*S*S9*(1.0-TT)
SHAPE (9)=(1.0-SS)*(1.0-TT)
C
C*** SHAPE FUNCTION DERIVATIVES
C
DERIV (1, 1) =0.25*T*T9*(-1.0+S2)
DERIV (1,2)=-ST*T9
DERIV (1,3)=0.25*(1.0+S2)*T*T9
DERIV (1,4)=0.5*(1.0+S2)*(1.0-TT)
DERIV (1,5) =0.25*(1.0+S2)*T*T1
DERIV}(1,6)=-ST*T1
DERIV (1,7) =0.25*(-1.0+S2)*T*T1
DERIV (1,8)=0.5*(-1.0+S2)*(1.0-TT)
DERIV (1,9)=-S2*(1.0-TT)
DERIV (2,1)=0.25*(-1.0+T2)*S*S9
DERIV}(2,2)=0.5*(1.0-SS)*(-1.0+T2
DERIV}(2,3)=0.25*S*S1*(-1.0+T2
DERIV (2,4)=-ST*S1
DERIV (2,5)=0.25*S*S1*(1.0+T2)
DERIV(2,6)=0.5*(1.0-SS)*(1.0+T2)
DERIV(2,7) =0.25*S*S9*(1.0+T2)
DERIV (2,8)=-ST*S9
DERIV (2,9)=-T2*(1.0-SS)
20 CONTINUE
RETURN
END
SFR262

```
\(\operatorname{DERIV}(1,8)=(-1.0+T T) / 2.0\)
```SFR2
```

SFR2 $\operatorname{DERIV}(2,2)=(-1.0+S S) / 2.0$

```64SFR266
```

$\operatorname{DERIV}(2,4)=-T-S T$ SFR

```68
```

$\operatorname{DERIV}(2,6)=(1.0-S S) / 2.0$ 70

```SFR2
```

$\operatorname{DERIV}(2,8)=-T+S T$ SFR2 71
72
O CONTINUE
SFR2 74
$S T=S^{*} T$ SFR2
SFR2
SFR2 77
T1=T+1.0 SFR2 78

- SFR2 79
SFR2 80

```
```

SFR2 81

```T9-T-1
```

SFR2 82
C SFR2 83

```C
```

SFR2 84

```SFR2 85
```

SFR2 86
SFR2 87
SFR2 88
SFR2

```SFR2
```

```SFR2SFR2 91
```

SFR2 92
SFR2 93
SFR2 94
C SFR2 95

```
SFR2 }9
SFR2 }9
SFR2 98
SFR2 }9
SFR2 
SFR2 101
SFR2 }10
SFR2 }10
SFR2 104
SFR2 105
SFR2 }10
SFR2 107
SFR2 }10
SFR2 109
SFR2 }11
SFR2 }11
SFR2 }11
SFR2 }11
SFR2 114
SFR2 }11
SFR2 }11
SFR2 }11
SFR2 }11
```


6.4.4 Subroutine JACOB2 for evaluating the Jacobian matrix

This subroutine calculates, for any sampling position, ξ_{P}, η_{P} (usually the
Gauss point), the following quantities:

- The Cartesian coordinates of the Gauss point which are stored in the array GPCOD ().
- The Jacobian matrix which is stored in XJACM (). For twodimensional applications the Jacobian matrix is defined by (6.44).
- The determinant of the Jacobian matrix, DJACB.
- The inverse of the Jacobian matrix which is stored as XJACI ().
- The Cartesian derivatives $\partial N_{i}{ }^{(e)} / \partial x, \partial N_{i}{ }^{(e)} / \partial y$ (or $\partial N_{i}{ }^{(e)} / \partial r, \partial N_{i}^{(e)} / \partial z$), of the element shape functions. These quantities are defined in (6.48).


```
    1 0 \text { CONTINUE JACB } 5 1
600 FORMAT(//,36H PROGRAM HALTED IN SUBROUTINE JACOB2,/,11X,
.22H ZERO OR NEGATIVE AREA,/,10X,16H ELEMENT NUMBER ,I5)
    RETURN
    END
JACB 52
JACB 53
JACB 54
JACB 55
```


6.4.5 Subroutine LOADPS for evaluating the element nodal forces for plane and axisymmetric situations

The role of this subroutine is to evaluate the consistent nodal forces for each element due to discrete point loads, gravity loading and distributed edge loading/unit length of element. This subroutine is described in detail in Chapter 7, Ref. 4. The types of loading to be considered are controlled by input parameters IPLOD, IGRAV, IEDGE. Nonzero values of these respective items indicate that point loads, gravity loading or distributed edge loading is to be considered.

The consistent nodal loads are evaluated for each element separately and stored in the array RLOAD (IELEM, IEVAB) where IELEM indicates the element and IEVAB ranges over the degrees of freedom of the element. For equation solution by the frontal process it is not necessary to evaluate the total applied load acting at each node, with instead each element contribution being assembled directly into the global load vector during equation assembly and solution.

Point loads

If parameter IPLOD is nonzero the applied nodal loads are read as input. For each particular node the applied forces are associated with any one of the elements attached to it ; since each element contribution will be assembled before equation solution. Thus a search is performed over all elements until the node number is found in an element and the nodal loads are then associated with the appropriate degrees of freedom of that element.

Gravity loading

For plane stress or plane strain problems the direction in which gravity acts need not coincide with either of the coordinate axes. Therefore the direction in which gravity acts must be defined as shown in Fig. 6.7 by specifying the angle θ which the gravity axis makes with the positive y axis. The intensity of the loading is defined by specifying the gravitational acceleration, g, which acts. For axisymmetric problems, of course, the gravity axis must coincide with the z axis.

The consistent nodal forces for node i of an element are then given by

$$
\left[\begin{array}{c}
P_{x i} \tag{6.61}\\
P_{y j i}
\end{array}\right]^{(\rho)}=\int_{g^{(r)}} N_{i}^{(e)} \rho g\left[\begin{array}{c}
\sin \theta \\
-\cos \theta
\end{array}\right] d \Omega,
$$

in which ρ is the material mass density. Integrated numerically this becomes

$$
\left[\begin{array}{l}
P_{x i} \tag{6.62}\\
P_{y i}
\end{array}\right]^{(e)}=\sum_{n=1}^{N G A u s} \sum_{m=1}^{\text {NGAUS }} \rho g t\left[\begin{array}{r}
\sin \theta \\
-\cos \theta
\end{array}\right] N_{i}\left(\xi_{n}, \eta_{m}\right) W_{n} W_{m} \operatorname{det} J
$$

where t is the element thickness for plane problems. For axisymmetric applications t is replaced by $2 \pi r_{P}$, where r_{P} is the radial distance to the Gauss point under consideration.

- Direction in which gravity acts

Fig. 6.7 Specification of the gravity axis for two-dimensional problems.

Distributed edge loading

Any element edge can have a distributed loading per unit length in a normal and tangential direction prescribed to it as shown in Fig. 6.8. These distributed forces can vary (independently) along the edges. For the quadratic elements considered in this text, a quadratic loading distribution can, at best, be accommodated. The variation is defined by prescribing the normal and tangential values at the three nodal points forming the element edge to which the loads are applied. For linear quadrilateral elements, only a linear distributed load variation can be accommodated. In order to be consistent with the order of listing of nodal connection numbers in the element topology definition, the three (or two) nodes forming the loaded edge must also be listed in an anticlockwise sequence with respect to the loaded element. The positive directions of normal and tangential loading are indicated in Fig. 6.8.

The consistent nodal forces for node i can be shown to be ${ }^{(t)}$

$$
\begin{align*}
& P_{x i}{ }^{(e)}=\int_{I^{(e)}} N_{i}^{(e)}\left(p_{t} \frac{\dot{c} x}{\dot{c} \xi}-p_{n} \frac{\dot{c}}{\dot{c} \xi}\right) d \xi \\
& P_{y i}(e)=\int_{\Gamma^{(e)}} N_{i}^{(e)}\left(p_{n} \frac{\dot{c} x}{\dot{c} \xi}+\frac{c}{c} \frac{\dot{c}}{\dot{c} \xi}\right) d \xi, \tag{6.63}
\end{align*}
$$

where p_{n} and p_{t} are the normal and tangential distributed loads respectively. Integration is taken along the loaded element edge $\Gamma^{(e)}$, which is arbitrarily chosen to be defined by $\eta=-1$, as shown in Fig. 6.8.

Fig. 6.8 Normal and tangential distributed loading on an element edge.

For axisymmetric problems the edge loading is in fact a distributed loading/unit area, since integration is additionally made over the circumferential direction.

If more than one type of loading acts on an element, the total nodal forces are accumulated and stored in array RLOAD. This total loading is then applied incrementally during elasto-plastic solution.

SUBROUTINE LOADPS(COORD, LNODS,MATNO,MELEM, MMATS,MPOIN, NELEM,	LDPS 1
- NEVAB, NGAUS, NNODE, NPOIN, NSTRE, NTYPE, POSGP,	LDPS 2
PROPS, RLOAD, WEIGP, NDOFN)	LDPS 3
	LDPS 4
	LDPS 5
C	LDPS 6
C**** THIS SUBROUTINE EVALUATES THE CONSISTENT NODAL FORCES FOR EACH	LDPS 7
C ELEMENT	LDPS 8
C	LDPS 9
	LDPS 10
DIMENSION CARTD (2,9$), \operatorname{COORD}(\mathrm{MPOIN}, 2), \operatorname{DERIV}(2,9), \mathrm{DGASH}(2)$,	LDPS 11
DMATX (4,4) , ELCOD $(2,9)$, LNODS (MELEM, 9) , MATNO(MELEM) ,	LDPS 12
NOPRS(4), PGASH(2), POINT (2), POSGP(4), PRESS (4, 2),	LDPS 13
PROPS (MMATS , 7) , RLOAD (MELEM, 18), SHAPE (9) , STRAN(4),	LDPS 14
STRES(4), TITLE (12),	LDPS 15
- WEIGP(4), $\operatorname{GPCOD}(2,9)$	LDPS 16
TWOPI $=6.283185308$	LDPS 17
DO 10 IELEM $=1$, NELEM	LDPS 18
DO 10, IEVAB $=1$, NEVAB	LDPS 19
$10 \mathrm{RLOAD}($ IELEM, IEVAB $)=0.0$	LDPS 20
$\operatorname{READ}(5,901)$ TITLE	LDPS 21
901 FORMAT (12A6)	LDPS 22
WRITE (6,903) TITLE	LDPS 23
903 FORMAT ($1 \mathrm{HO}, 12 \mathrm{~A})$	LDPS 24

```
C La* PED DATA CONTROLING LOADTNG TYPES TO BE INPUTTED 25
C*** READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED LDPS 26
C
        READ(5,919) IPLOD, IGRAV,IEDGE
    WRITE(6,9i`) IPLOD,IGRAV, IEDGE
    919 FORMAT(3I5)
C
C*** READ NODAL POINT LOADS
C
            IF(IPLOD.EQ.0) GO TO 500
            LDPS }2
            LDPS
            LDPS
            LDPS }2
    F19 FORMAT(3I5) LDPS
    LDPS }3
    LDPS
    LDPS 32
        20 READ(5,9*+) LODPT, (POINT(IDOFN),IDOFN=1,2) LDPS 35
    LDPS 
            WRITE(6,931) LODPT,(POINT(IDOFN),IDOFN=1,2) LDPS 36
    931 FORMAT(I5,2F10.3) LDPS 37
C
C*** ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT
LDPS }3
C
    DO 30 IELEM=1,NELEM
    LDPS }4
    DO 30 IELEM=1,NELEM LDPS }4
    DO 30 INODE=1,NNODE LDPS 42
            NLOCA=IABS(LNODS(IELEM,INODE)) LDPS 43
        30 IF(LODPT.EQ.NLOCA) GO TO 40 LDPS 44
        40 DO 50 IDOFN=1,2 LDPS 45
            NGASH=(INODE-1)*2+IDOFN LDPS 46
        50 RLOAD(IELEM,NGASH)=POINT(IDOFN) LDPS 47
            IF(LODPT.LT.NPOIN) GO TO 20 LDPS 48
```



```
    IF(IGRAV.EQ.0) GO TO 600
c
C*** GRAVITY LOADING SECTION
C
C
C*** READ GRAVITY aNGLE AND GRAVITATIONAL CONSTANT
C
    READ (5,906) THETA,GRAVY
    906 FORMAT(2F10.3)
    WRITE (6,911) THETA,GRAVY
    911 FORMAT(1H0,1%H GRAVITY ANGLE =,F10.3,19H GRAVITY CONSTANT =,F10.3)LDPS 60
    THETA=THETA/57.295779514
C
C*** LOOP OVER EACH ELEMENT
    LDPS }6
62
C LDPS 63
    DO 90 IELEM=1,NELEM LDPS 65
C
C*** SET UP PRELIMINARY CONSTANTS 
LDPS 66
C LDPS 68
    LPROP=MATNO(IELEM) LDPS 69
    THICK=PROPS(LPROP,3) LDPS 70
    DENSE=PROPS(LPROP,4) LDPS 71
    IF(DENSE.EQ.0.0) GO TO 90 LDPS }7
    GXCOM=DENSE*GRAVY*SIN(THETA) LDPS 73
    GYCOM=-DENSE*GRAVY*COS(THETA) LDPS 74
C
C*** COMPUTE COORDINATES OF THE ELEMENT NODAL POINTS
LDPS }7
LDPS 76
C
    DO 60 INODE=1,NNODE LDPS 78
    LNODE=IABS(LNODS(IELEM,INODE))
LDPS }7
LDPS }7
    DO 60 IDIME=1,2
LDPS }7
    DO 60 IDIME=1,2 1-2,
C
    60 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) LDPS 81
C Cor l
LDPS 82
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION
LDPS 83
C
    KGASP=0
L.DPS 84
    DO 80 IGAUS=1,NGAUS LDPS 85
    DO 80 IGAUS=1,NGAUS LDPS 86
    DO 80 JGAUS=1, NGAUS
LDPS }8
    EXISP=POSGP(IGGAUS)
    LDPS }8
    ETASP=POSGP(JGAUS)
LDPS 89
```

```
C LDPS 90
CH*** COMPUTE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS AND ELEMENTAL LDPS 91
C VOLUME LDPS 92
C LDPS 93
    CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) LDPS 94
    KGASP=KGASP+1 LDPS 95
    CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP, LDPS 96
    - NNODE,SHAPE) LDPS 97
    DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) LDPS 98
    IF(THICK.NE.0.0) DVOLU=DVOLU*THICK LDPS 99
    IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP) LDPS 100
C
C**** CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODAL POINTS
C
    DO 70 INODE=1, NNODE
    NGASH=(INODE-1)*2+1
        MGASH=(INODE-1)*2+2
        RLOAD(IELEM,NGASH)=RLOAD(IELEM,NGASH)+GXCOM*SHAPE (INODE)*DVOLU
        70 RLOAD(IELEM,MGASH)=RLOAD(IELEM,MGASH)+GYCOM*SHAPE(INODE)*DVOLU
        8 0 ~ C O N T I N U E ~
        9 0 ~ C O N T I N U E ~
        6 0 0 ~ C O N T I N U E ~
            IF(IEDGE.EQ.0) GO TO 700
C
C
    READ (5,932) NEDGE
    -932 FORMAT(I5)
    WRITE (6,912) NEDGE
    912 FORMAT (1HO,5X,21HNO. OF LOADED EDGES =,I5)
    WRITE (6,915)
    915 FORMAT(1H0,5X,38HLIST OF LOADED EDGES AND APPLIED LOADS)
    NODEG=3
    NCODE=NNODE
    IF(NNODE.EQ.4) NODEG=2
    IF(NNODE.EQ.9) NCODE=8
C
C*** LOOP OVER EACH LOADED EDGE
C
    DO 160 IEDGE=1,NEDGE
C
C*** READ DATA LOCATING THE LOADED EDGE AND APPLIED LOAD
C
    READ(5,902) NEASS,(NOPRS(IODEG),IODEG=1,NODEG)
    902 FORMAT(4I5)
        WRITE(6,913) NEASS, (NOPRS(IODEG), IODEG=1,NODEG)
    913 FORMAT(I 10,5X,3I5)
        READ(5,914) ((PRESS(IODEG,IDOFN),IDOFN=1, 2), IODEG=1, NODEG)
        WRITE(6,914) ((PRESS(IODEG,IDOFN),IDOFN=1,2),IODEG=1,NODEG)
    914 FORMAT(6F10.3)
        ETASP=-1.0
C
C*** CALCULATE THE COORDINATES OF THE NODES OF THE ELEMENT EDGE
C
    DO 100 IODEG=1,NODEG
    LNODE=NOPRS(IODEG)
        DO 100 IDIME=1,2
    100 ELCOD(IDIME,IODEG)=COORD(LNODE,IDIME)
C
C*** ENTER LOOP FOR LINEAR NUMERICAL INTEGRATION
    DO }150\mathrm{ IGAUS=1, NGAUS
    EXISP=POSGP(IGAUS)
C
C*知莫 EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS
C
```

```
    CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) LDPS 155
C LDPS 156
C*** CALCULATE COMPONENTS OF THE EQUIVALENT NODAL LOADS LDPS 157
C
    DO 110 IDOFN=1,2
    PGASH(IDOFN)=0.0
    DGASH(IDOFN ) =0.0
    DO 110 IODEG=1, NODEG
    PGASH(IDOFN)=PGASH(IDOFN)+PRESS(IODEG, IDOFN)*SHAPE(IODEG)
    110 DGASH(IDOFN)=DGASH(IDOFN) +ELCOD (IDOFN,IODEG)*DERIV (1,IODEG)
    DVOLU=WEIGP(IGAUS)
    PXCOM=DGASH(1)*PGASH(2)-DGASH(2)*PGASH(1)
    PYCOM=DGASH(1)*PGASH(1) +DGASH(2)*PGASH(2)
    IF(NTYPE.NE.3) GO TO 115
    RADUS=0.0
    DO 125 IODEG=1,NODEG
    125 RADUS=RADUS+SHAPE(IODEG)*ELCOD(1,IODEG)
    DVOLU=DVOLU*TWOPI*RADUS
    115 CONTINUE
C
C*** ASSOCIATE THE EQUIVALENT NODAL EDGE LOADS WITH AN ELEMENT
C
    DO 120 INODE=1,NNODE
    NLOCA=IABS(LNODS(NEASS,INODE))
    120 IF(NLOCA.EQ.NOPRS(1)) GO TO 130
    130 JNODE=INODE+NODEG-1
    KOUNT=0
    DO 140 KNODE=INODE,JNODE
    KOUNT=KOUNT+1
    NGASH=(KNODE-1)*NDOFN+1 LDPS 184
```



```
    IF(KNODE.GT.NCODE) NGASH=1 LDPS 186
    IF(KNODE.GT.NCODE) MGASH=2 LDPS 187
    RLOAD(NEASS,NGASH)=RLOAD(NEASS,NGASH)+SHAPE(KOUNT)*PXCOM*DVOLU LDPS }18
    140 RLOAD (NEASS,MGASH)=RLOAD(NEASS,MGASH)+SHAPE(KOUNT)*PYCOM*DVOLU LDPS 189
    150 CONTINUE
    160 CONTINUE
    700 CONTINUE
    WRITE (6,907)
    IDPS }19
    LDPS 191
    LDPS }19
    LDPS }19
    907 FORMAT( 1HO,5X,36H TOTAL NODAL FORCES FOR EACH ELEMENT) LDPS 194
    DO 290 IELEM=1,NELEM
    LDPS }19
    290 WRITE(6,905) IELEM, (RLOAD (IELEM, IEVAB),IEVAB=1,NEVAB) LDPS 196
    905 FORMAT(iX,I4,5X,8E12.4/(10X,8E12.4)) LDPS 197
    RETURN LDPS 198
    END
LDPS 199
```


6.4.6 Subroutine LOADPB for evaluating the element nodal forces for plate bending applications

For plate bending applications two forms of loading will be considered. Firstly load components corresponding to the permissible generalised forces may be prescribed at the nodal points. Thus with respect to Fig. 6.9, a load in the z direction and couples acting in both the $x z$ and $y z$ planes may be input at each nodal point. Secondly a uniformly distributed load acting normal to the plate (i.e. in the z direction) may be applied. As in Section 6.4.5 such a loading must be converted into equivalent nodal forces before equation solution takes place. The equivalent nodal forces for node i take the form ${ }^{(4)}$

$$
\left[\begin{array}{c}
P_{i} \tag{6.64}\\
M_{x i} \\
M_{y i}
\end{array}\right]^{(e)}=\int_{A^{(e)}} N_{i}^{(e)}\left[\begin{array}{l}
q \\
0 \\
0
\end{array}\right] d A,
$$

where q is the distributed load intensity and integration is taken over the element area. The structure of the subroutine is similar to that of subroutine LOADPS described in Section 6.4.5.

Fig. 6.9 Applied nodal and distributed forces for plate applications

C***	ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT	LOAD	35
C		LOAD	36
	DO 30 IELEM $=1$, NELEM	LOAD	37
	DO 30 INODE $=1$, NNODE	LOAD	38
	NLOCA=IABS(LNODS(IELEM, INODE))	LOAD	. 39
30	IF(LODPT.EQ.NLOCA) GO TO 40	LOAD	40
40	DO 50 IDOFN $=1,3$	LOAD	41
	NGASH= (INODE-1)*3+IDOFN	LOAD	42
50	RLOAD (IELEM, NGASH) $=$ POINT(IDOFN)	LOAD	43
	IF(LODPT.LT.NPOIN) GO TO 20	LOAD	44
500	CONTINUE	LOAD	45
C		LOAD	46
$\begin{aligned} & \mathbf{C}^{* * *} \end{aligned}$	LOOP OVER EACH ELEMENT	LOAD	47
		LOAD	48
	DO 220 IELEM=1, NELEM	LOAD	49
	LPROP=MATNO (IELEM)	LOAD	50
	UDLOD $=$ PROPS (LPROP , 4)	LOAD	51
	IF(UDLOD.EQ.0.0)GO to 220	LOAD	52
$\begin{aligned} & C \\ & C^{* * *} \\ & C \end{aligned}$		LOAD	53
	evaluate the coordinates of the element nodal points	LOAD	54
		LOAD	55
	DO 140 INODE $=1$, NNODE	LOAD	56
	LNODE=LNODS (IELEM, INODE)	LOAD	57
	LNODE $=$ IABS (LNODE)	LOAD	58
	DO 140 IDIME $=1,2$	LOAD	59
	ELCOD (IDIME, INODE) $=$ COORD ($\mathrm{LNODE}, \mathrm{IDIME}$)	LOAD	60
140	CONTINUE	LOAD	61
	KGASP $=0$	LOAD	62
	CALL GAUSSQ (NGAUS, POSGP, WEIGP)	LOAD	63
$\begin{aligned} & C \\ & C * * \\ & C \end{aligned}$		LOAD	64
	ENTER LOOPS FOR NUMERICAL INTEGRATION	LOAD	65
		LOAD	66
	DO 200 IGAUS $=1$, NGAUS	LOAD	67
	EXISP=POSGP(IGAUS)	LOAD	68
	DO 200 JGAUS $=1$, NGAUS	LOAD	69
	ETASP=POSGP(JGAUS)	LOAD	70
	KGASP $=\mathrm{KGASP}+1$	LOAD	71
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} * * \end{aligned}$		LOAD	72
	EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING	LOAD	73
$\stackrel{C}{C}$	POINTS AND ELEMENTAL AREA	LOAD	74
	CALL SFR2 (DERIV, ETASP, EXISP, NNODE, SHAPE)	LOAD	76
	CALL JACOB2 (CARTD, DERIV, DJACB, ELCOD,GPCOD, IELEM,	LOAD	77
	- KGASP, NNODE, SHAPE)	LOAD	78
	DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS)	LOAD	79
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C}^{* * *} \end{aligned}$		LOAD	80
	Calculate loads and associate with element nodalpoints	LOAD	81
C		LOAD	82
	DO 180 INODE $=1$, NNODE	LOAD	83
	NPOSN= (INODE-1)*3+1	LOAD	84
	RLOAD (IELEM, NPOSN) = RLOAD (IELEM, NPOSN) +	LOAD	85
	- SHAPE (INODE)*UDLOD*DAREA	LOAD	86
	CONTINUE	LOAD	87
200	CONTINUE	LOAD	88
220	CONTINUE	LOAD	89
	WRITE $(6,907)$	LOAD	90
907	FORMAT ($1 \mathrm{HO} 0,5 \mathrm{X}, 36 \mathrm{H}$ TOTAL NODAL FORCES FOR EACH ELEMENT)	LOAD	91
	DO 290 IELEM $=1$, NELEM	LOAD	92
	WRITE (6,905) IELEM, (RLOAD (IELEM, IEVAB), IEVAB $=1$, NEVAB)	LOAD	93
905	FORMAT (1X, I4,5X,8E12.4/($10 \mathrm{X}, 8 \mathrm{E} 12.4$))	LOAD	94
	RETURN	LOAD	95
	END	LOAD	96

6.4.7 Subroutine BMATPS for evaluating the strain matrix B for plane and axisymmetric situations

The function of this subroutine is to evaluate the strain matrix \boldsymbol{B} at any position within an element. The relevant expressions are given in Table 6.1. The B matrix is stored in array BMATX ().

C*****	SUBROUTINE BMATPS(BMATX,CARTD, NNODE, SHAPE,GPCOD,NTYPE, KGASP) **	BMPS BMPS	
c		BMPS	3
C****	THIS SUBROUTINE EVALUATES THE STRAIN-DISPLACEMENT MATRIX	BMPS	
C		BMPS	
C****	**	BMPS	6
	DIMENSION $\operatorname{BMATX}(4,18), \operatorname{CaRTD}(2,9), \operatorname{SHAPE}(9), \operatorname{GPCOD}(2,9)$	BMPS	
	NGASH $=0$	BMPS	8
	DO 10 INODE $=1$, NNODE	BMPS	
	MGASH $=$ NGASH +1	BMPS	10
	NGASH $=$ MGASH +1	BMPS	11
	$\operatorname{BMATX}(1, \mathrm{MGASH})=$ CARTD $(1, \mathrm{INODE})$	BMPS	12
	$\operatorname{BMATX}(1, \mathrm{NGASH})=0.0$	BMPS	13
	$\operatorname{BMATX}(2, M G A S H)=0.0$	BMPS	14
	BMATX (2, NGASH$)=$ CARTD ($2, \mathrm{INODE}$)	BMPS	15
	$\operatorname{BMATX}(3, \mathrm{MGASH})=\operatorname{CARTD}(2, \mathrm{INODE})$	BMPS	16
	BMATX (3 , NGASH)=CARTD (1, INODE $)$	BMPS	17
	IF (NTYPE.NE.3) GO TO 10	BMPS	18
	BMATX ($4, \mathrm{MGASH}$) $=$ SHAPE (INODE)/GPCOD ($1, \mathrm{KGASP}$)	BMPS	19
	BMATX (4, NGASH$)=0.0$	BMPS	20
10	CONTINUE	BMPS	21
	$\begin{aligned} & \text { RETURN } \\ & \text { END } \end{aligned}$	BMPS BMPS	$\begin{aligned} & 22 \\ & 23 \end{aligned}$

6.4.8 Subroutine BMATPB for evaluating the strain matrix B for plate bending problems

This subroutine evaluates the strain matrix \boldsymbol{B} within any point of an element for plate bending applications according to Table 6.1. The \boldsymbol{B} matrix is partitioned into plane, BPLAN, flexural, BFLEX, and shear, BSHER, contributions.


```
C*** FORM BFLEX BMAT 22
    10 IF(IFFLE.EQ.0) GO TO 20 BMAT
        DO 2 IROWS=1,3 BMAT
        DO 2 JCOLS=1,3 BMAT
    2 BFLEX(IROWS,JCOLS)=0.0 BMAT 26
        BFLEX(1,2)=-DNKDX BMAT 27
        BFLEX(2,3)=-DNKDY BMAT 28
        BFLEX(3,2)=-DNKDY BMAT 29
        BFLEX(3,3)=-DNKDX BMAT 30
C*** FORM BSHER BMAT 31
    20 IF(IFSHE.EQ.0) RETURN BMAT 32
        DO 3 IROWS=1,2 BMAT 33
        DO 3 JCOLS=1,3 BMAT 34
    3 BSHER(IROWS,JCOLS)=0.0 BMAT 35
    BSHER(1,1)=DNKDX BMAT 36
    BSHER(1,2)=-SHAPE(KNODDE) BMAT 37
    BSHER(2,1)=DNKDY BMAT 38
    BSHER(2,3)=-SHAPE(KNODE) BMAT 39
    RETURN BMAT 40
    END BMAT 41
```


6．4．9 Subroutine MODPS for evaluating the D matrix for plane and axisymmetric situations

This subroutine simply evaluates the elasticity matrix \boldsymbol{D} for either plane stress，plane strain or axisymmetric situations according to（6．7），（6．16）or （6．24）respectively．The \boldsymbol{D} matrix is stored in the array DMATX（ ）．

```
            SUBROUTINE MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS) MDPS
C************************************************************************ MDPS
C MDPS
C**** THIS SUBROUTINE EVALUATES THE D-MATRIX MDPS
C
C************************************************************************** MDPS
    DIMENSION DMATX(4,4),PROPS(MMATS,7) MDPS 7
    YOUNG=PROPS(LPROP,1)
    POISS=PROPS(LPROP,2) MDPS 9
    DO 10 ISTR }1=1,4 MDPS 1
    DO 10 JSTR1=1,4 MDPS
    10 DMATX(ISTR1,JSTR1)=0.0 MDPS 12
    IF(NTYPE.NE.1) GO TO 4 MDPS 13
C
C*** D MATRIX FOR PLANE STRESS CASE MDPS 15
C MDPS 16
    CONST=YOUNG/(1.0-POISS*POISS) MDPS 17
    DMATX (1,1)=CONST MDPS 18
    DMATX(2,2)=CONST
    MDPS 19
    DMATX(1,2)=CONST*POISS MDPS 20
    DMATX (2,1)=CONST*POISS MDPS 21
    DMATX (3,3)=(1.0-POISS)*CONST/2.0 MDPS 22
    RETURN MDPS
    4 IF(NTYPE.NE.2) GO TO 6 MDPS 24
C
C**⿱⿱亠䒑日\zh20
MDPS 25
C
    CONST=YOUNG*(1.0-POISS)/((1.0+POISS)*(1.0-2.0*POISS)) MDPS 28
    DMATX (1,1)=CONST MDPS 29
    DMATX(2,2)=CONST MDPS 30
    DMATX(1,2)=CONST*FOISS/(1.0-POISS) MDPS 31
    DMATX(2,1)=CONST*POISS/(1.0-POISS) MDPS 32
```

```
            DMATX(3,3)=(1.0-2.0*POISS)*CONST/(2.0*(1.0-POISS)) MDPS 33
```

 DMATX(3,3)=(1.0-2.0*POISS)*CONST/(2.0*(1.0-POISS)) MDPS 33
 RETURN MDPS
 RETURN MDPS
 MDPS}3
 MDPS}3
 6 IF(NTYPE.NE.3) GO TO 8 MDPS 35
 6 IF(NTYPE.NE.3) GO TO 8 MDPS 35
 C
C
C*** D MATRIX FOR AXISYMMETRIC CASE
C*** D MATRIX FOR AXISYMMETRIC CASE
C
C
CONST=YOUNG*(1.0-POISS)/((1.0+POISS)*(1.0m2.0*POISS))
CONST=YOUNG*(1.0-POISS)/((1.0+POISS)*(1.0m2.0*POISS))
CONSS=POISS/(1.0-POISS)
CONSS=POISS/(1.0-POISS)
DMATX (1,1)=CONST
DMATX (1,1)=CONST
DMATX(2,2)=CONST MDPS 4
DMATX(2,2)=CONST MDPS 4
DMATX(3,3)=CONST*(1.0-2.0*POISS)/(2.0*(1.0-POISS)) MDPS 43
DMATX(3,3)=CONST*(1.0-2.0*POISS)/(2.0*(1.0-POISS)) MDPS 43
DMATX(1,2)=CONST*CONSS MDPS }4
DMATX(1,2)=CONST*CONSS MDPS }4
DMATX(1,4)=CONST*CONSS MDPS 45
DMATX(1,4)=CONST*CONSS MDPS 45
DMATX(2,1)=CONST*CONSS MDPS 46
DMATX(2,1)=CONST*CONSS MDPS 46
DMATX(2,4)=CONST*CONSS MDPS 47
DMATX(2,4)=CONST*CONSS MDPS 47
DMATX(4,1)=CONST*CONSS MDPS 48
DMATX(4,1)=CONST*CONSS MDPS 48
DMATX(4,2)=CONST*CONSS MDPS 49
DMATX(4,2)=CONST*CONSS MDPS 49
DMATX(4,4)=CONST MDPS 50
DMATX(4,4)=CONST MDPS 50
8 CONTINUE MDPS 51
8 CONTINUE MDPS 51
RETURN MDPS 52
RETURN MDPS 52
END
END
MDPS 53

```
MDPS 53
```


6.4.10 Subroutine MODPB for evaluating the D matrix for plate bending applications

This subroutine evaluates the elasticity matrix D for plate bending situations according to (6.35). Again the result is partitioned into plane, DPLAN, flexural, DFLEX, and shear, DSHER, contributions.


```
    DFLEX(2,1)=CONST*POISS MODP 34
    DFLEX(3,3)=CONST*(1.-POISS)/2. MODP 35
C*** FORM DSHER MODP 36
    20 IF(IFSHE.EQ.0) RETURN MODP }3
    DO 3 IROWS=1,2 MODP 38
    DO 3 JCOLS =1,2 MODP 39
    3 DSHER(IROWS,JCOLS)=0.0 MODP 40
    DSHER(1,1)=(YOUNG*THICK)/(2.4+2.4*POISS) MODP }4
    DSHER (2,2)=(YOUNG*THICK)/(2.4+2.4*POISS) MODP 42
    RETURN MODP 43
    END
    MODP }4
```


6.4.11 Subroutine DBE for formulating the matrix product $D B$

This subroutine simply multiplies the elasticity matrix \boldsymbol{D} by the strain matrix \boldsymbol{B}.

SUBROUTINE DBE (BMATX, DBMAT, DMATX, MEVAB, NEVAB, NSTRE, NSTR1)	DBYB
C***	DBYB 2
C	DBYB 3
C**** THIS SUBROUTINE MULTIPLIES THE D-MATRIX BY THE B-MATRIX	DBYB 4
C	DBYB 5
$\mathrm{C}^{* ~}$	DBYB 6
DIMENSION BMATX(NSTR1,MEVAB) , DBMAT (NSTR1, MEVAB),	DBYB 7
- DMATX(NSTR1,NSTR1)	DBYB 8
DO 2 ISTRE=1,NSTRE	DBYB 9
DO 2 IEVAB=1, NEVAB	DBYB 10
DBMAT (ISTRE, IEVAB) $=0.0$	DBYB 11
DO 2 JSTRE=1,NSTRE	DBYB 12
DBMAT (ISTRE, IEVAB) = DBMAT (ISTRE, IEVAB) +	DBYB 13
. DMATX (ISTRE, JSTRE)*BMATX (JSTRE, IEVAB)	DBYB 14
2 CONTINUE	DBYB 15
RETURN	DBYB 16
END	DBYB 17

6.4.12 Subroutine FRONT for equation solution by the frontal method

The function of this subroutine is to assemble the contributions from each element to form the global stiffness matrix and global load vector and to solve the resulting set of simultaneous equations by Gaussian direct elimination. The main feature of the frontal solution technique is that it assembles the equations and eliminates the variables at the same time. Complete details of the frontal process can be found in Chapter 8, Ref. 4. The subroutine presented in Ref. 4 differs from the one listed in this section in three important ways:

- As described in Sections 3.3 and 3.4 for one-dimensional problems, a full equation solution need only be undertaken for iterations during which the element stiffnesses are being modified. Such a situation is recognised by the resolution counter KRESL $=1$. On the other hand if the element stiffnesses have not been changed during the iteration, signified by KRESL $=2$, only the R.H.S. or load terms need be reduced during the elimination phase. This situation is identical to the case of solution for second and subsequent loading cases in elastic problems.
- The reduced equations corresponding to eliminated variables are stored in core in a temporary array termed a buffer area. As soon as this array is full, the information is then transferred to disc. The number of reduced equations that can be accommodated in the buffer area is governed by the specified parameter, MBUFA. Thus on elimination of a variable a counter over the number of eliminated variables is incremented by one and the reduced equations stored in core. The counter is checked against the permissible buffer length, MBUFA. If this has been reached, the buffer array is transferred to disc file and the counter reset to zero. On backsubstitution the contents of a complete buffer length are read from discfile by backspacing.
- The displacement and reaction values evaluated by subroutine FRONT during each iteration are incremental values and must be accumulated to give the total displacements, TDISP () and total reactions, TREAC (). Also the incremental reactions must be added into the vector of total applied loads, TLOAD (), in order to check for convergence of the iteration process; since equilibrium is satisfied when the applied loads and reactions at restrained nodes balance with the nodal forces equivalent to the internal stress field.

The displacements and reactions evaluated in Subroutine FRONT are stored for output by Subroutine OUTPUT described in Section 7.8.8.


```
    130 CONTINUE FRNT 3
    IF(KLAST.NE.0) LNODS(KLAST,NLAST) =-IPOIN
    FRNT
        32
    140 CONTINUE FRNT
    455 CONTINUE
C
C*** START BY INITIALIZING EVERYTHING THAT MATTERS TO ZERO
C
            DO }450\mathrm{ IBUFA=1,MBUFA
    450 EQRHS(IBUFA)=0.0
            DO 150 ISTIF=1,MSTIF
    150 GSTIF(ISTIF)=0.0
        DO 160 IFRON=1,MFRON
        GLOAD(IFRON ) =0.0
        VECRV (IFRON) =0.0
        NACVA(IFRON)=0
        DO }160\mathrm{ IBUFA=1,MBUFA
    160 EQUAT(IFRON,IBUFA)=0.0
C
C*** AND PREPARE FOR DISC READING AND WRITING OPERATIONS
C
    MBUFA=0
    IF(KRESL.GT.1) NBUFA=MBUFA
        REWIND 1
        REWIND
        REWIND
        REWIND }
        REWIND }
C
C*** ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOP
C
    NFRON=0
    KELVA=0
    DO 320 IELEM=1,NELEM
        IF(KRESL.GT.1) GO TO 400
        KEVAB=0
        READ(1) ESTIF
        DO 170 INODE=1,NNODE
        DO 170 IDOFN=1,NDOFN
        NPOSI=(INODE-1)*NDOFN+IDOFN
        LOCNO=LNODS(IELEM,INODE)
        IF(LOCNO.GT.0) LOCEL(NPOSI) =(LOCNO-1)*NDOFN+IDOFN
        IF(LOCNO.LT.0) LOCEL(NPOSI) =(LOCNO +1)*NDOFN-IDOFN
    170 CONTINUE
C
C*** START BY LOOKING FOR EXISTING DESTINATIONS
C
        DO 210 IEVAB=1,NEVAB
        NIKNO=IABS(LOCEL(IEVAB))
        KEXIS=0
        DO 180 IFRON=1,NFRON
        IF(NIKNO.NE.NACVA(IFRON)) GO TO }18
        KEVAB=KEVAB+1
        KEXIS=1
        NDEST(KEVAB)=IFRON
        4
    180 CONTINUE
        IF(KEXIS.NE.0) GO TO 210
C
C*** WE NOW SEEK NEW EMPTY PLACES FOR DESTINATION VECTOR
C
DO 190 IFRON=1,MFRON FRNT 90
FRNT }8
IF(NACVA(IFRON).NE.0) GO TO 190 FRNT 91
NACVA(IFRON)=NIKNO FRNT 92
KEVAB=KEVAB+1 F FRNT 93
NDEST(KEVAB)=IFRON FRNT }9
GO TO 200
FRNT }9
```

```
    190 CONTINUE
CN** THE NEW PLACES MAY DEmAND AN INCREASE IN CURRENT FRONTWIDTH
    FRNT
    FRNT 9
C
    200 IF(NDEST(KEVAB).GT.NFRON) NFRON=NDEST(KEVAB)
    210 CONTINUE
            WRITE(8) LOCEL,NDEST,NACVA,NFRON
    400 IF(KRESL.GT.1) READ (8) LOCEL,NDEST,NACVA,NFRON
C
C### ASSEMBLE ELEMENT LOADS
C
    DO 220 IEVAB=1,NEVAB
    IDEST=NDEST(IEVAB)
    GLOAD(IDEST)=GLOAD(IDEST)+ELOAD(IELEM,IEVAB)
C
C*** ASSEMBLE THE ELEMENT STIFFNESSES-BUT NOT IN RESOLUTION
C
        IF(KRESL.GT.1) GO TO 402
        DO 222 JEVAB=1,IEVAB
        JDEST=NDEST(JEVAB)
        NGASH=NFUNC(IDEST,JDEST)
        NGISH=NFUNC(JDEST,IDEST)
        IF(JDEST.GE.IDEST) GSTIF(NGASH)=GSTIF(NGASH)+ESTIF(IEVAB,JEVAB)
        IF(JDEST.LT.IDEST) GSTIF(NGISH)=GSTIF(NGISH)+ESTIF (IEVAB,JEVAB)
    222 CONTINUE
    402 CONTINUE
    220 CONTINUE
C
C*** RE-EXAMINE EACH ELEMENT NODE, TO ENQUIRE WHICH CAN BE ELIMINATED
C
    DO 310 IEVAB=1,NEVAB
    NIKNO=-LOCEL (IEVAB)
        IF(NIKNO.LE,0) GO TO 310
C
C*** FIND POSITIONS OF VARIABLES READY FOR ELIMINATION
C
    DO 300 IFRON=1,NFRON
    IF(NACVA(IFRON).NE.NIKNO) GO TO 300
    NBUFA=NBUFA+1
C
C**** WRITE EQUATIONS TO DISC OR TO TAPE
C
        IF(NBUFA.LE.MBUFA) GO TO 406
        NBUFA=1
        IF(KRESL.GT.1) GO TO 408
        WRITE(2) EQUAT,EQRHS,NPIVO,NAMEV
        GO TO 406
    408 WRITE(4) EQRHS
        READ(2) EQUAT,EQRHS,NPIVO,NAMEV
    4 0 6 ~ C O N T I N U E ~
C
C**: EXTRACT THE COEFFICIENTS OF THE NEW EQUATION FOR ELIMINATION
C
        IF(KRESL.GT.1) GO TO 404
        DO 230 JFRON=1,MFRON
        IF(IFRON.LT.JFRON) NLOCA=NFUNC(IFRON,JFRON)
        IF(IFRON.GE.JFRON) NLOCA=NFUNC(JFRON,IFRON)
        EQUAT(JFRON,NBUFA)=GSTIF(NLOCA)
    230 GSTIF(NLOCA)=0.0
    404 CONTINUE
C
C*** AND EXTRACT THE CORRESPONDING RIGHT HAND SIDES
C
        EQRHS(NBUFA)=GLOAD(IFRON)
        GLOAD(IFRON)=0.0
```

FRNT 97
C*** THE NEW PLACES MAY DEMAND AN INCREASE IN CURRENT FRONTWIDTH
C
200 IF(NDEST(KEVAB) .GT.NFRON) NFRON=NDEST(KEVAB)
210 CONTINUE
WRITE (8) LOCEL, NDEST, NACVA, NFRON
400 IF (KRESL.GT.1) READ (8) LOCEL, NDEST, NACVA, NFRON
C
C퓰 ASSEMBLE ELEMENT LOADS
C
DO 220 IEVAB $=1$, NEVAB
GLOAD (IDEST) $=\mathrm{GLOAD}$ (IDEST) + ELOAD (IELEM, IEVAB)
C^{C} Cind ASSEMBLE THE ELEMENT STIFFNESSES-BUT NOT IN RESOLUTION
C
IF(KRESL.GT.1) G0 TO 402
DO 222 JEVAB $=1$, IEVAB
JDEST=NDEST(JEVAB)
NGASH=NFUNC (IDEST, JDEST)
IF (JDEST.GE.IDEST) GSTIF (NGASH) =GSTIF (NGASH) +ESTIF (IEVAB, JEVAB)
IF(JDEST.LT. IDEST) GSTIF (NGISH) $=$ GSTIF (NGISH) + ESTIF (IEVAB, JEVAB)
402 CONTINUE
220 CONTINUE
C
C*** RE-EXAMINE EACH ELEMENT NODE, TO ENQUIRE WHICH CAN BE ELIMINATED
C
DO 310 IEVAB $=1$, NEVAB
IF(NIKNO.LE,0) GO TO 310
C
C
DO 300 IFRON $=1$, NFRON
IF(NACVA(IFRON).NE.NIKNO) GO TO 300
NBUFA $=$ NBUFA +1
C

C
IF(NBUFA.LE.MBUFA) GO TO 406
IF(KRESL.GT.1) GO TO 408
WRITE(2) EQUAT, EQRHS,NPIVO, NAMEV
GO TO 406
408 WRITE (4) EORHS
READ (2) EQUAT, EQRHS,NPIVO, NAMEV
406 CONTINUE
C
C
IF(KRESL.GT.1) GO TO 404
DO 230 JFRON=1, MFRON
IF (IFRON.GE.JFRON) NLOCA=NFUNC(JFRON,IFRON)
EQUAT (JFRON, NBUFA) =GSTIF (NLOCA)
404 CONTINUE
C
C*** AND EXTRACT THE CORRESPONDING RIGHT HAND SIDES
EQRHS (NBUFA) $=$ GLOAD (IFRON)
$\operatorname{GLOAD}($ IFRON $)=0.0$

FRNT 98
FRNT 99
FRNT 100
FRNT 101
FRNT 102
FRNT 103
FRNT 104
FRNT 105
FRNT 106
FRNT 107
FRNT 108
FRNT 109
FRNT 110
FRNT 111
FRNT 112
FRNT 113
FRNT 114
FRNT 115
FRNT 116
FRNT 117
FRNT 118
FRNT 119
FRNT 120
FRNT 121
FRNT 122
FRNT 123
FRNT 124
FRNT 125
FRNT 126
FRNT 127
FRNT 128
FRNT 129
FRNT 130
FRNT 131
FRNT 132
FRNT 133
FRNT 134
FRNT 135
FRNT 136
FRNT 137
FRNT 138
FRNT 139
FRNT 140
FRNT 141
FRNT 142
FRNT 143
FRNT 144
FRNT 145
FRNT 146
FRNT 147
FRNT 148
FRNT 149
FRNT 150
FRNT 151
FRNT 152
FRNT 153
FRNT 154
FRNT 155
FRNT 156
FRNT 157
FRNT 158
FRNT 159
FRNT 160

```
    KELVA=KELVA+1 FRNT 161
    NAMEV(NBUFA)=NIKNO FRNT 162
    NPIVO(NBUFA)=IFRON
C
C*** DEAL WITH PIVOT
C
            PIVOT=EQUAT(IFRON,NBUFA)
            IF(PIVOT.GT.0.0) GO TO 235
            WRITE(6,900) NIKNO, PIVOT FRNT 169
                            FRNT }16
    900 FORMAT( 1HO,3X,52HNEGATIVE OR ZERO PIVOT ENCOUNTERED FOR VARIABLE NFRNT 170
        .O. ,I4,10H OF VALUE ,E17.6)
                                    FRNT 171
            STOP
    235 CONTINUE
    EQUAT(IFRON,NBUFA)=0.0
C
C*** ENQUIRE WHETHER PRESENT VARIABLE IS FREE OR PRESCRIBED
C
    IF(IFFIX(NIKNO).EQ.0) GO TO 250
C
C*** DEAL WITH A PRESCRIBED DEFLECTION
C
            DO 240 JFRON=1,NFRON
    240 GLOAD (JFRON)=GLOAD (JFRON)-FIXED(NIKNO)*EQUAT(JFRON,NBUFA)
            GO TO 280
C
C*** ELIMINATE A FREE VARIABLE - DEAL WITH THE RIGHT HAND SIDE FIRST
C
    250 DO 270 JFRON=1,NFRON
            GLOAD(JFRON)=GLOAD(JFRON) -EQUAT(JFRON,NBUFA):EQRHS(NBUFA)/PIVOT
C
C*** NOW DEAL WITH THE COEFFICIENTS IN CORE
C
            IF(KRESL.GT.1) GO TO }41
            IF(EQUAT(JFRON,NBUFA).EQ.0.0) GO TO 270
            NLOCA=NFUNC(O,JFRON)
            CUREQ=EQUAT(JFRON,NBUFA)
            DO 260 LFRON=1,JFRON
            NGASH=[FRON+NLOCA
    260 GSTIF (NGASH)=GSTIF (NGASH)-CUREQ*EQUAT (LFRON,NBUFA)
            /PIVOT
    4 1 8 \text { CONTINUE}
    270 CONTINUE
    280 EQUAT(IFRON,NBUFA)=PIVOT
C
C?:% RECORD THE NEW VACANT SPACE, AND REDUCE FRONTWIDTH IF POSSIBLE
C
            NACVA(IFRON)=0
            GO TO 290
C
CIn* COMPLETE THE ELEMENT LOOP IN THE FORWARD ELIMINATION
C
    300 CONTINUE
    290 IF(NACVA(NFRON).NE.0) GO TO 310
            NFRON=NFRON-1
            IF(NFRON.GT.0) GO TO 290
    310 CONTINUE
    320 CONTINUE
        IF(KRESL.EQ.1) WRITE(2) EQUAT,EQRHS,NPIVO,NAMEV
        BACKSPACE }
C
C*** ENTER BACK-SUBSTITUTION PHASE. LOOP BACKWARDS THROUGH VARIABLES
C
    DO 340 IELVA=1,KELVA
C
C***READ A NEW BLOCK OF EQUATIONS - IF NEEDED
FRNT }16
FRNT }16
FRNT }16
FRNI 166
FRNT }16
FRNT }16
FRNT }16
FRNT }17
FRNT }17
FRNT 174
FRNT }17
FRNT 176
FRNT }17
FRNT }17
FRNT }17
FRNT }18
180
FRNT 182
```

```
C
IF(NBUFA.NE.O) GO TO }41
    BACKSPACE 2
    READ(2) EQUAT, EQRHS, NPIVO,NAMEV
        BACKSPACE 2
    NBUFA=MBUFA
    IF(KRESL.EQ.1) GO TO }41
    BACKSPACE 4
    READ (4) EQRHS
    BACKSPACE }
    412 CONTINUE
C
C*** PREPARE TO BACK-SUBSTITUTE FROM THE CURRENT EQUATION
C
    IFRON=NPIVO(NBUFA)
    NIKNO=NAMEV(NBUFA)
    PIVOT=EQUAT(IFRON,NBUFA)
    IF(IFFIX(NIKNO).NE.0) VECRV(IFRON)=FIXED(NIKNO)
    IF(IFFIX(NIKNO).EQ.0) EQUAT(IFRON,NBUFA)=0.0
C
C*** BACK-SUBSTITUTE IN THE CURRENT EQUATION
C
    DO 330 JFRON=1,MFRON
    330 EQRHS(NBUFA)=EQRHS(NBUFA)-VECRV(JFRON)*EQUAT(JFRON,NBUFA)
C
C*** PUTT THE FINAL VALUES WHERE THEY BELONG
C
    IF(IFFIX(NIKNO).EQ.O) VECRV(IFRON)=EQRHS(NBUFA)/PIVOT
    IF (IFFIX(NIKNO).NE,0) FIXED(NIKNO)=-EQRHS(NBUFA)
        NBUFA=NBUFA-1
        ASDIS(NIKNO)=VECRV(IFRON)
    340 CONTINUE FRNT 257
C
C*** ADD DISPLACEMENTS TO PREVIOUS TOTAL VALUES
C
    DO }345\mathrm{ ITOTV=1,NTOTV
    345 TDISP(ITOTV)=TDISP(ITOTV) +ASDIS(ITOTV)
C
C*** STORE REACTIONS FOR PRINTING LATER
C
    KBOUN=1
    DO 370 IPOIN=1, NPOIN
    NLOCA= (IPOIN-1)*NDOFN
    DO 350 IDOFN=1, NDOFN
    NGUSH=NLOCA+IDOFN
    IF(IFFIX(NGUSH).GT.0) GO TO 360
    350 CONTINUE
    GO TO 370
    360 DO 510 IDOFN=1,NDOFN
        NGASH=NLOCA+IDOFN
    510 TREAC (KBOUN,IDOFN)=TREAC (KBOUN, IDOFN ) +FIXED (NGASH)
        KBOUN=KBOUN+1
    370 CONTINUE
C
C*** ADD REACTIONS INTO THE TOTAL LOAD ARRAY
C
    DO 700 IPOIN=1,NPOIN
    DO 710 IELEM=1,NELEM
    DO }710\mathrm{ INODE =1,NNODE
    NLOCA=IABS(LNODS(IELEM, INODE))
710 IF(IPOIN.EQ.NLOCA) GO TO 720
    720 DO 730 DDOFN=1,NDOFN
        NGASH=(INODE-1) NNDOFN+IDOFN
        MGASH=(IPOIN-1)*NDOFN+IDOFN
    730 TLOAD (IELEM,NGASH)=TLOAD (IELEM,NGASH) +FIXED (MGASH)
        FRNT }22
        FRNT }22
        FRNT }22
        FRNT }22
        FRNT }23
        FRNT }23
    FRNT }24
    FRNT }24
    FRNT }24
    FRNT }24
    FRNT 244
    FRNT }24
    FRNT }24
    FRNT }24
    FRNT }24
    FRNT }24
    FRNT 250
    FRNT }25
    FRNT }25
    FRNT 253
    FRNT 254
    FRNT }25
    FRNT 256
FRNT }25
FRNT }25
FRNT 259
FRNT 260
FRNT 261
FRNT }26
```

700 CONTINUE	FRNT 291
RETURN	FRNT 292
END	FRNT 293

6.4.13 Data error diagnostic subroutine CHECK1

The function of this subroutine is to scrutinise the problem control parameters, which are accepted by the data input subroutine, INPUT, which will be described in Section 6.5.1. Since subroutine INPUT is common to plane stress/strain, axisymmetric and plate bending applications, subroutine CHECK1 will only check that the control parameters are within the bounds defined by the correct values for the four cases.

A counter, KEROR, is employed to indicate whether or not any errors have been detected. If errors have been found (indicated by KEROR $=1$), subroutine ECHO, described in the next section, is called to list the remainder of the input data.

Any errors detected are signalled by means of printed error numbers. The interpretation of each error message is given in Table 6.2.

	$\begin{aligned} & \text { SUBROUTINE CHECK1 (NDOFN, NELEM, NGAUS, NMATS, NNODE, NPOIN, } \\ & \text { NSTRE,NTYPE, NVFIX,NCRIT, NALGO, NINCS) } \end{aligned}$	$\begin{aligned} & \text { CEK } 1 \\ & \text { CEK } 1 \end{aligned}$	1 2
C*****	**	CEK1	3
C		CEK1	4
C****	THIS SUBROUTINE CHECKS THE MAIN CONTROL DATA	CEK1	5
C		CEK1	6
C*****	***	CEK 1	7
	DIMENSION NEROR(24)	CEK1	8
	DO 10 IEROR=1,12	CEK1	9
10	NEROR(IEROR) $=0$	CEK1	10
C		CEK1	11
C*** C	CREATE THE DIAGNOSTIC MESSAGES	CEK1	12
C		CEK1	13
	IF (NPOIN.LE.0) $\operatorname{NEROR}(1)=1$	CEK1	14
	IF (NELEM*NMODE.LT. NPOIN) $\operatorname{NEROR(2)=1~}$	CEK 1	15
	IF (NVFIX.LT.2.OR.NVFIX.GT.NPOIN) NEROR(3) $=1$	CEK1	16
	IF (NINCS.LT.1) NEROR (4)=1	CEK1	17
	IF (NTYPE.LT.1.OR.NTYPE.GT.3) $\mathrm{NEROR}(5)=1$	CEK 1	18
	IF (NNODE.LT.4.OR.NNODE.GT.9) NEROR(6) $=1$	CEK1	19
	IF (NDOFN.LT.2.OR.NDOFN.GT.5) NEROR(7) $=1$	CEK1	20
	IF (NMATS.LT.1.OR. NMATS.GT. NELEM) NEROR (8) $=1$	CEK1	21
	IF(NCRIT.LT.1.OR.NCRIT.GT.4) NEROR(9)=1	CEK1	22
	IF (NGAUS.LT. 2.0R.NGAUS.GT.3) NEROR (10) = 1	CEK 1	23
	IF (NALGO.LT.1.OR.NALGO.GT.4) NEROR (11) $=1$	CEK1	24
	IF (NSTRE.LT.3.0R.NSTRE.GT.5) NEROR(12)=1	CEK1	25
$\stackrel{\text { C }}{\text { c** }}$		CEK 1	26
C*** E	EITHER RETURN,OR ELSE PRINT THE ERRORS DIagnosed	CEK1	27
C		CEK1	28
	KEROR=0	CEK1	29
	D0 20 IEROR=1,12	CEK1	30
	IF (NEROR(IEROR).EQ.0) GO TO 20	CEK1	31
	KEROR=1	CEK 1	32
	WRITE $(6,900)$ IEROR	CEK1	33
	FORMAT $/ / / 31 \mathrm{H}$ ** DIAGNOSIS BY CHECK1, ERROR,I3)	CEK1	34
20	CONTINUE	CEK1	35
	IF(KEROR.EQ.0) RETURN	CEK1	36

```
C CEK1 37
C*** OTHERWISE ECHO ALL THE REMAINING DATA WITHOUT FURTHER COMMENT CEK1 38
C
    CALL ECHO
CEK1 39
    CEK1 40
    END
```

Table 6.2 Errors diagnosed by Subroutine CHECK1.

| $\begin{array}{l}\text { Error } \\ \text { Label }\end{array}$ | Interpretation |
| :---: | :--- |$]$| The specified total number of node points, NPOIN, in the structure |
| :--- |
| is less than or equal to zero. |
| The possible maximum total number of node points in the |
| structure is less than the specified total, NPOIN. |
| The number of restrained nodal points is less than 2 or greater |
| than NPOIN (for plane problems at least 2 points must be |
| restrained to eliminate rigid body motions). |

6.4.14 Data echo subroutine, ECHO

The function of this subroutine is to list all the remaining data cards after at least one error has been detected by either of the diagnostic subroutines CHECK1 or CHECK2. This is accomplished by means of a simple read and write operation in alphanumeric format.

SUBROUTINE ECHO	ECHO
	ECHO
C	ECHO
C**** IF DATA ERRORS HAVE BEEN DETECTED BY SUBROUTINES CHECK1 OR	ECHO
C CHECK2,THIS SUBROUTINE READS AND WRITES THE REMAINING DATA CARDS	ECHO
C	ЕСНО
	ЕСНО
DIMENSION NTITL(80)	ECHO
WRITE 6,900$)$	ECHO

```
900 FORMAT(//50H NOW FOLLOWS A LISTING OF POST-DISASTER DATA CARDS/) ECHO 10
    10 READ(5,905) NTITL
905 FORMAT(80A1) ECHO 12
    ECHO }1
    WRITE (6,910) NTITL ECHO 13
910 FORMAT(20X,80A1)
    GO TO 10
    END

```

 15
 ECHO 16

```

\subsection*{6.4.15 Data error diagnostic subroutine, CHECK2}

If the problem control parameters have passed the scrutiny of subroutine CHECK1, the geometric data, boundary conditions and material properties are then assimilated by subroutine INPUT. This data is then scrutinised for possible errors in subroutine CHECK2 where error types 13 to 24 , listed in Table 6.3, are checked for.

Probably the most useful check in this subroutine is the one which ensures that the maximum frontwidth does not exceed the dimensions specified in subroutine FRONT. Subroutine CHECK2 is described in detail in Chapter 9, Ref. 4.
```

 SUBROUTINE CHECK2(COORD,IFFIX,LNODS,MATNO,MELEM,MFRON,MPOIN,MTOTV,CEK2
 MVFIX,NDFRO,NDOFN,NELEM,NMATS,NNODE,NOFIX,NPOIN,CEK2 }
 NVFIX) CEK2 3
    ```

```

C CEK2
C*츄뉴ᅲ THIS SUBROUTINE CHECKS THE REMAINDER OF THE INPUT DATA CEK2 6
C CEK2 }

```

```

 DIMENSION COORD(MPOIN,2), IFFIX(MTOTV),LNODS(MELEM,9), CEK2 }
 * MATNO(MELEM),NDFRO(MELEM),NEROR(24),NOFIX(MVFIX) CEK2 }1
C*揞夆 CHECK
CHECK AGAINST TWO IDENTICAL NONZERO NODAL COORDINATES
C CEK2 13
DO 5 IEROR=13,24 CEK2 14
5 NEROR(IEROR)=0 CEK2 15
DO }10\mathrm{ IELEM=1,NELEM CEK2 16
10 NDFRO(IELEM)=0 CEK2 17
DO 50 IPOIN=2,NPOIN CEK2 18
KPOIN=IPOIN-1 CEK2 19
DO 30 JPOIN=1,KPOIN CEK2 20
DO 20 IDIME=1,2 CEK2 21
IF(COORD(IPOIN,IDIME).NE.COORD(JPOIN,IDIME)) GO TO 30 CEK2 22
20 CONTINUE CEK2 23
NEROR(13)=NEROR(13)+1 CEK2 24
30 CONTINUE CEK2 25
40 CONTINUE CEK2 26
C
CEK2 27
C**)
C
DO 50 IELEM=1,NELEM
CEK2 29
CEK2 30
50 IF(MATNO(IELEM).LE.O.OR.MATNO(IELEM).GT.NMATS) NEROR(14)=NEROR(14)CEK2 31
C CEK2 33
C*** CHECK FOR IMPOSSIBLE NODE NUMBERS CEK2 34
C
DO 70 IELEM=1,NELEM CEK2 36
DO 60 INODE=1,NNODE CEK2 37
IF(LNODS(IELEM,INODE).EQ.0) NEROR(15)=NEROR(15)+1 CEK2 38

```39
```

$16)=$ NEROR $(16)+1$ CK2

```
    60 IF(LNODS(IELEM,INODE).LT.O.OR.LNODS(IELEM,INODE).GT.NPOIN) NEROR( CEK2
```

 60 IF(LNODS(IELEM,INODE).LT.O.OR.LNODS(IELEM,INODE).GT.NPOIN) NEROR(CEK2
 70 CONTINUE CEK2 41
 C
CEK2
C*** CHECK FOR ANY REPETITION OF A NODE NUMBER WITHIN AN ELEMENT CEK2 43

```

```

 DO 140 IPOIN=1,NPOIN
 KSTAR=0
 DO }100\mathrm{ IELEM=1,NELEM
 KZERO=0
 DO }90\mathrm{ INODE =1,NNODE
 IF(LNODS(IELEM,INODE).NE.IPOIN) GO TO 90
 KZERO=KZERO+1
 IF(KZERO.GT.1) NEROR(17)=NEROR(17)+1
 C
C*** SEEK FIRST,LAST AND INTERMEDIATE APPEARANCES OF NODE IPOIN
C
IF(KSTAR.NE.0) GO TO }8
KSTAR=IELEM
C
C*** CALCULATE INCREASE OR DECREASE IN FRONTWIDTH AT EACH ELEMENT STAGE CEK2 59
C CEK2 60
NDFRO(IELEM)=NDFRO(IELEM)+NDOFN CEK2 61
80 CONTINUE
C
C*** AND CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE
C
KLAST=IELEM
NLAST=INODE
90 CONTINUE
100 CONTINUE CEK2 69
IF(KSTAR.EQ.0) GO TO 110
IF(KLAST.LT.NELEM) NDFRO(KLAST+1)=NDFRO(KLAST+1)-NDOFN
LNODS(KLAST,NLAST)=-IPOIN
GO TO 140
C
C*** CHECK THAT COORDINATES FOR AN UNUSED NODE HAVE NOT BEEN SPECIFIED
C
110 WRITE (6,900) IPOIN
900 FOMA(6) CEK2 }7
900 FORMAT(/15H CHECK WHY NODE,I4,14H NEVER APPEARS)
NEROR(18)=NEROR(18)+1 CEK2 }7
78
SIGMA=0.0
CEK2 }8
DO 120 IDIME=1,2 CEK2 81
120 SIGMA=SIGMA+ABS(COORD(IPOIN,IDIME)) CEK2 }8
IF(SIGMA.NE.0.0) NEROR(19)=NEROR(19)+1 CEK2 }8
C
C*** CHECK THAT AN UNUSED NODE NUMBER IS NOT A RESTRAINED NODE
CEK2 84
C
DO 130 IVFIX=1,NVFIX
130 IF(NOFIX(IVFIX).EQ.IPOIN) NEROR(20)=NEROR(20)+1
140 CONTINUE
C
C*** CALCULATE THE LARGEST FRONTWIDTH
90
NFRON=0
KFRON=0
DO }150\mathrm{ IELEM=1,NELEM
NFRON=NFRON+NDFRO(IELEM)
150 IF(NFRON.GT.KFRON) KFRON=NFRON
WRITE (6,905) KFRON
905 FORMAT(//33H MAXIMUM FRONTWIDTH ENCOUNTERED =,I5)
IF(KFRON.GT.MFRON) NEROR(21)=1
C
C*** CONTINUE CHECKING THE DATA FOR THE FIXED VALUES
C

```
```

 DO 170 IVFIX=1,NVFIX CEK2 104
 IF(NOFIX(IVFIX).LE.O.OR.NOFIX(IVFIX).GT.NPOIN) NEROR(22)=NEROR(22)CEK2 }10
 . +1 CEK2 106
 KOUNT=Q CEK2 107
 -MOOCARHMOFIX(IVFIX)-1)#NDOFN CEK2 108
 DO 160 IDOFN=1,NDOFN CEK2 109
 HEOCA=NLOCA+7. CEK2 110
 160 IF(IFFIX(ALOGA),GF-O) KOUNT=7 CEK2 111
 FF(KOUNT.EQ.0) NEROR(23)=NEROR(23)+1 CEK2 112
 KVFIX=IVFIX-1 CEK2 113
 DO 170 JVFIX=1,KVFIX CEK2 114
 170 IF(IVFIX.NE.1.AND.NOFIX(IVFIX).EQ.NOFIX(JVFIX)) NEROR(24)=NEROR(24CEK2 115
 .) +1 CEK2 116
 KEROR=0 CEK2 }11
 DO }180\mathrm{ IEROR=13,24 CEK2 118
 IF(NEROR(IEROR).EQ.O) GO TO 180 CEK2 119
 KEROR=1
 CEK2 120
 WRITE (6,910) IEROR,NEROR(IEROR) CEK2 }12
 910 FORMAT(//31H *** DIAGNOSIS BY CHECK2, ERROR,I3,6X,18H ASSOCIATED NCEK2 122
 .UMBER,I5) CEK2 123
 180 CONTINUE CEK2 124
 IF(KEROR.NE.0) GO TO 200 CEK2 125
 C
CEK2 }12
C*** RETURN ALL NODAL CONNECTION NUMBERS TO POSITIVE VALUES CEK2 127
C
DO 190 IELEM=1,NELEM CEK2 129
CEK2 }12
DO }190\mathrm{ INODE=1,NNODE CEK2 130
190 LNODS(IELEM,INODE)=LABS(LNODS(IELEM,INODE)) CEK2 }13
RETURN CEK2
200 CALL ECHO
CEK2 }13
END CEK2 134

```

Table 6.3 Errors diagnosed by Subroutine CHECK2
\begin{tabular}{ll} 
Error & \\
Label & Interpretation
\end{tabular}

13 A total of \(x\) identical nodal coordinates have been detected, i.e. \(x\) nodal points have coordinates which are identical to those of one or more of the remaining nodes.
14 A total of \(x\) element material identification numbers are less than or equal to zero or greater than the total number of elements in the structure.
15 A total of \(x\) nodal connection numbers have a zero value.
16 A total of \(x\) nodal connection numbers are negative or greater than the specified maximum value, NPOIN.
17 A total of \(x\) repetitions of node numbers within individual elements have been detected.
18 A total of \(x\) nodes exist in the list of nodal points which do not appear anywhere in the list of element nodal connection numbers.
19 Non-zero coordinates have been specified for a total of \(x\) nodes which do not appear in the list of element nodal connection numbers.
20 A total of \(x\) node numbers which do not appear in the element nodal connections list have been specified as restrained nodal points.
21 The largest frontwidth encountered in the problem has exceeded the maximum value specified in subroutine FRONT of the program.

22 A total of \(x\) restrained nodal points have numbers less than or equal to zero or greater than the specified maximum value, NPOIN.
23 A total of \(x\) restrained nodal points at which the fixity code is less than or equal to zero have been detected.
24 A total of \(x\) repetitions in the list of restrained nodal points have been detected.

\subsection*{6.5 Standard subroutines for elasto-plastic finite element analysis}

In this section we describe four additional subroutines which are common to all the elasto-plastic and elasto-viscoplastic applications presented in Chapters 7, 8 and 9 . For each subroutine presented, the form of the argument list and common block structure will be that required for twodimensional elasto-plastic applications.

\subsection*{6.5.1 Data input subroutine, INPUT}

The role of this subroutine is to accept most of the input data required for analysis of elasto-plastic problems. The structure of this subroutine follows closely that of subroutine DATA described in Section 3.2. Subroutine INPUT also closely resembles the data input subroutine presented in Chapter 3, Ref. 4 for linear elastic problems.

The control parameters necessary for two-dimensional applications extend beyond those required for one-dimensional analysis and are presented below.

NPOIN Total number of nodal points in the structure.
NELEM Total number of elements in the structure.
NVFIX Total number of boundary points, i.e. nodal points at which one or more degrees of freedom are restrained.
NTYPE Problem type parameter:
1-Plane stress,
2-Plain strain,
3-Axial symmetry.
NNODE Number of nodes per element:
4-Linear isoparametric quadrilateral element,
8-Quadratic isoparametric Serendipity element,
9-Quadratic isoparametric Langrangian element.
NMATS Total number of different materials in the structure.
NGAUS The order of Gaussian quadrature rule to be employed for numerical integration of the element stiffness matrices, etc., as described in Section 6.3.2. If NGAUS is prescribed as 2 a twopoint Gauss rule is to be employed; if NGAUS is input as 3 a three-point rule will be used.

NALGO Parameter controlling nonlinear solution algorithm:
1 -Initial stiffness method. The element stiffnesses are computed at the beginning of the analysis and remain unchanged thereafter.
2-Tangential stiffness method. The element stiffnesses are recomputed during each iteration of each load increment.
3 -Combined algorithm. The element stiffnesses are recomputed for the first iteration of each load increment only.
\(4-\) Combined algorithm. The element stiffnesses are recomputed for the second iteration of each load increment only. (Of course for the first load increment, the element stiffnesses must be calculated for the first iteration also.)
NCRIT The yield criterion to be employed:
1-Tresca, 2-Von Mises, 3-Mohr-Coulomb, 4-Drucker-Prager.
NINCS The total number of increments in which the final loading is to be applied.
NSTRE The number of independent stress components for the application:

3-Plane stress/strain, 4-Axial symmetry.

For the present two-dimensional applications two coordinate components are required to locate each nodal point. With reference to Figs. 6.2-6.4 the \(x, y\) components must be specified for plane stress or plane strain problems and the \(r, z\) components for axisymmetric situations. This information is stored in the array

\section*{COORD (IPOIN, IDIME)}
where IPOIN corresponds to the number of the nodal point and IDIME refers to the coordinate component. As mentioned in Section 6.4.1 nodal coordinates need not be supplied for mid-side nodes of 8 - and 9 -noded elements if they lie on a straight line between corner nodes. The coordinates of such intermediate nodes are evaluated by subroutine NODEXY by linear interpolation.

For each nodal point at which the displacement value corresponding to one or more degrees of freedom are prescribed, input data must be supplied specifying these fixity conditions. The nodes at which one or more degrees of freedom are restrained are stored in array

NOFIX (IVFIX)
which signifies that the IVFIX \({ }^{\text {th }}\) boundary node has a nodal point number NOFIX (IVFIX). Input parameter IFPRE controls which degrees of freedom of a particular node are to have a specified displacement value. For
example, for plane or axisymmetric problems, integer code IFPRE may have the following values:

10 Displacement in the \(x(r)\) direction specified,
01 Displacement in the \(y(z)\) direction specified,
11 Displacements in both \(x(r)\) and \(y(z)\) directions specified.

This information is then transferred, for permanent storage, into array IFFIX (ITOTV)
where ITOTV ranges over the total number of degrees of freedom of the structure. The prescribed displacement value associated with a restrained degree of freedom is stored in array

PRESC (IVFIX, IDOFN)
where IVFIX indicates that the prescribed displacements pertain to the IVFIX \({ }^{\text {th }}\) boundary node and IDOFN ranges over the degrees of freedom of that node.

The list of material properties for two-dimensional applications differs from the corresponding one-dimensional case considered in Section 3.2. In particular for plane and axisymmetric elasto-plastic problems the following material parameters must be input.

PROPS (NUMAT, 1) Elastic modulus, E.
PROPS (NUMAT, 2) Poisson's ratio, \(\nu\).
PROPS (NUMAT, 3) Material thickness, \(t\) (applicable to plane problems only).
PROPS (NUMAT, 4) Material mass density, \(\rho\).
PROPS (NUMAT, 5) Uniaxial yield stress, \(\sigma_{Y}\) (Tresca and Von Mises solids); Cohesion c (Mohr-Coulomb and DruckerPrager materials).
PROPS (NUMAT, 6) Hardening parameter \(H^{\prime}\) for linear strain hardening. PROPS (NUMAT, 7) Angle of internal friction for Mohr-Coulomb and Drucker-Prager materials only.

Consequently NPROP \(=7\) for two-dimensional elasto-plastic applications. The corresponding material data for plate bending problems is listed in Chapter 9.

Subroutine INPUT also calls subroutine GAUSSQ, described in Section 6.4.2, whose function is to generate the sampling point position and weighting factors for numerical integration of the element stiffness matrices, etc., by Gaussian quadrature. The order of integration rule to be employed has been specified, through NGAUS, in the control data.

Subroutine INPUT is now presented and is self-explanatory.
```

lum,

```
```

 6 READ(5,905) IPOIN,(COORD(IPOIN,IDIME),IDIME=1,2) INPT 65
 905 FORMAT(I5,6F10.5)
 IF(IPOIN.NE.NPOIN) GO TO 6
 C
C*** INTERPOLATE COORDINATES OF MID-SIDE NODES
CALL NODEXY(COORD,LNODS,MELEM,MPOIN,NELEM,NNODE)
DO 10 IPOIN=1,NPOIN
10 WRITE(6,906) IPOIN,(COORD(IPOIN,IDIME),IDIME=1,2)
906 FORMAT(1X,I5,3F10.3)
C
C*** READ THE FIXED VALUES.
C
WRITE (6,907)
907 FORMAT(//5H NODE, 6X,4HCODE,6X,12HFIXED VALUES)
DO }8\mathrm{ IVFIX=1,NVFIX
READ(5,908) NOFIX(IVFIX),IFPRE,(PRESC(IVFIX,IDOFN),IDOFN=1,NDOFN) INPT
WRITE(6,908) NOFIX(IVFIX),IFPRE,(PRESC(IVFIX,IDOFN),IDOFN=1,NDOFN)INPT
NLOCA=(NOFIX(IVFIX)-1)*NDOFN INPT
IFDOF=10**(NDOFN-1)
DO }8\mathrm{ IDOFN=1,NDOFN
NGASH=NLOCA+IDOFN
IF(IFPRE.LT.IFDOF) GO TO 8
IFFIX(NGASH)=1
IFPRE=IFPRE-IFDOF
8 ~ I F D O F = I F D O F / 1 0
908 FORMAT(1X,I4,5X, I5,5X,5F10.6)
C
C*** READ THE AVAILABLE SELECTION OF ELEMENT PROPERTIES.
C
16 WRITE(6,910)
910 FORMAT(//7H NUMBER,6X,18HELEMENT PROPERTIES)
DO }18\mathrm{ IMATS =1, NMATS
READ (5,900) NUMAT
READ (5,930) (PROPS(NUMAT,IPROP),IPROP=1,NPROP)
930 FORMAT(8F10.5)
18 WRITE(6,911) NUMAT,(PROPS(NUMAT,IPROP),IPROP = 1,NPROP)
911 FORMAT(1X,I4,3X,8E14.6)
C
C*** SET UP GAUSSIAN INTEGRATION CONSTANTS
C
CALL GAUSSQ(NGAUS, POSGP,WEIGP)
CALL CHECK2(COORD,IFFIX,LNODS,MATNO,MELEM,MFRON,MPOIN,MTOTV,I
MVFIX,NDFRO, NDOFN,NELEM, NMATS,NNODE,NOFIX,NPOIN, INPT
NVFIX) , INPT 109
.
RETURN
INPT 110
END
INPT 111

```

\subsection*{6.5.2 Subroutine ALGOR}

The function of this subroutine is to control the solution process according to the value of the solution algorithm parameter, NALGO, input in subroutine INPUT. This subroutine is similar in form to subroutine NONAL presented in Section 3.3 for one-dimensional applications. The subroutine sets the value of indicator KRESL to either 1 or 2 according to NALGO and the current values of the iteration number IITER and increment number IINCS. A value of KRESL \(=1\) indicates reformulation of the element stiffnesses accompanied by a full equation solution and KRESL \(=2\) indicates that the element stiffnesses are not to be modified and consequently only equation resolution takes place.

With the definitions of the permissible values of NALGO given in Section 6.5.1, subroutine ALGOR is self-explanatory and is listed below.*


\subsection*{6.5.3 Subroutine INCREM}

The role of subroutine INCREM is to increment the applied loading or any prescribed displacements according to the load factors specified as input. This subroutine is accessed on the first iteration of each load increment. For each increment of load the following items of information are input as data and are similar to those described in Section 3.7.
FACTO This controls the magnitude of the load increment. The applied loading for each element is evaluated in Subroutine LOADPS for plane and axisymmetric situations, or Subroutine LOADPB for plate problems, and is stored in the array RLOAD (IELEM, IEVAB) as described in Section 6.4.5. The additional element load applied during the increment is RLOAD (IELEM, IEVAB)*FACTO. The applied loading is accumulative so that if FACTO is input as \(0.8,0.2\) and 0.1 for the first three increments, the total load acting on the structure during the third load increment is \(1 \cdot 1\) times the loads calculated in Subroutine LOADPS. This method of load factoring permits unequal load increments to be taken. If loading is by prescribed displacements the same factoring process holds.
TOLER This controls the tolerance permitted on the convergence process and its use has been described in Section 3.9.3.
MITER Maximum permissible number of iterations. This is a safety measure to cover situations where the solution process does

\footnotetext{
*For elasto-viscoplastic applications described in Chapter 8, iteration number IITER is replaced by timestep number, ISTEP.
}
not converge. After performing MITER iteration cycles the program will then stop.

NOUTP (1) This parameter controls the output of the unconverged results after the first iteration. In order to examine the convergence process the user can vary the frequency of output for each load increment:

1-Print the displacements only after the first iteration.
2-Print the displacements and nodal reactions after the first iteration.
3-Print the displacements, reactions and stresses after the first iteration.

NOUTP (2) This parameter controls the output of the converged results:
1-Print the final displacements only.
2-Print the final displacements and nodal reactions.
3-Print the final displacements, reactions and stresses.
The loading to which the structure is subjected is monitored by the arrays ELOAD (IELEM, IEVAB) and TLOAD (IELEM, IEVAB). The total loading applied to the structure at any stage of the analysis is accumulated in the TLOAD array. On the other hand ELOAD contains the loading to be applied to the structure for each iteration of the solution process. Initially (the first iteration of the first load increment) ELOAD contains the first increment of applied load. For the second and subsequent iterations ELOAD contains the residual nodal forces which must be redistributed as described in Section 3.7. After convergence has occurred, the next increment of load is assimilated into ELOAD, so that at this stage ELOAD contains the new applied load increment together with any residual forces still remaining after convergence of the solution for the previous load increment. These residual forces should be negligibly small if the convergence tolerance factor, TOLER, is correctly chosen. However, since any residual forces are retained in ELOAD and applied as nodal forces during the next load increment, it is noted that equilibrium is maintained at every stage of the computation process.

The final role of this subroutine is to insert appropriate values in the fixity array to control any prescribed displacements. As described in Section 3.3, in order to arrive at the correct value of a displacement whose value is prescribed for a load increment, it is necessary to prescribe the given value for equation solution during the first iteration and then prescribe a zero value for all subsequent iterations. Since the displacements occurring during each iteration accumulate to give the total displacement then clearly the prescribed value will be obtained by this process.

Subroutine INCREM will now be presented and explanatory notes provided.


INCR 14-15 Write the number of the load increment which is being currently solved.
INCR 16-23 Read and write the load increment control parameters. Note that the incremental load factor, FACTO, is input whereas the total load factor, TFACT, is output.
INCR 24-27 Accumulate the incremental loading into array ELOAD for equation solution and also into TLOAD to record the total load applied to the structure.
INCR 31-32 Zero the global vector of prescribed displacements.
INCR 33-38 Insert any prescribed displacement values, factored by the load increment factor, into the appropriate position in the global vector.

\subsection*{6.5.4 Solution convergence monitoring subroutine CONVER}

This subroutine monitors convergence of the nonlinear solution iteration process. It is almost identical to subroutine CONUND for one-dimensional
applications described in Section 3.10.3. Since for two-dimensional and plate bending problems we have more than one degree of freedom per nodal point, summation in (3.27) must now be made over the total number of degrees of freedom in the structure. As an additional check on the nonlinear solution process we also arrange to evaluate the maximum individual residual force \(\psi_{i}^{r}\) existing in the structure.

Subroutine CONVER is now presented and can be understood with the aid of Section 3.10.3.
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { SUBROUTINE CONVER(ELOAD, IITER, LNODS, MELEM, MEVAB, MTOTV, NCHEK, } \\
& \text { ( NDOFN, NELEM, NEVAB, NNODE,NTOTV,PVALU,STFOR, }
\end{aligned}
\] & CONV CONV CONV & 1
2
3 \\
\hline C***** &  & CONV & 4 \\
\hline C & & CONV & 5 \\
\hline \(C^{*}\) * \({ }^{\text {\# }}\) & THIS SUBROUTINE CHECKS FOR CONVERGENCE OF THE ITERATION PROCESS & CONV & 6 \\
\hline C & & CONV & 7 \\
\hline C***** &  & CONV & 8 \\
\hline & DIMENSION ELOAD (MELEM, MEVAB), LNODS(MELEM, 9) ,STFOR(MTOTV), & CONV & 9 \\
\hline & TOFOR(MTOTV), TLOAD (MELEM, MEVAB) & CONV & 10 \\
\hline & NCHEK=0 & CONV & 11 \\
\hline & RESID \(=0.0\) & CONV & 12 \\
\hline & RETOT \(=0.0\) & CONV & 13 \\
\hline & REMAX \(=0.0\) & CONV & 14 \\
\hline & DO 5 ITOTV \(=1\), NTOTV & CONV & 15 \\
\hline & STFOR (ITOTV) \(=0.0\) & CONV & 16 \\
\hline & TOFOR ( ITOTV) \(=0.0\) & CONV & 17 \\
\hline 5 & CONTINUE & CONV & 18 \\
\hline & DO 40 IELEM \(=1\), NELEM & CONV & 19 \\
\hline & KEVAB=0 & CONV & 20 \\
\hline & DO 40 INODE \(=1\), NNODE & CONV & 21 \\
\hline & LOCNO \(=\) IABS (LNODS (IELEM, INODE)) & CONV & 22 \\
\hline & DO 40 IDOFN \(=1\), NDOFN & CONV & 23 \\
\hline & \(\mathrm{KEVAB}=\mathrm{KEVAB}+1\) & CONV & 24 \\
\hline & NPOSI \(=(\) LOCNO-1)*NDOFN+IDOFN & CONV & 25 \\
\hline & STFOR(NPOSI) =STFOR(NPOSI)+ELOAD (IELEM, KEVAB) & CONV & 26 \\
\hline 40 & TOFOR(NPOSI) \(=\) TOFOR( NPOSI) +TLOAD (IELEM, KEVAB) & CONV & 27 \\
\hline & DO 50 ITOTV \(=1\), NTOTV & CONV & 28 \\
\hline & REFOR=TOFOR (ITOTV)-STFOR (ITOTV) & CONV & 29 \\
\hline & RESID=RESID+REFOR*REFOR & CONV & 30 \\
\hline & RETOT \(=\) RETOT+TOFOR( ITOTV)*TOFOR (ITOTV) & CONV & 31 \\
\hline & AGASH=ABS(REFOR) & CONV & 32 \\
\hline 50 & IF ( AGASH.GT. REMAX) REMAX=AGASH & CONV & 33 \\
\hline & DO 10 IELEM \(=1\), NELEM & CONV & 34 \\
\hline & DO 10 IEVAB=1, NEVAB & CONV & 35 \\
\hline 10 & ELOAD (IELEM, IEVAB) =TLOAD (IELEM, IEVAB)-ELOAD (IELEM, IEVAB) & CONV & 36 \\
\hline & RESID=SQRT (RESID) & CONV & 37 \\
\hline & RETOT = SQRT ( RETOT) & CONV & 38 \\
\hline & RATIO \(=100.0\) *RESID/RETOT & CONV & 39 \\
\hline & IF (RATIO.GT.TOLER) NCHEK=1 & CONV & 40 \\
\hline & IF(IITER.EQ.1) GO TO 20 & CONV & 41 \\
\hline & IF (RATIO.GT. PVALU) NCHEK=999 & CONV & 42 \\
\hline 20 & PVALU=RATIO & CONV & 43 \\
\hline & WRITE (6,30) NCHEK, RATIO, REMAX & CONV & 44 \\
\hline & FORMAT (1HO,3X,18HCONVERGENCE CODE \(=, I 4,3 \mathrm{X}, 28 \mathrm{HNORM}\) OF RESIDUAL SUM & CONV & 45 \\
\hline & . RATIO \(=, \mathrm{E} 14.6,3 \mathrm{X}, 18 \mathrm{HMAXIMUM}\) RESIDUAL \(=\), E14.6) & CONV & 46 \\
\hline & RETURN & CONV & 47 \\
\hline & END & CONV & 48 \\
\hline
\end{tabular}

\subsection*{6.6 Problems}
6.1 Using the subroutines described in this chapter devise programs to evaluate the stiffness matrices and load vectors for 4-, 8- and 9-node quadrilateral isoparametric elements for plane stress, plane strain, axisymmetric and Mindlin plate applications.
6.2 Use the shape functions \(L_{i}{ }^{(e)}(\xi, \eta)\) from the 9-node Lagrangian quadrilateral isoparametric element to devise a new family of 8-node Serendipity quadrilateral element shape functions \(N_{i}{ }^{(e)}(\xi, \eta)\) of the form
\[
\begin{array}{ll}
N_{i}{ }^{(e)}=L_{i}{ }^{(e)}+a L_{9}{ }^{(e)} & i=1,3,5 \text { and } 7 \text { (corner nodes), } \\
N_{i}^{(e)}=L_{i}{ }^{(e)}+b L_{9}{ }^{(e)} & i=2,4,6 \text { and } 8 \text { (midside nodes) },
\end{array}
\]
where \(L_{9}{ }^{(e)}\) is the shape function of the central node of the Lagrangian element. What limits are there on \(a\) and \(b\) ?
6.3 Determine some further diagnostic checks on the input, other than those described in Sections 6.4.13 and 6.4.15. Apart from the check on the Jacobian determinant given in Subroutine JACOB2 in Section 6.4.4, are there any other checks which could be incorporated into the program after the input has been successfully read and checked?
6.4 Determine the consistent nodal forces for the case when a point load with components \(P_{x}, P_{y}\) acts at an arbitrary point along an element edge defined by Cartesian coordinates \(\left(x_{P}, y_{P}\right)\), which correspond to local coordinates \((\xi, \eta)=\left(\xi_{P},-1\right)\).

\subsection*{6.7 References}
1. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950.
2. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, New York, 1951.
3. Hughes, T. J. R., Cohen, M. and Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nucl. Eng. Design, 46, 203-222 (1978).
4. Hinton, E. and Owen, D. R. J., Finite Element Programming, Academic Press, London, 1977.
5. Irons, B. M. and Ahmad, S., Techniques of Finite Elements, Ellis Horwood, Chichester, 1980.
6. Bathe, K. J. and Wilson, E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

\section*{Chapter 7 Elasto-plastic problems in two dimensions}

\subsection*{7.1 Introduction}

In this chapter we consider the elasto-plastic stress analysis of solids which conform to plane stress, plane strain or axisymmetric conditions. Most of the problems encountered in engineering can be approximated to satisfy one of these classifications.

The basic laws governing elasto-plastic material behaviour in a twodimensional solid must be presented before the numerical aspects of the problem can be considered and to this end new concepts, such as the plastic potential and the normality condition will be introduced. Only the essential expressions will be provided in this text and the reader will be directed to other sources for a more complete theoretical treatment.

The situation is complicated by the fact that different classes of materials exhibit different elasto-plastic characteristics. In this chapter four different yield criteria are employed. The Tresca and Von Mises laws, which closely approximate metal plasticity behaviour, are considered and the MohrCoulomb and Drucker-Prager criteria, which are applicable to concrete, rocks and soils, are presented.

In the latter sections of this chapter a computer code is developed to allow the solution of practical problems. Many of the subroutines required for elasto-plastic solution have been reviewed in Chapter 6. In this chapter the additional subroutines are developed and assembled to provide a working program.

\subsection*{7.2 The mathematical theory of plasticity}

The object of the mathematical theory of plasticity is to provide a theoretical description of the relationship between stress and strain for a material which exhibits an elasto-plastic response. In essence, plastic behaviour is characterised by an irreversible straining which is not time dependent and which can only be sustained once a certain level of stress has been reached. In this section we outline the basic assumptions and associated theoretical expressions for a general continuum. For a more complete treatment the reader is directed to Refs. 1-3. In order to formulate a theory which models elasto-plastic material deformation three requirements have to be met:
- An explicit relationship between stress and strain must be formulated to describe material behaviour under elastic conditions, i.e. before the onset of plastic deformation.
- A yield criterion indicating the stress level at which plastic flow commences must be postulated.
- A relationship between stress and strain must be developed for postyield behaviour, i.e. when the deformation is made up of both elastic and plastic components.

Before the onset of plastic yielding the relationship between stress and strain is given by the standard linear elastic expression.*
\[
\begin{equation*}
\sigma_{i j}=C_{i j k l} \epsilon_{k l}, \tag{7.1}
\end{equation*}
\]
where \(\sigma_{i j}\) and \(\epsilon_{k l}\) are the stress and strain components respectively and \(C_{i j k l}\) is the tensor of elastic constants which for an isotropic material has the explicit form
\[
\begin{equation*}
C_{i j k l}=\lambda \delta_{i j} \delta_{k l}+\mu \delta_{i k} \delta_{j l}+\mu \delta_{i l} \delta_{j k}, \tag{7.2}
\end{equation*}
\]
where \(\lambda\) and \(\mu\) are the Lame constants and \(\delta_{i j}\) is the Kronecker delta defined by
\[
\delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & i=j  \tag{7.3}\\
0 & & i \neq j .
\end{array}\right.
\]

\subsection*{7.2.1 The yield criterion}

The yield criterion determines the stress level at which plastic deformation begins and can be written in the general form
\[
\begin{equation*}
f\left(\sigma_{i j}\right)=k(\kappa), \tag{7.4}
\end{equation*}
\]
where \(f\) is some function and \(k\) a material parameter to be determined experimentally. The term \(k\) may be a function of a hardening parameter \(\kappa\) discussed later in Section 7.2.2. On physical grounds, any yield criterion should be independent of the orientation of the coordinate system employed and therefore it should be a function of the three stress invariants only
\[
\begin{align*}
J_{1} & =\sigma_{i j} \\
J_{2} & =\frac{1}{2} \sigma_{i j} \sigma_{i j} \\
J_{3} & =\frac{1}{3} \sigma_{i j} \sigma_{j k} \sigma_{k i} . \tag{7.5}
\end{align*}
\]

Experimental observations, notably by Bridgeman, \({ }^{(4)}\) indicate that plastic deformation of metals is essentially independent of hydrostatic pressure. Consequently the yield function can only be of the form
\[
\begin{equation*}
f\left(J_{2}^{\prime}, J_{3}{ }^{\prime}\right)=k(\kappa), \tag{7.6}
\end{equation*}
\]

\footnotetext{
- In the indicial notation employed, Einstein's summation convention is invoked, whereby it is implicitly assumed that a summation from 1 to 3 is performed over any index which is repeated in any term of an expression. Also indices 1, 2, 3 refer to Cartesian components \(x, y, z\) respectively. Note that \(\sigma_{11}=\sigma_{x x}=\sigma_{x}, \sigma_{12}=\sigma_{x y}\), etc.
}
where \(J_{2}{ }^{\prime}\) and \(J_{3}{ }^{\prime}\) are the second and third invariants of the deviatoric stresses,
\[
\begin{equation*}
\sigma_{i j^{\prime}}=\sigma_{i j}-\frac{1}{3} \delta_{i j} \sigma_{k k} . \tag{7.7}
\end{equation*}
\]

Most of the various yield criteria that have been suggested for metals are now only of historic interest, since they conflict with experimental predictions. The two simplest which do not have this fault are the Tresca criterion and the Von Mises criterion.

The Tresca yield criterion (1864)
This states that yielding begins when the maximum shear stress reaches a certain value. If the principal stresses are \(\sigma_{1}, \sigma_{2}, \sigma_{3}\) where \(\sigma_{1} \geqslant \sigma_{2} \geqslant \sigma_{3}\) then yielding begins when
\[
\begin{equation*}
\sigma_{1}-\sigma_{3}=Y(\kappa) \tag{7.8}
\end{equation*}
\]
where \(Y\) is a material parameter to be experimentally determined and which may be a function of the hardening parameter \(\kappa\). By considering all other possible maximum shearing stress values (e.g. \(\sigma_{2}-\sigma_{1}\) if \(\sigma_{2} \geqslant \sigma_{3} \geqslant \sigma_{1}\) ) it can be shown that this yield criterion may be represented in the \(\sigma_{1} \sigma_{2} \sigma_{3}\) stress space by the surface of an infinitely long regular hexagonal cylinder as shown in Fig. 7.1. The axis of the cylinder coincides with the space diagonal, defined by points \(\sigma_{1}=\sigma_{2}=\sigma_{3}\), and since each normal section of the cylinder is identical, (a consequence of the assumption that a hydrostatic stress does not influence yielding), it is convenient to represent the yield surface geometrically by projecting it onto the so-called \(\pi\) plane, \(\sigma_{1}+\sigma_{2}+\sigma_{3}=0\) as shown in Fig. 7.2(a). When the yield function \(f\) depends on \(J_{2}{ }^{\prime}\) and \(J_{3}{ }^{\prime}\) alone it can be


Fig. 7.1 Geometrical representation of the Tresca and Von Mises yield surfaces in principal stress space.


Fig. 7.2 Two-dimensional representations of the Tresca and Von Mises yield criteria. (a) \(\pi\) plane representation. (b) Conventional engineering representation.
written in the form \(f\left(\sigma_{1}-\sigma_{3}, \sigma_{2}-\sigma_{3}\right)\) and a two-dimensional plot of the surface \(f=k\) is then possible as shown in Fig. 7.2(b). It can be shown generally ( 1,2 ) that yield surfaces must be convex (except for local flat areas, possibly) and that they must contain the stress origin.

The Von Mises yield criterion (1913)
Von Mises suggested that yielding occurs when \(J_{2}{ }^{\prime}\) reaches a critical value, or
\[
\begin{equation*}
\left(J_{2}\right)^{\ddagger}=k(\kappa), \tag{7.9}
\end{equation*}
\]
in which \(k\) is a material parameter to be determined. The second deviatoric stress invariant, \(J_{2}{ }^{\prime}\), can be explicitly written as
\[
\begin{align*}
J_{2}{ }^{\prime} & =\frac{1}{2} \sigma_{i j}{ }^{\prime} \sigma_{i j}{ }^{\prime}=\frac{1}{6}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right] \\
& =\frac{1}{2}\left[\sigma_{x}{ }^{\prime 2}+\sigma_{y}{ }^{\prime 2}+\sigma_{z}{ }^{\prime 2}\right]+\tau_{x y}{ }^{2}+\tau_{y z}{ }^{2}+\tau_{x z}{ }^{2} . \tag{7.10}
\end{align*}
\]

Yield criterion (7.9) may be further written as
\[
\begin{equation*}
\bar{\sigma}=\sqrt{ } 3\left(J_{2}^{\prime}\right)^{\frac{1}{2}}=\sqrt{ } 3 k \tag{7.11}
\end{equation*}
\]
where
\[
\begin{equation*}
\tilde{\sigma}=\sqrt{ }(3 / 2)\left\{\sigma_{i j}^{\prime} \sigma_{t j}\right\}^{\frac{1}{2}}, \tag{7.12}
\end{equation*}
\]
and \(\bar{\sigma}\) is termed the effective stress, generalised stress or equivalent stress. Some physical insight into the definition of \(\bar{\sigma}\) will be apparent later from Section 7.2.4 where the case of uniaxial yielding is considered. There are two physical interpretations of the Von Mises yield condition. Nadai (1937) introduced the so-called octahedral shear stress \(\tau_{\text {oct }}\), which is the shear stress on the planes of a regular octahedron, the apices of which coincide with the
principal axes of stress. The value of \(\tau_{\text {oct }}\) is related to \(J_{2}{ }^{\prime}\) by
\[
\begin{equation*}
\tau_{\mathrm{oct}}=\sqrt{ }\left(2 J_{2}{ }^{\prime} / 3\right) . \tag{7.13}
\end{equation*}
\]

Thus yielding can be interpreted to begin when \(\tau_{\text {oct }}\) reaches a critical value. Hencky (1924) pointed out that the Von Mises law implies that yielding begins when the (recoverable) elastic energy of distortion reaches a critical value.

Fig. 7.1 shows the geometrical interpretation of the Von Mises yield surface to be a circular cylinder whose projection onto the \(\pi\) plane is a circle of radius \(\sqrt{ }(2) k\) as shown in Fig. 7.2(a). The two dimensional plot of the Von Mises yield surface is the ellipse shown in Fig. 7.2(b). A physical meaning of the constant \(k\) can be obtained by considering the yielding of materials under simple stress states. The case of pure shear ( \(\sigma_{1}=-\sigma_{2}, \sigma_{3}=0\) ) requires on use of (7.9) and (7.10) that \(k\) must equal the yield shear stress. Alternatively the case of uniaxial tension ( \(\sigma_{2}=\sigma_{3}=0\) ) requires that \(\sqrt{ }(3) k\) is the uniaxial yield stress.

The Tresca yield locus is a hexagon with distances of \(\sqrt{ }(2 / 3) Y\) from origin to apex on the \(\pi\) plane whereas the Von Mises yield surface is a circle of radius \(\sqrt{ }(2) k\). By suitably choosing the constant \(Y\), the criteria can be made to agree with each other, and with experiment, for a single state of stress. This may be selected arbitrarily; it is conventional to make the circle pass through the apices of the hexagon by taking the constant \(Y=\sqrt{ }(3) k\), the yield stress in simple tension. The criteria then differ most for a state of pure shear, where the Von Mises criterion gives a yield stress \(2 / \sqrt{ }(3)(\approx 1 \cdot 15)\) times that given by the Tresca criterion. For most metals Von Mises' law fits the experimental data more closely than Tresca's, but it frequently happens that the Tresca criterion is simpler to use in theoretical applications.

\section*{The Mohr-Coulomb yield criterion}

This is a generalisation of the Coulomb (1773) friction failure law defined by
\[
\begin{equation*}
\tau=c-\sigma_{n} \tan \phi, \tag{7.14}
\end{equation*}
\]
where \(\tau\) is the magnitude of the shearing stress, \(\sigma_{n}\) is the normal stress (tensile stress is positive), \(c\) is the cohesion and \(\phi\) the angle of internal friction. Graphically (7.14) represents a straight line tangent to the largest principal stress circle as shown in Fig. 7.3 and was first demonstrated by Mohr (1882). From Fig. 7.3, and for \(\sigma_{1} \geqslant \sigma_{2} \geqslant \sigma_{3}(7.14)\) can be rewritten as
\[
\begin{equation*}
-\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right) \cos \phi=c-\left(\frac{\sigma_{1}+\sigma_{3}}{2}-\frac{\left(\sigma_{1}-\sigma_{3}\right)}{2} \sin \phi\right) \tan \phi, \tag{7.15}
\end{equation*}
\]
or rearranging
\[
\begin{equation*}
\left(\sigma_{1}-\sigma_{3}\right)=2 c \cos \phi-\left(\sigma_{1}+\sigma_{3}\right) \sin \phi . \tag{7.16}
\end{equation*}
\]


Fig. 7.3 Mohr circle representation of the Mohr-Coulomb yield criterion.

Again, as for the Tresca criterion, the complete yield surface is obtained by considering all other stress combinations which can cause yielding (e.g. \(\sigma_{3} \geqslant \sigma_{1} \geqslant \sigma_{2}\) ). In principal stress space this gives a conical yield surface whose normal section at any point is an irregular hexagon as shown in Fig. 7.4. The conical, rather than cylindrical, nature of the yield surface is a consequence of the fact that a hydrostatic stress does influence yielding which is evident from the last term in (7.14). When \(\sigma_{1}=\sigma_{2}=\sigma_{3}\) we have from (7.16) that the mean hydrostatic stress, \(\sigma_{m}=c \cot \phi\) and therefore the apex of the hexagonal pyramid, 0 , in Fig. 7.4, lies along the space diagonal at the point \(\sigma_{1}=\sigma_{2}=\sigma_{3}=c \cot \phi\). This criterion is applicable to concrete, rock and soil problems.

\section*{The Drucker-Prager yield criterion}

An approximation to the Mohr-Coulomb law was presented by Drucker and Prager (1952) as a modification of the Von Mises yield criterion. The influence of a hydrostatic stress component on yielding was introduced by inclusion of an additional term in the Von Mises expression to give
\[
\begin{equation*}
a J_{1}+\left(J_{2}^{\prime}\right)^{\frac{1}{2}}=k^{\prime} . \tag{7.17}
\end{equation*}
\]

This yield surface has the form of a circular cone. In order to make the Drucker-Prager circle coincide with the outer apices of the Mohr-Coulomb hexagon at any section, it can be shown that
\[
\begin{equation*}
a=\frac{2 \sin \phi}{\sqrt{ }(3)(3-\sin \phi)}, \quad k^{\prime}=\frac{6 c \cos \phi}{\sqrt{ }(3)(3-\sin \phi)} . \tag{7.18}
\end{equation*}
\]

Coincidence with the inner apices of the Mohr-Coulomb hexagon is provided by
\[
\begin{equation*}
\alpha=\frac{2 \sin \phi}{\sqrt{ }(3)(3+\sin \phi)}, \quad k^{\prime}=\frac{6 c \cos \phi}{\sqrt{ }(3)(3+\sin \phi)} . \tag{7.19}
\end{equation*}
\]


Fig. 7.4 (a) Geometrical representation of the Mohr-Coulomb and DruckerPrager yield surfaces in principal stress space.


Fig. 7.4 (b) Two-dimensional, \(\pi\) plane, representation of the Mohr-Coulomb and Drucker-Prager yield criteria.

However, the approximation given by either the inner or outer cone to the true failure surface can be poor for certain stress combinations. \({ }^{(5)}\)

\subsection*{7.2.2 Work or strain hardening}

After initial yielding, the stress level at which further plastic deformation occurs may be dependent on the current degree of plastic straining. Such a phenomenon is termed work hardening or strain hardening. Thus the yield surface will vary at each stage of the plastic deformation, with the subsequent yield surfaces being dependent on the plastic strains in some way. Some alternative models which describe strain hardening in a materiai are illustrated in Fig. 7.5. A perfectly plastic material is shown in Fig. 7.5(a) where the yield stress level does not depend in any way on the degree of plastification. If the subsequent yield surfaces are a uniform expansion of the original yield curve, without translation, as shown in Fig. 7.5(b) the strainhardening model is said to be isotropic. On the other hand if the subsequent yield surfaces preserve their shape and orientation but translate in the stress space as a rigid body as shown in Fig. 7.5(c), kinematic hardening is said to take place. Such a hardening model gives rise to the experimentally observed Bauschinger effect on cyclic loading.


Fig. 7.5 Mathematical models for representation of strain hardening behaviour.

For some materials, notably soils, the yield surface may not strain harden but strain soften instead, so that the yield stress level at a point decreases with increasing plastic deformation. Therefore, for an isotropic model, the original yield curve contracts progressively without translation. Consequently yielding implies local failure and the yield surface becomes a failure criterion.

The progressive development of the yield surface can be defined by relating the yield stress \(k\) to the plastic deformation by means of the hardening parameter \(\kappa\). This can be done in two ways. Firstly the degree of work hardening can be postulated to be a function of the total plastic work, \(W_{p}\), only. Then,
\[
\begin{equation*}
\kappa=W_{p} \tag{7.20}
\end{equation*}
\]
where
\[
\begin{equation*}
W_{p}=\int \sigma_{i j}\left(d \epsilon_{i j}\right)_{p} \tag{7.2I}
\end{equation*}
\]
in which \(\left(d_{i j}\right)_{p}\) are the plastic components of strain occurring during a strain increment. Alternatively \(\kappa\) can be related to a measure of the total plastic deformation termed the effective, generalised or equivalent plastic strain which is defined incrementally as
\[
\begin{equation*}
d \bar{\epsilon}_{p}=\sqrt{ }\left(\frac{3}{\overline{3}}\right)\left\{\left(d \epsilon_{i j}\right)_{p}\left(d \epsilon_{i j}\right)_{p}\right\}^{\frac{1}{2}} . \tag{7.22}
\end{equation*}
\]

A physical insight of this definition is provided in Section 7.2.4 where uniaxial yielding is considered. For situations where the assumption that yielding is independent of any hydrostatic stress is valid, \(\left(d \epsilon_{i i}\right)_{p}=0\) and hence \(\left(d \epsilon_{i j^{\prime}}\right)_{p}=\left(d \epsilon_{i j}\right)_{p}\). Consequently (7.22) can be rewritten as
\[
\begin{equation*}
d \bar{\epsilon}_{p}=\sqrt{ }\left(\frac{2}{3}\right)\left\{\left(d \epsilon_{i j}\right)_{p}\left(d \epsilon_{i j}\right)_{p}\right\}^{\frac{1}{3}} . \tag{7.23}
\end{equation*}
\]

Then the hardening parameter, \(\kappa\), is assumed to be defined as
\[
\begin{equation*}
\kappa=\bar{\epsilon}_{p} \tag{7.24}
\end{equation*}
\]
where \(\bar{\epsilon}_{p}\) is the result of integrating \(d \bar{\epsilon}_{p}\) over the strain path. This behaviour is termed strain hardening. Only an isotropic hardening model will be considered in this text.
Stress states for which \(f=k\) represent plastic states, while elastic behaviour is characterised by \(f<k\). At a plastic state, \(f=k\), the incremental change in the yield function due to an incremental stress change is
\[
\begin{equation*}
d f=\frac{\hat{c} f}{\hat{c} \sigma_{i j}} d \sigma_{i j} . \tag{7.25}
\end{equation*}
\]

Then if:-
\(d f<0\) elastic unloading occurs (elastic behaviour) and the stress point returns inside the yield surface
\(d f=0\) neutral loading (plastic behaviour for a perfectly plastic material) and the stress point remains on the yield surface
\(d f>0\) plastic loading (plastic behaviour for a strain hardening material) and the stress point remains on the expanding yield surface.
It can also be shown \({ }^{(1-3)}\) that, for a stable material that the initial and all subsequent yield surfaces must be convex.

\subsection*{7.2.3 Elasto-plastic stress/strain relation}

After initial yielding the material behaviour will be partly elastic and partly plastic. During any increment of stress, the changes of strain are assumed to be divisible into elastic and plastic components, so that
\[
\begin{equation*}
d \epsilon_{i j}=\left(d \epsilon_{i j}\right)_{e}+\left(d \epsilon_{i j}\right)_{p} \tag{7.26}
\end{equation*}
\]

The elastic strain increment is related to the stress increment by (7.1). Or, decomposing the stress terms into their deviatoric and hydrostatic components
\[
\begin{equation*}
\left(d \epsilon_{i j}\right)_{e}=\frac{d \sigma_{i j}^{\prime}}{2 \mu}+\frac{(1-2 \nu)}{E} \delta_{i j} d \sigma_{k k}, \tag{7.27}
\end{equation*}
\]
where \(E\) and \(\nu\) are respectively the elastic modulus and Poisson's ratio of the material.
In order to derive the relationship between the plastic strain component and the stress increment a further assumption on the material behaviour must be made. In particular it will be assumed that, the plastic strain increment is proportional to the stress gradient of a quantity termed the plastic potential \(Q\), so that
\[
\begin{equation*}
\left(d \epsilon_{i j}\right)_{p}=d \lambda \frac{\partial Q}{\partial \sigma_{i j}}, \tag{7.28}
\end{equation*}
\]
where \(d \lambda\) is a proportionality constant termed the plastic multiplier. A theoretical basis for this assumption is developed in Ref. 1. Equation (7.28) is termed the flow rule since it governs the plastic flow after yielding. The potential \(Q\) must be a function of \(J_{2}{ }^{\prime}\) and \(J_{3}{ }^{\prime}\) but as yet it cannot be determined in its most general form. However the relation \(f \equiv Q\) has a special significance in the mathematical theory of plasticity, since for this case certain variational principles and uniqueness theorems can be formulated. The identity \(f \equiv Q\) is a valid one since it has been postulated that both are functions of \(J_{2}{ }^{\prime}\) and \(J_{3}{ }^{\prime}\) and such an assumption gives rise to an associated theory of plasticity. In this case (7.28) becomes
\[
\begin{equation*}
\left(d \epsilon_{i j}\right)_{p}=d \lambda \frac{\hat{f}}{\partial \sigma_{i j}} \tag{7.29}
\end{equation*}
\]
and is termed the normality condition since \(\partial f / \partial \sigma_{i j}\) is a vector directed normal to the yield surface at the stress point under consideration as shown in Fig. 7.6. It is seen that the components of the plastic strain increment are required to combine vectorially in \(n\)-dimensional space to give a vector


Fig. 7.6 Geometrical representation of the normality rule of associated plasticity.
which is normal to the yield surface. For the particular case of \(f=J_{2}{ }^{\prime}\) we have
\[
\begin{equation*}
\frac{\hat{c} f}{\partial \sigma_{i j}}=\frac{\dot{c}^{\prime} J_{2}^{\prime}}{\hat{c} \sigma_{i j}}=\sigma_{i j^{\prime}} . \tag{7.30}
\end{equation*}
\]

Then (7.29) becomes
\[
\begin{equation*}
\left(d \epsilon_{i j}\right)_{p}=d \lambda \sigma_{i j} \tag{7.31}
\end{equation*}
\]
which are known as the Prandtl-Reuss equations \({ }^{(1)}\) and have been extensively employed in theoretical work. Experimental observations indicate that the normality condition is an acceptable assumption for metals, but the question of normality in rocks and soils is still open to debate \({ }^{(6)}\) and is discussed further in Chapter 12. Thus on use of (7.26), (7.27) and (7.29) the complete incremental relationship between stress and strain for elasto-plastic deformation is found to be
\[
\begin{equation*}
d \epsilon_{i j}=\frac{d \sigma_{i j}^{\prime}}{2 \mu}+\frac{(1-2 \nu)}{E} \delta_{i j} d \sigma_{k k}+d \lambda \frac{\partial f}{\partial \sigma_{i j}} \tag{7.32}
\end{equation*}
\]

\subsection*{7.2.4 Uniaxial yield test on a strain-hardening material}

Consider the uniaxial testing of an elasto-plastic material which produces the stress-strain curve shown in Fig. 7.7. The behaviour is initially elastic characterised by an elastic modulus \(E\) until yielding commences at the uniaxial yield stress \(\sigma_{Y}\). Thereafter the material response is elasto-plastic with the local tangent to the curve continually varying and is termed the elasto-plastic tangent modulus, \(E_{T}\). The hardening law \(k=k(\kappa)\) could just as easily be expressed in terms of the effective stress, \(\bar{\sigma}\) (since it is proportional to \(J_{2}{ }^{\prime}\) ) to give, for the strain hardening hypothesis (7.24)
\[
\begin{equation*}
\bar{\sigma}=H\left(\bar{\epsilon}_{p}\right) \tag{7,33}
\end{equation*}
\]


Fig. 7.7 Elasto-plastic strain hardening behaviour for the uniaxial case.
or differentiating,
\[
\begin{equation*}
\frac{d \bar{\sigma}}{d \bar{\epsilon}_{p}}=H^{\prime}\left(\bar{\epsilon}_{p}\right) \tag{7.34}
\end{equation*}
\]

For the uniaxial case under consideration \(\sigma_{1}=\sigma, \sigma_{2}=\sigma_{3}=0\) and thus from (7.12)
\[
\begin{equation*}
\bar{\sigma}=\sqrt{ }\left(\frac{3}{2}\right)\left\{\sigma_{i j^{\prime}} \sigma_{i j^{\prime}}\right\}^{1 / 2}=\sigma \tag{7.35}
\end{equation*}
\]

If the plastic strain increment in the direction of loading is \(d \epsilon_{p}\), then \(\left(d \epsilon_{1}\right)_{p}=\) \(d \epsilon_{p}\) and since plastic straining is assumed to be incompressible, Poisson's ratio is effectively 0.5 and \(\left(d \epsilon_{2}\right)_{p}=-\frac{1}{2} d \epsilon_{p}\) and \(\left(d \epsilon_{3}\right)_{p}=-\frac{1}{2} d \epsilon_{p}\). Then from (7.23) the effective plastic strain becomes
\[
\begin{equation*}
d \bar{\epsilon}_{p}=\sqrt{ }\left(\frac{2}{3}\right)\left\{\left(\epsilon_{i j}\right)_{p}\left(\epsilon_{i j}\right)_{p}\right\}^{1 / 2}=d \epsilon_{p} . \tag{7.36}
\end{equation*}
\]

Expressions (7.35) and (7.36) explain the apparent arbitrary constants employed in the definition of \(\bar{\sigma}\) and \(\bar{\epsilon}_{p}\), since these terms are required to become the actual stress and strain for uniaxial yielding. Using (7.35) and (7.36) then (7.34) becomes
\[
H^{\prime}\left(\bar{\epsilon}_{p}\right)=\frac{d \sigma}{d \epsilon_{p}}=\frac{d \sigma}{d \epsilon-d \epsilon_{e}}=\frac{1}{d \epsilon / d \sigma-d \epsilon_{e} / d \sigma}
\]
or
\[
\begin{equation*}
H^{\prime}=\frac{E_{T}}{1-E_{T} / E} \tag{7.37}
\end{equation*}
\]

Thus the hardening function \(H^{\prime}\) can be determined experimentally from a simple uniaxial yield test. (For numerical computation it will be shown in the next section that it is \(H^{\prime}\) and not \(H\) that is required).

\subsection*{7.3 Matrix formulation}

The theoretical expressions developed in Section 7.2 will now be converted to matrix form. \({ }^{(7,8)}\) The yield function, first defined in (7.4), can be rewritten as
\[
\begin{equation*}
f(\sigma)=k(\kappa) \tag{7.38}
\end{equation*}
\]
where \(\sigma\) is the stress vector and \(\kappa\) is the hardening parameter which governs the expansion of the yield surface. In particular, from (7.20) and (7.21), \(d \kappa=\sigma^{T} d \epsilon_{p}\) for the work hardening hypothesis and from (7.24) \(d \kappa=d \epsilon_{p}\) for the strain hardening hypothesis. Rearranging (7.38) we get
\[
\begin{equation*}
F(\sigma, \kappa)=f(\sigma)-k(\kappa)=0 . \tag{7.39}
\end{equation*}
\]

By differentiating (7.39) we have
\[
\begin{equation*}
d F=\frac{\partial F}{\partial \sigma} d \sigma+\frac{\partial F}{\partial \kappa} d \kappa=0, \tag{7.40}
\end{equation*}
\]
or
\[
\begin{equation*}
\boldsymbol{a}^{T} d \boldsymbol{\sigma}-A d \lambda=0, \tag{7.41}
\end{equation*}
\]
with the definitions
\[
\begin{equation*}
\boldsymbol{a}^{T}=\frac{\partial F}{\partial \boldsymbol{\sigma}}=\left[\frac{\partial F}{\partial \sigma_{x}}, \frac{\partial F}{\partial \sigma_{y}}, \frac{\partial F}{\partial \sigma_{z}}, \frac{\partial F}{\partial \tau_{y z}}, \frac{\partial F}{\partial \tau_{z x}}, \frac{\partial F}{\partial \tau_{x y}}\right], \tag{7.42}
\end{equation*}
\]
and
\[
\begin{equation*}
A=-\frac{1}{d \lambda} \frac{\partial F}{\partial \kappa} d \kappa . \tag{7.43}
\end{equation*}
\]

The vector \(\boldsymbol{a}\) is termed the flow vector. Expression (7.32) can be immediately rewritten as
\[
\begin{equation*}
d \boldsymbol{\epsilon}=[\boldsymbol{D}]^{-1} d \boldsymbol{\sigma}+d \lambda \frac{\partial F}{\partial \boldsymbol{\sigma}}, \tag{7.44}
\end{equation*}
\]
where \(\boldsymbol{D}\) is the usual matrix of elastic constants. Premultiplying both sides of (7.44) by \(d_{D^{T}}=a^{T} D\) and eliminating \(a^{T} d \sigma\) by use of (7.41) we obtain the plastic multiplier \(d \lambda\) to be
\[
\begin{equation*}
d \lambda=\frac{1}{\left[A+\boldsymbol{a}^{T} \boldsymbol{D a}\right]} \boldsymbol{a}^{T} \boldsymbol{d}_{D} d \epsilon_{.} \tag{7.45}
\end{equation*}
\]

Or substituting (7.45) into (7.44) we obtain the complete elasto-plastic incremental stress-strain relation to be
\[
\begin{equation*}
d \sigma=D_{e p} d \epsilon, \tag{7.46}
\end{equation*}
\]
with
\[
\begin{equation*}
D_{e p}=D-\frac{d_{D} d_{D}^{T}}{A+d_{i}^{T} a} ; \quad d_{D}=D a \tag{7.47}
\end{equation*}
\]

This expression for \(D_{e p}\) is similar in form to that for one dimensional application given in Page 28, Chapter 2. It now remains to determine the explicit form of the scalar term, \(A\). The work hardening hypothesis is more general from a thermodynamic viewpoint \({ }^{(9)}\) than the strain hardening hypothesis and will be employed for numerical work in this text. Therefore
\[
\begin{equation*}
d \kappa=\sigma^{T} d \epsilon_{p} \tag{7.48}
\end{equation*}
\]

Equation (7.39) can be rewritten in the form
\[
\begin{equation*}
F(\sigma, \kappa)=f(\sigma)-\sigma_{Y}(\kappa)=0 \tag{7.49}
\end{equation*}
\]
since the uniaxial yield stress, \(\sigma_{Y}=\sqrt{ }(3) k\). Thus from (7.43)
\[
\begin{equation*}
A=-\frac{1}{d \lambda} \frac{\partial F}{\partial \kappa} d \kappa=\frac{1}{d \lambda} \frac{d \sigma_{Y}}{d \kappa} d \kappa \tag{7.50}
\end{equation*}
\]

Note that the full differential may be employed in the last term since \(\sigma_{Y}\) is a function of \(\kappa\) only. Employing the normality condition in (7.48) to express \(d \epsilon_{p}\) we have
\[
\begin{equation*}
d \kappa=\sigma^{T} d \epsilon_{p}=\sigma^{T} d \lambda a=d \lambda a^{T} \sigma \tag{7.51}
\end{equation*}
\]

Or, for the uniaxial case \(\sigma=\bar{\sigma}=\sigma_{\boldsymbol{Y}}\) and \(d \epsilon_{p}=d \bar{\epsilon}_{p}\) where \(\bar{\sigma}\) and \(\bar{\epsilon}_{p}\) are respectively the effective stress and strain. Thus (7.51) becomes
\[
\begin{equation*}
d \kappa=\sigma_{Y} d \bar{\epsilon}_{p}=d \lambda a^{T} \sigma \tag{7.52}
\end{equation*}
\]

Also, from (7.34) we have
\[
\begin{equation*}
\frac{d \bar{\sigma}}{d \bar{\epsilon}_{p}}=\frac{d \sigma_{Y}}{d \epsilon_{p}}=H^{\prime} \tag{7.53}
\end{equation*}
\]

Using Euler's theorem \(\dagger\) applicable to all homogeneous functions of order one, we can write from (7.49)
\[
\begin{equation*}
\frac{\partial f}{\partial \boldsymbol{\sigma}} \boldsymbol{\sigma}=\sigma_{Y} . \tag{7.54}
\end{equation*}
\]

Or from (7.42)
\[
\begin{equation*}
a^{T} \sigma=\sigma_{Y} \tag{7.55}
\end{equation*}
\]

Substituting (7.53) and (7.55) into (7.52) and (7.50) we obtain
\[
\begin{align*}
d \lambda & =d \epsilon_{p} \\
A & =H^{\prime} \tag{7.56}
\end{align*}
\]

\footnotetext{
\(\dagger\) Euler's theorem on homogeneous functions states that if \(f(\mathbf{x})\) is homogeneous and of degree \(n\) then \((\partial f / \partial \mathbf{x}) \cdot \mathbf{x}=n f\).
}

Thus \(A\) is obtained to be the local slope of the uniaxial stress/plastic strain curve and can be determined experimentally from (7.37).

\subsection*{7.4 Alternative form of the yield criteria for numerical computation}

For numerical computations it is convenient to rewrite the yield function in terms of alternative stress invariants. This formulation is due to Nayak \({ }^{(10)}\) and its main advantage is that it permits the computer coding of the yield function and the flow rule in a general form and necessitates only the specification of three constants for any individual criterion.

The principal deviatoric stresses \(\sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}, \sigma_{3}{ }^{\prime}\) are given as the roots of the cubic equation \({ }^{(11)}\)
\[
\begin{equation*}
t^{3}-J_{2}{ }^{\prime} t-J_{3}{ }^{\prime}=0 . \tag{7.57}
\end{equation*}
\]

Noting the trigonometric identity
\[
\begin{equation*}
\sin ^{3} \theta-\frac{3}{4} \sin \theta+\frac{1}{4} \sin 3 \theta=0, \tag{7.58}
\end{equation*}
\]
and substituting \(t=r \sin \theta\) into (7.57) we have
\[
\begin{equation*}
\sin ^{3} \theta-\frac{J_{2}^{\prime}}{r^{2}} \sin \theta-\frac{J_{3}{ }^{\prime}}{r^{3}}=0 . \tag{7.59}
\end{equation*}
\]

Comparing (7.58) and (7.59) gives
\[
\begin{gather*}
r=\frac{2}{\sqrt{ } 3}\left(J_{2}^{\prime}\right)^{1 / 2}  \tag{7.60}\\
\sin 3 \theta=-\frac{4 J_{3}^{\prime}}{r^{3}}=-\frac{3 \sqrt{ } 3}{2} \frac{J_{3}^{\prime}}{\left(J_{2}\right)^{3 / 2}} \tag{7.61}
\end{gather*}
\]

The first root of (7.61) with \(\theta\) determined for \(3 \theta\) in the range \(\pm \pi / 2\) is a convenient alternative to the third invariant, \(J_{3}^{\prime}\). By noting the cyclic nature of \(\sin (3 \theta+2 n \pi)\) we have immediately the three (and only three) possible values of \(\sin \theta\) which define the three principal stresses. The deviatoric principal stresses are given by \(t=r \sin \theta\) on substitution of the three values of \(\sin \theta\) in turn. Substituting for \(r\) from (7.60) and adding the mean hydrostatic stress component gives the total principal stresses to be
\[
\left\{\begin{array}{l}
\sigma_{1}  \tag{7.62}\\
\sigma_{2} \\
\sigma_{3}
\end{array}\right\}=\frac{\left.2\left(J_{2}\right)^{\prime}\right)^{\frac{1}{2}}}{\sqrt{ } 3}\left\{\begin{array}{l}
\sin \left(\theta+\frac{2 \pi}{3}\right) \\
\sin \theta \\
\sin \left(\theta+\frac{4 \pi}{3}\right)
\end{array}\right\}+\frac{J_{1}}{3}\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}
\]
with \(\sigma_{1}>\sigma_{2}>\sigma_{3}\) and \(-\pi / 6 \leqslant \theta \leqslant \pi / 6\). The term \(\theta\) is essentially similar to the Lode parameter \({ }^{(1)} \Gamma\) defined by \(\Gamma=-\sqrt{ }(3) \tan \theta\). The four yield criteria
considered in Section 7.2.1 can now be rewritten in terms of \(J_{1}, J_{2}{ }^{\prime}\) and \(\theta\) as follows.

The Tresca yield criterion
Substitute for \(\sigma_{1}\) and \(\sigma_{3}\) from (7.62) into (7.8) gives
\[
\frac{2}{\sqrt{ } 3}\left(J_{2}\right)^{\frac{1}{2}}\left[\sin \left(\theta+\frac{2 \pi}{3}\right)-\sin \left(\theta+\frac{4 \pi}{3}\right)\right]=Y(\kappa),
\]
or expanding we have
\[
\begin{equation*}
2\left(J_{2}^{\prime}\right)^{\frac{1}{2}} \cos \theta=Y(\kappa)=\sqrt{ }(3) k(\kappa)=\sigma_{Y}(\kappa) . \tag{7.63}
\end{equation*}
\]

The physical interpretation of \(\theta\) is evident from Fig. 7.2.

\section*{The Von Mises yield criterion}

There is no change in this case since this yield function depends on \(J_{2}{ }^{\prime}\) only. From (7.9)
or
\[
\begin{align*}
\left(J_{2}^{\prime}\right)^{\frac{1}{2}} & =k(\kappa), \\
\sqrt{ } 3\left(J_{2}^{\prime}\right)^{\frac{1}{2}} & =\sigma_{Y}(\kappa) . \tag{7.64}
\end{align*}
\]

The Mohr-Coulomb yield criterion
Substituting from (7.62) for \(\sigma_{1}\) and \(\sigma_{3}\) into (7.16) results in
\[
\begin{equation*}
\frac{1}{3} J_{1} \sin \phi+\left(J_{2}^{\prime}\right)^{1 / 2}\left(\cos \theta-\frac{1}{\sqrt{ } 3} \sin \theta \sin \phi\right)=c \cos \phi . \tag{7.65}
\end{equation*}
\]

The Drucker-Prager yield criterion
There is no change for this criterion and we can write directly from (7.17) that
\[
\begin{equation*}
\alpha J_{1}+\left(J_{2}^{\prime}\right)^{\frac{1}{2}}=k^{\prime}, \tag{7.66}
\end{equation*}
\]
where \(a\) and \(k^{\prime}\) are defined in (7.18) or (7.19).
In order to calculate the \(D_{e p}\) matrix in (7.47) we require to express the flow vector \(\boldsymbol{a}\) in a form suitable for numerical computation. We can always write
\[
\begin{equation*}
\boldsymbol{a}^{T}=\frac{\partial F}{\partial \boldsymbol{\sigma}}=\frac{\partial F}{\partial J_{1}} \frac{\partial J_{1}}{\partial \boldsymbol{\sigma}}+\frac{\partial F}{\partial\left(J_{2}^{\prime}\right)^{1 / 2}} \frac{\partial\left(J_{2}^{\prime}\right)^{1 / 2}}{\partial \boldsymbol{\sigma}}+\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \boldsymbol{\sigma}}, \tag{7.67}
\end{equation*}
\]
where
\[
\boldsymbol{\sigma}^{T}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{y z}, \tau_{z x}, \tau_{x y}\right\} .
\]

Differentiating (7.61) we obtain
\[
\begin{equation*}
\frac{\partial \theta}{\partial \sigma}=\frac{-\sqrt{ } 3}{2 \cos 3 \theta}\left[\frac{1}{\left(J_{2}^{\prime}\right)^{3 / 2}} \frac{\partial J_{3}}{\partial \sigma}-\frac{3 J_{3}}{\left(J_{2}^{\prime}\right)^{2}} \frac{\partial\left(J_{2}\right)^{1 / 2}}{\partial \sigma}\right] . \tag{7.68}
\end{equation*}
\]

Substituting this in (7.67) and using (7.61), we can then write
\[
\begin{equation*}
a=C_{1} a_{1}+C_{2} a_{2}+C_{3} a_{3} \tag{7.69}
\end{equation*}
\]
where
\[
\begin{align*}
& \boldsymbol{a}_{1} \boldsymbol{p}=\frac{\partial J_{1}}{\partial \sigma}=\{1,1,1,0,0,0\} \\
& \boldsymbol{a}_{2}{ }^{T}=\frac{\partial\left(J_{2}\right)^{1 / 2}}{\partial \sigma}=\frac{1}{2\left(J_{2}{ }^{\prime}\right)^{1 / 2}}\left\{\sigma_{x}^{\prime}, \sigma_{y}{ }^{\prime}, \sigma_{z}{ }^{\prime}, 2 \tau_{y z}, 2 \tau_{z x}, 2 \tau_{x y}\right\} \\
& \boldsymbol{a}_{3}{ }^{\boldsymbol{T}}=\frac{\partial J_{3}}{\partial \sigma}=\left\{\left(\sigma_{y}{ }^{\prime} \sigma_{z}{ }^{\prime}-\tau_{y z}{ }^{2}+\frac{J_{2}{ }^{\prime}}{3}\right), \quad\left(\sigma_{x}{ }^{\prime} \sigma_{z}{ }^{\prime}-\tau_{x z}{ }^{2}+\frac{J_{2}{ }^{\prime}}{3}\right),\right. \\
& \left(\sigma_{x}{ }^{\prime} \sigma_{y}{ }^{\prime}-\tau_{x y}{ }^{2}+\frac{J_{2}{ }^{\prime}}{3}\right), \quad 2\left(\tau_{x z} \tau_{x y}-\sigma_{x}{ }^{\prime} \tau_{y z}\right), \\
& \left.2\left(\tau_{x y} \tau_{y z}-\sigma_{y}{ }^{\prime} \tau_{x z}\right), \quad 2\left(\tau_{y z} \tau_{x z}-\sigma_{z}{ }^{\prime} \tau_{x y}\right)\right\}, \tag{7.70}
\end{align*}
\]
and
\[
\begin{align*}
& C_{1}=\frac{\partial F}{\partial J_{1}}, \quad C_{2}=\left(\frac{\partial F}{\partial\left(J_{2^{\prime}}\right)^{1 / 2}}-\frac{\tan 3 \theta}{\left(J_{2}^{\prime}\right)^{1 / 2}} \frac{\partial F}{\partial \theta}\right), \\
& C_{3}=\frac{-\sqrt{ } 3}{2 \cos 3 \theta} \frac{1}{\left(J_{2}^{\prime}\right)^{3 / 2}} \frac{\partial F}{\partial \theta} . \tag{7.71}
\end{align*}
\]

Only the constants \(C_{1}, C_{2}\) and \(C_{3}\) are then necessary to define the yield surface. Thus we can achieve a simplicity of programming as only these three constants have to be varied between one yield surface and another. The constants \(C_{i}\) are given in Table 7.1 for the four yield criteria considered in Section 7.2.1 and other yield functions can be expressed in the same form with equal ease.

Table 7.1 Constants defining the yield surface in a form suitable for numerical analysis.
\begin{tabular}{lccc}
\hline \multicolumn{1}{c}{ Yield Criterion } & \(C_{1}\) & \(C_{2}\) & \(C_{3}\) \\
\hline Tresca & 0 & \(2 \cos \theta(1+\tan \theta \tan 3 \theta)\) & \(\frac{\sqrt{ } 3}{J_{2}{ }^{\prime}} \frac{\sin \theta}{\cos 3 \theta}\) \\
Von Mises & 0 & \(\sqrt{ } 3\) & 0 \\
Mohr-Coulomb & \(\frac{1}{3} \sin \phi\) & \begin{tabular}{c}
\(\cos \theta[(1+\tan \theta \tan 3 \theta)\) \\
\(+\sin \phi(\tan 3 \theta-\tan \theta) / \sqrt{ } 3]\)
\end{tabular} & \(\frac{(\sqrt{ } 3 \sin \theta+\cos \theta \sin \phi)}{\left(2 J_{2}{ }^{\prime} \cos 3 \theta\right)}\) \\
Drucker-Prager & \(a\) & 1.0 & 0 \\
\hline
\end{tabular}

\subsection*{7.5 Basic expressions for two dimensional problems}

For two dimensional problems, the general expressions derived so far in this chapter have to be modified. Primarily the main alteration required is the deletion of the stress (and strain) components which vanish under the conditions of plane stress, plane strain or axial symmetry. We have only four non-zero stress or strain components, namely
\[
\begin{array}{rlrl}
\boldsymbol{\sigma}^{\boldsymbol{T}}= & \left\{\begin{array}{lll}
\left.\sigma_{x}, \sigma_{y}, \tau_{x y}, \sigma_{z}\right\}, & \sigma_{z}=0 & \text { for Plane Stress } \\
& \left\{\sigma_{x}, \sigma_{y}, \tau_{x y}, \sigma_{z}\right\}, & \epsilon_{z}=0
\end{array}\right. & \text { Plane Strain } \\
& \left\{\sigma_{r}, \sigma_{z}, \tau_{r z}, \sigma_{\theta}\right\} & & \text { Axial Symmetry. }
\end{array}
\]

From Fig. 7.8 it is seen that the \(z\) direction is taken as the coordinate independent direction for plane stress and plane strain. It is also found convenient to order the stress components as indicated in (7.72) with the stress in the coordinate independent direction being last.


Fig. 7.8 Two-dimensional applications showing coordinate systems employed.

The explicit form of the elasticity matrix \(\boldsymbol{D}\) can be written
\(\boldsymbol{D}=\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc:c}1 & \frac{\nu}{1-\nu} & 0 & \frac{\nu}{1-\nu} \\ \frac{\nu}{1-\nu} & 1 & 0 & \frac{\nu}{1-\nu} \\ 0 & 0 & \frac{1-2 \nu}{2(1-\nu)} & 0 \\ \hdashline \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 0 & 1\end{array}\right]\) for plane strain
\[
D=\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc:c}
1 & \nu & 0 & 0  \tag{7.73}\\
\nu & 1 & 0 & 0 \\
& & 1-\nu & \text { for plane stress. } \quad \text {. } 1-2
\end{array}\right] \quad \text {. }
\]

Note that the components corresponding to the coordinate independent direction have been included for the plane stress and strain cases. These terms will be excluded for element stiffness formulation and only the first \(3 \times 3\) portion indicated will be employed. By eliminating the appropriate stress terms the expressions developed to date can be readily modified. The flow vector \(\boldsymbol{a}\) becomes
\[
\boldsymbol{a}^{T}=\left\{\begin{array}{lll}
\frac{\partial F}{\partial \sigma_{x}}, & \frac{\partial F}{\partial \sigma_{y}}, & \frac{\partial F}{\partial \tau_{x y}},  \tag{7.74}\\
\frac{\partial F}{\partial \sigma_{z}}
\end{array}\right\},
\]
with \(x, y\) and \(z\) being replaced by \(r, z\) and \(\theta\) respectively for the case of axial symmetry. The specific form of the vector, \(a\) is still given by (7.69) but in this case we have from (7.70)
\[
\begin{align*}
\boldsymbol{a}_{1}{ }^{T}= & \{1,1,0,1\} \\
\boldsymbol{a}_{2}{ }^{T}= & \frac{1}{2\left(J_{2}\right)^{1 / 2}}\left\{\sigma_{x}^{\prime}, \sigma_{y}^{\prime}, 2 \tau_{x y}, \sigma_{z}{ }^{\prime}\right\} \\
\boldsymbol{a}_{3}{ }^{T}= & \left\{\left(\sigma_{y}^{\prime} \sigma_{z}^{\prime}+\frac{J_{2}^{\prime}}{3}\right),\left(\sigma_{x}^{\prime} \sigma_{z}^{\prime}+\frac{J_{2}^{\prime}}{3}\right)\right. \\
& \left.-2 \sigma_{z}^{\prime} \tau_{x y},\left(\sigma_{x}^{\prime} \sigma_{y}^{\prime}-\tau_{x y}{ }^{2}+\frac{J_{2}^{\prime}}{3}\right)\right\} \tag{7.75}
\end{align*}
\]
and the deviatoric stress invariants become, from (7.5)
\[
\begin{align*}
& J_{2}^{\prime}=\frac{1}{2}\left(\sigma_{x}^{\prime 2}+\sigma_{y}^{\prime 2}+\sigma_{z}^{\prime 2}\right)+\tau_{x y}{ }^{2} \\
& J_{3}{ }^{\prime}=\sigma_{z}^{\prime}\left(\sigma_{z}^{\prime 2}-J_{2}^{\prime}\right) . \tag{7.76}
\end{align*}
\]

To complete the prescription of the elasto-plastic matrix \(D_{e p}\) given in (7.47) we require \(d_{D}\). Employing the relevant form of \(\boldsymbol{D}\) from (7.73) in (7.47) results in, for plane strain and axial symmetry
\[
\boldsymbol{d}_{D}=\left\{\begin{array}{l}
d_{1}  \tag{7.77}\\
d_{1} \\
d_{3} \\
d_{4}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{E}{1+\nu} a_{1}+M_{1} \\
\frac{E}{1+\nu} a_{2}+M_{1} \\
G a_{3} \\
\frac{E}{1+\nu} a_{4}+M_{1}
\end{array}\right\}, \quad M_{1}=\frac{E \nu\left(a_{1}+a_{2}+a_{4}\right)}{(1+\nu)(1-2 \nu)},
\]
where \(G=E / 2(1+\nu)\) is the shear modulus and \(a_{1} \ldots a_{4}\) are the components of \(a\). For plane stress we have
\[
\boldsymbol{d}_{D}=\left\{\begin{array}{c}
\frac{E}{1+\nu} a_{1}+M_{2}  \tag{7.78}\\
\frac{E}{1+\nu} a_{2}+M_{2} \\
G a_{3} \\
\frac{E}{1+\nu} a_{4}+M_{2}
\end{array}\right\}, \quad M_{2}=\frac{E \nu\left(a_{1}+a_{2}\right)}{1-\nu^{2}} .
\]

\subsection*{7.6 Singular points on the yield surface}

For many yield surfaces the flow vector \(a\) is not uniquely defined for certain stress combinations. For example this arises at the corners of the Tresca and Mohr-Coulomb criteria located by \(\theta= \pm 30^{\circ}\) and the direction of plastic straining there is indeterminate. Koiter \({ }^{(12)}\) has provided limits within which the incremental plastic strain vector must lie. Numerical difficulties will be encountered as \(\theta\) approaches \(\pm 30^{\circ}\) for the Tresca and Mohr-Coulomb laws since it is seen from Table 7.1 that for these values of \(\theta\) both \(C_{2}\) and \(C_{3}\) become indeterminate. This difficulty can be overcome by returning to the original expressions (7.63) for the Tresca law and (7.65) for the MohrCoulomb criterion and rewriting these for the explicit values \(\theta= \pm 30^{\circ}\). Thus we have for the Tresca law
\[
\begin{equation*}
\sqrt{ }(3)\left(J_{2}^{\prime}\right)^{1}=Y(\kappa)=\sqrt{ }(3) k(\kappa) \tag{7.79}
\end{equation*}
\]
and thus from (7.71) we have
\[
\begin{equation*}
C_{1}=0, \quad C_{2}=\sqrt{ }(3), \quad C_{3}=0 \quad \text { for } \quad \theta= \pm 30^{\circ} . \tag{7.80}
\end{equation*}
\]

Physically, since (7.79) is the Von Mises criterion, this is equivalent to stating that the direction of plastic straining at the corners of the Tresca criterion is that given by the Von Mises circle which also passes through the corner (see Fig. 7.2). Similarly for the Mohr-Coulomb criterion we have
from (7.65),
\[
\left.\begin{array}{ll}
\frac{1}{3} J_{1} \sin \phi+\left(J_{2}^{\prime}\right)^{1 / 2} \frac{1}{2}\left(\sqrt{ } 3-\frac{\sin \phi}{\sqrt{ } 3}\right)-c \cos \phi=0 & \text { for }
\end{array} \theta=+30^{\circ}\right)
\]
or from (7.71) we have
\[
\begin{align*}
C_{1} & =\frac{1}{3} \sin \phi, C_{2} & =\frac{1}{2}\left(\sqrt{ } 3-\frac{\sin \phi}{\sqrt{ } 3}\right), C_{3} & =0
\end{align*} \text { for } \theta=+30^{\circ} .
\]

The practical approach adopted in this text is to use the general expressions for \(C_{1}, C_{2}, C_{3}\) given in Table 7.1 for all values of \(|\theta| \leqslant 29^{\circ}\) and to then employ either (7.80) for Tresca or (7.82) for Mohr-Coulomb in the vicinity of the corners. This makes the direction of straining unique, and also satisfies the Koiter requirements. Physically this artifice corresponds to a 'rounding off' of the yield surface corners.

\subsection*{7.7 Finite element expressions and program structure}

The basic expressions required for solution can be again obtained by use of the principle of virtual work. Consider the solid, in which the internal stresses \(\boldsymbol{\sigma}\), the distributed loads/unit volume \(\boldsymbol{b}\) and external applied forces \(\boldsymbol{f}\) form an equilibrating field, to undergo an arbitrary virtual displacement pattern \(\delta \boldsymbol{d}^{*}\) which result in compatible strains \(\delta \mathbf{\epsilon}^{*}\) and internal displacements \(\delta \boldsymbol{u}^{*}\). Then the principle of virtual work requires that
\[
\begin{equation*}
\int_{\Omega}\left(\delta \epsilon^{* T} \sigma-\delta u^{* T} b\right) d \Omega-\delta d^{* T} f=0 . \tag{7.83}
\end{equation*}
\]

Then the normal finite element discretising procedure leads to the following expressions for the displacements and strains within any element
\[
\begin{equation*}
\delta \boldsymbol{u}^{*}=\boldsymbol{N} \delta \boldsymbol{d}^{*}, \quad \delta \boldsymbol{\epsilon}^{*}=\boldsymbol{B} \delta \boldsymbol{d}^{*}, \tag{7.84}
\end{equation*}
\]
where \(N\) and \(\boldsymbol{B}\) are respectively the usual matrix of shape functions and the elastic strain matrix. Then the element assembly process gives
\[
\begin{equation*}
\int_{\Omega} \delta d^{* T}\left(B^{T} \sigma-N^{T} b\right) d \Omega-\delta d^{* T} f=0 \tag{7.85}
\end{equation*}
\]
where the volume integration over the solid is the sum of the individual element contributions. Since this expression must hold true for any arbitrary \(\delta d^{*}\) value
\[
\begin{equation*}
\int_{\Omega} B^{T} \sigma d \Omega-f-\int_{\Omega} N^{T} b d \Omega=0 \tag{7.86}
\end{equation*}
\]

For the solution of nonlinear problems as described in Chapter 2, (7.86) will not generally be satisfied at any stage of the computation, and
\[
\begin{equation*}
\psi=\int_{\Omega} B^{T} \sigma d \Omega-\left(f+\int_{\Omega} N^{T} b d \Omega\right) \neq 0, \tag{7.87}
\end{equation*}
\]
where \(\psi\) is the residual force vector. For an elasto-plastic situation the material stiffness is continually varying, and instantaneously the incremental stress/strain relationship is given by (7.46). For the purpose of evaluating the material tangential stiffness matrix \(K_{T}\) at any stage, the incremental form of (7.87) must be employed. Thus within an increment of load we have
\[
\begin{equation*}
\Delta \psi=\int_{\Omega} \boldsymbol{B}^{T} \Delta \sigma d \Omega-\left(\Delta f+\int_{\Omega} \boldsymbol{N}^{T} \Delta b d \Omega\right) \tag{7.88}
\end{equation*}
\]

Substituting for \(\Delta \sigma\) from (7.46) results in
\[
\begin{equation*}
\Delta \psi=K_{T} d-\left(\Delta f+\int_{Q} N^{T} \Delta b d \Omega\right) \tag{7.89}
\end{equation*}
\]
where
\[
\begin{equation*}
K_{T}=\int_{\Omega} B^{T} \boldsymbol{D}_{e p} \boldsymbol{B} d \Omega \tag{7.90}
\end{equation*}
\]

Expression (7.89) is essentially identical to (2.4) and therefore the solution procedures developed in Chapter 2 can be again employed.

The programming philosophy adopted for this application follows that employed in Chapter 3 for one-dimensional elasto-plastic problems. It is suggested that the reader reviews the appropriate sections of Chapter 3 before proceeding to the remainder of this chapter. The solution techniques discussed in Chapters 2 and 3 are utilised and in particular an initial stiffness algorithm, a tangential stiffness algorithm and two options of the combined initial/tangential stiffness approach are included. An outline of the program is provided in Fig. 7.9. Many of the subroutines required are common to the corresponding linear elastic solution program and their function and structure have already been described. In particular, subroutines BMATS, CHECK1, CHECK2, DBE, ECHO, FRONT, GAUSSQ, JACOB2, LOADPS, MODPS, NODEXY and SFR2 have been described in Section 6.4. Also the standard nonlinear subroutines ALGOR, CONVER, INCREM and INPUT have been presented in Section 6.5. We will now formulate the additional subroutines required and assemble them to form a working program.


Fig. 7.9 Program organisation for two-dimensional elasto-plastic applications.

\subsection*{7.8 Additional program subroutines}

A total of eight additional subroutines are required some of which will be common to other nonlinear applications considered in later chapters of this text.

\subsection*{7.8.1 Subroutine DIMEN}

The function of this subroutine is to preset the values of variables employed in the program. In particular the variables associated with the dynamic dimensioning process described in Chapter 6 are defined. Thus if it is required to upgrade the magnitude of the maximum problem size which can be solved it is only necessary to modify the dimension statements in the main or master subroutine together with the variables set in subroutine DIMEN. All the variables preset in this subroutine have been previously defined and their specified values are indicated in the following listing.


\subsection*{7.8.2 Subroutine ZERO}

This subroutine merely sets to zero the contents of several arrays employed in the program. These arrays will be employed to accumulate data as the incremental and iterative process continues and they therefore require to be initialised to zero. This subroutine is self-explanatory and is presented without further comment.
```

 SUBROUTINE ZERO(ELOAD,MELEM,MEVAB,MPOIN,MTOTG,MTOTV,NDOFN,NELEM, ZRO1 1
 . NEVAB,NGAUS,NSTR1,NTOTG,EPSTN,EFFST, ZRO1
 NTOTV,NVFIX,STRSG,TDISP,TFACT, ZRO1
 TLOAD,TREAC,MVFIX) ZR01
 C*****\#\#** ZRO1
C ZRO1
C*** THIS SUBROUTINE INITIALISES VARIOUS ARRAYS TO ZERO ZRO1

```
```

C ZRO1

```
C ZRO1
C********************************************************************* 2RO1-9
    DIMENSION ELOAD(MELEM,MEVAB),STRSG(4,MTOTG),TDISP(MTOTV), 2RO1 10
    - TLOAD(MELEM,MEVAB),TREAC(MVFIX,2),EPSTN(MTOTG), ZRO1 11
    E EFFST(MTOTG) 2RO1 12
    TFACT=0.0 2RO1 13
    DO 30 IELEM=1,NELEM 2RO1 14
    DO 30 IEVAB=1,NEVAB ZRO1 15
    ELOAD(IELEM,IEVAB)=0.0 ZRO1 16
```

$30 \operatorname{TLOAD}($ IELEM, IEVAB $)=0.0$ ZRO1 17
DO 40 ITOTV $=1$, NTOTV 2RO1 18
$40 \operatorname{TDISP}($ ITOTV $)=0.0$ ZRO1 19
DO 50 IVFIX=1,NVFIX 2 RO 120
DO 50 IDOFN $=1$, NDOFN 2RO1 21
50 TREAC (IVFIX, IDOFN $)=0.0$ ZRO1 22
DO 60 ITOTG $=1$, NTOTG ZRO1 23 ZRO1 23
$\operatorname{EPSTN}(\operatorname{ITOTG})=0.0$ 2RO1
$\operatorname{EFFST}($ ITOTG $)=0.0$ ZRO1 25
DO 60 ISTR1 $=1$, NSTR1 ZRO1 26
$60 \operatorname{STRSG}($ ISTR1, ITOTG $)=0.0$ ZRO1 27
RETURN ZRO1 28
END 2RO1 29

7.8.3 Subroutine INVAR

The role of this subroutine is to evaluate the various functions of stress used to indicate either initiation of or continuing plastic deformation for the four yield criteria considered in this text. More explicitly we need to calculate the items listed in Table 7.2.

Table 7.2 Effective stress and uniaxial yield stress levels for the yield criteria included in the elasto-plastic computer code.

Equation No.	Yield criterion	Stress level (effective stress)	Uniaxial (or equivalent yield stress)
(7.63)	Tresca	$2\left(J_{2}{ }^{\prime}\right)^{1 / 2} \cos \theta$	σ_{Y}
(7.64)	Von Mises	$\sqrt{ } 3\left(J_{2}{ }^{\prime}\right)^{1 / 2}$	σ_{Y}
(7.65)	Mohr-Coulomb	$\frac{1}{3} J_{1} \sin \phi+\left(J_{2}{ }^{\prime}\right)^{1 / 2}$ $\times(\cos \theta-\sin \theta \sin \phi / \sqrt{ } 3)$	$c \cos \phi$
(7.66)	Drucker-Prager	$a J_{1}+\left(J_{2}{ }^{\prime}\right)^{1 / 2}$	k^{\prime}

Whether or not plastic deformation takes place at any point is governed by its stress level as monitored by the functions in the third column of Table 7.2. For plastic flow to occur this stress level must achieve the values given in the final column of Table 7.2. For the Tresca and Von Mises criteria this value is precisely the uniaxial yield stress but for the Mohr-Coulomb and DruckerPrager criteria it is an equivalent value defined by the stress-independent terms in (7.65) and (7.66) respectively. Note that all the values given in the final column of Table 7.2 can be functions of the hardening parameter, κ.

Subroutine INVAR merely computes the effective or deviatoric stress components and then evaluates the appropriate function in the third column of Table 7.2 depending on the yield criterion being employed. The choice of yield criterion is governed by the parameter NCRIT, input in subroutine INPUT, and the available options are provided below

```
NCRIT \(=1 \quad\) Tresca yield criterion
    2 Von Mises
    3 Mohr-Coulomb
    4 Drucker-Prager
```

Subroutine INVAR is now presented and descriptive notes provided.

INVR 11-15 Compute the deviatoric stresses according to (7.7) with the order of the components being as indicated in (7.72).
INVR 16-17 Calculate the second deviatoric stress invariant, $J_{2}{ }^{\prime}$.
INVR 18 Calculate the third deviatoric stress invariant, $J_{3}{ }^{\prime}$.

INVR 19 Compute, $\left(J_{2}\right)^{\text {t }}$.
INVR 20-26 Evaluate $\sin 3 \theta$ according to (7.61).
INVR 27 Then compute, θ. Note that the principal value is obtained as required in Section 7.4.
INVR 28 Branch according to the yield criterion being employed.
INVR 30 Evaluate the yield function in Column 3, Table 7.2 for the Tresca criterion.
INVR 33 Evaluate the yield function in Column 3, Table 7.2 for the Von Mises criterion.
INVR 36-38 Evaluate the yield function in Column 3, Table 7.2 for the Mohr-Coulomb criterion.
INVR 41-43 Evaluate the yield function in Column 3, Table 7.2 for the Drucker-Prager criterion.

7.8.4.1 Subroutine YIELDF

The function of this subroutine is to determine the flow vector a defined in (7.74). Vector a is given by (7.69) where C_{1}, C_{2} and C_{3} are given in Table 7.1 for the various yield criteria considered and the vectors a_{1}, a_{2} and a_{3} are given by (7.75) for two dimensional applications. For the Tresca and MohrCoulomb yield surfaces which have singular points at $\theta= \pm 30^{\circ}$ the alternative values of C_{1}, C_{2} and C_{3} given respectively in (7.80) and (7.82) must be employed.

Subroutine YIELDF is now presented and described.
SUBROUTINE YIELDF(AVECT,DEVIA,LPROP, MMATS, NCRIT, NSTR1, YLDF 1
PROPS, SINT3,STEFF, THETA, VARJ2) YLDF
2

C*** THIS SUBROUTINE EVALUATES THE FLOW VECTOR YLDF 5
C \quad YLDF 6

DIMENSION AVECT(4),DEVIA(4), PROPS(MMATS,7), YLDF 8
VECA1(4), VECA2(4), VECA3(4) YLDF 9
IF(STEFF.EQ.0.0) RETURN . YLDF 10
FRICT=PROPS(LPROP,7) YLDF 11
TANTH=TAN(THETA) YLDF 12
TANT3=TAN(3.0*THETA) YLDF 13
SINTH=SIN(THETA) YLDF 14
$\operatorname{COSTH}=\operatorname{COS}(T H E T A) \quad$ YLDF 15
$\operatorname{COST} 3=\operatorname{COS}\left(3.0^{* T H E T A)} \quad\right.$ YLDF 16
ROOT3=1.73205080757 YLDF 17
C
C*** Calculate vector al
YLDF 18
c

$$
\operatorname{VECA} 1(1)=1.0
$$

YLDF 19

VECA1 (2) $=1.0$
$\operatorname{VECAI}(3)=0.0$
$\operatorname{VECA1}(4)=1.0$
C
C** calculate vector a2
YLDF 20
YLDF 21
YLDF 22
YLDF 23
YLDF 24

C
YLDF 25
YLDF 26
YLDF 27
10 DO 10 (STR $1=1$, NSTR1
YLDF 28
VECA2(ISTR1)=DEVIA(ISTR1)/(2.0*STEFF) YLDF 29
$\operatorname{VECA2}(3)=$ DEVIA $(3) /$ STEFF
YLDF 30

```
C
VECA3(1)=DEVIA(2)*DEVIA(4)+VARJ2/3.0
    VECA3(2)=DEVIA(1)*DEVIA(4)+VARJ2/3.0 YLDF
    VECA3(3)=-2.0*DEVIA (3)*DEVIA(4) YLDF
    VECA3(4)=DEVIA(1)*DEVIA(2)-DEVIA(3)*DEVIA(3)+VARJ2/3.0
    GO TO (1,2,3,4) NCRIT
C
C*** TRESCA 
    1 CONS1=0.0
        ABTHE=ABS(THETA*57.29577951308)
        IF (ABTHE.LT.29.0) GO TO 20 YLDF 44
        CONS2=ROOT3 YLDF 45
        CONS3=0.0
        GO TO 40
    20 CONS2=2.0*(COSTH+SINTH*TANT3)
        CONS3=ROOT3*SINTH/(VARJ2*COST3)
        GO TO 40
C
C*** VON MISES YLDF
C 2 CONS1=0.0
            CONS2=ROOT3 YLDF 55
            CONS3=0.0 YLDF 56
            GO TO 40 YLDF 5?
C
C*** MOHR-COULOMB
C
    3 CONS1=SIN(FRICT*0.017453292)/3.0
            ABTHE=ABS(THETA*57.29577951308) YLDF 62
            IF(ABTHE.LT.29.0) GO TO 30
            CONS3=0.0
            PLUMI=1.0 YLDF 65
            IF(THETA.GT.0.0) PLUMI=-1.0 YLDF 66
            CONS2=0.5*(ROOT3+PLUMI*CONS1*ROOT3) YLDF 67
            GO TO 40 YLDF
    30 CONS2=COSTH*((1.0+TANTH*TANT3)+CONS1*(TANT3-TANTH)*ROOT3) YLDF 69
    CONS3=(ROOT3*SINTH+3.0*CONS1*COSTH)/(2.0*VARJ2*COST3) YLDF 70
    GO TO 40
C
C*** DRUCKER-PRAGER YLDF 73
C
    4 SNPHI=SIN(FRICT*O.017453292)
        CONS1=2.0*SNPHI/(ROOT3*(3.0-SNPHI))
        CONS2=1.0 YLDF 77
        CONS3=0.0 YLDF 78
        4 0 ~ C O N T I N U E ~
        DO 50 ISTR1=1,NSTR1 YLDF 80
79
        DO 50 ISTR1=1,NSTR1 YLDF 80
        50 AVECT(ISTR1)=CONS1*VECA1(ISTR1)+CONS2*VECA2(ISTR1)+CONS3*
        50 AVECT(ISTR1)=CONS1*VECA1(ISTR1)+CONS2*VECA2(ISTR1)+CONS3* VECA3(ISTR1) YLDF 8
        RETURN YLDF
    END YLDF31
C*** CALCULATE VECTOR A3 YLDF 33
YLDF }3
    YLDF 35
YLDF }3
YLDF
YLDF 38
YLDF }3
C*NE TRESCA Y YLDF 41
C
YLDF 42
    YLDF }4
YES YLDF 53
    2 CONS1=0.0 YLDF 54
YLDF 46
YLDF 47
YLDF }4
YLDF 48
YLDF }4
YLDF 50
YLDF }5
YLDF }5
YLDF 55
YLDF 56
YLDF }5
YLDF 58
YLDF 59
YLDF }6
YLDF 61
YLDF 62
YLDF 63
            MLDF }6
YLDF }6
YLDF }7
YLDF 71
YLDF }7
YLDF }7
YLDF 75
        CONSI=2.0*SNPHI/(ROOI3*(3.0-SNPHI)) YLDF 76
YLDF 78
        50 AVECT(ISTR1)=CONS1*VECA1(TSTR1) +CONS2*VECA2(ISTR1)+CONS3* YIDF 81
        YLDF 82
    YLDF }8
YLDF 84
```

YLDF 10 For the (unlikely) case of a Gauss point with zero stress (identified by $J_{2}{ }^{\prime}=J_{3}{ }^{\prime}=0$) avoid evaluation of the flow vector.
YLDF 11 Identify FRICT as the friction angle ϕ for Mohr-Coulomb and Drucker-Prager materials.

YLDF 12-13 Evaluate $\tan \theta$ and $\tan 3 \theta$.
YLDF 14-16 Evaluate $\sin \theta, \cos \theta$ and $\cos 3 \theta$.
YLDF 17 Compute $\sqrt{ }(3)$.
YLDF 21-24 Evaluate \boldsymbol{a}_{1} according to (7.75).
YLDF 28-30 Evaluate a_{2} according to (7.75). Note that STEFF and DEVIA are transferred via the argument list from subroutine INVAR.
YLDF 34-37 Evaluate a_{3} according to (7.75).
YLDF 38 Branch according to the yield criterion being employed.
YLDF 41-49 Compute the constants C_{1}, C_{2} and C_{3} for a Tresca material according to Table 7.1. In the vicinity of a singular point, identified by $|\theta|>29.0^{\circ}$ evaluate C_{1}, C_{2} and C_{3} according to (7.80).

YLDF 53-55 Compute C_{1}, C_{2} and C_{3} for a Von Mises material according to Table 7.1.
YLDF 61-67 Compute C_{1}, C_{2} and C_{3} for the Mohr-Coulomb criterion. In the vicinity of a singular point defined by $|\theta|>29.0^{\circ}$ evaluate C_{1}, C_{2} and C_{3} according to (7.82).
YLDF 75-78 Calculate C_{1}, C_{2} and C_{3} for the Drucker-Prager yield criterion.
YLDF 80-82 Evaluate a according to (7.69).

7.8.4.2 Subroutine FLOWPL

The main purpose of this subroutine is to determine the vector \boldsymbol{d}_{D} according to either (7.77) or (7.78) depending on the type of analysis being undertaken. In the program presented in this chapter only a linear form of strain hardening is explicitly considered, with the coding of alternative models being left as an exercise for the reader. In this case the term H^{\prime} in (7.37) becomes a constant and is specified as a material property.

Subroutine FLOWPL is now listed and described.


```
60 FMUL3=YOUNG*POISS*(AVECT(1)+AVECT(2))/(1.0-POISS*POISS) FLPL 20
    DVECT(1)=FMUL1*AVECT(1)+FMUL3 FLPL }2
    DVECT(2)=FMUL1*AVECT(2)+FMUL3 FLPL 22
    DVECT(3)=0.5*AVECT(3)*YOUNG/(1.0+POISS) FLPL }2
    DVECT(4)=FMUL1*AVECT(4)+FMUL3 FLPL }2
70 DENOM=HARDS FLPL 25
    DO 80 ISTR1=1,NSTR1 FLPL 26
80 DENOM=DENOM+AVECT(ISTR1)*DVECT(ISTR1) FLPL. }2
    ABETA=1.0/DENOM FLPL 28
    RETURN FLPL 29
    END FLPL 30
```

FLPL 8 Identify YOUNG as the elastic modulus, E.
FLPL 9 Identify POISS as the Poisson's ratio, ν.
FLPL 10 Identify HARDS as H^{\prime} for linear strain hardening.
FLPL 13-18 Evaluate d_{D} according to (7.77) for plane strain and axisymmetric situations.
FLPL 20-24 Evaluate \boldsymbol{d}_{D} according to (7.78) for plane stress problems.
FLPL 26-28 Compute $1 /\left(H^{\prime}+d_{D}{ }^{T} \boldsymbol{a}\right)$ for later evaluation of the elastoplastic matrix $D_{e p}$ in (7.47).

7.8.5 Subroutine STIFFP

This subroutine evaluates the stiffness matrix for each element in turn and differs from the linear elastic version, described in Section 6.3.2, only in that the elasticity matrix \boldsymbol{D} is replaced (for the tangential stiffness approach at least) by the elasto-plastic matrix $D_{e p}$ defined in (7.47). This subroutine is called only when the element stiffnesses are to be reformulated as controlled by variable KRESL defined in subroutine ALGOR. Obviously the element stiffnesses must be calculated for the first iteration of the first load increment and elastic behaviour must be assumed. Every other time this subroutine is accessed the stiffnesses are to be recalculated to account for any plastic deformation of the material and consequently the $D_{e p}$ matrix must be employed. Apart from this change the element stiffness formulation process is identical to that for elastic materials as described in Section 6.3.2.

Subroutine STIFFP will now be described and explanatory notes provided.

KGAUS $=0$	STFP	19
C	STFP	20
C*** LOOP OVER EACH ELEMENT	STFP	21
C	STFP	22
DO 70 IELEM $=1$, NELEM	STFP	23
LPROP=MATNO(IELEM)	STFP	24
C	STFP	25
	STFP	26
C	STFP	27
DO 10 INODE $=1$, NNODE	STFP	28
LNODE=IABS(LNODS(IELEM, INODE))	STFP	29
IPOSN $=($ LNODE-1)*2	STFP	30
DO 10 IDIME $=1,2$	STFP	31
$I P O S N=I P O S N+1$	STFP	32
10 ELCOD (IDIME, INODE) $=$ COORD (LNODE, IDIME)	STFP	33
THICK=PROPS (LPROP,3)	STFP	34
C	STFP	35
	STFP	36
C	STFP	37
DO 20 IEVAB $=1$, NEVAB	STFP	38
DO 20 JEVAB $=1$, NEVAB	STFP	39
$20 \mathrm{ESTIF}($ IEVAB, JEVAB $)=0.0$	STFP	40
KGASP $=0$	STFP	41
C	STFP	42
C** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION	STFP	43
C	STFP	44
DO 50 IGAUS $=1$, NGAUS	STFP	45
EXISP=POSGP(IGAUS)	STFP	46
DO 50 JGAUS $=1$, NGAUS	STFP	47
ETASP $=$ POSGP(JGAUS $)$	STFP	48
KGASP $=K G A S P+1$	STFP	49
KGAUS=KGAUS+1	STFP	50
C	STFP	51
	STFP	52
C CALL MODPS ${ }^{\text {c }}$ (${ }^{\text {a }}$	STFP	53
C CALL MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS)	STFP	54
C	STFP	55
C\%* EVALUATE THE SHAPE FUNCTIONS, ELEMENTAL VOLUME,ETC.	STFP	56
C	STFP	57
CALL SFR2(DERIV, ETASP, EXISP, NNODE, SHAPE)	STFP	58
CALL JACOB2(CARTD,DERIV,DJACB, ELCOD,GPCOD, IELEM, KGASP,	STFP	59
- NVOLUDE, SHAPE)	STFP	60
DVOLU=DJACB WEIGP(IGAUS)*WEIGP(JGAUS)	STFP	61
IF (NTYPE.EQ.3) DVOLU $=$ DVOLU*TWOPI*GPCOD ($1, \mathrm{KGASP}$)	STFP	62
(IF(THICK.NE.0.0) DVOLU=DVOLU*THICK	STFP	63
C	STFP	64
C ${ }^{\text {en }}$ 帾 EVALUATE THE B AND DB MATRICES	STFP	65
C	STFP	66
CALL BMATPS (BMATX, CARTD, NNODE, SHAPE, GPCOD, NTYPE,KGASP)	STFP	67
IF (IINCS.EQ.1) GO TO 80	STFP	68
IF (EPSTN(KGALIS), EQ, 0,0) CO TO 80	STFP	69
D0 90 ISTR1=1,NSTR	STFP	70
90 STRES (ISTR1) =STRSG(ISTR1,KGAUS)	STFP	71
CALL INVAR(DEVIA,LPROP,MMATS,NCRIT, PROPS, SINT3,STEFF,STRES,	STFP	72
- THETA,VARJ2,YIELD)	STFP	73
CALL YIELDF (AVECT, DEVIA, LPROP, MMATS, NCRIT, NSTR1,	STFP	74
* PROPS. SINT3, STEFF, THETA, VARJ2)	STFP	75
CALL FLOWPL(AVECT, ABETA, DVECT, NTYPE, PROPS,LPROP, NSTR1,MMATS)	STFP	76
DO 100 ISTRE $=1, N S T R E$	STFP	77
100 DO 100 JSTRE $=1$, NSTRE	STFP	78
100 DMATX (ISTRE, JSTRE) =DMATX (ISTRE, JSTRE)-ABETA*DVECT (ISTRE)	STFP	79
- DVECT(JSTRE)	STFP	80
80 CONTINUE	STFP	81
CALL DBE (BMATX,DBMAT, DMATX,MEVAB, NEVAB, NSTRE,NSTR1)	STFP	82

C		STFP	83
$\mathrm{C}^{\text {\% }}$ **	Calculate The element STIFFNESSES	STFP	84
		STFP	85
	DO 30 IEVAB $=1$, NEVAB	STFP	86
	DO 30 JEVAB $=$ IEVAB, NEVAB _	STFP	87
	DO 30 ISTRE $=$ T, NSTRE	STFP	88
	ESTIF (IEVAB, JEVAB) = ESTIF (IEVAB, JEVAB) +BMATX (ISTRE, IEVAB)*	STFP	89
	- DBMAT(ISTRE,JEVAB)*DVOLU	STFP	90
	CONTINUE	STFP	91
C		STFP	92
C** C 60	CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX	STFP	93
		STFP	94
	DO 60 IEVAB $=1$, NEVAB	STFP	95
	DO 60 JEVAB $=1$, NEVAB	STFP	96
	ESTIF (JEVAB, IEVAB) $=$ ESTIF (IEVAB, JEVAB)	STFP	97
C		STFP	98
C*** S	STORE THE STIFFNESS MATRIX, STRESS MATRIX AND SAMPLING POINT	STFP	99
C C	COORDINATES FOR EACH ELEMENT ON DISC FILE	STFP	100
C		STFP	101
	WRITE(1) ESTIF	STFP	102
	CONTINUE	STFP	103
	RETURN	STFP	104
	END	STFP	105

STFP 17 Compute the value of 2π.
STFP 18 Rewind the disc file on which the element stiffness matrices will be stored in turn.
STFP 19 Set to zero the counter which indicates the overall Gauss point location. So KGAUS ranges from 1 to NGAUS* NGAUS*NELEM.
STFP 23 Enter the loop over each element in the structure.
STFP 24 Identify the material property type of the current element.
STFP 28-33 Store the element nodal coordinates in the local array ELCOD for convenient use later.
STFP 34 Identify the element thickness.
STFP 38-40 Zero the element stiffness array.
STFP 41 Set to zero the element Gauss point counter. So KGASP ranges from 1 to NGAUS*NGAUS.
STFP 45-48 Enter the numerical integration loops and locate the position (ξ, η) of the current point.
STFP 49-50 Increment the local and global Gauss point counters.
STFP 54 Call subroutine MODPS to evaluate the elasticity matrix, \boldsymbol{D}.
STFP 58 Evaluate the shape functions N_{i} and the derivatives $\partial N_{i} / \partial \xi$, $\partial N_{i} / \partial \eta$ for the current Gauss point.
STFP 59-60 Evaluate the Gauss point coordinates, GPCOD(IDIME, KGASP), the determinant of the Jacobian matrix, $|\boldsymbol{J}|$ and the Cartesian derivatives of the shape functions $\partial N_{i} / \partial x, \partial N_{i} / \partial y$ (or $\partial N_{i} / \partial r, \partial N_{i} / \partial z$ for axisymmetric problems).
STFP 61-63 Calculate the elemental volume for numerical integration as $|J| W_{\xi} W_{\eta}$ taking care to multiply by the appropriate thickness or by $2 \pi r$ for axisymmetric problems. Note that if a zero thickness is specified it is automatically taken to be unity.

STFP 67 Evaluate the \boldsymbol{B} matrix.
STFP 68 For the first time avoid the replacement of D by $D_{e p}$, as defined in (7.47).
STFP 69 Also for Gauss points at which the behaviour is elastic avoid the replacement of D by $D_{e p}$.
STFP 70-71 Store the total current stresses in the array STRES.
STFP 72-76 Call subroutines INVAR, YIELDF and FLOWPL to evaluate the vectors a, (AVECT) and d_{D}, (DVECT) and ABETA $=$ $1 /\left(H^{\prime}+d_{D}{ }^{T} a\right)$.
STFP 77-80 Evaluate $D_{e p}$ according to (7.47).
STFP $82 \quad$ Evaluate $D_{e p} B$.
STFP 86-90 Compute the upper triangle of the element stiffness matrix as

$$
\int_{!} B^{T} D_{e p} B d \Omega
$$

STFP 91 End of loop for numerical integration.
STFP 95-97 Complete the lower triangle of the element stiffness matrix by symmetry.
STFP 102 Store the element stiffness matrix on disc file 1.
STFP 103 Return to process the next element.

7.8.6 Subroutine LINEAR

The purpose of this subroutine is merely to determine the stresses from given displacements assuming linear elastic behaviour. This subroutine is employed in the residual force calculation to be described in the next section. The element displacement components, ELDIS(IDOFN, INODE) are entered into the subroutine, the strain components at the Gauss point under consideration, STRAN(ISTR1) calculated and finally the stress components are evaluated and stored in STRES(ISTR1).

The subroutine is now listed and described.

LINR 12 Identify POISS as the Poisson's ratio of the element material.
LINR 13-18 Calculate the Cartesian derivatives of the Gauss point displacement components $\partial u / \partial x, \partial u / \partial y, \partial v / \partial x, \partial v / \partial y$.
LINR 22-27 Evaluate the strain components at the Gauss point according to

$$
\begin{aligned}
& \epsilon=\left\{\begin{array}{c}
\epsilon_{x} \\
\epsilon_{y} \\
\gamma_{x y} \\
\epsilon_{z} .
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
0
\end{array}\right\} \text { for plane problems, } \\
& \epsilon=\left\{\begin{array}{c}
\epsilon_{r} \\
\epsilon_{z} \\
\gamma_{r z} \\
\epsilon_{\theta}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial r} \\
\frac{\partial w}{\partial z} \\
\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r} \\
\frac{u}{r}
\end{array}\right\} \text { for axisymmetric problems. }
\end{aligned}
$$

LINR 31-34 Calculate the stress components, assuming elastic behaviour, according to $\boldsymbol{\sigma}=\boldsymbol{D} \boldsymbol{\epsilon}$.

LINR 35-36 For a plane stress problem set $\sigma_{z}=0$ and set $\sigma_{z}=\nu\left(\sigma_{x}+\sigma_{y}\right)$ for plane strain situations.

7.8.7 Subroutine RESIDU

The function of this subroutine is to evaluate the nodal forces which are statically equivalent to the stress field satisfying elasto-plastic conditions. Comparison of these equivalent nodal forces with the applied loads gives the residual forces, according to (2.4), and this operation is carried out in subroutine CONVER. Therefore RESIDU performs the same task for twodimensional continua as subroutine REFOR3 undertook for uniaxial situations, and the reader is urged to review Section 3.12 .2 before proceeding further. The logic applied in this subroutine is almost identical to that applied in Section 3.12.2. Below we reproduce the essential steps in an abbreviated form and expand only the steps which pertain to the case of two dimensional solids.

During the application of an increment of load an element, or part of an element, may yield. All stress and strain quantities are monitored at each Gaussian integration point and therefore we can determine whether or not plastic deformation has occurred at such points. Consequently an element can behave partly elastically and partly elasto-plastically if some, but not all, Gauss points indicate plastic yielding. For any load increment it is necessary to determine what proportion is elastic and which part produces plastic deformation and then adjust the stress and strain terms until the yield criterion and the constitutive laws are satisfied. The procedure adopted is as follows.

Step a. The applied loads for the $r^{\text {th }}$ iteration are the residual forces ψ^{r-1}, given by (2.4) which give rise to displacement increments $d d^{r}$, according to (2.12), and strain increments $d e^{r}$.
Step b. Compute the incremental stress changes, $d \sigma_{e}^{r}$ as $d \sigma_{e}^{r}=\boldsymbol{D d} \mathbf{e}^{r}$ where the subscript e denotes that we are assuming elastic behaviour.
Step c. Accumulate the total stress for each element Gauss point as $\sigma_{e}{ }^{r}$ $=\sigma^{r-1}+d \sigma_{e}{ }^{\gamma}$ where σ^{r-1} are the converged stresses for iteration $r-1$.

Step d. The next step depends on whether or not yielding took place at the Gauss point during the $(r-1)^{\text {th }}$ iteration. Therefore we check if $\tilde{\sigma}^{r-1}>\sigma_{Y}=\sigma_{Y}{ }^{0}+H^{\prime} \hat{\epsilon}_{p} r$, , where $\bar{\sigma}^{r-1}$ is the effective stress given by Column 3, Table 7.2, σ_{Y} is the uniaxial yield stress, (Column 4, Table 7.2), H^{\prime} is the linear strain hardening parameter and $\epsilon_{p}{ }^{r-1}$ is the effective plastic strain existing at the end of the $(r-1)^{\text {th }}$ iteration. This expression is identical to the uniaxial case, Section 3.12.2, with all quantities replaced by the effective or equivalent values. If the answer is:

YES

The Gauss point had previously yielded. Now check to see if $\bar{\sigma}_{e}^{r}>\bar{\sigma}^{r-1}$ where $\bar{\sigma}_{e^{r}}$ is the effective stress, Col. 3, Table 7.2 based on stresses $\sigma_{e}{ }^{r}$. If the answer is:

NO

YES
The Gauss point is unloading elastically and therefore go directly to Step g.

The Gauss point had yielded previously and the stress is still increasing. Therefore all the excess stress $\sigma_{e^{r}}-\sigma^{r-1}$ must be reduced to the yield surface as indicated in Fig. 7.10(a). Therefore the factor R which defines the portion of stress which must be modified to satisfy the yield criterion is equal to 1 .

NO
Which implies that the Gauss point had not previously yielded. Now check to see if $\bar{\sigma}_{e}{ }^{r}>\sigma_{Y}{ }^{0}$. If the answer is:

NO
YES
The Gauss point is still elastic and therefore go directly to Step g.

The Gauss point has yielded during application of load corresponding to
this iteration as shown in Fig. 7.10(b). The portion of the stress greater than the yield value must be reduced to the yield surface. The reduction factor R is given from Fig. 7.10(b) to be

$$
R=\frac{A B}{A C}=\frac{\bar{\sigma}_{e} e^{\tau}-\sigma_{Y}}{\bar{\sigma}_{e}^{r}-\bar{\sigma}^{r-1}}
$$

Fig. 7.10(a) Incremental stress changes in an already yielded point in an elastoplastic continuum.

Fig. 7.10(b) Incremental stress changes at a point in an elasto-plastic continuum at initial yield.

Step e. For yielded Gauss points only compute the portion of the total stress which satisfies the yield criterion as $\sigma^{r-1}+(1-R) d \sigma_{e}{ }^{r}$.
Step f. The remaining portion of stress, $R d \sigma_{e}{ }^{r}$ must be effectively eliminated in some way. The point A must be brought onto the yield surface by allowing plastic deformation to occur. Physically this can be described as follows. On loading from point C, the stress point moves elastically until the yield surface is met at B. Elastic behaviour beyond this point would result in a final stress state defined by point A. However in order to satisfy the yield criterion, the stress point cannot move outside the yield surface and consequently the stress point can only traverse the surface until both equilibrium conditions and the constitutive relation are satisfied. From (7.45), (7.46) and (7.47) we have

$$
\begin{equation*}
d \sigma^{r}=\boldsymbol{D} d \mathbf{\epsilon}^{r}-d \lambda d_{D}, \tag{7.91}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma^{r}=\sigma^{r-1}+d \sigma_{e}^{r}-d \lambda d_{D} \tag{7.92}
\end{equation*}
$$

which gives the total stresses σ^{r} satisfying elasto-plastic conditions when the stresses are incremented from $\boldsymbol{\sigma}^{\boldsymbol{r}-1}$. Expression (7.92) is illustrated vectorially in Fig. 7.10 and the reader should note the similarity to Fig. 3.7(a). It is seen that if a finite sized stress increment is taken, the final stress point D, corresponding to σ^{r}, may depart from the yield surface. This discrepancy can be practically eliminated
by ensuring that the load increments considered in solution are sufficie.itly small. However the point D can be reduced to the yield surface by simply scaling the vector σ^{r}. Denoting the effective stress, given by Col. 3, Table 7.2, due to stress σ^{r} as $\bar{\sigma}^{r}$ and noting that this value should coincide with $\sigma_{Y}=\sigma_{Y}{ }^{\circ}+H^{\prime} \epsilon_{p}^{r}$ if the point D lies on the yield surface, the appropriate scaling factor is readily seen to be

$$
\begin{equation*}
\sigma^{r}=\sigma^{r}\left(\frac{\sigma_{Y}^{0}+H^{\prime} \bar{\epsilon}_{p}^{r}}{\bar{\sigma}^{r}}\right) \tag{7.93}
\end{equation*}
$$

This represents a scaling of the vector σ^{r} which implies that the individual stress components are proportionally reduced. The normality condition for the plastic strain increment is evident from Fig. 7.10 since $\boldsymbol{D} d \lambda \boldsymbol{a}=\boldsymbol{D} d \varepsilon_{p}$.

Fig. 7.11 Refined process for reducing a stress point to the yield surface.

If relatively large load increment sizes are to be permitted the process described above can lead to an inaccurate prediction of the final point D on the yield surface if the stress point is in the vicinity of a region of large curvature of the yield surface. This is illustrated in Fig. 7.11 where the process of reducing the elastic stress to the yield surface is shown to end in the stress point D which is then scaled down to the yield surface to give point D^{\prime}. Greater accuracy can be achieved by relaxing the excess stress to the yield surface in several stages.* Fig. 7.11 shows the case where the excess stress is divided into three equal parts and each increment reduced to the yield surface in turn. After the three reduction cycles to the stress point E the drift away from the yield surface can be corrected by simple scaling to give the final stress point E^{\prime}. It is seen that the final

[^5]points D^{\prime} and E^{\prime} can be significantly different. An additional refinement which can be introduced is to scale the stress point to the yield surface after the reduction process for each cycle and not only after the final cycle as shown in Fig. 7.11. Obviously the greater the number of steps into which the excess stress $A B$ is divided, the greater the accuracy. However the computation for each step is relatively expensive since the vectors \boldsymbol{a} and \boldsymbol{d}_{D} have to be calculated at each stage. Clearly a balance must be sought and in this text the following criterion is adopted. The excess stress $R d \sigma_{e}{ }^{r}$ is divided into m parts where m is given by the nearest integer which is less than
\[

$$
\begin{equation*}
\left(\frac{\bar{\sigma}_{e}{ }_{e}^{r}-\sigma_{Y}}{\sigma_{Y}{ }^{0}}\right) 8 \div 1, \tag{7.94}
\end{equation*}
$$

\]

where $\bar{\sigma}_{e}{ }^{r}-\sigma_{Y}$ gives a measure of the excess stress $A B$ and $\sigma_{Y}{ }^{\circ}$ is the initial uniaxial yield stress in Col. 4, Table 7.2 before the onset of work hardening. This criterion can be readily amended by the user.
Step g. For elastic Gauss points only' calculate σ^{r} as $\boldsymbol{\sigma}^{r}=\sigma^{r-1}+d \sigma_{e}{ }^{r}$.
Step h. Finally, calculate the equivalent nodal forces from the element stresses according to

$$
\begin{equation*}
\left(f^{(e)}\right)^{r}=\int_{\Omega_{2}^{(e)}} B^{T} \sigma^{r} d \Omega . \tag{7.95}
\end{equation*}
$$

Subroutine RESIDU is now listed and described.


```
    FRICT=PROPS(LPROP,7) RSDU 28
    IF(NCRIT.EQ*3) UNIAX=PROPS(LPROP,5)*COS(FRICT*0.017453292) RSDU 29
    IF(NCRIT.EQ.4) UNIAX=6.0*PROPS(LPROP,5)*COS(FRICT*0.017453292)/ RSDU 30
    . (ROOT3*(3.0-SIN(FRICT*0.017453292)))
C
C*** COMPUTE COORDINATE. AND INCREMENTAL DISPLACEMENTS OF TH
    ELEMENT NODAL POINTS
    DO 30 INODE =1,NNODE
    LNODE=IABS(LNODS(IELEM,INODE))
    NPOSN=(LNODE-1)*NDOFN
    DO 30 IDOFN=1,NDOFN
    NPOSN=NPOSN+1
    ELCOD(IDOFN,INODE)=COORD(LNODE,IDOFN)
    30 ELDIS(IDOFN,INODE)=ASDIS(NPOSN)
    CALL MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS)
    THICK=PROPS(LPROP,3)
    KGASP=0
    DO 40 IGAUS=1,NGAUS
    DO 40 JGAUS=1,NGAUS
    EXISP=POSGP(IGAUS)
    ETASP=POSGP(JGAUS)
    KGAUS=KGAUS+1
    KGASP=KGASP+1
    CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE)
    CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP, RSDU
    * NVOLU=DJACB*WEIGP(IGAUS) SHAPE)
    IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP)
    IF(THICK.NE.0.0) DVOLU=DVOLU*THICK
    CALL BMATPS(BMATX, CARTD, NNODE, SHAPE,GPCOD, NTYPE,KGASP)
    CALL LINEAR(CARTD,DMATX,ELDIS,LPROP,MMATS,NDOFN,NNODE,NSTRE,
                            NTYPE, PROPS, STRAN, STRES,KGASP,GPCOD, SHAPE)
    PREYS=UNIAX+EPSTN(KGAUS)*HARDS
    DO }150\mathrm{ ISTR1=1,NSTR1
    DESIG(ISTR1)=STRES(ISTR1)
    150 SIGMA(ISTR1)=STRSG(ISTR1,KGAUS)+STRES(ISTR1)
    CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,SIGMA, RSDU }6
    THETA,VARJ2,YIELD) RSDU 66
    ESPRE=EFFST(KGAUS)-PREYS RSDU 67
    IF(ESPRE.GE.O.0) GO TO 50 RSDU 68
    ESCUR=YIELD-PREYS
    IF(ESCUR.LE.0.0) GO TO }6
    RFACT=ESCUR/(YIELD-EFFFST(KGAUS))
    GO TO 70
    50 ESCUR=YIELD-EFFST(KGAUS)
    IF(ESCUR.LE.O.0) GO TO 60
    RFACT=1.0
    70 MSTEP=ESCUR*8.0/UNIAX+1.0
    ASTEP=MSTEP
    REDUC=1.0-RFACT
    DO 80 ISTR1=1,NSTR1
    SGTOT(ISTR1)=STRSG(ISTR1,KGAUS)+REDUC*STRES(ISTR1)
    80 STRES(ISTR1)=RFACT*STRES(ISTR1)/ASTEP
    DO 90 ISTEP=1,MSTEP
    CALL. INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,SGTOT, RSDU 82
    * THETA,VARJ2,YIELD) RSDU }8
    CALL YIELDF(AVECT,DEVIA,LPROP,MMATS,NCRIT,NSTR1, RSDU }8
    * PROPS,SINT3,STEFF,THETA,VARJ2) RSDU }8
    CALL FLOWPL(AVECT, ABETA,DVECT,NTYPE,PROPS,LPROP,NSTR1,MMATS) RSDU 87
    AGASH=0.0
    DO 100 ISTR1=1,NSTR1
    RSDU }8
    RSDU }8
    100 AGASH=AGASH+AVECT (ISTR1)*STRES(ISTR1) RSDU 90
    DLAMD=AGASH*ABETA
    RSDU }9
```

```
    IF(DLAMD.LT.0.0) DLAMD=0.0 RSDU 92
    BGASH=0.0 RSDU
    DO 110 ISTR1=1,NSTR1 RSDU
    BGASH=BGASH+AVECT(ISTR1)*SGTOT(ISTR1) RSDU }9
    110 SGIOT(ISTR1)=SGTOT(ISTR1)+STRES(ISTR1)-DLAPD*DVECT(ISTR1) RSDU }9
    EPSTN(KGAUS) =EPSTN(KGAUS)+DLAMD*BGASH/YIELD
    90 CONTINUE
```



```
    CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,SGTOT, RSDU }9
    THETA,VARJ2,YIELD) RSDU 100
    CURYS=UNIAX+EPSTN(KGAUS)*HARDS RSDU 101
    BRING=1.0 RSDU 102
    IF(YIELD.GT.CURYS) BRING=CURYS/YIELD RSDU 103
    DO 130 ISTR1=1,NSTR1 RSDU 104
    130 STRSG(ISTR1,KGAUS)=BRING*SGTOT(ISTR1)
    EFFST(KGAUS)=BRING*YIELD
    RSDU 105
C*** ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD 苃 RSDU 107 R
C*** ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD 若 RSDU 107 R
C娄悉
    GO TO 190
        60 DO }180\mathrm{ ISTR1=1,NSTR1
    180 STRSG(ISTR1,KGAUS)=STRSG(ISTR1,KGAUS)+DESIG(ISTR1)
        EFFST(KGAUS)=YIELD
C
C*
C ELEMENT NODES RSDU 116
    190 MGASH=0
    DO 140 INODE=1,NNODE RSDU 118
        DO 140 IDOFN=1, NDOFN
        MGASH=MGASH+1
        DO }140\mathrm{ ISTRE=1,NSTRE
                RSDU }10
                            RSDU 110
        RSDU }11
        RSDU }11
    RSDU 113
RSDU }11
    RSDU }11
    DO 140 IDOFN=1,NDOFN RSDU 119
    MOASH=MCASH+1 RSUU
    \O IMO IELOH,M,NH)
    140 ELOAD(IELEM,MGASH)=ELOAD(IELEM,MGASH)+BMATX(ISTRE,MGASH)* RSDU 122
    .STRSG(ISTRE,KGAUS)*DVOLU . RSDU 123
    40 CONTINUE RSDU 124
    20 CONTINUE RSDU 125
    RETURN
    RSDU }12
    RSDU 127
```

RSDU 18－19 Compute $\sqrt{ }(3)$ and 2π ．
RSDU 20－22 Zero the array in which the equivalent nodal forces，calcu－ lated in Step h ，will be stored．
RSDU 23 Zero the Gauss point counter over all elements．
RSDU 24 Loop over each element．
RSDU 25 Identify the element material property number．
RSDU 26－28 Identify the initial uniaxial yield stress，$\sigma_{Y}{ }^{\circ}$（or c for Mohr－ Coulomb or Drucker－Prager criteria），the linear strain hardening parameter H^{\prime} and the friction angle ϕ for Mohr－ Coulomb and Drucker－Prager materials．
RSDU 29 For a Mohr－Coulomb material evaluate the equivalent yield stress as $c \cos \phi$ ．
RSDU 30－31 For a Drucker－Prager material evaluate the equivalent yield stress as k^{\prime} according to（7．18）．
RSDU 36－42 Store the element nodal coordinates in array ELCOD and the nodal displacements due to the application of the residual forces in array ELDIS．

RSDU $43 \quad$ Evaluate the elastic \boldsymbol{D} matrix.
RSDU 44 Identify the element thickness.
RSDU 45 Zero the local Gauss point counter.
RSDU 46-49 Enter the loops for numerical integration and evaluate the local coordinates (ξ, η) at the sampling point.
RSDU 50-51 Increment the local and global Gauss point counters.
RSDU 52 Evaluate the shape functions N_{i} and their derivatives $\partial N_{i} / \partial \xi, \partial N_{i} / \partial \eta$.
RSDU 53-54 Evaluate the Gauss point coordinates GPCOD(IDIME, KGASP), the determinant of the Jacobian matrix $|\boldsymbol{J}|$ and the Cartesian derivatives of the shape functions $\partial N_{i} / \partial_{x}$, $\partial N_{i} / \partial y$ (or $\partial N_{i} / \partial r, \partial N_{i} / \partial z$ for axisymmetric problems).
RSDU 55-57 Calculate the elemental volume for numerical integration as $|J| W_{\xi} W_{\eta}$ taking care to multiply by the appropriate thickness or by $2 \pi r$ for axisymmetric problems. The default value of the thickness is 1.0 .
RSDU $58 \quad$ Compute the strain matrix \boldsymbol{B} for the Gauss point.
RSDU 59-60 Compute the stress increment STRES(ISTRI), assuming elastic behaviour as $d \sigma_{e}{ }^{r}=\boldsymbol{D} d \boldsymbol{\epsilon}^{r}$.
RSDU 61 Compute the yield stress for the $(r-1)^{\text {th }}$ iteration as $\sigma_{Y}{ }^{0}+H^{\prime} \bar{\epsilon}_{p}{ }^{r-1}$.
RSDU 62-64 Store $d \sigma_{e}{ }^{r}$ as DESIG(ISTR1) and $\sigma_{e^{r}}$ as SIGMA(ISTR1).
RSDU 65-66 Evaluate the effective stress in Col. 3, Table 7.2 and store as YIELD.
RSDU 67-68 Check if the Gauss point had yielded on the previous iteration, i.e. if $\bar{\sigma}^{r-1}>\sigma_{Y}{ }^{\circ}+H^{\prime} \bar{\epsilon}_{p}^{r-1}$ which is the first operation of Step d.
RSDU 69-70 If the Gauss point was previously elastic, check to see if it has yielded during this iteration.
RSDU 71 For a Gauss point which yields during the iteration calculate

$$
R=\frac{\bar{\sigma}_{e}^{r}-\sigma_{Y}}{\bar{\sigma}_{e}^{r}-\bar{\sigma}^{r-1}} .
$$

RSDU 73-74 Check to see if a Gauss point which had previously yielded is unloading during this iteration. If yes, go to 60 .
RSDU $75 \quad$ Otherwise, set $R=1$.
RSDU 76-77 Evaluate the number of steps into which the excess stress, $R d \sigma_{e}{ }^{r}$ is to be divided according to (7.94).
RSDU $78 \quad$ Compute ($1-R$).
RSDU 79-81 Compute $\sigma^{r-1}+(1-R) d \sigma_{e}{ }^{r}$ according to Step e and store in SGTOT(ISTR1) and evaluate $R d \sigma_{e}{ }^{r} / m$ and store in STRES(ISTR1).
RSDU 82 Loop over each stress reduction step.
RSDU 83-87 Compute the vectors a and \boldsymbol{d}_{D}.

RSDU 88-92 Compute $d \lambda$ according to (7.45) and store as DLAMD.
RSDU 93-96 Compute $\boldsymbol{\sigma}^{r}=\boldsymbol{\sigma}^{r-1}+(1-R) d \sigma_{e}{ }^{r}+R d \sigma_{e^{r}} / m-d \lambda d_{D} / m$. When the summation process from 1 to m required in DO LOOP to index 90 is completed this will result in $\sigma^{r}=\sigma^{r-1}+d \sigma_{e}^{r}-d \lambda d_{D}$ to give the stress point E in Fig. 7.11.
RSDU 97 Compute the effective plastic strain as follows. From (7.51) we have

$$
d \kappa=d \lambda a^{T} \sigma=\sigma^{T} d \epsilon_{p}
$$

or rewriting the right hand side in terms of the effective stress $\bar{\sigma}$ and effective plastic strain $\bar{\epsilon}_{p}$ we have

$$
d \lambda a^{T} \sigma=\bar{\sigma} d \bar{\epsilon}_{p},
$$

and therefore

$$
\begin{equation*}
\bar{\epsilon}_{p}^{r}=\bar{\epsilon}_{p}^{r-1}+\frac{d \lambda \boldsymbol{a}^{T} \sigma}{\bar{\sigma}} . \tag{7.96}
\end{equation*}
$$

RSDU 98 Return to loop over the next stress reduction step. This statement is so placed that the final stresses σ^{r} are scaled down to lie on the yield surface only after all the reduction steps have been completed. An additional refinement can be introduced where, with reference to Fig. 7.11, the stresses are scaled to the yield surface after each reduction step. Such a refinement is not normally required; however it can be introduced by moving statement RSDU 98 to the position indicated in RSDU 108.
RSDU 99-100 Compute the effective stress $\bar{\sigma}^{r}$.
RSDU 101 Evaluate $\sigma_{Y}{ }^{\circ}+H^{\prime} \bar{\epsilon}_{p}{ }^{r}$.
RSDU 102-105 Factor the stresses σ^{r} to ensure that they lie on the yield surface, according to $\sigma^{r}=\sigma^{r}\left(\sigma_{Y}{ }^{\circ}+H^{\prime} \bar{\epsilon}_{p}^{r}\right) / \bar{\sigma}^{r}$ as indicated in Fig. 7.11.
RSDU 106 Store the effective stress $\bar{\sigma}^{r}$ in array EFFST.
RSDU 108 Location of end of loop if the refinement indicated in RSDU 98 is to be included.
RSDU 111-113 For elastic Gauss points compute $\boldsymbol{\sigma}^{\boldsymbol{r}}$ as $\boldsymbol{\sigma}^{\boldsymbol{r}-1}+\boldsymbol{d} \boldsymbol{\sigma}_{e}{ }^{r}$ and store $\bar{\sigma}^{r}$ in EFFST.
RSDU 117-123 Compute the equivalent nodal forces as

$$
\left(f^{(e)}\right)^{r}=\int_{\Omega} B^{T} \sigma^{r} d \Omega .
$$

RSDU 124-125 Termination of loop for numerical integration and over each element respectively.

7.8.8 Subroutine OUTPUT

This subroutine outputs the results at a frequency determined by the output parameters $\operatorname{NOUTP}(1)$ and $\operatorname{NOUTP}(2)$ whose role is described in Section 6.5.3. The principal stresses and direction are also calculated in this subroutine and these are given by the following expressions

$$
\begin{align*}
\sigma_{\max } & =\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\left(\sigma_{x}-\sigma_{y}\right)^{2}}{4}+\tau_{x y^{2}}\right)} \\
\sigma_{\min } & =\frac{\sigma_{x}+\sigma_{y}}{2}-\sqrt{\left(\frac{\left(\sigma_{x}-\sigma_{y}\right)^{2}}{4}+\tau_{x y^{2}}\right)} \\
\theta & =\tan ^{-1}\left(\frac{2 \tau x y}{\sigma_{x}-\sigma_{y}}\right) \tag{7.97}
\end{align*}
$$

with x and y being replaced by r and z for the axisymmetric case. The term θ defines the angle which the maximum principal stress makes with the y (or z) axis; a positive angle being measured anticlockwise.

This subroutine is largely self-explanatory and is listed below.

```
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { SUBROUTINE OUTPUT(IITER,MTOTG, MTOTV, MVFIX, NELEM, NGAUS, NOFIX, } \\
& \text { (NOUTP,NPOIN,NVFIX,STRSG,TDISP,TREAC,EPSTN, } \\
& .
\end{aligned}
\] & OTPT
OTPT OTPT & 1
2
3 \\
\hline C***** & **************************************************************** & OTPT & 4 \\
\hline C & & OTPT & 5 \\
\hline C**** & THIS SUBROUTINE OUTPUTS DISPLACEMENTS.REACTIONS AND STRESSES & OTPT & 6 \\
\hline & & OTPT & 7 \\
\hline C***** &  & OTPT & 8 \\
\hline & DIMENSION NOFIX(MVFIX), NOUTP(2), STRSG(4,MTOTG), STRSP(3), & OTPT & 9 \\
\hline & TDISP(MTOTV), TREAC (MVFIX, 2) , EPSTN(MTOTG) & OTPT & 10 \\
\hline & KOUTP \(=\) NOUTP(1) & OTPT & 11 \\
\hline & IF(IITER.GT.1) KOUTP=NOUTP(2) & OTPT & 12 \\
\hline & IF(IITER.EQ.1.AND.NCHEK.EQ.0) KOUTP=NOUTP(2) & OTPT & 13 \\
\hline C & & OTPT & 14 \\
\hline C*** & OUTPUT DISPLACEMENTS & OTPT & 15 \\
\hline C & & OTPT & 16 \\
\hline & IF (KOUTP.LT.1) GO TO 10 & OTPT & 17 \\
\hline & WRITE (6,900) & OTPT & 18 \\
\hline & FORMAT ( \(1 \mathrm{HO}, 5 \mathrm{X}, 13 \mathrm{HDISPLACEMENTS}\) ) & OTPT & 19 \\
\hline & IF (NTYPE.NE.3) WRITE (6,950) & OTPT & 20 \\
\hline & FORMAT (1H0, 6X, 4HNODE, 6X,7HX-DISP. ,7X,7HY-DISP.) & OTPT & 21 \\
\hline & IF (NTYPE.EQ.3) WRITE (6,955) & OTPT & 22 \\
\hline & FORMAT ( \(1 \mathrm{HO}, 5 \mathrm{X}, 4 \mathrm{HNODE}, 6 \mathrm{X}, 7 \mathrm{HR}-\) DISP. , 7X, \(7 \mathrm{HZ}-\mathrm{DISP}\).) & OTPT & 23 \\
\hline & DO 20 IPOIN \(=1\), NPOIN & OTPT & 24 \\
\hline & NGASH=IPOIN*2 & OTPT & 25 \\
\hline & NGISH \(=\) NGASH-2+1 & OTPT & 26 \\
\hline & WRITE (6,910) IPOIN, (TDISP( IGASH), IGASH=NGISH,NGASH) & OTPT & 27 \\
\hline & FORMAT(I10,3E14.6) & OTPT & 28 \\
\hline & CONTINUE & OTPT & 29 \\
\hline C & & OTPT & 30 \\
\hline \({ }^{\text {c*** }}\) & OUTPUT REACTIONS & OTPT & 31 \\
\hline C & & OTPT & 32 \\
\hline & IF (KOUTP.LT.2) GO TO 30 & OTPT & 33 \\
\hline & WRITE (6,920) & OTPT & 34 \\
\hline & FORMAT ( \(1 \mathrm{HO}, 5 \mathrm{X}, 9 \mathrm{MREACTIONS}\) ) & OTPT & 35 \\
\hline & IF (NTYPE.NE.3) WRITE (6,960) & OTPT & 36 \\
\hline
\end{tabular}
```

```
    960 FORMAT (1HO,6X, 4HNODE,6X,7HX-REAC.,7X,7HY-REAC.) OTPT 37 OTPT
            IF(NTYPE.EQ.3) WRITE(6,965) OTPT
    965 FORMAT(1HO,6X,4HNODE,6X,7HR-REAC.,7X,7HZ-REAC.) OTPT 39
            DO 40 IVFIX=1,NVFIX OTPT
    40 WRITE(6,910) NOFIX(IVFIX),(TREAC(IVFIX,IDOFN),IDOFN=1,2) OTPT }4
    30 CONTINUE OTPT }4
C
C*** OUTPUT STRESSES OTPT 44
c
        IF(KOUTP.LT.3) GO TO 50 OTPT 46
        OTPT 45
        IF(NTYPE.NE.3) WRITE(6,970) OTPT 47
    970 FORMAT(1H0,1X,4HG.P.,6X,9HXX-STRESS,5X,9HYY-STRESS,5X,9HXY-STRESS,OTPT }4
        .5X,9HZZ-STRESS,6X,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X, OTPT 49
        . 6HE.P.S.) OTPT 50
        IF(NTYPE.EQ.3) WRITE(6,975) OTPT 51
    975 FORMAT(1HO,1X,4HG.P.,6X,9HRR-STRESS,5X,9HZZ-STRESS,5X, 9HRZ-STRESS,OTPT 52
    .5X,9HTT-STRESS,6X,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X, OTPT 53
    . 6HE.P.S.) . OTPT 54
    KGAUS=0 OTPT 55
    DO 60 IELEM=1,NELEM OTPT 56
    KELGS=0 OTPT 57
    WRITE(6,930) IELEM OTPT 58
    930 FORMAT(1H0,5X,13HELEMENT NO. =,I5) OTPT 59
    DO 60 IGAUS=1,NGAUS OTPT 60
    DO 60 JGAUS=1,NGAUS OTPT 61
    KGAUS=KGAUS+1 OTPT 62
    KELGS=KELGS+1 OTPT 63
    XGASH=(STRSG(1,KGAUS)+STRSG(2,KGAUS))*0.5 OTPT 64
    XGISH=(STRSG(1,KGAUS)-STRSG(2,KGAUS))*0.5 OTPT 65
    XGESH=STRSG(3,KGAUS) OTPT 66
    XGOSH=SQRT(XGISH*XGISH+XGESH*XGESH) OTPT 67
    STRSP(1)=XGASH+XGOSH OTPT 68
    STRSP(2)=XGASH-XGOSH
    IF(XGISH.EQ.O.0) XGISH=0.1E-20 OTPT 70
    STRSP(3)=ATAN(XGESH/XGISH)*28.647889757 OTPT }7
    60 WRITE(6,940) KELGS,(STRSG(ISTR1,KGAUS), ISTR1=1,4), OTPT 72
    . (STRSP(ISTRE),ISTRE=1,3), EPSTN(KGAUS), OTPT 73
9 4 0 ~ F O R M A T ( I 5 , 2 X , 6 E 1 4 . 6 , F 8 . 3 , E 1 4 . 6 ) ~ O T P T ~ 7 4 ~
```



```
        RETURN OTPT 76
        END OTPT 77
```

OTPT 11-13 Set the output indicator, KOUTP, according to whether or not this is the first iteration of a load increment or not. If it is the first iteration the results will be output according to NOUTP(1) but for a converged solution the results are output according to NOUTP(2).
OTPT 17-29 For an output code value of 1 or greater, output the nodal displacements after printing the appropriate headings.
OTPT 33-42 For an output code of 2 or greater, output appropriate headings and the reactions at restrained nodal points.
OTPT 46 For an output code of 3 output the Gauss point stresses.
OTPT 47-54 Write appropriate headings.
OTPT 56-59 Loop over each element and write the element number.
OTPT 60-61 Loop over each element Gauss point.
OTPT 62-71 Evaluate the principal stresses and direction for each Gauss point according to (7.97).

OTPT 72-74 Output the Cartesian stress components, the principal stresses and direction and the total effective plastic strain for each Gauss point. This latter quantity gives an immediate indication whether the Gauss point has yielded or not, since it will be zero for all elastic points.

7.8.9 The main, master or controlling segment

This segment controls the calling, in order, of the other subroutines and is similar in structure to the segment described in Section 3.8 for one-dimensional situations. Its other function is to control the iterative process and also the incrementing of the applied loads.

The following channel numbers are employed by the program: 5 (card reader), 6 (line printer), 1, 2, 3, 4, 8 (scratch files).

This routine is self-explanatory and is presented below without further comment.

```
            MASTER PLAST
            PLAS
```



```
C PROGRAM FOR THE ELASTO-PLASTIC ANALYSIS OF PLANE STRESS, PLAS
C PLANE STRAIN AND AXISYMMETRIC SOLIDS PLAS
C****************************************************************************)
    DIMENSION ASDIS(300),COORD (150,2), ELOAD (40,18),ESTIF(18,18), PLAS
    - EQRHS(10), EQUAT(80,10),FIXED(300),GLOAD (80),GSTIF(3240),PLAS 7
    - IFFIX(300),LNODS(40,9),LOCEL(18),MATNO(40),
    - NACVA(80),NAMEV(10),NDEST(18),NDFRO(40),NOFIX(30), PLAS 9
    - NOUTP(2),NPIVO(10),
    - POSGP(4),PRESC(30,2),PROPS(5,7),RLOAD(40,18), PLAS }1
    - STFOR(300),TREAC(30,2),VECRV(80),WEIGP(4), PLAS }1
    - STRSG(4,360),TDISP(300),TLOAD(40,18), PLAS 13
C
C*** PPESET VARTABLES ASSOCIATED WITH DYNAMIC DIMTNSIONING
PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONING
C
    CALL DIMEN(MBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN,MSTIF,MTOTG,MTOTV, PLAS
        MVFIX,NDOFN,NPROP,NSTRE) PLAS
    17
C
C**F CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA
C
    CALL INPUT(COORD,IFFIX,LNODS,MATNO,MELEM,MEVAB,MFRON,MMATS, PLAS 23
    - MPOIN,MTOTV,MVFIX,NALGO, PLAS 24
    M NCRIT,NDFRO,NDOFN,NELEM,NEVAB,NGAUS,NGAU2, PLAS 25
    - NINCS, NMATS,NNODE,NOFIX,NPOIN,NPROP,NSTRE,
    - NSTR1,NTOTG,NTOTV,
    - NTYPE,NVFIX, POSGP, PRESC, PROPS,WEIGP)
C
C*** CALL THE SUBROUTINE WHICH COMPUTES THE CONSISTENT LOAD VECTORS
        FOR EACH ELEMENT AFTER READING THE RELEVANT INPUT DATA
        CALL LOADPS(COORD,LNODS,MATNO,MELEM,MMATS,MPOIN,NELEM,
    : NEVAB, NGAUS,NNODE,NPOIN,NSTRE,NTYPE, POSGP,
    . NEVAB,NGAU,NNODE,NPOIN,NSTRE,NTYPE, POSGP,FOR EACH ELEMENT AFTER READING THE RELEVANT INPUT DATACALL LOADPS(COORD,LNODS,MATNO,MELEM,MMATS,MPOIN, NELEM,PLAS 20
    NSTR1,NTOTG,NTOTV,NOFIX,NROIN,NROP,NSIL, PLAS 27
    * NTYPE,NVFIX, POSGP,PRESC,PROPS,WEIGP) PLAS 28
PLAS }2
PLAS }3
PLAS 32
PLAS }3
PLAS }3
PLAS 35
PLAS }3
C
PLAS 37
PLAS }3
```

```
            CALL ZERO(ELOAD,MELEM,MEVAB,MPOIN,MTOTG,MTOTV,NDOFN,NELEM, 
            - NEVAB,NGAUS,NSTR1,NTOTG,EPSTN,EFFST, PT, PLAS 40
    - NTOTV,NVFIX,STRSG,TDISP,TFACT, PLEAS 41
C
C*** LOOP OVER EACH INCREMENT
C
        DO 100 IINCS = 1,NINCS
C
C CALL INCREM(ELOAD, FIXED, IINCS,MELEM, MEVAB,MITER,MTOTV,
    CALL INCREM(ELOAD,FIXED,IINCS,MELEM,MEVAB,MLTER,MTOTV,
                            NVFIX, PRESC, RLOAD,TFACT,TLOAD,TOLER)
C
C
    DO 50 IITER = 1,MITER
C
C
    CALL ALGOR(FIXED,IINCS,IITER,KRESL,MTOTV,NALGO,
    NTOTV)
C
C*** CHECK WHETHER A NEW EVALUATION OF THE STIFFNESS MATRIX IS REQUIRED
C
    IF(KRESL.EQ.1) CALL STIFFP(COORD,EPSTN, IINCS,LNODS,MATNO,
    - MEVAB,MMATS,MPOIN,MTOTV,NELEM, NEVAB,NGAUS, NNODE,
    - NSTRE,NSTR1,POSGP,PROPS,WEIGP,MELEM,MTOTG,
    - STRSG,NTYPE,NCRIT)
C
C*** SOLVE EQUATIONS
C
    CALL FRONT(ASDIS,ELOAD,EQRHS,EQUAT,ESTIF,FIXED,IFFIX,IINCS,IITER,
    - GLOAD,GSTIF,LOCEL,LNODS,KRESL,MBUFA,MELEM,MEVAB,MFRON,
    - MSTIF,MTOTV,MVFIX,NACVA,NAMEV,NDEST,NDOFN,NELEM,NEVAB,
    - NNODE,NOFIX,NPIVO,NPOIN,NTOTV,TDISP,TLOAD,TREAC,
    - VECRV)
C
C
    CALL RESIDU(ASDIS,COORD,EFFST,ELOAD,FACTO,IITER,LNODS,
    - LPROP,MATNO,MELEM,MMATS,MPOIN,MTOTG,MTOTV'NDOFN, PLAS }8
    - NELEM,NEVAB,NGAUS,NNODE,NSTR1,NTYPE, POSGP,PROPS, PLAS }8
C NSTRE,NCRIT,STRSG,WEIGP,TDISP,EPSTN) PLAS 84
C**# CHECK FOR CONVERGENCE P
PLAS }8
C
    CALL CONVER(ELOAD,IITER,LNODS,MELEM,MEVAB,MTOTV,NCHEK,NDOFN, PLAS 88
C - NELEM, NEVAB,NNODE,NTOTV, PVALU,STFOR,TLOAD,TOFOR,TOLER)
C*** OUTPUT RESULTS IF REQUIRED
C*** OUTPUT RESULTS IF REQUIRED PLAS 90
C
    IF(IITER.EQ. 1.AND.NOUTP(1).GT.0)
    .CALL OUTPUT(IITER MTOTG, MTOTV MVFIX NEL EM, NGAUS, NOFIX NOUTP PLAS }9
    .CALL OUTPUT(IITER,MTOTG,MTOTV,MVFIX,NELEM,NGAUS,NOFIX,NOUTP, PLAS }9
            NPOIN, NVFIX,STRSG,TDISP,TREAC, EPSTN,NTYPE,NCHEK) PLAS }9
C
C*** IF SOLUTION HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS
PLAS 96
        IF(NCHEK.EQ.0) GO TO 75
    50 CONTINUE
C
C***
C
PLAS }9
PLAS 98
PLAS 99
PLAS 100
PLAS }10
\begin{tabular}{ll} 
IF(NALGO.EQ.2) GO TO 75 & PLAS 104 \\
STOP & PLAS 105 \\
75 CALL OUTPUT(IITER,MTOTG,MTOTV,MVFIX, NELEM, NGAUS, NOFIX, NOUTP, & PLAS 106 \\
\(100^{\circ}\) CONTINUE NPOIN,NVFIX,STRSG,TDISP,TREAC, EPSTN,NTYPE,NCHEK) & PLAS 107 \\
STOP & PLAS 108 \\
END & PLAS 109 \\
\hline
\end{tabular}

\subsection*{7.9 Numerical examples}

The first numerical example considered is illustrated in Fig. 7.12(a). The problem studied is that of a thick cylinder subjected to a gradually increasing internal pressure, with plane strain conditions being assumed in the axial direction. A Von Mises yield criterion is assumed and the numerical solutions obtained compared with the theoretical results of Reference 14. The pressure/ radial displacement characteristics are shown in Fig. 7.12(b) and good


Fig. 7.12 (a) Mesh and material properties employed in the elasto-plastic analysis of an internally pressurised thick cylinder under plane strain conditions. (b) Displacement of the inner surface with increasing pressure for the problem of Fig.
agreement between the numerical and analytical solutions is evident. In the numerical studies, collapse was deemed to have occurred if the iterative procedure diverged for an incremental load increase.




\[
0000000 \text { व } 0 \quad: \quad 0
\]
\(\square \cdot \cdot \cdot \cdot 1 \cdot \quad \cdot \quad \bullet\)


Fig. 7.13 Hoop stress distributions at various pressure values for the problem of Fig. 7.12(a).

Fig. 7.13 shows the circumferential (hoop) stress distributions for specified pressure values. Again a good agreement is evident. In solution both a twopoint and three-point Gaussian integration rule was considered. Whilst the nodal displacements obtained by use of both rules are practically identical, it is seen from Fig. 7.13 that use of a \(2 \times 2\) integrating rule gives superior stress values to a \(3 \times 3\) rule. This is a general result for elasto-plastic problems and therefore use of a two-point rule is recommended. This phenomenon is an example of the benefit of a reduced integration order for parabolic isoparametric elements. \({ }^{(15)}\)


Fig. 7.14 Load/central deflection response for a uniformly loaded simply supported circular plate.

The second example considered is the simply supported circular plate shown in Fig. 7.14.

The plate is modelled by five axisymmetric elements and the loading takes the form of a progressively increasing uniformly distributed load. The growth in central deflection with increasing load is shown in Fig. 7.14. A converged solution was obtained for \(P=270\) but the numerical process diverged for \(P=280\) and consequently the collapse load is taken to be 270 . This is in good agreement with the value of 260 quoted in Ref. 16, particularly in view of the coarse mesh employed in the present study. Fig. 7.15 shows the deflection profile with increasing applied load.


Fig. 7.15 Deflection profiles for the problem of Fig. 7.14 at various applied load values.

\subsection*{7.10 Problems}
7.1 In Section 7.2.1 it was stated that the Von Mises law implies that yielding begins when the (recoverable) elastic energy of distortion, \(D\), reaches a critical value. Prove this by showing that \(J_{2}{ }^{\prime}\) is proportional to \(D\), since \(D\) can be written as
\[
\begin{equation*}
D=\frac{1}{2} \sigma_{i j} \epsilon_{i j}-\frac{(1-2 \nu)}{12 \mu(1+\nu)}\left(\sigma_{i i}\right)^{2} . \tag{7.98}
\end{equation*}
\]


Fig. 7.16 Geometric representation of the Berg yield criterion-Problem 7.2.
7.2 A yield criterion has been proposed by Berg \({ }^{(17)}\) which attempts to account for the tensile failure of a material due to the formation of voids at a sufficiently high strain level. The yield surface is illustrated in Fig. 7.16 and can be seen to be made up of two distinct portions. For stress levels below a mean hydrostatic tension of \(P_{I}\) the material yields according to the Von Mises cylinder of radius \(S\). The yield surface in the tensile range is terminated by an elliptic cap whose extremity is defined by \(P_{0}\). The three constants \(S, P_{I}\) and \(P_{0}\) are material constants and must be experimentally determined. The two distinct portions of the yield surface can be expressed as
\[
\begin{array}{rr}
\sqrt{ } 2\left(J_{2}\right)^{\prime}=S & \text { for } \sigma_{m} \leqslant P_{I} \\
{\left[2 J_{2}{ }^{\prime}+H\left(\sigma_{m}-P_{I}\right)^{2}\right]^{\frac{1}{2}}=S} & P_{I} \leqslant \sigma_{m} \leqslant P_{0}, \tag{7.99}
\end{array}
\]
where \(H=S^{2} /\left(P_{I}-P_{0}\right)^{2}\) and \(\sigma_{m}\) is the mean hydrostatic pressure.
Show that this yield criterion can be expressed in the form of three constants \(C_{1}, C_{2}\) and \(C_{3}\) as indicated in Section 7.4 where
\[
\begin{gathered}
C_{1}=0, \quad C_{2}=\sqrt{ } 2, \quad C_{3}=0 \quad \text { for } \quad \sigma_{m} \leqslant P_{I} \\
C_{1}=H\left(\sigma_{m}-P_{I}\right) / S, \quad C_{2}=2 J_{2}{ }^{\prime} / S, \quad C_{3}=0 \quad P_{I} \leqslant \sigma_{m} \leqslant P_{0} .
\end{gathered}
\]
7.3 A certain material yields when the maximum principal stress reaches a critical value, \(Y\). Assuming identical behaviour in tension and compression, determine the geometrical form of the yield surface. The solution is given in Fig. 7.17.


Fig. 7.17 \(\pi\) plane representation of a yield criterion based on maximum principal stress values-Problem 7.3.
7.4 The assumption of a linear strain hardening material law may prove to be inadequate for certain situations. If the uniaxial stress/strain test curve for the material is known, then it is possible to represent the stress-plastic strain relationship in a piecewise linear fashion as shown in Fig. 7.18 and the instantaneous yield stress can be written in the form \(\sigma_{Y}=\sigma_{Y}{ }^{0}+S\left(\bar{\epsilon}_{p}\right)\) where \(S\left(\bar{\epsilon}_{p}\right)\) is the piecewise linear function describing the increase (or decrease) in the initial yield stress \(\sigma_{Y}{ }^{0}\) with the increase of effective plastic strain \(\tilde{\epsilon}_{p}\). The program modifications required to describe this behaviour will all be included in subroutine RESIDU, except for changes in material property specification which will need to be made in subroutine INPUT. Carry out all necessary modifications.


Fig. 7.18 Piecewise-linear representation of material strain hardening-Problem 7.4.
7.5 By using the mesh of Fig. 7.12(a) and solving as an axisymmetric problem, use program PLANET (documented in Appendix II, Section A2.1) to determine the elasto-plastic stress and displacement distributions in a sphere when it is loaded by an incrementally applied internal pressure. The dimensions and material properties of the sphere are given by reference to Fig. 7.12. Assume a Tresca yield criterion for solution and compare your results with the solution given in Ref. 1.
7.6 Use program PLANET to solve the problem illustrated in Fig. 1.2, Chapter 1. Use both a Tresca and Von Mises yield criterion and compare the plastic zone distributions obtained with those of Fig. 1.2.
7.7 Subroutine CONVER, described in Section 6.5.4, bases convergence of the nonlinear solution process on the global norm of the residual force vector. Modify subroutine CONVER so that convergence is based on expression (3.27) in which the summation signs are absent; so that convergence is monitored locally at each of the nodes 1 to \(N\) in turn.
7.8 Modify subroutine CONVER, Section 6.5 .4 so that convergence is monitored locally at each node according to the displacement changes that occur during a particular iteration, \(r\), as follows.
\[
\begin{equation*}
\frac{\left|\Delta d^{r}\right|}{\left|d^{1}\right|} \times 100 \leqslant \text { TOLER } \tag{7.100}
\end{equation*}
\]
where \(d^{1}\) is the elastic displacement occurring upon application of the load increment and \(\Delta d^{r}\) is the change in nodal displacement during the \(r^{\text {th }}\) iteration.
7.9 Modify program PLANET to undertake the elasto-plastic solution of three-dimensional solids. To simplify the task consider only the Von Mises yield criterion and assume that the solid is loaded by nodal point loads only.
7.10 The yield criterion to be employed in program PLANET is specified by means of control parameter NCRIT in subroutine INPUT described in Section 6.5.1. In some applications, such as steel-concrete composites, it is necessary to employ a different yield surface for different parts of the structure. Modify program PLANET so that the yield criterion governing elasto-plastic behaviour is separately specified for each element in the solid.

\subsection*{7.11 References}
1. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950.
2. Prager, W., An Introduction to Plasticity, Addison-Wesley, Amsterdam and London, 1959.
3. Hoffman, O. and Sachs, G., Introduction to the Theory of Plasticity for Engineers, McGraw-Hill, 1953.
4. Bridgman, P. W., Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, 1952.
5. Bishop, A. W., The strength of soils as engineering materials, Geotechnique, 16, 89-130 (1966).
6. Davis, E. M., Theories of plasticity and the failure of soil masses, Ch. 6 Soil Mechanics, Ed. I. K. Lee, Butterworths, London, 1968.
7. Zienkiewicz, O. C., Valliappan, S. and King, I. P., Elasto-plastic solutions of engineering problems; Initial stress finite element approach, Int. J. Num. Meth. Engng. 1, 75-100 (1969).
8. Yamada, Y., Yoshimura, N. and Sakurai, T., Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by Finite Element Method, Int. J. Mech. Sci. 10, 343-354 (1968).
9. Bland, D. R., The associated flow rule of plasticity, J. Mech. Phy. of Solids, 6, 71-78 (1957).
10. Nayak, G. C. and Zienkiewicz, O. C., Convenient form of stress invariants for Plasticity, Journ. of the Struct. Div. Proc. of A.S.C.E., 949-953, April 1972.
11. Frederick, D. and Chang, T. S., Continuum Mechanics, Allyn and Bacon, 1965.
12. Korter, W. T., Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with singular yield surface, Quart. Appl. Math., 11, 350-354 (1953).
13. Hinton, E. and Owen, D. R. J., Finite Element Programming, Academic Press, London, 1977.
14. Hodge, P. G. and White, G. N., A quantitative comparison of flow and deformation theories of plasticity' J. Appl. Mech. 17, 180-184 (1950).
15. Zienkiewicz, O. C. and Hinton, E., Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates), J. of the Franklin Institute, 302, Nos. 5 and 6, Nov./Dec. 1976.
16. Armen, H., Jr., Pifko, A. and Levine, H. S., Finite element analysis of structures in the plastic range, N.A.S.A. Contractor Report, CR. 1649 (1971).
17. Berg, C. A., Plastic dilation and void interaction, Battelle Inst. Material Science Colloquia, Sept. 1969. Inelastic Behaviour of Solids, Ed. M. F. Kanninen et al., McGraw-Hill, 171-210, 1970.
18. Krieg, R. D. and Krieg, D. B., Accuracies of numerical solution methods for the elastic-perfectly plastic mode, Trans. ASME, J. Pressure Vessel Technology, 99, 4, 510-515 (1977).
19. Schreyer, H. L., Kulak, R. F. and Kramer, J. M., Accurate numerical solutions for elastic-plastic models, Trans. ASME, J. Pressure Vessel Technology, 101, 3, 226-234 (1979).
20. Samuelsson, A. and Fröier, M., Finite elements in plasticity-A variational inequality approach, in The Mathematics of Finite Elements and Applications III., Ed. J. R. Whiteman, Academic Press, 1979.

\title{
Chapter 8 \\ Elasto-viscoplastic problems in two dimensions
}

\subsection*{8.1 Introduction}

In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperatures it is accepted that time rate effects are generally not important and the conventional theory of plasticity, as described in Chapter 7, then models the behaviour adequately. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. The former is essentially a redistribution of stress and/or strains with time under elastic material response while the latter is a time dependent plastic deformation. Experimental observations cannot distinguish between the two phenomena and their separation has been largely an analytical convenience rather than a physical requirement. Numerical processes, as described in this chapter, allow the simultaneous description of both effects.

A further situation in which time rate effects are important is in the dynamic transient loading of structures. For example, it can be experimentally demonstrated that the instantaneous yield stress of materials under high strain rates can be significantly greater than the corresponding quasi-static value. This class of problem is dealt with in Chapter 10.

In this chapter we utilise the theory of viscoplasticity to provide a unified approach to problems of creep and plasticity. As well as providing solutions to time-dependent situations the viscoplastic algorithm can provide economic solution for classic elasto-plastic problems since it can be readily shown that the steady-state solution of the viscoplastic problem is identical to the corresponding conventional static elasto-plastic solution. Furthermore, by reducing the yield stress of the material to zero, elastic creep problems can be solved.

The concept of 'overlay models' is also introduced in this chapter. In this, the solid is assumed, for mathematical convenience only, to be composed of several layers or overlays each of which undergo the same deformation. By assigning different properties to each overlay a composite behaviour can be
obtained which exhibits all the essential characteristics of the visco-elasticplastic response of many real materials.

The basic one-dimensional rheological model developed in Chapter 4 is now extended to the case of a general continuum and the essential steps employed in the numerical solution algorithm are discussed. Since most of the matrix expressions involved in viscoplastic analysis are common to conventional elasto-plastic theory, the majority of the subroutines developed in Chapter 7 can be again used with little or no change. The additional subroutines required are then constructed and assembled to form a working program. Finally it is briefly demonstrated how the overlay principle can be used to simulate a complex material response.

\subsection*{8.2 Theory of elasto-viscoplastic solids}

\subsection*{8.2.1 Basic expressions}

In the usual manner for nonlinear continua problems it is assumed that the total strain, \(\boldsymbol{\epsilon}\), can be separated into elastic, \(\boldsymbol{\epsilon}_{e}\), and viscoplastic, \(\boldsymbol{\epsilon}_{v p}\), components, so that the total strain rate can be expressed as \({ }^{(1-3)}\)
\[
\begin{equation*}
\dot{\boldsymbol{\epsilon}}=\dot{\boldsymbol{\epsilon}}_{e}+\dot{\boldsymbol{\epsilon}}_{v p}, \tag{8.1}
\end{equation*}
\]
where (•) represents differentiation with respect to time. The total stress rate depends on the elastic strain rate according to
\[
\begin{equation*}
\dot{\sigma}=D \dot{\epsilon}_{e}, \tag{8.2}
\end{equation*}
\]
where \(D\) is the elasticity matrix. The onset of viscoplastic behaviour is governed by a scalar yield condition of the form
\[
\begin{equation*}
F\left(\sigma, \boldsymbol{\epsilon}_{v p}\right)-F_{0}=0, \tag{8.3}
\end{equation*}
\]
in which \(F_{0}\) is the uniaxial yield stress which may itself be a function of a hardening parameter, \(\kappa\). For frictional materials \(F_{0}\) is the equivalent yield stress as given by Column 4, Table 7.2. It is assumed that viscoplastic flow occurs for values of \(F>F_{0}\) only.
It is now necessary to choose a specific law defining the viscoplastic strains. The simplest option is one in which the viscoplastic strain rate depends only on the current stresses, so that
\[
\begin{equation*}
\dot{\boldsymbol{\epsilon}}_{v p}=f(\boldsymbol{\sigma}) . \tag{8.4}
\end{equation*}
\]

This relationship can be generalised to include strain hardening and temperature dependence and the influence of state dependent variables, such as damage parameters for rupture theories, can also be considered.

One explicit form of (8.4) which has wide applicability, is offered by the following viscoplastic flow rule. \({ }^{(4)}\)
\[
\begin{equation*}
\dot{\epsilon}_{v p}=\gamma\langle\Phi(F)\rangle \frac{\partial Q}{\partial \sigma}, \tag{8.5}
\end{equation*}
\]
in which \(Q=Q\left(\boldsymbol{\sigma}, \boldsymbol{\epsilon}_{v p}, \kappa\right)\) is a 'plastic' potential and \(\gamma\) is a fluidity parameter controlling the plastic flow rate. The term \(\Phi(x)\) is a positive monotonic increasing function for \(x>0\) and the notation \(\langle>\) implies
\[
\begin{array}{rlrl}
\langle\Phi(x)\rangle & =\Phi(x) & \text { for } & x>0 \\
\langle\Phi(x)\rangle & =0 & x & \leqslant 0 . \tag{8.6}
\end{array}
\]

Comparison of (8.5) with (7.28) shows an analogy between the flow rule of conventional non-associated plasticity and the present definition of viscoplastic flow rate. If, once again, we restrict ourselves to associated plasticity situations, in which case \(F \equiv Q\), expression (8.5) reduces to
\[
\begin{equation*}
\dot{\boldsymbol{\epsilon}}_{v p}=\gamma\langle\Phi(F)\rangle \frac{\partial F}{\partial \sigma}=\gamma\langle\Phi\rangle \boldsymbol{a}, \tag{8.7}
\end{equation*}
\]
where the same definition of the flow vector \(\boldsymbol{a}\) is employed as in (7.42). Different choices have been recommended \({ }^{(5)}\) for the function \(\Phi\). The two most common versions are
\[
\begin{equation*}
\Phi(F)=e^{M\left(\frac{F-F_{0}}{F_{0}}\right)}-1, \tag{8.8}
\end{equation*}
\]
and
\[
\begin{equation*}
\Phi(F)=\left(\frac{F-F_{0}}{F_{0}}\right)^{N}, \tag{8.9}
\end{equation*}
\]
in which \(M\) and \(N\) are arbitrary prescribed constants. The latter option, when employed in (8.7) can be made to model the Norton power law of metallic creep by assigning the threshold uniaxial yield value, \(F_{0}\), to zero (or to an arbitrarily small value for numerical convenience).

\subsection*{8.2.2 The viscoplastic strain increment}

With the strain rate law expressed by (8.7) we can define a strain increment \(\Delta \epsilon_{v p}{ }^{n}\) occurring in a time interval \(\Delta t_{n}=t_{n+1}-t_{n}\) using an implicit time stepping scheme, as \({ }^{(6)}\)
\[
\begin{equation*}
\Delta \boldsymbol{\epsilon}_{v p}{ }^{n}=\Delta t_{n}\left[(1-\Theta) \dot{\epsilon}_{v p} n+\Theta \dot{\epsilon}_{v p}{ }^{n+1}\right] . \tag{8.10}
\end{equation*}
\]

For \(\Theta=0\) we obtain the Euler time integration scheme which is also referred to as 'fully explicit' (or forward difference method) since the strain increment is completely determined from conditions existing at time, \(t_{n}\). On the other
hand \(\Theta=1\) gives a 'fully implicit' (or backward difference) scheme with the strain increment being determined from the strain rate corresponding to the end of the time interval. The case \(\Theta=\frac{1}{2}\) results in the so-called 'implicit trapezoidal' scheme which is also known generally as the Crank-Nicolson rule in the context of linear equations.

To define \(\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n+1}\) in (8.10) we can use a limited Taylor series expansion and write
\[
\begin{equation*}
\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n+1}=\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n}+\boldsymbol{H}^{n} \Delta \sigma^{n} \tag{8.11}
\end{equation*}
\]
where
\[
\begin{equation*}
\boldsymbol{H}^{n}=\left(\frac{\partial \dot{\epsilon}_{v p}}{\partial \sigma}\right)^{n}=\boldsymbol{H}^{n}\left(\boldsymbol{\sigma}^{n}\right), \tag{8.12}
\end{equation*}
\]
and \(\Delta \sigma^{n}\) is the stress change occurring in the time interval \(\Delta t_{n}=t_{n+1}-t_{n}\). Thus (8.10) can be rewritten as
\[
\begin{equation*}
\Delta \boldsymbol{\epsilon}_{v p}{ }^{n}=\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n} \Delta t_{n}+\boldsymbol{C}^{n} \Delta \boldsymbol{\sigma}^{n}, \tag{8.13}
\end{equation*}
\]
where
\[
\begin{equation*}
C^{n}=\Theta \Delta t_{n} H^{n} \tag{8.14}
\end{equation*}
\]

We draw the attention of the reader to the fact that the matrix \(\boldsymbol{H}\) defined in (8.12) is the matrix whose eigenvalues determine the limiting time step length, \(\Delta t_{n}\) which can be employed in the explicit integration schemes. The matrix \(\boldsymbol{H}\) depends on the stress level and no difficulty arises in its evaluation and specific forms will be developed in Section 8.5.

\subsection*{8.2.3 Stress increments}

Using the incremental form of (8.2) we obtain
\[
\begin{equation*}
\Delta \boldsymbol{\sigma}^{n}=\boldsymbol{D} \Delta \boldsymbol{\epsilon}_{e}{ }^{n}=\boldsymbol{D}\left(\Delta \epsilon^{n}-\Delta \boldsymbol{\epsilon}_{v p}{ }^{n}\right) . \tag{8.15}
\end{equation*}
\]

Or expressing the total strain increment in terms of the displacement increment as
\[
\begin{equation*}
\Delta \boldsymbol{\epsilon}^{n}=\boldsymbol{B}^{n} \Delta \boldsymbol{d}^{n} \tag{8.16}
\end{equation*}
\]
and substituting for \(\Delta \boldsymbol{\epsilon}_{v p}{ }^{n}\) from (8.13), then (8.15) becomes
\[
\begin{equation*}
\Delta \sigma^{n}=\hat{\boldsymbol{D}}^{n}\left(\boldsymbol{B}^{n} \Delta d^{n}-\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n} \Delta t_{n}\right), \tag{8.17}
\end{equation*}
\]
where
\[
\begin{equation*}
\hat{D}^{n}=\left(I+D C^{n}\right)^{-1} D=\left(D^{-1}+C^{n}\right)^{-1} \tag{8.18}
\end{equation*}
\]

In (8.16) and (8.17) the notation \(B^{n}\) is employed to denote the possibility that the strain matrix may not be constant throughout the solution. For example, if large deformations are to be considered, the strain matrix for a Lagrangian formulation is nonlinear and can be written
\[
\begin{equation*}
B^{n}=B_{0}+B_{N L}{ }^{n}, \tag{8.19}
\end{equation*}
\]
where \(\boldsymbol{B}_{\mathbf{0}}\) represents the standard linear terms which do not vary during solution and \(\boldsymbol{B}_{N L^{n}}\) contains the nonlinear quadratic terms. These latter expressions are dependent on the current displacements and therefore vary throughout the solution process.

The matrix \(D^{n}\) is a symmetric matrix when the visco-plastic law is associative. For the non-associated case, the matrix \(C^{n}\) is unsymmetric, requiring unsymmetric equation solvers for analysis.

For the solution of linear elastic problems by the explicit scheme \((\Theta=0)\), equation (8.17) simplifies considerably to give
\[
\begin{equation*}
\Delta \boldsymbol{\sigma}^{n}=\boldsymbol{D}\left(\boldsymbol{B} \Delta d^{n}-\dot{\epsilon}_{v p} n \Delta t_{n}\right) \tag{8.20}
\end{equation*}
\]

\subsection*{8.2.4 Equations of equilibrium}

The equations of equilibrium to be satisfied at any instant of time, \(t_{n}\), are
\[
\begin{equation*}
\int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T} \boldsymbol{\sigma}^{n} d \Omega+\boldsymbol{f}^{n}=\mathbf{0}, \tag{8.21}
\end{equation*}
\]
where \(f^{n}\) is the vector of equivalent nodal loads due to applied surface tractions, body forces, thermal loads, etc. During a time increment the equilibrium equations which must be satisfied are given by the incremental form of (8.21) to be
\[
\begin{equation*}
\int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T} \Delta \boldsymbol{\sigma}^{n} d \Omega \div \Delta \boldsymbol{f}^{n}=\mathbf{0} \tag{8.22}
\end{equation*}
\]
in which \(\Delta f^{n}\) represents the change in loads during the time interval \(\Delta t_{n}\). In the majority of problems encountered in engineering the load increments are applied as discrete steps and thus \(\Delta \boldsymbol{f}^{n}=\mathbf{0}\) for all time steps other than the first within an increment.

Using (8.13) and (8.20) the displacement increment occurring during time step \(\Delta t_{n}\) can be calculated as
\[
\begin{align*}
\Delta \boldsymbol{d}^{n} & =\left[\boldsymbol{K}_{T^{n}}\right]^{-1} \Delta \boldsymbol{V}^{n} \\
\Delta \boldsymbol{V}^{n} & =\int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T} \hat{\boldsymbol{D}}^{n} \dot{\boldsymbol{\epsilon}}_{v p^{n}} \Delta t_{n} d \Omega+\Delta \boldsymbol{f}^{n} \tag{8.23}
\end{align*}
\]
where \(\boldsymbol{K}_{\boldsymbol{T}}{ }^{n}\) is the tangential stiffness matrix with the following form
\[
\begin{equation*}
\boldsymbol{K}_{T}{ }^{n}=\int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T} \hat{\boldsymbol{D}}^{n} \boldsymbol{B}^{n} d \Omega \tag{8.24}
\end{equation*}
\]
and \(\Delta V^{n}\) are termed the incremental pseudo-loads. The displacement increments, \(\Delta d^{n}\), when substituted back into (8.20) give the stress increments
\(\Delta \sigma^{n}\) and thus
\[
\begin{align*}
\boldsymbol{\sigma}^{n+1} & =\boldsymbol{\sigma}^{n}+\Delta \boldsymbol{\sigma}^{n} \\
\boldsymbol{d}^{n+1} & =\boldsymbol{d}^{n}+\Delta \boldsymbol{d}^{n} . \tag{8.25}
\end{align*}
\]

Use of (8.15) and (8.16) gives
\[
\begin{equation*}
\Delta \epsilon_{v p^{n}}=\boldsymbol{B}^{n} \Delta d^{n}-D^{-1} \Delta \sigma^{n} \tag{8.26}
\end{equation*}
\]
and then
\[
\begin{equation*}
\boldsymbol{\epsilon}_{v p}{ }^{n+1}=\boldsymbol{\epsilon}_{v p}{ }^{n}+\Delta \boldsymbol{\epsilon}_{v p}{ }^{n} . \tag{8.27}
\end{equation*}
\]

Arrival at stationary or steady state conditions can be monitored by examination of the strain rates. In particular \(\dot{\boldsymbol{\varepsilon}}_{v p}\), as given by (8.7), is calculated at each time interval and the time marching process halted as soon as this quantity becomes tolerably small.

\subsection*{8.2.5 Equilibrium correction}

The stress increment calculation is based on a linearised form of the incremental equilibrium equations (8.22). Therefore the total stresses, \(\sigma^{n+1}\), obtained by accumulating all such stress increments are not strictly correct and will not exactly satisfy the equations of equilibrium, (8.21). There are several solution procedures available for applying the necessary correction and Reference 7 discusses the relative merits of various options. The simplest approach is to evaluate \(\sigma^{n+1}\) according to (8.20) and (8.25) and then compute the residual, or out-of-balance, forces, \(\psi\), as
\[
\begin{equation*}
\psi^{n+1}=\int_{\Omega}\left[\boldsymbol{B}^{n+1}\right]^{T} \boldsymbol{\sigma}^{n+1} d \Omega+\boldsymbol{f}^{n+1} \neq \mathbf{0} \tag{8.28}
\end{equation*}
\]
noting, for geometrically nonlinear problems, that \(B^{n+1}\) is evaluated for a displacement state \(\boldsymbol{d}^{n+1}\). This residual force is then added to the applied force increment at the next time step. Such a technique avoids an iteration process and at the same time achieves a reduction in error.

\subsection*{8.3 Selection of the time step length}

It can be shown \({ }^{(14)}\) that the time integration scheme formally represented by ( 8.10 ) is unconditionally stable for values of \(\Theta \geqslant \frac{1}{2}\). This implies that the time marching scheme is numerically stable but does not guarantee the accuracy of the solution at any stage; so that in practice even for values of \(\Theta \geqslant \frac{1}{2}\) limits must be placed on the time step length in order to achieve a valid solution.

For \(\Theta<\frac{1}{2}\) the integration process is only conditionally stable and numerical time integration can only proceed for values of \(\Delta t_{n}\) less than some critical value. We now proceed to establish rules for choosing the time step length for computation.

Schemes can be employed in which the time step length can be either constant or vary for each time interval. In the variable scheme the magnitude of the time step is controlled by a factor \(\tau\) which limits the maximum effective viscoplastic strain increment, \(\Delta \bar{\epsilon}_{v p}{ }^{n}\) as a fraction of the total effective strain, \(\bar{\epsilon}^{n}\), so that
\[
\begin{equation*}
\left.\Delta \check{\epsilon}_{v p}{ }^{n}=\left(\sqrt{ } \frac{2}{3}\right)\left\{\dot{\epsilon}_{i j}\right)_{v p}\left(\dot{\epsilon}_{i j} n\right)_{v p}\right\}^{1 / 2} \Delta t_{n} \leqslant \tau \bar{\epsilon}^{n} . \tag{8.29}
\end{equation*}
\]

For isoparametric elements, all strains are evaluated at the Gaussian integration points. Therefore \(\Delta t_{n}\) must be computed to satisfy (8.29) at each such point and the least value taken for analysis. A variant on the above is to limit the time step length according to
\[
\begin{equation*}
\left\{\dot{\epsilon} i i^{n}\right\}^{\ddagger} v p \Delta t_{n} \leqslant \tau\left\{\epsilon_{i i^{n}}\right\}^{\sharp}, \tag{8.30}
\end{equation*}
\]
in which \(\epsilon_{i i} n\) is the first total strain invariant and \(\left(\dot{\epsilon}_{i i}{ }^{n}\right)_{v p}\) is the first viscoplastic strain rate invariant. Thus \(\Delta t_{n}\) can be formally written for this case as
\[
\begin{equation*}
\Delta t_{n} \leqslant \tau\left[\epsilon_{i i}{ }^{n} /\left(\dot{\epsilon}_{i i}{ }^{n}\right)_{v p}\right]^{\frac{4}{m i n}} . \tag{8.31}
\end{equation*}
\]

The minimum in (8.31) is that taken over all integrating points in the solid. The value of the time increment parameter \(\tau\) must be specified by the user and for explicit time marching schemes accurate results have been obtained \(^{(4,8)}\) in the range \(0.01<\tau<0.15\). For implicit schemes, values of \(\tau\) up to 10 have been found to be stable though the accuracy deteriorates.

Another useful limit can be imposed while using the variable time stepping scheme. The change in the time step length between any two intervals is limited according to
\[
\begin{equation*}
\Delta t_{n+1} \leqslant k \Delta t_{n}, \tag{8.32}
\end{equation*}
\]
where \(k\) is a specified constant. Experience suggests a value of \(k=1.5\) to be suitable although there are no fixed criteria for its specification.

The above time step limiting values are basically empirical. Theoretical restrictions on the time step length have been provided by Cormeau \({ }^{(9)}\) for specific forms of the viscoplastic flow rule and for explicit time integration only. In particular, for associated viscoplasticity \(Q \equiv \mathrm{~F}\) and a linear function \(\Phi(F)=F\) we have the following limits on the time step length.
\[
\begin{array}{ll}
\Delta t \leqslant \frac{(1+\nu) F_{0}}{\gamma E} & \text { for Tresca materials } \\
\Delta t \leqslant \frac{4(1+\nu) F_{0}}{3 \gamma E} & \text { Von Mises } \\
\Delta t \leqslant \frac{4(1+\nu)(1-2 \nu) F_{0}}{\gamma\left(1-2 \nu+\sin ^{2} \phi\right) E} & \text { Mohr-Coulomb, } \tag{8.33}
\end{array}
\]
where \(\gamma\) is the fluidity parameter and \(\phi\) is the angle of internal friction. The term \(F_{0}\) is the uniaxial yield stress for Tresca and Von Mises solids and is the equivalent value ( \(c \cos \phi\) ) for Mohr-Coulomb materials where \(c\) is the cohesion. No simple expression exists for the limiting time step length in Drucker-Prager solids.

\subsection*{8.4 Computational procedure}

The essential steps in the solution process can be summarised as follows. Solution to the problem must begin from the known initial conditions at time \(t=0\), which are, of course, the solution of the static elastic situation. At this stage \(\boldsymbol{d}^{0}, \boldsymbol{F}^{0}, \boldsymbol{\epsilon}^{\mathbf{0}}, \boldsymbol{\sigma}^{\mathbf{0}}\) are known and \(\boldsymbol{\epsilon}_{v p^{0}}=\mathbf{0}\). The time marching scheme described in Section 8.2.4 can then be employed to advance the solution by one timestep at a time. The solution sequence adopted is as follows.

Stage 1 Suppose at time \(t=t_{n}\) we have an equilibrium situation and \(d^{n}, \sigma^{n}\), \(\boldsymbol{\epsilon}^{n}, \boldsymbol{\epsilon}_{v p}{ }^{n}, \boldsymbol{F}^{n}\) are known. The following quantities are assembled:
(a)
\[
B^{n}=B_{0}+B_{N L}\left(d^{n}\right),
\]
\[
\begin{equation*}
\boldsymbol{C}^{n}=\boldsymbol{C}^{n}\left(\boldsymbol{\sigma}^{n}, \Delta t_{n}\right), \tag{b}
\end{equation*}
\]
\[
\begin{equation*}
\hat{D}^{n}=\left(D^{-1} \div C^{n}\right)^{-1} \tag{c}
\end{equation*}
\]
\[
\begin{equation*}
\boldsymbol{K}_{T^{n}}=\int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T} \hat{\boldsymbol{D}}^{n} \boldsymbol{B}^{n} d \Omega \tag{d}
\end{equation*}
\]
(e)
\[
\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n}=\gamma\langle\boldsymbol{\Phi}\rangle \boldsymbol{a}^{n} .
\]

Stage 2 i) Compute the displacement increments \(\Delta d^{n}\) according to (8.23) as
\[
\Delta d^{n}=\left[\boldsymbol{K}_{T^{n}}\right]^{-1} \Delta V^{n}
\]
where
\[
\Delta \boldsymbol{V}^{n}=\int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T} \hat{\boldsymbol{D}}^{n} \dot{\boldsymbol{\epsilon}}_{v p^{n}} \Delta t_{n} d \Omega+\Delta f^{n}
\]
ii) Calculate the stress increment \(\Delta \sigma^{n}\) as
\[
\Delta \boldsymbol{\sigma}^{n}=\hat{\boldsymbol{D}}^{n}\left(\boldsymbol{B}^{n} \Delta \boldsymbol{d}^{n}-\dot{\boldsymbol{\epsilon}}_{v p} n \Delta t_{n}\right)
\]

Stage 3 Determine the total displacements and stresses
\[
\begin{aligned}
\boldsymbol{d}^{n+1} & =\boldsymbol{d}^{n}+\Delta \boldsymbol{d}^{n} \\
\boldsymbol{\sigma}^{n+1} & =\boldsymbol{\sigma}^{\boldsymbol{n}}+\Delta \boldsymbol{\sigma}^{n} .
\end{aligned}
\]

Stage 4 Calculate the viscoplastic strain rate
\[
\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n+1}=\gamma\langle\Phi\rangle \boldsymbol{a}^{n+1} .
\]

Stage 5 Apply the equilibrium correction. First calculate \(\boldsymbol{B}^{n+1}\) using dis-
placements \(\boldsymbol{d}^{n+1}\). Substitute stresses \(\boldsymbol{\sigma}^{n+1}\) into the equilibrium equations and evaluate the residual forces \(\psi^{n+1}\) as
\[
\psi^{n+1}=\int_{\Omega}\left[B^{n+1}\right]^{T} \sigma^{n+1} d \Omega+f^{n+1}
\]

Add these to the vector of incremental pseudo loads for use in the next time step
\[
\begin{equation*}
\Delta \boldsymbol{V}^{n+1}=\int_{\Omega}\left[\boldsymbol{B}^{n+1}\right]^{T} \hat{\boldsymbol{D}}^{n+1} \dot{\boldsymbol{\epsilon}}_{v p} n^{n+1} \Delta t_{n+1} d \Omega+\Delta \boldsymbol{f}^{n+1}+\boldsymbol{\psi}^{n+1} . \tag{8.34}
\end{equation*}
\]

Stage 6 Check to see if the viscoplastic strain rate \(\dot{\boldsymbol{\epsilon}}_{v p^{n+1}}\) is acceptably close to zero at each Gaussian integrating point throughout the structure (i.e. to within a specified tolerance).

If so, steady state conditions are deemed to have been achieved and the solution is either terminated or the next load increment is applied. If \(\dot{\boldsymbol{\epsilon}}_{v p^{n+1}}\) is non-zero return to Stage 1 and repeat the entire procedure for the next time step.

The above algorithm can be employed with either a constant or variable time step length. For the variable time step option the interval length \(\Delta t_{n+1}\), for the next time step must be calculated according to (8.29) or (8.31) subject to the restriction of (8.32).

\subsection*{8.5 Evaluation of matrix, \(\boldsymbol{H}\)}

For solution by the fully implicit or semi-implicit (trapezoidal) time stepping scheme, matrix \(C^{n}\) is required which in turn can be expressed in terms of \(\boldsymbol{H}^{n}\) as indicated in (8.14). Matrix \(\boldsymbol{H}^{n}\) must be explicitly determined for the yield criterion assumed for material behaviour. From (8.7) and (8.12) we have
\[
\begin{equation*}
\boldsymbol{H}=\frac{\partial \dot{\boldsymbol{\epsilon}}_{v p}}{\partial \boldsymbol{\sigma}^{n}}=\gamma\left\{\Phi \frac{\partial \boldsymbol{a}^{T}}{\partial \boldsymbol{\sigma}}+\frac{d \Phi}{d F} \boldsymbol{a} \boldsymbol{a}^{T}\right\}, \tag{8.35}
\end{equation*}
\]
where the symbols \(\rangle\) on \(\Phi\) and the superscript \(n\) are dropped for convenience. Restricting discussion to the Von Mises yield criterion we have, from (7.64),
\[
\begin{equation*}
a^{\top}=\frac{\partial F}{\partial \sigma}=\frac{\partial\left[(\sqrt{ } 3)\left(J_{2}^{\prime}\right)^{1 / 2}\right]}{\partial \sigma}, \tag{8.36}
\end{equation*}
\]
or
\[
\begin{equation*}
\boldsymbol{a}^{\boldsymbol{T}}=\frac{\partial F}{\partial J_{2}^{\prime}} \frac{\partial J_{2}^{\prime}}{\partial \boldsymbol{\sigma}}=\frac{\sqrt{ } 3}{2\left(J_{2}\right)^{\prime / 2}}\left\{\sigma_{x}^{\prime}, \sigma_{y^{\prime}}, \sigma_{z}^{\prime}, 2 \tau_{y z}, 2 \tau_{z x}, 2 \tau_{x y}\right\}, \tag{8.37}
\end{equation*}
\]
for a three dimensional situation. Thus
\[
\begin{equation*}
a a^{T}=\frac{3}{4 J_{2}^{\prime}} M_{2}, \tag{8.38}
\end{equation*}
\]
where
\[
\boldsymbol{M}_{2}=\left[\begin{array}{cccccc}
\left.\left(\sigma_{x}\right)^{\prime}\right)^{2} & \sigma_{x}{ }^{\prime} \sigma_{y}{ }^{\prime} & \sigma_{x}{ }^{\prime} \sigma_{z}^{\prime} & 2 \sigma_{x}{ }^{\prime} \tau_{y z} & 2 \sigma_{x}{ }^{\prime} \tau_{z x} & 2 \sigma_{x}{ }^{\prime} \tau_{x y}  \tag{8.39}\\
& \left(\sigma_{y}{ }^{\prime}\right)^{2} & \sigma_{y}{ }^{\prime} \sigma_{z}^{\prime} & 2 \sigma_{y}{ }^{\prime} \tau_{y z} & 2 \sigma_{y}{ }^{\prime} \tau_{z x} & 2 \sigma_{y}{ }^{\prime} \tau_{x y} \\
& & \left(\sigma_{z}{ }^{\prime}\right)^{2} & 2 \sigma_{z}{ }^{\prime} \tau_{y z} & 2 \sigma_{z}{ }^{\prime} \tau_{z x} & 2 \sigma_{z}{ }^{\prime} \tau_{x y} \\
& & & 4\left(\tau_{y z}\right)^{2} & 4 \tau_{y z} \tau_{z x} & 4 \tau_{y z} \tau_{x y} \\
& \text { Symmetric } & & 4\left(\tau_{z x}\right)^{2} & 4 \tau_{z x} \tau_{x y} \\
& & & & & 4\left(\tau_{x y}\right)^{2}
\end{array}\right] .
\]

Also from (8.37)
\[
\begin{equation*}
\frac{\partial \boldsymbol{a}^{T}}{\partial \sigma}=\frac{\sqrt{ } 3}{2\left(J_{2}^{\prime}\right)^{1 / 2}} \boldsymbol{M}_{1}-\frac{\sqrt{ } 3}{4\left(J_{2}^{\prime}\right)^{3 / 2}} \boldsymbol{M}_{2} \tag{8.40}
\end{equation*}
\]
where
\[
\boldsymbol{M}_{1}=\left[\begin{array}{rrrrr}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0  \tag{8.41}\\
& \frac{2}{3} & -\frac{1}{3} & 0 & 0 \\
& \frac{2}{3} & 0 & 0 & 0 \\
& & 2 & 0 & 0 \\
& \text { Symmetric } & 2 & 0 \\
& & & 2
\end{array}\right] .
\]

Substituting from (8.38) and (8.40) into (8.35), and restoring the symbols \(\rangle\), we have finally
\[
\begin{equation*}
\boldsymbol{H}=p_{1} M_{1}+p_{2} M_{2}, \tag{8.42}
\end{equation*}
\]
where
\[
\begin{align*}
& p_{1}=\gamma\left\langle\frac{\sqrt{ } 3}{2\left(J_{2}^{\prime}\right)^{1 / 2}} \cdot \Phi\right\rangle \\
& p_{2}=\gamma\left\langle\frac{3}{4 J_{2^{\prime}}} \frac{d \Phi}{d F}-\frac{(\sqrt{ } 3) \Phi}{4\left(J_{2}^{\prime}\right)^{3 / 2}}\right\rangle . \tag{8.43}
\end{align*}
\]

The form of \(d \Phi / d F\) depends on the explicit form of \(\Phi\) employed, examples of which were given in (8.8) and (8.9). Matrix \(H^{n}\) is then obtained by using stresses \(\sigma^{n}\) to evaluate \(J_{2}{ }^{\prime}\) and \(\boldsymbol{M}_{2}\).

For two-dimensional situations (plane stress, plane strain and axial symmetry) the only relevant stress terms are given in (7.72). In this case \(\boldsymbol{M}_{1}\) and \(M_{2}\) reduce, on deletion of the appropriate terms, to
and
\[
\boldsymbol{M}_{2}=\left[\begin{array}{ccc:l}
\left(\sigma_{x}^{\prime}\right)^{2} & \sigma_{x}^{\prime} \sigma_{y}^{\prime} & 2 \sigma_{x}^{\prime} \tau_{x y} & \sigma_{x}^{\prime} \sigma_{z}^{\prime}  \tag{8.45}\\
& \left(\sigma_{y}^{\prime}\right)^{2} & 2 \sigma_{y}^{\prime} \tau_{x y} & \sigma_{y}^{\prime} \sigma_{z}^{\prime} \\
\text { Symmetric } & 4\left(\tau_{x y}\right)^{2} & 2 \tau_{x y} \sigma_{z}^{\prime} \\
\hdashline-- & - & - & \left(\sigma_{z}^{\prime}\right)^{2}
\end{array}\right]
\]
and \(J_{2}{ }^{\prime}\) is given by (7.76). For plane stress and plane strain problems only the upper \(3 \times 3\) partition is employed while for axisymmetric situations the complete matrices are utilised with \(x\) and \(y\) being replaced by \(r\) and \(z\) respectively.

Similar expressions can be derived for the Tresca, Mohr-Coulomb and Drucker-Prager yield criteria by employing the appropriate expression for \(F\) in (8.36) and repeating the above calculations. The form of \(F\) is given in (7.63), (7.65) and (7.66) for the Tresca, Mohr-Coulomb and Drucker-Prager laws respectively.

\subsection*{8.6 Program structure}

The computation sequence for the program is shown in Fig. 8.1. The program structure follows closely that for static elasto-plastic analysis described in Chapter 7. In fact, the majority of the subroutines utilised are common to both applications and it is only the additional subroutines required that are described in this chapter. For the viscoplastic program the time stepping loop replaces the nonlinear solution iteration loop for conventional plasticity and subroutine STEPVP, whose main role is to evaluate quantities at the end of a timestep, replaces the plasticity subroutine RESIDU. In this chapter we need to describe in detail subroutines STIFVP, TANGVP, STEPVP, FLOWVP and STEADY. The descriptions of all other subroutines required for assembly of a working viscoplastic program have been given in Chapters 6 and 7. The version described is restricted to the case of infinitesimal strains. The modifications required to include large deformation effects are straightforward and are left as an exercise to the reader. Furthermore, for implicit schemes, only the Von Mises yield criterion is considered.

The list of material properties accepted in subroutine INPUT described in Section 6.5.1 must be extended beyond those required for elasto-plastic analysis, since additional material parameters are required to define the


Fig. 8.1 Flow sequence for the two-dimensional elasto-viscoplastic stress analysis program.
viscoplastic flow. This is accomplished by specifying the value of NPROP as 10 in subroutine DIMEN, described in Section 7.8.1, and inputting the following properties for each different material.

PROPS(NUMAT, 1) Elastic modulus, \(E\).
PROPS(NUMAT, 2) Poissons ratio, \(\nu\).
PROPS(NUMAT, 3) Material thickness, \(t\).
PROPS(NUMAT, 4) Material mass density, \(\rho\).
PROPS(NUMAT, 5) Uniaxial yield stress \(\sigma_{Y}\) (Tresca and Von Mises solids); Cohesion \(c\) (Mohr-Coulomb and Drucker-Prager materials).
PROPS(NUMAT, 6) Hardening parameter \(H^{\prime}\) for linear strain hardening.
PROPS(NUMAT, 7) Angle of internal friction for Mohr-Coulomb and Drucker-Prager materials only.
PROPS(NUMAT, 8) The fluidity parameter, \(\gamma\).
PROPS(NUMAT, 9) The coefficient \(M\) in (8.8) or coefficient \(N\) in (8.9).
PROPS(NUMAT, 10) Indicator specifying type of flow function to be employed:
0 - Flow function (8.8)
1 - Flow function (8.9)

\subsection*{8.7 Formulation of the tangential stiffness matrix}

The role of the subroutines described in this section is to calculate the tangential stiffness matrix for each element according to (8.24). The complete operation is shared between three subroutines which will now be described.

\subsection*{8.7.1 Subroutine STIFVP}

This subroutine controls the overall formulation of the tangential stiffness matrix for each element and is very similar to subroutine STIFFP, described in Section 7.8.5, which performs the same task for conventional plasticity. For the case of small deformations, matrix \(\boldsymbol{B}^{n}\) is constant and equal to \(\boldsymbol{B}_{0}\) the usual infinitesimal elastic value. Matrix \(B_{0}\) is given by subroutine BMATPS described in Section 6.4.7. To evaluate \(K_{T}{ }^{n}\) it is necessary to find \(\hat{\boldsymbol{D}}^{n}\) whose precise form is given by (8.18). With the normal elastic material matrix \(\boldsymbol{D}\) replaced by \(\hat{\boldsymbol{D}}^{n}\), the stiffness evaluation follows the standard procedure described in Section 7.8.5. Subroutine STIFVP can now be presented and described.

```

 DVECT(4),AVECT(4),GPCOD(2,9) STVP 16
 TWOPI=6.283185308 1- STVP 17
 TWOPI=6.283185308 1 STVP 17
 REWLIND 1 STVP
 19
 C - STVP 20
C*** LOOP OVER EACH ELEMENT STVP 21
C STVP 22
DO 70 IELEM=1,NELEM STVP 23
LPROP=MATNO(IELEM)
C`*** EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS
STVP }2
STVP }2
STVP 26
STVP 27
DO 10 INODE=1,NNODE
LNODE=IABS(LNODS(IELEM,INODE))
STVP
STVP 29
IPOSN=(LNODE-1)*2 STVP 30
DO 10 IDIME=1,2, 3- STVP
P 31
IPOSN=IPOSN+1 STVP 32
10 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) STVP 33
THICK=PROPS(LPROP;3). STVP 34
C
C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX STVP 36
STVP 35
C STVP 37
DO 20 IEVAB=1,NEVAB
STVP }3
DO 20 JEVAB=1,NEVAB STVP 39
20 ESTIF(IEVAB, JEVAB)=0.0
KGASP=0
C
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION
DO 50 IGAUS=1,NGAUS
EXISP=POSGP(IGAUS)
DO 50 JGAUS=1,NGAUS
ETASP=POSGP(JGAUS)
KGASP=KGASP +1
KGAUS=KGAUS+1
C
C*** EVALUATE THE D-MATRIX
STVP }5
STVP }5
,CALL MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS) STVP }5
C STVP 55
C*** EVALUATE THE SHAPE FUNCTIONS, ELEMENTAL VOLUME,ETC. STVP 56
CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) STVP 58
STVP }5
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP, STVP 59
- NNODE,SHAPE) STVP
STVP 60
DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) STVP 61
IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP) STVP 62
IF(THICK.NE.0.0) DVOLU=DVOLU*THICK STVP 63
C STVP
STVP }6
C*** EVALUATE THE B AND DB MATRICES STVP 65
C STVP 66
CALL BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NTYPE,KGASP)
DO 25 ISTR1=1,NSTR1 STVP 68
STVP }6
25 STRES(ISTR1)=STRSG(ISTR1,KGAUS)}\mathrm{ STVP 69
IF(TIMEX.GT.0.0) CALL TANGVP(LPROP,STRES,PROPS,TIMEX,DTIME, STVP }7
- NSTRE,NTYPE,MMATS,NCRIT,DMATX) STVP }7
CALL DBE(BMATX,DBMAT,DMATX,MEVAB,NEVAB,NSTRE,NSTR1) STVP }7
C
C*** CALCULATE THE ELEMENT STIFFNESSES STVP 74
STVP }7
C
STVP }7
DO }30\mathrm{ IEVAB=1,NEVAB
STVP }7
DO 30 JEVAB=IEVAB,NEVAB STVP 77
DO 30 ISTRE=1,NSTRE
STVP }7
30 ESTIF(IEVAB,JEVAB)=ESTIF(IEVAB,JEVAB)+BMATX(ISTRE,IEVAB)* STVP }7
- DBMAT(ISTRE, JEVAB)*DVOLU
STVP }8

```
\begin{tabular}{|c|c|c|c|}
\hline & CONTINUE & STVP & 81 \\
\hline C & & STVP & 82 \\
\hline C*** & CONSTRUCT THE LOWER TRIANCLE OF THE STIFFNESS MATRIX & STVP & 83 \\
\hline C & & STVP & 84 \\
\hline & DO 60 IEVAB \(=1\), NEVAB & STVP & 85 \\
\hline & DO 60 JEVAB \(=1\), NEVAB & STVP & 86 \\
\hline 60 & ESTIF (JEVAB, IEVAB) \(=\) ESTIF ( IEVAB, JEVAB) & STVP & 87 \\
\hline C & & STVP & 88 \\
\hline  & STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT & STVP & 89 \\
\hline C & COORDINATES FOR EACH ELEMENT ON DISC FILE & STVP & 90 \\
\hline C & & STVP & 91 \\
\hline & WRITE (1) ESTIF & STVP & 92 \\
\hline 70 & CONTINUE & STVP & 93 \\
\hline & RETURN & STVP & 94 \\
\hline & END & STVP & 95 \\
\hline
\end{tabular}

STVP 17 Compute the value of \(2 \pi\).
STVP 18 Rewind the disc file on which the element stiffness matrices will be stored in turn.
STVP 19 Set to zero the counter which indicates the overall Gauss point location.
STVP 23 Enter the loop over each element in the structure.
STVP 24 Identify the material property type of the current element.
STVP 28-33 Store the element nodal coordinates in the local array ELCOD for convenient use later.
STVP 34 Identify the element thickness.
STVP 38-40 Zero the element stiffness array.
STVP 41 Set to zero the element Gauss point counter.
STVP 45-48 Enter the numerical integration loops and locate the position \((\xi, \eta)\) of the current point.
STVP 49-50 Increment the local and global Gauss point counters.
STVP 54 Call subroutine MODPS to evaluate the elasticity matrix, \(\boldsymbol{D}\).
STVP 58 Evaluate the shape functions \(N_{i}\) and \(\partial N_{i} / \partial \xi, \partial N_{i} / \partial \eta\) for the current Gauss point.
STVP 59-60 Evaluate the Gauss point coordinates, GPCOD(IDIME, KGASP), the determinant of the Jacobian matrix \(|J|\) and the Cartesian derivatives of the shape functions \(\partial N_{i} / \partial x, \partial N_{i} / \partial y\) (or \(\partial N_{i} / \partial r, \partial N_{i} / \partial z\) for axisymmetric problems).
STVP 61-63 Calculate the elemental volume for numerical integration as \(|\boldsymbol{J}| W_{\xi} W_{\eta}\) taking care to multiply by the appropriate element thickness or by \(2 \pi r\) for axisymmetric problems.
STVP 67 Evaluate the \(B\) matrix.
STVP 68-69 Store the current stresses in a local array.
STVP 70-71 For an implicit or semi-implicit timestepping scheme ( \(\Theta \neq 0\) ), call subroutine TANGVP to evaluate \(\vec{D}^{n}\) which is stored as DMATX.
STVP \(72 \quad\) Evaluate \(\boldsymbol{D B}\) (or \(\hat{\boldsymbol{D}}^{n} \boldsymbol{B}\) for implicit schemes).
STVP 76-80 Compute the upper triangle of the element stiffness matrix as
\[
\int_{\Omega} \boldsymbol{B}^{T} \hat{\boldsymbol{D}}^{n} \boldsymbol{B} d \Omega .
\]

STVP 81 End of loop for numerical integration.
STVP 85-87 Complete the lower triangle of the element stiffness matrix by symmetry.
STVP 92 Store the element stiffness matrix on disc file 1.
STVP 93 Return to process the next element.

\subsection*{8.7.2 Subroutine TANGVP}

The function of this subroutine is to evaluate \(\hat{\boldsymbol{D}}^{n}\) for use in (8.24). Matrix \(\hat{\boldsymbol{D}}^{n}\), which is defined in (8.18), is stress dependent and therefore must be calculated for each Gaussian integrating point in turn. The computational sequence followed is:
a) Evaluate \(\boldsymbol{H}^{n}\) according to (8.42)
b) Calculate \(\boldsymbol{C}^{n}\) according to (8.14)
c) Evaluate \(\hat{\boldsymbol{D}}^{n}\) according to (8.18)

Two forms of the flow function \(\Phi\) are considered as defined in (8.8) and (8.9).
Thus, for use in (8.43), we have
\[
\frac{d \Phi}{d F}=\frac{M}{F_{0}} e^{M\left(\frac{F-F_{0}}{F_{0}}\right)}
\]
or
\[
\begin{equation*}
\frac{d \Phi}{d F}=\frac{N}{F_{0}}\left(\frac{F-F_{0}}{F_{0}}\right)^{N-1} . \tag{8.46}
\end{equation*}
\]

Array DMATX which originally contains the elastic matrix \(\boldsymbol{D}\) is used to finally store \(\hat{\boldsymbol{D}}^{n}\). The matrix inversions required in (8.18) are performed by a separate subroutine, INVERT.
Subroutine TANGVP is now presented and described.

SUBROUTINE TANGVP(LPROP, STRES, PROPS,TIMEX,DTIME, TGVP 1
NSTRE, NTYPE,MMATS, NCRIT,DMATX ) TGVP

C
C*** THIS SUBROUTINE EVALUATES THE PSEUDO D MATRTX TGVP

\section*{C}

C********************************************************************)
DIMENSION STRES (4) , CMATX \((4,4), \operatorname{TMATX}(4,4), \operatorname{TRIX1}(4,4), \operatorname{TRIX} 2(4,4)\), PROPS(MMATS, 10), DEVIA(4), DMATX (4,4)

TGUP

ROOT3=1-7 9
ROOT3 \(=1.73205080757\)
TGVP 10
FDATM =PROPS (LPROP,5) TGVP 11
GAMMA=PROPS (LPROP,8) TGVP 12
DELTA=PROPS (LPROP,9) TGVP 13
NFLOW=PROPS(LPROP,10) TGVP 14
CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,STRES,THETA, TGVP 15
- KARJ2,YIELD) TGVP 16

FCURR=YIELD-FDATM THP 17
FNORM=FCURR/FDATM TGVP 18
IF (FNORM.LE.O.0) RETURN TGVP 19
IF (NFLOW.EQ.1) GO TO 10 TGVP 20
CMULT=EXP (DELTA*FNORM)-1.0 TGVP 21
GRADP=DELTA* (EXP(DELTA*FNORM) )/FDATM TGVP 22
GO TO 20 TGVP 23
```

 10 CMULT=FNORM**DELTA TGVP 24
 GRADP=DELTA*(FNORM**(DELTA-1.0))/FDATM TGVP 25
 20 FACT1=GAMMA*ROOT3*CMULT/(2.0*STEFF) TGVP 26
 FACT2=GAMMA*(0.75*GRADP/VARJ2-3.0*CMULT/(4.0*ROOT3*STEFF*VARJ2)) TGVP 27
 C
C
TGVP 29
TGVP }3
TRIX1(1,1)=0.666666667 TGVP 31
TRIX1(1,2)=-0.333333333 TGVP 32
TRIX1(1,3)=0.0. TGVP }3
TRIX1(2,2)=0.666666667 TGVP 34
TRIX1(2,3)=0.0
TGVP }3
TRIX1(3,3)=%.0 TGVP 36
IF(NTYPE.NE.3) GO TO 30 TGVP 37
TRIX1(1,4)=-0.333333333 TGVP 38
TRIX1(2,4)=-0.333333333 TGVP 39
TRIX1(3,4)=0.0 TGVP 40
TRIX1(4,4)=0.666666667 TGVP 41
30 TRIX2(1,1)=DEVIA(1)*DEVIA(1) TGVP }4
TRIX2(1,2)=DEVIA(1)*DEVIA(2) TGVP }4
TRIX2(1,3)=2.0*DEVIA(j)*DEVIA(3) TGVP }4
TRIX2(2,2)=DEVIA(2)*DEVIA(2) TGVP 45
TRIX2(2,3)=2.0*DEVIA(2)*DEVIA(3) TGVP 46
TRIX2(3,3)=4.0*DEVIA(3)*DEVIA(3) TGVP }4
- IF(NTYPE.NE.3) GO TO 40
TGVP 48
TRIX2(1,4)=DEVIA(1)*DEVIA(4) TGVP 49
TRIX2(2,4)=DEVIA(2)*DEVIA(4) TGVP 50
TRIX2(3,4)=2.0*DEVIA(3)*DEVIA(4) TGVP }5
TRIX2(4,4)=DEVIA(4)*DEVIA(4) TGVP 52
4 0 ~ D O ~ 5 0 ~ I S T R E = 1 , N S T R E ~ T G V P ~ 5 3 ~
DO 50 JSTRE=1,NSTRE TGVP 54
TRIX1(JSTRE,ISTRE)=TRIX1(ISTRE,JSTRE) TGVP 55
50 TRIX2(JSTRE,ISTRE)=TRIX2(ISTRE,JSTRE) TGVP 56
DO 60 ISTRE=1,NSTRE TGVP 57
DO 60 JSTRE=1,NSTRE TGVP 58
60 CMATX(ISTRE,JSTRE)=TIMEX*DTIME*(FACT1*TRIX1(ISTRE,JSTRE) TGVP 59
. +FACT2*TRIX2(ISTRE,JSTRE)) TGVP 60
CALL INVERT(DMATX,TMATX,NSTRE) TGVP 61
DO 70 ISTRE=1,NSTRE TGVP 62
DO 70 JSTRE=1,NSTRE TGVP 63
70 TMATX(ISTRE,JSTRE)=TMATX(ISTRE,JSTRE)+CMATX(ISTRE,JSTRE) TGVP 64
CALL INVERT(TMATX,DMATX,NSTRE) TGVP 65
RETURN TGVP 66
END TGVP 6?

```

TGVP 10 Evaluate \(\sqrt{ }(3)\).
TGVP 11 Identify the yield stress \(F\) as FDATM.
TGVP 12 Identify the fluidity parameter \(\gamma\) as GAMMA.
TGVP 13 For flow law (8.8) store the index \(M\) as DELTA, or for flow law (8.9) store the index \(N\) as DELTA.
TGVP 14 Identify the type of flow function to be used as governed by material property PROPS(LPROP,10) supplied as input:

NFLOW \(=0\) - Flow function (8.8) to be used,
NFLOW \(=1\) - Flow function (8.9) to be used.
TGVP 15-16 Call subroutine INVAR' to evaluate the effective stress components, the effective stress level and \(J_{2}{ }^{\prime}\).
TGVP 17-18 Evaluate \(F-F_{0} / F_{0}\) as FNORM.

TGVP 21-22 Evaluate \(\Phi\) and \(d \Phi / d F\) for flow function (8.8).
TGVP 24-25 Evaluate \(\Phi\) and \(d \Phi / d F\) for flow function (8.9).
TGVP 26-27 Compute \(p_{1}\) and \(p_{2}\) according to (8.43).
TGVP 31-41 Evaluate \(M_{1}\) according to (8.44) taking the full \(4 \times 4\) matrix for axisymmetric situations.
TGVP 42-52 Evaluate \(\boldsymbol{M}_{2}\) according to (8.45) taking the full \(4 \times 4\) matrix for axisymmetric situations.
TGVP 53-56 Complete the lower triangle of \(M_{1}\) and \(M_{2}\) by symmetry.
TGVP 57-60 Compute matrix \(C^{n}\) according to (8.14) and (8.42).
TGVP 61 Call subroutine INVERT to evaluate \(D^{-1}\) and store as TMATX.
TGVP 62-64 Compute \(\boldsymbol{D}^{-1}+C^{n}\).
TGVP 65 Call subroutine INVERT to evaluate \(\left(D^{-1}+C^{n}\right)^{-1}\) and store as DMATX.

\subsection*{8.7.3 Subroutine INVERT}

The function of this subroutine is to determine the inverse of any arbitrary square matrix. In particular, the subroutine accepts a matrix AMATX with dimensions NARAY \(\times\) NARAY and evaluates the inverse as BMATX. The procedure employed is the standard method of reduction in which starting from the original matrix AMATX and assuming an identity matrix for BMATX, an elimination process is followed until AMATX is reduced to an identity form. Then at this stage BMATX is the inverse of AMATX.

The subroutine is presented below without further comment.
\begin{tabular}{|c|c|}
\hline SUBROUTINE INVERT (AMATX, BMATX, NARAY) & INVT \\
\hline C********************************************************************* & INVT 2 \\
\hline C & INVT 3 \\
\hline \(C^{* * *}\) TO PROVIDE THE INVERSE OF AMATX AS BMATX & INVT 4 \\
\hline C & INVT 5 \\
\hline C************************************************************************* & INVT 6 \\
\hline DIMENSION AMATX \((4,4), \operatorname{BMATX}(4,4)\) & INVT \\
\hline DO 10 IARAY \(=1\), NARAY & INVT 8 \\
\hline DO 10 JARAY \(=1\), NARAY & INVT 9 \\
\hline BMATX (IARAY, JARAY) \(=0.0\) & INVT 10 \\
\hline 10 IF (IARAY.EQ.JARAY) BMATX (IARAY, JARAY) \(=1.0\) & INVT 11 \\
\hline DO 20 IARAY \(=1\), NARAY & INVT 12 \\
\hline DENOM=AMATX (IARAY, IARAY) & INVT 13 \\
\hline DO 30 JARAY \(=1\), NARAY & INVT 14 \\
\hline AMATX ( IARAY, JARAY) = AMATX (IARAY, JARAY)/DENOM & INVT 15 \\
\hline 30 BMATX (IARAY, JARAY) = BMATX (IARAY, JARAY)/DENOM & INVT 10 \\
\hline KARAY = IARAY +1 & INVT 17 \\
\hline IF(KARAY.GT. NARAY) GO TO 40 & INVT 18 \\
\hline DO 20 JARAY=KARAY, NARAY & INVT 19 \\
\hline CONST =AMATX (JARAY, IARAY) & INVT 20 \\
\hline DO 20 LARAY =IARAY, NARAY & INVT 21 \\
\hline AMATX (JARAY, LARAY) =AMATX (JARAY, LARAY)-AMATX ( LARAY, LARAY) & INVT 22 \\
\hline . *CONST & INVT 23 \\
\hline 20 BMATX (JARAY, LARAY) = BMATX (JARAY, LARAY)-BMATX (IARAY, LARAY) & INVT 24 \\
\hline - *CONST & INVT 25 \\
\hline 40 CONTINUE & INVT 26 \\
\hline DO 50 IARAY =2, NARAY & INVT 27 \\
\hline KARAY \(=\) NARAY - IARAY +2 & INVT 28 \\
\hline
\end{tabular}
```

 LIMIT=KARAY-1 INVT 29
 DO 50 LARAY=1,LIMIT INVT 30
 CONST'=AMATX(LARAY,KARAY) INVT 31
 DO 50 JARAY=1,KARAY INVT 32
 AMATX(LARAY,JARAY)=AMATX(LARAY,JARAY)-AMATX(KARAY,JARAY) INVT }3
 *CONST INVT 34
 50 BMATX(LARAY,JARAY)=BMATX(LARAY,JARAY)-BMATX(KARAY,JARAY) INVT 35
* *CONST INVT 36
RETURN INVT 37
END INVT 38

```

\subsection*{8.8 Subroutine STEPVP for the evaluation of end of time step quantities and equilibrium correction terms}

With reference to Fig. 8.1, this subroutine evaluates quantities, such as stresses and viscoplastic strains, at the end of the current timestep and also calculates the loading to be applied during the next timestep. The subroutine is structured to perform the following operations sequentially:
(a) All quantities at the end of timestep \(n\) are calculated as ( \()^{n+1}\).
(b) Subroutine INVAR, YIELDF and FLOWVP are called to evaluate the current viscoplastic flow rate, \(\dot{\epsilon}_{v p}{ }^{n+1}\).
(c) The maximum permissible interval length, \(\Delta t_{n+1}\), for the next timestep as governed by (8.29) and (8.32) is calculated.
(d) The residual forces, \(\psi^{n+1}\), are evaluated and the loads, \(\Delta V^{n+1}\), for the next timestep then calculated.
In the program presented we restrict ourselves to loads applied in discrete increments. An increment of load is applied and the time stepping process is followed until either steady state conditions are achieved, or a specified number of timesteps is reached. Then a further increment of load is applied and the process repeated. Thus in (8.23), \(\Delta f^{n}=\mathbf{0}\) for all stages other than the first timestep of a particular load increment.

The attainment of steady state conditions can be monitored by accumulating some measure of the viscoplastic strain rate for all Gauss points in the structure. At steady state this quantity will become zero. The degree of total viscoplastic flow at any point is best monitored by evaluating the total effective viscoplastic strain rate at all Gauss points according to
\[
\begin{equation*}
\overline{\dot{\epsilon}}_{v p}=\left(\sqrt{\frac{\nu}{3}}\right)\left\{\left(\dot{\epsilon}_{i j}\right)_{v p}\left(\dot{\epsilon}_{i j}\right)_{v p}\right\}^{1 / 2} \tag{8.47}
\end{equation*}
\]

Subroutine STEPVP is now presented and described.

DIMENSION ASDIS(MTOTV), AVECT(4), CARTD ( 2,9 ) ,COORD (MPOIN,2), SPVP ..... 12
DEVIA (4), ELCOD (2,9), ELDIS(2,9), ELOAD(MELEM, 18) SPVP ..... 13
LNODS (MELEM, 9), POSGP(4), PROPS(MMATS, 10), STRAN(4), ..... SPVP ..... 14
STRES(4), STRSG(4,MTOTG),VIVEL(5,MTOTG), SPVP ..... 15
- VISTN(4,MTOTG), WEIGP(4), DMATX \((4,4), \operatorname{TLDIS}(2,9)\), SPVP ..... 16
\(\operatorname{DERIV}(2,9), \operatorname{SHAPE}(9), \operatorname{GPCOD}(2,9), \operatorname{TDISP}(M T O T V)\), SPVP ..... 17
MATNO (MELEM) , DJACM \((2,2), \operatorname{BMATX}(4,18), \operatorname{DESTN}(4)\), SPVP ..... 18
TLOAD (MELEM, 18), SVECT (4) ..... SPVP 19
\(T W O P I=6.283185308\) SPVP ..... 20
DO 10 IELEM=1,NELEM SPVP ..... 21
DO 10 IEVAB \(=1\), NEVAB SPVP ..... 22
10 ELOAD (IELEM, IEVAB) \(=0.0\) ..... SPVP ..... 23
KGAUS=0 SPVP ..... 24
DNEXT=FTIME*DTIME SPVP ..... 25
DO 80 IELEM \(=1\), NELEM SPVP ..... 26
LPROP=MATNO(IELEM) ..... SPVP ..... 2728
C
C*** STORE COORDINATES AND INCREMENTAL DISPLACEMENTS OF THE
SPVP
C
SPVP ..... 29
ELEMENT NODAL POINTS SPVP ..... 30
C SPVP ..... 31DO 20 INODE \(=1\),NNODE
SPVP ..... 32LNODE=IABS(LNODS (IELEM, INODE))
SPVP ..... 33NPOSN=(LNODE-1) \#NDOFNDO 20 IDOFN \(=1\), NDOFNSPVP34
SPVP35
NPOSN=NPOSN +1 SPVP ..... 36
N
N
ELCOD (IDOFN, INODE) \(=\) COORD (LNODE , IDOFN \()\) SPVP ..... 37
TLDIS (IDOFN, INODE) \(=\) TDISP (NPOSN \()\) SPVP ..... 38
20 ELDIS (IDOFN,INODE) =ASDIS (NPOSN) SPVP ..... 39
THICK=PROPS (LPROP,3) ..... SPVP 40
KGASP \(=0\)SPVP 41
DO 70 IGAUS \(=1\), NGAUS ..... SPVP 42
DO 70 JGAUS \(=1\), NGAUS ..... SPVP 43
EXISP=POSGP(IGAUS) SPVP ..... 44
ETASP=POSGP(JGAUS) SPVP ..... 45
KGAUS=KGAUS+1 SPVP ..... 46
KGASP \(=K G A S P+1\) SPVP ..... 47
CALL MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS) SPVP ..... 48
DO 30 ISTR1=1,NSTR1SPVP 49
30.STRES (ISTR1)=STRSG(ISTR1,KGAUS) SPVP ..... 50
CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,STRES,THÉTA, ..... SPVP ..... SPVP 52
IF(TIMEX.GT.0.0) CALL TANGVP(LPROP,STRES,PROPS,TIMEX,DTIME, SPVP ..... 53
NSTRE, NTYPE, MMATS, NCRIT ,DMATX) ..... 54
SPVP
SPVP
CALL SFR2(DERIV,ETASP, EXISP,NNODE,SHAPE) SPVP ..... 55
CALL JACOB2 (CARTD, DERIV,DJACB, ELCOD,GPCOD, IELEM, KGASP, NNODE, SHAPE) SPVP ..... 56
DVOLU=DJACB*WEIGP (IGAUS)*WEIGP(JGAUS) - SPVP ..... 57
IF (ATYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD (1,KGASP) SPVP ..... SPVP 59IF (THICK.NE.0.0) DVOLU=DVOLU*THICK
CALL STRESS(DMATX,LPROP, NTYPE, PROPS, NDOFN,CARTD, ELDIS, SHAPE, SPVP ..... 60
GPCOD, NSTRE, VIVEL, DTIME, STRSG,KGASP,MTOTG, MMATS, SPVP ..... 61
SVECT,NNODE,NSTR1,KGAUS,TLDIS) ..... SPVP 62
DO 60 ISTR1=1,NSTR1 ..... SPVP 63
\(\cdots\) DESTN(ISTR1)=VIVEL (ISTR1,KGAUS)*DTIME SPVP ..... 64
60 VISTN(ISTR1,KGAUS) \(=\) VISTN(ISTR1,KGAUS) + DESTN (ISTR1) ..... SPVP 65
DEBAR \(=\operatorname{SQRT}\left(\right.\) ( \(2.0^{*}\left(\operatorname{DESTN}(1)^{*} \operatorname{DESTN}(1)+\operatorname{DESTN}(2) \operatorname{DESTN}(2)+\operatorname{DESTN}(4) *\right.\) ..... SPVP 66
- \(\operatorname{DESTN}(4))+\operatorname{DESTN}(3) * \operatorname{DESTN}(3)) / 3.0)\) SPVP ..... 67
DO 65 ISTR \(1=1\),NSTR1 ..... SPVP 68
65 STRES (ISTR1)=STRSG(ISTR1, KGAUS) SPVP ..... 69
VIVEL (5,KGAUS) =VIVEL (5,KGAUS) +DEBAR SPVP ..... 70
CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,STRES,THETA, SPVP ..... 71
SPVP72
CALL YIELDF (AVECT,DEVIA,LPROP,MMATS,NCRIT,NSTR1, ..... SPVP 73
                            PROPS,SINT3,STEFF,THETA,VARJ2) SPVP 74
    \(\left.\begin{array}{ll}\text { CALL FLOWVP(AVECT, PROPS,LPROP, STEFF, NSTR1,MTOTG, VIVET, } & \text { SPVP } 75 \\ \text { YIELD,KGAUS,MMATS,NCRIT,FNORM,ALLOW }\end{array}\right) \quad\) SPVP 76
    \(\left.\begin{array}{ll}\text { CALL FLOWVP(AVECT, PROPS,LPROP, STEFF, NSTR1,MTOTG, VIVET, } & \text { SPVP } 75 \\ \text { YIELD,KGAUS,MMATS,NCRIT,FNORM,ALLOW }\end{array}\right) \quad\) SPVP 76
        YIELD,KGAUS, MMATS, NCRIT,FNORM, ALLOW
    SPVP 76
```

 IF(FNORM.LT.ALLOW) GO TO 70 SPVP 77
 EPBAR=SQRT ((2.0*(AVECT (1)*AVECT (1)+AVECT(2)*AVECT(2)+AVECT(4) SPVP 78
 .*AVECT(4))+AVECT(3)*AVECT(3))/3.0) SPVP
 TSBAR=SQRT((2.0*(SVECT(1)*SVECT(1)+SVECT(2)*SVECT(2)+SVECT(4) SPVP 80
 * SVECT(4))+SVECT(3)*SVECT(3))/3.0) SPVP 81
 DELTM=TAUFT*TSBAR/EPBAR SPVP 82
 IF(DELTM.LT.DNEXT) DNEXT=DELTM SPVP 83
 70 CONTINUE
 SPVP }8
 80 CONTINUE
 SPVP }8
 DTIME=DNEXT SPVP 86
 IF(ISTEP.EQ.1) DTIME=DTINT SPVP 87
 KGAUS=0 SPVP 88
 DO 140 IELEM=1,NELEM SPVP 89
 LPROP=MATNO(IELEM) SPVP 90
 DO 90 INODE=1,NNODE SPVP 91
 LNODE=IABS(LNODS(IELEM,INODE)) SPVP 92
 NPOSN=(LNODE-1)*NDOFN SPVP 93
 DO 90 IDOFN=1,NDOFN SPVP 9% 94
 NPOSN=NPOSN+1 SPVP 95
 90 ELCOD(IDOFN, INODE)=COORD(LNODE,IDOFN) SPVP 96
 THICK=PROPS(LPROP,3) SPVP 97
 KGASP=0 SPVP 98
 DO 130 IGAUS=1,NGAUS SPVP 99
 DO 130 JGAUS=1,NGAUS SPVP 100
 EXISP=POSGP(IGAUS) SPVP 101
 ETASP=POSGP(JGAUS) SPVP 102
 KGAUS=KGAUS+1 SPVP 103
 KGASP=KGASP+1 SPVP 104
 CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) SPVP 105
 CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP,NNODE,SHAPE)SPVP 106
 DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) SPVP 107
 IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP) SPVP 108
 IF(THICK.NE.O.0) DVOLU=DVOLU*THICK SPVP 109
 CALL BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NTYPE,KGASP) SPVP 110
 CALL MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS)
 DO 100 ISTR1=1,NSTR1 SPVP 112
 100 STRES(ISTR1)=STRSG(ISTR1,KGAUS) SPVP 113
 CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,STRES,THETA, SPVP }11
 VARJ2,YIELD) SPVP 115
 IF(TIMEX.GT.O.0) CALL TANGVP(LPROP,STRES,PROPS,TIMEX,DTIME, SPVP }11
 - NSTRE,NTYPE,MMATS,NCRIT,DMATX)
 C
C******)
C**年 CALCULATE THE RESIDUAL FORCES AND INCREMENTAL PSEUDO LOADS SPVP 119
C
DO 110 ISTRE=1,NSTRE
STRES(ISTRE)=0.0
DO 110 JSTRE=1,NSTRE
SPVP 122
SPVP }11
SPVP 118
SPVP 120.
SPVP 121
SPVP }12
110 STRES(ISTRE)=STRES(ISTRE)+DMATX(ISTRE,JSTRE)*VIVEL(JSTRE,KGAUS) SPVP 124
\#DTIME (
MGASH=0
SPVP 125
SPVP }12
DO 120 INODE=1,NNODE SPVP 127
DO 120 IDOFN=1,NDOFN SPVP 128
MGASH=MGASH+1
DO 120 ISTRE=1,NSTRE
SPVP 129
SNP
EOOAD(IELEM,MGASH)=ELOAD(IELEM,MGASH)+BMATX(ISTRE,MGASH) SPVP 131
. *(STRES(ISTRE)-STRSG(ISTRE,KGAUS))*DVOLU SPVP 132
130 CONTINUE
SPVP }13
140 CONTINUE
SPVP 134
DO 150 IELEM=1,NELEM SPVP 135
DO }150\mathrm{ IEVAB=1,NEVAB
SPVP 136
150 ELOAD(IELEM,IEVAB)=ELOAD(IELEM,IEVAB)+TLOAD(IELEM,IEVAB) SPVP 137
RETURN
END
SPVP 138
SPVP 139

```

SPVP \(20 \quad\) Compute \(2 \pi\).
SPVP 21-23 Zero the array in which the pseudo loads for the next timestep will be stored.
SPVP 24 Zero the Gauss point counter over all elements.
SPVP 25 Increase the timestep length from the value used for the previous step by the factor FTIME. If this new value is less than that predicted later in this routine, this step length will be employed for the next time step.
SPVP 26 Loop over each element.
SPVP 27 Identify the element material property number.
SPVP 32-39 Store the element coordinates in array ELCOD, the incremental displacements \(\Delta d^{n}\) in ELDIS and the total displacements \(d^{n}\) in TLDIS.
SPVP 40 Identify the element thickness.
SPVP 41 Zero the local Gauss point counter.
SPVP 42-45 Enter the loops for numerical integration and evaluate the local coordinates \((\xi, \eta)\) at the sampling point.
SPVP 46-47 Increment the local and global Gauss point counters.
SPVP \(48 \quad\) Compute the elasticity matrix, \(D\).
SPVP 49-50 Store the total current stresses \(\sigma^{n}\) locally in STRES.
SPVP 51-52 Evaluate the deviatoric stresses and \(J_{2}{ }^{\prime}\).
SPVP 53-54 For the implicit or semi-implicit time stepping scheme evaluate \(\hat{D}^{n}\).
SPVP 55 Evaluate the shape functions \(N_{i}\) and the derivatives \(\partial N_{i} / \partial \xi\), \(\partial N_{i} / \partial \eta\).
SPVP 56 Evaluate the Gauss point coordinates GPCOD(IDIME, KGASP), the determinant of the Jacobian matrix \(|J|\) and the Cartesian derivatives of the shape functions.
SPVP 57-59 Calculate the elemental volume for numerical integration as \(|\boldsymbol{J}| W_{\xi} W_{\eta}\) taking care to multiply by \(2 \pi r\) for axisymmetric problems.
SPVP 60-62 Call subroutine STRESS to evaluate the stress increment \(\Delta \sigma^{n}\) according to (8.20) and also \(\sigma^{n+1}=\sigma^{n}+\Delta \sigma^{n}\).
SPVP 63-65 Evaluate the incremental viscoplastic strain and the total current viscoplastic strain, \(\epsilon_{v p}{ }^{n+1}\).
SPVP 66-67 Accumulate the absolute value of the viscoplastic strain increment. This will allow us to monitor whether or not steady state conditions are being approached.
SPVP 70 Also calculate the total current effective viscoplastic strain \(\bar{\epsilon}_{v p^{n+1}}\) according to (8.47).
SPVP 71-76 Evaluate the current viscoplastic flow rate \(\dot{\boldsymbol{\varepsilon}}_{v p^{n+1}}\) according to (8.7).
SPVP 77 If the Gauss point is elastic, avoid calculation of the new time step length.

SPVP 78-79 Calculate \(\overline{\dot{\epsilon}}_{v p}{ }^{n+1}\), the effective value of the viscoplastic strain rate.
SPVP 80-81 Calculate \(\bar{\epsilon}^{n+1}\), the total effective strain.
SPVP 82-83 Evaluate the interval length for the next time step according to (8.29) as
\[
\Delta t_{n+1}=\tau\left[\frac{\bar{\epsilon}^{n+1}}{\overline{\bar{\epsilon}}_{v p}^{n+1}}\right]_{\min }^{1 / 2},
\]
where TFACT is the parameter \(\tau\) and the minimum value of \(\Delta t_{n+1}\) is taken with respect to all Gauss points throughout the structure.
SPVP 84-85 Termination of loops over Gauss points and elements respectively.
SPVP 87 For the first time step of a load increment reset the step length equal to the initial value input.
SPVP 88 Zero the Gauss point counter over all elements.
SPVP 89 Loop over each element.
SPVP 90 Identify the element material property number.
SPVP 91-96 Store the element coordinates in array ELCOD.
SPVP 97 Identify the element thickness.
SPVP 98 Zero the local Gauss point counter.
SPVP 99-102 Enter the loops for numerical integration and evaluate the local coordinates \((\xi, \eta)\) at the sampling point.
SPVP 103-104 Increment the local and global Gauss point counters.
SPVP 105 Evaluate the shape functions and their local derivatives.
SPVP 106 Evaluate the Gauss point coordinates, determinant of the Jacobian matrix and the Cartesian derivatives of the shape functions.
SPVP 107-109 Calculate the elemental volume for numerical integration.
SPVP \(110 \quad\) Evaluate the \(B\) matrix.
SPVP \(111 \quad\) Evaluate the \(\boldsymbol{D}\) matrix.
SPVP 112-113 Store the total current stresses \(\sigma^{n+1}\) locally in STRES.
SPVP 114-115 Calculate the deviatoric stresses and \(J_{2}{ }^{\prime}\).
SPVP 116-117 For the implicit or semi-implicit time stepping scheme evaluate \(\hat{D}^{n+1}\).
SPVP 121-125 Calculate \(\hat{\boldsymbol{D}}^{n+1} \dot{\boldsymbol{\epsilon}}_{v p}{ }^{n+1} \Delta t_{n+1}\) and store locally in STRES.
SPVP 126-132 Evaluate the pseudo loads to be applied for the next timestep, \(\Delta \boldsymbol{V}^{n+1}\) according to (8.28) and (8.34) as
\[
\Delta V^{n+1}=\int_{Q} \boldsymbol{B}^{\boldsymbol{T}}\left\{\hat{\boldsymbol{D}}^{n+1} \dot{\boldsymbol{\epsilon}}_{r p}{ }^{n+1} \Delta t_{n+1} \dashv \boldsymbol{\sigma}^{n+1}\right\} d \Omega+\boldsymbol{f}^{n+1} .
\]

SPVP 133-134 Termination of loops over Gauss points and elements respectively.
SPVP 135-137 Complete the computations of SPVP 126-132 by adding the term \(\boldsymbol{f}^{n+1}\).
Subroutine INVAR which calculates the deviatoric stresses and \(J_{2}{ }^{\prime}\) is identical to that employed in Chapter 7 for elasto-plastic problems and is described in detail in Section 7.8.3. Subroutine YIELDF has been previously described in Section 7.8.4.1.

\subsection*{8.9 Subroutine FLOWVP}

The function of this subroutine is to determine the viscoplastic strain rate according to (8.7).

Subroutine FLOWVP is now presented and described.


FLVP 9 Specify ALLOW, the permitted tolerance by which the stress point is allowed to deviate from the yield surface.
FLVP 10 For the (unlikely) case of a Gauss point with zero stress (identified by \(J_{2}{ }^{\prime}=J_{3}{ }^{\prime}=0\) ) avoid all viscoplastic calculations.
FLVP 11 Identify YOUNG as the elastic modulus, \(E\).
FLVP 12 Identify POISS as the Poissons ratio, \(\nu\).
FLVP 13 Identify HARDS as \(H^{\prime}\) for linear strain hardening.
FLVP 14 Identify FRICT as the friction angle \(\phi\) for Mohr-Coulomb and Drucker-Prager materials.
FLVP 15 Identify GAMMA as the fluidity parameter, \(\gamma\).
FLVP 16 Identify DELTA as the index \(M\) in (8.8) or \(N\) in (8.9), according to the flow function specified.
FLVP 17 Identify NFLOW as the parameter specifying type of flow function:

NFLOW \(=0\) - flow function (8.8) to be used,
NFLOW \(=1\) - flow function (8.9) to be used.
FLVP 18 Compute \(\sqrt{ }(3)\).
FLVP 19-22 Identify FDATM as the effective yield stress, \(\sigma_{Y}{ }^{0}\), according to Column 4, Table 7.2.
FLVP 23 Evaluate the current yield stress as \(F_{0}=\sigma_{Y}{ }^{0}+H^{\prime} \bar{\epsilon}_{v p}\), where \(\bar{\epsilon}_{v p}\) is the current effective viscoplastic strain, according to (8.47).

FLVP 24 For elastic creep problems, solved by setting \(F_{0}=0\), reset \(F_{0}\) as a low value to avoid overflow in (8.8) and (8.9).
FLVP 25-26 Calculate \(\left(F-F_{0}\right) / F_{0}\) where \(F\) is the effective stress value evaluated as YIELD in subroutine INVAR.
FLVP 27 If \(\left(F-F_{0}\right) / F_{0}\) is less than ALLOW avoid any further viscoplastic calculations, i.e. the stress point is assumed to be sufficiently close to the yield surface.
FLVP 29 Evaluate \(\gamma\langle\Phi\rangle\) for flow function (8.8).
FLVP 31 Evaluate \(\gamma\langle\Phi\rangle\) for flow function (8.9).
FLVP 32-35 Use flow vector \(\boldsymbol{a}\) to form \(\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n+1}=\gamma\langle\Phi\rangle \boldsymbol{a}^{n+1}\).
FLVP 37-38 For elastic points only, set the viscoplastic strain rate to zero.

\subsection*{8.10 Subroutine STRESS}

The function of this subroutine is to evaluate the increment in stress occurring during a time step according to (8.20).
Subroutine STRESS is presented below:

```

 DIMENSION SVECT(4),PROPS(MMATS,10),\operatorname{ELDIS}(2,9),\operatorname{CARTD}(2,9),}\operatorname{STRS}
 DMATX(4,4),AGASH(2,2),STRES(4),STRAN(4),STRSG(4,MTOTG), STRS
 10
 SHAPE(9),VIVEL(5,MTOTG),TLDIS(2,9),\operatorname{CGASH}(2,2), STRS 11
 GPCOD(2,9) STRS
 SIRS 12
 *POISS=PROPS(LPROP,2) STRS
 DO 10 IDOFN =1,NDOFN STRS
 STRS }1
 DO 10 JDOFN=1,NDOFN STRS 15
 BGASH=0.0 STRS
 16
 DGASH=0.0 STRS 17
 DO 20 INODE=1,NNODE STRS
 18
 DGASH=DGASH+CARTD(JDOFN,INODE)*TLDIS(IDOFN,INODE) STRS 19
 20 BGASH=BGASH+CARTD (JDOFN,INODE)*ELDIS(IDOFN,INODE) STRS 20
 CGASH(IDOFN, JDOFN)=BGASH STRS
 10 AGASH (IDOFN,JDOFN)=DGASH
 C
C*** CALCULATE THE TOTAL AND INCREMENTAL STRAINS STRS 24
C STRS 25
SVECT(1)=AGASH(1,1) STRS 26
STRS 23
SVECT(2)=AGASH}(2,2) STRS 27
SVECT(3)=AGASH(1,2)+AGASH(2,1) STRS 28
IF(NTYPE.NE.3) GO TO 70 STRS 29
SVECT(4)=0.0 STRS 30
DO 60 INODE=1,NNODE STRS 31
SVECT(4)=SVECT(4)+TLDIS(1,INODE)*SHAPE(INODE)/GPCOD(1,KGASP) STRS }3
6 0 CONTINUE
STRS 33

```

```

 STRAN (1)=CGASH(1,1) STRS 35
 STRAN(2)=CGASH}(2,2) STRS 36
    ```

```

 IF(NTYPE.NE.3) GO TO 90 STRS 38
 STRAN(4)=0.0 STRS 39
 DO 80 INODE =1,NNODE STRS 40
 STRAN(4)=STRAN(4)+ELDIS(1,INODE)*SHAPE(INODE)/GPCOD(1,KGASP) STRS 41
 80 CONTINUE STRS
    ```

```

 DO 50 ISTRE=1,NSTRE STRS 44
 50 STRAN(ISTRE)=STRAN(ISTRE)-VIVEL(ISTRE,KGAUS)*DTIME STRS 45
 C
STRS }4
C*** AND THE INCREMENTAL STRESSES STRS 47
C
DO 30 ISTRE=1,NSTRE STRS 49
STRS 48
STRES(ISTRE)=0.0 STRS
STRS }5
DO 30 JSTRE=1,NSTRE STRS }5
30 STRES(ISTRE)=STRES(ISTRE)+DMATX(ISTRE,JSTRE)*STRAN(JSTRE) STRS 52
IF(NTYPE.EQ.1) STRES(4)=0.0 STRS }5
IF(NTYPE.EQ.2) STRES(4)=POISS*(STRES(1)+STRES(2)) STRS }5
DO 40 ISTR1=1,NSTR1
STRS 55
40 STRSG(ISTR1,KGAUS)=STRSG(ISTR1,KGAUS)+STRES(ISTR1) STRS 56
RETURN
STRS }5
END STRS 58

```

STRS 13 Identify POISS as the material Poisson's ratio.
STRS 14-22 Evaluate the Cartesian derivatives of both the displacement increment and the total displacement.
STRS 26-33 Evaluate the total and incremental strains \(\boldsymbol{B d} \boldsymbol{d}^{n}\) and \(\boldsymbol{B} \Delta \boldsymbol{d}^{n}\).
STRS 34-45 Calculate the elastic portion of the strains, \(\boldsymbol{B} \Delta \boldsymbol{d}^{n}-\dot{\boldsymbol{\epsilon}}_{v p}{ }^{n} \Delta t_{n}\).
STRS 49-52 Calculate the stresses according to (8.20).
STRS 53-54 For plane stress and plane strain problems evaluate the out-ofplane stress component.
STRS 55-56 Finally calculate the total current stress as \(\sigma^{n+1}=\sigma^{n}+\Delta \sigma^{n}\).

\subsection*{8.11 Subroutine ZERO}

This subroutine performs the same task as the subroutine described in Section 7.8 .2 for elasto-plastic problems. It merely initializes to zero some arrays required for the accumulation of data. Subroutine ZERO is presented below without further comment.
\begin{tabular}{|c|c|c|}
\hline SUBROUTINE ZERO(ELOAD,MELEM,MEVAB,MPOIN,MTOTG,MTOTV, NDOFN, NELEM, & 2R02 & 1 \\
\hline - NEVAB,NGAUS,NSTR1,NTOTG, NTOTV, NVFIX, STRSG, & ZRO2 & 2 \\
\hline TDISP, VIVEL, VISTN, TTIME, TLOAD, TREAC, & 2RO2 & 3 \\
\hline . TFACT, MVFIX) & 2R02 & 4 \\
\hline  & 2R02 & 5 \\
\hline C & 2R02 & 6 \\
\hline C**** THIS SUBROUTINE INITIALISES VARIOUS ARRAYS TO ZERO & 2R02 & 7 \\
\hline C & ZR02 & 8 \\
\hline  & ZRO2 & 9 \\
\hline DIMENSION ELOAD (MELEM, MEVAB) , STRSG(4,MTOTG) ,TDISP(MTOTV), & ZR02 & 10 \\
\hline TLOAD (MELEM, MEVAB), TREAC(MVFIX , 2) , VIVEL (5,MTOTG), & ZRO2 & 11 \\
\hline VISTN(4,MTOTG) & ZR02 & 12 \\
\hline TTIME \(=0.0\) & 2R02 & 13 \\
\hline TFACT \(=0.0\) & 2R02 & 14 \\
\hline DO 30 IELEM \(=1\), NELEM & 2RO2 & 15 \\
\hline DO 30 IEVAB \(=1\), NEVAB & 2R02 & 16 \\
\hline ELOAD (IELEM, IEVAB) \(=0.0\) & ZRO2 & 17 \\
\hline \(30 \mathrm{TLOAD}(\) IELEM, IEVAB\()=0.0\) & ZR02 & 18 \\
\hline DO 40 ITOTV \(=1\), NTOTV & 2RO2 & 19 \\
\hline \(40 \mathrm{TDISP}(\mathrm{ITOTV})=0.0\) & 2RO2 & 20 \\
\hline DO 50 IVFIX=1,NVFIX & ZRO2 & 21 \\
\hline DO 50 IDOFN = 1, NDOFN & ZRO2 & 22 \\
\hline 50 TREAC (IVFIX, IDOFN) \(=0.0\) & 2RO2 & 23 \\
\hline DO 60 ITOTG \(=1\), NTOTG & 2R02 & 24 \\
\hline VIVEL \((5\), ITOTG \()=0.0\) & 2RO2 & 25 \\
\hline DO 60 ISTR1=1,NSTR1 & 2R02 & 26 \\
\hline VISTN (ISTR 1 , ITOTG) \(=0.0\) & 2R02 & 27 \\
\hline VIVEL (ISTR1, ITOTG) \(=0.0\) & ZRO2 & 28 \\
\hline 60 STRSG(ISTR1, ITOTG) \(=0.0\) & ZR02 & 29 \\
\hline RETURN & ZRO2 & 30 \\
\hline END & 2R02 & 31 \\
\hline
\end{tabular}

\subsection*{8.12 Subroutine STEADY for monitoring steady state convergence}

The role of this subroutine is to check whether or not steady state conditions have been achieved at the end of each time step. Convergence to a
steady state condition is monitored according to the increment in viscoplastic strain which occurs during the time step. For checking purposes the effective viscoplastic strain rate, \(\bar{\epsilon}_{v p}{ }^{n+1}\), defined by (8.47) is employed and steady state conditions are deemed to have been achieved at the end of time step \(n\), if
\[
\begin{equation*}
\left(\Delta t_{n+1} \sum_{\substack{\text { All Gauss } \\ \text { points }}} \overline{\dot{\epsilon}}_{v p^{n+1}} / \Delta t_{1} \sum_{\substack{\text { An Gauss } \\ \text { points }}}{\overline{\bar{\epsilon}} v p^{1}}^{1}\right) \times 100 \leqslant \text { TOLER, } \tag{8.48}
\end{equation*}
\]
where TOLER is a convergence tolerance value prescribed as input in Subroutine INCREM, described in Section 6.5.3. From (8.48) it is seen that a global measure of convergence is taken in the subroutine presented in this section. A local steady state convergence condition could alternatively be enforced by requiring (8.48) to be satisfied for each Gauss point in the structure which is yielding viscoplastically.

The structure of this subroutine is identical to that of subroutine CONVP, presented in Section 4.9, for one-dimensional structures.
Subroutine STEADY is now presented.


\subsection*{8.13 The main, master or controlling segment}

This segment controls the timestepping process and accesses all the other subroutines appropriately. In particular it controls the incremention of the applied loads and the output of results at selected time intervals. The frequency of output is controlled by means of two parameters NOUTP(1) and NOUTP(2) which are specified as input data for every load increment in subroutine INCREM described in Section 6.5.3. The precise specification of these parameters is however somewhat different for the present application. In this case NOUTP(1) controls the frequency of output of the displacements and NOUTP(2) the frequency of output of the stresses and viscoplastic strains. In particular, if NOUTP(1) is specified as 7 for a particular load increment, then the displacements will be output every 7th timestep within that increment. This is accomplished by evaluating for every timestep, ISTEP, the quantity

\section*{(ISTEP/NOUTP(1))*NOUTP(1)}
and then checking this value against ISTEP. The two will be equal only when ISTEP is an exact multiple of NOUTP(1). A similar check for stress output is undertaken for NOUTP(2).

The parameter MSTEP specifies the maximum number of timesteps to be considered for the load increment. If steady state conditions are achieved before MSTEP timesteps, the next load increment, is applied immediately condition (8.48) is satisfied.

The role of the load incrementing factor, FACTO, is identical to that described in Section 6.5.3.

In this segment input data is also received which controls the timestepping algorithm to be employed. The following information is input:

TIMEX Parameter, \(\Theta\), which controls the type of timestepping algorithm to be employed:
TIMEX \(=0.0\)-Explicit scheme,
\(=0.5\)-Semi-implicit or trapezoidal scheme,
\(=1.0-\) Fully implicit.
TAUFT The parameter \(\tau\) discussed in Section 8.3.
DTINT The initial time step length. This specifies the step length for the first time step of each load increment. The time step length needs to be readjusted at the beginning of a new load increment since the step length computed as steady state conditions are approached in the previous time step will in general be too large.
FTIME The factor by which it is attempted to increase the step length from the value used for the previous time step. This parameter is generally input as 1.5 as mentioned in Section 8.3.
The following channel numbers are employed by the program: 5 (card reader), 6 (line printer), \(1,2,3,4,8\) (scratch files). This main segment is now presented and descriptive notes provided where necessary.
\begin{tabular}{|c|c|c|c|}
\hline  & \begin{tabular}{l}
MASTER VISCO \\

\end{tabular} & VISC
VISC & 1 \\
\hline C & PROGRAM FOR THE ELASTO-VISCOPLASTIC ANALYSIS OF PLANE STRESS, & VISC & 3 \\
\hline C & PLANE STRAIN AND AXISYMMETRIC SOLIDS & VISC & 4 \\
\hline C*** &  & VISC & 5 \\
\hline & DIMENSION ASDIS \((120), \operatorname{COORD}(60,2), \operatorname{ELOAD}(20,18), \operatorname{ESTIF}(18,18)\), & VISC & 6 \\
\hline & - EQRHS (10), EQUAT (40, 10), FIXED (120), & VISC & ? \\
\hline & GLOAD (40), GSTIF (986), & VISC & 8 \\
\hline & IFFIX ( 120), LNODS ( 20,9 , , LOCEL (18), MATNO (20), & VISC & 9 \\
\hline & NACVA ( 40), \(\operatorname{NAMEV}(10), \mathrm{NDEST}(18), \mathrm{NDFRO}(20), \mathrm{NOFIX}(25)\), & VISC & 10 \\
\hline & NOUTP(2), NPIVO(10), & VISC & 11 \\
\hline & \(\operatorname{POSGP}(4), \operatorname{PRESC}(25,2), \operatorname{PROPS}(5,10), \operatorname{RLOAD}(20,18)\), & VISC & 12 \\
\hline & STFOR ( 120 ), TREAC ( 25,2\(), \operatorname{VECRV}(40), \operatorname{WEIGP}(4)\), & VISC & 13 \\
\hline & \(\operatorname{STRSG}(4,180), \operatorname{TDISP}(120)\), & VISC & 14 \\
\hline & \(\operatorname{TLOAD}(20,18), \operatorname{VIVEL}(5,180), \operatorname{VISTN}(4,180)\) & VISC & 15 \\
\hline C & & VISC & 16 \\
\hline C*** \({ }^{\text {* }}\) & PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONING & VISC & 17 \\
\hline C & & VISC & 18 \\
\hline & CALL DIMEN (MBUFA, MELEM, MEVAB, MFRON, MMATS, MPOIN, MSTIF ,MTOTG, MTOTV, & VISC & 19 \\
\hline & MVFIX,NDOFN,NPROP,NSTRE) & VISC & 20 \\
\hline C & & VISC & 21 \\
\hline C*** & CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA & VISC & 22 \\
\hline \(C\) & & VISC & 23 \\
\hline & CALL INPUT (COORD, IFFIX,LNODS, MATNO, MELEM, MEVAB, MFRON, MMATS, & VISC & 24 \\
\hline & MPOIN, MTOTV, MVFIX, NALGO, & VISC & 25 \\
\hline & NCRIT, NDFRO, NDOFN, NELEM, NEVAB, NGAUS, NGAU2, & VISC & 26 \\
\hline & NINCS, NMATS, NNODE, NOFIX, NPOIN, NPROP, NSTRE, & VISC & 27 \\
\hline & NSTR 1,NTOTG, NTOTV, & VISC & 28 \\
\hline & NTYPE, NVFIX, POSGP, PRESC, PROPS, WEIGP) & VISC & 29 \\
\hline C & & VISC & 30 \\
\hline C*** & CALL THE SUBROUTINE WHICH COMPUTES THE CONSISTENT LOAD VECTORS & VISC & 31 \\
\hline C & FOR EACH ELEMENT AFTER READING THE RELEVANT INPUT DATA & VISC & 32 \\
\hline C & & VISC & 33 \\
\hline & CALL LOADPS(COORD, LNODS, MATNO, MELEM, MMATS, MPOIN, NELEM, & VISC & 34 \\
\hline & NEVAB, NGAUS, NNODE, NPOIN, NSTRE, NTYPE, POSGP, & VISC & 35 \\
\hline & PROPS, RLOAD, WEIGP, NDOFN) & VISC & 36 \\
\hline C & & VISC & 37 \\
\hline C*** & INITIALISE CERTAIN ARRAYS & VISC & 38 \\
\hline C & & VISC & 39 \\
\hline & CALL ZERO(ELOAD,MELEM,MEVAB,MPOIN,MTOTG,MTOTV,NDOFN,NELEM, & VISC & 40 \\
\hline & NEVAB, NGAUS, NSTR1, NTOTG, NTOTV,NVFIX,STRSG, TDISP, & VISC & 41 \\
\hline & - VIVEL,VISTN,TTIME,TLOAD,TREAC,TFACT,MVFIX) & VISC & 42 \\
\hline & READ (5,900) TIMEX,TAUFT,DTINT,FTIME & VISC & 43 \\
\hline & WRITE (6,910) TIMEX, TAUFT, DTINT,FTIME & VISC & 44 \\
\hline & FORMAT (4F10.3) & VISC & 45 \\
\hline & FORMAT ( \(1 \mathrm{HO}, 5 \mathrm{X}, 25 \mathrm{HTIME}\) STEPPING PARAMETER \(=\), F10.3,5X, & VISC & 46 \\
\hline & - 28HTIME STEP STABILITY FACTOR =,F10.5,// & VISC & 47 \\
\hline & . 5X,26HINITIAL TIME STEP LENGTH \(=, \mathrm{F} 10.5,5 \mathrm{X}, 32 \mathrm{HTIME}\) STEP INCREMENT & VISC & 48 \\
\hline & . PARAMETER \(=, \mathrm{F} 10.5\) ) & VISC & 49 \\
\hline C & & VISC & 50 \\
\hline C*** & LOOP OVER EACH INCREMENT & VISC & 51 \\
\hline C & & VISC & 52 \\
\hline & DO 100 IINCS \(=1\), NINCS & VISC & 53 \\
\hline & & VISC & 54 \\
\hline \({ }^{\text {C*** }}\) & READ DATA FOR CURRENT INCREMENT & VISC & 55 \\
\hline C & & VISC & 56 \\
\hline & CALL INCREM(ELOAD,FIXED, IINCS, MELEM, MEVAB,MITER, MTOTV, & VISC & 57 \\
\hline & - MVFIX, NDOFN, NELEM, NEVAB, NOUTP, NOFIX,NTOTV, & VISC & 58 \\
\hline & NVFIX , PRESC, RLOAD, TFACT, TLOAD, TOLER) & VISC & 59 \\
\hline C & & VISC & 60 \\
\hline C \({ }^{\text {\#3* }}\) & LOOP OVER EACH ITERATION & VISC & 61 \\
\hline C & & VISC & 62 \\
\hline & DTIME \(=0.0\) & VISC & 63 \\
\hline & DO 50 ISTEP \(=1\), MITER & VISC & 64 \\
\hline
\end{tabular}


VISC 64 For each load increment, initialise the time step length.
VISC 65 Enter the time-stepping loop for the current load increment.
VISC 66 Compute the total time elapsed.
VISC 70 For the first timestep of the first load increment prepare for a full equation solution rather than a resolution for an explicit formulation. For the implicit or semi-implicit algorithm a complete equation solution is required each and every timestep.
VISC 73-85 Formulate the element stiffnesses and solve the resulting equations.
VISC 89-94 Calculate quantities at the end of the timestep and evaluate the loads for the next timestep.
VISC 98-99 Check for convergence of the time stepping process to steady state conditions.
VISC 103-105 Check to see if either displacement or stress output is required for this timestep.
VISC 106-107 Set KOUTP \(=2\) for displacement output only and KOUTP \(=3\) for both stress and displacement output.
VISC 108-110 Output the results.
VISC 115 If steady state conditions have been reached, output the converged results, increment the loads and proceed with the time-stepping process.

\subsection*{8.14 General comparison of implicit and explicit time integration schemes}

Before discussing the general case of a two-dimensional continuum it is instructive to consider the behaviour of a single degree of freedom system. In particular we will consider the response of a simple linear Maxwell model, as illustrated in Fig. 8.2. This situation is equivalent to the uniaxial viscoplastic model when the initial yield or threshold value, \(F_{0}\), is reduced to zero. Figure 8.2 shows the stress relaxation histories for different time integration schemes when the model is subjected to a constant total strain. It is observed that all results obtained using the fully implicit scheme \((\Theta=1)\) lie to one side of the theoretical solution while the semi-implicit method ( \(\Theta=\frac{1}{2}\) ) gives results which lie to either side of the true curve. It is also evident that the explicit method \((\Theta=0)\) gives an oscillatory solution with the rate of convergence decreasing as the time step stability limit is approached. However, in each case the steady state solution is eventually correctly predicted. For the solution of elasto-plastic problems by use of the viscoplastic algorithm it is only the steady state solution that is of importance. Similarly in problems of creep, the transient stage may not be of interest in itself, as long as the steady state values are correctly arrived at.

For problems which are geometrically linear the solution process simplifies considerably. The strain matrix \(\boldsymbol{B}^{n}\) is then constant throughout the analysis and from (8.19) it is seen to be equal to \(\boldsymbol{B}_{0}\). For solution by the explicit time

\(-\square-\Theta=0\) Explicit
\(-\triangle-\Theta=\frac{1}{2}\) Semi-implicit (C.N.)
\(-O-\Theta=1\) Fully-implicit
\(\dot{\sigma}=E \gamma \sigma=E \dot{\epsilon} \quad \sigma(0)=1\)

\(d \sigma_{n}=\left(\Theta \dot{\sigma}_{n}+(1-\Theta) \dot{o}_{n+1}\right) d t\)
\(d t_{s}=2 / E_{\gamma}\) for \(\Theta=0\)

Stress relaxation-single dof systemcurves showing time wise modes of relaxation for different schemes

Fig. 8.2 Characteristics of explicit and implicit time stepping algorithms when applied to a linear Maxwell model.
marching scheme, \(\Theta=0\) and from (8.14) we have that \(C^{n}=0\). Consequently, from (8.18), \(\hat{D}^{n}=\boldsymbol{D}\) and (8.24) implies that the tangential stiffness matrix becomes the linear elastic stiffness matrix and is constant throughout the solution process. Thus for the equation solution demanded by (8.23), a complete reduction and back-substitution is only required for the first time step and subsequent time intervals only require equation resolution.

Experience to date \({ }^{(2)}\) indicates that solution by the implicit method increases the computation time by approximately a factor of 4-5 in comparison with the explicit approach; for the same solution tolerance factor (or time step length). This cost differential must be balanced against the greater time step lengths permitted by the unconditionally stable implicit method. However, increasing the time step length beyond prescribed limits results in a deterioration in solution accuracy. Where a variable stiffness approach is employed for some other reasons, such as to include geometric nonlinearity effects or time dependent material properties, solution by an implicit scheme entails little or no additional computing effort and such an approach is particularly
advantageous. Modification of the program presented to account for large deformation effects is set as an exercise to the reader in Section 8.17.

Implicit and explicit time integration schemes are considered further in Chapters 10 and 11 for the solution of dynamic transient problems.

\subsection*{8.15 The overlay method for improved material response}

The viscoplastic model described in the previous sections gives a material response whose general form is in keeping with experimental observations. However the precise strain/time histories (or creep curves) of many real materials cannot be accurately represented by a simple viscoplastic model. This is particularly so for materials whose strain response curves are nonlinear with regard to the applied stress level, so that a doubling of the applied stress does not result in twice the strain at any given time.

A more elaborate material response can be modelled by use of the so-called overlay or mechanical sublayer method \({ }^{(10-13)}\) in which the solid to be analysed is assumed to be composed of several layers or overlays each of which undergoes the same deformation. The total stress field is obtained by summing the different contributions of each overlay. By introducing a suitable number of overlays and assigning different material characteristics to each, a variety of sophisticated composite actions can be reproduced. In this section it is demonstrated how time-dependent overlay models can be used to simulate some experimentally observed material behaviours.


Fig. 8.3 Strain/time relationship at constant stress for many typical materials.

The strain-time relationship at constant stress which most materials exhibit to some degree or other is illustrated in Fig. 8.3. The instantaneous
elastic strain, \(O A\), is followed by a primary creep \(A B\) during which if unloading takes place an instantaneous elastic recovery results, followed by delayed elastic recovery, \(C D\). If the load is not removed at time \(T_{1}\) secondary creep begins which is accompanied by permanent deformation. Unloading at any time on the curve \(B E\) leaves a permanent set in the material. On continued loading past time \(T_{2}\) tertiary creep begins, leading almost inevitably to failure.


Fig. 8.4 Material models for simulation of the material behaviour of Fig. 8.3. (a) Standard visco-elastic model. (b) Four parameter model.

This behaviour can be numerically simulated by use of the rheological models shown in Fig. 8.4. The standard linear solid illustrated in Fig. 8.4(a) provides a visco-elastic response and represents the behaviour of the material up to time \(T_{1}\). After this time the behaviour is closely approximated by the five parameter model shown in Fig. 8.4(b) where a friction slider component in parallel with a viscous dashpot has been added. This component becomes active only if the applied stress exceeds some limiting value, \(Y\) and the friction slider provides the permanent deformation or viscoplastic effect. For use in the overlay method it is desirable to consider 'Maxwell equivalents' of these models. Figure 8.5(a) shows the equivalent model to that of Fig. 8.4(a) both being governed by the differential equation
\[
\begin{equation*}
p_{1} D \sigma+p_{0} \sigma=q_{1} D \epsilon+q_{0} \epsilon, \tag{8.49}
\end{equation*}
\]

Where \(p_{i}\) and \(q_{i}\) are constants and \(D\) denotes the differential operator with respect to time. Similarly Fig. 8.5(b) illustrates the Maxwell equivalent of Fig. 8.4(b), the governing equation for this case being
\[
\begin{equation*}
p_{2} D^{2} \sigma+p_{1} D \sigma+p_{0} \sigma=q_{2} D^{2} \epsilon+q_{1} D \epsilon+q_{0} \epsilon . \tag{8.50}
\end{equation*}
\]


Fig. 8.5 Equivalent representation of the models of Fig. 8.4 using Maxwell type components.

The constants for the various components of the models in Figs. 8.4 and 8.5 are different but unique relationships exist. The configurations of Fig. 8.5 immediately suggest the use of overlay models. By employing at least one viscoplastic overlay and one Maxwell overlay (i.e. setting the threshold uniaxial yield value, \(F_{0}=0\) ) the complete behaviour in the visco-elastic range as well as irrecoverable creep deformation can be generated. The model behaves as a 'standard linear solid' until failure of the friction slider in the visco-plastic overlay after which it behaves as a four parameter solid. In fact a fifth parameter, the yield limit of the slider must also be defined. These parameters are material characteristics and their values must be experimentally determined.


Fig. 8.6 The overlay model in two-dimensional situations.

\subsection*{8.15.1 Basic expressions of the overlay concept}

The overlay model in a two-dimensional situation is illustrated schematically in Fig. 8.6. Each overlay can have a different thickness and material behaviour. With the nodes in each overlay coincidental, the same strain pattern is produced in each component. This results in a different stress field \(\sigma_{j}\) in each layer which contribute to the total stress field \(\sigma\) according to the overlay thickness, \(t_{j}\), so that
\[
\begin{equation*}
\sigma=\sum_{j=1}^{k} \sigma_{j} t_{j} \tag{8.51}
\end{equation*}
\]
in which \(k\) is the total number of overlays in the model, and
\[
\begin{equation*}
\sum_{j=1}^{k} t_{j}=1 \tag{8.52}
\end{equation*}
\]

The equilibrium equations (8.21) which must be satisfied at each stage become
\[
\begin{equation*}
\int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T} \sum_{j-1}^{k} \sigma_{j}^{n} t_{j} d \Omega+\boldsymbol{f}^{n}=\mathbf{0} . \tag{8.53}
\end{equation*}
\]

Also the element stiffnesses (8.24) are the sum of each overlay contribution so that
\[
\begin{equation*}
\boldsymbol{K}_{T^{n}}=\sum_{j=1}^{k} \int_{\Omega}\left[\boldsymbol{B}^{n}\right]^{T}\left(\boldsymbol{D}^{n}\right)_{j} \boldsymbol{B}^{n} d \Omega, \tag{8.54}
\end{equation*}
\]
where ( \(\left.\hat{\boldsymbol{D}}^{n}\right)_{j}\) is the value of \(\hat{\boldsymbol{D}}^{n}\) for each overlay in turn. Matrix \(\left(\hat{\boldsymbol{D}}^{n}\right)_{j}\) will differ from overlay to overlay according to the material properties of each. The solution process is then identical to that described in the preceding sections with stress and strain terms being calculated for each overlay separately. It should be noted that the viscoplastic strain in each overlay will generally be different due to differences in threshold yield values and flow rates but the total strains must be the same.

Although the name overlay model arises from the physical interpretation of the two-dimensional situation the technique is essentially a mathematical convenience and can be readily extended to three-dimensional problems. In such cases the thickness can no longer be interpreted as a physical quantity and becomes merely a weighting parameter for combining the contribution of individual overlays. Indeed this is also the case in two-dimensional problems where negative thicknesses can be employed to simulate strainsoftening conditions. \({ }^{(12)}\)

\subsection*{8.15.2 Overlay models for some standard material behaviours}

In this section we reproduce some standard material responses by combining different viscoplastic components through the overlay concept. \({ }^{(13)}\)


Fig. 8.7 Use of the overlay concept for the simulation of some standard material behaviours.
(i) Visco-elastic response

A two overlay model with \(F_{0}\) set to zero for one overlay and infinitely large in the other reproduces a standard linear visco-elastic solid (Fig. 8.7). Any higher order time dependent constitutive relation can be simulated by the introduction of more overlays of the Maxwell type (i.e. \(F_{0}=0\) ). Quite generally a stress-strain relationship of the form
\[
\begin{equation*}
\sum_{k=0}^{n} a_{k} D^{k} \sigma=\sum_{k=0}^{n} a_{k} D^{k} \epsilon \tag{8.55}
\end{equation*}
\]
in which \(a_{k}\) and \(b_{k}\) are real valued functions of the spatial coordinates and \(D\) denotes the differential time operator, can be modelled by the
use of \(n\) Maxwell type overlays. The overlay approach reduces the \(n^{\text {th }}\) order differential equation (8.55) to \(n\) first order equations.
(ii) Four parameter viscous model

Two overlays with \(F_{0}\) set to zero in each case provides a four parameter viscous model of the first kind (Fig. 8.7). Three overlays with \(F_{0}\) set to (a) zero for one overlay (b) infinitely large for the second unit, (c) zero for the third overlay together with a small prescribed elastic modulus, reproduces a four parameter model of the second kind.
(iii) Three element viscous model

A two overlay model with \(F_{0}\) set to zero in both and the elastic modulus assigned to be infinitely large in one reproduces the three element viscous model.
(iv) Visco-elastic-plastic four parameter model

This two overlay model is capable of reproducing the behaviour of most real engineering materials and is achieved by setting the threshold yield value of one overlay to zero. Before yielding of the friction slider, the material behaviour is visco-elastic followed by a viscoplastic response after initial yielding. By choosing the viscosity coefficients of the two dashpots appropriately the rate of straining after first yield can be controlled.

In order to illustrate how the combination of two simple material responses by the overlay method can simulate a more complex material behaviour the load cycling problem indicated in Fig. 8.8 is presented. One elastic (yield value set very large) and one viscoplastic overlay are considered. A static analysis of the load cycling of this model was performed by allowing steady state conditions to be achieved after application of each increment of load. The results are shown in Fig. 8.8 where the material properties employed are also included. A Bauschinger effect is immediately apparent on reversal of loading with yielding in compression commencing at a reduced value compared with initial yield in tension. Thus although each overlay has been assumed to be non-strain hardening with equal yield stress in tension and compression, the composite model exhibits a kinematic hardening behaviour.

As a further demonstration of the overlay approach, Fig. 8.9 shows how two overlays can be used to simulate the response of a real engineering material. The solid lines represent experimentally obtained creep curves for a rock salt and it is evident that the material behaviour is highly nonlinear with regard to the strain obtained at any time for a given applied load. The broken lines are the numerical material response obtained by using two overlays with material properties as shown in Fig. 8.9. The agreement obtained is acceptable for engineering purposes but a closer correspondence could be readily achieved by the use of additional overlays.

The main advantage of the overlay technique is that it allows the description of complex material behaviours by the use of components which individually exhibit a simple response.

All the program changes required to implement the overlay method in the viscoplastic program described earlier in this chapter are of a minor nature. Almost all the changes are associated with the summation process over each overlay demanded by (8.51), (8.53) and (8.54). Several array sizes must also be extended to allow separate storage of quantities for each overlay. Modification of the program is set as an exercise for the reader in Section 8.17.

\subsection*{8.16 Numerical examples}

The first problem considered is the elasto-viscoplastic deformation of a thick tube under the action of internal pressure loading with the exterior surface remaining free. The mesh of Fig. 7.12(a) is employed in analysis with


Fig. 8.8 Load cycling response of an overlay composite illustrating the Bauschinger effect.

Fig. 8.9 Numerical simulation of experimental creep curves by use of the overlay method.
plane strain conditions being assumed in the axial direction. The material properties employed are identical to the case of Fig. 7.12(a) and the fluidity parameter is chosen as \(\gamma=0.001\). Again a Von Mises yield surface is adopted in solution and the flow function \(\Phi(F)=F\) is assumed. An explicit time stepping algorithm \((\Theta=0)\) is initially employed and the radial displacement of the inner surface with time is shown in Fig. 8.10 for two increments of applied pressure. Steady state conditions are allowed to develop for an applied pressure of \(12 \mathrm{dN} / \mathrm{mm}^{2}\) before a further pressure increment of \(2 \mathrm{dN} / \mathrm{mm}^{2}\) is added. For each increment the time stepping parameter values \(\tau=0.01\), \(k=1.5\) were employed, the initial time-step length was chosen as 0.1 days and the steady state convergence tolerance parameter taken as \(0.1 \%\). Also shown in Fig. 8.10 are the results for the situation when an internal pressure of \(P=14 \mathrm{dN} / \mathrm{mm}^{2}\) is instantaneously applied. The steady state displacement is seen to be in good agreement with that obtained from the two-load


Fig. 8.10 Displacement of the inner surface with time of an elasto-viscoplastic cylinder subjected to an incrementally applied internal pressure (Mesh of Fig. 7.12(a)).
increment solution. The problem was reanalysed for an applied pressure, \(P=14 \mathrm{dN} / \mathrm{mm}^{2}\) using larger time-step lengths as governed by \(\tau=0.05\). The loss of accuracy is immediately apparent, with the larger time steps overestimating the viscoplastic strain rates.

The problem was then resolved using in turn, the implicit trapezoidal time stepping scheme ( \(\Theta=\frac{1}{2}\) ) and the full implicit or backward difference scheme \((\Theta=1)\). Good agreement between the three time integration schemes


Fig. 8.11 Comparison of various time integration schemes for the internally pressurised cylinder of Fig. 8.10.


Fig. 8.12 Steady state tangential stress distribution in an elasto-viscoplastic internally pressurised cylinder.
is evident in Fig. 8.11 with the steady state displacement in each case comparing well with the corresponding elasto-plastic value of Fig. 7.12(b).

The steady state hoop stress distributions are shown in Fig. 8.12 for the time integration schemes \(\Theta=0\) and \(\Theta=1\), and the results are compared with the elasto-plastic solution of Fig. 7.13. Excel!ent agreement is obtained
as required; since theoretically the steady state viscoplastic solution coincides with the corresponding elasto-plastic solution.

The problem of the stresses induced in the vicinity of an excavated underground storage cavity is illustrated in Fig. 8.13. Applications in this area include oil and gas reservoirs, nuclear waste disposal and geothermal energy problems. The cavity is assumed to be axisymmetric and Fig. 8.13

gravity and pressure loading
instantaneously applied at time, \(\mathrm{t}=0\)
\(\mathrm{E}=6.9 \times 10^{5} \mathrm{KN} / \mathrm{m}^{2}\)
\(\nu=0.4\)
\(\rho=2550 \mathrm{Kg} / \mathrm{m}^{3}\)
\(\mathrm{F}_{0}=10000 \mathrm{KN} / \mathrm{m}^{2}\)
\(\gamma=0.075 /\) year
\(\boldsymbol{\Phi}(\mathrm{F})=\mathrm{F}\)
\(\mathrm{H}^{\prime}=0.0\)
Von mises yield criterion explicit time integration, \(\tau=0.05\) steady state conditions achieved in 0.7 years.

Fig. 8.13 Elasto-viscoplastic analysis of a subterranean cavity, showing zones of plasticity and steady state radial displacement at mid-height.
shows the finite element idealisation of a cylindrical portion of the surrounding rock mass. Before excavation of the cavity the tectonic stress field in the rock is assumed to be hydrostatic. This condition is simulated by a gravity loading together with a lateral hydrostatic pressure applied to the cylindrical face of the model. The material properties employed are indicated in Fig. 8.13. The cavity is assumed to be instantaneously excavated at time \(t=0\) and viscoplastic solution to steady state conditions performed by explicit time integration \((\Theta=0)\). Steady state conditions are achieved in 0.7 years and the zones of viscoplastic deformation at this time are illustrated in Fig. 8.13. It should be emphasised that since the fluidity parameter \(\gamma\) only enters the viscoplastic expressions through the product \(\gamma . t\), then solution for different material fluidity values simply necessitates an adjustment of the time scale. Figure 8.13 also shows the radial displacement along section \(A B\) at steady state. The displacement distribution is seen to be made up of a


tangential stress. \(\sigma_{H}\left(\mathrm{KN} / \mathrm{m}^{2}\right)\)

Fig. 8.14 Radial and tangential stress distributions for the problem of Fig. 8.13.
linear field caused by the external applied pressure. superimposed on which is the effect of the cavity presence (the shaded area).

Finally, Fig. 8.14 shows the steady state radial and tangential stress distributions along the line of Gaussian integration points nearest section AB. It is noted that away from the vicinity of the cavity. the hydrostatic condition \(\sigma_{r}=\sigma_{\theta}\) is reproduced.

\subsection*{8.17 Problems}
8.1 Use program VISCOUNT documented in Appendix II, Section A2.2 to solve the thick sphere considered in Problem 7.5 for the viscoplastic case. Employ the same material properties and load increment sizes as used in the elasto-plastic analysis. Assume the fluidity parameter
\(\gamma=0.001\) and flow function \(\Phi(F)=F\). Use explicit time integration ( \(\Theta=0\) ) and compare your steady state solutions with the results of Problem 7.5.
8.2 Repeat Problem 8.1 for different limiting time step lengths employing explicit time integration. Take the factor \(\tau\), described in Section 8.3, in the range \(0.01 \leqslant \tau \leqslant 0.5\). Comment on the accuracy of solution in each case.
8.3 Repeat Problem 8.1 using the flow functions (8.8) and (8.9). Take the indices \(M\) and \(N\) in the range 2 to 4 . Comment on the solutions.
8.4 Repeat Problem 8.1 using (a) Fully implicit method ( \(\Theta=1\) ) and (b) Implicit trapezoidal rule ( \(\Theta=\frac{1}{2}\) ). Comment on the accuracy and computational costs of solution.
8.5 Modify program VISCOUNT to include the strain-hardening law considered in Problem 7.4.
8.6 Undertake all the coding changes required to program VISCOUNT to include the overlay concept described in Section 8.15.
8.7 Test the modified program of Problem 8.6 by employing it in the solution of the uniaxial problem of Fig. 8.15. A constant stress of 100 is applied at time \(t=0\) to the plane stress model shown. Determine the development of strain with time. Verify the numerical solution by noting Figs. 8.4 and 8.5 and hence comparing with the analytical solution of Problem 4.2.


Fig. 8.15 Overlay model example-Problem 8.7.
8.8 In Section 8.2.3 it was stated that large deformation effects could be included, adopting a Lagrangian formulation, by including both the linear and nonlinear terms of the general quadratic relationship between strains and displacements according to (8.19). Details of geometrically nonlinear expressions can be found in Chapters 10 and 11. Modify program VISCOUNT to include such geometrically nonlinear behaviour.
8.9 Employ the modified program of Problem 8.8 to solve the creep buckling problem illustrated in Fig. 8.16. The creep law employed is indicated in Fig. 8.16 and is a particular form of expression (8.9). Using the finite element mesh shown, apply the eccentric load to the cantilever at time, \(t=0\), and employ the implicit time integration algorithm \((\Theta=1)\) to determine the deformation with increasing time. At some stage of the solution process the structure will become unstable due to creep buckling. Carry out the analysis for \(\lambda=1.0,1.5,2.0\) and 2.5 and compare the lateral deflection/time relationships with those provided in Ref. 6.


Fig. 8.16 Creep buckling example-Problem 8.9.
8.10 Modify program VISCOUNT to undertake the elasto-viscoplastic solution of three-dimensional solids. The majority of the subroutines required have been already modified in Problem 7.9.
8.11 Repeat Problem 7.10 for the elasto-viscoplastic program VISCOUNT.

\subsection*{8.18 References}
1. Olszak, W. and Perzyna, P., Stationary and non-stationary visco-plasticity, In: M. F. Kanninen et al. (Eds), Inelastic Behaviour of Solids, McGraw-Hill, 1970.
2. Olszak, W. and Perzyna, P., On elasto-viscoplastic soils, In: Rheology and Soil Mechanics, IUTAM Symposium, Springer-Verlag, Grenoble, 1966.
3. Perzyna, P., Fundamental problems in visco-plasticity, In: Recent Advances in Applied Mechanics, Academic Press, New York, 1966.
4. Zienkiewicz, O. C. and Cormeau, I. C., Visco-plasticity-plasticity and creep in elastic solids-a unified numerical solution approach, Int. J. Num. Meth. Engng. 8, 821-845 (1974).
5. Zienkiewicz, O. C., Owen, D. R. J. and Cormeau, I. C., Analysis of viscoplastic effects in pressure vessels by the finite element method, Nuclear Engineering \& Design, 28(2), 278-288 (1974).
6. Kanchi, M. B., Zienkiewicz, O. C. and Owen, D. R. J., The visco-plastic approach to problems of elasticity and creep involving geometric nonlinear effects. Int. J. Num. Meth. Engng. 12, 169-181 (1978).
7. Stricklin, J. A., Haisler, W. and Reisemann, W., Evaluation of solution procedures of material and/or geometrically non-linear structural analysis, AIAA J. 11, 292-299 (1973).
8. Dinis, L. M. S. and Owen, D. R. J., Elastic-viscoplastic analysis of plates by the finite element method, Computers \& Structures, 8, 207-215 (1978).
9. Cormeau, I., Numerical stability in quasistatic elasto-visco-plasticity, Int. J. Num. Meth. Engng. 9, 109-127 (1975).
10. Duwez, P., On the Plasticity of Crystals, Physical Revjew, 47(6), 494-501 (1935).
11. Zienkiewicz, O. C., Nayak, G. C. and Owen, D. R. J., Composite and overlay models in numerical analysis of elasto-plastic continua, Int. Symp. Foundations of Plasticity, Warsaw (1972).
12. Owen, D. R. J., Prakash, A. and Zienkiewicz, O. C., Finite element analysis of non-linear composite materials by use of overlay systems, Computers \& Structures 4, 1251-1267 (1974).
13. Pande, G. N., Owen, D. R. J and Zienkiewicz, O. C., Overlay models in time-dependent nonlinear material analysis. Computers \& Structures, 7, 435443 (1977).
14. Hughes, T. J. R. and Taylor, R. L., Unconditionally stable algorithms for quasi-static elasto/viscoplastic finite element analysis, Int. J. Num. Meth. Engng. (to be published).

\title{
Chapter 9 \\ Elasto-plastic Mindlin plate bending analysis
}

\author{
Written in collaboration with M. M. Huq
}

\subsection*{9.1 Introduction}

In Chapter 5 we introduced some elastoplastic Timoshenko beam formulations. In this chapter we introduce some related elasto-plastic Mindlin plate bending formulations.

There are basically three theories which we could use as a basis for elastic plate bending:
(i) Kirchhoff classical thin plate theory This theory, which takes no account of transverse shear deformation, is usually favoured by engineers because of its simplicity. It is the plate bending equivalent of Euler-Bernoulli beam theory. Many conforming \(C(1)\) and nonconforming \(C(0)\) plate elements are available.
(ii) Mindlin (or Reissner) plate theory Mindlin and the related Reissner plate theories allow for transverse shear effects. Mindlin plate theory is the plate bending equivalent of Timoshenko beam theory. Several Mindlin plate elements have been presented in the literature and it emerges that the most convenient one is the 'Heterosis' element of Hughes. \({ }^{(1)}\)
(iii) Full three-dimensional theory For the greatest accuracy, full threedimensional theory should be employed. Many 3D hexahedral and tetrahedral elements have been presented. Unfortunately when the aspect ratio of the element is very large as in thin plates, an ill-conconditioned stiffness matrix results and roundoff problems predominate. Several schemes for avoiding this difficulty have been presented and undoubtedly an analysis based on this procedure is the most accurate.

Let us now consider the various possibilities for elasto-plastic analysis.
(i) We could use a full 3D analysis with a yield function \(F\left(\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}\right.\), \(\left.\tau_{x z}, \tau_{y z}\right)\).
(ii) In a Mindlin plate formulation we can also use the yield function \(F\left(\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}, \tau_{x z}, \tau_{y z}\right)\). It should be neted that \(\sigma_{z}\) is taken as zero in

Mindlin plates. This approach allows for the spread of plasticity from the extreme fibre over the entire plate thickness. In the evaluation of the internal virtual work integrals we may sample the stresses of the GaussLegendre or Lobatto integration points. Alternatively we may divide the plate into layers and use a mid-ordinate rule.
(iii) In a Mindlin or Kirchhoff formulation we can use a yield function \(F\left(\sigma_{x}, \sigma_{y}, \tau_{x y}\right)\). In Mindlin plate theory we ignore the effect of \(\tau_{x z}\) and \(\tau_{y z}\) on the plastic behaviour. Since, in the absence of inplane forces, the inplane stresses are a maximum at the extreme fibres where the transverse shear stresses are a minimum and the inplane stresses are a minimum at the mid-plane where the transverse shears are a maximum, this is a reasonable assumption. (There is also further evidence to suggest that it is likely to lead to insignificant errors.) This approach also allows for the spread of plasticity over the depth of the plate. In the evaluation of the internal virtual work integrals we may sample the stresses at the Gauss-Legendre or Lobatto integration points. Alternatively we may divide the plate into layers* and use a mid-ordinate rule. This 'layered' approach has been described in Chapter 5 for a Timoshenko beam element and is a very popular method.
(iv) In a Mindlin or Kirchhoff formulation we can adopt in the absence of inplane forces a yield function \(F\left(M_{x}, M_{y}, M_{x y}\right)\) which is a function of the bending moments. Here it is assumed that at a point the whole plate section becomes plastic simultaneously. A similar approach was described in Chapter 5 for Timoshenko beam elements.

The elasto-plastic analysis of Mindlin plates is considered in this chapter, where both layered and non-layered approaches are treated in detail.

Finite elements based on Mindlin's assumptions have one important advantage over elements based on classical thin plate theory. Mindlin plate elements require only \(C(0)\) continuity of the lateral displacement \(w\) and the two independent nodal rotations \(\theta_{x}\) and \(\theta_{y}\). However elements based on classical Kirchhoff thin plate theory require \(C(1)\) continuity; in other words \(\partial w / \partial x\) and \(\partial w / \partial y\) as well as \(w\) must be continuous across element interfaces. Thus, Mindlin plate elements are simpler to formulate and they have the added advantage of being able to model shear-weak as well as shear-stiff plates. Consequently, if transverse shear deformations are present they are automatically modelled with Mindlin elements.

Recent research \({ }^{(1)}\) indicates that the use of a 'Heterosis' quadrilateral Mindlin plate element with quadratic Lagrangian interpolation for \(\theta_{x}\) and \(\theta_{y}\) and quadratic Serendipity interpolation for \(w\) together with selective integration of the stiffness matrix, gives the best overall performance. It

\footnotetext{
* These layers are symmetric about the midsurface of the plate in the present formulation.
}
avoids locking and contains no spurious mechanisms. The Heterosis element is implemented here using a hierarchical formulation described later.

We have already considered elastic Mindlin plate finite element analysis in Chapter 6. Nonlinear Mindlin plate finite element analysis is now considered.

\subsection*{9.2 Equilibrium equations}

\subsection*{9.2.1 Three-dimensional equilibrium equations}

Let us begin with the equilibrium equations of three-dimensional stress analysis. We will assume that, for convenience, no tractions are present on the boundary \(\Gamma_{t}\) of the three-dimensional domain \(\Omega\). The virtual work equation may be expressed as
\[
\begin{equation*}
\int_{\Omega}\left\{[\delta \mathbf{\epsilon}]^{T} \sigma-[\delta \boldsymbol{u}]^{T} \boldsymbol{b}\right\} d \Omega=0 \tag{9.1}
\end{equation*}
\]
where the vector of virtual displacements in the \(x, y\) and \(z\) directions is \(\delta \boldsymbol{u}=[\delta u, \delta v, \delta w]^{T}\), the vector of associated virtual strains is \(\delta \boldsymbol{\epsilon}=\left[\delta \epsilon_{x}\right.\), \(\left.\delta \epsilon_{y}, \delta \epsilon_{z}, \delta \gamma_{x y}, \delta \gamma_{x z}, \delta \gamma_{y z}\right]^{T}\), the vector of stress is \(\sigma=\left[\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}, \tau_{x z}\right.\), \(\left.\tau_{y z}\right]^{T}\) and the vector of applied body forces is \(\boldsymbol{b}=\left[b_{x}, b_{y}, b_{z}\right]^{T}\). Displacements \(u\) are prescribed on boundary \(\Gamma_{u}\) of domain \(\Omega\).

The stress-strain relationships for an isotropic material are given as
\[
\boldsymbol{D}=a_{1}\left[\begin{array}{cccccc}
a_{2} & a_{3} & a_{3} & 0 & 0 & 0  \tag{9.2}\\
a_{3} & a_{2} & a_{3} & 0 & 0 & 0 \\
a_{3} & a_{3} & a_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & a_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & a_{4}
\end{array}\right]
\]
where \(a_{1}=E /(1+\nu)(1-2 \nu), a_{2}=1-\nu, a_{3}=\nu\) and \(a_{4}=(1-2 \nu) / 2\). Note that \(E\) is the elastic modulus and \(\nu\) is Poisson's ratio.

\subsection*{9.2.2 Mindlin plate equilibrium equations}

In Mindlin plate theory, the domain of interest \(\Omega\) is of the special form
\[
\begin{equation*}
\Omega=\left\{(x, y, z) \in R^{3} \mid z \epsilon[-t / 2, t / 2],(x, y) \epsilon A \in R^{2}\right\} \tag{9.3}
\end{equation*}
\]
where \(t\) is the plate thickness which may be a function of \(x\) and \(y\) and \(A\) is the plate area. The boundary of \(A\) is denoted by \(\Gamma\).

We also make the following set of assumptions:
(i) Normals to the midsurface (i.e., \(z=0\) ) before deformation remain straight but not necessarily normal to the midsurface after deformation. If \(\theta_{x}\) and \(\theta_{y}\) are the rotations of the midsurface normal in the \(x z-\) and \(y z\) - plane respectively, then
\[
\mathbf{u}=\left[\begin{array}{c}
u(x, y, z)  \tag{9.4}\\
v(x, y, z) \\
w(x, y, z)
\end{array}\right]=\left[\begin{array}{c}
-z \theta_{x}(x, y) \\
-z \theta_{y}(x, y) \\
w(x, y)
\end{array}\right]
\]

The sign convention is illustrated in Fig. (9.1). Right hand rotations \(\dot{\theta}_{x}\) and \(\bar{\theta}_{y}\) are defined by the expression
\[
\left[\begin{array}{l}
\theta_{x}  \tag{9.5}\\
\theta_{y}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{\theta}_{x} \\
\bar{\theta}_{y}
\end{array}\right] .
\]

It is usually more convenient to develop the theory in terms of \(\theta_{x}\) and \(\theta_{y}\) rather than \(\bar{\theta}_{x}\) and \(\theta_{y}\) since the resulting algebra is greatly simplified.
(ii) The normal stress \(\sigma_{z}\) is assumed equal to zero. The virtual work statement may be expressed as
\[
\begin{equation*}
\int_{\Omega}\left[\delta \epsilon^{\prime}\right]^{T} \sigma^{\prime} d \Omega-\int_{\Omega}[\delta u]^{T} b d \Omega=0 \tag{9.6}
\end{equation*}
\]
in which
\[
\left[\delta \epsilon^{\prime}\right]=\left[\delta \epsilon_{x}, \delta \epsilon_{y}, \delta \gamma_{x y} \mid \delta \gamma_{x z}, \delta \gamma_{y z}\right]^{T}=\left[\left(\delta \epsilon_{f}\right)^{T},\left(\delta \epsilon_{s}\right)^{T}\right]^{T}
\]
and
\[
\sigma^{\prime}=\left[\sigma_{x}, \sigma_{y}, \sigma_{z} \mid \tau_{x z}, \tau_{y z}\right]^{T}=\left[\left(\sigma_{f}\right)^{T},\left(\sigma_{s}\right)^{T}\right]^{T}
\]

Note that
\[
\begin{equation*}
\delta \boldsymbol{\epsilon}_{f}=z\left[-\frac{\partial\left(\delta \theta_{x}\right)}{\partial x},-\frac{\partial\left(\delta \theta_{y}\right)}{\partial y},-\left(\frac{\partial\left(\delta \theta_{x}\right)}{\partial y}+\frac{\partial\left(\delta \theta_{y}\right)}{\partial x}\right)\right]^{T} \doteq z \delta \hat{\boldsymbol{\epsilon}}_{f} \tag{9.7}
\end{equation*}
\]

\footnotetext{
- In Mindlin plate theory a reduced form of the constitutive relations is obtained by making \(\sigma_{z}=0\) and subsequently eliminating \(\epsilon_{z}\). Thus
\[
\sigma^{\prime}=D^{\prime} \epsilon^{\prime}
\]
where for elastic isotropic situations
\[
\boldsymbol{D}^{\prime}=\frac{E}{\left(1-\nu^{2}\right)}\left[\begin{array}{ccc:cc}
1 & \nu & 0 & 0 & 0 \\
\nu & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{(1-\nu)}{2} & 0 & 0 \\
\hdashline 0 & 0 & 0 & \frac{(1-\nu)}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{(1-\nu)}{2}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{D}_{f}^{\prime} & 0 \\
0 & D_{s}
\end{array}\right]
\]
}

\footnotetext{
\(\dagger\) Terms symbolised thus (^) denote quantities integrated over the thickness.
}
and
\[
\begin{equation*}
\delta \boldsymbol{\epsilon}_{s}=\left[\frac{\partial(\delta w)}{\dot{c} x}-\delta \theta_{x}, \frac{\partial(\delta w)}{\dot{\partial}}-\delta \theta_{y}\right]^{T}=\delta \hat{\boldsymbol{\epsilon}}_{s} . \tag{9.8}
\end{equation*}
\]

Using (9.7) and (9.8) we find that (9.6) can be rewritten as
\[
\begin{equation*}
\int_{A} \int_{-t / 2}^{t / 2}\left[z\left(\delta \hat{\boldsymbol{\epsilon}}_{f}\right)^{T} \boldsymbol{\sigma}_{f}+\left(\delta \cdot\left(\hat{\boldsymbol{\epsilon}}_{s}\right)^{T} \sigma_{s}-(\delta \boldsymbol{u})^{T} \boldsymbol{b}\right] d z d A=0\right. \tag{9.9}
\end{equation*}
\]

This equation is adopted in the layered approach. After integration over the thickness of the plate (9.9) can be rewritten in the form
\[
\begin{equation*}
\int_{A}\left[\left(\delta \hat{\boldsymbol{\epsilon}}_{f}\right)^{T} \hat{\sigma}_{f} \cdots\left(\delta \boldsymbol{\epsilon}_{s}\right)^{T} \hat{\boldsymbol{\sigma}}_{s}-(\delta \boldsymbol{u})^{T} \hat{\boldsymbol{b}}\right] d A=0 \tag{9.10}
\end{equation*}
\]
where
\[
\begin{aligned}
& \hat{\sigma}_{f}=\int_{-t / 2}^{t / 2}=\sigma_{f} d z \\
& \hat{\sigma}_{s}=\int_{-t / 2}^{t / 2} \sigma_{s} d z
\end{aligned}
\]
and
\[
\hat{\boldsymbol{b}}=\int_{t / 2}^{t / 2} \boldsymbol{b} d z
\]

We interpret \(\hat{\sigma}_{f}=\left[M_{x}, M_{y}, M_{x y}\right]^{T}\) as the bending moments and \(\hat{\sigma}_{s}=\) \(\left[Q_{x}, Q_{y}\right]^{T}\) as the shear force. Usually we take \(\hat{b}=[q, 0,0]^{T}\) in which \(q\) is the lateral distributed loading acting on the plate. We use (9.10) in the nonlayered plate formulation.


Fig. 9.1 Sign convention for Mindlin plate theory.

\subsection*{9.3 Discretisation}

\subsection*{9.3.1 Standard representation}

If we adopt a standard \(C(0)\) finite element representation then the displacements can be written as
\[
\begin{equation*}
u=\sum_{i=1}^{n} N_{i} d_{i} \tag{9.11}
\end{equation*}
\]
in which the shape function matrix is \(N_{i}=N_{i} I_{3}\) and the vector of nodal values \(d_{i}=\left[w_{i}, \theta_{x i}, \theta_{y i}\right]^{T}\).

The flexural strain displacement equations are given as
\[
\begin{equation*}
\delta \hat{\boldsymbol{\epsilon}}_{f}=\sum_{i=1}^{n} B_{f i} \delta d_{i} \tag{9.12}
\end{equation*}
\]
in which
\[
\boldsymbol{B}_{f i}=\left[\begin{array}{ccc}
0 & -\frac{\partial N_{i}}{\partial x} & 0 \\
0 & 0 & -\frac{\partial N_{i}}{\partial y} \\
0 & -\frac{\partial N_{i}}{\partial y} & -\frac{\partial N_{i}}{\partial x}
\end{array}\right]
\]

The shear strain displacement equations have the form
\[
\begin{equation*}
\delta \hat{\mathbf{e}}_{s}=\sum_{i=1}^{n} \boldsymbol{B}_{s i} \delta \boldsymbol{d}_{i} \tag{9.13}
\end{equation*}
\]
in which
\[
\boldsymbol{B}_{s i}=\left[\begin{array}{ccc}
\frac{\partial N_{i}}{\partial x} & -N_{i} & 0 \\
\frac{\partial N_{i}}{\partial y} & 0 & -N_{i}
\end{array}\right]
\]

If we substitute (9.11)-(9.13) in (9.9) we obtain the expression
\[
\begin{equation*}
\left.\sum_{i=1}^{n}\left[\delta d_{i}\right]^{T}\left\{\int_{A} \int_{-t / 2}^{t / 2}\left[B_{f i}\right]^{T} \sigma_{f} z+\left[B_{s i}\right]^{T} \sigma_{s}-\left[N_{i}\right]^{T} b\right] d z d A\right\}=0 . \tag{9.14}
\end{equation*}
\]

Since (9.14) must be true for any set of virtual displacements we obtain the expression
or
\[
\begin{gather*}
\int_{A} \int_{-t / 2}^{t / 2}\left[\left[\boldsymbol{B}_{f i}\right]^{T} \sigma_{f} z+\left[\boldsymbol{B}_{s i}\right]^{T} \sigma_{s}-\left[\boldsymbol{N}_{i}\right]^{T} b\right] d=d A=0  \tag{9.15}\\
\psi_{i}(\boldsymbol{d})=0 .
\end{gather*}
\]

We use (9.15) in the layered approach. If we integrate the terms in square brackets over the thickness of the plate then we obtain the following equation
\[
\begin{gather*}
\int_{A}\left[\left[\boldsymbol{B}_{f i}\right]^{T} \hat{\sigma}_{f}+\left[\boldsymbol{B}_{s i}\right]^{T} \hat{\boldsymbol{\sigma}}_{s}-\left[\boldsymbol{N}_{i}\right]^{T} \hat{\boldsymbol{b}}\right] d A=0  \tag{9.16}\\
\psi_{i}(\boldsymbol{d})=0 .
\end{gather*}
\]
or
Equation (9.16) is used in the nonlayered approach.
Note that we obtain equations for the residual force vector \(\psi_{i}(d)\) for every node in the finite element discretisation. When the stresses are nonlinear then both ( 9.15 ) and (9.16) are sets of nonlinear simultaneous equations.

Contributions to the residual force vector \(\psi=\left[\psi_{1}{ }^{T}, \ldots, \psi_{n}{ }^{T}\right]^{T}\) may be evaluated at the element level and then assembled to form \(\psi\). We may use any standard \(C(0)\) two-dimensional isoparametric element. Several elements have been presented in the literature and it emerges that the most convenient one is the \(8 / 9\) node 'Heterosis' element of Hughes. \({ }^{(1)}\) In the programs described later we use 4,8 and 9 -noded isoparametric quadrilateral elements (see Chapter 6), as well as the Heterosis element. Selective integration is adopted and this will be described later.

\subsection*{9.3.2 Hierarchical formulation of the Heterosis element}

In the implementation of the Heterosis and the 9-node element a hierarchical formulation is adopted. The first 8 shape functions are borrowed from the 8 -noded Serendipity element and the shape function for the central \(9^{\text {th }}\) node is the bubble function
\[
\begin{equation*}
N_{9}{ }^{(e)}(\xi, \eta)=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \tag{9.17}
\end{equation*}
\]
which is already available from the quadratic Lagrangian element. This means that all variables associated with the central node are hierarchical in nature. In other words, they are departures from the interpolated Serendipity values. The hierarchical representation can be used for geometrical representation as well as for interpolating displacements.
In order to implement the heterosis element we adopt a hierarchical formulation either by adding a stiff spring (large number) to the leading
diagonal term of the stiffness matrix associated with the lateral displacement parameter for node 9 , or by prescribing displacement at this centre node to zero. This has the effect of forcing \(w\) to behave as though it was represented by Serendipity quadratic shape functions. Thus the desired effect is achieved.

It is worth noting that if no spring is added the element obtained is identical to the 9 -noded Lagrangian element provided that care is taken in evaluating the consistent nodal forces. Furthermore if stiff springs are added to all the terms of the leading diagonal associated with node 9, then the element reverts to a Serendipity 8 -noded element.

For convenience, in the present case, when representing the geometry of the heterosis element, the \(x\) and \(y\) coordinate departures from the interpolated Serendipity values are taken as equal to zero. In other words, as Serendipity geometrical representation is adopted this distinction is only of importance when elements with curved boundaries are present. (N.B. This is automatically taken care of by a modified version of Subroutine. NODEXY described in Section 6.4.1).

\subsection*{9.4 Solution of nonlinear equations}

\subsection*{9.4.1 Plasticity in layered plates}

For Mindlin plates we may assume that the yield function \(F\) is a function of \(\sigma_{f}\), the direct stresses associated with flexure, but not of the transverse shear stresses \(\sigma_{s}\). The yield function \(F\) is also a function of the hardening parameter, \(H\). When yielding occurs at some point, it is assumed that, unless unloading takes place, the stresses always remain on the yield surface so that
\[
\begin{equation*}
F\left(\sigma_{f}, H\right)=0 \tag{9.18}
\end{equation*}
\]

Thus the incremental stress-strain relationship is given as
\[
\begin{gather*}
{\left[\begin{array}{l}
d \sigma_{f} \\
d \sigma_{s}
\end{array}\right]=\left[\begin{array}{cc}
\left(D_{e p^{\prime}}\right)_{f} & 0 \\
0 & D_{s}{ }^{\prime}
\end{array}\right]\left[\begin{array}{l}
d \epsilon_{f} \\
d \epsilon_{s}
\end{array}\right]}  \tag{9.19}\\
d \sigma^{\prime}=D_{e p^{\prime}} d \epsilon^{\prime}
\end{gather*}
\]
or
in which \(\left(\boldsymbol{D}_{e p}{ }^{\prime}\right)_{f}\) is identical to \(\boldsymbol{D}_{e p}\) given in Chapter 7 for the elasto-plastic plane stress problem. Note that \(\boldsymbol{D}_{\boldsymbol{s}}{ }^{\prime}\) always remains elastic. Recall from equation (7.47) that
\[
\begin{equation*}
\left(D_{e p}{ }^{\prime}\right)_{f}=D_{f}{ }^{\prime}-\frac{d_{D} d_{D}{ }^{T}}{A+d_{D}{ }^{T} a^{\prime}} \tag{9.20}
\end{equation*}
\]
where
\[
\boldsymbol{a}^{\prime}=\left[\frac{\partial F}{\partial \sigma_{x}}, \frac{\partial F}{\partial \sigma_{y}}, \frac{\partial F}{\partial \tau_{x y}}\right]^{T}
\]
\[
\begin{aligned}
\boldsymbol{d}_{D} & =D_{f}{ }^{\prime} a^{\prime} \\
A & =-\frac{1}{\lambda} \frac{\partial F}{\partial H} d H
\end{aligned}
\]
in which \(\lambda\) is the proportionality constant. Here we cater for Von Mises and Tresca materials only. We can thus use a slightly modified version of the coding described in Chapter 7 when evaluating ( \(\left.\boldsymbol{D}_{r p}{ }^{\prime}\right)_{f}\) and when testing for yielding etc.

\subsection*{9.4.2 Solution of the nonlinear equilibrium equations for layered plates}

The incremental equilibrium equations for the plate can be written at some stage in the solution (i.e., at an iteration during a load increment) as
\[
\begin{equation*}
\psi\left(\boldsymbol{d}^{p}\right)+\boldsymbol{K}_{T}\left(\boldsymbol{d}^{p}\right) \Delta \boldsymbol{d}^{p}=0 \tag{9.21}
\end{equation*}
\]
where \(\psi\) is obtained from (9.15) and \(K_{T}\left(\boldsymbol{d}^{p}\right)\) is the tangential stiffness matrix which may be approximated as
\[
\begin{equation*}
\boldsymbol{K}_{T}\left(\boldsymbol{d}^{p}\right)=\int_{A} \int_{-t / 2}^{t / 2}\left\{\left[\boldsymbol{B}_{f}\right]^{T}\left[\boldsymbol{D}_{e p}{ }^{\prime}\right]_{f} \boldsymbol{B}_{f} \div\left[\boldsymbol{B}_{s}\right]^{T} \boldsymbol{D}_{s}^{\prime} \boldsymbol{B}_{s}\right\} d z d A . \tag{9.22}
\end{equation*}
\]

Since \(\left[\boldsymbol{D}_{e p^{\prime}}\right]_{f}\) is a function of \(=\) we may employ a numerical integration technique to evaluate the integral over the thickness of the plate. Here, we divide the plate into layers and use a mid-ordinate rule as described in Chapter 5 for the Timoshenko beam. We use a similar method to evaluate \(\boldsymbol{\psi}\left(\boldsymbol{d}^{p}\right)\). Thus we have
\[
\begin{equation*}
\left.\boldsymbol{K}_{T}\left(\boldsymbol{d}^{p}\right)=\int_{A}\left\{\left[\boldsymbol{B}_{f}\right]^{T}\left[\hat{\boldsymbol{D}}_{e p}\right]_{f} \boldsymbol{B}_{f} \cdots\left[\boldsymbol{B}_{s}\right]^{T} \hat{\boldsymbol{D}}_{s} \boldsymbol{B}_{s}\right]\right\} d A \tag{9.23}
\end{equation*}
\]
where
\[
\left[\hat{D}_{e p}\right]_{f}=\int_{-t / 2}^{t / 2}\left[D_{e p^{\prime}}\right]_{f} d z
\]
and
\[
\hat{\boldsymbol{D}}_{s}=\int_{-t / 2}^{t / 2} \boldsymbol{D}_{s^{\prime}} d z
\]

We now use the standard procedure to solve (9.21). Instead of using \(K_{T}\left(d^{p}\right)\) we may use some previously calculated value of \(K_{T}\) just as in the other applications.

\subsection*{9.4.3 Plasticity in nonlayered plates}

In Chapter 5 we considered the elasto-plastic nonlayered analysis of Timoshenko beams in which we assumed that when the bending moment
reaches the yield moment \(M_{0}\), the whole cross-section of the beam becomes plastic instantaneously. We noted that this is a convenient fiction as in reality there is always a gradual spread of plasticity over the depth of the beam. In elasto-plastic nonlayered Mindlin plate analysis we make a similar approximation. Here we assume that the yield function \(\hat{F}\) is expressed as a function of the bending moments \(\hat{\boldsymbol{\gamma}}_{f}\), but not of the shear forces \(\hat{\boldsymbol{\sigma}}_{s}\). The yield function is also assumed to be a function of a hardening parameter \(\hat{H}\). During yield it is assumed that the stress resultants \(\hat{\sigma}_{f}\) must remain on the yield surface so that
\[
\begin{equation*}
\hat{F}\left(\hat{\sigma}_{f}, \vec{A}\right)=0 \tag{9.24}
\end{equation*}
\]
where for the Tresca and Von Mises materials under consideration
\[
\begin{equation*}
\hat{F}\left(\hat{\sigma}_{f}, \hat{H}\right)=\int_{-t / 2}^{t / 2} F\left(\sigma_{f}, H\right) d z \tag{9.25}
\end{equation*}
\]

Therefore, although \(\hat{F}\) replaces \(F,\left(M_{x}, M_{y}, M_{x y}\right)\) replace ( \(\sigma_{x}, \sigma_{y}, \tau_{x y}\) ) and \(M_{0}=\sigma_{0} t^{2} / 4\) replaces \(\sigma_{0}\), everything else remains unchanged and we can again make use of the coding given in Chapter 7.

The incremental stress-strain resultant relationships are given as
\[
\left[\begin{array}{l}
d \hat{\sigma}_{f}  \tag{9.26}\\
d \hat{\sigma}_{s}
\end{array}\right]=\left[\begin{array}{cc}
{\left[\hat{\boldsymbol{D}}_{e p}\right]_{f}} & 0 \\
\mathbf{0} & \hat{\boldsymbol{D}}_{s}
\end{array}\right]\left[\begin{array}{l}
d \hat{\epsilon}_{f} \\
d \hat{\epsilon}_{s}
\end{array}\right]
\]
in which
\[
\begin{equation*}
\left[\hat{\boldsymbol{D}}_{e p}\right]_{f}=\hat{\boldsymbol{D}}_{f}-\frac{\hat{\boldsymbol{d}}_{D} \hat{\boldsymbol{d}}_{D} T}{\hat{\boldsymbol{A}}+\hat{\boldsymbol{d}}_{D} T \hat{\boldsymbol{a}}} \tag{9.27}
\end{equation*}
\]
in which
\[
\begin{aligned}
\hat{\boldsymbol{a}} & =\left[\frac{\partial \hat{F}}{\partial M_{x}}, \frac{\partial \hat{F}}{\partial M_{y}}, \frac{\partial \hat{F}}{\partial M_{x y}}\right]^{T} \\
\hat{\boldsymbol{d}}_{D} & =\hat{\boldsymbol{D}}_{f} \hat{\boldsymbol{a}} \\
\hat{A} & =-\frac{1}{\lambda} \frac{\partial \hat{F}}{\partial \hat{H}} d \hat{H}
\end{aligned}
\]
and
\[
\hat{D}_{f}=\int_{-t / 2}^{t / 2} D_{f}^{\prime} z d z
\]

Note also that
\[
\hat{\boldsymbol{D}}_{s}=\int_{-t / 2}^{t / 2} D_{s}^{\prime} d z
\]

\subsection*{9.4.4 Solution of nonlinear equilibrium equations for nonlayered Mindlin plates}

For the nonlayered plates the equilibrium equations are identical to (9.21). Here, however, the tangential stiffness matrix is given as
\[
\begin{equation*}
\boldsymbol{K}_{T}=\int_{A}\left\{\left[\boldsymbol{B}_{f}\right]^{T}\left[\hat{\boldsymbol{D}}_{e p}\right]_{f} \boldsymbol{B}_{f}+\left[\boldsymbol{B}_{s}\right]^{T} \hat{\mathbf{D}}_{s} \boldsymbol{B}_{s}\right\} d \boldsymbol{A} . \tag{9.28}
\end{equation*}
\]

Apart from this modification the solution procedure is unchanged.

\subsection*{9.4.5 Summary of solution procedures}

The solution procedures for elasto-plastic Mindlin plate analysis are summarised in Tables 9.1-9.3. The overall process is given in Table 9.1. The iteration loop is shown for the nonlayered and layered plates in Tables 9.2 and 9.3 respectively.

Table 9.1 Equation solving technique for layered and nonlayered Mindlin plates

1 Begin new load increment, \(f=f+\Delta f\).
2 Set \(\Delta f\) equal to the current load increment vector.
3 Set \(d^{0}\) equal to 0 for the first increment or equal to the total displacement vector at the end of the last load increment.
4 Set \(\psi^{0}\) equal to the residual force vector at the end of the last inement or equal to 0 for the first load increment.
\(5 \quad\) Set \(\psi^{0}=\psi^{0}+\Delta f\).
6 Solve \(\Delta d^{0}=-\left[K_{T}\right]^{-1} \psi^{0}\). Use old or updated value \(K_{T}\).
\(7 \quad\) Set \(d^{1}=d^{0}+\Delta d^{0}\).
8 Evaluate \(\psi^{1}\left(d^{1}\right)\).
9 If solution has converged go to 11 ; otherwise continue.
10 Iterate until solution has converged.
11 If this is not the last increment go to 1 ; otherwise stop.

Table 9.2 The iteration loop for elasto-plastic nonlayered Mindlin plates.
\(1 \quad\) Set iteration number \(i=1\).
2 Solve \(\Delta d^{i}=-\left[K_{T}\right]^{-1} \psi^{i}\).
Use old or updated \(K_{T}\).
\(3 \quad\) Set \(d^{i+1}=d^{i}+\Delta d^{i}\).
4 For each Gauss point, evaluate the increments in strain resultants
\[
\begin{aligned}
\Delta \hat{\boldsymbol{\epsilon}}_{f}{ } & =\boldsymbol{B}_{f} \Delta \boldsymbol{d}^{i} \\
\Delta \hat{\boldsymbol{\epsilon}}_{s}^{i} & =\boldsymbol{B}_{s} \Delta \boldsymbol{d}^{i} .
\end{aligned}
\]

Table 9.2-continued
5 Using the elastic rigidities estimate, at each Gauss point, the increments in stress resultants and hence the total stress resultants
\[
\begin{aligned}
& \Delta \hat{\boldsymbol{\sigma}}_{f}^{i}=\hat{\boldsymbol{D}}_{f} \Delta \hat{\boldsymbol{\epsilon}}_{f}^{i} \quad \text { hence } \quad \hat{\boldsymbol{\sigma}}_{f}^{i+1}=\hat{\boldsymbol{\sigma}}_{f}^{i}+\Delta \hat{\boldsymbol{\sigma}}_{f}^{i} \\
& \Delta \hat{\boldsymbol{\sigma}}_{s}^{i}=\hat{\boldsymbol{D}}_{s} \Delta \hat{\boldsymbol{\epsilon}}_{s}^{i} \quad \text { hence } \hat{\boldsymbol{\sigma}}_{s}^{i+1}=\hat{\boldsymbol{\sigma}}_{s}^{i}+\Delta \hat{\boldsymbol{\sigma}}_{s}^{i} .
\end{aligned}
\]

6 At each Gauss point, depending on the states of \(\hat{\sigma}_{f}{ }^{i}\) and \(\hat{\sigma}_{f}{ }^{i+1}\), adjust \(\hat{\boldsymbol{\sigma}}_{f}{ }^{i+1}\) to satisfy the yield criterion and preserve the normality condition.
7 Evaluate the residual force vector
\[
\psi^{i+1}=\int_{A}\left\{\left[\boldsymbol{B}_{f}\right]^{T} \hat{\sigma}_{f}+\left[\boldsymbol{B}_{s}\right]^{T} \hat{\sigma}_{s}\right\} d A-\boldsymbol{f}
\]

8 If the solution has converged, continue, otherwise set \(i=i+1\) and go to 2 .
9 Move to next load increment.

Table 9.3 The iteration loop for elasto-plastic layered Mindlin plates.

1 Set iteration number \(i=1\).
2 Solve \(\Delta d^{i}=-\left[K_{T}\right]^{-1} \psi^{i}\).
Use old or updated \(K_{T}\).
\(3 \quad\) Set \(d^{i+1}=d^{i}+\Delta d^{i}\).
4 For each Gauss point in each layer evaluate the increment in strain
\[
\begin{aligned}
\Delta \boldsymbol{\epsilon}_{f}^{i} & =z \boldsymbol{B}_{f} \Delta d^{i} \\
\Delta \boldsymbol{\epsilon}_{s}{ }^{i} & =\boldsymbol{B}_{s} \Delta d^{i}
\end{aligned}
\]

5 Estimate the increments in stress at each Gauss point in each layer using the elastic stress-strain matrix. Hence evaluate the total stress value.
\[
\begin{array}{ll}
\Delta \boldsymbol{\sigma}_{f}{ }^{i}=\mathbf{D}_{f}^{\prime} \Delta \boldsymbol{\epsilon}_{f}^{\prime}, & \boldsymbol{\sigma}_{f}^{i+1}=\boldsymbol{\sigma}_{f}{ }^{i}+\Delta \boldsymbol{\sigma}_{f}{ }^{i} \\
\Delta \boldsymbol{\sigma}_{s}^{i}=\mathbf{D}_{s}{ }^{\prime} \Delta \boldsymbol{\epsilon}_{s}^{\prime}, & \boldsymbol{\sigma}_{s}^{i+1}=\boldsymbol{\sigma}_{s}{ }^{i}+\Delta \boldsymbol{\sigma}_{s}{ }^{i} .
\end{array}
\]

6 Depending on the states of \(\sigma_{f}{ }^{i}\) and \(\sigma_{f}^{i+1}\), adjust \(\sigma_{f}^{i+1}\) to satisfy the yield criterion and preserve the normality condition.
7 Evaluate the stress resultants \(\hat{\sigma}_{f}^{i+1}\) and \(\hat{\sigma}_{s}^{i+1}\) at each Gauss point.
8 Evaluate the residual force vector
\[
\psi^{i+1}=\int_{A}\left\{\left[B_{f}\right]^{T} \hat{\sigma}_{f}+\left[B_{s}\right]^{T} \hat{\sigma}_{s}\right\} d A-f
\]

9 If the solution has converged continue, otherwise set \(i=i+1\) and go to 2 .
10 Move to next load increment.

In this application we recommended the following convergence criteria. Let
\[
\begin{equation*}
E_{\delta}=\frac{\left[\sum_{j}\left(\Delta \delta_{j}^{(i)}\right)^{2}\right]^{1 / 2}}{\left[\sum_{j}\left(\delta_{j}^{(i+1)}\right)^{2}\right]^{1 / 2}} \tag{9.29}
\end{equation*}
\]
where \(\delta_{j}\) may equal \(w_{j}, \theta_{x j}\) or \(\theta_{y j}\). We take in any combination
\[
\begin{equation*}
E_{w}, E_{\theta x}, E_{\theta y},\left(E_{w}+E_{\theta x}+E_{\theta y}\right) \leqslant \text { TOLER } \tag{9.30}
\end{equation*}
\]
where TOLER is a specified tolerance. We can also take the residual force equivalents of \(w_{j}, \theta_{x j}\) or \(\theta_{y j}\) in (9.29) and (9.30).

\subsection*{9.5 Software for the non-layered approach}

\subsection*{9.5.1 Overall program structure}

The overall program structure for the elasto-plastic Mindlin plate bending analysis program MINDLIN using a nonlayered approach is given in Fig. 9.2.

The dimensions given in subroutine FEMP agree with those given in subroutine DIMMP and limit the program to the following maximum size problems in the present form
\begin{tabular}{ll} 
MELEM - maximum number of elements & \(=25\) \\
MEVAB - maximum number of variables per element & \(=27\) \\
MFRON - maximum front width & \(=40\) \\
MMATS - maximum number of material sets & \(=10\) \\
MPOIN - maximum number of nodal points & \(=80\) \\
MTOTV - maximum tutal number of degrees of freedom & \(=240\) \\
MVFIX - maximum number of prescribed boundary nodes & \(=40\)
\end{tabular}

To modify these values the DIMENSION statement in FEMP and the appropriate statements in DIMMP should be carefully changed and checked. All new routines are now documented and these include: FEMP, CONVMP, DIMMP, FLOWMP, GRADMP, INVMP, MINDPB, OUTMP, SFR2,* RESMP, STIFMP, STRMP, SUBMP, VZERO and ZEROMP. The other routines, which have been described earlier, include ALGOR, BMATPB, CHECK \(1, \dagger\) CHECK2, ECHO, FRONT, INCREM, INPUT, JACOB2, MODPB and NODEXY.*

The files which are used in the program are 5 (cardreader), 6 (lineprinter) and \(1,2,3,4,8\) (scratch files).

\footnotetext{
- Note we include the modified versions of SFR2 and NODEXY to allow for hierarchical representation.
\(\dagger\) We include a very slightly modified version of CHECK 1. Note also that for 4 -node Mindlin plate elements, GAUSSQ is modified to allow for a single point Gauss rule. See Section 6.4.2.
}

START

DIMMP
Presets the variables associated with the dynamic dimensioning process

INPUT
Inputs data defining geometry, boundary conditions and material properties

ZEROMP
Sets to zero arrays required for accumulation of data

MINDPB
Inputs additional data required for Mindlin plate analysis

LOADPB
Reads loading data and evaluates the equivalent nodal forces for distributed loading

INCREM
Increments the applied load according to specified load factors



Fig. 9.2 Overall structure of prograra MINDLIN.

\subsection*{9.5.2 Subroutine FEMP}

This routine controls the calling sequence of all of the other main routines as indicated in Fig. 9.2.


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{STOP} & FEMP 122 \\
\hline 100 & CALL & QUTMP & (EPSTN, IITER,MTOTG, MTOTV, MVFIX, NELEM, & FEMP 123 \\
\hline & & & NGAUS, NOFIX, NOUTP, NPOIN,NVFIX, STRSG, & FEMP 124 \\
\hline & & & TDISP, TREAC) & FEMP 125 \\
\hline & CONTINUE & & & FEMP 126 \\
\hline 20 & CONTINUE & & & FEMP 127 \\
\hline 10 & CONTINUE & & & FEMP 128 \\
\hline & STOP & & & FESiP 129 \\
\hline & END & & & FEMP 130 \\
\hline
\end{tabular}

\subsection*{9.5.3 Subroutine CONVMP}

This routine establishes whether a solution has converged with reference to some displacement or residual force norm.

```

 TDIDF (IDOFN)=100.*ADIDF(IDOFN)/TDIDF(IDOFN) CONV 45
 IF(NCDIS(IDOFN).NE.O.AND.TDIDF(IDOFN).GT.TOLER) NCHEK=1 CONV 46
 IF(NCDIS(IDOFN).EQ.O) TDIDF(IDOFN)=-TDIDF(IDOFN) CONV 47
    ```

```

 IF(TDITO.EQ.O.0) GOTO 50 CONV 49
 TDITO=100.*ADITO/TDITO CONV 50
 IF(NCDIS(4).NE.O.AND.TDITO.GT.TOLER) NCHEK=1 CONV 51
 IF(NCDIS(4).EQ.0) TDITO=-TDITO CONV 52
    ```

```

 WRITE(6,600) CONV 54
 WRITE (6,601) (TDIDF (IDOFN),IDOFN=1,NDOFN) CONV 55
 600 FORMAT(1X,'DISPLACEMENT CHANGE NORM',//) CONV 56
 6 0 1 ~ F O R M A T (1 X , 5 (E 1 0 . 3 , 5 X)) ~ C O N V ~ 5 7 ~
 WRITE(6,602)
 CONV 58
 602 FORMAT(5X,'TOTAL') CONV 59
 WRITE(6,603) TDITO CONV 60
    ```

```

C*** RESIDUAL CONVERGENCE CHECK CONV 62
1000 IF(IFRES.EQ.0) GOTO 2000 CONV 63
C*** ASSEMBLE TOTAL AND RESIDUAL FORCE VECTORS CONV 64
- DO }1\mathrm{ ITOTV=1,NTOTV
REFOR(ITOTV)=0.0
1 TOFOR(ITOTV)=0.0
DO }60\mathrm{ IELEM=1,NELEM
KEVAB=0
DO }60\mathrm{ INODE =1,NNODE
LOCNO=IABS(LNODS(IELEM,INODE))
DO }60\mathrm{ IDOFN =1,NDOFN
KEVAB=KEVAB+1
NPOSI=(LOCNO-1)*NDOFN+IDOFN
TOFOR(NPOSI)=TOFOR(NPOSI)+TLOAD(IELEM,KEVAB)
60 REFOR(NPOSI)=REFOR(NPOSI)+ELOAD(IELEM,KEVAB)
C*** COMPUTE TOTAL AND DIRECTIONAL NORMS OF EESIDUAL AND TOTAL FORCE
REFTO=0.0
TOFTO=0.0
CNALL VZERO (NDOFN,REFDF)
NPOSI=0
DO 70 IPOIN=1,NPOIN
DO 70 IDOFN = 1,NDOFN
NPOSI=NPOSI +1
REFDF(IDOFN) - REFDF(IDOFN) +REFOR(NPOST)*REFOR(NPOST)
70 TOFDF (IDOFN) =TOFDF (IDOFN) +TOFOR(NPOSI)*TOFOR(NPOSI) CONV 87
DO 80 IDOFN=1,NDOFN CONV 88
REFTO=REFTO+REFDF (IDOFN)
TOFTO=TOFTO+TOFDF (IDOFN) CONV 90
CONV 89
REFDF (IDOFN)=SQRT (REFDF (IDOFN)) CONV 91
80 TOFDF (IDOFN)=SQRT (TOFDF (IDOFN))
REFTO=SQRT (REFTO)
TOFTO=SQRT(TOFTO)
CONV 92
CONV 93
CONV 94
C*** CHECK FOR CONVERGENCE AND PRINT ERRORS PER CENT CONV 95
DO 90 IDOFN=1,NDOFN
IF(TOFDF(IDOFN).EQ.0.0) GOTO 90
CONV 96
CONV 97
TOFDF(IDOFiv)=100.*REFDF(IDOFN)/TOFDF(IDOFN) CONV 98
IF (NCRES(IDOFN).NE.O.AND.TOFDF (IDOFN).GT.TOLER) NCHEK=1 CONV 99
IF(NCRES(IDOFN).EQ.O) TOFDF(IDOFN)=-TOFDF(IDOFN) CONV 100
90 CONTINUE
IF*OFTO.EQ.0.0) GOTO 100
TOFTO=100.*REFTO/TOFTO
CONV }10
CONV }10
IF(NCRES (4) NE (4)
IF(NCRES(4).NE.0.AND.TOFTO.GT.TOLER) NCHEK=1
CONV 104
IF(NCRES(4).EQ.0) TOFTO=-TOFTO
CONV }10
100 CONTINUE
CONV }10
WRITE (6,604)
WRITE (6,601) (TOFDF (IDOFN),IDOFN=1,NDOFN) CONV 108
CONV }10

```
```

 WRITE(6,602) CONV 409
 WRITE(6,60̂3) TOFTO CONV 110
 604 FORMAT(1X,'RESIDUAL NORM',//) CONV 111
 C*** PRINT CONVERGENCE CODE CONV 112
2000 WRITE (6,605) NCHEK
605 FORMAT(1X,'CONVERGENCE CODE',I4,//)
RETURN
END

```

CONV \(\$ 09\)
CONV 110
CONV 111
CONV 112
CONV 113
CONV 114
CONV 115
CONV 116

\subsection*{9.5.4 Subroutine DIMMP}

This subroutine sets up the dimensions which must agree with the size of the arrays in subroutine FEMP.


\subsection*{9.5.5 Subroutine FLOWMP}

This subroutine determines the yield function derivatives \(\left[\partial F / \partial M_{x}\right.\), \(\left.\partial F / \partial M_{y}, \partial F / \partial M_{x y}\right]^{T}\) for nonlayered Mindlin plates of Von Mises or Tresca material. This routine is almost identical to the corresponding one given in Chapter 7 for plane stress, plane strain and axisymmetric problems.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & SUBROUTINE FLOWMP & (ABETA, AVECT,DEV NCRIT, SINT3,STE & \[
\mathrm{A}, \mathrm{D}
\] & TX, DVECT , HARDS, TA, VARJ2) & \[
\begin{aligned}
& \text { FLOW } \\
& \text { FLOW }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{C FLOW} \\
\hline C策累 & DETERMINES YIELD F & FUNCTION DERIVATIVES & FOR & MINDLIN PLATES & FLOW \\
\hline  & 1 VON MISES & & & & FLOW \\
\hline  & 2 TRESCA & & & & FLOW \\
\hline C & & & & & FLOW \\
\hline \multicolumn{6}{|l|}{} \\
\hline
\end{tabular}
```

C
DIMENSION AVECT(5),DEVIA(4),DMATX(3,3),DVECT(5),
VECA1(3),VECA2(3), VECA3(3)
C
C*** DETERMINE THE VECTOR DERIVATIVE OF F FOR VON-MISES
SINTH=SIN(THETA)
COSTH=COS(THETA)
ROOT3=1.73205080757
C
C*** CALCULATE VECTOR A1
C
VECA1(1) =0.333333333333
VECA1(2) =0.333333333333
VECA1(3)=0.0
C
C*** CALCULATE vECTOR A2.
C
DO 10 ISTRE=1,3
10 VECA2(ISTRE)=DEVIA(ISTRE)/(2.0*STEFF)
VECA2(3)=DEVIA(3)/STEFF
C
C*** CALCULATE VECTOR A3
C
VECA3(1)=DEVIA (2)*DEVIA (4)+VARJ2/3.0
VECA3(2)=DEVIA(1)*DEVIA(4)+VARJ2/3.0
VECA3(3)=-2.0*DEVIA(3)*DEVIA (4)
GO TO (1,2) NCRIT
C
C*** VON MISES
C
1 CONS1=0.0
CONS2=ROOT3
CONS3=0.0
GO TO 40
C
C*** TRESCA
C
2 CONS1=0.0
ABTHE=ABS(THETA*57.29577951308)
IF(ABTHE.LT.29.0) GO TO 20
CONS2=ROOT3
CONS3=0.0
GO TO 40
20 CONS2=2.0*(COSTH+SINTH*SINT3/SQRT(1.0-SINT3*SINT3))
CONS3=ROOT3*SINTH/(VARJ2*SQRT(1.0-SINT3*SINT3))
4 0 ~ C O N T I N U E ~
DO 50 ISTRE=1,3
50 AVECT(ISTRE)=CONS1*VECA1(ISTRE) +CONS2*VECA2(ISTRE)+CONS3*
.VECA3(ISTRE)
C
C*** DETERMINE THE VECTOR D
C
DENOM=HARDS
DO 120 ISTRE=1.3
DVECT(ISTRE) =0.0
DO 110 JSTRE=1,3
110 DVECT (ISTRE)=DVECT(ISTRE) +DMATX(ISTRE,JSTRE)*AVECT(JSTRE)
120 DENOM=DENOM+AVECT(ISTRE)*DVECT(ISTRE)
ABETA=1.0MENOM
RETURN
END
69
FLOW }7

```

\subsection*{9.5.6 Subroutine GRADMP}

This subroutine evaluates displacement gradients \(\partial w / \partial x, \partial w / \partial y, \partial \theta_{x} / \partial x\), \(\partial \theta_{x} / \partial y, \partial \theta_{y} / \partial x\) and \(\partial \theta_{y} / \partial y\).


\subsection*{9.5.7 Subroutine INVMP}

This subroutine evaluates the Mindlin plate bending moment invariants. It also evaluates the effective moment for the Tresca and Von Mises materials.


\subsection*{9.5.8 Subroutine MINDPB}

This subroutine simply reads some additional information required for controlling the convergence check and inserting additional constraints for the Heterosis element.


\subsection*{9.5.9 Subroutine NODEXY}

This subroutine evaluates midside nodes for straight sided 8 and 9 -node quadrilateral elements. In the original subroutine described in Section 6.4.1 this routine also evaluated the coordinates of the central node. Here, as we are choosing a hierarchical formulation, the values at the central node and the departures from the interpolated Serendipity values are always taken as zero.

Thus the revised subroutine NODEXY is almost identical to its namesake given earlier in Section 6.4.1 and is listed below.

```

 DIMENSION COORD(MPOIN,2),LNODS(MELEM,9) NODE 10
 IF(NNODE.EQ.4) GO TO 60 NODE
 11
C
NODE }1
C*** LOOP OVER EACH ELEMENT
C
DO 30 IELEM=1,NELEM
NODE 13
NODE }1
NODE }1
C
C*** LOOP OVER EACH ELEMENT EDGE
C
NNOD1=NNODE
NODE 17
IF (NNODE.EQ.8). NNOD1=9
DO 20 INODE = 1,NNOD1,2
IF(INODE.EQ.9.AND.NNODE.EQ.8) GO TO 30
IF(INODE.EQ.9) GO TO 50
C`*** COMPUTE THE NODE NUMBER OF THE FIRST NODE
C
NODST=LNODS(IELEM,INODE)
IGASH=INODE+2
IF(IGASH.GE.NNODE) IGASH=1
C
C*** COMPUTE THE NODE NUMBER OF THE LAST NODE

- NODE
NODFN=LNODS(IELEM,IGASH) NODE
MIDPT=INODE+1 NODE
C NODE
C*** COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE NODE
C NODE 37
NODMD=LNODS(IELEM,MIDPT) NODE }3
TOTAL=ABS(COORD(NODMD,1))+ABS(COORD(NODMD,2)) NODE 39
C
NODE 40
C*** IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO NODE 41
C INTERPOLATE BY A STRAIGHT LINE NODE }4
c
IF(TOTAL.GT.0.0) GO TO 20
NODE }4
IF(TOTAL.GT.O.0) GO TO 2O NODE 44
KOUNT=1 NODE }4

```

```

 KOUNT=KOUNT+1 NODE
 IF(KOUNT.EQ.2) GO TO 10 NODE 48
    ```

```

 50 LNODE=LNODS(IELEM,INODE) NODE 50
 30 CONTINUE NODE 51
    ```

```

 RETURN NODE 53
 END NODE 54
    ```

\subsection*{9.5.10 Subroutine OUTMP}

This subroutine outputs nodal displacements and reactions and also the Gauss point stress resultants.

```

 DIMENSION EPSTN(MTOTG),GPCOD(2,9),NOFIX(MVFIX),NOUTP(2), OUTP 10
 STRSG(5,MTOTG),TDISP(MTOTV),TREAC(MVFIX,3) OUTP 11
 KOUTP=NOUTP(1) OUTP
 TP 12
 IF(IITER.GT.1) KOUTP=NOUTP(2)
 C
C*** OUTPUT DISPLACEMENTS OUTP 15
IF(KOUTP.LT.1) GO TO 10
WRITE(6,900)
900 FORMAT(1HO,5X,13HDISPLACEMENTS)
WRITE (6,950)
950 FORMAT(1HO,6X,4HNODE,6X,5HDISP.,8X,7HXZ-ROT.,7X,7HYZ-ROT.) OUTP 21
DO 20 IPOIN=1,NPOIN OUTP 22
NGASH=IPOIN*3
NGISH=NGASH-3+1 OUTP 24
OUTP }2
20 WRITE (6,910) IPOIN,(TDISP(IGASH),IGASH=NGISH,NGASH) OUTP 25
910 FORMAT(I10,3E14.6) OUTP 26
10 CONTINUE
OUTP 27
C
C*** OUTPUT REACTIONS
C
IF(KOUTP.LT.2) GO TO 30
WRITE(6,920)
920 FORMAT (1HO,5X,9HREACTIONS)
WRITE (6,960)
OUTP 28
OUTP 29
C OUTP 16
OUTP 30
OUTP 31
5x OHREACTIONS) - OUTP
960 FORMAT (1HO,6X,4HNODE,6X,5HFORCE, 3X, 9HXZ-MOMENT,5X, 9HYZ-MOMENT)
DO 40 IVFIX=1,NVFIX
OUTP }3
OUTP }3
OUTP 34
DO 40 IVFIX=1,NVFIX
30 CONTINUE
C
OM
C*** OUTPUT STRESSES OUTP 40
C OUTP 41
IF(KOUTP.LT.3) GO TO 50
REWIND }
WRITE (6,970)
OUTP 42
OUTP 43
WRITE(6,970) OUTP 44
970 FORMAT (1HO,5X,8HSTRESSES) OUTP 45
WRITE (6,980)
OUTP 46
980 FORMAT(1HO,4HG.P.,2X,8HX-COORD.,2X,8HY-COORD., 3X,8HX-MOMENT,4X, OUTP 47
.8HY-MOMENT,3X,9HXY-MOMENT,3X, OUTP 48
.13HEFF.PL.STRAIN) OUTP 49
KGAUS=0 OUTP 50
DO 60 IELEM=1,NELEM OUTP 51
READ(3)GPCOD DUTP 52
KELGS=0 OUTP 53
WRITE(6,930) IELEM OUTP 54
930 FORMAT(1HO,5X,13HELEMENT NO. =,I5) OUTP 55
DO 60 IGAUS =1,NGAUS
DO 60 JGAUS=1,NGAUS OUTP 57
OUTP 56
KGAUS=KGAUS+1 OUTP 58
KELGS=KELGS+1 OUTP 59
WRITE(6,940)KELGS,(GPCOD(IDIME,KELGS),IDIME=1,2), OUTP 60
.(STRSG(ISTRE,KGAUS),ISTRE=1,3),EPSTN(KGAUS) OUTP 61
940 FORMAT(I5,2F10.4,6E12.5) OUTP 62
60 CONTINUE OUTP 63

```

```

 RETURN
 REIURN OUTP 65
 END
 OUTP 66

```

\subsection*{9.5.11 Subroutine RESMP}

This subroutine evaluates the residual nodal forces. The structure of this routine is similar to that given in Chapter 7 for the other two dimensional elasto-plastic applications and it is illustrated in Fig. 9.3.

```

 DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS)
 CALL GRADMP (CARTD,DGRAD,ELDIS, 3,NNODE) RESP 57
 CALL STRMP (CARTD,DFLEX,DGRAD,DSHER,ELDIS,NNODE, RESP 58
 SHAPE,STRES, 1, 0) RESP }5
 PREYS=PROPS(LPROP,6)+EPSTN(KGAUS)*PROPS(LPROP,7) RESP 60
 DO 150 ISTRE=1,3
 DESIG(ISTRE)=STRES(ISTRE)
 RESP 61
 RESP 62
 RESP 63
 RESP 64
 RESP }6
 RESP }6
 RESP }6
 RESP }6
 RESP }6
 RESP 70
 RESP }7
 RESP }7
 RESP }7
 RESP 74
 RESP 75
 RESP }7
 RESP }7
 RESP }7
 RESP }7
 RESP 80
 RESP }8
 RESP 82
 RESP }8
 RESP 84
 RESP }8
 RESP 86
 RESP }8
 RESP 88
 RESP 89
 RESP 90
 RESP }9
 RESP 92
 RESP }9
 RESP }9
 RESP }9
 RESP 96
 RESP 97
 RESP 98
 RESP }9
 RESP }10
 RESP }10
 RESP 102
 RESP }10
 RESP 104
 RESP 105
 RESP 106
 RESP 107
 RESP }10
 RESP 109
 RESP }11
 RESP 111
 RESP }11
 RESP 113
 RESP 114
 RESP }11
 RESP 116
 RESP 117
 RESP 118
 RESP 119
    ```
```

 DO 135 IDOFN=2,3 RESP 120
 TPOSN=IPOSN
 RESP 121
 135 ELOAD(IELEM,IPOSN)=ELOAD(IELEM,IPOSN)+FORCE(IDOFN) RESP 122
 140 CONTINUE RESP 123
 4 0 ~ C O N T I N U E ~ R E S P ~ 1 2 4
 C
C*** CALCULATE FORCES ASSOCIATED WITH SHEAR DEFORMATION
C
NGAUM=NGAUS-1 RESP 128
CALL GAUSSQ (NGAUM,POSGP,WEIGP)
C
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION RESP 131
C RESP 132
KGASP=0
DO 300 IGAUS=1,NGAUM
DO 300 JGAUS=1,NGAUM RESP 135
LGAUS=LGAUS+1 RESP 136
EXISP=POSGP(IGAUS)
ETASP=POSGP(JGAUS)
CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE) RESP 139
KGASP=KGASP+1 RESP 140
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, RESP 141
M KGASP,NNODE,SHAPE) RESP 142
CALL GRADMP (CARTD,DGRAD,ELDIS, 3,NNODE) RESP 144
CALL STRMP (CARTD,DFLEX,DGRAD,DSHER,ELDIS,NNODE, RESP 145
SHAPE,STRES, 0, 1
DO 310 ISTRE=4,5
SGTOT(ISTRE) =STRSG(ISTRE,LGAUS)+STRES(ISTRE)
310 STRSG(ISTRE,LGAUS)=SGTOT(ISTRE)
C
C*** CALCULATE THE EQUIVALENT NODAL FORCES
DO 320 INODE=1,NNODE
C*** ZERO FORCE VECTOR
CALL VZERO(3,FORCE)
CALL BMATPB (BFLEI,DUMMY,BSHEI,CARTD,INODE,SHAPE,
FORCE(1)=(\operatorname{BSHEI}(1,1)*SGTOT(4)+\operatorname{BSHEI}(2,1)*SGTOT(5))*DAREA
+FORCE(1)
FORCE(2)=(BSHEI(1,2)*SGTOT(4))*DAREA+FORCE(2)
FORCE(3)=(\operatorname{BSHEI}(2,3)*SGTOT (5))*DAREA+FORCE(3)
IPOSN=(INODE-1)*3
DO 315 IDOFN=1,3
IPOSN =IPOSN+1
315 ELOAD(IELEM,IPOSN)=ELOAD(IELEM,IPOSN)+FORCE(IDOFN)
320 CONTINUE
300 CONTINUE

```

```

 RETURN
 END
 RESP }16
    ```

\subsection*{9.5.12 Subroutine SFR2}

This subroutine evaluates the shape functions and their derivatives for 4,8 and 9 -node quadrilateral isoparametric elements. The 9 -node element is treated as a hierarchical element as described in Section 9.3.2. This enables the Heterosis element to be easily incorporated.


Fig. 9.3 Overall structure of subroutine RESMP.


Fig. 9.3 Overall structure of subroutine RESMP (continued).
Subroutine SFR2 is identical to its namesake given earlier in Section 6.4.3 except that SFR2 72-118 are replaced by SFRH 67-73.
```

IF(NNODE.EQ.8) RETURN
SFR2 67
C*** BUBBLE FUNCTION FOR HIERARCHICAL AND HETEROSIS ELEMENTS SFRH 68
SHAPE (9)=(1.0-SS)*(1.0-TT) SFRH 69
DERIV(1,9)=-S2*(1.0-TT) SFRH
DERIV (2,9)=-T2*(1.0-SS) SFRH 71
RETURN SFRH
END SFRH
SFRH }7

```

\subsection*{9.5.13 Subroutine STIFMP}

This routine evaluates the stiffness matrix for the nonlayered elasto-plastic Mindlin plate elements. The overall structure is shown in Fig. 9.4.



Fig. 9.4 Overall sructure of subroutine STIFMP (continued).


```

C
DO 31 INODE =1,NNODE STIF 130
STIF 129
CALL BMATPB (BFLEI,DUMMY,BSHEI,CARTD,INODE,SHAPE, STIF 131
0, 0, 1) STIF }13
DO 31 JNODE=INODE,NNODE STIF 133
CALL BMATPB (BFLEJ,DUMMY,BSHEJ,CARTD,JNODE,SHAPE, STIF 134
0, 0, 1) STIF 135
31 CALL SUBMP (BSHEI,BSHEJ,DAREA,DSHER,ESTIF,INODE, STIF 136
. JNODE, 3, 2, 3) STIF }13
51 CONTINUE
C
C*** CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX
C*** CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX
STIF }14
C
DO }60\mathrm{ IEVAB=1,NEVAB
DO 60 JEVAB=IEVAB,NEVAB
SIF
STIF }14
60 ESTIF(JEVAB,IEVAB)=ESTIF(IEVAB,JEVAB) STIF 144
c
C*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT STIF 146
STIF 145
C COORDINATES FOR EACH ELEMENT ON DISC FILE STIF 147
C
WRITE(1) ESTIF STIF 150
STIF 148
STIF 149
WRITE(3) GPCOD STIF 151
7 0 ~ C O N T I N U E ~ S T I F ~ 1 5 2 ~
RETURN STIF 153
END STIF 154

```

\subsection*{9.5.14 Subroutine STRMP}

This subroutine evaluates the bending moments and shear forces for Mindlin plates.

```

C*** EVALUATE SHEAR STRESS RESULTANTS STRP 27
60 IF(IFSHE.EQ.O) RETURN STRP
ESHXX=DGRAD(1)-XZROT STRP
ESHYY=DGRAD(4)-YZROT STRP
STRES(4)=DSHER(1,1)*ESHXX STRP
STRES(5)=DSHER(2,2)*ESHYY STRP 32
RETURN STRP
STRP 33
END STRP
34

```

\subsection*{9.5.15 Subroutine SUBMP}

This subroutine evaluates \(\left[\boldsymbol{B}_{i}\right]^{T} \boldsymbol{D}\left[\boldsymbol{B}_{j}\right] \operatorname{det} \boldsymbol{J} \times\) Gauss weights and is used in the evaluation of the element stiffness matrices.


\subsection*{9.5.16 Subroutines VZERO and ZEROMP}

These routines simply set to zero the components of various vectors and arrays.



\subsection*{9.6 Software for the layered approach}

\subsection*{9.6.1 Overall program structure .}

The overall program structure for the clasto-plastic Mindlin plate bending analysis program using the layered approach is given in Fig. 9.5. This program is named MINDLAY.

The program can solve problems of the same size as those solved by program MINDLIN. A maximum of 26 layers is allowed.

All new routines are now documented and these include: FEAM, DEPMPA, LAYMPA, MDMPA, OUTMPA, RESMPA, STIMPA and STRMPA. The outer routines, which have been described earlier, include ALGOR, BMATPB, CHECK1, CHECK2, ECHO, FRONT, INCREM, INPUT, JACOB2 and NODEXY.

The files which are used in the program are 5 (cardreader), 6 (lineprinter) and \(1,2,3,4,8\) (scratch files).

\subsection*{9.6.2 Subroutine FEAM}

This routine organises the calling of the main routines in sequence.


Fig. 9.5 Overall program structure of program MINDLAY.


Fig. 9.5 Overall program structure of program MINDLAY (continued).
```

 PROGRAM FEAM(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT, FEAM
 .TAPE1,TAPE2,TAPE3,TAPE4,TAPE8,TAPE9)
 FEAM
 C**FEAM
C
C*** ELASTO-PLASTIC ANALYSIS OF LAYERED MINDLIN PLATES USING FEAM
C*** 4-,8-, 9-NODED OR HETEROSIS ISOPARAMETRIC QUADRILATERALS FEAM
c FEAM

```

```

 DIMENSION ASDIS(240),\operatorname{COORD}(80,2),EFFST(225),\operatorname{ELOAD}(25,27), FEAM
 . EPSTN(225),\operatorname{ESTIF}(27,27),
 - EPSTN(225),\operatorname{ESTIF(27,27),}
 FEAM 10
 - IFFIX(240),GLOAD(40),GSTIF(860),LNODS(25,9),LOCEL(27), FEAM
 - MATNO(25),NACVA(40),NAMEV(10),NCDIS(4),NCRES(4), FEAM
 . NDEST(27),NDFRO(25),NOFIX(40),NOUTP(2),NPIVO(10), FOSG(4),PRESC(40,3),PROPS(10,8),\operatorname{REFOR(240),}
- POSGP(4),PRESC(40,3), PROPS (10,8),REFOR(240),
- RLOAD(25,27),STRSG(5,225),TOFOR(240), FEAM 16
- TDISP(240),TLOAD(25,27),TREAC(40,3),VECRV(40),
- WEIGP(4)
C
C C** PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONS FEAM
C
CALL DIMMP (MBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN,
NPROP,NSTRE)
C
C*** CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA
C

```

```

C
C*** INITIALIZE ARRAYS TO ZERO
C

CALL	ZEROMP	(EFFST, ELOAD, EPSTN, MELEM, MEVAB, MTOTG,
-		MTOTV, MVFIX, NDOFN, NELEM, NEVAB, NGAUS,
-		NTOTG, NTOTV,NVFIX,STRSG, TDISP, TFACT,
-		TLOAD, TREAC)

C
C
CALL MINDPB (IFDIS,IFFIX,IFRES,LNODS,MELEM,MTOTV,
CALL MINDPB (IFDIS,IFFIX,IFRES,LNODS,MELEM,MTOTV,
C
FEM}1

47
C FEAM 48
C*** COMPUTE LOAD afTER READING RELEvanT EXTRA DATA
c

CALL	LOADPB
.	(COORD, LNODS, MATNO, MELEM, MMATS, MPOIN, NELEM, NEVAB, NGAUS, NNODE,NPOIN, PROPS,
RLOAD)	

C

```

```

FEAM 54
C*** LOOP OVER EACH INCREMENT
C
DO 70 IINCS=1,NINCS
C
C*** READ DATA FOR CURRENT INCREMENT FEAM 60
C
CALL INCREM (ELOAD,FIXED,IINCS,MELEM,MEVAB,MITER, FMCSM,
. MTOTV',MVFIX,NDOFN,NELEM,NEVAB,NOUTP,
. NTFIX,NIOIN,NVFX,PRESC,RLOAD,TFACT,
.
TLOAD,TOLER)
FEAM }4
FEAM }5
FEAM }5
FEAM 52
FEAM 53
FEAM 55
FEAM }5
FEAM }5
FEAM }5
FEAM }5
FEAM 60
FEAM }6

```


\subsection*{9.6.3 Subroutine CHECK1 (revised)}

In program MINDLAY we remove card CEK1 25 from subroutine CHECK1 because NLAPS (the number of layers) replaces NSTRE in subroutine INPUT. The variable NSTRE is set in subroutine DIMMP (see Section 9.5.4).

\subsection*{9.6.4 Subroutine DEPMPA}

This subroutine sets up the layered discretisation.
SUBROUTINE DEPMPA (DEPTH,LPROP,MMATS,NLAYR,PROPS) DEPT 1

C DEPT 3
C*** SET UP LAYRED DISCRETIZATION DEPT 4
C DEPT 5

DIMENSION PROPS(MMATS,8),DEPTH (26) DEPT 7
C DEPT 8
C DEPT 9
NLAY \(1=\) NLAYR +1 DEPT 10
\(A L A Y R=N L A Y R \quad\) DEPT 11
THICK=PROPS(LPROP,3) DEPT 12
CONS1=THICK/ALAYR DEPT 13
CONS2=-THICK/2.0 DEPT 14
KOUNT \(=0 \quad\) DEPT 15
DO 10 ILAYR=1, NLAY 1 DEPT 16
DEPTH (ILAYR) =CONS2+CONS1*KOUNT DEPT 17
10 KOUNT=KOUNT+1 DEPT 18
RETURN DEPT 19
END DEPT 20

\subsection*{9.6.5 Subroutine LAYMPA}

This subroutine evaluates \(\hat{\boldsymbol{D}}_{f}\) and \(\hat{\boldsymbol{D}}_{s}\) using the mid-ordinate rule.

```

 DO 30 ILAYR=1,NLAYR LAYR 27
 KGAUS=KGAUS+1 LAYR
 28
 JLAYR=ILAYR+1 LAYR 29
 C S
C*** EVALUATE Z-COORDINATES FOR CURRENT LAYER
C
DEPT1=DEPTH(ILAYR)
LAYR }3
LAYR 31
32
DEPT2=DEPTH(JLAYR)
CONS3=(DEPT2+DEPT1)*(DEPT2**2-DEPT1**2)/4.0 LAYR 35
C
C*** EVALUATE ELASTO-PLASTIC D MATRIX FOR CURRENT LAYER
C
CALL MDMPA(DPLAN,DSHER,LPROP,MMATS,PROPS,1,0)
IF(IINCS.EQ.1)GO TO 40
IF(EPSTN(KGAUS).EQ.0.0)GO TO 40
DO 50 ISTRE=1,5
50 SGTOT(ISTRE)=STRSG(ISTRE,KGAUS)
CALL INVMP(DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA,VARJ2,YIELD) LAYR }4
CALL FLOWMP(ABETA,AVECT,DEVIA,DPLAN,DVECT,HARDS,NCRIT,SINT3, LAYR 45
, STEFF,THETA,VARJ2)
DO 60 ISTRE=1,3
DO 60 JSTRE=1,3
60 DPLAN(ISTRE,JSTRE)=DPLAN(ISTRE,JSTRE)-ABETA*DVECT(ISTRE)*
.DVECT(JSTRE)
4O CONTINUE
C
C*** SUM D MATRIX OVER ELEMENT DEPTH
C
DO 70 ISTRE =1,3
DO 70 JSTRE=1,3
70 DFLEF(ISTRE,JSTRE)=DFLEF(ISTRE, JSTRE) +CONS3*DPLAN(ISTRE,JSTRE) LAYR 57
30 DFLEF(ISTRE,JSIRE)=DFLEF(ISIRE,JSTRE)+CONS3 DPLAN(ISIRE,JSTRE) LAYR 5%
30 CONTINUE
GO TO 200
C
C*** ZERO D MATRIX FOR SHEAR
C
100 DO 80 ISTRE=1,2
DO 80 JSTRE=1,2
80 DSHES(ISTRE,JSTRE)=0.0
C
C*** EVALUATE ELASTIC D MATRIX
C
CALL MDMPA(DPLAN,DSHER,LPROP,MMATS,PROPS,0,1)
C
C*** LOOP AROUND LAYERS
DO }90\mathrm{ ILAYR=1,NLAYR
JLAYR=ILAYR+1
C
C*** EVALUATE Z-COORDINATES FOR CURRENT LAYER
C
DEPT1=DEPTH(ILAYR)
DEPT2=DEPTH(JLAYR)
CONS4=DEPT2-DEPT1
C
c* SUM D MATRIX OVER ELEMENT DEPTH
LAYR }8
C
DO 110 ISTRE=1,2 LAYR 84
LAYR }8
DO 110 JSTRE=1,2
110 DSHES(ISTRE,JSTRE)=DSHES(ISTRE,JSTRE)+CONS4*DSHER(ISTRE,JSTRE)
9 0 CONTINUE
85
LAYR }
200 CONTINUE LAYR 88
RETURN
END
LAYR 89
LAYR 90

```

LAYR 10 If JFFLE is zero \(\boldsymbol{D}_{\boldsymbol{f}}{ }^{\prime}\) is not evaluated. If it is one \(\boldsymbol{D}_{\boldsymbol{s}}{ }^{\prime}\) is not evaluated.
LAYR 15-17 Initializes \(\boldsymbol{D}_{\boldsymbol{f}}{ }^{\prime}\).
LAYR 21 Starts the summation loop to form DFLEF, i.e.
\[
\hat{\boldsymbol{D}}_{f}=\sum_{i=1}^{n} \frac{1}{\mathbf{i}}\left(z_{i+1}+z_{i}\right)\left(z_{i+1}^{2}-z_{i}^{2}\right) \boldsymbol{D}_{f^{\prime}}
\]

LAYR 22 Increases the counter for Gauss points in each layer by 1. It is needed to use the effective plastic strain (EPSTN) stresses (STRSG) calculated in RESMPA.
LAYR 27-29 Forms \(\frac{1}{4}\left(z_{i+1}+z_{i}\right)\left(z_{i+1}{ }^{2}-z_{i}{ }^{2}\right)\).
LAYR 33-45 Calls MDMPA to get DPLAN and \(D_{e p}{ }^{\prime}\) is formed using INVMP and FLOWMP.
LAYR 49-51 DFLEF is formed.
LAYR 57-59 DSHES is initialised.
LAYR 63 Calls MDMPA to form DSHER.
LAYR 67-74 Starts the summation loop and the integrating constant for DSHES is evaluated, i.e.
\[
\hat{\boldsymbol{D}}_{s}=\sum_{i=1}^{n}\left(z_{i+1}-z_{i}\right) \boldsymbol{D}_{s}
\]

LAYR 78-81 DSHES is formed.

\subsection*{9.6.6 Subroutine MDMPA}

This subroutine evaluates \(\boldsymbol{D}_{f}{ }^{\prime}\) and \(\boldsymbol{D}_{s}{ }^{\prime}\).

```

 DPLAN(2,1)=CONST*POISS MODL 23
 DPLAN(3,3)=CONST*(1.0-POISS)/2.0 MODL 24
 C*** FORM DSHER MODL 25
10 IF(IFSHE.EQ.0) RETURN MODL 26
DO 3 IROWS=1,2 MODL 27
DO 3 JCOLS=1,2 MODL 28
3 DSHER(IROWS,JCOLS)=0.0 MODL 29
DSHER(1,1)=YOUNG/(2.4+2.4*POISS) MODL 30
DSHER(2,2)=YOUNG/(2.4+2.4*POISS) MODL 31
RETURN MODL 32
END MODL 33

```

\subsection*{9.6.7 Subroutine OUTMPA}

This subroutine outputs nodal displacements and reactions and also the Gauss point stress resultants and the stresses within each layer. It is very similar to subroutine OUTMP which was described in Section 9.5.7. Statements OUTP 1-3 are replaced by OUTL 1-3 and statements OUTP 56-66 are replaced by statements OUTL 56-67.

```

C OUTL 41
IF(KOUTP.LT.3) GO TO }5
OUTL }4
REWIND 3}\mathrm{ OUTL 43
WRITE(6,970) OUTL 44
970 FORMAT(1HO,5X,8HSTRESSES) OUTL 45
WRITE(6,980) OUTL 46
980 FORMAT(1HO,4HG.P.,2X,8HX-COORD.,2X,8HY-COORD., 3X,8HX-MOMENT,4X, OUTL 47
.8HY-MOMENT,3X,9HXY-MOMENT, 3X, OUTL 48
.13HEFF.PL.STRAIN)
KGAUS=0
OUTL }4
OUTL 50
DO 60 IELEM=1,NELEM OUTL 51
READ(3)GPCOD OUTL 52
KELGS=0 OUTL 53
WRITE (6,930) IELEM
OUTL 54
930 FORMAT (1HO,5X,13HELEMENT NO. =,I5) OUTL 55
DO 60 IGAUS=1,NGAUS OUTL 56
DO 60 JGAUS=1,NGAUS OUTL 57
KELGS=KELGS+1 OUTL 58
DO 60 ILAYR=1,NLAPS OUTL 59
KGAUS=KGAUS+1 OUTL 60
WRITE (6,940)KELGS, (GPCOD(IDIME,KELGS),IDIME=1,2), OUTL 61
.(STRSG(ISTRE,KGAUS),ISTRE=1,3),EPSTN(KGAUS) OUTL 62
940 FORMAT(I5,2F10.4,6E12.5)
6 0 CONTINUE OUTL 64

```

```

 RETURN OUTL 66
 END OUTL 67
    ```

\subsection*{9.6.8 Subroutine RESMPA}

This routine evaluates the residual forces for the layered Mindlin plate. It is very similar to RESMP described in Section 9.5.10.


```

 NCRIT,SINT3,STEFF,THETA,VARJ2) RESL }9
 AGASH=0.0 RESL 95
 DO 100 ISTRE=1,3 RESL 96
 100 AGASH=AGASH+AVECT(ISTRE)*STRES(ISTRE) RESL 97
 DLAMD=AGASH*ABETA
 IF(DLAMD.LT.O.0) DLAMD=0.0
 BGASH=0.0
 DO 110 ISTRE=1,3
 BGASH=BGASH+AVECT(ISTRE)*SGTOT(ISTRE)
 110 SGTOT(ISTRE)=SGTOT (ISTRE)+STRES(ISTRE)-DLAMD*DVECT(ISTRE)
 90 EPSTN(KGAUS)=EPSTN(KGAUS)+DLAMD*BGASH/YIELD
 DO 120 ISTRE=1,3
 120 DESIG(ISTRE)=SGTOT(ISTRE)-STRSG(ISTRE,KGAUS)
 CALL INVMP (DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA,
 VARJ2,YIELD)
 CURYS=PROPS(LPROP,6)+EPSTN(KGAUS)*PROPS(LPROP,7)
 IF(YIELD.GT.CURYS) BRING=CURYS/YIELD
 6 0 \text { DO 130 ISTRE =1,3}
 SGTOT(ISTRE)=BRING*(STRSG(ISTRE,KGAUS)+DESIG(ISTRE))
 130 STRSG(ISTRE,KGAUS)=SGTOT(ISTRE)
 EFFST(KGAUS)=BRING*YIELD
 CONSA=(DEPT2**2-DEPT1**2)/2.0
 DO 440 ISTRE =1,3
 440 TOSPB(ISTRE) =TOSPB(ISTRE)+SGTOT(ISTRE)*CONSA
 410 CONTINUE
 DO 430 ISTRE=1,3
 430 SGTOT(ISTRE)=TOSPB(ISTRE)
 C
C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE
C ELEMENT NODES
DO 140 INODE=1,NNODE
C*** ZERO FORCE VECTOR
CALL VZERO (3,FORCE)
CALL BMATPB (BFLEI,DUMMY,BSHEI,CARTD,INODE,SHAPE,
0, 1, 0)
FORCE(2)=(\operatorname{BFLEI}(1,2)*SGTOT(1)+\operatorname{BFLEI}(3,2)*SGTOT(3))*DAREA
- +FORCE(2)
FORCE (3) = (BFLEI (2,3)*SGTOT(2)+\operatorname{BFLEI}(3,3)*SGTOT (3))*DAREA
+FORCE(3)
IPOSN=(INODE-1)*3+1
DO 135 IDOFN=2,3
IPOSN=IPOSN+1
135 ELOAD(IELEM,IPOSN)=ELOAD (IELEM,IPOSN)+FORCE(IDOFN)
140 CONTINUE
40 CONTINUE
C
C*** CALCULATE FORCES ASSOCIATED WITH SHEAR DEFORMATION
C
NGAUM=NGAUS-1
CALL GAUSSQ (NGAUM, POSGP,WEIGP)
C
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION
C
KGASP =0
DO 300 IGAUS=1,NGAUM
DO 300 JGAUS=1,NGAUM
EXISP=POSGP(IGAUS)
ETASP=POSGP(JGAUS)
CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE)
KGASP =KGASP +1
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,
- KGASP,NNODE,SHAPE)
DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS)
DO 610 ISTRE=4,5
610 TOSPB(ISTRE) =0.0
RESL 156
RESL }15

```
```

C RESL 159
C*** LOOP AROUND LAYRS
C
C DO 600 ILAYR=1,NLAPS
LGAUS=LGAUS+1
JLAYR=ILAYR+1
DEPT1=DEPTH(ILAYR)
DEPT2=DEPTH(JLAYR)
CONST=1.0
CALL GRADMP (CARTD,DGRAD,ELDIS, 3,NNODE)
CALL GRADMP (CARTD,DGRAD,ELDIS,
NNODE,SHAPE,STRES, 0, 1)
DO 310 ISTRE=4,5
SGTOT(ISTRE)=STRSG(ISTRE,LGAUS)+STRES(ISTRE)
310 STRSG(ISTRE,LGAUS)=SGTOT(ISTRE)
CONSB=DEPT2-DEPT1
DO 620 ISTRE=4,5
620 TOSPB (ISTRE) =TOSPB(ISTRE) +SGTOT(ISTRE)*CONSB
6 0 0 ~ C O N T I N U E ~
DO 605 ISTRE =4,5
605 SGTOT(ISTRE)=TOSPB(ISTRE)
C
C*** CALCULATE THE EQUIVALENT NODAL FORCES
C
DO 320 INODE=1, NNODE
C*** ZERO FORCE VECTOR
CALL VZERO(3,FORCE)
CALL BMATPB (BFLEI,DUMMY,BSHEI, CARTD, INODE,SHAPE,
FORCE (1)=(\operatorname{BSHEI}(1,1)*SGTOT (4)+\operatorname{BSHEI}(2,1)*SGTOT (5))*DAREA
+FORCE (1)
FORCE (2)=(\operatorname{BSHEI}(1,2)*SGTOT (4))*DAREA +FORCE (2)
FORCE (3)=(BSHEI (2,3)*SGTOT (5))*DAREA +FORCE (3)
IPOSN=(INODE-1)*3
DO 315 IDOFN=1,3
IPOSN=IPOSN+1
315 ELOAD(IELEM,IPOSN)=ELOAD(IELEM,IPOSN)+FORCE(IDOFN)
320 CONTINUE
300 CONTINUE
20 CONTINUE
RETURN
END
RESL 159
RESL }16
RESL }16
LGALS=LGAUS+1
RESL 163
RESL }16
RESL 165
RESL }16
RESL 167
RESL }16
RESL }17
RESL 171
RESL 172
RESL }17
RESL 174
RESL }17
RESL }17
RESL 177
RESL 178
RESL 179
RESL }18
RESL 181
RESL 182
RESL }18
RESL }19
RESL 191
RESL }19
RESL }19
RESL }19
RESL }19
RESL 196
RESL 197
RESL }19
RESL }19
RESL 200

```

\subsection*{9.6.9 Subroutine STIFMPA}

This routine evaluates the stiffness matrices for layered elasto-plastic Mindlin plate elements.


```

 50 CONTINUE STFL 81
 C
STFL 82
C*** EVALUATE PART OF STIFFNESS MATRIX
STFL 83
STFL 84
C*** EVALUATE PART OF STIFFNESS MATRIX
C
KGASP=0
NGAUM=NGAUS-1
C
C*** ENTER LOOPS FOR AREA INTEGRATION
C
C
C*** SET UP GAUSSIAN INTEGRATION CONSTANTS
C
CALL GAUSSQ (NGAUM,POSGP,WEIGP)
DO 51 IGAUS=1,NGAUM
DO 51 JGAUS=1,NGAUM
KGASP=KGASP+1
EXISP=POSGP(IGAUS)
ETASP=POSGP(JGAUS)
C
C*** EvalIJATE THE SHAPE FUNCTIONS, ELEMENTAL AREA,ETC
C
CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE)
CHLL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE)
CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE)
C
C*** EVALUATE THE B AND DB MATRICES
C
CALL LAYMPA(DEPTH,DFLEX,DSHER,EPSTN,IINCS,KGAUS,LPROP,
, MMATS,MTOTG,NCRIT,NLAPS,PROPS,STRSG,0)
C
C*** EVALUATE ELEMENT STIFFNESSES
C
DO 31 INODE=1,NNODE (BFLEI,DUMMY,BSHEI,CARTD, INODE,SHAPE,
DO 31 INODE=1,NNODE (BFLEI,DUMMY,BSHEI,CARTD, INODE, SHAPE,
DO 31 JNODE=INODE,NNODE
- 0, 0, 1)
(BELEJ,DUMMY,BSHEJ,CARTD, JNODE, SHAPE,
. 0, 0, 1)
31'CALL SUBMP (BSHEI,BSHEJ,DAREA,DSHER,ESTIF,INODE,
51 CONTINUE
C
C*** CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX
C
DO }60\mathrm{ IEVAB =1,NEVAB
DO }60\mathrm{ JEVAB=IEVAB,NEVAB
60 ESTIF (JEVAB,IEVAB)=ESTIF (IEVAB, JEVAB)
C
C*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT
C COORDINATES FOR EACH ELEMENT ON DISC FILE
C
WRITE(1) ESTIF
WRITE(3) GPCOD
70 CONTINUE
RETURN
END
STFL 85
STFL 86
STFL }8
C N
STFL }8
STFL 89
* ENTER LOORS FOR AREA INTEGRATION
STFL 90
STFL }9
STFL 92
STFL }9
STFL }9
STFL }9
STFL 96
STFL }9
STFL 98
STFL 99
STFL 100
STFL }10
STFL }10
STFL }10
STFL 104
STFL 104
STFL }10
STFL }10
STFL }10
STFL 108
STFL 109
STFL 110
STFL }11
STFL }11
STFL }11
STFL 114
STFL }11
STFL }11
STFL 117
STFL }11
STFL-118
STFL 119
STFL }12
STFL }12
STFL }12
STFL }12
STFL 124
STFL }12
STFL }12
STFL }12
STFL }12
STFL }12
STFL }13
STFL 131
STFL }13
STFL }13
STFL 134
STFL }13
STFL }13
STFL 136
STFL 137
STFL 138
STFL 139

```

\subsection*{9.6.10 Subroutine STRMPA}

This subroutine evaluates the stresses within each layer.


\subsection*{9.7 Examples}

To test the program, the elasto-plastic analysis of a simply supported plate is performed and 9 noded and Heterosis elements are used. The geometry, material properties of the plate are shown in Fig. 9.6.


Fig. 9.6 Geometry and material properties of simply supported square plate.

Typical input for the nonlayered approach is given in Appendix IV together with lineprinter output of results. Figures 9.7 and 9.8 show the load displacement curves for both layered and nonlayered approaches.


Fig. 9.7 Load displacement curves for nonlayered approach.


Fig. 9.8 Load displacement curves for layered approach.


Fig. 9.9 Infinite clamped plate strip under uniform lateral load \(q\).

\subsection*{9.8 Problems}
9.1 Consider the uniformly loaded, clamped plate shown in Fig. 9.9. Using programs MINDLIN and MINDLAY find the collapse load for the plate which has the following properties:
Elastic modulus \(E=10000.0\), Poisson's ratio \(v=0.3\), thickness \(t=0.01\), length \(L=1.00\) and yield stress \(\sigma_{0}=1000.0\). Check your solution using program PLANET.
9.2 Use program MINDLIN to find the value of the uniformly distributed load intensity \(q\) at which yielding first occurs for rectangular, simply supported plates of aspect ratios \(1.0,1.2,1.4,1.6,2.0\) and 2.2. Assume a thickness/span ratio of 0.05 and locate also the position of first yielding. Compare your results with those of Turvey \({ }^{(9)}\) for a Von Mises material.
9.3 Modify program MINDLAY to allow for in-plane deformation of the plate mid-plane. Use a displacement pattern of the form
\[
\begin{align*}
u(x, y, z) & =u_{0}(x, y)-z \theta_{x}(x, y)  \tag{9.31}\\
v(x, y, z) & =v_{0}(x, y)-z \theta_{y}(x, y) \tag{9.32}
\end{align*}
\]
in which \(u_{0}\) and \(v_{0}\) are the in-plane deflections of the plate mid-plane in the \(x\) and \(y\) directions respectively.
9.4 Modify programs MINDLIN and MINDLAY to allow for an elastic Winkler foundation of modulus \(K\). The appropriate virtual work term is
\[
\int_{Q} \delta w K w d \Omega
\]
in which \(\delta w\) is the virtual lateral displacement.
9.5 Solve the beam problem in Example 5.1 of Chapter 5 using programs MINDLIN and MINDLAY.
9.6 Develop a program for the nonlayered elastoplastic analysis of axisymmetric Mindlin plates using 2-node radial finite elements. The
virtual work expression for an annular plate of internal and external radii \(r_{0}\) and \(r_{1}\) respectively is given as
\[
\begin{gather*}
2 \pi \int_{r_{0}}^{r_{1}}\left[-\frac{d(\delta \theta)}{d r} M_{r}-\frac{\delta \theta}{r} M_{\theta}+\left(\frac{d(\delta w)}{d r}-\theta\right) Q\right] r d r \\
-2 \pi \int_{r_{0}}^{r_{1}} \delta w q r d r \tag{9.33}
\end{gather*}
\]
in which the radial bending moment \(M_{r}=-D[d \theta / d r+\nu \theta / r]\) the circumferential bending moment \(M_{\theta}=-D[\theta / r+v d \theta / d r]\) the shear force \(Q=[G t(d w / d r-\theta)] / 1.2, \theta\) is the normal rotation in the radial \(r z\) plane and \(w\) is the lateral displacement in the \(z\) direction.

\subsection*{9.9 References}
1. Hughes, T. J. R. and Cohen, M.. The 'Heterosis' finite element for plate bending, Computers and Structures 9, 445-450 (1978).
2. Bhaumik, A. K. and Hanley, J. T., Elasto-plastic plate analysis by finite differences, J. Struct. Div. ASCE, 93, 575 (1967).
3. Armen, H., Pifko, A. and Levine, H. S., A finite element methed for the plastic bending analysis of structures, Proc. of the Second Conf. on Matrix Methods in Struct. Mech., Wright-Patterson Air Force Base, Dayton, Ohio, 1301-1339 (1968).
4. Lopez, L. A. and Ang, A. H. I., Flexural analysis of elastic-plastic rectangular plates, Civil Engineering Studies, Structural Research Series No. 305, University of Illinois (1966).
5. McNiece, G. M. and Kemp, K. O., Comparison of finite element and unique limit analysis solutions for certain reinforced concrete slabs. Proc. Instn. Civ. Engrs. 43, 629-640 (1969).
6. Backlund, J., Mixed finite element analysis of elastic and elasto-plastic plates in bending, Chalmers University of Technology, Department of Structural Mechanics, Publication 7I:I, 30, Göteborg (1971).
7. Wegmuller, A. W. and Коstem, C. N., Finite element analysis of elastic-plastic plates and cccentrically stiffened plates, Fritz Engineering Laboratory Report No. 376A4, Lehigh University, Bethlehem, Pennsylvania (1973).
8. Hinton, E. and Owen, D. R. J., Finite Element Programming, Academic Press (1977).
9. Tlirvey, G. J.. First yield analysis of laterally loaded, rectangular, Levy plates with unsymmetric, side boundary conditions, Proc. Instm. Cir. Engrs., 65, 199-206 (1978).

Part III

\title{
Chapter 10 \\ Explicit transient dynamic analysis
}

Written in collaboration with D. K. Paul and N. Bicanic

\subsection*{10.1 Introduction}

Earlier, in Parts I and II, we considered static (or pseudostatic) applications. However, many structures are subjected to time-varying loads such as impulse, blast, impact or earthquake loading. Here in Part III we consider finite element based methods for dealing with such problems.

Although a form of mode-superposition has been adopted in nonlinear transient dynamic stress analysis, \({ }^{(1)}\) it is general practice to use a time stepping procedure. Such direct integration schemes may be broadly classified as either explicit or implicit methods.

In the present chapter, we consider the very popular and easily implemented, explicit, central difference scheme. During each time step, relatively little computational effort is required since no formal matrix factorisation is necessary. Unfortunately, the method is conditionally stable and very small time steps are often needed.

In implicit schemes, a matrix factorisation is required but we can select an unconditionally stable implicit algorithm in which the time step length is governed by considerations of accuracy alone. In Chapter 11 we consider the Newmark family \({ }^{(2)}\) of time stepping schemes. We then present a program for nonlinear transient dynamic stress analysis in which we may select any of the following algorithms:
(i) an implicit solution
(ii) an explicit solution
(iii) a combined implicit/explicit solution

The programs in Chapters 10 and 11 deal with plane stress, plane strain and axisymmetric applications using 4,8 and 9 -node, isoparametric quadrilaterals. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation. In Chapter 10 the material behaviour is assumed to be elasto-viscoplastic, whereas an elasto-plastic model is used in Chapter 11. Test examples are presented for both programs.

\subsection*{10.2 Dynamic equilibrium equations}

For dynamic equilibrium of a body in motion we can use the Principle of Virtual Work to write the following equations at time station \(t_{n}\) irrespective of material behaviour
\[
\begin{align*}
\int_{\Omega}\left[\delta \boldsymbol{\epsilon}_{n}\right]^{T} \sigma_{n} d \Omega & -\int_{\Omega}\left[\delta \boldsymbol{u}_{n}\right]^{T}\left[\boldsymbol{b}_{n}-\rho_{n} \ddot{\boldsymbol{u}}_{n}-c_{n} \dot{\boldsymbol{u}}_{n}\right] d \Omega \\
& -\int_{\Gamma_{t}}\left[\delta \boldsymbol{u}_{n}\right]^{T} \boldsymbol{t}_{n} d \Gamma=0 \tag{10.1}
\end{align*}
\]
where \(\delta \boldsymbol{u}_{n}\) is the vector of virtual displacements, \(\delta \boldsymbol{\epsilon}_{n}\) is the vector of associated virtual strains, \(\boldsymbol{b}_{n}\) is the vector of applied body forces, \(\boldsymbol{t}_{n}\) is the vector of surface tractions, \(\sigma_{n}\) is the vector of stresses, \(\rho_{n}\) is the mass density, \(c_{n}\) is the damping parameter and a dot refers to differentiation with respect to time. The domain of interest \(\Omega\) has two boundaries: \(\Gamma_{t}\) on which boundary tractions \(\boldsymbol{t}_{n}\) are specified and \(\mathrm{I}_{u}\) on which displacements \(\boldsymbol{u}_{n}\) are specified. For plane stress, plane strain and axisymmetric problems all of these terms were defined in Chapter 6.

Recall that in Chapter 6 we noted that, for a finite element representation, the displacements and strains and also their virtual counterparts are given by the relationships
\[
\begin{array}{ll}
\boldsymbol{u}_{n}=\sum_{i=1}^{m} \boldsymbol{N}_{i}\left[\boldsymbol{d}_{i}\right]_{n}, & \delta \boldsymbol{u}_{n}=\sum_{i-1}^{m} \boldsymbol{N}_{i}\left[\delta \boldsymbol{d}_{i}\right]_{n} \\
\boldsymbol{\epsilon}_{n}=\sum_{i=1}^{m} \boldsymbol{B}_{i}\left[\boldsymbol{d}_{i}\right]_{n}, & \delta \boldsymbol{\epsilon}_{n}=\sum_{i=1}^{m} \boldsymbol{B}_{i}\left[\delta \boldsymbol{d}_{i}\right]_{n} \tag{10.3}
\end{array}
\]
where at time station \(t_{n}\) for pode \(i,\left[d_{i}\right]_{n}\) is the vector of nodal displacements, [ \(\left.\delta d_{i}\right]_{n}\) is the vector of virtual nodal variables, \(N_{i}=N_{i} I_{2}\) is the matrix of global shape functions and \(B_{i}\) is the global strain-displacement matrix. \(\dagger\) The total number of nodes is \(m\).
If (10.2) and (10.3) are substituted into (10.1), and if we note that the resulting equation is true for any set of virtual displacements \([\delta d]_{n}\) then we obtain for each node \(i\) the equations.

\footnotetext{
* Note that a subscript \(n\) refers to a quantity sampled at time station \(t_{n}\) and similarly a subscript \(n+1\) refers to a quantity sampled at time station \(t_{n}+\Delta t\).
\(\dagger\) Here we assume that the strains are linear and hence \(\mathbf{B}_{i}\) is independent of time. Later we show how to cater for nonlinear strains in which \(\mathbf{B}_{i}\) is displacement (and hence time) dependent and it is written as \(\left[B_{i}\right]_{n}\).
}
\[
\begin{equation*}
\left[p_{i}\right]_{n}-\left[f_{B i}\right]_{n}+\left[f_{I i}\right]_{n}+\left[f_{D i}\right]_{n}-\left[f_{T i}\right]_{n}=\mathbf{0} \tag{10.4}
\end{equation*}
\]
where the internal resisting forces are
\[
\begin{equation*}
\left[\boldsymbol{p}_{i}\right]_{n}=\int_{\Omega}\left[\boldsymbol{B}_{i}\right]^{T} \sigma_{n} d \Omega \tag{10.5}
\end{equation*}
\]
the consistent forces for the applied body forces are
\[
\begin{equation*}
\left[f_{B i}\right]_{n}=\int_{\Omega}\left[N_{i}\right]^{T} b_{n} d \Omega \tag{10.6}
\end{equation*}
\]
the inertia forces are
\[
\left.\begin{array}{rl}
{\left[f_{I i}\right]_{n}} & =\int_{\Omega}\left[N_{i}\right]^{T} \rho_{n}\left[N_{1}, N_{2}, \ldots, N_{m}\right] d Q
\end{array} \begin{array}{c}
{\left[\ddot{d}_{1}\right]_{n}} \\
{\left[\ddot{d}_{2}\right]_{n}}  \tag{10.7}\\
\vdots \\
\end{array}\right]=\begin{gathered}
\vdots \\
\left.\left[\ddot{d}_{m=1}^{m}\right]_{n}\right\lrcorner
\end{gathered}
\]
(N.B. \(\left[\boldsymbol{M}_{\boldsymbol{i}}\right]_{n}\) is a submatrix of the mass matrix \(\boldsymbol{M}_{n}\) ) The damping forces are
\[
\left.\begin{array}{rl}
{\left[f_{D i}\right]_{n}} & =\int_{\Omega}\left[\boldsymbol{N}_{i}\right]^{T} c_{n}\left[\boldsymbol{N}_{1}, N_{2}, \ldots, \boldsymbol{N}_{m}\right] d \Omega  \tag{10.8}\\
& =\sum_{j=1}^{m}\left[C_{i j}\right]_{n}\left[\dot{\boldsymbol{d}}_{j}\right]_{n}
\end{array} \begin{array}{c}
{\left[\dot{\boldsymbol{d}}_{1}\right]} \\
{\left[\dot{\boldsymbol{d}}_{2}\right]} \\
\vdots \\
\left.\dot{\dot{d}_{m}}\right]
\end{array}\right]
\]
(N.B. \(\left[C_{i j}\right]_{n}\) is a submatrix of the damping matrix \(C_{n}\) ) and the consistent forces for the traction boundary forces are
\[
\begin{equation*}
\left[f_{T i}\right]_{n}=\int_{J_{i}}\left[\boldsymbol{N}_{i}\right]^{T} \boldsymbol{t}_{n} d \Gamma \tag{10.9}
\end{equation*}
\]

If we use \(C(0)\) isoparametric finite element representations we can evaluate contributions to (10.4) separately from cach element and then assemble them into the appropriate vectors in (10.4). As noted in Chapter 6 the displacements can be expressed in the usual way as
\[
\begin{equation*}
\left[\boldsymbol{u}^{(\rho)}\right]_{n}=\sum_{i-1}^{r^{!}} \boldsymbol{N}^{(e)}\left[\boldsymbol{d}_{i}^{(e)}\right]_{n} \tag{10.10}
\end{equation*}
\]
where for local node \(i\) of element \(e, N_{i}^{(e)}=N_{i}^{(e)} I_{2}\) is the local shape function matrix and \(\left[d_{i}{ }^{(e)}\right]_{n}\) is the vector of nodal displacements. As described in

Chapter 6 we use 4, 8 and 9 noded isoparametric quadrilateral elements and therefore \(r=4,8\) and 9 respectively for these cases.

The strain displacement relationships are expressed as
\[
\begin{equation*}
\left[\boldsymbol{\epsilon}^{(e)}\right]_{n}=\sum_{i=1}^{r} \boldsymbol{B}_{i^{(e)}}\left[\boldsymbol{d}_{i}^{(e)}\right]_{n} \tag{10.11}
\end{equation*}
\]
in which \(\boldsymbol{B}_{i}{ }^{(e)}\) is the local element strain matrix which has been defined for the various applications in Table 6.1.

The discretised elemental volume is given as
\[
\begin{equation*}
d \Omega^{(e)}=h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)} d \xi d \eta \tag{10.12}
\end{equation*}
\]
in which \(\operatorname{det} J^{(e)}\) is the determinant of the Jacobian matrix and \(h^{(e)}\) is defined in Chapter 6.

Thus the element contributions to the terms in (10.4) may be evaluated using numerical integration based on Gauss-Legendre product rules. These contributions now take the form
\[
\begin{align*}
{\left[\boldsymbol{p}_{i}{ }^{(e)}\right]_{n} } & =\int_{-1}^{+1} \int_{-1}^{+1}\left[\boldsymbol{B}_{i}^{(e)}\right]^{T} \boldsymbol{\sigma}_{n}^{(e)} h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)} d \xi d \eta  \tag{10.13}\\
{\left[f_{B \dot{B}}{ }^{(e)}\right]_{n} } & =\int_{-1}^{+1} \int_{-1}^{+1}\left[\boldsymbol{N i}^{(e)}\right]^{T} \boldsymbol{b}_{n} h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)} d \xi d \eta \tag{10.14}
\end{align*}
\]
\[
\begin{align*}
{\left[f_{I_{i}}^{(e)}\right]_{n} } & =\int_{-1}^{+1} \int_{-1}^{+1}\left[N_{i}{ }^{(e)}\right]^{T} \rho_{n}(e) \\
& {\left[N_{1}(e), N_{2}(e), \ldots, N_{r}{ }^{(e)}\right] h^{(e)} \operatorname{det} \boldsymbol{J}^{(e)} d \xi d \eta\left[\begin{array}{c}
{\left[\ddot{\vec{d}}_{1}{ }^{(e)}\right]_{n}} \\
\vdots \\
{\left[\ddot{\boldsymbol{d}}_{r}(e)\right.} \\
]_{n}
\end{array}\right] }  \tag{10.15}\\
& =\sum_{j=1}^{r}\left[M_{i j}{ }^{(e)}\right]_{n}\left[\ddot{\boldsymbol{d}}_{j}^{(e)}\right]_{n}
\end{align*}
\]
\(\begin{aligned} {\left[f_{D i}{ }^{(e)}\right]_{n} } & =\int_{-1}^{+1} \int_{-1}^{+1}\left[N_{i}{ }^{(e)}\right]^{T} C_{n}(e)\left[N_{1}(e), N_{2}(e), \ldots, N_{r}(e)\right] h^{(e)} \operatorname{det} J^{(e)} d \xi d \eta\left[\begin{array}{c}{\left[\dot{d}_{1}{ }^{(e)}\right]_{n}} \\ \vdots \\ {\left[\dot{d}_{r}{ }^{(e)}\right]_{n}}\end{array}\right] \\ & =\sum_{j=1}^{r}\left[C_{i j}{ }^{(e)}\right]_{n}\left[\dot{d}_{j}^{(e)}\right]_{n}\end{aligned}\)
\[
\begin{equation*}
\left[f_{T i}{ }^{(e)}\right]_{n}=\int_{\Gamma_{t}(e)}\left[N_{i}^{(e)}\right]^{T} t_{n}^{(e)} d \Gamma \tag{10.17}
\end{equation*}
\]
where \(\Gamma_{t}{ }^{(e)}\) (if it exists) is that part of \(\Gamma_{t}\) which coincides with the boundary of element domain \(\Omega^{(e)}\).

We will assume for simplicity that the mass and damping matrices do not vary with time.

\subsection*{10.3 Modelling of nonlinearities}

\subsection*{10.3.1 Introduction}

Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered.

Although material behaviour under dynamic loading is very complex and experimental information is scarce, for most structural materials, some general statements can be made.

For example, it has frequently been demonstrated that the instantaneous yield stress is significantly influenced by the rate of straining. Also, the value of the elasticity modulus \(E_{0}\) is found to be dependent on the strain rate. For structural materials with limited ductility, such as concrete or rock-like materials, the rate of straining can completely change the material response from elasto-plastic behaviour under low rates to brittle elastic behaviour under high rates of straining. For many structural materials there is still an urgent need for a better understanding of the observed phenomena and underlying microscopic behaviour. However, in attempting to perform an analysis of a dynamically-loaded engineering structure, we must look for an idealized material model, where possibly some compromises have to be made. Furthermore, the model parameters should readily be measurable and easily obtained from reliable experimental data.

For transient dynamic analysis, an elasto-viscoplastic model, as developed in earlier chapters, presents a very good approximation of the true behaviour for many structural materials. The predominant phenomenon of variable instantaneous yield stress is adequately modelled.

In the following, we shall develop the algorithm for the elasto-viscoplastic transient dynamic analysis of plane stress, plane strain and axisymmetric problems. The computer program DYNPAK will be documented and explained and finally, some illustrative examples are given.

\subsection*{10.3.2 Material model}

Here we adopt the elasto-viscoplastic material model developed in Chapter 8 , where the constitutive relationship is given in the form
\[
\begin{align*}
\dot{\boldsymbol{\epsilon}}_{n} & =\left[\dot{\boldsymbol{\epsilon}}_{\epsilon}\right]_{n}+\left[\dot{\epsilon}_{i p}\right]_{n} \\
& =[D]^{-1} \dot{\boldsymbol{\sigma}}_{n}: \gamma\left\langle\Phi_{n}(F)\right\rangle \frac{\dot{c} F}{\hat{\sigma} \sigma_{n}} \tag{10.18}
\end{align*}
\]
where \(\boldsymbol{D}\) is the elasticity matrix, \(\gamma\) is the fluidity parameter, \(F\) is the yield
function and \(\dot{\boldsymbol{\epsilon}}_{n},\left[\dot{\epsilon}_{e}\right]_{n}\) and \(\left[\dot{\boldsymbol{\varepsilon}}_{v p}\right]_{n}\) denote the total, elastic and viscoplastic strain rates at time station \(t_{n}\). We also have the relationships
\[
\begin{align*}
\boldsymbol{\sigma}_{n} & =\boldsymbol{D}\left[\boldsymbol{\epsilon}_{e}\right]_{n} \\
\boldsymbol{\epsilon}_{n} & =\left[\boldsymbol{\epsilon}_{e}\right]_{n}+\left[\boldsymbol{\epsilon}_{v p}\right]_{n} \tag{10.19}
\end{align*}
\]
and
\[
\begin{align*}
\left\langle\Phi_{n}(F)\right\rangle & =0 \quad \text { if yield has not occurred. } \\
& =1 \quad \text { if yield has occurred. } \tag{10.20}
\end{align*}
\]

Thus we can rewrite the internal resisting forces as
\[
\begin{equation*}
\boldsymbol{p}_{n}=\int_{\Omega}[\boldsymbol{B}]^{T} \boldsymbol{D}\left\{\boldsymbol{\epsilon}_{n}-\left[\boldsymbol{\epsilon}_{v p}\right]_{n}\right\} d \Omega \tag{10.21}
\end{equation*}
\]

The temporal discretization of the equations which govern viscoplastic straining is also based on the assumption that the relationship
\[
\begin{equation*}
\left[\dot{\boldsymbol{\epsilon}}_{v p}\right]_{n}=\gamma\left\langle\Phi_{n}(F)\right\rangle \frac{\partial F}{\partial \sigma_{n}} \tag{10.22}
\end{equation*}
\]
is known only for discrete time stations \(\Delta t\) apart. The simplest, Euler, integration scheme will here be employed, i.e.,
\[
\begin{equation*}
\left[\boldsymbol{\epsilon}_{v p}\right]_{n+1}=\left[\boldsymbol{\epsilon}_{v p}\right]_{n}+\left[\dot{\boldsymbol{\epsilon}}_{v p}\right]_{n} \Delta t . \tag{10.23}
\end{equation*}
\]

The stability limit for the time increment \(\Delta t\), which depends on the specific form of the viscoplastic potential employed in the flow rule, has already been discussed in earlier chapters.

When we adopt the central difference scheme and the viscoplastic material model that we have just described, the algorithm at a particular time station \(t_{n}\) follows the sequence shown in Fig. 10.1.

\subsection*{10.3.3 Geometric nonlinearity}

If we wish to cater for geometrically nonlinear elastic behaviour we can choose either a total or updated Lagrangian coordinate system. Here we choose a total Lagrangian coordinate system which coincides with the initial undeformed position of the body. \({ }^{(3)}\)
It transpires that, with the central difference scheme, the only changes required to account for geometrically nonlinear effects are
(i) The modification of the strain-displacement matrix \(\boldsymbol{B}\left(\boldsymbol{d}_{n}\right)\), and
(ii) The evaluation of the strains using a deformation Jacobian matrix \(J_{D}\left(d_{n}\right)\).

\footnotetext{
* Note that in dynamic transient analysis, the time interval \(\Delta t\) is here assumed constant; whereas for viscoplastic applications in Chapter 8 it is variable.
}


Fig. 10.1 Algorithm for elasto viscoplastic straining during a time step.
We will now describe briefly the relevant background theory. All vectors and matrices are given explicitly for the plane stress, plane strain and axisymmetric applications in Table 10.1.

If the initial undeformed position of a particle of material is \(x_{0}\) and the total displacement vector at time station \(t_{n}\) is \(\boldsymbol{u}_{n}\) then the coordinates of the particle are
\[
\begin{equation*}
\boldsymbol{x}_{n}=\boldsymbol{x}_{0}+\boldsymbol{u}_{n} \tag{10.24}
\end{equation*}
\]

In a total Lagrangian formulation we use Green's strains. The matrix of Green's strains is given as
\[
\begin{equation*}
\boldsymbol{E}_{n}=\frac{1}{2}\left[\left[\boldsymbol{J}_{D}\right]_{n}^{T}\left[\boldsymbol{J}_{D}\right]_{n}-\boldsymbol{I}\right] \tag{10.25}
\end{equation*}
\]

\section*{Variables}

Plane stress/strain
Axisymmetric

Coordinates of particle configuration \(\boldsymbol{x}=\boldsymbol{x}_{0}\)
\[
\left[x_{0}, y_{0}\right]^{T}
\]
\(\left[r_{0}, z_{0}\right]^{T}\)
\(\left[u_{n}, v_{n}\right]^{T}\)
\[
\left[u_{n}, w_{n}\right]^{T}
\]
\(\left[x_{n}, y_{n}\right]^{T}=\left[x_{0}+u_{n}, y_{0}+v_{n}\right]^{T}\)
Coordinates of particle in deformed configuration \(\boldsymbol{x}_{\boldsymbol{n}}\)
\[
\left[r_{n}, z_{n}\right]^{T}=\left[r_{0}+u_{n}, z_{0}+w_{n}\right]
\]
\[
\left[\epsilon_{x} \epsilon_{y} \gamma_{x y}\right]_{n}\left[\begin{array}{c}
\frac{\partial u_{n}}{\partial x}+\frac{1}{2}\left(\frac{\partial u_{n}}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial v_{n}}{\partial x}\right)^{2} \\
\frac{\partial v_{n}}{\partial y}+\frac{1}{2}\left(\frac{\partial u_{n}}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial v_{n}}{\partial y}\right)^{2} \\
\frac{\partial u_{n}}{\partial y}+\frac{\partial v_{n}}{\partial x}+\frac{\partial u_{n}}{\partial x} \frac{\partial u_{n}}{\partial y}+\frac{\partial v_{n}}{\partial x} \frac{\partial v_{n}}{\partial y}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{r} \\
\epsilon_{z} \\
\sigma_{r z}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial u_{n}}{\partial r}+\frac{1}{2}\left(\frac{\partial u_{n}}{\partial r}\right)^{2}+\frac{1}{2}\left(\frac{\partial w_{n}}{\partial r}\right)^{2} \\
\frac{\partial w_{n}}{\partial z}+\frac{1}{2}\left(\frac{\partial u_{n}}{\partial z}\right)^{2}+\frac{1}{2}\left(\frac{\partial w_{n}}{\partial z}\right)^{2} \\
\frac{\partial u_{n}}{\partial z}+\frac{\partial w_{n}}{\partial r}+\frac{\partial u_{n}}{\partial r} \frac{\partial u_{n}}{\partial z}+\frac{\partial w_{n}}{\partial r} \frac{\partial w_{n}}{\partial z} \\
\frac{u_{n}}{r}+\frac{1}{2}\left(\frac{u_{n}}{r}\right)^{2}
\end{array}\right]
\]
\[
\left[\begin{array}{ll}
\frac{\partial x_{n}}{\partial x} & \frac{\partial x_{n}}{\partial y} \\
\frac{\partial y_{n}}{\partial x} & \frac{\partial y_{n}}{\partial y}
\end{array}\right]
\]
\[
\left[\begin{array}{cc}
\frac{\partial r_{n}}{\partial r} & \frac{\partial r_{n}}{\partial z} \\
\frac{\partial z_{n}}{\partial r} & \frac{\partial z_{n}}{\partial z}
\end{array}\right]
\]

\(\left[\frac{\partial u_{n}}{\partial x}, \frac{\partial v_{n}}{\partial y},\left(\frac{\partial u_{n}}{\partial y}+\frac{\partial v_{n}}{\partial x}\right)\right]^{T}\)

Deformation Jacobian matrix
\(J_{D}\left(u_{n}\right)=\left[J_{D]_{n}}\right.\)

Matrix of Green's strains
\(\boldsymbol{E}_{n}=\frac{1}{2}\left\{\left[J_{D}\right]_{n}^{T}\left[J_{D}\right]_{n}-\boldsymbol{I}\right\}\)

Linear strains \(\left[\boldsymbol{\epsilon}_{L}\right]_{n}\)
Table 10.1 (Cont.)

where \(\left[J_{D}\right]_{n}\) is the deformation Jacobian matrix at time station \(t_{n}\).
The Green's strains can be written as
\[
\begin{equation*}
\boldsymbol{\epsilon}_{n}=\left[\boldsymbol{\epsilon}_{L}\right]_{n}+\left[\boldsymbol{\epsilon}_{N L}\right]_{n} \tag{10.26}
\end{equation*}
\]
where \(\left[\epsilon_{L}\right]_{n}\) are the linear strains given earlier in Chapter 6 and \(\left[\epsilon_{N L}\right]_{n}\), the nonlinear strain terms are given as
\[
\begin{equation*}
\left[\epsilon_{N L}\right]_{n}=\frac{1}{2}\left[\mathcal{A}_{\theta}\right]_{n} \theta_{n} \tag{10.27}
\end{equation*}
\]

For a set of virtual displacements, the corresponding virtual Green's strains are given as
\[
\begin{equation*}
[\delta \boldsymbol{\epsilon}]_{n}=\left[\delta \boldsymbol{\epsilon}_{L}\right]_{n}+\left[\boldsymbol{A}_{\theta}\right]_{n} \delta \boldsymbol{\theta}_{n} \tag{10.28}
\end{equation*}
\]

Thus the virtual work statement of (10.1) can be rewritten as
\[
\begin{align*}
\int_{\Omega}\left[\delta \epsilon_{n}\right]^{T} \sigma_{n} d \Omega & -\int_{\Omega}\left[\delta \boldsymbol{u}_{n}\right]^{T}\left[b_{n}-\rho \dot{\boldsymbol{u}}_{n}-c \dot{\boldsymbol{u}}_{n}\right] d \Omega \\
& -\int_{\Gamma_{t}}\left[\delta \boldsymbol{u}_{n}\right]^{T} \boldsymbol{t}_{n} d \Gamma=0 \tag{10.29}
\end{align*}
\]
where \(\sigma_{n}\) are the Piola-Kirchhoff stresses.
As mentioned earlier, all relevant terms are given in Table 10.1.
If we adopt the finite element discretization scheme described earlier, then the displacement gradients \(\boldsymbol{\theta}_{n}\) are given in terms of the nodal displacements [ \(\left.d_{i}\right]_{n}\) by the linear relation
\[
\begin{equation*}
\theta_{n}=\sum_{i=1}^{m} G_{i}\left[d_{i}\right]_{n} \tag{10.30}
\end{equation*}
\]
where \(\boldsymbol{G}_{i}\) contains Cartesian shape function derivatives as indicated in Table 10.2 for the various applications.

Similarly we have
\[
\begin{equation*}
\delta \theta_{n}=\sum_{i=1}^{m} G_{i}\left[\delta d_{i}\right]_{n} \tag{10.31}
\end{equation*}
\]

The linear strain-displacement relationship can be expressed as
\[
\begin{equation*}
\left[\boldsymbol{\epsilon}_{L}\right]_{n}=\sum_{i=1}^{m}\left[\boldsymbol{B}_{L i}\right]_{n}\left[d_{i}\right]_{n} \tag{10.32}
\end{equation*}
\]
where \(\left[\boldsymbol{B}_{L i}\right]_{n}\) is the linear strain displacement matrix introduced earlier.
Table 10.2 The nonlinear strain displacement matrix evaluation in a total Lagrangian finite element formulation


Similarly, we have
\[
\begin{equation*}
\left[\delta \epsilon_{N L}\right]_{n}=\sum_{i=1}^{m}\left[\boldsymbol{B}_{N L i}\right]_{n}\left[\delta d_{i}\right]_{n} \tag{10.33}
\end{equation*}
\]

The components of the vector of Green's strains \(\epsilon_{n}\) can be written as
\[
\begin{equation*}
\boldsymbol{\epsilon}_{n}=\sum_{i=1}^{m}\left[\left[\boldsymbol{B}_{L i}\right]_{n}+\frac{1}{2}\left[\boldsymbol{B}_{N L i}\right]_{n}\right]\left[\boldsymbol{d}_{i}\right]_{n} \tag{10.34}
\end{equation*}
\]
where the nonlinear strain-displacement matrix \(\left[B_{N L t}\right]_{n}\) is given as
\[
\begin{equation*}
\left[B_{N L i}\right]_{n}=\left[A_{\theta}\right]_{n} G_{i} . \tag{10.35}
\end{equation*}
\]

Furthermore it can be shown that the virtual strains can be expressed as
\[
\begin{equation*}
\delta \mathbf{e}_{n}=\sum_{i=1}^{m}\left[B_{i}\right]_{n}\left[\delta d_{i}\right]_{n} \tag{10.36}
\end{equation*}
\]
where
\[
\left[\boldsymbol{B}_{i}\right]_{n}=\left[\boldsymbol{B}_{L i}\right]_{n}+\left[\boldsymbol{B}_{N L i}\right]_{n}
\]
is given in Table 10.2 for the various applications.
If we substitute for \(\delta \epsilon_{n}\) and \(\delta \boldsymbol{d}_{n}\) in (10.29) and note that the result is true for arbitrary virtual displacements, then we obtain an expression which is identical to (10.4). In the present case we only reed to remember that \(\left[B_{i}\right]_{n}\) is defined by (10.36).

We again note that contributions to (10.4) from each element can be obtained separately and assembled appropriately.

Note that we now may evaluate \(\left[p_{i}\right]_{n}\) as
\[
\int_{\Omega}\left[B_{i}\right]_{n}^{T} \sigma_{n} d \Omega \quad \text { rather than } \int_{\Omega}\left[\boldsymbol{B}_{i}\right]^{T} \sigma_{n} d \Omega
\]
where \(\left[\boldsymbol{B}_{i}\right]_{n}\) is given by (10.36).

\subsection*{10.4 Explicit time integration scheme}

\subsection*{10.4.1 Central difference approximation}

We can write the equations (10.4) in matrix form so that at time station \(t_{n}\) we have
\[
\begin{equation*}
M \ddot{d}_{n}+C \dot{d}_{n}+p_{n}=f_{n} \tag{10.37}
\end{equation*}
\]

\footnotetext{
- Note that the body force term \(-\mathrm{Mü}_{g}\), due to seismic excitation, is included in the body forces which are taken into account in \(f_{n}\). Note also that \(\mathbf{M}\) and \(\mathbf{C}\) may be assembled from the element mass matrices \(\mathbf{M}^{(e)}\) and damping matrices \(\mathbf{C}^{(e)}\).
}
where \(\boldsymbol{M}\) and \(\boldsymbol{C}\) are the global mass and damping matrices respectively, \(\boldsymbol{p}_{n}\) is the global vector of internal resisting nodal forces, \(f_{n}\) is the vector of consistent nodal forces for the applied body and surfaces traction forces grouped together, \(\ddot{d}_{n}\) is the global vector of nodal accelerations and \(\dot{d}_{n}\) is the global vector of nodal velocities.

So far, only spatial discretization has been introduced. We now employ a temporal discretization of the dynamic equilibrium equations by approximating the accelerations and velocities using finite difference expressions.

In particular we adopt a central difference approximation \({ }^{(2)}\) so that the accelerations can be written as
\[
\begin{equation*}
\ddot{d}_{n} \simeq a_{n}=\frac{1}{(\Delta t)^{2}}\left\{d_{n+1}-2 d_{n}+d_{n-1}\right\} \tag{10.38}
\end{equation*}
\]
and the velocities are written as
\[
\begin{equation*}
\dot{d}_{n} \simeq v_{n}=\frac{1}{2 \Delta t}\left\{d_{n-1}-d_{n-1}\right\} \tag{10.39}
\end{equation*}
\]
in which \(\Delta t\) is the time step or interval so that we are sampling the displacements at time stations \(t_{n}-\Delta t, t_{n}\) and \(t_{n}-\Delta t\). If we substitute (10.38) and (10.39) into (10.37) we obtain
\[
\begin{equation*}
M\left\{\frac{d_{n+1}-2 d_{n}-d_{n-1}}{(\Delta t)^{2}}\right\}-C\left\{\frac{d_{n+1}-d_{n-1}}{2 \Delta t}\right\}-p_{n}=f_{n} \tag{10.40}
\end{equation*}
\]
which can be rearranged to give
\[
\begin{align*}
d_{n+1}= & {\left[M+\frac{\Delta t}{2} C\right]^{-1} } \\
& \times\left\{(\Delta t)^{2}\left[-p_{n}+f_{n}\right]+2 M d_{n}-\left[M-\frac{\Delta t}{2} C\right] d_{n-1}\right\} \tag{10.41}
\end{align*}
\]

Thus we have
\[
\begin{equation*}
d_{n+1}=g\left(d_{n}, d_{n-1}\right) \tag{10.42}
\end{equation*}
\]

In other words the displacements at time station \(t_{n} ; \Delta t\) are given explicitly in terms of the displacements at time stations \(t_{n}\) and \(t_{n}-\Delta t\).

If the mass matrix \(M\) and the damping matrix \(C\) are diagonal then the solution of (10.41) becomes trivial and we have for plane stress and plane strain applications the following equations:
\[
\begin{align*}
\left(d_{u i}\right)_{n+1}= & \left(m_{i i}+\frac{\Delta t}{2} C_{i i}\right)^{-1}\left[(\Delta t)^{2}\left\{-\left(p_{u t}\right)_{n} \cdots\left(f_{u i}\right)_{n}\right\}\right. \\
& \left.\div 2 m_{i i}\left(d_{u i}\right)_{n}-\left(m_{i i}-\frac{\Delta t}{2} c_{i i}\right)\left(d_{u i}\right)_{n} \quad 1\right] \tag{10.43}
\end{align*}
\]
and
\[
\begin{align*}
\left(d_{v i}\right)_{n+1}= & \left(m_{i i}+\frac{\Delta t}{2} c_{i i}\right)^{-1}\left[(\Delta t)^{2}\left\{-\left(p_{v i}\right)_{n}+\left(f_{v i}\right)_{n}\right\}\right. \\
& \left.+2 m_{i i}\left(d_{v i}\right)_{n}-\left(m_{i i}-\frac{\Delta t}{2} c_{i i}\right)\left(d_{v i}\right)_{n-1}\right] \tag{10.44}
\end{align*}
\]
in which at node \(i, d_{u i}\) and \(d_{v i}\) are the \(u\) and \(v\) displacement components in the \(x\) and \(y\) directions, \(f_{u i}\) and \(f_{v t}\) are the components of the applied nodal forces in the \(x\) and \(y\) directions, \(p_{u i}\) and \(p_{v i}\) are the internal resisting nodal forces in the \(x\) and \(y\) directions and \(m_{i i}\) and \(c_{i i}\) are the diagonal terms of the mass and damping matrices. For axisymmetric problems replace \(v\) by \(w\).

From (10.43) and (10.44) we see that for each displacement degree of freedom at time \(t_{n}+\Delta t\) we have a separate equation involving information regarding the degree of freedom at times \(t_{n}\) and \(t_{n}-\Delta t\). No matrix factorisation or sophisticated equation solving is therefore necessary.

\subsection*{10.4.2 Starting algorithm}

As we have seen the governing equilibrium equation at time station \(t_{n}+\Delta t\) in the central difference method involves information at the two previous time stations \(t_{n}\) and \(t_{n}-\Delta t\). A starting algorithm is therefore necessary and from the initial conditions the values \(d(0-\Delta t)\) may be obtained. We have from (10.39) the condition that
\[
\begin{equation*}
\dot{d}(0) \simeq v(0)=\frac{d(0+\Delta t)-d(0-\Delta t)}{2 \Delta t} \tag{10.45}
\end{equation*}
\]
or
\[
d(0-\Delta t)=-2 \Delta t v(0)+d(0+\Delta t)
\]

If this approximation is substituted in (10.43) then we can write the expression
\[
\begin{align*}
\left(d_{u i}\right)_{1}= & \left(m_{i i}+\frac{\Delta t}{2} c_{i i}\right)^{-1}\left[(\Delta t)^{2}\left\{-\left(p_{u i}\right)_{0}+\left(f_{u i}\right)_{0}\right\}\right. \\
& \left.\left.+2 m_{i i}\left(d_{u i}\right)_{0}-\left(m_{i i}-\frac{\Delta t}{2} c_{i i}\right)\left\{-2 \Delta t\left(\dot{d}_{u i}\right)_{0}+d_{u i}\right)_{1}\right\}\right] \tag{10.46}
\end{align*}
\]
or
\[
\left(d_{u i}\right)_{1}=\frac{(\Delta t)^{2}}{2 m_{i i}}\left\{-\left(p_{u i}\right)_{0}+\left(f_{u i}\right)_{0}\right\}+\left(\dot{d}_{u i}\right)_{0}+B \Delta t\left(d_{u i}\right)_{0}
\]
where
\[
B=1-\frac{c_{i i} \Delta t}{2 m_{i t}} .
\]

\subsection*{10.4.3 Damping}

Very limited information is available on damping in linear solid mechanics problems and there is even less data available for damping in nonlinear situations. It is therefore customary to assume that the damping
matrix is proportional to the mass and stiffness matrix. This is known as Rayleigh damping and we have
\[
\begin{equation*}
\boldsymbol{C}=\alpha \boldsymbol{M}+\beta \boldsymbol{K} \tag{10.47}
\end{equation*}
\]

In the central difference method we can make the approximation that \(\beta=0\) so that
\[
\begin{equation*}
\boldsymbol{C}=\alpha \boldsymbol{M} \tag{10.48}
\end{equation*}
\]
or
\[
c_{i i}=a m_{i i}
\]
where
\[
a=2 \xi_{r} \omega_{r}
\]
in which \(\xi_{r}\) and \(\omega_{r}\) are the damping factor and circular frequency for the \(r^{\text {th }}\) mode. This modelling of damping is rather poor since \(a\) is fixed for all modes of vibration. Thus if we take \(r=1\) then the higher modes will be less damped whereas the opposite would be more desirable. This is the price we pay for an otherwise convenient and efficient solution.

\subsection*{10.5 Critical time step}

In explicit and implicit time integration schemes the selection of an appropriate time step is crucially important. Small time steps are required for accurate and stable solutions whereas for reasons of economy we would prefer large time steps. The analysis of the stability and accuracy characteristics \({ }^{(2)}\) allows us to decide on a suitable time step for the various time stepping schemes. On this basis for the conditionally stable, central difference scheme, the stability considerations are of prime importance and the time step length is limited by the expression
\[
\begin{equation*}
\Delta t \leqslant \frac{2}{\omega_{\max }} \tag{10.49}
\end{equation*}
\]
where \(\omega_{\max }\) is the highest circular frequency of the finite element mesh. This severe time step limit, required for stability, ensures accuracy in practically all modes of vibration. Providing that \(\omega_{\text {max }}\) represents the maximum nonlinear frequency, (10.49) holds for nonlinear problems. The estimate of the critical time step for conditionally stable schemes apparently necessitates the solution of the eigenvalue problem for the whole system. This is not so. The bound on the highest eigenvalue can be simply obtained by the consideration of an individual element. This is established by an important theorem proposed by Irons \({ }^{(4)}\) which proves that the highest system eigenvalue must always be less than the highest eigenvalue of the individual elements. This allows a very easy estimate of critical time steps (by the above theorem) which will err on the safe side. To avoid the exact evaluation of the highest
finite element mesh frequency approximate expressions are usually employed. The most common form for plane strain is
\[
\begin{equation*}
\Delta t \leqslant \mu L\left(\frac{\rho(1+\nu)(1-2 \nu)}{E(1-\nu)}\right)^{1 / 2} \tag{10.50}
\end{equation*}
\]
where \(L\) is the smallest length between any two nodes and \(\mu\) is a coefficient dependent on the type of element employed. \({ }^{(5)}\) For problems in which many time steps are used it may be beneficial to calculate the exact highest linear frequency of the finite element mesh prior to the time stepping analysis.

Recall that when an elasto-viscoplastic model is adopted care must be taken not to exceed the critical time step for the Euler scheme in evaluating the viscoplastic strains. (See Section 8.3).

\subsection*{10.6 Program DYNPAK}

\subsection*{10.6.1 Overall structure of DYNPAK}

We now present program DYNPAK for the elasto-viscoplastic or geometrically nonlinear, transient dynamic analysis of plane stress, plane strain and axisymmetric problems. The basic structure of the program is shown in Fig. 10.2. Many of the subroutines used in DYNPAK have already been described in earlier chapters.

The algorithm adopted has been presented schematically in Fig. 10.1. The program is written in a dynamically dimensioned form. Efficiency has sometimes been sacrificed for clarity of presentation and the reader may consider ways of making the program more efficient when reviewing this chapter.

Isoparametric 4, 8 andenoded quadrilateral elements are included in the program. A special mass lumping procedure \({ }^{(6)}\) has been adopted and separate Gauss-Legendre rules may be adopted in the evaluation of the stiffness and the lumped mass matrices.

Impact and seismic loading can easily be specified. Material nonlinearity is based on elasto-viscoplastic models with Von Mises, Tresca, MohrCoulomb or Drucker-Prager yield criteria with isotropic hardening. A total Lagrangian formulation is used to allow for the geometric nonlinear behaviour.

Subroutines GAUSSQ, SFR2 and JACOB2 have already been dealt with and only the remaining routines will be listed and described.

\subsection*{10.6.2 Master routine DYNPAK}

The master routine organises the calling of the main routines as outlined in Fig. 10.2. In subroutine CONTOL the variables required for dynamic dimensioning are read and a check is made on the maximum available dimensions. Note that the values given in the DIMENSION statement in


Fig. 10.2 Flow diagram for program DYNPAK.

DYNPAK should agree with the values specified in CONTOL. Subroutines INPUTD, INTIME and PREVOS read the mesh data, the time integration data and data for the previous state of the structure. Subroutines LUMASS and LOADPL generate the lumped mass and applied force vectors respectively. FIXITY deals with fixed boundary nodes. In the time step do loop, EXPLIT performs the direct time integration and RESVPL calculates
\[
\int_{\Omega}[\boldsymbol{B}]_{n}^{T} \sigma_{n} d \Omega
\]
when an elasto-viscoplastic material model is adopted.
In this version of DYNPAK it should be noted that the maximum dimensions imply that we can solve problems with no more than 50 elements, 200 nodal points, 50 fixed boundary nodes and 600 acceleration ordinates.

Of course, larger problems can be accommodated by increasing the values in CONTOL and also the appropriate dimensions in the DIMENSION statement in the main routine DYNPAK.



\subsection*{10.6.3 Subroutine BLARGE}

This subroutine evaluates the strain-displacement matrix for geometrically nonlinear displacements using the deformation Jacobian matrix \(\left[J_{D}\right]_{n}\). Note that for small displacement analysis we pre-set NLAPS \(=0\).
```

 SUBROUTINE BLARGE (BMATX ,CARTD ,DJACM ,DLCOD ,GPCOD ,KGASP , BLAR 1
 NLAPS ,NNODE ,NTYPE ,SHAPE) BLAR 2
 C*** BLAR
C BLAR 4
C*** LARGE DISPLACEMENT B MATRIX BLAR
C BLAR 6
C**
DIMENSION BMATX(4, 18),CARTD(2,9),\operatorname{DJACM}(2,2),\operatorname{DLCOD}(2,9), BLAR 8
- GPCOD(2, 9),SHAPE 9) BLAR 9
NGASH=0 BLAR 10
DO 10 INODE=1,NNODE BLAR 11
MGASH=NGASH+1 BLAR 12
NGASH=MGASH+1 BLAR 13
BMATX(1,MGASH)=CARTD(1,INODE)*DJACM(1,1) BLAR 14
BMATX(1,NGASH)=CARTD(1,INODE)*DJACM(2,1) BLAR 15
BMATX(2,MGASH)=CARTD(2,INODE)*DJACM(1,2) BLAR 16
BMATX(2,NGASH)=CARTD(2,INODE)*DJACM(2,2) BLAR 17
BMATX (3,MGASH)=CARTD (2,INODE)*DJACM(1,1)+CARTD (1,INODE)*DJACM(1,2)BLAR 18
BMATX(3,NGASH)=CARTD(1,INODE)*DJACM(2,2)+CARTD(2,INODE)*DJACM(2,1)BLAR 19
10 CONTINUE
IF(NTYPE NE 3) RETUPN BLAR 20
FMULT=1. BLAR 2
IF(NLAPS.LT.2) GO TO 40 BLAR 23
FMULT=0.0
BLAR 24

```
\begin{tabular}{|c|c|c|c|}
\hline & DO 20 JNODE \(=1\), NNODE & BLAR & 25 \\
\hline 20 & FMULT \(=\) FMULT+DLCOD ( 1, JNODE)*SHAPE (JNODE) & BLAR & 26 \\
\hline & FMULT \(=\) FMULT/GPCOD ( \(1, \mathrm{KGASP}\) ) & BLAR & 27 \\
\hline 40 & NGASH=0 & BLAR & 28 \\
\hline & DO 30 INODE \(=1\), NNODE & BLAR & 29 \\
\hline & MGASH \(=\mathrm{NGASH}+1\) & BLAR & 30 \\
\hline & NGASH \(=\) MGASH +1 & BLAR & 31 \\
\hline & BMATX ( \(4, \mathrm{MGASH}\) ) \(=\) SHAPE (INODE \() *\) \%MULT/GPCOD ( \(1, \mathrm{KGASP}\) ) & BLAR & 32 \\
\hline 30 & \(\operatorname{BMATX}(4, \mathrm{NGASH})=0.0\) & BLAR & 33 \\
\hline & RETURN & BLAR & 34 \\
\hline & END & BLAR & 35 \\
\hline
\end{tabular}

BLAR 10-20 Evaluate the complete strain matrix for plane stress/strain problems and the first three rows of the strain matrix for axisymmetric problems.
BLAR 21-33 Evaluate the remainder of the strain matrix for axisymmetric problems, if applicable.

\subsection*{10.6.4 Subroutine CONTOL}

The purpose of this subroutine is to set the values of variables for the dynamic dimensions which are used elsewhere in the program. If any change in the DIMENSION statement in the master routine is made, then a corresponding change in this subroutine should also be made.
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE CONTOL (NDOFN ,NELEM , NMATS ,NPOIN ) & CONT & 1 \\
\hline C**** & ************************************************************* & CONT & 2 \\
\hline C & & CONT & 3 \\
\hline C*** & READ CONTROL DATA AND CHECK FOR DIMENSIONS & CONT & 4 \\
\hline C & & CONT & 5 \\
\hline  & ************************************************************* & CONT & 6 \\
\hline & READ ( 5,110 ) NPOIN, NELEM, NDOFN, NMATS & CONT & 7 \\
\hline & IF (NELEM.GT. 50) GO TO 200 & CONT & 8 \\
\hline & IF (NPOIN.GT.200) GO TO 200 & CONT & 9 \\
\hline & IF (NMATS.GT. 10) GO TO 200 & CONT & 10 \\
\hline & GO TO 210 & CONT & 11 \\
\hline 200 & WRITE \((6,120)\) & CONT & 12 \\
\hline & STOP & CONT & 13 \\
\hline 120 & FORMAT (/'SET DIMENSION EXCEEDED - CONTOL CHECK '/) & CONT & 14 \\
\hline 110 & FORMAT(16I5) & CONT & 15 \\
\hline 210 & CONTINUE & CONT & 16 \\
\hline & RETURN & CONT & 17 \\
\hline & END & CONT & 18 \\
\hline
\end{tabular}

\subsection*{10.6.5 Subroutine EXPLIT}

This subroutine performs the direct time integration using expressions (10.43) and (10.44) to evaluate the nodal displacements at every time step. Special provisions are made for the first time step.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUBROUTINE EXPLIT & (ACCEH & ACCEV & , AFACT & , AzERO & , AAL & zer & EXPL & \\
\hline & DTIME & , DTEND & , FORCE & , IFIXD & , IFPR & ,IFUNC & EXPL & \\
\hline & ISTEP & , NDOFN & , NPOIN & , OMEGA & , RESID & ,TDISP & EXPL & \\
\hline & VELOC & ,YMASS & & & & & EXPL & \\
\hline \multicolumn{7}{|l|}{C******************************************************************} & EXPL & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
c \\
C *** TIME STEPPING ROUTINE
\end{tabular}}} & EXPL & \\
\hline & & & & & \multicolumn{2}{|c|}{C *** TIME STEPPING ROUTINE} & EXPL & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
C \\

\end{tabular}}} & EXPL & \\
\hline & & & & & & & EX & \\
\hline
\end{tabular}
```

 DIMENSION YMASS(1),\operatorname{ACCEH(1),TDISP(1),RESID(1), EXPL 10}
 FORCE (1), ACCEV (1),VELOC(1),IFPRE(2,1) EXPL 11
 CFACT=1.0+0.5*AALFA*DTIME EXPL 12
 CFACT=1./CFACT EXPL 13
 CONST=2.*CFACT EXPL 14
 RCONS=1./CONS1 EXPL 15
 CONS2=CONS1-1 EXPL 16
 CONS3=DTIME*DTIME*CFACT EXPL 17
 CONS4=-2.0*CONS2*DTIME EXPL 18
 IF(ISTEP.GT.1) CONS4=CONS2 EXPL 19
 NPOSN=0 EXPL 20
 FACTS=FUNCTS (AZERO,BZERO,DTEND,DTIME,IFUNC,ISTEP,OMEGA) EXPL 21
 FACTH=FUNCTA (ACCEH,AFACT,DTEND,DTIME,IFUNC,ISTEP) EXPL 22
 FACTV FFUNCTA (ACCEV, AFACT,DTEND,DTIME,IFUNC,ISTEP) EXPL 23
 DO 500 IPOIN=1,NPOIN EXPL 24
 DO 510 IDOFN=1,NDOFN EXPL 25
 FACTT=0.0 EXPL 26
 IF(IFUNC.NE.O) GO TO 200 EXPL 27
 IF(IFIXD.EQ.O.AND.IDOFN.EQ.1) FACTT=FACTH EXPL 28
 IF(IFIXD.EQ.0.AND.IDOFN.EQ.2) FACTT=FACTV EXPL 29
 IF(IFIXD.EQ.1.AND.IDOFN.EQ.2) FACTT=FACTV EXPL }3
 IF(IFIXD.EQ.2.AND.IDOFN.EQ.1) FACTT=FACTH EXPL }3
 IF(IFPRE(IDOFN,IPOIN).EQ.O) GO TO 200 EXPL 32
 FACTT=0.0
 FACTS=1.0
 200 CONTINUE
NPOSN=NPOSN+1 EXPL 36
DCURR=TDISP(NPOSN) EXPL 37
RESID(NPOSN)=RESID(NPOSN)-FORCE(NPOSN)*FACTS EXPL 38
TDISP(NPOSN)=-RESID(NPOSN)*CONS3/YMASS(NPOSN) EXPL 39
.-FACTT*CONS3+DCURR*CONS1-VELOC(NPOSN)*CONS4 EXPL 40
IF(ISTEP.EQ.1) TDISP(NPOSN)=TDISP(NPOSN)*RCONS EXPL 41
VELOC(NPOSN)=DCURR EXPL 42

```


```

 RETURN EXPL 45
 END
 EXPL 46
    ```

EXPL 12-19 Evaluate the various time integration constants. After the first time step modify variable CONS4.
EXPL 21 Evaluate the value of the time varying Heaviside or harmonic function for a particular time step.
EXPL 22-23 Evaluate the acceleration ordinates (FACTH for horizontal and FACTV for vertical acceleration respectively) at a particular time step.
EXPL 24-31 The seismic force is only applied for particular degrees of freedom. For IFIXD \(=1\) only vertical, \(\mathrm{IFIXD}=2\) only horizontal or radial and IFIXD \(=0\) both components of the acceleration are considered.
EXPL 32-35 Assign appropriate values for restrained boundary nodes.
EXPL 36-40 Evaluate displacements.
EXPL 41 For the first time step modify the displacement.
EXPL 42 Store the current displacements for the next time step.

\subsection*{10.6.6 Subroutine FIXITY}

This subroutine deals with the restrained degrees of freedom (boundary points). The diagonal mass vector, XMASS, is modified-for restrained
degrees of freedom. The component of the XMASS vector is set to a large value such as l.E30, which artificially makes the displacement zero.


\subsection*{10.6.7 Subroutine FLOWVP}

This routine evaluates the viscoplastic strain rate.


\subsection*{10.6.8 Function FUNCTA}

This function interpolates the accelerogram data for a particular time step. AFACT is the ratio of the accelerogram record time step length to the computational time step length.
\begin{tabular}{|c|c|c|c|}
\hline & FUNCTION FUNCTA (ACCER, AFACT, DTEND, DTIME, IFUNC, JSTEP) & FUNA & 1 \\
\hline \multicolumn{2}{|l|}{C********************************************************************} & FUNA & 2 \\
\hline \multicolumn{2}{|l|}{C} & FUNA & 3 \\
\hline C*** & ACCELEROGRAM INTERPOLATION & FUNA & 4 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
C \\

\end{tabular}}} & FUNA & 5 \\
\hline & & FUNA & 6 \\
\hline & DIMENSION ACCER(1) & FUNA & 7 \\
\hline & IF (IFUNC.NE.0) RETURN & FUNA & 8 \\
\hline & FUNCTA \(=0.0\) & FUNA & 9 \\
\hline & IF(JSTEP.EQ.O.OR.FLOAT(JSTEP)*DTIME.GT.DTEND) RETURN & FUNA & 10 \\
\hline & \(\mathrm{XGASH}=(\) LOAT ( JSTEP ) -1.0\() / \mathrm{AFACT}+1.0\) & FUNA & 11 \\
\hline & MGASH \(=\mathrm{XGASH}\) & FUNA & 12 \\
\hline \multirow[t]{5}{*}{\(\checkmark\)} & NGASH \(=\) MGASH +1 & FUNA & 13 \\
\hline & XGASH=XGASH-FLOAT (MGASH) & FUNA & 14 \\
\hline &  & FUNA & 15 \\
\hline & RETURN & FUNA & 16 \\
\hline & END & FUNA & 17 \\
\hline
\end{tabular}

\subsection*{10.6.9 Function FUNCTS}

This function sets the value of the time varying function for a particular time step. Heaviside functions \((f(t)=1.0 H(t))\) or harmonic functions, ( \(f(t)=a-b \sin \omega t\) ) can be specified.

FUNCTION FUNCTS (AZERO,BZERO,DTEND,DTIME,IFUNC,JSTEP,OMEGA) FUNS 1
\begin{tabular}{|c|c|c|}
\hline C*** & FUNS & \\
\hline C & FUNS & 3 \\
\hline C*** HEAVISIDE AND HARMONIC TIME FUNCTION & FUNS & 4 \\
\hline c & FUNS & 5 \\
\hline  & FUNS & 6 \\
\hline IF(IFUNC.EQ.0) RETURN & FUNS & 7 \\
\hline FUNCTS \(=0.0\) & FUNS & 8 \\
\hline IF(JSTEP.EQ.O.OR.FLOAT(JSTEP)*DTIME.GT.DTEND) RETURN & FUNS & 9 \\
\hline IF(IFUNC.EQ.1) FUNCTS = 1.0 & FUNS & 10 \\
\hline IF (IFUNC.EQ.2) ARGUM=OMEGA*JSTEP*DTIME & FUNS & 11 \\
\hline IF(IFUNC.EQ.2) FUNCTS \(=\) AZERO + BZERO*SIN(ARGUM) & FUNS & 12 \\
\hline RETURN & FUNS & 13 \\
\hline END & FUNS & 14 \\
\hline
\end{tabular}

\subsection*{10.6.10 Subroutine INPUTD}

This subroutine reads and writes most of the control parameters, nodal point coordinates, element connectivities, boundary conditions and material properties. It also writes the geometric data onto file 13 for deformation plotting. A similar routine was described in Chapter 6.
```1
NDIME , NDOFN , NELEM , NGAUM ,NGAUS ,NLAPS , NPUT 2
 NMATS ,NNODE ,NPOIN ,NPREV ,NSTRE ,NTYPE , NPUT 3
 POSGP ,PROPS ,WEIGP) NPUT
```



```
C NPUT
C*** DYNPAK INPUT ROUTINE
NPUT
C
C
NPUT
DIMENSTON COORD(NPOIN, 1) TFPRE(NDOFN, 1) WETGP(1) MATNO(1)
```

```
 READ(5,913) TITLE NPUT 12
 9 1 3 \text { FORMAT(10A4) NPUT}
 WRITE (6,914) TITLE
 914 FORMAT(//,5X,10A4)
C
C*%* READ THE FIRST DATA CARD, AND ECHO IT IMMEDIATELY.
C
 READ (5,900) NVFIX,NTYPE,NNODE,NPROP,NGAUS,NDIME,NSTRE,NCRIT, NPUT
 NPREV,NCONM,NLAPS,NGAUM,NRADS NPUT
 *WRITE(6,901) NPOIN,NELEM,NVFIX,NTYPE,NNODE,NDOFN,NMATS,NPROP, NPUT
 NGAUS,NDIME,NSTRE,NCRIT,NPREV,NCONM,NLAPS,NGAUM, NPUT 22
 NRADS
 NPUT }2
 901 FORMAT (/5X,18HCONTROL PARAMETERS/
 NPUT }2
 . /5X,8H NPOIN =,I10,5X,8H NELEM =,I10,5X,8H NVFIX =,I10/ NPUT }2
 - /5X,8H NTYPE =,I10,5X,8H NNODE =,I10,5X,8H NDOFN =,I10/ NPUT 26
 . /5X,8H NMATS =,I10,5X,8H NPROP =,I10,5X,8H NGAUS =,I10/ NPUT 27
 - /5X,8H NDIME =,I10,5X,8H NSTRE =,I10,5X,8H NCRIT =,I10/ NPUT 28
```



```
 * /5X,8H NGAUM =,I10,5X,8H NRADS =,I10/)
 NPUT 30
 900 FORMAT(16I5) NPUT }3
C
C *** READ THE ELEMENT NODAL CONNECTIONS AND THE PROPERTY NUMBERS NPUT 32
C
 WRITE (6,902)
 902 FORMAT(//5X,8H ELEMENT,3X,8HPROPERTY,6X,12HNODE NUMBERS) NPUT
 DO 530 IELEM=1,NELEM NPUT
 READ (5,900) NUMEL,MATNO(NUMEL),(LNODS(NUMEL,INODE),INODE=1,NNODE)NPUT }3
 WRITE(13,915) NUMEL,(LNODS(NUMEL,INODE),INODE=1,NNODE) NPUT }3
 530 WRITE (6,903) NUMEL,MATNO(NUMEL),(LNODS(NUMEL,INODE), INODE=1,NNODE)NPUT 40
 903 FORMAT(6X,I5,I9,6X,10I5) NPUT }4
 915 FORMAT(16I5)
C
C*** ZERO ALL THE NODAL COORDINATES, PRIOR TO READING SOME OF THEM. NPUT 44
C
 DO 500 IPOIN=1,NPOIN
 DO 500 IDIME=1,NDIME
 500 COORD(IPOIN,IDIME)=0.0
C
c* READ SOME NODAL COORDINATES, FINISHING WITH THE LAST NODE OF ALL.
C
 904 FORMAT(//5X,5H NODE,9X,1HX,9X,1HY,5X)
 200 READ (5,905) IPOIN,(COORD(IPOIN,IDIME),IDIME=1,NDIME)
 WRITE(6,906) IPOIN,(COORD(IPOIN,IDIME), IDIME=1,NDIME)
 NPUT 45
 NPUT }4
 NPUT }4
 NPUT 48
 NPUT 49
 NPUT 50
 NPUT 51
 NPUT }5
 NPUT }5
 NPUT 54
 905 FORMAT(I5,6F10.5)
 NPUT 55
 NPUT }5
 IF (IPOIN.NE.NPOIN) GO TO 200
C
C*** INTERPOLATE COORDINATES OF MID-SIDE NODES
C
 CALL NODXYR (COORD,LNODS,NELEM,NNODE,NPOIN,NRADS,NTYPE)
C
 WRITE (6,904)
 WRITE(13,916) (IPOIN, (COORD(IPOIN,IDIME),IDIME=1,NDIME),
 I IPOIN =1,NPOIN)
 NPUT }5
 WRITE(6, 906) (IPOIN,(COORD(IPOIN,IDIME),IDIME=1,NDIME),
 .IPOIN=1,NPOIN)
 906 FORMAT(5X,I5,2F10.3) NPUT 68
C
C*** READ THE FIXED VALUES.
C
 WRITE (6,907)
 907 FORMAT(//5X,5H NODE,2X,4HCODE)
 DO 540 IPOIN=1,NPOIN
 DO 540 IDOFN=1,NDOFN
 NPUT 58
 NPUT 59
 NPUT 60
 NPUT }6
 NPUT }6
 NPUT }6
 NPUT }6
```



```
 NPUT 66
 NPUT 67
NPUT }6
NPUT }7
NPUT 71
NPUT }7
NPUT }7
NPUT }7
NPUT 75
```

```
 540 IFPRE(IDOFN,IPOIN)=0 NPUT }7
 DO 550 IVFIX=1,NVFIX
 NPUT }7
 550 READ (5,908) IPOIN,(IFPRE(IDOFN,IPOIN),IDOFN=1,NDOFN) NPUT }7
 DO }560\mathrm{ IPOIN=1,NPOIN NPUT 79
 560 WRITE(6,909) IPOIN,(IFPRE(IDOFN,IPOIN),IDOFN=1,NDOFN) NPUT }8
 908 FORMAT(1X,I4,3X,2I1) NPUT }8
 909 FORMAT(6X,I5,3X,2I1) NPUT 82
C
C*** READ THE AVAILABLE SELECTION OF ELEMENT PROPERTIES.
C
 WRITE(6,910)
 910 FORMAT(//5X,19HMATERIAL PROPERTIES)
 DO 520 IMATS=1,NMATS
 READ (5,900) NUMAT
 READ (5,917) (PROPS(NUMAT,IPROP),IPROP=1,NPROP)
 WRITE (6,911) NUMAT
 911 FORMAT(/5X,11HMATERIAL NO,I5)
 520 WRITE (6,912) (PROPS(NUMAT,IPROP),IPROP=1,NPROP)
 912 FORMAT(/5X,13HYOUNG MODULUS,G12.4/5X,13HPOISSON RATIO,G12.4/ NPUT 94
 . 5X,13HTHICKNESS ,G12.4/5X,13HMASS DENSITY ,G12.4/ NPUT }9
 . 5X,13HALPHA TEMPR ,G12.4/5X,13HREFERENCE FO ,G12.4/ NPUT 96
 . 5X,13HHARDENING PAR,G12.4/5X,13HFRICT ANGLE ,G12.4/ NPUT 97
 . 5X,13HFLUIDITY PAR ,G12.4/5X,13HEXP DELTA ,G12.4/ NPUT 98
 . 5X,13HNFLOW CODE ,G12.4) NPUT 99
 917 FORMAT(8E10.4) NPUT 100
C
C*** SET UP GAUSSIAN INTEGRATION CONSTANTS
C
 CALL GAUSSQ (NGAUS, POSGP,WEIGP)
 RETURN
 END
 NPUT 101
NPUT }10
NPUT }10
NPUT }10
NPUT }10
NPUT 106
```


### 10.6.11 Subroutine INTIME

```
This routine reads and writes all data required for time integration and plotting stress and displacement histories.
```



```
 960 FORMAT(/5X,'DTIME=',G12.4,5X,'DTEND=',G12.4,5X,'DTREC=',G12.4,/ TIME 30
 . /5X,'AALFA=',G12.4,5X,'BEETA=',G12.4,5X,'DELTA=',G12.4,/ TIME 3
 * /5X,'GAAMA=',G12.4,5X,'AZERO=',G12.4,5X,'BZERO=',G12.4,/ TIME 32
C
C*** SELECTED NODES AND GAUSS POINTS FOR OUTPUT
C
 READ (5,902) (NPRQD(IREQD),IREQD=1,NREQD)
 READ (5,902) (NGRQS(IREQS),IREQS=1,NREQS)
 WRITE (6,909)
 909 FORMAT(//5X,41H SELECTIVE OUTPUT REQUESTED FOR FOLLOWING)
 WRITE (6,910) (NPRQD(IREQD), IREQD =1,NREQD)
 910 FORMAT(/,5X,6H NODES,10I5)
 WRITE(6,911) (NGRQS(IREQS),IREQS=1,NREQS)
 911 FORMAT(5X,6H G.P. ,10I5)
 902 FORMAT(16I5)
 190 FORMAT(8F10.4)
C
C**:* READ THE INDICATOR FOR EXPLICIT OR IMPLICIT ELEMENT
C
 READ (5,902) (INTGR(IELEM), IELEM=1,NELEM)
 WRITE(6,930)
 WRITE(6,902) (INTGR(IELEM),IELEM=1,NELEM)
 930 FORMAT(/5X, ' TYPE OF ELEMENT, IMPLICIT=1,EXPLICIT=2 '/)
C
C*** INITIAL DISPLACEMENTS
C
 JPOIN=0
 DO }500\mathrm{ IPOIN=1,NPOIN
 DO 500 IDOFN=1, NDOFN
 JPOIN=JPOIN+1
 TDISP(JPOIN)=0.
 500 VELOC(JPOIN)=0.
 WRITE(6;903)
 200 READ (5,904) NGASH,XGASH,YGASH
 NPOSN=(NGASH-1)*NDOFN+1
 TDISP(NPOSN)=XGASH
 NPOSN=NPOSN+1
 TDISP(NPOSN)=YGASH
 WRITE(6,905) NGASH,XGASH,YGASH
 IF(NGASH.NE.NPOIN) GO TO 200
C
C*** INITIAL VELOCITIES
C
 WRITE(6,906)
 210 READ (5,904) NGASH,XGASH,YGASH
 NPOSN=(NGASH-1)*NDOFN+1
 VELOC(NPOSN)=XGASH
 NPOSN=NPOSN+1
 VELOC(NPOSN)=YGASH
 WRITE (6,905) NGASH, XGASH,YGASH
 IF(NGASH.NE.NPOIN) GO TO 210
 904 FORMAT (I5,2F10.5)
 903 FORMAT(//5X,5H NODE,2X,16H INITIAL X-DISP.,2X,
 .16H INITIAL Y-DISP./)
 905 FORMAT (I10, 2E18.5)
 906 FORMAT(//5X,5H NODE,2X,16H INITIAL X-VELO., 2X,
 . 16H INITIAL Y-VELO./)
 IF (IFUNC.NE.0) GO TO 250
C
C*** READ ACCELEROGRAM DATA ,X-DIREC FROM TAPE 7,Y-DIREC FROM TAPE 12
C
 AFACT=DTREC/DTIME
 IF(IFIXD-1) 220,230,240 TIME 93
 IF(IFIXD-1) 220,230,240 TIME 93
 220 READ (7,907)(ACCEH(I),I=1,NACCE) TIME 94
```

```
 WRITE(6,912) DTREC TIME 95
 WRITE(6,907)(ACCEH(I),I=1,NACCE) TIME 96
 READ(12,907)(ACCEV(I),I=1,NACCE) TIME 97
 WRITE(6,913) DTREC TIME 98
 WRITE(6,907)(ACCEV(I),I=1,NACCE) TIME 99
 GO TO 250
 TIME }10
230 READ(12,907)(ACCEV(I),I=1,NACCE) TIME 101
 WRITE(6,913) DTREC TIME 102
 WRITE(6,907)(ACCEV(I),I=1,NACCE) TIME 103
 GO TO 250
 TIME }10
240 READ(7,907) (ACCEH(I),I=1,NACCE) TIME 105
 WRITE(6,912) TIME 106
 WRITE(6,907)(ACCEH(I),I=1,NACCE) TIME 107
907 FORMAT(7F10.3) TIME 108
912 FORMAT(/5X,'HORIZONTAL ACCELERATION ORDINATES AT',F9.4,2X,'SEC'/) TIME 109
913 FORMAT(/5X, 'VERTICAL ACCELERATION ORDINATES AT',F9.4,2X,'SEC'/) TIME 110
250 CONTINUE
TIME }11
 RETURN
 END
 TIME }11
 TIME 113
```

TIME 14-33 Read and write most of the control time integration data.
TIME 34-46 Read the selective nodal points and integration points for displacement and stress history.
TIME 54-70 Read initial displacement.
TIME 71-87 Read initial velocities.
TIME 89-111 Read appropriate acceleration data.

### 10.6.12 Subroutine INVAR

This routine calculates the stress invariants and yield values for the various yield criteria. The choice of yield criterion is governed by the parameter NCRIT. A similar routine was described in Section 7.8.3.


```
 IF(SINT3.GT, 1.0) SINT3= 1.0 INVR 28
 THETA=ASIN(SINT3)/3.0 INVR
 GO TO (1,2,3,4) NCRIT INVR
C*** TRESCA
 30
 1 YIELD=2.0*COS(THETA)*STEFF 吘 INVR 32
 RETURN INVR
C*** VON MISES
 INVR 34
 2 YIELD=ROOT3*STEFF INVR 35
 RETURN INVR
C*** MOHR-COULOMB INVR 37
 3 PHIRA=PROPS(LPROP,8)*0.017453292
 INVR }3
 SNPHI=SIN(PHIRA)
 YIELD=SMEAN*SNPHI+STEFF*(COS(THETA)-SIN(THETA)*SNPHI/ROOT3) INVR 40
 RETURN INVR }4
C*** DRUCKER-PRAGER INVR 42
 4 PHIRA=PROPS(LPROP,8)*0.017453292 INVR 43
 SNPHI=SIN(PHIRA) INVR }4
 YIELD=6.0*SMEAN*SNPHI/(ROOT3*(3.0-SNPHI))+STEFFF
 RETURN INVR 46
 END INVR
 47
```


### 10.6.13 Subroutine JACOBD

This subroutine evaluates the deformation Jacobian matrix $\left[J_{D}\right]_{n}$ for a particular sampling point within an element.

SUBROUTINE JACOBD (CARTD ,DLCOD, DJACM, NDIME ,NLAPS ,NNODE ) JACD 1

C
JACD 3
C** DEFORMATION JACOBIAN JACD 4
C
C***************************************************************** JACD 6
$\operatorname{DIMENSION} \operatorname{CARTD}(2,9), \operatorname{DLCOD}(2,9), \operatorname{DJACM}(2,2) \quad \operatorname{JACD} 7$
IF(NLAPS.GT.1) GO TO 10 JACD 8
C JACD 9
C** FOR SMALL DISPLACEMENT JACD 10
C JACD 11
$\operatorname{DJACM}(1,1)=1.0 \quad$ JACD 12
$\operatorname{DJACM}(2,2)=1.0 \quad$ JACD 13
$\operatorname{DJACM}(1,2)=0.0 \quad$ JACD 14
$\operatorname{DJACM}(2,1)=0.0 \quad \operatorname{JACD} 15$
RETURN JACD 16
C JACD 17
C*** FOR LARGE DISPLACEMENT JACD 18
C JACD 19
10 CONTINUE JACD 20
DO 20 IDIME $=1$, NDIME JACD 21
DO 20 JDIME $=1$, NDIME JACD 22
DJACM (IDIME, JDIME) $=0.0$ JACD 23
DO 20 INODE 1 , NNODE 0 JACD 24
DJACM (IDIME, JDIME) =DJACM (IDIME, JDIME) JACD 25

- +DLCOD (IDIME, INODE) *CARTD (JDIME,INODE) JACD 26

20 CONTINUE JACD 27
RETURN JACD 28
END JACD 29

### 10.6.14 Subroutine LINGNL

This routine calculates the total elastic strain and corresponding elastic stresses at a particular integration point. In this calculation the strains are evaluated using the deformation Jacobian matrix if geometric nonlinear behaviour is to be taken into account.


### 10.6.15 Subroatine LOADPL

This routine reads load data and evaluates the consistent nodal forces associated with thermal loading. A similar routine was described in Section 6.4.5. The additions which are included here have been discussed in detail in the authors' earlier text Finite Element Programming. ${ }^{(7)}$

```
 SUBROUTINE LOADPL (COORD ,FORCE ,LNODS ,MATNO ,NDIME ,NDOFN , LOAD 1
 NELEM ,NGAUS ,NMATS ,NNODE ,NPOIN ,NSTRE , LOAD
 NTYPE ,POSGP ,PROPS ,RLOAD ,STRIN ,TEMPE , LOAD
 WEIGP)
```



```
C
C*** STANDARD LOAD ROUTINE
C
C***
 DIMENSION COORD(NPOIN, 1) ,GPCOD (2,9) ,POSGP(1) ,STRAN(4)
 L LNODS(NELEM,1) ,CARTD (2,9),WEIGP(1) 'STRES(4), LOSD 11
 - PROPS(NMATS,1) ,DERIV(2,9),TEMPE(1) ,NOPRS(3): LOAD 12
 - RLOAD(NELEM,1) ,ELCOD(2,9) ,MATNO(1) ,DGASH(2), LOAD 13
 - STRIN(4, 1),PRESS(3,2),SHAPE(9),PPGASH(2), LOM , POM 14
 TWOPI=6.283185307179586
 NEVAB=NNODE*NDOFN
 DO }10\mathrm{ IELEM=1,NELEM
 DO 10 IEVAB=1,NEVAB
 10 RLOAD(IELEM, IEVAB) =0.0
 READ(5,901) TITLE
 901 FORMAT (10A4)
 WRITE (6,903) TITLE
 903 FORMAT(/5X, 17HLOAD CASE TITLE -,10A4)
C
C*** READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED
C
 READ (5,919) IPLOD,IGRAV,IEDGE,ITEMP
 WRITE(6,990)
 990 FORMAT(/5X,21HLOAD INPUT PARAMETERS)
 WRITE(6,991) IPLOD,IGRAV, IEDGE, ITEMP
 991 FORMAT(/5X,12HPOINT LOADS.I5/5X,12HGRAVITY I5/ LOAD S
 - 5X,12HEDGE LOAD ,I5/5X,12HTEMPERATURE ,I5) LOAD 33
 919 FORMAT(16I5) LOAD 34
C
C*** READ NODAL POINT LOADS
C
 IF(IPLOD.EQ.0) GO TO 500
 WRITE(6,998)
 998 FORMAT(/5X,5H NODE,10H PX,10H PY/)
 20 READ (5,931) LODPT, (POINT(IDOFN),IDOFN=1,NDOFN)
 WRITE(6,933) LODPT,(POINT(IDOFN),IDOFN=1,NDOFN)
 933 FORMAT(5X,I5,2G10.3)
 931 FORMAT(I5,2F10.3)
C
C*:*: ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT
C
 DO 30 IELEM=1,NELEM
 DO 30 INODE=1,NNODE
 NLOCA=IABS(LNODS(IELEM, INODE))
 30 IF(LODPT.EQ.NLOCA) GO TO 40
 40 DO 50 IDOFN=1,NDOFN
 NGASH=(INODE-1) ENDOFN+IDOFN
 50 RLOAD(IELEM,NGASH)=POINT(IDOFN)
 IF(LODPT.LT.NPOIN) GO TO 20
 500 CONTINUE
 IF(IGRAV.EQ.0) GO TO }60
C
C***#
C
 READ(5,906) THETA,GRAVY
 906 FORMAT(2F10.3)
 WRITE(6,911) THETA,GRAVY LOAD 63
 911 FORMAT(1H0,16H GRAVITY ANGLE =,F10.3,19H GRAVITY CONSTANT =,F10.3)LOAD 64
```

```
 THETA=THETA/57.295779514 LOAD 65
C
 DO 90 IELEM=1,NELEM
C
C*** SET UP PRELIMINARY CONSTANTS
C
 LPROP=MATNO(IELEM)
 THICK=PROPS(LPROP,3)
 DENSE=PROPS(LPPROP,4)
 IF(DENSE.EQ.0.0) GO TO 90
 GXCOM=DENSE*GRAVY*SIN(THETA)
 GYCOM=-DENSE*GRAVY*COS(THETA)
C
C*** COMPUTE COORDINATES OF THE ELEMENT NODAL POINTS
C
 DO }60\mathrm{ INODE=1,NNODE
 LNODE=IABS(LNODS(IELEM,INODE))
 DO 60 IDIME=1,NDIME
 60 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME)
C
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION
C
 KGASP=0
 DO }80\mathrm{ IGAUS=1,NGAUS
 DO 80 JGAUS=1,NGAUS
 KGASP=KGASP+1
 EXISP=POSGP(IGAUS)
 ETASP=POSGP(JGAUS)
C
C年负 COMPUTE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS AND ELEMENTAL
C VOLJME
C C OLS
 CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP) LOAD 97
 CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, LOAD 98
 - KGASP,NNODE,SHAPE) LOAD 99
 DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) LOAD 100
 IF(NTYPE.EQ.1) DVOLU=DVOLU*THICK
 IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP)
C
C*** CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODAL POINTS
C
 DO 70 INODE=1,NNODE
 NGASH=(INODE-1)*NDOFN+1
 MGASH=(INODE-1)*NDOFN+2
 RLOAD(IELEM,NGASH)=RLOAD(IELEM,NGASH)+GXCOM*SHAPE(INODE)*DVOLU
 70 RLOAD(IELEM,MGASH)=RLOAD(IELEM,MGASH)+GYCOM*SHAPE(INODE)*DVOLU
 80 CONTINUE
 90 CONTINUE
 6 0 0 ~ C O N T I N U E ~
 IF(IEDGE.EQ.0) GO TO 700
C
C** DISTRIBUTED EDGE LOADS SECTION
C
 READ (5,932) NEDGE
 932 FORMAT(I5)
 WRITE (6,912) NEDGE
 912 FORMAT(1HO,5X,21HNO. OF LOADED EDGES =,I5)
 WRITE (6,915)
 915 FORMAT(1HO,5X,38HLIST OF LOADED EDGES AND APPLIED LOADS)
 NODEG=3
 NCODE=NNODE
 IF(NNODE.EQ.4) NODEG=2
 IF(NNODE.EQ.9) NCODE=8
C
```

LOAD 65
LOAD 66
LOAD 67
LOAD 68
LOAD 69
LOAD 70
LOAD 71
LOAD 72
LOAD 73
LOAD 74
LOAD 75
LOAD 76
LOAD 77
LOAD 78
LOAD 79
LOAD 80
LOAD 81
LOAD 82
LOAD 83
LOAD 84
LOAD 85
LOAD 86
LOAD 87
LOAD 88
LOAD 89
LOAD 90
LOAD 91
LOAD 92
C LOAD 93
C**르․ COMPUTE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS AND ELEMENTAL LOAD 94

CALL
CALL SFRZ (DERIV,NNODE,SHAPE,EXISP,EIASP)
CALL JACOBC (CARID,DERIV,DJACB,ELCOD,GPCOD,IELEM
LOAD 99
LOAD 100
LOAD 101
LOAD 102
LOAD 103
LOAD 104
LOAD 105
LOAD 106
LOAD 107
LOAD 108
LOAD 109
LOAD 110
LOAD 111
LOAD 112
LOAD 113
LOAD 114
LOAD 115
LOAD 116
LOAD 117
LOAD 118
932 FORMAT (I5) NEDE
LOAD 119
LOAD 120
912 FORMAT ( $1 \mathrm{HO}, 5 \mathrm{X}, 21 \mathrm{HNO}$. OF LOADED EDGES $=, \mathrm{I} 5$ ) LOAD 121
915 WRITE 6,915 ) LOAD 122
LOAD 123
LOAD 124
LOAD 125
LOAD 126
LOAD 127
C

```
C*** LOOP OVER EACH LOADED EDGE LOAD 129
C LOAD 130
 DO 160 IEDGE=1,NEDGE
C
C*** READ DATA LOCATING THE LOADED EDGE AND APPLIED LOAD
C
 READ (5,902) NEASS, (NOPRS(IODEG), IODEG=1,NODEG)
 902 FORMAT(4I5)
 WRITE(6,913) NEASS, (NOPRS(IODEG),IODEG=1,NODEG)
 913 FORMAT(I10,5X,3I5)
 READ (5,914) ((PRESS(TODEG, TDOFN) TODEG=1 NODEG) TDOFN-1 NDOFN)
 WRITE(6,914) ((PRESS(IODEG,IDOFN),IODEG=1,NODEG),IDOFN=1,NDOFN) LOAD 140
 914 FORMAT(6F10.3)
 ETASP=-1.0
C
C*** CALCULATE THE COORDINATES OF THE NODES OF THE ELEMENT EDGE
C
 DO 100 IODEG=1,NODEG
 LNODE=NOPRS(IODEG)
 DO 100 IDIME=1,NDIME
 100 ELCOD(IDIME,IODEG)=COORD(LNODE,IDIME)
C
C*** ENTER LOOP FOR LINEAR NUMERICAL INTEGRATION
 DO }150\mathrm{ IGAUS=1,NGAUS
 EXISP=POSGP(IGAUS)
C
C*** EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS
C
 CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP)
C
C*** CALCULATE COMPONENTS OF THE EQUIVALENT NODAL LOADS
C
 DO 110 IDOFN=1,NDOFN
 PGASH(IDOFN)=0.0
 DGASH(IDOFN})=0.
 DO 110 IODEG=1, NODEG
 PGASH(IDOFN)=PGASH(IDOFN)+PRESS(IODEG,IDOFN)*SHAPE(IODEG)
 110 DGASH(IDOFN)=DGASH(IDOFN)+ELCOD(IDOFN,IODEG)*DERIV (1,IODEG)
 DVOLU=WEIGP(IGAUS)
 PXCOM=DGASH (1)*PGASH(2)-DGASH(2)*PGASH(1)
 PYCOM=DGASH(1)*PGASH(1)+DGASH(2)*PGASH(2)
 IF(NTYPE.NE.3) GO TO }11
 RADU'S=0.0
 DO 125 IODEG=1,NODEG
 125 RADUS=RADUS+SHAPE(IODEG)*ELCOD(1,IODEG)
 DVOLU=DVOLU*TWOPI*RADUS
 115 CONTINUE
C
C*** ASSOCIATE THE EQUIVALENT NODAL EDGE LOADS WITH AN ELEMENT
C
 DO 120 INODE=1,NNODE
 NLOCA=IABS(LNODS(NEASS, INODE))
 120 IF(NLOCA.EQ.NOPRS(1)) GO TO 130
 130 JNODE=INODE+NODEG-1
 KOUNT=0
 DO 140 KNODE=INODE, JNODE
 KOUNT=KOUNT+1
 NGASH=(KNODE-1)*NDOFN+1
 MGASH=(KNODE-1)*NDOFN+2
 IF(KNODE.GT.NCODE) NGASH=1
 IF(KNODE.GT.NCODE) MGASH=2
 RLOAD(NEASS,NGASH)=RLOAD(NEASS,NGASH) +SHAPE(KOUNT)*PXCOM*DVOLU
140 RLOAD(NEASS,MGASH)=RLOAD(NEASS,MGASH) +SHAPE(KOUNT)*PYCOM*DVOLU
150 CONTINUE
191
OAD
1 6 0 \text { CONTINUE}
```

    700 CONTINUE EO.0) GO TO 800 IF(ITEMP.EQ.O LOAD 194
    700 CONTINUE EQ.0) GO TO 800 IN(ITEMP.EQ.) LOAD 194
    LOAD }19
C
C*** INITIALIZE AND INPUT THE NODAL TEMPERATURES
C
DO 170 IPOIN=1,NPOIN
170 TEMPE (IPOIN ) =0.0
WRITE (6,917)
917 FORMAT(1H0,5X,29HPRESCRIBED NODAL TEMPERATURES)
180 READ (5,916) NODPT,TEMPE(NODPT)
180 READ (5,916) NODPT,TEMPE(NODPT)
916 FORMAT(I5,F10.3)
IF(NODPT.LT.NPOIN) GO TO }18
KGAST=0
C
C*** LOOP OVER EACH ELEMENT
C
DO 280 IELEM=1,NELEM
LPROP=MATNO(IELEM)
DO 200 INODE=1,NNODE
CNODE=IABS(LNODS(IELEM,INODE))
c
C*** IDENTIFY THE COORDINATES AND TEMPERATURE OF EACH ELEMENT NODE POINTLOAD 216
C
DO 190 IDIME=1,NDIME LOAD 217
190 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) LOAD 219
200 ELCOD (2,INODE)=TEMPE(LNODE) LOAD 220
C
C
c
CALL MODPS (DMATX,LPROP,NMATS,NSTRE,NTYPE,PROPS) LOAD 224
YOUNG=PROPS(LPROP,1)
POISS=PROPS(LPROP,2)
THICK=PROPS(LPRROP,3)
ALPHA=PROPS(LPROP,5)
C
C**** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION
C
KGASP=0
DO 270 IGAUS =1,NGAUS
DO 270 JGAUS=1,NGAUS
KGAST=KGAST+1
KGASP=KGASP+1 LOAD 236
EXISP=POSGP(IGAUS) LOAD 237
ETASP=POSGP(JGAUS)
C
C
CW** EVALUATE THE SHAPE FUNCTIONS AND TEMPERATURE AT THE SAMPLING POINTSLOAD 240
C ,ELEMENTAL VOLUME AND CARTESIAN DERIVATIVES
CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP) LOAD 243
CALL JACOB2 (CARTD,DERIV,DJACB, ELCOD,GPCOD,IELEM, LOAD 244
* KGASP,NNODE,SHAPE)
THERM=0.0
DO 210 INODE=1,NNODE
210 THERM=THERM+ELCOD(2,INODE)*SHAPE(INODE) LOAD 248
DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS)
IF(NTYPE.EQ.1) DVOLU=DVOLU*THICK
C IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP)
C
C*** EVALUATE THE inITIAL THERMAL STRAINS
C
EIGEN=THERM*ALPHA
IF(NTYPE.EQ.2) GO TO 220
STRAN(1)=-EIGEN
STRAN(2)=-EIGEN
LOAD 242
CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP) LOAD 243
LOAD 245
LOAD 246
LOAD }24
LOAD 249
LOAD 250
LOAD 251
LOAD 221
LOAD 222
LOAD 223
LOAD 224
LOAD 225
LOAD 226
LOAD 227
LOAD 196
LOAD }19
LOAD 198
LOAD }19
LOAD 200
LOAD 201
LOAD 202
LOAD 203
OAD 204
MGAST=O GT.NPOTN) GO TO }18
LOAD 205
LOAD 206
LOAD 207
LOAD 208
LOAD 209
LOAD 210
LOAD 211
LOAD }21
LOAD }21
LOAD 214
LOAD }21
LOAD }21
LOAD 228
LOAD 229
LOAD 230
LOAD 231
LOAD 232
LOAD 233
LOAD 234
LOAD 235
EXISP=POSGP(IGAUS) LOAD 237
LOAD }23
LOAD }23
LOAD 241
LOAD 244
LOAD 248
C*** EVALUATE THE INITIAL THERMAL STRAINS
LOAD 252
LOAD 255
LOAD 256
LOAD }25
LOAD }25

```
```

    STRAN(3)=0.0 LOAD 259
    GO TO 230
                LOAD 260
    220 STRAN(1)=-(1.0+POISS)*EIGEN
    STRAN(2)=-(1.0+POISS)*EIGEN
    STRAN (3)=0.0
    C
C*** AND THE CORRESPONDING INITIAL STRESSES
C
230 DO 250 ISTRE = 1, NSTRE
STRES(ISTRE)=0.0
DO 240 JSTRE=1,NSTRE
240 STRES(ISTRE)=STRES(ISTRE)+DMATX(ISTRE,JSTRE)*STRAN(JSTRE) LOAD 270
250 STRIN(ISTRE,KGAST)=STRES(ISTRE)
IF(NTYPE.EQ.2) STRIN(4,KGAST) =-YOUNG*EIGEN
IF(NTYPE.EQ.1) STRIN(4,KGAST)}=0.
C
C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE
C ELEMENT NODES
C
EXTRA=0.0
DO 260 INODE =1, NNODE
IF (NTYPE.EQ.3) EXTRA=DVOLU*SHAPE(INODE)*STRES(4)/GPCOD(1,KGASP)
NGASH=(INODE-1)*NDOFN+1
MGASH=(INODE-1)*NDOFN+2
RLOAD(IELEM,NGASH)=RLOAD(IELEM,NGASH)+EXTRA LOAD }28
--(CARTD(1,INODE)*STRES(1)+CARTD(2,INODE)*STRES(3))*DVOLU LOAD 284
260 RLOAD(IELEM,MGASH)=RLOAD (IELEM,MGASH)
- -(CARTD(1,INODE)*STRES(3)+CARTD(2,INODE)*STRES(2))*DVOLU
270 CONTINUE
280 CONTINUE
800 CONTINUE
C WRITE (6,907)
C 907 FORMAT(1HO,5X,36H TOTAL NODAL FORCES FOR EACH ELEMENT)
C DO 290 IELEM=1,NELEM
C 290 WRITE (6,905) IELEM, (RLOAD(IELEM,IEVAB),IEVAB=1,NEVAB)
C 905 FORMAT(1X,I4,5X,8E12.4/(10X,8E12.4)) LOAD 294
DO }5\mathrm{ IELEM=1,NELEM
KEVAB=0
DO 5 INODE =1,NNODE
LNODE=LNODS(IELEM,INODE) LOAD 298
NPOSN=(LNODE-1)*NDOFN
DO }5\mathrm{ IDOFN=1,NDOFN LOAD 300
KEVABmKEVAB+1 LOAD 301
NPOSN=NPOSN+1 LOAD 302
FORCE (NPOSN)=FORCE (NPOSN)+RLOAD(IELEM,KEVAB) LOAD 303
5 CONTINUE LOAD 304
RETURN
END
LOAD 261
LOAD 262
LOAD 263
LOAD 264
LOAD 265
LOAD }26
LOAD }26
LOAD 268
LOAD }26
LOAD 271
LOAD }27
LOAD }27
LOAD }27
LOAD 275
LOAD }27
LOAD 277
LOAD 278
LOAD }27
NGASH=(INODE-1)*NDOFN+1
LOAD 280
LOAD 281
LOAD }28
LOAD 285
LOAD 286
LOAD 287
LOAD }28
LOAD }28
LOAD 290
LOAD 291
LOAD }29
LOAD 294
LOAD 295
LOAD }29
LOAD }29
LOAD 299
LOAD 304
LOAD }30
LOAD }30

```

\subsection*{10.6.16 Subroutine LUMASS}

This subroutine evaluates the lumped mass vector and consistent mass matrix for the finite element mesh. If \(\operatorname{INTGR}(\mathrm{I})=1\), it generates the consistent mass matrix and if \(\operatorname{INTGR}(I)=2\), it generates a special lumped mass vector. In the special mass lumping scheme which is employed, the diagonal terms of the consistent mass matrix are scaled to preserve the total mass. The element consistent mass matrices are written on tape 3. The consistent mass matrix is not used in DYNPAK.

This subroutine also reads concentrated masses and assembles them into the global diagonal mass vector.

```

        IEVAB=JEVAB+1 MASS 65
    30 CONTINUE MASS 66
    70 CONTINUE MASS 67
    C MASS 68
C*** WRITES CONSISTENT MASS MATRIX ON TAPE 3 MASS 69
C MASS 70
IF(IMASS.EQ.2) GO TO 200 MASS }7
WRITE(3) EMASS MASS
C WRITE(6,90) (EMASS(I),I=1,171) MASS 73
C WRITE(6,90) (EMASS(I), I=1,171) MASS 73
200 IF(IMASS.EQ.1) GO TO 100 MASS 74
C MASS 75
C *** GENERATES LUMPED MASS MATRIX PROPORTIONAL TO DIAGONAL
SUMAS=0.
DO 40 INODE =1,NNODE MASS 79
40 SUMAS=SUMAS+DIAGM(INODE)
TAREA=TAREA*RHOEL MASS 81
SUMAS=TAREA/SUMAS MASS 82
DO 50 INODE=1,NNODE MASS 83
LNODE=LNODS(IELEM,INODE) MASS }8
IPOSN =(LNODE-1)*NDOFN MASS 85
DO 50 IDOFN=1,NDOFN MASS 86
IPOSN=IPOSN+1 MASS 87
YMASS(IPOSN)=YMASS(IPOSN)+DIAGM(INODE)*SUMAS MASS 88
50 CONTINUE MASS 89
90 FORMAT(2X,9E12.3) MASS 90
100 CONTINUE MASS 91
C MASS 92
C CONCENTRATED MASSES MASS 93
C MASS 94
IF(NCONM.EQ.0) RETURN MASS 95
WRITE(6,900) MASS 96
DO 520 ICONM=1,NCONM MASS 97
READ(5,910) IPOIN, XCMAS,YCMAS MASS 98
900 FORMAT(5X,19HCONCENTRATED MASSES) MASS 99
WRITE (6,910) IPOIN,XCMAS,YCMAS MASS 100
MPOSN =(IPOIN-1)*NDOFN+1 (NPOSN)=YMASS(NPOSN)+XCMAS
NPOSN=(IPOIN-1)*NDOFN+1
NPOSN=NPOSN+1 _
YMASS(NPOSN)=YMASS(NPOSN)+YCMAS
5 2 0 ~ C O N T I N U E ~
C WRITE (6,90) (YMASSS(I), I=1,NTOTV) MASS 106
910 FORMAT(I5,2F10.3) MASS 107
RETURN MASS 108
END
MASS 76
MASS
C
MASS 80
MASS }10
MASS 104
CONTINUE MASS 105
MASS 109

```

MASS 24 Sets indicator for mass matrix evaluation. \(\operatorname{INTGR}(\mathbf{I})=1\) for the consistent mass matrix and INTGR(I) \(=2\) for the special lumped mass vector.
MASS 35-52 Evaluate the diagonal element of the consistent mass matrix DIAGM.
MASS 53-63 Evaluates the element consistent mass matrix.
MASS 72 Writes element consistent mass matrix on tape 3.
MASS 78-80 Evaluates ELMAS, the sum of the diagonal elements.
MASS 81 Determines the total element mass from the element volume TAREA and mass density RHOEL.

MASS 83-89 Scales the diagonal terms using the factor TAREA/ELMAS to preserve element mass and assembles the result into diagonal mass vector YMASS.
MASS 95-107 Reads the concentrated masses and assembles them into YMASS.

\subsection*{10.6.17 Subroutine MODPS}

This subroutine evaluates the elasticity matrix and has been described earlier in Chapter 6. The only changes involved are given below.

\subsection*{10.6.18 Subroutine NODXYR}

It calculates \((r, z)\) coordinates from (\(R, \Theta\)) coordinates for axisymmetric problems. If coordinates of midside nodes are not read, it evaluates thembylinear interpolation. An almost identical subroutine was described in Chapter 6.
\begin{tabular}{|c|c|}
\hline SUBROUTINE NODXYR (COORD, LNODS, NELEM, NNODE, NPOIN, NRADS, NTYPE) & NODX 1 \\
\hline & NODX 2 \\
\hline C & NODX 3 \\
\hline C** INTERPOLATION OF MIDSIDE AND CENTER NODES & NODX 4 \\
\hline C & NODX 5 \\
\hline C*** & NODX 6 \\
\hline DIMENSION COORD (NPOIN, 1), LNODS (NELEM, 1) & NODX 7 \\
\hline C & NODX 8 \\
\hline IF (NTYPE.NE.3.OR.NRADS.EQ.0) GO TO 40 & NODX 9 \\
\hline C & NODX 10 \\
\hline C*** CHANGE POLAR COORDINATES T/ CARTISIAN & NODX 11 \\
\hline DO 50 IPOIN=1,NPOIN & NODX 12 \\
\hline RADDI \(=C O O R D\) (IPOIN, 1) & NODX 13 \\
\hline THETA \(=\) COORD (TPOIN, 2) & NODX 14 \\
\hline THETA \(=0.0174532924\) THETA & NODX 15 \\
\hline COORD (IPOIN, 1) = RADDI*SIN(THETA) & NODX 16 \\
\hline \(50 \mathrm{COORD}(\) IPOIN, 2) \(=\) RADDI*COS (THETA) & NODX 17 \\
\hline C & NODX 18 \\
\hline 40 IF (NNODE.EQ.4) RETURN & NODX 19 \\
\hline C & NODX 20 \\
\hline LNODE = NNODE - 1 & NODX 21 \\
\hline DO 30 IELEM=1, NELEM & NODX 22 \\
\hline C*** LOOP OVER EACH ELEMENT EDGE & NODX 23 \\
\hline DO 20 INODE \(=1\), NNODE, 2 & NODX 24 \\
\hline IF(INODE.EQ.9) GO TO 20 & NODX 25 \\
\hline C*** \({ }^{\text {\% }}\) COMPUTE THE NODE NUMBER OF THE FIRST NODE & NODX 26 \\
\hline NODST=LNODS (IELEM, INODE) & NODX 27 \\
\hline IGASH=INODE +2 & NODX 28 \\
\hline IF (IGASH.GT.LNODE) IGASH=1 & NODX 29 \\
\hline C \({ }^{\text {®* }}\) (COMPUTE THE NODE NUMBER OF THE LAST NODE & NODX 30 \\
\hline NODFN=LNODS (IELEM, IGASH) & NODX 31 \\
\hline MIDPT \(=\) INODE +1 & NODX 32 \\
\hline
\end{tabular}
```

C*** COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE NODX 33
NODMD=LNODS(IELEM,MIDPT) NODX
TOTAL=ABS(COORD(NODMD, 1))+ABS(COORD(NODMD,2)) NODX 35
C*** IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO NODX 36
C INTERPOLATE BY A STRAIGHT LINE NODX 37
IF(TOTAL.GT.O.0) GO TO 20 NODX 38
KOUNT=1 NODX 39
10 COORD(NODMD,KOUNT) =(COORD (NODST,KOUNT) +COORD(NODFN,KOUNT))/2.0 NODX 40
KOUNT=KOUNT+1 NODX
IF(KOUNT.EQ.2) GO TO 10 NODX }
2 0 ~ C O N T I N U E ~ N O D X ~ 4 3 ~
30 CONTINUE NODX 44
RETURN NODX 45
END
NODX 46

```

\subsection*{10.6.19 Subroutine OUTDYN}

This routine writes out most of the output on the line printer and on various tapes for plotting purposes. It outputs the displacements and stresses every NOUTP steps. It also writes the displacement and stress histories of specified nodal and integration points at every NOUTP steps. The complete state of displacements is also written on tape 13 for a deformation plot. The complete state of the stresses is written on tape 4 . The principal stresses and their directions are also calculated and output.

```

            DO 520 IGAUS=1,MGAUS OUTP 34
            DO 520 IREQS=1,NREQS OUTP
            IF(IGAUS.NE.NGRQS(IREQS)) GO TO 520 OUTP 36
            WRITE(11,950) (STRSG(ISTR1,IGAUS),ISTR1=1,NSTR1) OUTP 37
    5 2 0 ~ C O N T I N U E ~
            OUTP }3
    OUTP }3
    510 KOUTD=(KSTEP/NOUTP)*NOUTP
    OUTP }4
            IF(KOUTD.NE.KSTEP) RETURN OUTP 40
            XTIME=FLOAT(KSTEP)*DTIME OUTP 41
            WRITE(6,604) KSTEP,XTIME OUTP 42
    604 FORMAT(//5X,28H DISPLACEMENTS AT TIME STEP ,I10,5X,5HTIME ,E20.11)OUTP 43
    C OUTP }4
C *** REARRANGE DISPLACEMENT VECTOR OUTP 45
C
NODEI=0 OUTP 47
OUTP }4
DO 550 IPOIN=1,NPOIN OUTP 48
DO 550 IDOFN=1,NDOFN OUTP 49
NODEI=NODEI+1 OUTP 50
DISPL(NODEI)=TDISP(NODEI) OUTP 51
5 5 0 ~ C O N T I N U E ~ O U T P ~ 5 2 ~
C
C*** OUTPUT DISPLACEMENTS
C
925 FORMAT(5X,' DISPLACEMENTS ')
WRITE(6,990)
990 FORMAT(/3(1X,'NNODE',3X,'X-DISP',6X,'Y-DISP',3X)/) OUTP 58
DO 560 IPOIN =1,NPOIN,3
NGASI =NDOFN*IPOIN-1 OUTP 60
NGASJ =NGASI+NDOFN OUTP 61
NGASK=NGASJ+NDOFN OUTP 62
MGASI=NGASI+1 OUTP 63
OUTP 53
MGASJ =NGASJ+1 OUTP 64
MGASK=NGASK+1 OUTP 65
JPOIN =IPOIN +1 OUTP 66
KPOIN=JPOIN+1 OUTP 67
C OUTP 68
C *** WRITES DISPLACEMENTS ON TAPE 13 FOR DEFORMATION PLOT OUTP 69
C
WRITE(13,910) IPOIN ,(DISPL(IGASI),IGASI=NGASI,MGASI)
IF(JPOIN.GT.NPOIN) GO TO 2O0 OUTP }7
WRITE(13,910) JPOIN, (DISPL(IGASJ),IGASJ=NGASJ,MGASJ) OUTP 73
IF(KPOIN.GT.NPOIN) GO TO 200
WRITE(13,910) KPOIN ,(DISPL(IGASK),IGASK=NGASK,MGASK) OUTP 75
200 CONTINUE
C
C **: WRITES DISPLACEMENTS ON OUTPUT FILE OUTP 78
OUTP 70
OUTP }7
OUTP }7
OUTP }7
OUTP }7
C
560 WRITE(6,920) IPOIN,DISPL(NGASI),DISPL(MGASI), OUTP 80
JPOIN,DISPL(NGASJ),DISPL(MGASJ),
KPOIN,DISPL(NGASK),DISPL(MGASK)
C
C *** WRITES STRESSES ON OUTPUT FILE
OUTP }7
OUTP 81
OUTP 82
OUTP 83
OUTP 84
C
WRITE (6,900)
OUTP }8
OUTP
IF(NTYPE.NE.3) WRITE (6,970) OUTP 87
970 FORMAT(1H0,1X,4HG.P.,6X,9HXX-STRESS,5X,9HYY-STRESS,5X,9HXY-STRESS,OUTP }8
.5X,9HZZ-STRESS,6X,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X,6H P.S.)OUTP 89
IF(NTYPE.EQ.3) WRITE (6,975) OUTP 90
975 FORMAT(1HO,1X,4HG.P.,6X,9HRR-STRESS,5X,9HZZ-STRESS,5X,9HRZ-STRESS,OUTP }9
.5X,9HTT-STRESS,6X,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X,6H P.S.)OUTP }9
KGAUS=0 OUTP 93
DO 570 IELEM=1,NELEM OUTP 94
KELGS=0 OUTP}
WRITE (6,930) IELEM OUTP 96
930 FORMAT(1H0,5X,13HELEMENT NO. =,I5)
OUTP }9

```
```

    DO 570 IGAUS=1,NGAUS OUTP 98
    DO 570 JGAUS=1,NGAUS OUTP 99
    KGAUS=KGAUS+1 OUTP 100
    KELGS=KELGS+1 OUTP 101
    XGASH=(STRSG(1,KGAUS)+STRSG(2,KGAUS))*0.5 OUTP 102
    XGISH=(STRSG(1,KGAUS)-STRSG(2,KGAUS))*0.5 OUTP 103
    XGESH=STRSG(3,KGAUS)
    OUTP 104
    XGOSH=SQRT(XGISH*XGISH+XGESH*XGESH) OUTP 105
    STRSP(1)=XGASH+XGOSH OUTP 106
    STRSP(2) =XGASH-XGOSH
    IF(XGISH.EQ.0.0) XGISH=0.1E-20
    STRSP(3)=ATAN(XGESH/XGISH)*28.647889757
    C
C *** WRITES COMPLETE STRESS STATE ON TAPE }
C
WRITE(4,950) (STRSG(ISTR1,KGAUS),ISTR1=1,NSTR1),
.(STRSP(ISTRE),ISTRE=1,3)
570 WRITE(6,940) KELGS,(STRSG(ISTR1,KGAUS),ISTR1=1,NSTR1),
.(STRSP(ISTRE),ISTRE=1,3),VIVEL(5,KGAUS)
980 FORMAT(1X,60I2)
960 FORMAT'(1X,10E11.4)
950 FORMAT (7E10.4)
940 FORMAT(I5,2X,6E14.6,F8.3,E14.6)
900 FORMAT(/,10X,8HSTRESSES,/)
920 FORMAT(3(1X,I5,2E12.5))
910 FORMAT(I5,2E15.6)
RETURN
END

```
10.6.20 Subroutine PREVOS
 This routine reads and write the initial forces and stresses.
 SUBROUTINE PREVOS (FORCE ,NDOFN ,NELEM ,NGAUS ,NPOIN ,NPREV , PREV 1
 STRIN) PREV

C PREV
C휸훌흘 GRAVITY LOADS AND STRESSES
PREV
C PREV

 DIMENSION EORCE (1) ,STRIN \((4,1)\)
C
 IF (NPREV.EQ.0) RETURN
C
 NSTR1=4
 NGAU2=NGAUS \({ }^{\text {NGAUS }}\)
C
C․․․․․․ READ GRAVITY LOADS
C
 WRITE \((6,920)\)
 920 FORMAT (//4X,6H NODE , 17H GRAVITY X-LOAD: , 17H GRAVITY Y-LOAD: /)
 200 READ (5,900) NGASH, XGASH, YGASH
 900 FORMAT (I5,4F10.3)
 910 FORMAT (I10,4E18.5)
 NPOSN = (NGASH-1) \({ }^{\text {NDOLNON}}+1\)
 FORCE (NPOSN) \(=X G A S H\)
 NPOSN=NPOSN+1
 FORCE (NPOSN) =YGASH
 WRITE \((6,910)\) NGASH, XGASH, YGASH
 IF (NGASH.NE.NPOIN) GO TO 200
C
PREV
PREV 29
C류류․․ READ GRAVITY STRESS
PREV 30
```

    WRITE(6,930) PREV
    930 FORMAT(//2X,9HGAUSS PT.,17H GRAVITY X-STRESS,17H GRAVITY Y-STRESS,PREV 32
.18H GRAVITY XY-STRESS,17H GRAVITY Z-STRESS/) PREV 33
DO 500 IELEM=1,NELEM PREV 34
DO 500 IGAUS=1,NGAU2 PREV
READ(5,900) KGAUS,(STRIN(ISTRI,KGAUS),ISTRI=1,NSTR1) PREV
500 WRITE(6,910)KGAUS,(STRIN(ISTRI,KGAUS),ISTRI=1,NSTR1) PREV
RETURN PREV
END PREV
PREV }3

```

\subsection*{10.6.21 Subroutine RESVPL}

This routine evaluates the internal resisting force vector
\[
p_{n}=\int_{\Omega}[B]_{n}{ }^{T} \sigma_{n} d \Omega .
\]

It is very similar to the routine described in Section 8.8.

```

    DO 30 IDOFN=1,NDOFN RESD 43
    NPOSN=NPOSN+1 RESD
    ELCOD(IDOFN, INODE)=COORD(LNODE,IDOFN) RESD
    DLCOD(IDOFN,INODE)=COORD(LNODE,IDOFN)+TDISP(NPOSN) RESD 46
    30 ELDIS(IDOFN,INODE) =TDISP(NPOSN)
    CALL MODPS (DMATX,LPROP,NMATS,NSTRE,NTYPE,PROPS)
    KGASP=0
    DO 40 IGAUS }=1\mathrm{ , NGAUS
    DO 40 JGAUS=1,NGAUS
    KGAUSS=KGAUS+1
    KGASP=KGASP+1
    EXISP=POSGP(IGAUS)
    ETASP=POSGP(JGAUS)
    C
CALL SFR2 (DERIV ,NNODE ,SHAPE ,EXISP ,ETASP)
CALL JACOB2 (CARTD ,DERIV ,DJACB ,ELCOD ,GPCOD , RESD 58
- IELEM ,KGASP ,NNODE ,SHAPE ) RESD 59
CALL JACOBD (CARTD ,DLCOD ,DJACM ,NDIME ,NLAPS ,NNODE ) RESD 60
DVOLUU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) RESD 61
IF(NTYPE.EQ.1) DVOLU=DVOLU*THICK
IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP) RESD 63
CALL BLARGE (BMATX ,CARTD ,DJACM ,DLCOD ,GPCOD , RESD 64
. KGASP ,NLAPS ,NNODE ,NTYPE ,SHAPE } RESD 6 65
CALL LINGNL (CARTD ,DJACM ,DMATX ,ELDIS ,GPCOD ,KGASP, RESD 66
- KGAUS ,NDOFN ,NLAPS ,NNODE ,NSTRE ,NTYPE, RESD 67
C
DO 580 ISTR1=1,NSTR1
500 STRES(ISTR1)=STRES(ISTR1)+STRIN(ISTR1,KGAUS)
DO 570 ISTR1=1,NSTR1
570 STRSG(ISTR1,KGAUS)=STRES(ISTR1)
C
IF(NLAPS.EQ.2.OR.NLAPS.EQ.0) GO TO 200
C
CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF, RESD 77
- STRES,THETA,VARJ2,YIELD) RESD }7
CALL YIELDF (AVECT,DEVIA,FRICT,NCRIT,SINT3,STEFF,THETA,VARJ2) RESD }7
CALL FLOWVP (AVECT,KGAUS,LPROP,NCRIT,NMATS,PROPS, RESD
STEFF,VIVEL,YIELD) RESD 81
C C
C*** VISCOPLASTIC STRAIN INCREMENT AND A MEASURE FOR HARDENING
C
D0 60 ISTR }\mp@subsup{}{}{*}=1\mathrm{ ,NSTR1
DESTN(ISTR1)-VIVEL(ISTR1,KGAUS)*DTIME O
N(ISIR1)= IVEL(ISIR1,KGAUS)*DIIME
VISTN(ISTR1,KGAUS)=VISTN(ISTR1,KGAUS)+DESTN(ISTR1) RESD }8
DEBAR=SQRT((2.0*(DESTN(1)*DESTN(1)+DESTN(2)*DESTN(2)+ RESD 88
- DESTN(4)*DESTN(4))+\operatorname{DESTN}(3)*DESTN(3))/3.0) RESD 89
VIVEL (5,KGAUS)=DEBAR RESD 90
C
C*** COMPUT INT(B**T*SIGMA) ON ELEMENT LEVEL RESD 92
C RONTIUE RESD 93
200 CONTINUE RESD 94
KEVAB=0 RESD 95
DO 502 INODE=1,NNODE RESD 96
DO 502 IDOFN=1,NDOFN RESD 97
KEVAB=KEVAB+1 RESD 98
DO 501 ISTRE=1,NSTRE RESD 99
501 RLOAD(IELEM, KEVAB)=RLOAD(IELEM,KEVAB) + RESD 100
.BMATX(ISTRE,KEVAB)*STRSG(ISTRE,KGAUS)*DVOLU RESD 101

```


```

        20 CONTINJE RESD 104
    C
C*** ASSEMBLY OF RESID VECTOR
RESD }10
RESD }10

```
```

c

	RESD 107
DO 500 IELEM 1 1, NELEM	RESD 108
KEVAB $=0$	RESD 109
DO 500 INODE $=1$, NNODE	RESD 110
LNODE=LNODS(IELEM, INODE)	RESD 111
NPOSN $=($ LNODE-1)*NDOFN	RESD 112
DO 500 IDOFN $=1$, NDOFN	RESD 113
KEVAB=KEVAB +1	RESD 114
NPOSN=NPOSN+1	RESD 115
RESID (NPOSN) $=$ RESID (NPOSN) + RLOAD (IELEM, KEVAB)	RESD 116
CONTINUE	RESD 117
RETURN	RESD 118
END	RESD 119

```

RESD 66-68 Call LINGNL to determine the state of stress at the current Gauss point.
RESD 77-78 Call INVAR to evaluate stress invariants at the current Gauss point.
RESD \(79 \quad\) Call YIELDF to select the yield function and calculate the \(a\) vector.
RESD 80-81 Call FLOWVP to define the rate of viscoplastic straining VIVEL if the stress point is outside the current yield surface.
RESD 86 Evaluate the increments of viscoplastic strains DESTN.
RESD 87 Evaluate the viscoplastic strains \(\left(\epsilon_{v p}\right)_{n+1}\) for the next time station \(t_{n}+\Delta t\), VISTN.
RESD 88-90 Determine a measure of hardening for the current yield surface.
RESD 95-101 Evaluate \(\boldsymbol{p}_{\boldsymbol{n}}{ }^{(e)}\) at the element level, RLOAD.
RESD 108-117 Assemble \(\boldsymbol{p}_{n}\), RESID.

\subsection*{10.6.22 Subroutine YIELDF}

This subroutine selects the yield function and calculates the vector \(a\) (AVECT) and is almost identical to the version described in Section 7.8.4.1.

```

C*** CALCULATE VECTOR A1 YELD 16
VECA1(1)=1.0 YELD
VECA1(2)=1.0 YELD
VECA1(3)=0.0 YELD
VECA1(4)=1.0 YELD
C*** CALCULATE VECTOR A2 YELD
DO 10 ISTR1=1,NSTR1 YELD
10 VECA2(ISTR1)=DEVIA(ISTR1)/(2.0*STEFF) YELD
VECA2(3)=DEVIA(3)/STEFF
C*** CALCULATE VECTOR A3 YELD
VECA3(1)=DEVIA(2)*DEVIA(4)+VARJ2/3.0 YELD 26
VECA3(2)=DEVIA(1)*DEVIA(4)+VARJ2/3.0 YELD 27
VECA3(3)=-2.0}\mp@subsup{0}{}{*}\mathrm{ DEVIA(3)*DEVIA(4) YELD 28
VECA3(4)=DEVIA(1)*DEVIA(2)-DEVIA(3)*DEVIA(3)+VARJ2/3.0 YELD 29
GO TO (1,2,3,4) NCRIT YELD 30
C*** TRESCA
1 CONS1=0.0
ABTHE=ABS(THETA*57.29577951308)
YELD 31
IF(ABTHE LT.29.0) CO TO 20 YELD 34
CONS2=ROOT3 YELD 35
CONS3=0.0
GO TO 40
20 CONS2=2.0*(COSTH+SINTH*TAN(3.0*THETA))
CONS3=ROOT3*SINTH/ (VARJ2*COST3)
GO TO 40
C*** VON MISES
2 CONS1=0.0
CONS2=ROOT3
CONS3=0.0
GO TO 40
C*** MOHR-COULOMB
3 CONS1=SIN(FRICT*O.017453292)/3.0
ABTHE=ABS(THETA*57.29577951308)
IF(ABTHE.LT.29.0) GO TO 30
CONS3=0.0
PLUMI=1.0
IF(THETA.GT.0.0) PLUMI=-1.0
CONS2=0.5*(ROOT3+PLUMI*CONS1/ROOT3)
GO TO 40
30 TANT3=TAN(3.0*THETA)
CONS2=COSTH*((1.0+TANTH*TANT3)+CONS1*(TANT3-TANTH)/ROOT3)
CONS3=(ROOT3*SINTH+CONS1*COSTH)/(2.0*VARJ2*COST3)
GO TO 40
C*** DRUCKER-PRAGER
4 SNPHI=SIN(FRICT*0.017453292)
CONS1=2.0*SNPHI/(ROOT3*(3.0-SNPHI))
CONS2=1.0
CONS3=0.0
40 CONTINUE
DO 50 ISTR1=1,NSTR1
50 AVECT(ISTR1)=CONS1*VECA1(ISTR1)+CONS2*
.VECA2(ISTR1)+CONS3*VECA3(ISTR1)
RETURN YELD 68
END
YELD 69

```

\subsection*{10.7 Examples}

\subsection*{10.7.1 Introduction}

To illustrate the use of DYNPAK we now describe the nonlinear transient dynamic analysis of (i) a spherical shell and (ii) a concrete gravity dam.

\subsection*{10.7.2 Spherical shell example}

The shell, \({ }^{(8)}\) shown in Fig. 10.3, is subjected to a distributed step pressure of \(600 \mathrm{lb} / \mathrm{in}^{2}\). The material is assumed to obey the Von Mises yield condition with linear isotropic hardening. The dimensions and properties of the shell are given as follows:
Internal radius
Thickness of shell
Semi angle
Elastic modulus
Poisson's ratio
Yield stress
Tangent hardening modulus
Mass density
Step distributed pressure
\[
\begin{aligned}
R & =22.27 \mathrm{in} \\
t & =0.41 \mathrm{in} \\
a & =26.67^{\circ} \\
E & =10.5 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2} \\
\nu & =0.3 \\
\sigma_{Y} & =0.024 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2} \\
E_{T} & =0.21 \times 10^{6} \mathrm{lb} / 2 \\
\rho & =2.45 \times 10^{-4} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}^{4} \\
p & =600 \mathrm{lb} / \mathrm{in}^{2}
\end{aligned}
\]

Fig. 10.3 Spherical shell and finite element mesh.

The shell is divided into ten, 8 -noded, axisymmetric, isoparametric elements. The fundamental period of the shell is \(T_{f}=0.55 \times 10^{-3} \mathrm{sec}\), (Reference 8). For explicit central difference analysis, the time step is taken as \(0.4 \times 10^{-6} \mathrm{sec}\).

In order to illustrate the versatility of program DYNPAK we consider the following three cases:
(i) Small elastic displacements
(ii) Large elastic displacements
(iii) Small elasto-viscoplastic displacements (with a fluidity parameter value of \(\gamma=100.0\)).

Fig. 10.4(a) Results of the transient dynamic analysis of a spherical shell cap. Cases (i) and (ii).

Figure 10.4(a) shows the vertical displacement of the crown lower point for the analyses based on both small and large elastic displacement assumptions. The results show that the inclusion of geometrically nonlinear effects in the analysis elongates the period. Figure 10.4(b) shows the small displacement, elasto-viscoplastic response (Case (iii)) of the spherical shell cap in which the value of the fluidity parameter is taken as \(\gamma=100.0\). It should be noted that permanent viscoplastic deflections occur thus providing a completely different response to either of the elastic responses shown in Fig. 10.4(a).

In Chapter 11 this problem is repeated using an elasto-plastic material model. It should be noted that in order to simulate elasto-plastic behaviour with DYNPAK a high value of the fluidity parameter (say \(\gamma=10000.0\))

Fig. 10.4(b) Results of the transient dynamic analysis of a spherical shell cap. Case (iii).
should be adopted. Interested readers may like to compare DYNPAK and MIXDYN for elasto-plastic behaviour using a high fluidity parameter. However, care should be taken since the use of high fluidity parameter valucs requires the use of a smaller time step when an Euler scheme is used to evaluate the viscoplastic strains (see Section 8.3). Typical input data for Case (ii) are given in Appendix IV.

At this stage it is probably worth mentioning the important problem of combining material and geometric nonlinearities. Among the several papers on this topic in the existing literature we suggest that the interested reader could profitably refer to the following as a starting point for further study:

McMeeking, R. M. and Rice, J. R., Finite element formulations for problems of large elastic-plastic deformation, Int. J. Solids Structures, 11, 601-616 (1975).
Hibbitt, H. D., Marcal, P. V. and Rice, J. R., A finite slement formulation for problems of large strain and large displacement, Int. J. Solids Structures, 6, 1069-1086 (1970).
Bathe, K. J., Ramm, E. and Wilson, E. L., Finite element formulations for large deformation analysis, Int. J. Num. Meth. Engng., 9, 353-386 (1975).

\subsection*{10.7.3 Gravity dam example}

The geometry of the dam, the seismic acceleration history, the water level and material properties for both dam and foundation are arbitrary.

Fig. 10.5(a) Concrete gravity dam.

Fig. 10.5(b) Finite element mesh for concrete gravity dam.

Both the gravity dam and the foundation shown in Fig. 10.5(a) are idealized with two-dimensional, plane-strain, 8 -noded isoparametric elements as shown in Fig. 10.5(b), using a \(2 \times 2\) Gauss integration rule for the stiffness evaluation, and using a special mass lumping scheme with a \(3 \times 3\) Gauss integration rule. The adopted \(2 \times 2\) Gauss integration rule for the stiffness terms ensures that no locking behaviour will occur in the mesh, whereas the \(3 \times 3\) Gauss integration rule for the lumped mass matrix terms renders better mass representation. The model base is assumed to be fixed, i.e. \(u=v=0\), and side boundaries are represented by horizontal rollers, i.e. \(v=0\).

A short duration analytic earthquake (sinesweep) \({ }^{(9)}\) with a maximum acceleration level 0.33 g (developed as an equivalent to the E1 Centro NS accelerogram) will be used as a prescribed horizontal acceleration history at the model base level. It is assumed that this signal is the result of the deconvolution process of a prescribed signal at the foundation level. The displacements obtained in the solution process are relative to the model base.

Both the concrete and rock are assumed to behave as elasto-viscoplastic materials with no hardening. The Mohr-Coulomb yield surface is adopted, and the parameters \(c\) and \(\phi\) are obtained from the uniaxial properties \(f_{c u}\) and \(f_{t}\) as indicated in Table 10.3.
\[
\begin{gathered}
f_{t}, f_{c u}=\text { tensile, compressive strengths of concrete, } \\
\qquad=\frac{f_{t}}{f_{c u}}=\frac{1-\sin \phi}{1+\sin \phi}, \\
\phi=\operatorname{arc} \sin \left(\frac{1-a}{1+a}\right), \\
c=\frac{(\alpha)^{-1 / 2}}{2} f_{c u} \\
F_{0}(\text { Mohr-Coulomb })=c \cos \phi .
\end{gathered}
\]
\begin{tabular}{lcccccc}
\hline & \begin{tabular}{c}
\(f_{c u}\) \\
\(\left(t / m^{2}\right)\)
\end{tabular} & \begin{tabular}{c}
\(f_{t}\) \\
\(\left(t / m^{2}\right)\)
\end{tabular} & \(\alpha\) & \begin{tabular}{c}
\(c\) \\
\(\left(t / m^{2}\right)\)
\end{tabular} & \(\phi\) & \begin{tabular}{c}
\(F_{0}=c \cos \phi\) \\
\(\left(t / m^{2}\right)\)
\end{tabular} \\
\hline \begin{tabular}{lc}
concrete \\
rock
\end{tabular} & 4000 & 500 & 0.125 & 707.11 & 62.73 & 323.94 \\
\hline
\end{tabular}

Table 10.3 Mohr-Coulomb yield surface parameters for concrete dam example.
The values of the fluidity parameters \(\gamma\) are considered to be the same for both the concrete and rock materials. Values of \(\gamma=0.00001\) and \(\gamma=0.001\) have been used for the two analyses presented. The stress level in the structure prior to the seismic excitation is assumed to be due to the self-weight and hydrostatic pressure of the water only.

The influence of the reservoir water on the dynamic behaviour of the dam is considered by taking into account the mass of water attached to the upstream face of the dam. The simple representation of 'added mass' with concentrated masses is used. The adopted model could be improved significantly with transmitting boundaries, better 'added mass' representation, a more realistic signal and a finer mesh.

The choice of the time step length depends on two criteria. For the explicit central difference integration scheme of the dynamic equilibrium equations, the highest mesh frequency defines the critical time step length
\[
\begin{equation*}
\Delta t_{C D}=\frac{2}{\omega_{\max }} \simeq \mu L\left(\frac{\rho(1+\nu)(1-2 \nu)}{E(1-\nu)}\right)^{1 / 2} . \tag{10.51}
\end{equation*}
\]

For the integration of the equations, which govern viscoplastic straining using the Euler method, the critical time step for the Mohr-Coulomb viscoplastic material is defined as
\[
\begin{equation*}
\Delta t_{M C}=\frac{4(1+\nu)(1-2 \nu) c \cos \phi}{\gamma\left(1-2 \nu+\sin ^{2} \phi\right)} . \tag{10.52}
\end{equation*}
\]

For the mathematical model under consideration, \((L=2.4665 \mathrm{~m})\), the choice of the time step is governed by the \(\Delta t_{C D}\) criterion for both analyses. Note that since
\[
\begin{equation*}
\Delta t_{C D}=0.000478 \mathrm{sec} \tag{10.53}
\end{equation*}
\]
the adopted time step length is \(\Delta t=0.0004 \mathrm{sec}\).
On the basis of the adopted mathematical model, (Fig. 10.5), input data can be prepared following the user notes, given in the Appendix III.

JOHNSON/EPSTEIN SINESWEEP EARTHQUAKE 0.20 SEC
Fig. 10.6(a) Johnson/Epstein sinesweep earthquake.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SINESWEEP & DT 0.01 SEC & 300 ENTR
0.0104 & ES 0.0140 & & & \\
\hline \[
\begin{aligned}
& 0.0034 \\
& 0.0296
\end{aligned}
\] & 0.0069
0.0339 & 0.0104
0.0385 & 0.0140
0.0433 & 0.0177
0.0484 & 0.0215
0.0539 & 0.0255
0.0597 \\
\hline 0.0659 & 0.0725 & 0.0795 & 0.0871 & 0.0951 & 0.1038 & 0.1130 \\
\hline 0.1229 & 0.1335 & 0.1449 & 0.1570 & 0.1700 & 0.1838 & 0.1986 \\
\hline 0.2144 & 0.2312 & 0.2491 & 0.2681 & 0.2884 & 0.3098 & 0.3326 \\
\hline 0.3567 & 0.3823 & 0.4092 & 0.4377 & 0.4677 & 0.4992 & 0.5324 \\
\hline 0.5672 & 0.6036 & 0.6417 & 0.6815 & 0.7229 & 0.7660 & 0.8106 \\
\hline 0.8568 & 0.9046 & 0.9537 & 1.0042 & 1.0558 & 1.1086 & 1.1622 \\
\hline 1.2165 & 1.2713 & 1.3263 & 1.3812 & 1.4357 & 1.4894 & 1.5420 \\
\hline 1.5930 & 1.6419 & 1.6881 & 1.7312 & 1.7705 & 1.8054 & 1.8351 \\
\hline 1.8589 & 1.8761 & 1.8859 & 1.8874 & 1.8797 & 1.8621 & 1.8337 \\
\hline 1.7935 & 1.7408 & 1.6747 & 1.5945 & 1.4993 & 1.3887 & 1.2621 \\
\hline 1.1191 & 0.9594 & 0.7829 & 0.5899 & 0.3805 & 0.1554 & -0.0845 \\
\hline -0.3381 & -C.6.6038 & -0.8798 & -1.1638 & -1.4533 & -1.7372 & -1.9899 \\
\hline -2.2286 & -2.4500 & -2.6507 & -2.8273 & -2.9764 & -3.0948 & -3.1793 \\
\hline -3.2271 & -3.2356 & -3.2025 & -3.1262 & -3.0056 & -2.8402 & -2.6303 \\
\hline -2.3768 & -2.0819 & -1.7485 & -1.3804 & -0.9825 & -0.5607 & -0.1220 \\
\hline 0.3258 & 0.7742 & 1.2139 & 1.6349 & 2.0272 & 2.3806 & 2.6849 \\
\hline 2.9306 & 3.1090 & 3.2125 & 3.2351 & 3.1726 & 3.0230 & 2.7867 \\
\hline 2.4670 & 2.0698 & 1.6041 & 1.0818 & 0.5176 & -0.0715 & -0.6660 \\
\hline -1.2454 & -1.7879 & -2.2718 & -2.6762 & -2.9821 & -3.1733 & -3.2373 \\
\hline -3.1663 & -2.9582 & -2.6169 & -2.1529 & -1.5831 & -0.9256 & -0.2197 \\
\hline 0.4796 & 1.1375 & 1.7207 & 2.1988 & 2.5461 & 2.7439 & 2.781 C \\
\hline 2.6553 & 2.3743 & 1.9551 & 1.4235 & 0.8133 & 0.1640 & -0.4813 \\
\hline -1.0789 & -1.5873 & -1.9703 & -2.2002 & -2.2599 & -2.1450 & -1.8645 \\
\hline -1.4408 & -0.9084 & -0.3116 & 0.2988 & 0.8699 & 1.3510 & 1.6985 \\
\hline 1.8803 & 1.8793 & 1.6956 & 1.3476 & 0.8703 & 0.3129 & -0.2659 \\
\hline -0.8041 & -1.2427 & -1.5330 & -1.6417 & -1.5565 & -1.2875 & -0.8674 \\
\hline -0.3482 & 0.2047 & 0.7201 & \(1.1 \times 07\) & 1.3817 & 1.4390 & 1.2948 \\
\hline 0.9696 & 0.5104 & -0.0151 & -0.5283 & -0.9507 & -1.2170 & -1.2848 \\
\hline -1.1436 & -C.8166 & -0.3588 & 0.1518 & 0.6265 & 0.9814 & 1.1528 \\
\hline 1.1094 & 0.8596 & 0.4508 & -0.0377 & -0.5100 & -0.8715 & -1.0488 \\
\hline -1.0054 & -0.7506 & -0.3392 & 0.1389 & 0.5778 & 0.8784 & 0.9720 \\
\hline 0.8371 & 0.5057 & 0.0580 & -0.3962 & -0.7437 & -0.8966 & -0.8159 \\
\hline -0.5228 & - -0.0956 & 0.3502 & 0.6922 & 0.8352 & 0.7389 & 0.4312 \\
\hline 0.0025 & -0.4198 & -0.7084 & -0.7749 & -0.5989 & -0.2364 & 0.1960 \\
\hline 0.5575 & 0.7285 & 0.6519 & 0.3541 & -0.0615 & -0.4488 & -0.6697 \\
\hline -0.6446 & -0.3831 & 0.0171 & 0.4045 & 0.6304 & 0.6073 & 0.3446 \\
\hline -0.0521 & -0.4214 & -0.6111 & -0.5422 & -0.2444 & 0.1539 & 0.4789 \\
\hline 0.5870 & 0.4302 & 0.0801 & -0.3015 & -0.5364 & -0.5135 & -0.2443 \\
\hline 0.1398 & 0.4490 & 0.5290 & 0.3396 & -0.0213 & -0.3657 & -0.5121 \\
\hline -0.3826 & -0.0479 & 0.3081 & 0.4876 & 0.3899 & 0.0713 & -0.2837 \\
\hline -0.4675 & -0.3716 & -0.0541 & 0.2916 & 0.4528 & 0.3295 & \\
\hline
\end{tabular}

Fig. 10.6(b) Digital form of Johnson/Epstein sinesweep earthquake.

Prior to the dynamic analysis, the initial stresses \(\sigma_{0}\) must be evaluated using some static finite element program. Nodal loads and the stress state for every Gauss integration point are recorded, and added to the input data for the dynamic analysis. The sinesweep accelerogram and 300 readings for \(\Delta t=0.01 \mathrm{sec}\) are given in Fig. 10.6. The accelerogram information is read in from a separate input unit (here tape 7, the assumed seismic excitation in the horizontal direction).

The displacement histories for selected nodal points and stress histories for selected Gauss integration points are written on separate output units (tape 10, tape 11) and may be used later for plotting the results. The displacement histories for nodal points 51 (structure base level) and 127 (dam crest) are given in Fig. 10.7.

Fig. 10.7 Results of transient dynamic analysis of a concerte gravity dam.

\subsection*{10.8 Problems}
10.1 A simply supported beam is subjected to a step uniformly distributed load. The dimensions and material properties of the beam are shown in Fig. 10.8(a). Only one quarter of the beam needs to be analysed as shown in Fig. 10.8(b). Use DYNPAK to find the midspan lateral deflection when the step lateral load is \(0.75 p_{0}\) where \(p_{0}\) is the static collapse load. Note that this problem has been solved by Liu and Lin \({ }^{(10)}\), Bathe et al. \({ }^{(11)}\) and Nagarajan and Popov. \({ }^{(12)}\) Use the Von Mises yield criterion, a high value of the fluidity parameter \(\gamma\) and 8 -node elements.
10.2 Repeat Problem 10.1 using the Tresca yield criterion.
10.3 Repeat Problem 10.1 using loads of intensity \(0.625 p_{0}\) and \(0.50 p_{0}\). Compare your results with those of Liu and Lin. \({ }^{(10)}\)
10.4 For a step lateral load of \(0.625 p_{0}\), repeat Problem 10.1 for various degrees of hardening. Compare your results with those of Liu and Lin. (10)
10.5 Solve the problem given in Chapters 7 and 8 using dynamic relaxation. \({ }^{(13,14)}\)
10.6 Implement an explicit elasto-plastic, transient dynamic, Mindlin plate program based on DYNPAK. Typical examples are given elsewhere. \({ }^{(15,16)}\)

Fig. 10.8 Simply supported beam example (a) Geometry and loading, (b) Finite element idealisation.

\subsection*{10.9 References}
1. Nickell, R. E., Nonlinear dynamics by mode superposition, Comp. Meth. Appl. Mech. Engng. 7, 107-129 (1976).
2. Bathe, K. J. and Wilson, E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 308-344 (1976).
3. Nayak, G. C., Plasticity and large deformation by the finite element method, Ph.D. Thesis, University College of Swansea (1971).
4. Irons, B. M. and Ahmad, S., Finite Element Techniques, Ellis Horwood, Chichester (1980).
5. Bićanić, N., Nonlinear finite element transient response of concrete structures, Ph.D. Thesis, University College of Swansea (1978).
6. Hinton, E., Rock, T. A. and Zienkiewicz, O. C., A note on mass lumping and related processes in the finite element method, Int. J. Earthquake Engng. Struct. Dynamics, 4, 246-249 (1976).
7. Hinton, E. and Owen, D. R. J., Finite Element Programming, Academic Press, London (1977).
8. Bathe, K. J. and Ozdemir, H., Elasto-plastic large deformation static and dynamic analysis, Computers and Structures, 6, 81-92 (1976).
9. Johnson, G. R. and Epstein, H. I., Short duration analytic earthquake, J. ASCE, Struct. Div., 102, No. ST5, 993-1000 (1976).
10. Liu, S. C. and Lin, T. H., Elastic-plastic dynamic analysis of structures using known elastic solutions, Int. J. Earthquake Engng. Struct. Dynamics, 7, 147159 (1979).
11. Bathe, K. J., Ozdemir, H. and Wilson, E. L., Static and geometric and material nonlinear analysis, Structures and Materials Research Report No. UC SESM 74-4, University of California, Berkeley (1974).
12. Nagarajan, S. and Popov, E. P., Elastic-plastic dynamic analysis of axisymmetric solid, Computers and Structures, 4, 1117-1134 (1974).
13. Pica, A. and Hinton, E., Transient and pseudo-transient analysis of Mindlin plates, Int. J. Num. Meth. Engng. 15, 189-208 (1980).
14. Brew, J, S. and Brotron, D. M., Nonlinear structural analysis by dynamic relaxation, Int. J. Num. Meth. Engng. 3, 463-483 (1971).
15. Hinton, E., Owen, D. R. J. and Shantaram, D., Dynamic transient nonlinear behaviour of thick and thin plates, In: The Mathematics of Finite Elements and Applications, MAFELAP II, 1975, Ed. J. R. Whiteman, Academic Press, London, 423-438 (1977).
16. Rao, S. S. and Raghavan, K. S., Dynamic response of inelastic thick plates, AIAA J., 17, 85-90 (1979).

\title{
Chapter 11 \\ Implicit-explicit transient dynamic analysis
}

\author{
Written in collaboration with D. K. Paul
}

\subsection*{11.1 Introduction}

In Chapter 10 we have shown that the explicit, central difference time stepping scheme is a simple and powerful method of time integration. The main drawback of the scheme is that it is conditionally stable. Thus the computational advantages of the central difference scheme are counterbalanced by the very small size of time step necessary when some stiff (and/or small) elements are present. For such problems the unconditionally stable implicit schemes permit the use of larger time steps, the size of which is governed only by accuracy considerations. Unfortunately these schemes which require matrix factorisations involve larger computer core storage and more operations per time step than the central difference scheme. The selection of a suitable time integration scheme is therefore largely a matter of experience.

In some problems, typified by the one illustrated in Fig. 11.1, we may be confronted with a situation in which there is a 'soft' subregion \(\Omega^{E}\) where an

Fig. 11.1 Implicit-explicit partitioning.
explicit scheme is desirable and a 'stiff' subregion \(\Omega^{I}\) where an implicit scheme is preferable for greater efficiency. In such cases it is possible to simultaneously make use of both implicit and explicit algorithms. Implicitexplicit schemes offer a unified approach to problems of structural transient dynamics and can lead to significant computational advantages.
Implicit-explicit schemes were first introduced by Belytschko and Mullen \({ }^{(1-3)}\) and were given an alternative form by Hughes and co-workers \({ }^{(4-6)}\) and Park et al. \({ }^{(7-8)}\) It can be shown that the stability of such schemes is governed by the explicit elements.

In this chapter Implicit and Implicit-Explicit methods for nonlinear transient dynamic analysis are discussed and we follow the element partitioning approach described by Hughes. A program, named MIXDYN, for Implicit-Explicit linear and nonlinear transient dynamic analysis is included. Some numerical examples are solved to show some of the capabilities of the program. The same program could be modified for static analysis by some simple changes.

\subsection*{11.2 Implicit time integration}

\subsection*{11.2.1 Newmark's algorithm}

In order to introduce the implicit/explicit algorithm we describe the predictor-corrector form of the Newmark scheme for the integration of the semi-discrete system of equations which govern nonlinear transient dynamic problems. Typically at time station \(t_{n}+\Delta t\) these equations take the form
\[
\begin{equation*}
M a_{n+1}+p_{n+1}=f_{n+1} \tag{11.1}
\end{equation*}
\]
where \(\boldsymbol{M}, \boldsymbol{a}_{n+1}, \boldsymbol{p}_{n+1}\) and \(f_{n+1}\) are the mass matrix, acceleration vector, internal force vector (which may depend on the displacements \(\boldsymbol{d}_{n+1}\) and velocities \(\boldsymbol{d}_{n+1}\) and their histories) and applied force vector respectively. Let
\[
\begin{equation*}
\left[K_{T}\right]_{n+1}=\partial p_{n+1} / \partial \boldsymbol{d}_{n+1} \text { and }\left[C_{T}\right]_{n+1}=\partial p_{n+1} / \partial \dot{d}_{n+1} \tag{11.2}
\end{equation*}
\]
denote the tangent stiffness and damping matrices respectively.
In the Newmark scheme we endeavour to satisfy the following equations
\[
\begin{gather*}
M a_{n+1}+p_{n+1}=f_{n+1} \tag{11.3}\\
\boldsymbol{d}_{n+1}=\tilde{d}_{n+1}+\Delta t^{2} \beta a_{n+1} \tag{11.4}
\end{gather*}
\]
\[
\begin{equation*}
\boldsymbol{v}_{n+1}=\mathfrak{v}_{n+1}+\Delta t \gamma \boldsymbol{a}_{n+1} \tag{11.5}
\end{equation*}
\]
where
\[
\begin{gather*}
\tilde{\boldsymbol{d}}_{n+1}=\boldsymbol{d}_{n}+\Delta t v_{n}+\Delta t^{2}(1-2 \beta) a_{n} / 2 \tag{11.6}\\
\tilde{\boldsymbol{v}}_{n+1}=\boldsymbol{v}_{n}+\Delta t(1-\gamma) a_{n} . \tag{11.7}
\end{gather*}
\]

Note that \(\boldsymbol{d}_{n}, \boldsymbol{v}_{n}\) and \(\boldsymbol{a}_{n}\) are the approximations to \(\boldsymbol{d}\left(t_{n}\right), \dot{\boldsymbol{d}}\left(t_{n}\right)\) and \(\ddot{d}\left(t_{n}\right)\) and \(\beta\) and \(\gamma\) are free parameters which control the accuracy and stability of the method. The values \(\tilde{\boldsymbol{d}}_{n+1}\) and \(\tilde{\boldsymbol{v}}_{n+1}\) are predictor values and \(\boldsymbol{d}_{n+1}\) and \(\boldsymbol{v}_{n+1}\) are corrector values.

Initially the displacements \(\boldsymbol{d}_{0}\) and velocities \(\boldsymbol{v}_{0}\) are provided and we find the accelerations \(a_{0}\) from the expression
\[
\begin{equation*}
M a_{0}=f_{0}-p\left(d_{0}, v_{0}\right) . \tag{11.8}
\end{equation*}
\]

Thus \(a_{0}\) may be found by a factorization, forward reduction and back substitution unless \(\boldsymbol{M}\) is diagonal in which case the solution is trivial.

We then solve (11.3) to (11.7) by forming an 'effective static problem' \(\dagger\) which is solved using a Newton Raphson type scheme, as described earlier. The algorithm is summarised in Table 11.1.

Table 11.1 Newmark's algorithm
\(1 \quad\) Set iteration counter \(i=0\).
2 Begin predictor phase in which we set
\[
\begin{align*}
& \boldsymbol{d}_{n+1}[i]=\tilde{\boldsymbol{d}}_{n+1}=\boldsymbol{d}_{n}+\Delta t \boldsymbol{v}_{n}+\Delta t^{2}(1-2 \beta) a_{n} / 2 \tag{i}\\
& \boldsymbol{v}_{n+1}{ }^{[i]}=\tilde{v}_{n+1}=v_{n}+\Delta t(1-\gamma) a_{n} \tag{ii}\\
& \left.a_{n+1}{ }^{[i]}=\left[\boldsymbol{d}_{n+1}[i]-\boldsymbol{d}_{n+1}\right] /\left(\Delta t^{2} \beta\right)=\mathbf{0}\right) . \tag{iii}
\end{align*}
\]

3 Evaluate residual forces using the equation
\[
\begin{equation*}
\psi^{[i]}=f_{n+1}-M a_{n+1}^{[i]}-p\left(d_{n+1}{ }^{[i]}, v_{n+1}^{[i]}\right) \tag{iv}
\end{equation*}
\]

4 If required, form the effective stiffness matrix using the expression
\[
\begin{equation*}
\dot{K}^{*}=M /\left(\Delta t^{2} \beta\right)+\gamma C_{T} /(\Delta t \beta)+K_{T}\left(d_{n+1}^{[i]}\right) \tag{v}
\end{equation*}
\]

Otherwise use a previously calculated \(K^{*}\).
5 Factorize, forward reduction and backsubstitute as required to solve
\[
\begin{equation*}
K^{*} \Delta d^{[i]}=\psi^{[i]} . \tag{vi}
\end{equation*}
\]

6 Enter corrector phase in which we set
\[
\begin{align*}
\boldsymbol{d}_{n+1}{ }^{[i+1]} & =\boldsymbol{d}_{n+1}{ }^{[i]}+\Delta d^{[i]} \tag{vii}\\
\boldsymbol{a}_{n+1}[i+1] & =\left[\boldsymbol{d}_{n+1}{ }^{[i+1]}-\widetilde{\boldsymbol{d}}_{n+1}\right] /\left(\Delta t^{2} \beta\right) \tag{viii}\\
\boldsymbol{v}_{n+1}{ }^{[i+1]} & =\boldsymbol{v}_{n+1}+\Delta t \boldsymbol{t}_{n+1} \tag{ix}
\end{align*}
\]

7 If \(\Delta d^{[i]}\) and/or \(\psi^{[i]}\) do not satisfy the convergence conditions then set \(i=i+1\) and go to step 3 , otherwise continue.
8
\[
\begin{align*}
& \boldsymbol{d}_{n+1}=\boldsymbol{d}_{n+1}{ }^{[i+1]} \tag{x}\\
& \boldsymbol{v}_{n+1}=\boldsymbol{v}_{n+1}{ }^{[i+1]} \tag{xi}\\
& \boldsymbol{a}_{\boldsymbol{n + 1}}=\boldsymbol{a}_{\boldsymbol{n}+1}{ }^{[i+1]} \tag{xii}
\end{align*}
\]
for use in the next time step. Also set \(n=n+1\), form \(p\) and begin next time step.

\footnotetext{
* In this chapter \(\gamma\) is a Newmark parameter and not the viscoplastic fluidity parameter.
\(\dagger \boldsymbol{K}^{*} \Delta \boldsymbol{d}^{[i]}=\boldsymbol{\psi}^{[i]}\).
}

\subsection*{11.2.2 Predictor-corrector algorithm}

Let us now consider an 'explicit' algorithm associated with the Newmark schemes described earlier. In this explicit predictor-corrector algorithm we assume that the mass matrix \(\boldsymbol{M}\) is diagonal and we make use of the expression
\[
\begin{equation*}
M a_{n+1}+p\left(\tilde{\boldsymbol{d}}_{n+1}, \tilde{v}_{n+1}\right)=f_{n+1} \tag{11.9}
\end{equation*}
\]

Notice that the calculation is explicit since we use corrector values obtained from information given in the previous step.

As we would like to eventually combine the implicit and explicit methods we organise our implementation of this explicit method in a similar fashion to the implementation given of the implicit scheme in the previous section. Table 11.2 summarises the algorithm.

Table 11.2 Explicit predictor-corrector algorithm

\subsection*{11.3 Implicit-explicit algorithm}

\subsection*{11.3.1 Introduction}

We now combine the methods described in Sections 11.2.1 and 11.2.2 so that the finite element mesh contains two groups of elements: the implicit group and the explicit group. The superscripts \(I\) and \(E\) will henceforth refer to the implicit and explicit groups respectively.

In the implicit-explicit algorithm we iterate within each time step in order to satisfy the equation
\[
\begin{equation*}
M a_{n+1}+p^{I}\left(d_{n+1}, v_{n+1}\right)+p^{E}\left(\widetilde{d}_{n+1}, \tilde{v}_{n+1}\right)=f_{n+1} \tag{11.10}
\end{equation*}
\]
in which \(\boldsymbol{M}=\boldsymbol{M}^{I}+\boldsymbol{M}^{E}\) and \(f_{n+1}=f_{n+1}^{I}+f_{n+1}{ }^{E}\). Note that we assume \(\boldsymbol{M}^{E}\) is diagonal.

\subsection*{11.3.2 The structure of the effective stiffness matrix}

The algorithm, which is summarised in Table 11.3, is very similar to the implicit algorithm given in Section 11.2.2. The profile structure of \(K^{*}\) is very interesting. It has diagonal subregions corresponding to the explicit group of elements. Elsewhere, \(K^{*}\) has a profile structure which corresponds to the connectivity of the implicit group only.

Table 11.3 Implicit-explicit algorithm
\begin{tabular}{|c|c|}
\hline 1 & Set iteration counter \(i=0\). \\
\hline \multirow[t]{4}{*}{2} & Begin predictor phase in which we set \\
\hline & \(d_{n+1}{ }^{[i]}=\widetilde{d}_{n+1}=d_{n}+\Delta t v_{n}+\Delta t^{2}(1-2 \beta) a_{n} / 2\) \\
\hline & \(v_{n+1}{ }^{[i]}=\bar{v}_{n+1}=v_{n}+\Delta t(1-\gamma) a_{n}\) \\
\hline & \(a_{n+1}{ }^{[i]}=\left[d_{n+1}{ }^{[i]}-d_{n+1}\right] /\left(\Delta t^{2} \beta\right)=0\). \\
\hline \multirow[t]{2}{*}{3} & Evaluate residual forces using the equation \\
\hline & \(\psi^{[i]}=f_{n+1}-M_{a_{+1}{ }^{[i]}}-p^{\prime}\left(d_{n+1}{ }^{[i]}, v_{n+1}{ }^{[i]}\right)-p^{E}\left(\boldsymbol{d}_{n+1}, \tilde{v}_{n+1}\right)\). \(\quad\) (iv) \\
\hline \multirow[t]{3}{*}{4} & If required, form the effective stiffness matrix using the expression
\[
\begin{equation*}
\boldsymbol{K}^{*}=\boldsymbol{M} /\left(\Delta t^{2} \beta\right)+\gamma \boldsymbol{C}_{\boldsymbol{T}}{ }^{I} /(\Delta t \beta)+\boldsymbol{K}_{\boldsymbol{T}}{ }^{I}\left(\boldsymbol{d}_{n+1}{ }^{[i]}\right) . \tag{v}
\end{equation*}
\] \\
\hline & Otherwise use a previously calculated \(K^{*}\). \\
\hline & (Note that \(\boldsymbol{K}_{T}{ }^{I}=\partial \boldsymbol{p}^{I} / \partial \boldsymbol{d}\) and \(C_{T}{ }^{I}=\partial p^{I} / \partial v\)). \\
\hline \multirow[t]{2}{*}{5} & Perform factorization, forward reduction and backsubstitution as required to solve \\
\hline & \(K^{*} \Delta d^{[i]}=\psi^{[i]}\) \\
\hline \multirow[t]{4}{*}{6} & Enter corrector phase in which we set \\
\hline & \(\boldsymbol{d}_{n+1}{ }^{[i+1]}=\boldsymbol{d}_{n+1}{ }^{[i]}+\Delta d^{[i]}\) \\
\hline & \(a_{n+1}{ }^{[i+1]}=\left[d_{n+1}{ }^{[t+1]}-\tilde{\boldsymbol{d}}_{n+1}\right] /\left(\Delta t^{2} \beta\right)\) \\
\hline & \(v_{n+1}{ }^{[i+1]}=v_{n+1}+\Delta t \gamma a_{n+1}{ }^{[i+1]}\). \\
\hline 7 & If \(\Delta d^{[i]}\) and/or \(\psi^{[i]}\) do not satisfy the convergence conditions, then set \(i=i+1\) and go to step 3 , otherwise continue. \\
\hline \multirow[t]{4}{*}{8} & Set \(\boldsymbol{d}_{n+1}=d_{n+1}{ }^{[i+1]}\) \\
\hline & \(\boldsymbol{v}_{n+1}=v_{n+1}[\) [+1] \\
\hline & \(a_{n+1}=a_{n+1}{ }^{[i+1]}\) \\
\hline & for use in the next time step. Also set \(n=n+1\), form \(p\) and begin next time step. \\
\hline
\end{tabular}

Consider the three meshes and effective stiffness matrices shown in Fig. 11.2(a)-(c):
(i) When there are only explicit elements, \(\boldsymbol{K}^{*}\) is diagonal. In other words \(K^{*}\) has the same profile structure as \(\boldsymbol{M}^{E}\) (Fig. 11.2(a)).
(ii) For a mesh consisting of only implicit elements \(K^{*}\) has the same profile structure as \(K^{I}\) (Fig. 11.2(b)).
(iii) For the partitioned mesh containing both implicit and explicit groups we see the appropriate combination of parts of both profile structures (Fig. 11.2(c)).

To fully exploit the profile structure of \(K^{*}\), Hughes et al. \({ }^{(4)}\) have suggested the use of profile solvers. In our implementation of the scheme we adopt a slightly modified version of the in-core profile solver given by Bathe and Wilson. \({ }^{(9)}\)

(i) Finite element mesh-2 degrees of freedom per node.

(ii) Profile of \(K^{*}\).

Fig. 11.2(a) Two-dimensional finite element mesh and profile structure of the effective stiffness matrix \(K^{*}\) (explicit elements only).

\subsection*{11.3.3 Alternative predictor values}

In equations (i)-(iii) in Table 11.3 we gave the approach described by Hughes and Liu. \({ }^{(4)}\) For implicit-explicit problems other predictor values may be adopted. Here wę consider two cases:
1. Hughes and Liu predictor values
\[
\begin{align*}
\boldsymbol{d}_{n+1}{ }^{[0]} & =\tilde{\boldsymbol{d}}_{n+1}=\boldsymbol{d}_{n}+\Delta t v_{n}+\Delta t^{2}(1-2 \beta) a_{n} / 2 \tag{i}\\
\boldsymbol{v}_{n+1} & \tag{ii}\\
\boldsymbol{a}_{n+1}{ }^{[0]} & =\tilde{\boldsymbol{v}}_{n+1}=\boldsymbol{v}_{n}+\Delta t(1-\gamma) \boldsymbol{a}_{n} \tag{iii}\\
& {\left[\boldsymbol{d}_{n+1}\right.} \\
& {\left.[0]-\tilde{\boldsymbol{d}}_{n+1}\right] /\left(\Delta t^{2} \beta\right) }
\end{align*}
\]

(i) Finite element mesh-2 degrees of freedom per node.

Equation number

(ii) Profile of \(K^{*}\).

Fig. 11.2(b) Two-dimensional finite element mesh and profile structure of the effective stiffness matrix \(K^{*}\) (implicit elements only).
2. Alternative predictor values
\[
\begin{align*}
\boldsymbol{d}_{n+1}{ }^{[0]} & =\boldsymbol{d}_{n} \tag{i}\\
\boldsymbol{v}_{n+1}{ }^{[0]} & =\boldsymbol{v}_{n} \tag{ii}\\
\boldsymbol{a}_{n+1}{ }^{[0]} & =\left[\boldsymbol{d}_{n+1}{ }^{[0]}-\tilde{\boldsymbol{d}}_{n+1}\right] /\left(\Delta t^{2} \beta\right) \tag{iii}\\
\text { (where } \tilde{\boldsymbol{d}}_{n+1} & \left.=\boldsymbol{d}_{n}+\Delta t v_{n}+\Delta t^{2}(1-2 \beta) a_{n}\right) / 2 \tag{11.12}
\end{align*}
\]

The second approach is recommended for elastoplastic problems for use with meshes involving only implicit elements in which \(\gamma=\frac{1}{2}\) and when large time steps are adopted.

\subsection*{11.3.4 Stability limits}

Hughes et al. \({ }^{(4)}\) have discussed the stability limits for this implicit-explicit scheme.

Fig. 11.2(c) Two-dimensional finite element mesh and profile structure of the effective stiffness matrix \(K^{*}\) (Implicit and explicit elements).

If \(\gamma \geqslant \frac{1}{2}\) and \(\beta=\left(\gamma+\frac{1}{2}\right)^{2} / 4\), we achieve unconditional stability in the implicit element group. The time step is then restricted by the explicit element group. For the case in which \(\gamma=\frac{1}{2}\), the critical time step may be written as
\[
\begin{equation*}
\Delta t_{\text {crit }}=2 / \omega_{\max } \tag{11.13}
\end{equation*}
\]
where \(\omega_{\max }\) is the maximum frequency of the explicit group. We can estimate \(\omega_{\text {max }}\) as
\[
\begin{equation*}
\omega_{\max } \leqslant \max \left(\omega_{\max }{ }^{(e)}\right) \tag{11.14}
\end{equation*}
\]
where \(\omega_{\text {max }}{ }^{(e)}\) is the maximum frequency of the \(e^{\text {th }}\) element of the explicit group.

Since \(K_{T}\) is changing from step to step, strictly speaking the maximum frequency should be estimated at the beginning of every step. In elastoplastic analysis, the structure generally becomes more flexible and (11.14)
may be used. However, for a better estimate of the critical time step the nonlinear eigenvalues should be evaluated.
If only implicit elements are used and if \(\gamma \geqslant \frac{1}{2}\) and \(\beta=\left(\gamma+\frac{1}{2}\right)^{2} / 4\), then error investigations carried out in terms of period elongation and amplitude decay with the increase of time step indicate that for reasonable accuracy the time step should be limited to \(1 / 100\) of the fundamental (largest) period. It is observed that the amplitude decay caused by the numerical integration errors effectively filters the higher mode response out of the solution in the Houbolt and Wilson \(\theta\) method. However when we employ the Newmark constant-average-acceleration scheme, which does not introduce amplitude decay, the higher frequency response is retained in the solution. In order to obtain amplitude decay using the Newmark method, it is necessary to employ \(\gamma>\frac{1}{2}\).

\subsection*{11.4 Evaluation of the tangential stiffness matrix}

In program MIXDYN we adopt an elasto-plastic material model and therefore the stresses and the tangential stiffness matrix at any time station \(t_{n}+\Delta t\) may be cvaluated in the manner outlined in Chapter 7 for static problems. As an alternative geometrically nonlinear elastic effects are considered using a total Lagrangian formulation.

The internal resisting force vector for the implicit elements at time station \(t_{n}+\Delta t\) is given as
\[
\begin{equation*}
\boldsymbol{p}_{n+1}^{I}=\int_{\Omega^{I}}\left[\boldsymbol{B}^{I}\right]^{T} n_{n+1} \sigma_{n+1} d \Omega \tag{11.15}
\end{equation*}
\]
and therefore the tangential stiffness matrix may be written as
\[
\begin{align*}
\frac{\partial \boldsymbol{p}_{n+1}^{I}}{\partial \boldsymbol{d}_{n+1}}=\left[\boldsymbol{K}_{T}^{I}\right]_{n+1}= & \int_{\Omega}\left[\boldsymbol{B}^{I}\right]^{T} n_{n+1} \boldsymbol{D}_{n+1}\left[\boldsymbol{B}^{I}\right]_{n+1} d \Omega \\
& +\int_{\Omega^{I}}[\boldsymbol{G}]^{T}{ }_{n+1} \boldsymbol{S}_{n+1} \boldsymbol{G}_{n+1} d \Omega \tag{11.16}
\end{align*}
\]
in which \(\boldsymbol{D}_{n+1}\) is the elasto-plastic modulus matrix defined in Chapter 7, \(\left[\boldsymbol{B}_{N L}\right]_{n+1}\) is the nonlinear strain-displacement matrix defined in Chapter 10, the matrix \(\boldsymbol{S}_{n+1}\) is given as
\[
\boldsymbol{S}_{n+1}=\left[\begin{array}{cc}
\sigma_{x} \boldsymbol{I}_{2} & \tau_{x y} \boldsymbol{I}_{2} \tag{11.17}\\
\tau_{x y} \boldsymbol{I}_{2} & \sigma_{y} \boldsymbol{I}_{2}
\end{array}\right]_{n+1}
\]
for plane stress and plane strain problems, and
\[
\boldsymbol{S}_{n+1}=\left[\begin{array}{ccc}
\sigma_{r} \boldsymbol{I}_{2} & \tau_{r z} \boldsymbol{I}_{2} & \mathbf{0} \tag{11.18}\\
\tau_{r z} \boldsymbol{I}_{z} & \sigma_{z} \boldsymbol{I}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \sigma_{\theta}
\end{array}\right]_{n+1}
\]

\footnotetext{
* The second matrix is only included for geometrically nonlinear problems.
}
for axisymmetric problems, and
\[
\left[\boldsymbol{G}_{i}\right]_{n+1}=\left[\begin{array}{cccc}
\frac{\partial N_{i}}{\partial x} & 0 & \frac{\partial N_{i}}{\partial y} & 0 \tag{11.19}\\
0 & \frac{\partial N_{i}}{\partial x} & 0 & \frac{\partial N_{i}}{\partial y}
\end{array}\right]^{T}
\]
for plane stress and plane strain problems, and
\[
\left[\boldsymbol{G}_{i}\right]_{n+1}=\left[\begin{array}{ccccc}
\frac{\partial N_{i}}{\partial r} & 0 & \frac{\partial N_{i}}{\partial z} & 0 & \frac{N_{i}}{r} \tag{11.20}\\
0 & \frac{\partial N_{i}}{\partial r} & 0 & \frac{\partial N_{i}}{\partial z} & 0
\end{array}\right]^{T}
\]
for axisymmetric problems.
Note that all of the yield criteria described in Chapter 7 are included in program MIXDYN.

\subsection*{11.5 Program MIXDYN}

\subsection*{11.5.1 Introduction}

The computer program 'MIXDYN' is based on the Implicit-Explicit time integration scheme of Hughes and Liu \({ }^{(4)}\) for two-dimensional plane stress/strain and axisymmetric nonlinear dynamic transient problems. Some of the subroutines are the same as in DYNPAK. The profile solvers DECOMP and REDBAK and a few other subroutines used in this program are based on those given in Reference (9). (These subroutines are rewritten using new variables names). Some new subroutines have also been included in the program. The program considers geometric or elasto-plastic material nonlinearity. A total Lagrangian formulation using four-, eight- and nine-noded quadrilateral isoparametric elements is adopted to model the geometric nonlinear behaviour. The program has several options; it can be used for small or large deformation elastic and small deformation elasto-plastic transient dynamic analysis and the analysis may be carried out using an explicit, implicit or combined implicit-explicit algorithm. Furthermore, four types of elasto-plastic material models can be considered: (i) Tresca, (ii) Von Mises, (iii) Drucker-Prager and (iv) MohrCoulomb.

The flow diagram for MIXDYN is shown in Fig. 11.3. The program is written in modular form and the input and output data representation is identical to that given for DYNPAK.

The subroutines which have not appeared elsewhere in the book are now described.

Fig. 11.3 Overall structure of program MIXDYN.

\subsection*{11.5.2 Master routine MIXDYN}

The master routine organises the calling of the main routines as outlined in the flow diagram (Fig. 11.3). In subroutine CONTOL control parameters are read and a check is made on the maximum control dimensions. Note that the values used for checking in CONTOL should agree with the maximum dimensions in the master routine. Subroutine INPUTD, INTIME and PREVOS read the mesh data, time integration data and data for the previous state of the structure. Subroutine LINKIN links the rest of the program with the profile solver, i.e., it generates all information required for the profile solver. Subroutines LUMASS and LOADPL generate the lumped mass and applied force vectors respectively. GSTIFF calculates the global stiffness matrix in compacted form. In the time step do loop IMPEXP performs the direct time integration using either of the (i) Implicit, (ii) Explicit or (iii) combined Implicit-Explicit schemes. RESEPL calculates the equivalent nodal forces using elasto-plastic material behaviour. The maximum dimension of the program have been set to a maximum of 50 elements, 200 nodes, 10 sets of material properties, 6000 coefficients in the mass and stiffness matrices and 400 acceleration ordinates. For larger problems the dimensions must therefore be changed.

\subsection*{11.5.3 Subroutine ADDBAN}

This routine \({ }^{(9)}\) assembles the element stiffness matrix into the global stiffness matrix in a compacted form.
```

            SUBROUTINE ADDBAN (STIFF,MAXAI,ESTIF,LEQNS,NEVAB) ADDB 1
    ```

```

C ADDB
C *** ASSEMBLY OF TOTAL STIFFNESS VECTOR ADDB
C ADDB

```

```

    DIMENSION STIFF(1),MAXAI(1),ESTIF(1),LEQNS(1) ADDB }
    C
KOUNT=0 ADDB 9
ADDB }
DO 200 IEVAB=1,NEVAB ADDB 10
IEQNS=LEQNS(IEVAB) ADDB }1
IF(IEQNS) 200,200,100 ADDB 12
100 IMAXA=MAXAI(IEQNS) ADDB 13
KEVAB=IEVAB ADDB 14
DO 220 JEVAB=1,NEVAB ADDB 15
JEQNS=LEQNS(JEVAB) ADDB 16
IF(JEQNS) 220,220,110 ADDB 17
110 IJEON-TEONS
ADDB 18
IF(IJEQN) 220,210,210 ADDB 19
210 ISIZE=IMAXA+IJEQN ADDB 20
JSIZE=KEVAB ADDB
IF(JEVAB.GE.IEVAB) JSIZE=JEVAB+KOUNT ADDB 22
STIFF(ISIZE)=STIFF(ISIZE)+ESTIF(JSIZE) ADDB 23
220 KEVAB=KEVAB+NEVAB-JEVAB ADDB 24
200 KOUNT=KOUNT+NEVAB-IEVAB ADDB 25
RETURN ADDB 26
END ADDB
27

```

\subsection*{11.5.4 Subroutine ADDRES}

This routine \({ }^{(9)}\) addresses the diagonal elements of the global matrix using the column heights.

\subsection*{11.5.5 Sabroutine COLMHT}

This routine \({ }^{(9)}\) calculates the vertical column heights above the diagonal of the global matrix using equation numbers and the total number of degrees of freedom of an element (NEVAB).
\begin{tabular}{|c|c|}
\hline SUBROUTINE COLMHT (MHIGH , NEVAB , LEQNS) & COLM 1 \\
\hline & COLM 2 \\
\hline C & COLM 3 \\
\hline C*** EVALUATES THE COLUMN HEIGHT OF STIFFNESS MATRIX & COLM 4 \\
\hline C & COLM 5 \\
\hline C** & COLM 6 \\
\hline DIMENSION LEQNS (1) , MHIGH(1) & COLM 7 \\
\hline MAX AM \(=100000\) & COLM 8 \\
\hline DO 100 IEVAB=1, NEVAB & COLM 9 \\
\hline IF (LEQNS (IEVAB)) \(110,100,110\) & COLM 10 \\
\hline 110 IF (LEQNS (IEVAB)-MAXAM) \(120,100,100\) & COLM 11 \\
\hline 120 MAXAM=LEQNS(IEVAB) & COLM 12 \\
\hline 100 CONTINUE & COLM 13 \\
\hline DO 200 IEVAB=1, NEVAB & COLM 14 \\
\hline IEQNS=LEQNS (IEVAB) & COLM 15 \\
\hline IF (IEQNS.EQ.0) GO TO 200 & COLM 16 \\
\hline JHIGH=IEQNS-MAXAM & COLM 17 \\
\hline IF (JHIGH,GT. MHIGH(IEQNS)) MHIGH(IEQNS) \(=\) JHIGH & COLM 18 \\
\hline 200 CONTINUE & COLM 19 \\
\hline RETURN & COLM 20 \\
\hline END & COLM 21 \\
\hline
\end{tabular}

\subsection*{11.5.6 Subroutine DECOMP}

This routine \({ }^{(9)}\) factorises a matrix into lower, diagonal and upper matrices (\(\boldsymbol{L D L} L^{T}\))
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE DECOMP (STIFF , MAXAI ,NEQNS ,ISHOT) & DECM & 1 \\
\hline & & DECM & 2 \\
\hline C & & DECM & 3 \\
\hline C *** & FACTORISES (L)*(D)*(L) TRANSPOSE OF STIFFNESS MATRIX & DECM & 4 \\
\hline C & & DECM & 5 \\
\hline C**** & & DECM & 6 \\
\hline & DIMENSION STIFF(1) , MAXAI (1) & DECM & 7 \\
\hline C & & DECM & 8 \\
\hline & IF (NEQNS. EQ.1) RETURN & DECM & 9 \\
\hline & DO 200 IEQNS \(=1\), NEQNS & DECM & 10 \\
\hline & IMAXA=MAXAI (IEQNS) & DECM & 11 \\
\hline & LOWER \(=\) IMAXA +1 & DECM & 12 \\
\hline & KUPER=MAXAI (IEQNS+1)-1 & DECM & 13 \\
\hline & KHIGH=KUPER-LOWER & DECM & 14 \\
\hline & IF (KHIGH) 304,240,210 & DECM & 15 \\
\hline 210 & KSIZE=IEQNS-KHIGH & DECM & 16 \\
\hline & ICOUN \(=0\) & DECM & 17 \\
\hline & JUPER=KUPER & DECM & 18 \\
\hline & DO 260 JHIGH \(=1, \mathrm{KHIGH}\) & DECM & 19 \\
\hline & ICOUN \(=1\) COUN +1 & DECM & 20 \\
\hline & JUPER=JUPER-1 & DECM & 21 \\
\hline & KMAXA=MAXAI (KSIZE) & DECM & 22 \\
\hline & NDIAG=MAXAI (KSI2E+1)-KMAXA-1 & DECM & 23 \\
\hline & IF(NDLAG) \(260,260,270\) & DECM & 24 \\
\hline
\end{tabular}
```

270 NCOLM=MINO(ICOUN,NDIAG) DECM 25
COUNT=0. DECM
DO 280 ICOLM=1,NCOLM DECM
280 COUNT=COUNT+STIFF(KMAXA+ICOLM)*STIFF(JUPER+ICOLM) DECM
STIFF(JUPER)=STIFF(JUPER)-COUNT DECM
260 KSIZE=KSIZE+1 DECM
240 KSIZE=IEQNS DECM
BSUMM=0. DECM
DO 300 ICOLM=LOWER,KUPER DECM
KSIZE=KSIZE-1 DECM
JMAXA=MAXAI(KSIZE) DECM 35
RATIO=STIFF(ICOLM)/STIFF(JMAXA) DECM }3
BSUMM=BSUMM+RATIO*STIFF(ICOLM) DECM }3
300 STIFF(ICOLM)=RATIO DECM
38
STIFF (IMAXA)=STIFF (IMAXA)-BSUMMM DECM }3
304 IF(STIFF(IMAXA)) 310,310,200 DECM 40
310 IE (ISHOT.EQ.0) GO TO 320 DECM }4
IF(STIFF(IMAXA).EQ.0) STIFF(IMAXA)=-1.E-16 DECM }4
GO TO 200 DECM }4
320 WRITE(6,2000) IEQNS,STIFF(IMAXA) DECM 44
STOP
DECM

```

```

    RETURN DECM 47
    2000 FORMAT(//48H STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE ,// DECM 48
.32H NONPOSITIVE PIVOT FOR EQUATION ,I4,//10H PIVOT = ,E20.12 ) DECM 49
END DECM
50

```

\subsection*{11.5.7 Subroutine DINTOB}

This routine multiplies the modulus matrix \(D\) with the strain matrix \(\boldsymbol{B}\).

\subsection*{11.5.8 Subroutine GEOMST}

This routine adds the initial stress matrix to the stiffness matrix.

```

300 STRES(ISTR1)=STRSG(ISTR1,KGAUS)
GEOM12

```
IEVAB=1 GEOM 13
KOUNT=NEVAB GEOM 14
DO 200 INODE \(=1\),NNODE GEOM 15
DO 100 JNODE=INODE, NNOLE GEOM 16
DGASH \(=\operatorname{STRES}(1) * \operatorname{CARTD}(1\), INODE) *CARTD (\(1, \mathrm{JNODE})+\) GEOM 17
. STRES(3)*(CARTD (1 , INODE) *CARTD (2, JNODE \()+\) GEOM 18
-CARTD(2,INODE)*CARTD (1, JNODE) + GEOM 19
. \(\operatorname{STRES}(2) * \operatorname{CARTD}(2, I N O D E) * C A R T D(2, J N O D E)\) GEOM 20
DGASY=DGASH*DVOLU GEOM 21
DGASX=DGASY GEOM 22
IF(NTYPE.NE.3) GO TO 400 GEOM 23
PRODT=SHAPE (INODE)/(GPCOD (\(1, \mathrm{KGASP}\))**2) GEOM 24
DGASX=DGASY+STRES (4)*PRODT*SHAPE(JNODE)*DVOLU GEOM 25
\(400 \operatorname{ESTIF}(\) IEVAB \()=E S T I F(\) IEVAB \()+D G A S X\) GEOM 26
JEVAB=IEVAB+KOUNT 2
\(\operatorname{ESTIF}(J E V A B)=E S T I F(J E V A B)+D G A S Y\) GEOM 28
IEVAB \(=\) IEVAB +2 GEOM 29
100 CONTINUE GEOM 30
KOUNT=KOUNT-2 GEOM 3
IEVAB=JEVAB+1 GEOM 32
200 CONTINUE GEOM 33
RETURN GEOM 34
END GEOM 35

\subsection*{11.5.9 Subroutine GSTIFF}

This routine generates the compacted geometrically nonlinear stiffness matrix for two-dimensional plane stress/strain and axisymmetric problems from the element stiffness matrices.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & SUBROUTINE & GSTIFF (COORD & ,EPSTN , INTGR & , ISTEP , KS & TEP ,LEQNS & & STIF & 1 \\
\hline & - & LNODS & , MATNO , MAXAI & ,MAXAJ ,NC & RIT , NDIME & , & STIF & 2 \\
\hline & - & NDOFN & , NELEM , NGAUS & ,NLAPS ,NM & AATS , NNODE & , & STIF & 3 \\
\hline & & NPOIN & , NSTRE , NTYPE & , NWMTL , NW & KTL , POSGP & & STIF & 4 \\
\hline & & PROPS & ,STIFF ,STIFI & , STRSG ,TD & ISP , WEIGP &) & STIF & 5 \\
\hline \(C^{* * * * * * * ~}\) & ************ & ************** & ************* & ********** & *********** & **** & STIF & 6 \\
\hline C & & & & & & & STIF & 7 \\
\hline C & EVALUATE & ES GEOMETRICAL & Y NONLINEAR S & TIFFNESS MA & TRIX & & STIF & 8 \\
\hline C & FOR 2-D & PLANE STRESS/ & STRAIN 2-D ELE & MENT & & & STIF & 9 \\
\hline C & & & & & & & STIF & 10 \\
\hline C**** & ************ & ************** & ************** & *********** & *********** & **** & STIF & 11 \\
\hline & DIMENSION C & COORD (\(\mathrm{NPOLN}, 1\)) & , DMATX \((4,4)\) & , \(\operatorname{ELCOD}(2,9)\) & , AVECT (4) & , & STIF & 12 \\
\hline & L & LNODS (NELEM, 1) & , \(\operatorname{BMATX}(4,18)\) & , \(\operatorname{CaRTD}(2,9)\) & ,DVECT(4) & , & STIF & 13 \\
\hline & & PROPS (NMATS, 1) & , \(\operatorname{DBMAT}(4,18)\) & , \(\operatorname{GPCOD}(2,9)\) & , DEVIA(4) & & STIF & 14 \\
\hline & & LEQNS (18, 1) & ,STRSG(4, 1) & , \(\operatorname{DLCOD}(2,9)\) & , STRES (4) & , & STIF & 15 \\
\hline & & ESTIF (171) & , \(\operatorname{DJACM}(2,2)\) & , \(\operatorname{DERIV}(2,9)\) & , SHAPE (9) & & STIF & 16 \\
\hline C & & & & & & & STIF & 17 \\
\hline & DIMENSION M & MAXAI(1) , INTG & (1) , STIFF (1) & , POSGP(1) & , EPSTN (1) & , & STIF & 18 \\
\hline & & MAXAJ (1) ,TDIS & P(1) , STIFI(1) & , WEIGP(1) & ,MATNO(1) & & STIF & 19 \\
\hline C & & & & & & & STIF & 20 \\
\hline C & & & & & & & STIF & 21 \\
\hline & IF (ISTEP.EQ & Q. 1) GO TO 200 & & & & & STIF & 22 \\
\hline & KOUNT \(=\) (ISTE & EP/KSTEP)*KSTE & & & & & STIF & 23 \\
\hline & IF (KOUNT. NE & E.ISTEP) RETURN & & & & & STIF & 24 \\
\hline 200 & CONTINUE & & & & & & STIF & 25 \\
\hline & TWOPI \(=6.283\) & 3185307179586 & & & & & STIF & 26 \\
\hline & KGAUS \(=0\) & & & & & & STIF & 27 \\
\hline C & & & & & & & STIF & 28 \\
\hline C*** & LOOP OVER EA & ACH ELEMENT & & & & & STIF & 29 \\
\hline C & & & & & & & STIF & 30 \\
\hline & NSTR1 \(=4\) & & & & & & STIF & 31 \\
\hline & NEVAB=NDOFN & N*NNODE & & & & & STIF & 32 \\
\hline & DO . 500 IWKT & TL=1, NWKTL & & & & & STIF & 33 \\
\hline 500 & STIFF (IWKTL &) ,STIFI(IWKTL &) \(=0.0\) & & & & STIF & 34 \\
\hline
\end{tabular}
```

    DO 70 IELEM=1,NELEM STIF 35
    LPROP=MATNO(IELEM)
    c
C*㲘 EVALUATE THE COORDINATES OF THE ELEMMENT NODAL POINTS
C
IPOSN=0
DO 10 INODE=1,NNODE
LNODE=LNODS(IELEM,INODE)
DO 10 IDIME=1,NDIME
IPOSN=IPOSN+1
NPOSN=LEQNS(IPOSN,IELEM)
IF(NPOSN.EQ.0) DISPT=0.
IF(NPOSN.NE.0) DISPT=TDISP(NPOSN)
DLCOD(IDIME, INODE) =COORD(LNODE, IDIME) +DISPT
10 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME)
YOUNG=PROPS(LPROP, 1)
POISS=PROPS(LPROP, 2)
THICK=PROPS(LPROP, 3)
HARDS=PROPS(LPROP, 7)
FRICT=PROPS(LPROP, 8)
C
C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX 171=NEVAB*(NEVAB+1)/2
C
DO 20 ISIZE=1,171
20 ESTIF (ISIZE) =0.0
KGASP=0
C
C*)
C
DO 50 IGAUS=1,NGAUS
EXISP=POSGP(IGAUS)
DO 50 JGAUS=1,NGAUS
ETASP=POSGP(JGAUS)
KGASP=KGASP+1
KGAUS=KGAUS+1
CALL MODPS (DMATX,LPROP,NMATS,NSTRE,NTYPE,PROPS)
CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP)
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,
IELEM,KGASP,NNODE,SHAPE)
CALL JACOBD (CARTD,DLCOD,DJACM,NDIME,NLAPS,NNODE)
DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS)
IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP)
IF(NTYPE.EQ.1) DVOLU=DVQLU*THICK
C
C*** EVALUATE THE B AND DB MATRICES
C
CALL BLARGE (BMATX,CARTD,DJACM;DLCOD,GPCOD,
KGASP,NLAPS,NNODE,NTYPE,SHAPE)
IF(NLAPS.EQ.2.OR.NLAPS.EQ.O) GÓTO 80
IF(ISTEP.EQ.1) GO TO 80
IF(EPSTN(KGAUS).EQ.0.0) GO TO }8
DO 90 ISTR1=1,NSTR1
90 STRES(ISTR1)=STRSG(ISTR1,KGAUS)
CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF,
STRES,THETA,VARJ2,YIELD)
CALL SIRES,IHEIA,VARJ2,YIELD) STIF 8
CALL YIELDF (AVECT,DEVIA,FRICT,NCRIT,SINT3,STEFF, STIF 90
- THETA,VARJ2) STIF 91
CALL FLOWPL (AVECT,ABETA,DVECT,HARDS,NTYPE,POISS,YOUNG) STIF 92
DO 100 ISTRE=1,NSTRE STIF 93
DO }100\mathrm{ JSTRE=1,NSTRE
STIF 94
100 DMATX(ISTRE,JSTRE)=DMATX(ISTRE,JSTRE)-ABETA*DVECT(ISTRE)` STIF 95
- DVECT(JSTRE)
STIF 96
80 CONTINUE STIF 97
CALL DINTOB (BMATX,DBMAT,DMATX,NEVAB,NSTRE)
STIF }9

```
```

C STIF 99
C ***EVALUATE GEOMETRIC STIFFNESS TERMS STIF 100
C
IF(NLAPS.LT.2) GO TO }8
CALL GEOMST (CARTD,DVOLU,ESTIF,KGAUS,NDOFN,NNODE,
- STRSG,SHAPE, NTYPE,GPCOD,KGASP)
C
C*** CalCULATE THE ELEMENT STIFFNESSES
C
85 KOUNT=0
DO 30- IEvAB =1, NEVAB
DO 30 JEVAB=IEVAB,NEVAB
KOUNT=KOUNT+1
DO 30 ISTRE = 1,NSTRE
30 ESTIF(KOUNT)=ESTIF(KOUNT)+BMATX(ISTRE,IEVAB)*
50}\mathrm{ CONTINUE
C
C *** GENERATES GLOBAL STIFFNSS MATRIX IN COMPACTED COLUMN FORM
C
IF(INTGR(IELEM).EQ.2) GO TO 210
CALL ADDBAN (STIFI,MAXAI,ESTIF,LEQNS(1,IELEM),NEVAB)
CALL ADDBAN (SIIFI,MAXAI,ESTIF,LEQNS(1,IELEM),NEVAB)
70 CONTINUE
C WRITE (6,900) (STIFI(I),I=1,NWMTL)
900 FORMAT(10E12.4) STIF 124
RETURN
END
STIF 101
STIF }10
DBMAT(ISTRE,JEVAB)*DVOLU
STIF }10
STIF }10
STIF 105
STIF 106
STIF 107
STIF 108
STIF 109
STIF 110
STIF }11
STIF }11
STIF }11
STIF }11
STIF }11
STIF 116
STIF }11
STIF 118
STIF 119
STIF 120
STIF }12
STIF 122
STIF }12
STIF 125
STIF 126

```

\subsection*{11.5.10 Subroutine IMPEXP}

This routine generates the partial effective load vector for direct time integration.

```

            ISHOT=0 IMEX 31
            DO 550 IPOIN=1,NPOIN IMEX
            DO 550 IDOFN=1,NDOFN IMEX
            ISIZE=IFPRE(IDOFN,IPOIN) IMEX
            IF(ISIZE.EQ.0) GO TO 550 IMEX
            ACCEI(ISIZE)=1.0 IMEX
            ACCEL(ISIZE) =0.0 IMEX
            IMEX 36
            IF(IDOFN.EQ.1) GO TO 550
            ACCEI(ISIZE)=0.0
                                    IMEX
                            IMEX
            ACCEL(ISIZE)=1.0 IMEX
                IMEX 40
    5 5 0 ~ C O N T I N U E ~ T M E X ~
            DO 590 ISIZE=1,NSIZE IMEX
            IMAXA=MAXAI(ISIZE) IMEX
    590 XMASS(IMAXA)=XMASS(IMAXA)+YMASS(ISIZE)
                IMEX 43
        IMEX 44
    C
C *** CALCULATES VECTORS FOR HORIZONTAL AND VERTICAL EXCITATION IMEX 46
IMEX
C IMEX 47
CALL MULTPY (ACCEK,XMASS,ACCEL,MAXAI,NSIZE,NWMTL) IMEX 48
CALL MULTPY (ACCEJ,XMASS,ACCEI,MAXAI,NSIZE,NWMTL) IMEX 49
CALL MULTPY (DISPL,STIFF,DISPI,MAXAJ,NSIZE,NWKTL) IMEX 50
C
C *** CALCULATES DAMPING MATRIX (AALFA*M+BEETA*K) IMEX 52
IMEX 51
C
DO 500 ISIZE=1,NSIZE IMEX 54
IMEX 53
IMAXA=MAXAI(ISIZE) IMEX 55
KMAXA=MAXAI(ISIZE+1)-1 IMEX 56
JMAXA=MAXAJ (ISIZE) IMEX
DO 500 LMAXA=IMAXA,KMAXA
IMEX
DAMPI(JMAXA) = AALFA*XMASS(LMAXA) IMEX 58
500 JMAXA=JMAXA+1
DO }560\mathrm{ IWKTL=1, NWKTL
IMEX 60
IMEX 61
560 DAMPI(IWKTL)=DAMPI(IWKTL)+BEETA*STIFF(IWKTL) IMEX 62
C
C *** CALCULATES INITIAL ACCELERATION
CALL MULTPY (VELOL,DAMPI,VELOI,MAXAJ,NSIZE,NWKTL)
DO 600 IWMTL=1, NWMTL
600 DAMPG(IWMTL)=XMASS(IWMTL) IMEX 68
DO }510\mathrm{ ISIZE = 1,NSIZE
IMEX 63
IMEX 64
IMEX 65
IMEX 66
IMEX 67
IMEX 68
IMEX 69
510 ACCEI(ISIZE)=RLOAD(ISIZE)-DISPL(ISIZE)-VELOL(ISIZE)
IMEX 70
CALL DECOMP (DAMPG,MAXAI,NSIZE,ISHOT)
IMEX
CALL REDBAK (DAMPG,ACCEI,MAXAI,NSIZE) IMEX }7
7
WRITE (6,900)
IMEX }7
WRITE (6,910) (ACCEI(ISIZE),ISIZE=1,NSIZE) IMEX 7MEX 74
900 FORMAT(/' INITIAL ACCELERATION '/) IMEX 75
910 FORMAT(1X,10E12.5) IMEX 76
1000 CONTINUE
IMEX 77
IF(IITER.GT.1) GO TO 650 IMEX 78

```
```

C ,

```
C ,
IMEX 79
IMEX 79
C *** CALCULATES PREDICTED DISPLACEMENT AND VELOCITY VECTOR IMEX 80
C *** CALCULATES PREDICTED DISPLACEMENT AND VELOCITY VECTOR IMEX 80
 DO 540 ISIZE=1,NSIZE
IMEX 81
 IF(IPRED EQ 1)'NO IMEX 82
 IF(IPRED.EQ.1) GO TO 210 IMEX 83
 DISPT(ISIZE)=DISPI(ISIZE)
 VELOT(ISIZE)=VELOI(ISIZE)
IMEX 8
IMEX
 210 DISPI(ISIZE) =DISPI(ISIZE)+DTIME*VELOI(ISIZE)+CONSA*ACCEI(ISIZE)
 IMEX
 VELOI(ISIZE) =VELOI(ISIZE)+CONSB*ACCEI(ISIZE)
 IMEX
 IF(IPRED.EQ.2) GO TO 220
 IMEX 88
 DISPT(ISIZE)=DISPI(ISIZE)
 VELOT(ISIZE) =VELOI (ISIZE)
 IMEX 89
 IMEX 90
 220 ACCEI(ISIZE)=CONSF*(DISPT(ISIZE)-DISPI(ISIZE)) IMEX 91
 540 CONTINUE
IMEX 92
C
IMEX 93
C*:* CALCULATES LOAD VECTORS
IMEX }9
```

```
C IMEX 95
 FACTS =FUNCTS (AZERO,BZERO,DTEND,DTIME,IFUNC,ISTEP,OMEGA) IMEX 96
 FACTH =FUNCTA (ACCEH, AFACT,DTEND,DTIME,IFUNC,ISTEP) IMEX 97
 FACTV =FUNCTA (ACCEV,AFACT,DTEND,DTIME,IFUNC,ISTEP) IMEX 98
 WRITE(6,910) FACTS,FACTH,FACTV IMEX 99
 650 CONTINUE (
 IF(ISTEP.EQ.1) G0 TO 6.40
C
C *** CALCULATES DAMPING AND K-STAR MATRICES
C
 DO }530\mathrm{ ISIZE=1,NSIZE
 IMAXA=MAXAI(ISIZE)
 KMAXA=MAXAI(ISIZE+1)-1
 JMAXA=MAXAJ (ISIZE)
 DO }530\mathrm{ LMAXA=IMAXA,KMAXA
 DAMPI(JMAXA)=AALFA*XMASS(LMMAXA)
 530 JMAXA=JMAXA+1
 DO 580 IWKTL=1, NWKTL
 580 DAMPI (IWKTL) =DAMPI (IWKTL) +BEETA*STIFF (IWKTL)
 CALL MULTPY (VELOL ,DAMPI ,VELOT ,MAXAJ ,NSIZE ,NWKTL)
 KOUNT=(ISTEP/KSTEP)*KSTEP
 IF(KOUNT.NE.ISTEP) GO TO 660
 6 4 0 \text { DO } 6 1 0 \text { IWMTL=1, NWMTL}
 610 DAMPG(IWMTL)=CONSE*XMASS(IWMTL)
 DO 620 ISIZE=1,NSIZE
 IMAXA=MAXAI(ISIZE)
 620 DAMPG(IMAXA)=DAMPG(IMAXA)-CONSH*YMASS(ISIZE)
 DO 630 IWMTL=1,NWMTL
 DAMPG(IWMTL)=DAMPG(IWMTL)+CONSG*STIFI(IWMTL)
 630 STIFS(IWMTL) =STIFI(IWMTL) +DAMPG(IWMTL)*CONSF
-E WRITE (6;900) (STIFS(I), I= 1,NWMML)
 CALL DECOMP (STIFS ,MAXAI ,NSIZE ,ISHOT)
C
C *** CALCULATES PARTIAL EFFECTIVE LOAD VECTOR
C
 6 6 0 ~ D O ~ 5 2 0 ~ I S I Z E = 1 , N S I Z E ~
 IF(IFUNC.NE.0) GO TO 570
 IF(IFIXD.EQ.2) DISPL(ISIZE)=-VELOL(ISIZE)-FACTH*ACCEJ (ISIZE)
 * IF(IFIXD.EQ.1) DISPL(ISIZE) =-VELOL(ISIZE)-FACTV*ACCEK(ISIZE)
 +RLOAD(ISIZE)
 *IF(IFIXD.EQ.0) DISPL(ISIZE) =-VELOL(ISIZE)-FACTH*ACCEJ(ISIZE)
 +RLOAD(ISIZE)-FACTV*ACCEK(ISIZE)
 IF(IFUNC.EQ.0) GO TO 520
 570 DISPL(ISIZE)=-VELOL (ISIZE) +RLOAD(ISIZE)*FACTS
 520 CONTINUE
 RETURN
 END
```

IMEX 95
IMEX 96
IMEX 97
IMEX 99
IMEX 100
IMEX 101
IMEX 102
IMEX 103
IMEX 104
IMEX 105
IMEX 106
IMEX 107
IMEX 108
IMEX 109
IMEX 110
IMEX 111
IMEX 112
IMEX 113
IMEX 114
IMEX 115
IMEX 116
IMEX 117
IMEX 118
IMEX 119
IMEX 120
IMEX 121
IMEX 122
IMEX 123
IMEX 124
IMEX 125
IMEX 126
IMEX 127
IMEX 128
IMEX 129
IMEX 130
IMEX 131
IMEX 132
IMEX 133
IMEX 134
IMEX 135
IMEX 136
IMEX 137
IMEX 138
IMEX 139
IMEX 140
IMEX 141
IMEX 142

### 11.5.11 Subroutine ITRATE

This routine generates the total effective load vector and solves for the incremental displacements. It then checks for convergence.


|  |  | ITER ITER | 11 12 |
| :---: | :---: | :---: | :---: |
| C |  | ITER | 13 |
| C |  | ITER | 14 |
| C | NCHEK=0 | ITER | 15 |
|  | CALL MULTPY (ACCEL , XMASS ,ACCEI ,MAXAI ,NSIZE ,NWMTL ) | ITER | 16 |
| C |  | ITER | 17 |
| C *** | CALCULATES TOTAL EFFECTIVE LOAD VECTOR | ITER | 18 |
| C |  | ITER | 19 |
| 6 | DO 660 ISIZE=1,NSIZE | ITER | 20 |
| 660 | ACCEL (ISIZE) $=$ DISPL (ISIZE)-ACCEL (ISIZE)-RESID (ISIZE) | ITER | 21 |
| C |  | ITER | 22 |
| C *** | Calculates delta displacement | ITER | 23 |
| C |  | ITER | 24 |
| 210 | CALL REDBAK (STIFS,ACCEL,MAXAI, NSIZE) | ITER | 25 |
| c |  | ITER | 26 |
| C *** | APPLIES CONVERGENCE | ITER | 27 |
| C |  | ITER | 28 |
| C | SUMPP=0. | ITER | 29 |
|  | SUMPQ $=0$. | ITER | 30 |
|  | DO 670 ISIZE=1, NSIZE | ITER | 31 |
|  | DISPP=ACCEL (ISIZE) | ITER | 32 |
|  | DISPQ=DISPT (ISIZE) + DISPP | ITER | 33 |
|  | DISPT (ISIZE) $=$ DISPQ | ITER | 34 |
|  | SUMPP=SUMPP+DISPP*DISPP | ITER | 35 |
|  | SUMPQ $=$ SUMPQ+DISPQ*DISPQ | ITER | 36 |
| 670 | CONTINUE | ITER | 37 |
|  | DO 530 ISIZE $=1$, NSIZE | ITER | 38 |
|  | ACCEI (ISIZE) $=$ CONSF* (DISPT (ISIZE)-DISPI (ISIZE)) | ITER | 39 |
| 530 | VELOT (ISIZE) $=$ VELOI (ISIZE) + CONSD*ACCEI (ISIZE) | ITER | 40 |
| 220 | SUMPP=SQRT (SUMPP/SUMPQ) | ITER | 41 |
|  | IF (SUMPP.GT.TOLER) GO TO 550 | ITER | 42 |
|  | NCHEK=1 | ITER | 43 |
|  | GO TO 240 | ITER | 44 |
| 550 | IF (IITER.LT.MITER) GO TO 230 | ITER | 45 |
| 240 | DO 540 ISIZE= 1 , NSIZE | ITER | 46 |
|  | VELOI (ISIZE) =VELOT (ISIZE) | ITER | 47 |
| 540 | DISPI (ISIZE) = DISPT (ISIZE) | ITER | 48 |
| 230 | CONTINUE | ITER | 49 |
|  | RETURN | ITER | 50 |
|  | END | ITER | 51 |

ITER 20-21 Calculates total effective load vector.
ITER 25 Solves for incremental displacements.
ITER 28-37 Calculates norm of displacement increments.
ITER 38-40 Calculates new and total displacement, velocities and accelerations.
ITER 41-42 Applies convergence check.
ITER 46-49 Stores the final velocities and displacements in vectors VELOI and DISPI respectively.

### 11.5.12 Subroutine LINKIN

This routine calculates the equation number from the array IFPRE which stores the information about the restrained degrees of freedom.


|  | GO TO 250 | LINK | 65 |
| :---: | :---: | :---: | :---: |
| 205 | CONTINUE | LINK | 66 |
|  | WRITE (6,920) NEQNS, NWMTL, NWKTL | LINK | 67 |
|  | WRITE (6,930) (MAXAI (I), $\mathrm{I}=1, \mathrm{MEQNS}$ ) | LINK | 68 |
|  | WRITE (6,930) (MAXAJ ( I ), $\mathrm{I}=1, \mathrm{MEQNS}$ ) | LINK | 69 |
| 930 | FORMAT ( $5 \mathrm{X}, 20 \mathrm{I} 5$ ) | LINK | 70 |
| 920 |  | LINK | 71 |
|  | IF (NWKTL.GT.6000) GO TO 210 | LINK | 72 |
|  | GO TO 220 | LINK | 73 |
| 210 | WRITE $(6,910)$ | LINK | 74 |
|  | STOP | LINK | 75 |
| 220 | CONTINUE | LINK | 76 |
| 910 | FORMAT (/'SET DIMENSION EXCEEDED - CHECK LINKIN '/) | LINK | 77 |
| $\begin{aligned} & \mathrm{C} \\ & C^{* * *} \\ & \mathrm{C} \end{aligned}$ |  | LINK | 78 |
|  | GLOBAL MASS MATRIX | LINK | 79 |
|  |  | LINK | 80 |
|  | DO 500 IELEM $=1$, NELEM | LINK | 81 |
|  | IMASS=INTGR( IELEM) | LINK | 82 |
|  | IF (IMASS.EQ.2) GO TO 500 | LINK | 83 |
|  | READ (3) EMASS | LINK | 84 |
|  | CALL ADDBAN (XMASS, MAXAI, EMASS, LEQNS ( 1 , IELEM) , NEVAB) | LINK | 85 |
| 500 | CONTINJE | LINK | 86 |
| C |  | LINK | 87 |
| $\begin{aligned} & C * * * \\ & C \end{aligned}$ | GLOBAL MASS VECTOR | LINK | 88 |
|  |  | LINK | B9 |
|  | NPOSM=0 | LINK | 90 |
|  | DO 510 IPOIN $=1$, NPOIN | LINK | 91 |
|  | DO 510 IDOFN $=1$, NDOFN | LINK | 92 |
|  | NPOSM=NPOSM +1 | LINK | 93 |
|  | NPOSN=IFPRE (IDOFN, IPOIN) | LINK | 94 |
|  | IF (NPOSN, EQ.0) GO TO 510 | LINK | 95 |
|  | YMASS ( NPOSN) =YMASS ( NPOSM) | LINK | 96 |
|  | FORCE (NPOSN) =FORCE (NPOSM) | LINK | 97 |
| 510 | CONTINJE | LINK | 98 |
|  | RETURN | LINK | 99 |
|  | END | LINK | 100 |

LINK 18-29 Reassigns IFPRE vector with equation numbers. If IFPRE is not zero than IFPRE is reassigned as zero.
LINK 34-45 Evaluates the vector LEQNS on element level for assigning equation number corresponding to each node in an element.
LINK 52-55 Calculates column height above the diagonal in global matrix.
LINK 59-62 Assigns location for diagonal elements in global matrix.
LINK 80-85 IMASS $=1$ calculates stiffness matrix for only implicit elements.
IMASS $=2$ calculates stiffness matrix for complete mesh.

### 11.5.13 Subroutine MULTPY

This routine ${ }^{(9)}$ evaluates the product of square matrix AMATX and an array START and stores the result in FINAL.

SUBROUTINE MULTPY (FINAL , AMATX ,START ,MAXAI ,NEQNS ,NWMTL) MULT 1


```
 IF(NWMTL.GT.NEQNS) GO TO 20 MULT 9
 DO 10 IEQNS=1,NEQNS MULT 10
 10 FINAL(IEQNS)=AMATX(IEQNS)*START(IEQNS) MULT 11
 RETURN
 MULT 12
C
 20 DO 40 IEQNS=1,NEQNS
 MULT }1
 MULI }1
 40 FINAL(IEQNS)=0.0 MULT 15
 DO 100 IEQNS=1,NEQNS MULT 16
 LOWER=MAXAI (IEQNS) MULT 17
 KUPER=MAXAI(IEQNS+1)-1 MULT 18
 JEQNS=IEQNS+1 MULT 19
 TERMI=START(IEQNS) MULT 20
 DO 100 ICOLM=LOWER,KUPER MULT 21
 JEQNS=JEQNS-1 MULT 22
100 FINAL(JEQNS)=FINAL(JEQNS) +AMATX(ICOLM)*TERMI MULT 23
 IF(NEQNS.EQ. 1) RETURN MULT 24
 DO 200 IEQNS=2,NEQNS MJLT 25
 LOWER=MAXAI (IEQNS)+1 MULT 26
 KUPER=MAXAI (IEQNS +1)-1 MULT 27
 IF(KUPER-LOWER) 200,210,210 MULT 28
210 JEQNS=IEQNS MULT 29
 SUMAA=0.0 MULT 30
 DO 220 ICOLM=LOWER,KUPER MULT 31
 JEQNS=JEQNS-1 MULT 32
220 SUMAA=SUMAA+AMATX(ICOLM)*START(JEQNS) MULT 33
 FINAL(IEQNS)=FINAL(IEQNS)+SUMAA MULT 34
```



```
 RETURN MULT 36
 END MULT 37
```


### 11.5.14 Subroutine REDBAK

This routine ${ }^{(9)}$ solves the equations after the matrix is decomposed (into the form $\boldsymbol{L D} \boldsymbol{L}^{T}$ ) using forward and backward substitution.

|  | SUBROUTINE REDBAK (STIFF ,FORCE , MAXAI , NEQNS ) | RBAK | 1 |
| :---: | :---: | :---: | :---: |
| C**** | *************************************************************** | RBAK | 2 |
| C |  | RBAK | 3 |
| C ${ }^{*}$ ** | ( 0 REDUCE AND BACK-SUBSTITUTE ITERRATION VECTORS | RBAK | 4 |
| C |  | RBAK | 5 |
|  |  | RBAK | 6 |
|  | DIMENSION STIFF(1) ,FORCE (1) ,MAXAI(1) | RBAK | 7 |
| C |  | RBAK | 8 |
|  | DO 400 IEQNS $=1$, NEQNS | RBAK | 9 |
|  | LOWER $=$ MAXAI (IEQNS $)+1$ | RBAK | 10 |
|  | KUPER=MAXAI (IEQNS+1)-1 | RBAK | 11 |
|  | IF (KUPER-LOWER) $400,410,410$ | RBAK | 12 |
| 410 | JEQNS=IEQNS | RBAK | 13 |
|  | SUMCC $=0.0$ | RBAK | 14 |
|  | DO 420 ICOLM=LOWER, KUPER | RBAK | 15 |
|  | JEQNS=JEQNS -1 | RBAK | 16 |
| 420 | SUMCC $=$ SUMCC+STIFF (ICOLM)*FORCE (JEQNS) | RBAK | 17 |
|  | FORCE (IEQNS) =FORCE (IEQNS)-SUMCC | RBAK | 18 |
| 400 | CONTINUE | RBAK | 19 |
| C |  | RBAK | 20 |
|  | DO 480 IEQNS $=1$, NEQNS | RBAK | 21 |
|  | KMAXA=MAXAI (IEQNS) | RBAK | 22 |
| 480 | FORCE (IEQNS) = FORCE (IEQNS $/$ /STIFF (KMAXA ) | RBAK | 23 |
|  | IF (NEQNS.EQ.1) RETURN | RBAK | 24 |
|  | JEQNS=NEQNS | RBAK | 25 |
|  | DO 500 IEQNS=2,NEQNS | RBAK | 26 |
|  | LOWER=MAXAI (JEQNS) + 1 | RBAK | 27 |
|  | KUPER=MAXAI (JEQNS + 1)-1 | RBAK | 28 |

```
 IF(KUPER-LONER) 500,510,510 RBAK 29
510 KEQNS=JEQNS RBAK 30
 DO 520 ICOLM=LOWER,KUPER RBAK 31
 KEQNS=KEQNS-1 RBAK 32
520 FORCE(KEQNS)=FORCE(KEQNS)-STIFF(ICOLM)*FORCE(JEQNS) RBAK 33
500 JEQNS=JEQNS-1 RBAK 34
 RETURN RBAK 35
 END RBAK 36
```


### 11.5.15 Subroutine RESEPL

This routine evaluates the internal force vector for elasto-plastic materials.
(See Section 7.8.7.)


```
 DO 30 IDIME=1,NDIME RESD 50
 IPOSN=IPOSN+1 RESD
 NPOSN=LEQNS(IPOSN,IELEM)
 IF(NPOSN.EQ.0) DISPT=0.
 IF(NPOSN.NE.0) DISPT=DISPL(NPOSN)
 DLCOD(IDIME,INODE)=COORD(LNODE,IDIME) +DISPT
 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME)
 30 ELDIS(IDIME,INODE)=DISPT
 CALL MODPS (DMATX,LPROP,NMATS,NSTRE,NTYPE,PROPS)
 KGASP=0
 DO 40 IGAUS=1,NGAUS
 DO 40 JGAUS=1, NGAUS
 EXISP=POSGP(IGAUS)
 ETASP=POSGP(JGAUS)
 KGAUS=KGAUS +1
 KGASP}=\textrm{KGASP}+
 CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP)
 CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,
 IELEM,KGASP,NNODE,SHAPE)
 CALL JACOBD (CARTD,DLCOD,DJACM,NDIME,NLAPS,NNODE)
 DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS)
 IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP)
 IF(NTYPE.EQ.1) DVOLU=DVOLU*THICK
 CALL BLARGE (BMATX,CARTD,DJACM,DLCOD,GPCOD,
 KGASP,NLAPS,NNODE,NTYPE,SHAPE)
C
 CALL LINGNL (CARTD,DJACM,DMATX,ELDIS,GPCOD,KGASP,
 KGAUS, NDOFN, NLAPS, NNODE, NSTRE, NTYPE,
 POISS,SHAPE,STRAN,STRES,STRAG)
 DO 560 ISTR1=1,NSTR1
560 STRAG(ISTR1,KGAUS)=STRAG(ISTR1,KGAUS)+STRAN(ISTR1)
 IF(ISTEP.GT.1.AND.IITER.GT.1) GO TO }16
 DO 170 ISTR1=1,NSTR1
170 STRES(ISTR1)=STRES(ISTR1)+STRIN(ISTR1,KGAUS)
160 CONTINUE
 PREYS=UNIAX+EPSTN(KGAUS)*HARDS
 DO 150 ISTR1=1,NSTR1
 DESIG(ISTR1)=STRES(ISTR1)
150 SIGMA(ISTR1)=STRSG(ISTR1,KGAUS)+STRES(ISTR1)
 IF(NLAPS.EQ.2.OR.NLAPS.EQ.0) GO TO 60
 CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF,
 SIGMA,THETA,VARJ2,YIELD)
 ESPRE=EFFFST(KGAUS)-PREYS
 IF(ESPRE.GE.0.0) GO TO 50
 ESCUR=YIELD-PREYS
 IF(ESCUR.LE.0.0) GO TO 60
 RFACT=ESCUR/(YIELD-EFFST(KGAUS))
 GO TO 70
50 ESCUR=YIELD-EFFST(KGAUS)
 IF(ESCUR.LE.0.0) GO TO 60
 RFACT=1.0
70 MSTEP=ESCUR*8.0/UNIAX+1.0
 IF(MSTEP.GT.10) MSTEP=10
 ASTEP=MSTEP
 REDUC=1.0-RFACT
 DO 80 ISTR1=1,NSTR1
 SGTOT(ISTR1)=STRSG(ISTR1,KGAUS)+REDUC*STRES(ISTR1)
80 STRES(ISTR1)=RFACT*STRES(ISTR1)/ASTEP
 DO 90 JSTEP=1,MSTEP
 CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF,
 SGTOT,THETA,VARJ2,YIELD)
 CALL YIELDF (AVECT,DEVIA,FRICT,NCRIT,SINT3,STEFF,
 THETA,VARJ2)
 CALL FLONPL (AVECT,ABETA,DVECT,HARDS,NTYPE,POISS,YOUNG)
```

RESD
RESD 5
RESD 52
RESD 53
RESD 54
RESD 55
RESD 56
RESD 57
RESD 58
RESD 59
RESD 60
RESD 61
RESD 62
RESD 63
RESD 64
RESD 65
RESD 66
RESD 67
RESD 68
RESD 69
RESD 70
RESD 71
RESD 72
RESD 73
RESD 74
RESD 75
RESD 76
RESD 77
RESD 78
RESD 79
RESD 80
RESD 81
RESD 82
RESD 83
RESD 84
RESD 85
RESD 86
RESD 87
RESD 88
RESD 89
RESD 90
RESD 91
RESD 92
RESD 93
RESD 94
RESD 95
RESD 96
RESD 97
RESD 98
RESD 99
RESD 100
RESD 101
RESD 102
RESD 103
RESD 104
RESD 105
RESD 106
RESD 107
RESD 108
RESD 109
RESD 110
RESD 111
RESD 112
RESD 113
RESD 114

```
 AGASH=0.0 RESD 115
 DO 100 ISTR1=1,NSTR1
RESD }11
 100 AGASH=AGASH+AVECT(ISTR1)*STRES(ISTR1) RESD 117
 DLAMD=AGASH*ABETA RESD 118
 IF(DLAMD.LT.0.0) DLAMD=0.0 RESD 119
 BGASH=0.0
 RESD }12
 DO 110 ISTR1=1,NSTR1
 BGASH=BGASH+AVECT(ISTR1)*SGTOT(ISTR1) RESD 122
 RESD 121
 110 SGTOT(ISTR1)=SGTOT(ISTR1)+STRES(ISTR1)-DLAMD*DVECT(ISTR1)
 RESD }12
 EPSTN(KGAUS)=EPSTN(KGAUS)+DLAMD*BGASH/YIELD RESD 124
 90 CONTINUE
 RESD 125
 CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF, RESD 126
 SGTOT,THETA,VARJ2,YIELD) RESD 127
 CURYS=UNIAX+EPSTN(KGAUS)*HARDS
 RESD }12
 BRING=1.0
 RESD }12
 IF(YIELD.GT.CURYS) BRING=CURYS/YIELD
 DO 130 ISTR1=1,NSTR1 RESD 131
 RESD 130
 130 STRSG(ISTR1,KGAUS)=BRING*SGTOT(ISTR1) RESD 132
 EFFST(KGAUS)=BRING*YIELD
RESD }13
C*** ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD RESD 134
C }90\mathrm{ CONTINUE
C***
 GO TO 190
 60 DO 180 ISTR1=1,NSTR1
 180 STRSG(ISTR1,KGAUS)=STRSG(ISTR1,KGAUS)+DESIG(ISTR1) RESD 139
 EFFST(KGAUS)=YIELD
C
C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE
C ELEMENT NODES
 190 MGASH=0 RESD 144
 DO 140 INODE=1,NNODE RESD 145
 DO 140 IDQFN=1,NDOFN RESD 146
 MGASH=MGASH+1
 DO 140 ISTRE=1,NSTRE RESD 148
 140 ELOAD(IELEM,MGASH)=ELOAD(IELEM,MGASH)+BMATX(ISTRE,MGASH)* RESD 149
 .STRSG(ISTRE,KGAUS)*DVOLU
 4 0 ~ C O N T I N U E ~
```



```
 DO 500 IELEM=1,NELEM RESD 153
 DO 500 IEVAB=1,NEVAB RESD 154
 LMVEB=LEQNS(IEVAB, IELEM) * RESD 155
 IF(LMVEB.EQ.0) GO TO 550 RESD 156
 RESID(LMVEB)=RESID(LMVEB)+ELOAD(IELEM,IEVAB) RESD }15
 550 CONTINUE
 500 CONTINUE
 RETURN RESD 160
 END
 RESD }13
RESD 136
RESD }13
 RESD }13
 RESD 139
 RESD }14
 RESD }14
 RESD 142
ELEMENI NODES RESD 143
 RESD }14
 * RIRSG(ISIRE,KGAUS)*DVOLU RESD 150
 RESD 151
 RESD }15
 RESD
RESD }16
RESD 161
```


### 11.6 Examples

### 11.6.1 Spherical shell example

Some of the capabilities ${ }^{(10)}$ of the program MIXDYN are explained by analysing some simple problems. The spherical shell problem described ${ }^{(11,12)}$ in Chapter 10 is again solved for the following cases:
(i) Elastic small deformation (all implicit elements)
(ii) Elastic geometrically nonlinear (all implicit elements)
(iii) Elasto-plastic small deformation (all implicit elements)
(iv) Elastic small deformation (all explicit elements)
(v) Elastic geometrically nonlinear (all explicit elements)
(vi) Elasto-plastic small deformation (all explicit elements)


Fig. 11.4 Modified spherical shell example with stiff elements.
To demonstrate the capabilities of program MIXDYN we also solve a slightly modified version of the spherical shell example. Two stiff and dense elements are added to the finite element mesh at the crown as shown in Fig. 11.4. The stiff elements have the following properties:

$$
\begin{array}{lrl}
\text { Elastic modulus } & E & =0.105 \times 10^{9} \mathrm{lb} / \mathrm{in}^{2} \\
\text { poisson's ratio } & \nu & =0.3 \\
\text { mass density } & \rho & =0.780 \times 10^{-3} \mathrm{lb}^{2} \mathrm{sec}^{2} / \mathrm{in}^{4} \\
\text { yield stress } & \sigma_{0} & =0.5 \times 10^{5} \mathrm{lb} / \mathrm{in}^{2}
\end{array}
$$

The following modified shell examples are also analysed:
(vii) Elasto-plastic small deformations (all implicit elements)
(viii) Elasto-plastic small deformations (all explicit elements)
(ix) Elasto-plastic small deformations (stiff elements are implicit elements, the remaining elements are explicit).

The highest and lowest eigenvalues are evaluated for both the original and the modified spherical shells. For the original spherical shell the fundamental period is $0.547 \times 10^{-3} \mathrm{sec}$ and the smallest time period is $1.380 \times 10^{-6}$
sec . For the modified spherical shell the fundamental period $T_{f}$ is $0.592 \times 10^{-3}$ sec and the smallest time period $T_{h}$ is $0.776 \times 10^{-6} \mathrm{sec}$. Thus the addition of the stiff elements does not significantly change the largest period but it does change the smallest period quite dramatically. For an accurate solution based on implicit time integration the time step length $\Delta t$ is taken as $T_{f} / 100 \simeq 0.6 \times$ $10^{-5} \mathrm{sec}$ for both the original and the modified spherical shell. For a stable and accurate solution based on explicit time integration the time step length $\Delta t \leqslant T_{h} / \pi$ which is $0.25 \times 10^{-6} \mathrm{sec}$ for the modified spherical shell or $0.40 \times$ $10^{-6} \mathrm{sec}$ for the original spherical shell. Thus the addition of two stiff elements reduces the critical time step length to $1 / 1.6$ of the original critical time step length. Hence the explicit analysis becomes more expensive. However, if the stiff elements are taken as implicit elements in case (ix) for implicit-explicit analysis, then the critical time step is governed by the remaining explicit elements so that the time step must be less than or equal to $0.40 \times 10^{-6} \mathrm{sec}$.


Fig. 11.5(a) Spherical shell results. Cases (i), (ii), (iv) and (v).
Figure 11.5(a) compares the response of the elastic analyses with small and large deformations.* The results are similar to the results obtained using DYNPAK. The response with the large deformation gives a time period which is elongated.

[^6]

Fig. 11.5(b) Spherical shell results. Cases (iii) and (vi).

Figure $11.5(\mathrm{~b})$ illustrates the elasto-plastic small deformation response. The time periods are elongated with the inclusion of plasticity effects.

In Fig. 11.5(c) the results for the problem with the stiff element are presented with explicit, implicit and mixed explicit-implicit analysis (cases (vii)(ix)). The execution times and results are compared. The relative computer times are:
(i) all elements considered as explicit $\quad-120.0 \mathrm{sec}$
(ii) stiff elements as implicit and rest explicit - 80.8 sec
(iii) all elements considered as implicit -16.4 sec

(a) Comparison of explicit, implicit-explicit and implicit time integration schemes

Fig. 11.5(c) Spherical shell results. Cases (vii)-(ix).

This shows that by representing the stiff elements implicitly computer time can be saved. The analysis in which all elements are treated implicitly gives the lowest execution time for this small problem. However, with increasing problem size (and band width) the solution time for an implicit solution increases very rapidly because of the large core requirement and the increased number of computer operations.

Finally it should be noted that Hughes has recently shown how the implicitexplicit schemes may be used in a more general context where there are, for example, nonsymmetric stiffness matrices involved or an implicit-explicit dynamic relaxation solution is required. ${ }^{(13)}$

### 11.7 Problems

11.1 Repeat Problems 10.1-10.4 using program MIXDYN. Use fully explicit, fully implicit and mixed implicit/explicit meshes.

### 11.8 References

1. Belytschro, T. and Mullen, R., Mesh partitions of explicit-implicit time integration, In: Formulations and Computational Algorithms in Finite Element Analysis, Ed. K. J. Bathe et al., MIT Press (1977).
2. Belytscheo, T. and Mullen, R., Stability of explicit-implicit mesh partitions in time integration, Int. J. Num. Meth. Engng. 12, 1575-1586 (1978).
3. Belytschioo, T., Yen, H. J. and Mullen, R., Mixed methods for time integration, Proc. Int. Conf. on Finite Elements in Non-linear Mechanics (FENOMECH 78), Univ. Stuttgart, Germany (Sept. 1978).
4. Hughes, T. J. R. and Liu, W. K., Implicit-explicit finite elements in transient analysis: stability theory, J. Appl. Mech. 45, 371-374 (1978).
5. Hughes, T. J. R. and Liu, W. K., Implicit-explicit finite elements in transient analysis: implementation and numerical examples, J. Appl. Mech. 45, 375378 (1978).
6. Hughes, T. J. R., Pister, K. S. and Taylor, R. L., Implicit-explicit finite elements in nonlinear transient analysis, Comp. Meth. Appl. Mech. Engng. 17/18, 159-182 (1979).
7. Park, K. C., Fellppa, C. A. and Deruntz, H. A., Stabilization of staggered solution procedures for fluid-structure interaction analysis, In: Computational Methods for Fluid-Structure Interaction Problems, Ed. T. Belytschko and T. L. Geers, ASME Applied Mechanics Symposia Series, AMD, 26, 94-124 (1977).
8. Park, K. C., Partitioned transient analysis procedures for coupled field problems, to be published J. Appl. Mech. (1980).
9. Bathe, K. J. and Wluson, E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1976).
10. Paul, D. K. and Hinton, E., User guide and report on program MIXDYN for implicit-explicit transient dynamic analysis, Research Report, University College of Swansea (1980).
11. Nagarajan, S. and Popov, E. P., Elastic-plastic dynamic analysis of axisymmetric solids, Computers and Structures, 4, 1117-1134 (1974).
12. Bathe, K. J. and Ozdemir, H., Elastic-plastic large deformation static and dynamic analysis, Computers and Structures, 6, 81-90 (1976).
13. Hughes, T. J. R., Implicit-explicit finite element techniques for symmetric and nonsymmetric systems, Proc. Int. Conf. Numerical Methods for Nonlinear Problems, Swansea, 127-139, Pineridge Press, Swansea, U.K. (1980).

# Chapter 12 Alternative formulations and further applications 

### 12.1 Introduction

Throughout this text we have considered several specific elasto-plastic material problems and, apart from Chapter 3, treatment has been limited to the use of elasto-plastic quasi-static incremental theory or an elasto-viscoplastic formulation. These theories and the application areas of solids and plates form, undoubtedly, the area of most interest and importance in nonlinear material analysis and it is for this reason that they have been chosen for study in this text. However, other topics and applications of possibly equal importance have had to be omitted for reasons of space and it is the aim of this chapter to indicate to the reader some areas for future studies. The developments which will be discussed can be categorised into the following classes:

- Further applications. The elasto-plastic and elasto-viscoplastic theories described earlier in this text can be extended to cover some alternative structural forms. Of prime importance in this area is the analysis of both thick and thin three-dimensional shell structures and the main changes necessary to the corresponding linear elastic finite element process relate to expressing the yield criterion in terms of the appropriate stress resultants.
- Alternative material models. The behaviour of some engineering materials may not be adequately described by the yield criteria presented in Chapter 7. This is particularly true of soils, rocks and concrete, since these materials, for example, have a limited tensile strength which is not accurately reflected in either the Mohr-Coulomb or Drucker-Prager failure laws. For such materials appropriate failure criteria must be developed. Additionally for soils the assumption of associated plasticity leads to excessive dilatency necessitating alternative formulations for accurate material modelling.
- Further problem classes. Many physical situations exist which are governed by nonlinear equation systems which are not suitable for solution by the techniques described so far in the text. One such
example is the time dependent deformations which take place during a metal forming process. In this application the elastic strains are negligible compared with the plastic components and therefore the stress increments can no longer be expressed by use of (8.15).

For dynamic situations, coupled media problems frequently have to be solved. This may involve a fluid/structure interaction problem of the seismic analysis of water retaining structures or the impulsive loading of a nuclear containment vessel together with the coolant fluid. All the above problems may be complicated by further nonlinear behaviour due to gross geometrical deformations.

- Improved numerical techniques. Since nonlinear solution processes are necessarily expensive with regard to computational time, any savings which can be made in this area are of prime importance. Developments in this area include improved nonlinear equation solution techniques and self-adaptive schemes for optimisation of the finite element mesh and load incrementation. A further enhancement is the use of substructuring techniques to separate elastic and elasto-plastic regions leading ultimately to coupled boundary integral/finite element solutions.
In this chapter we explore the above developments (and others) in more detail and provide the reader with references for future study. Many of the subroutines presented earlier in the text can be employed (possibly in a modified form) in the development of computer codes for these further applications. Therefore the role of each subroutine presented is summarised and its location in the text also listed.


### 12.2 List of subroutines

In this section we record details of each subroutine that has been presented in this text. This library of subroutines can be employed to develop computer codes for the further applications discussed later in this chapter. The section of the chapter in which the subroutine is presented is recorded and the codes in which it is used are also indicated, employing the following program names:

## One-dimensional applications

QUITER Solution of quasiharmonic problems by direct iteration (Chapter 3).
QUNEWT Solution of quasiharmonic problems by the Newton-Raphson process (Chapter 3).
NONLAS Solution of nonlinear elastic problems (Chapter 3),
ELPLAS Solution of elasto-plastic problems (Chapter 3).
UNVIS Solution of elasto-viscoplastic problems (Chapter 4).
TIMOSH Solution of elasto-plastic nonlayered Timoshenko beams (Chapter 5).
TIMLAY Solution of elasto-plastic layered Timoshenko beams (Chapter 5).

## Two-dimensional applications

| PLANET | Elasto-plastic analysis of plane stress, plane strain and axi- <br> symmetric solids (Chapter 7). |
| :--- | :--- |
| VISCOUNT | Elasto-viscoplastic analysis of plane stress, plane strain and <br> axisymmetric solids (Chapter 8). |
| MINDLIN | Elasto-plastic analysis of nonlayered Mindlin plates (Chapter 9). |
| MINDLAY | Elasto-plastic analysis of layered Mindlin plates (Chapter 9). |
| DYNPAK | Elasto-plastic transient dynamic analysis of two dimensional <br> solids (Chapter 10). |
| MIXDYN | Implicit-explicit elasto-viscoplastic transient dynamic analysis <br> of two dimensional solids (Chapter 11). |

### 12.2.1 Subroutines for one-dimensional applications

ASSEMB Section 3.4.2 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Assembles the element contributions to form the global stiffness matrix and global load vector. (Simple equation solver).
ASTIF1 Section 3.10.1 (QUNEWT)
Formulates the stiffness matrix for each element according to (2.25) and (2.29) for the solution of one dimensional quasiharmonic problems by the Newton Raphson method.
BAKSUB Section 3.4.4 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Performs the backsubstitution phase of the Gaussian reduction process. (Simple equation solver).
BEAM Section 5.4.5 (TIMOSH)
The master routine for elasto-plastic nonlayered Timoshenko beam program TIMOSH.
BEML Section 5.5.5 (TIMLAY)
The master routine for elasto-plastic layered Timoshenko beam program TIMLAY.
CONUND Section 3.10.3 (QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Monitors convergence of the nonlinear solution process based on the residual forces according to (3.27).
CONVP Section 4.9 (UNVIS)
Monitors convergence to steady state conditions according to (4.41) for one-dimensional elasto-viscoplastic problems.

DATA Section 3.2 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Data input subroutine for one-dimensional applications.

GREDUC Section 3.4.3 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Undertakes equation elimination by Gaussian reduction. (Simple equation solver).
INCLOD Section 3.7 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Controls the incrementing of the applied loads for onedimensional applications (modified for viscoplastic problems in Section 4.10).
INCVP Section 4.8 (UNVIS)
Evaluates quantities at the end of the time step and the equilibrium correction terms for one-dimensional elastoviscoplastic problems.
INITAL Section 3.6 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Initialises to zero some arrays used by other subroutines for one-dimensional applications.
MONITR Section 3.9.2 (QUITER)
Monitors convergence of the direct iteration process for onedimensional quasiharmonic problems.
NONAL Section 3.3 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Controls the nonlinear solution process according to the value of NALGO specified, for one-dimensional applications.
REFOR1 Section 3.10.2 (QUNEWT)
Evaluates the 'equivalent nodal forces' according to (3.26) for one-dimensional quasiharmonic problems. (Newton Raphson solution).
REFOR2 Section 3.11 .2 (NONLAS)
Evaluates the equivalent nodal forces according to (3.32) for one-dimensional nonlinear elastic problems.
REFOR3 Section 3.12.2 (ELPLAS)
Evaluates the equivalent nodal forces for one-dimensional elasto-plastic problems.
REFORB Section 5.4.5 (TIMOSH)
Evaluates the residual forces for a nonlayered elasto-plastic Timoshenko beam.
RFORBL Section 5.5.5 (TIMLAY)
Evaluates the residual forces for a layered elasto-plastic Timoshenko beam.
RESOLV Section 3.4.5 (QUITER, QUNEWT, NONLAS, ELPLAS, TIMOSH, TIMLAY)
Undertakes reduction of the R.H.S. terms for equation resolution (Simple equation solver).

| RESULT | Section 3.5 (QUITER, QUNEWT, NONLAS, ELPLAS, <br> TIMOSH, TIMLAY) |
| :--- | :--- |
| STIFF1 | Outputs the results for one-dimensional applications. <br> Section 3.9.1 (QUITER) <br> Formulates the stiffness matrix for each element according to <br> (2.25) for the solution of one-dimensional quasiharmonic |
| problems by direct iteration. |  |
| Section 5.5.5 (TIMLAY) |  |
| Evaluates the elasto-plastic stiffness matrix for each element |  |
| for the solution of layered Timoshenko beams. |  |
| Section 5.4.5 (TIMOSH) |  |


| BMATPS | Section 6.4.7(PLANET, VISCOUNT) |
| :--- | :--- |
|  | Evaluates the strain matrix, $B$, for plane and axisymmetric |
| situations. |  |

CHECK1 Section 6.4.13 (PLANET, VISCOUNT, MINDLIN, MINDLAY)
Scrutinises the problem control parameters for possible errors (two-dimensional applications).
CHECK2 Section 6.4.15 (PLANET, VISCOUNT, MINDLIN, MINDLAY)
Checks the geometric data, boundary conditions and material properties for possible errors (two-dimensional applications).
COLMHT Section 11.5.5 (MIXDYN)
Evaluates the height of column above the diagonal of a matrix from the known addresses of diagonal terms.
CONTOL Section 10.6.4 (DYNPAK, MIXDYN)
Reads control data for dynamic dimensioning and also checks the dimension limits.
CONVER Section 6.5.4 (PLANET)
Monitors convergence of the nonlinear solution iteration process for two-dimensional applications.
CONVMP Section 9.5.3 (MINDLIN, MINDLAY)
Checks for convergence of solution of elasto-plastic layered and nonlayered Mindlin plates.
DBE Section 6.4.11 (PLANET, VISCOUNT)
Forms the matrix product $D B$.
DECOMP Section 11.5.6 (MIXDYN)
Decomposes positive definite matrix into $L D L^{T}$.
DEPMPA Section 9.6.4 (MINDLAY)
Sets up the layered discretisation for the layered elasto-plastic Mindlin plate.
DIMEN Section 7.8.1 (PLANET, VISCOUNT)
Presets the value of variables associated with dynamic dimensioning.
DIMMP Section 9.5.4 (MINDLIN, MINDLAY)
Sets up dynamic dimensions in programs MINDLIN and MINDLAY for the elasto-plastic analysis of layered and nonlayered plates.
DINTOB Section 11.5 .7 (MIXDYN)
Multiplies the modulus and strain matrices to give $\boldsymbol{D B}$.
DYNPAK Section 10.6.2 (DYNPAK)
Organises the explicit viscoplastic transient dynamic analysis.
ECHO Section 6.4.14 (PLANET, VISCOUNT, MINDLIN, MIND. LAY)

Echoes the remaining data after input data errors have been diagnosed.
EXPLIT Section 10.6.5 (DYNPAK)
Carries out explicit time integration.
FEAM Section 9.6.2 (MINDLAY)
Organising routine for the elasto-plastic analysis of layered Mindlin plates.
FEMP Section 9.5.2 (MINDLIN)
Organising routine for the elasto-plastic analysis of nonlayered Mindlin plates.
FIXITY Section 10.6.6 (DYNPAK) Boundary conditions are inserted.
FLOWMP Section 9.5.5 (MINDLIN, MINDLAY)
Determines $\partial F / \partial \sigma_{f}$ (i.e. yield function derivatives) for elastoplastic layered and nonlayered Mindlin plates.
FLOWPL Section 7.8.4.2 (PLANET, MIXDYN)
Determines the vector $\boldsymbol{d}_{D}$ for elasto-plastic analysis.
FLOWVP Section 8.9 (VISCOUNT, DYNPAK)
Determines the viscoplastic strain rate for each Gauss point according to (8.7).
FRONT Section 6.4.12 (PLANET, VISCOUNT, MINDLIN, MINDLAY)
Performs element assembly and equation solution by the frontal method. Contains a facility for efficient resolution of equations.
FUNCTA Section 10.6.8 (DYNPAK, MIXDYN) Interpolates acceleration ordinate at $\Delta t$ intervals.
FUNCTS Section 10.6.9 (DYNPAK, MIXDYN)
Evaluates factor for Heaviside and Harmonic time function at $\Delta t$ apart.
GAUSSQ Section 6.4.2 (PLANET, VISCOUNT, MINDLIN, MINDLAY, DYNPAK, MIXDYN)
Evaluates the sampling point positions and weighing factors for numerical integration by Gauss quadrature.
GEOMST Section 11.5.8 (MIXDYN)
Evaluates the stress stiffness matrix.
GRADMP Section 9.5.6 (MINDLIN)
Evaluates the total displacement and rotation derivatives ( $\left.\partial w / \partial x, \partial w / \partial y, \partial \theta_{x} / \partial x, \partial \theta_{x} / \partial y, \partial \theta_{y} / \partial x, \partial \theta_{y} / \partial y\right)$.
GSTIFF Section 11.5.9 (MIXDYN) Evaluates the global stiffness matrix in compacted profile form.
IMPEXP Section 11.5.10 (MIXDYN)
Sets the constants of integration and evaluates partial effective load vector.

| INCREM | Section 6.5 .3 (PLANET, VISCOUNT, MINDLIN, MINDLAY) <br> Controls the incrementing of the applied loads for twodimensional applications. |
| :---: | :---: |
| INPUT | Section 6.5.1 (PLANET, VISCOUNT, MINDLIN, MINDLAY) |
|  | Data input subroutine for two-dimensional applications. |
| INPUTD | Section 10.6.10 (DYNPAK, MIXDYN) |
|  | Data input subroutine. Reads the mesh data, properties etc |
| INTIME | Section 10.6.11 (DYNPAK, MIXDYN) |
|  | Reads the data necessary for time integration. |
| INVAR | Section 7.8.3 (PLANET, VISCOUNT, DYNPAK, MIXDYN) |
|  | Evaluates the effective stress level at a given point for monitoring plastic yielding. |
| INVERT | Section 8.7 .3 (VISCOUNT) |
|  | This subroutine determines the inverse of any arbitrary square matrix. |
| INVMP | Section 9.5.7 (MINDLIN) |
|  | Evaluates the Mindlin plate stress resultant invariants for nonlayered plates. |
| ITRATE | Section 11.5.11 (MIXDYN) |
|  | Evaluates the total effective load and iterates until convergence is reached. |
| JACOBD | Section 10.6.13 (DYNPAK, MIXDYN) |
|  | Evaluates the deformation Jacobian matrix. |
| JACOB2 | Section 6.4 .4 (PLANET, VISCOUNT, MINDLIN, MINDLAY, DYNPAK, MIXDYN) |
|  | Evaluates the Jacobian matrix, its inverse and the Cartesian derivatives of the element shape functions for two-dimensional applications. |
| LAYMPA | Section 9.6.5 (MINDLAY) |
|  | Evaluates the matrix of flexural rigidities and the matrix of shear rigidities for the layered elastoplastic Mindlin plate. |
| LINEAR | Section 7.8.6 (PLANET, MIXDYN) |
|  | Determines the stresses from given displacements assuming linear elastic behaviour. |
| LINGNL | Section 10.6.14 (DYNPAK, MIXDYN) |
|  | Evaluates the linear stresses for small and large deformation analysis. |
| LINKIN | Section 11.5.12 (MIXDYN) |
|  | This routine links with the profile solver. |
| LOADPB | Section 6.4 .6 (MINDLIN, MINDLAY) |
|  | Evaluates the consistent nodal forces for plate bending problems. |


| LOADPL | Section 10.6.15 (DYNPAK, MIXDYN) Generates the load vector. |
| :---: | :---: |
| LOADPS | Section 6.4 .5 (PLANET, VISCOUNT) <br> Evaluates the consistent nodal forces due to gravity and distributed edge loads for two-dimensional problems. |
| LUMASS | Section 10.6.16 (DYNPAK, MIXDYN) <br> Generates the consistent mass matrix for implicit elements and special lumped mass matrix for explicit elements. |
| MDMPA | Section 9.6.6 (MINDLAY) <br> Evaluates the constitutive matrices for use in layered Mindlin plate analysis. |
| MINDPB | Section 9.5.8 (MINDLIN, MINDLAY) <br> Reads additional input data for elasto-plastic, layered and nonlayered Mindlin plates. |
| MIXDYN | Section 11.5.2 (MIXDYN) <br> Organises implicit/explicit transient dynamic program. |
| MODPB | Section 6.4.10 (MINDLIN) <br> Evaluates the $D$ matrix for plate bending applications. |
| MODPS | Section 6.4.9 (PLANET, VISCOUNT, DYNPAK, MIXDYN) Evaluates the $D$ matrix for plane and axisymmetric situations. |
| MULTPY | Section 11.5.13 (MIXDYN) <br> Multiplies square matrix to a vector or vector to a vector. |
| NODEXY | Section 6.4.1 (PLANET, VISCOUNT, MINDLIN, MINDLAY) <br> Interpolates the coordinates of midside nodes for elements with straight sides. This routine is modified in MINDLIN and MINDLAY where a hierarchical formulation is adopted for the ninth node. (See Section 9.5). |
| NODXYR | Section 10.6.18 (DYNPAK, MIXDYN) <br> Evaluates the midside node of elements. In case of axisymmetric problems if $(R, \Theta)$ coordinates are read $r, z$ coordinates are evaluated within it. |
| OUTDYN | Section 10.6.19 (DYNPAK, MIXDYN) <br> Writes the output on output file and stress and displacement histories of required Gauss points and nodes respectively on specified tapes. |
| OUTMP | Section 9.5.10 (MINDLIN) <br> Outputs displacements, reactions and Gauss point stress resultants for elasto-plastic nonlayered Mindlin plates. |
| OUTMPA | Section 9.6.7 (MINDLAY) <br> Outputs displacements, reactions and Gauss point layer stresses for elasto-plastic layered Mindlin plates. |


| OUTPUT | Section 7.8.8 (PLANET, VISCOUNT) <br> Outputs the results for two-dimensional problems at specified intervals. |
| :---: | :---: |
| PLAST | Section 7.8 .9 (PLANET) |
|  | The main or master segment for two-dimensional elastoplastic applications. |
| PREVOS | Section 10.6.20 (DYNPAK, MIXDYN) |
|  | Reads the initial force and stresses. |
| REDBAK | Section 11.5.14 (MIXDYN) |
|  | Solves equations after matrix decomposition, using forward and backward substitution. |
| RESEPL | Section 11.5.15 (MIXDYN) |
|  | Evaluates the internal force for different yield criteria in the implicit explicit program. |
| RESMP | Section 9.5.11 (MINDLIN) |
|  | Evaluates the internal nodal forces |
|  | $\boldsymbol{p}=\int_{\Omega} \boldsymbol{B}_{f}^{T} \sigma_{f} d \Omega+\int_{\Omega} \boldsymbol{B}_{s}^{T} \sigma_{s} d \Omega$ |
|  | for the stress resultants $\sigma_{f}$ and $\sigma_{s}$ for elasto-plastic, nonlayered Mindlin plates. |
| RESMPA | Section 9.6 .8 (MINDLAY) |
|  | Evaluates the residual force vector for layered elasto-plastic Mindlin plates. |
| RESIDU | Section 7.8 .7 (PLANET) |
|  | Evaluates the nodal forces which are statically equivalent to the stress field satisfying elasto-plastic conditions. |
| RESVPL | Section 10.6.21 (DYNPAK) |
|  | Evaluates the internal forces for different yield criteria in the explicit transient dynamic program. |
| SFR2 | Section 6.4.3 (PLANET/ VISCOUNT, MINDLIN, MINDLAY, DYNPAK, MIXDYN) |
|  | Evaluates the element shape functions and their local derivatives for 4,8 and 9 node isoparametric quadrilateral elements. SFR2 is modified in MINDLIN and MINDLAY to allow for a hierarchical representation for the 9 th central node. |
| STEADY | Section 8.12 (VISCOUNT) |
|  | Monitors convergence to steady state conditions for twodimensional elasto-viscoplastic problems. |
| STEPVP | Section 8.8 (VISCOUNT) |
|  | Evaluates quantities, such as stresses and viscoplastic strains, at the end of each time step of a viscoplastic solution. |
| STIFFP | Section 7.8 .5 (PLANET) |

Evaluates the stiffness matrix for each element for elastoplastic problems employing either $\boldsymbol{D}$ or $\boldsymbol{D}_{e p}$ as appropriate.

| STIFMP | Section 9.5.13 (MINDLIN) <br> Evaluates the stifness matrices for nonlayered elasto-plastic <br> Mindlin plate elements. |
| :--- | :--- |
| STIFVP | Section 8.7.1 (VISCOUNT) <br> Evaluates the stiffness matrix for each element in turn for two- <br> dimensional elasto-viscoplastic applications. |
| STIMPA | Section 9.6.9 (MINDLAY) <br> Evaluates the stiffness matrices for layered elasto-plastic <br> Mindlin plate elements. |
| STRESS | Section 8.10 (VISCOUNT) <br> Evaluates the increment in stress occurring during a timestep <br> of a viscoplastic analysis according to (8.20). |
| STRMP $\quad$Section 9.5.14 (MINDLIN) |  |
| Evaluates stress resultants [M $\left.M_{x}, M_{y}, M_{x y}, Q_{x}, Q_{y}\right]^{T}$ for |  |
| elasto-plastic nonlayered Mindlin plates. |  |

TANGVP Section 8.7.2 (VISCOUNT)
Evaluates the $D^{n}$ matrix for viscoplastic analysis by implicit time stepping schemes.
VISCO Section 8.13 (VISCOUNT)
The main or master segment for two-dimensional elastoviscoplastic applications.
VZERO Section 9.5.16 (MINDLIN, MINDLAY)
Zeroes a vector in elasto-plastic layered and nonlayered Mindlin plates.
YIELDF Section 7.8.4.1 (PLANET, VISCOUNT, MIXDYN, DYNPAK)
Determines the flow vector $\boldsymbol{a}$ for plastic and viscoplastic applications. (Amended in Section 10.6.22 for dynamic transient problems).
ZERO Section 7.8.2 (PLANET, VISCOUNT)
Sets to zero the contents of several arrays employed in the programs. (Modified for viscoplastic applications in Section 8.11).

ZEROMP Section 9.5.16 (MINDLIN, MINDLAY)
Zeroes various arrays in elasto-plastic layered and nonlayered Mindlin plate programs.

### 12.3 Alternative material models

The plastic behaviour of most solids is adequately described by the four yield criteria presented in Chapter 7; namely the Tresca, Von Mises, MohrCoulomb and Drucker-Prager yield surfaces. However, for some engineering materials, notably concrete, rocks and soils, some modifications must be made to the above criteria or new yield surfaces postulated if an accurate prediction of the material response is required.

For soils, the Mohr-Coulomb and Drucker-Prager criteria suffer from two deficiencies. Firstly, the assumption of an associated flow rule leads to excessive dilatency and secondly it is seen from Fig. 7.4 that both models imply that the material can support an unlimited hydrostatic compression. These deficiencies can be removed by use of the so-called critical state model, which assumes that the yield surface comprises two distinct parts. ${ }^{(1-3)}$ The surface is shown plotted in terms of deviatoric $\sigma_{d}$ and hydrostatic stress, $\sigma_{s}$, in Fig. 12.1. In the subcritical region yielding is stable due to strain hardening of the material whilst the supercritical region exhibits strain softening so that this portion of the yield surface forms a failure criterion.


Fig. 12.1 Critical state model for the behaviour of soil, $\left[\sigma_{d}=\left|\sigma_{1}-\sigma_{3}\right|, \sigma_{s}\right.$ $\left.=\frac{1}{2}\left(\sigma_{1}+\sigma_{3}\right)\right]$.

A nonassociative flow rule is adopted in the supercritical region and the conical yield surface implied in Fig. 12.1 may be circular or hexagonal in form corresponding to a Mohr-Coulomb behaviour. In the subcritical region, the two most common shapes for the so-called cap is a log spiral or an ellipse and an associated flow rule is assumed to be obeyed. The yield surface can be expressed in the form

$$
\begin{align*}
F_{\mathrm{SUPER}} & =\sigma_{d}-2 \sin \phi \sigma_{s}-2 c \cos \phi=0 \\
F_{\mathrm{SUB}} & =\frac{\sigma_{d}^{2}-S_{c s}{ }^{2} \sigma_{s}\left(2 \sigma_{c}-\sigma_{s}\right)}{\sigma_{d}+S_{c s} \sigma_{c}}=0, \tag{12.1}
\end{align*}
$$

in which $S_{c s}$ is the slope of the critical state line.
In the tensile zone, various options are open for modelling the limited tensile strength of the soil. The curved line $B A^{\prime}$ can be employed or, more simply the vertical intercept $O B$ (implying zero tensile strength) may be assumed. Complete details of the critical state model for soils can be found in Refs. 1-3 including its application to the numerical solution of practical problems.

The Mohr-Coulomb and Drucker-Prager criteria exhibit the same deficiencies for modelling concrete behaviour as occur in the case of soils. In particular they overestimate the tensile strength of the material and also allow the material to support an unlimited hydrostatic compression. Many models have been proposed to more accurately predict the behaviour of concrete; a review of which can be found in Ref. 4.

The most common method of predicting the tensile behaviour of concrete (and rocks) is by use of the no-tension model (or limited tension model). ${ }^{(5)}$ In this, the tensile principal stresses are monitored throughout the structure and as soon as the value at any point exceeds the specified limiting tensile strength of the concrete, the material is assumed to crack in a plane normal to the principal direction. The tensile stress must then be reduced to zero by evaluating its nodal force equivalent and regarding these as residual forces to be applied and redistributed in an iterative process. Should the crack close on load reversal a frictional behaviour between the surfaces of the crack can be modelled. It is worth recording that the numerical stability of such solution processes is relatively poor since on initiation of tensile cracking the existing stress must be eliminated by redistribution, whereas for elasto-plastic problems, yielding merely necessitates that the existing stress level be maintained.

An example of this type of analysis is illustrated in Fig. 12.2 where a cylindrical prestressed concrete reactor vessel is shown. The geometry of the vessel, together with the location of the prestressing system is indicated and the finite element mesh employed in solution is also shown. The concrete is assumed to behave as a limited tension material and the steel components as a Von Mises elasto-plastic solid. The effects of prestressing are included as an initial stress system and the vessel is incrementally loaded by a progressively increasing internal pressure. Figure 12.3 shows the vertical deflection of the centre point of the end slab with increasing load and good agreement is observed with both the experimental results and numerical analysis of Ref. 6. The zones of tensile cracking are shown in Fig. 12.4 for various applied pressure values and again good agreement with the results of Ref. 6 is evident.


Fig. 12.2 Finite element idealisation of a prestressed concrete reactor vessel by quadratic isoparametric elements.


Fig. 12.3 Load/deflection curves for the vessel of Fig. 12.2 failing in slab flexural mode.


Fig. 12.4 Zones of tensile cracking for the vessel of Fig. 12.2 failing in slab flexural mode.

For predicting the compressive behaviour of concrete as well as the tensile response many failure surfaces have been proposed and a typical model is illustrated in Fig. 12.5. In addition to a brittle behaviour in tension, the model allows a viscoplastic range of behaviour before material failure. For further details the reader is directed to Ref. 4.

A final approach to concrete behaviour which is worthy of mention is afforded by the so-called endochronic theory pioneered by Valanis ${ }^{(7,8)}$ and generalised to concrete structures by Bazant. ${ }^{(9,10)}$ To account for the strain history dependence of materials (in addition to their strain rate dependence) the concept of intrinsic time $z$ is introduced which is related to the Newtonian time scale, $t$ according to

$$
\begin{equation*}
d z^{2}=\alpha^{2}\left(d \zeta^{2}+\beta^{2} d t^{2}\right) \tag{12.2}
\end{equation*}
$$

where $d \zeta$ is effectively a measure of the deformation path length, $\beta$ is a
material parameter and $a$ depends on $\dot{\zeta}$. Bazant has generalised the endochronic model to account for inelastic dilatancy, hydrostatic and shear compaction and fracture behaviour. ${ }^{(10)}$


Fig. 12.5 Typical yield and failure surfaces for concrete.

### 12.4 Further applications

### 12.4.1 Flow problems

In this class of problem we are concerned with the continuing viscous flow of materials under steady state conditions. Typical examples include the extrusion of material through a die and flow of lubricating muds in oil drilling applications. In each case the problem is characterized by the fact that the elastic strains are negligible in comparison to the plastic components. For this reason, the viscoplastic numerical process described in Chapter 8 is unsuitable, since the increment of stress occurring during a timestep was based on the elastic strain increment according to (8.15). Thus an alternative formulation is clearly necessary and in fadt a considerable simplification is achieved if the elastic components of strain are neglected in solution. ${ }^{(11)}$

The plastic strain rate, $\dot{\epsilon}_{v p}$, which is now assumed to be the total strain rate, $\dot{\epsilon}$, is given from (8.7) to be

$$
\begin{equation*}
\dot{\boldsymbol{\epsilon}}=\dot{\boldsymbol{\epsilon}}_{v p}=\gamma\langle\Phi(F)\rangle \boldsymbol{a}, \tag{12.3}
\end{equation*}
$$

and we recall that $\boldsymbol{a}$ is the flow vector defined by (7.42), $\Phi$ is an appropriate flow function (given for example by (8.8) or (8.9)) and $\gamma$ is a fluidity parameter. For the particular case of a Von Mises yield surface we have from (7.11) that

$$
\begin{equation*}
F(\sigma, \kappa)=\sqrt{ } 3\left(J_{2}^{\prime}\right)^{1 / 2}-\sigma_{Y}(\kappa), \tag{12.4}
\end{equation*}
$$

where $J_{2}{ }^{\prime}$ is the second deviatoric stress invariant and $\sigma_{Y}$ is the uniaxial yield stress of the material which may be a function of the strain hardening
parameter $\kappa$. Substituting from (12.4) into (12.3), and using (7.42) to express $\boldsymbol{a}$, results in

$$
\begin{equation*}
\dot{\boldsymbol{\epsilon}}=\gamma\left\langle\Phi\left(\sqrt{ } 3\left(J_{2}^{\prime}\right)^{1 / 2}-\sigma_{Y}\right)\right\rangle \sqrt{ } 3 / 2\left(J_{2}^{\prime}\right)^{1 / 2} \boldsymbol{\sigma}^{\prime}=\boldsymbol{\Gamma}\left(\boldsymbol{\sigma}^{\prime}\right) \boldsymbol{\sigma}^{\prime} \tag{12.5}
\end{equation*}
$$

in which $\boldsymbol{\sigma}^{\prime}$ are the deviatoric stresses and $\Gamma\left(\sigma^{\prime}\right)$ is a symmetric viscoplastic compliance matrix whose form can be explicitly determined on prescription of the appropriate flow function $\Phi$. Thus a relationship has been established between the total strain rate and the deviatoric stresses.

The strain rate can be expressed in terms of the displacement velocities $\boldsymbol{v}$ by taking the differential form of the standard strain/displacement relationship, to give

$$
\begin{equation*}
\dot{\boldsymbol{\epsilon}}=\boldsymbol{B} \boldsymbol{v} . \tag{12.6}
\end{equation*}
$$

We assume, as for the viscoplastic case of Chapter 8, that the flow velocities are sufficiently slow to neglect inertia effects and that the following standard static equilibrium equations therefore hold.

$$
\begin{equation*}
\int_{V} \boldsymbol{B}^{T} \boldsymbol{\sigma} d V+\boldsymbol{f}=0 \tag{12.7}
\end{equation*}
$$

in which $f$ are the applied forces comprising body forces $\boldsymbol{b}$ and boundary tractions, $t$. Thus a complete analogy exists between the above problem and the case of an elastic material in which the relationship between stress and strain is nonlinear according to

$$
\begin{equation*}
\sigma=D(\sigma) \epsilon \tag{12.8}
\end{equation*}
$$

Table 12.1 Correspondence between small strain nonlinear elastic problems and viscoplastic flow situations

Small strain nonlinear elasticity Flow problem

| Displacements, d | Velocities, $\boldsymbol{v}$ |
| :--- | :--- |
| Stresses, $\sigma$ | Stresses, $\sigma$ |
| Strains, $\boldsymbol{\epsilon}$ | Strain rates, $\dot{\boldsymbol{\epsilon}}$ |
| Applied forces, $\boldsymbol{f}$ | Applied forces, $\boldsymbol{f}$ |
| Nonlinear elastic compliance matrix, | Viscoplastic compliance matrix, |
| $[\boldsymbol{D}(\sigma)]^{-1}$ | $\boldsymbol{\Gamma}(\boldsymbol{\sigma})$ |

This analogy is indicated in Table 12.1. Therefore flow problems, in which the elastic components of deformation are negligible, can be solved by use of a linear elastic computer code which includes a facility for dealing with a stress dependent $D$ matrix. Obviously the steady state solution to the flow problem must be arrived at in an iterative manner and a similar procedure must be employed in the corresponding elastic solution. The simplest approach
is to proceed by the method of direct iteration, as described in Chapters 2 and 3 , and to base the value of the compliance matrix $\Gamma$ on the current value of $\sigma$. This solution procedure can be summarised as follows:
(1) From the stresses $\sigma^{n}$ at iteration $n$ evaluate the viscoplastic compliance matrix $\Gamma\left(\sigma^{n}\right)=\Gamma^{n}$.
(2) Compute the element stiffness matrix of each element as

$$
\int_{V} \boldsymbol{B}^{T}\left[\boldsymbol{\Gamma}^{n}\right]^{-1} \boldsymbol{B} d V
$$

and also the consistent nodal applied forces, $f^{(c)}$.
Assemble and solve the stiffness equations to give the improved velocity estimate, $\boldsymbol{v}^{n+1}$.
(4) Compute the strain rates, $\dot{\boldsymbol{\epsilon}}^{n+1}=\boldsymbol{B} \boldsymbol{v}^{n+1}$.
(5) Compute the stresses, $\boldsymbol{\sigma}^{n+1}=\left[\boldsymbol{\Gamma}^{n}\right]^{-1} \dot{\boldsymbol{\epsilon}}^{n+1}$.
(6) Return to Step 1 and repeat the process until convergence takes place (i.e. $v^{n+1} \approx v^{n}$ ).

The procedure described above is most suitable when boundary and body forces produce the forcing action. For the case when the problem is defined in terms of prescribed boundary velocities the compliance matrix $\Gamma$ must be expressed in terms of the current strain rate, $\dot{\varepsilon}^{(12)}$

For metal forming problems, the situation is complicated by the fact that the geometry of the deforming solid is continually varying throughout the process. For such problems the transient form of the flow equations must be used and an incremental procedure can be adopted by which the coordinates of the finite element mesh are sequentially updated during solution. ${ }^{(13)}$

It should be noted that no volumetric strain rate exists for some viscoplastic flow laws, as generally defined by (12.3), and this is indeed the case for the Von Mises criterion employed in (12.5). Consequently the viscoplastic compliance matrix $\Gamma$ cannot be inverted as required by Step 2 above and the same numerical difficulties that exist in incompressible elastic problems are encountered. However these can be readily overcome by the use of selective integration techniques whereby the element stiffness matrix is separated into volumetric and deviatoric components. ${ }^{(14)}$ The near singularity arising in the former term as incompressible behaviour is approached is then numerically removed by employing a low order Gaussian integration rulé.

An important application of the above solution process is to the flow of non-Newtonian fluids, in which the material viscosity depends nonlinearly on the shear strain rate. Practical examples of such flow can be found in Refs. 15 and 16. Deviations from Newton's law of viscosity are best illustrated by means of flow curves and some of the most important cases are shown in Fig. 12.6. The effective stress, $\bar{\sigma}$, and effective strain rate, $\bar{\epsilon}$, are defined by (7.12) and (7.22) respectively.


Fig. 12.6 Various flow curves for non-Newtonian fluids.

The Bingham fluid is seen to be a particular form of viscoplastic relation (12.3) or (12.5). Writing in terms of the effective stress and strain rate, (12.5) can be expressed as

$$
\begin{equation*}
\bar{\sigma}=\mu \dot{\epsilon}, \tag{12.9}
\end{equation*}
$$

where the apparent viscosity $\mu$ is given by

$$
\begin{equation*}
\frac{1}{\mu}=\frac{\sqrt{ }(3) \gamma}{2\left(J_{2}^{\prime}\right)^{1 / 2}}\left\langle\Phi\left[(\sqrt{ } 3)\left(J_{2}^{\prime}\right)^{1 / 2}-\sigma_{Y}\right]\right\rangle \tag{12.10}
\end{equation*}
$$

For the Bingham plastic we can write from the expression given in Fig. 12.6 and using (12.9) that

$$
\begin{equation*}
\mu=\frac{\overline{\boldsymbol{\epsilon}} / \gamma+\sigma_{Y}}{\overline{\bar{\epsilon}}} . \tag{12.11}
\end{equation*}
$$

As $\gamma \rightarrow \infty$, ideal plasticity behaviour is approached resulting in

$$
\begin{equation*}
\mu=\frac{\sigma_{Y}}{\overline{\dot{\epsilon}}} . \tag{12.12}
\end{equation*}
$$

Similarly for a Power Law pseudoplastic we have from Fig. 12.6

$$
\begin{equation*}
\mu=\frac{\bar{\epsilon}^{M-1}}{\gamma} . \tag{12.13}
\end{equation*}
$$

Thus for each case the problem again reduces to an elastic problem in which the shear modulus is dependent on the current strain rate and can be solved
by use of the analogy indicated in Table 12.1. Solution can be achieved by use of the method of direct iteration or by the Newton-Raphson process described in Chapters 2 and 3.

As an example of viscous flow analysis ${ }^{(17)}$ the problem of the flow of a Bingham fluid in a cylindrical annulus is illustrated in Fig. 12.7, where the geometry and finite element mesh employed are also indicated. Steady state flow is induced parallel to the axis of the cylinder by the application of an axial pressure gradient. The finite element velocity distributions obtained by a direct iteration solution scheme are shown in Fig. 12.8 for different values of the pressure gradient. The flow velocities are in good agreement with the theoretical solution of Ref. 18.


Fig. 12.7 Flow of Bingham fluid in an annulus under an axial pressure gradient showing finite element mesh idealisation.

### 12.4.2 Nonlinear fracture mechanics

A class of elasto-plastic problems which require special attention is that of crack propagation in ductile materials. Figure 12.9 illustrates the types of problem which demand solution and it is seen that a geometrical singularity exists at the crack tip. The numerical techniques presented in Chapter 7 allows the elasto-plastic stress field to be determined in the vicinity of the crack tip (for Modes I and II at least) but a criterion for propagation of the crack must be established in some way.


Fig. 12.8 Steady state velocity profile for the problem of Fig. 12.7 for various applied pressure gradients.

For linear elastic fracture problems crack advance can be monitored by specifying a critical value of a quantity, $K$, termed the stress intensity factor* which characterises the stress field in the vicinity of the crack tip according to ${ }^{(20)}$

$$
\begin{equation*}
\sigma=K f(\theta) / \sqrt{ }(2 \pi r)+\text { terms of order } r^{0} . \tag{12.14}
\end{equation*}
$$

A separate $K$ parameter exists for each fracture mode, designated by $K_{I}$, $K_{I I}$ and $K_{I I I}$ respectively and they are functions only of geometry and loading conditions. A crack in any mode is then assumed to propagate when $K$ attains a critical value $K_{c}$ which is treated as a material parameter.

We now seek a similar criterion for elasto-plastic material behaviour. The most widely accepted principle in present use is the so-called $J$ contour integral attributed to Rice ${ }^{(21)}$ and which was originally formulated for nonlinear elastic applications. The $J$ integral is defined to be

$$
\begin{equation*}
J=\int_{\Gamma} \omega d y-T_{i} \frac{d u_{i}}{d x} d S, \tag{12.15}
\end{equation*}
$$

for a crack aligned in the $x$ direction. Here $\Gamma$ is any contour from the lower crack face leading anticlockwise around the crack tip to the upper face, $S$ is the path length around this contour and $T_{i} d u_{i}$ is the work contribution

[^7]
mode I
Fig. 12.9 Basic modes of fracture.
of traction components $T_{i}$ on $\Gamma$ moving through displacements $d u_{i}$. The term $\omega$ is the strain energy density defined as
\[

$$
\begin{equation*}
\omega=\int_{0}^{\epsilon} \sigma_{i j} d \epsilon_{i j} . \tag{12.16}
\end{equation*}
$$

\]

The $J$ integral is independent of the choice of path $\Gamma$ provided that the faces of the crack are stress free.

For Mode I opening in a strain-hardening nonlinear elastic material the near tip solution for the stress, strain and displacement can be shown to be of the form ${ }^{(22-24)}$

$$
\begin{align*}
\sigma & =C \frac{1}{r^{1 /(N+1)}} \sigma(\theta) \\
\epsilon_{p} & =C \frac{1}{r^{N /(N+1)}} \epsilon(\theta) \\
u & =C r^{1 /(N+1)} u(\theta), \tag{12.17}
\end{align*}
$$

where

$$
\begin{equation*}
C=\left(\frac{J E}{\sigma_{Y}{ }^{2} I}\right)^{1 /(N+1)} \tag{12.18}
\end{equation*}
$$

The term $N$ is a constant which measures the strain hardening of the material, $E$ the elastic modulus, $\sigma_{Y}$ the stress denoting the limit of linearity and $I$ is a tabulated constant whose value depends on $N$.

For loading situations, nonlinear elastic behaviour is identical to that of a material obeying the laws of 'deformation' plasticity ${ }^{(25)}$ in which the current stiffness is a function only of the current state of deformation and not of the loading path by which this condition has been reached. Furthermore for monotonic loading, experience indicates that there is no significant difference between solutions obtained by use of 'deformation' theories and the incremental theory adopted in Chapter 7. By this argument it is concluded that expressions (12.17) and (12.18) are applicable to elasto-plastic solids. Consequently crack propagation in elasto-plastic materials is governed by a critical value of the $J$ integral.

One of the difficulties of numerical fracture studies is that a reasonably accurate prediction of the stress field in the vicinity of the crack tip is required. This is a computationally expensive process for elasto-plastic problems and in some instances economies can be made by use of special crack tip elements. For example, in Mode II deformation under plastic conditions, a shear strain singularity of order $1 / r$ develops, which has been modelled by Levy et al. ${ }^{(26)}$ by coalescing two nodes of a linear quadrilateral isoparametric element and treating their displacements independently. This approach has also been employed by Rice et al. ${ }^{(27)}$

### 12.4.3 Coupled-field problems

The transient analysis of many engineering systems involves the formulation of the semi-discrete coupled-field equations of motion which are then solved by a time-stepping procedure. ${ }^{(28)}$ Coupled-field equations involving plasticity arise in the modelling of structure-fluid interaction, soil-fluid interaction, structure-structure interaction, etc. There are two main sources of difficulty in solving such problems:
(i) The isolated fields may display quite different response characteristics which may only be analysed efficiently by different time integration algorithms and/or different time steps.
(ii) Most engineering software has been developed for the treatment of single-field problems. The term 'partitioned transient analysis procedures' has been used to describe methods which allow the direct time integration of the entire equations to be performed by either sequential or parallel execution of single-field analyzers.

We have discussed partitioned procedures for structural c'ynamic problems in Chapter 11. We described an implicit-explicit partition through which meshes that exhibit high (low) frequency response characteristics are treated by implicit (explicit) integration formulae. Park ${ }^{(29)}$ has recently extended the approach described in Chapter 11.

Park et al. ${ }^{(30)}$ have studied implicit-implicit partitions in certain types of fluid-structure interaction problems. The solution of these coupled-field equations was obtained by a sequential execution of fluid and structural analyzers which gave rise to the term 'staggered solution procedures.'

Hughes ${ }^{(31)}$ has summarised recent work on transient fluid-structure interaction problems. In particular he mentions work on procedures known as mixed, or arbitrary, Lagrangian-Eulerian methods.

In recent work on soil liquefaction problems, Zienkiewicz et all. ${ }^{(32)}$ have devised a model which couples the soil and pore-fluid behaviour during earthquakes. Pore pressure build up and pore water migration are both accurately modelled.

Many other coupled-field problems involving elasto-plastic behaviour have been reported in the literature. It should however be emphasised that care should be taken in considering the stability of such schemes.

### 12.4.4 Elasto-plastic and geometrically nonlinear analyses of plates and shells

The linear and nonlinear finite element analysis of plates and shells has attracted much attention in the last decade. Two basic approaches have been adopted:

## (i) The classical procedure

Here a plate or shell theory is used as a basis for the finite element formulation. Let us briefly summarise such an approach. We begin with the field equations of the three-dimensional theory and make various assumptions which lead to the plate or shell theory. In the reduction from three to two dimensions we include an analytical integration over the thickness. We then base our finite element discretisation process on the plate or shell theory. The surface geometry (in the case of shells) and the field variables are approximated using discrete nodal values and suitable interpolation functions. Integration of the various element stiffness and force terms is carried out over the reference surface. Stresses may then be obtained from the stress resultants. Examples of such an approach include the simple facet element and the many elements derived from classical'thin plate theory, Mindlin/Reissner plate theory, shallow shell theory or even higher order shell theories. ${ }^{(33,34)}$ There are very many examples of the application of the classical procedures in nonlinear finite element analysis of plates and shells. We include a brief sample in the list of references to this chapter. ${ }^{(35-38)}$ For elasto-plastic problems many research wórkers express the yield function in terms of the stress resultants (cf. the nonlayered approach in Chapter 9). For example, Crisfield ${ }^{(39-44)}$ uses a
modified Ilyushin yield criterion expressed in terms of the bending moments $\left[M_{x}, M_{y}, M_{x y}\right]^{T}$ and the membrane forces $\left[N_{x}, N_{y}, N_{x y}\right]^{T}$. To allow for the gradual spread of plasticity over the plate or shell thickness, a modified classical procedure may be adopted in which integration through the thickness is performed numerically during the finite element stiffness and force evaluation rather than analytically prior to the finite element discretisation. Gauss-Legendre, Lobatto and the mid-ordinate rules are frequently used for this purpose. To allow for geometrically nonlinear effects, total or updated Lagrangian approaches are adopted. ${ }^{(45-55)}$

## Ahmad and related elements

Here isoparametric elements with independent rotational and displacement degrees of freedom are used. This concept originally introduced by Ahmad et al. ${ }^{(56)}$ was later extended to allow for the linear analysis of thin as well as moderately thick shells by Zienkiewicz et al. ${ }^{(57)}$ by the use of the reduced integration technique.*

Ahmad elements were originally developed because of the computational difficulties encountered in the use of the usual three-dimensional elements for the analysis of plates and shells. In the three-dimensional elements the stiffness coefficients corresponding to the transverse displacement degrees of freedom are very much larger than those corresponding to the longitudinal displacements. Erroneous strain energy corresponding to the normal stresses in the thickness direction are also introduced. Both of these difficulties are overcome in Ahmad elements. Normals to the plate or shell reference surface before deformation are assumed to remain straight but not necessarily normal to the reference surface after deformation. Furthermore, the normal stresses in the direction of the shell thickness are ignored and suitably modified constitutive equations are adopted.

Various nonlinear problems have been solved using Ahmad shell elements by Ramm ${ }^{(67)}$, Krakeland ${ }^{(68)}$, Bathe and Bolourchi ${ }^{(69)}$ and others ${ }^{(70-73)}$. As in the modified classical procedures, to allow for the gradual spread of plasticity over the plate or shell thickness, numerical integration techniques are adopted. For geometrically nonlinear behaviour both total and updated

[^8]Lagrangian schemes have been used. Special techniques have been incorporated to allow for large rotations in the total Lagrangian formulations. ${ }^{(67-69)}$

The Ahmad shell concept has been developed further by its originator Irons with the introduction of the Semiloof element. ${ }^{(90)}$ Irons adopted a convenient nodal configuration involving rotational degrees of freedom at 'Loof' nodes on the curved boundaries of the element. By imposing a series of constraints to eliminate transverse shear effects (reminiscent of the discrete Kirchhoff hypothesis), a highly effective thin shell element is obtained. Various research workers ${ }^{(74-76)}$ have successfully extended this work into the nonlinear range.

Both classical and Ahmad procedures may be used as a basis for the nonlinear analysis of reinforced concrete plates and shells using the layering concept described in Chapter 9. Special constitutive relationships are required to represent the concrete and steel reinforcing bars are treated as a 'smeared' layer with uni-directional elasto-plastic properties. Much work has been completed in this area. ${ }^{(77-85)}$

Elasto-viscoplastic plates and shells are easily developed using the concepts described in Chapters 8 and 9. ${ }^{(86,87)}$

### 12.5 Equation solving techniques

### 12.5.1 Standard and modified Newton method

Before considering some alternative nonlinear solution procedures which may be used in elastoplastic finite element analysis we review the techniques described earlier.

As we have already seen, most elasto-plastic finite element programs are simply extensions of elastic finite element programs with linearised load increments. Some form of iterative procedure is usually adopted to dissipate the out-of-balance nodal forces.

The standard and variety of modified Newton methods were described earlier in Part I. Recall that the standard Newton method involves iterations in which

$$
\begin{equation*}
K^{(i)}\left[d^{(i+1)}-d^{(i)}\right]=\psi\left(d^{(i)}\right), \tag{12.19}
\end{equation*}
$$

where $\boldsymbol{d}$ is the vector of nodal displacements and the equations $\psi(\boldsymbol{d})=\mathbf{0}$ express a force balance (internal forces = external forces; either for an increment of loading or for the whole applied load). The matrix $K$ in the standard Newton method is the Jacobian of $\psi$; which is the tangential stiffness matrix $K_{T}=\left[\partial \psi\left(d^{(t)}\right) / \partial d\right]$ evaluated at the displacements described by $d^{(t)}$.

The modified Newton method works with a variety of approximations to $K$, the most simple of which is the initial elastic stiffness matrix $K_{0}$ evaluated at the first iteration of the first load increment.

[^9]We have adopted standard and modified Newton methods throughout this text as they are the most widely used approaches. Though they work well they do have certain disadvantages. The initial stiffness method is slow to converge in cases in which there is a high degree of nonlinearity. The modified Newton methods provide better convergence properties but they diverge during elastic unloading and they can lead to ill-conditioned or singular Jacobian matrices $K$ near the limit load.

Newton methods are sometimes employed with a slight modification during an iteration in which

$$
\begin{equation*}
K^{(i)} \Delta d^{(i)}=\psi^{(i)}, \tag{12.20}
\end{equation*}
$$

and in which the new displacement vector is given as

$$
\begin{equation*}
\boldsymbol{d}^{(i+1)}=\boldsymbol{d}^{(i)}+a^{(i)} \Delta d^{(i)}, \tag{12.21}
\end{equation*}
$$

where we could take $a^{(i)}$ as much less than I for safety or more than 1 for more rapid convergence. Nayak ${ }^{(88)}$ introduced an acceleration technique in which $a^{(i)}$ is replaced by a diagonal matrix. Basu ${ }^{(89)}$ later simplified this technique.

Although the modified Newton methods with fixed values of $a^{(i)}$ is employed by certain analysts, it has been suggested ${ }^{(90)}$ that we should reject it in favour of a modified Newton with a line search which involves finding a value of $a^{(i)}$ which minimises the total potential energy $\pi\left(\boldsymbol{d}^{(i+1)}\right)$ or the value of

$$
\begin{equation*}
Q=\left|\left[\boldsymbol{d}^{(i)}\right]^{T} \boldsymbol{\psi}\left(\boldsymbol{d}^{(i+1)}\right)\right| . \tag{12.22}
\end{equation*}
$$

### 12.5.2 Quasi-Newton method

Over the past twenty years there has been a rapid development of com-puter-oriented, sequential search methods in the fields of optimisation and mathematical programming. Of these techniques, the variable metric (QuasiNewton) method and the method of conjugate gradients show the greatest potential in nonlinear finite element analysis.

The Quasi-Newton method was introduced to finite element computations by Matthies and Strang. ${ }^{(91)}$ The main idea is to update the matrix $K$ in a simple way after each iteration, rather than to recompute it entirely as in the standard Newton method or leave it unchanged as in the modified Newton method. Here we consider the update, known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS). It is most conveniently written in terms of $\boldsymbol{K}^{(4+1)}$ rather than $K^{\left({ }^{(i)}\right.}$ and has the form

$$
\begin{equation*}
\left[\boldsymbol{K}^{(i)}\right]^{-1}=\left[\boldsymbol{I}+\boldsymbol{w}^{(i)}\left\{\boldsymbol{v}^{(i)}\right\}^{T}\right]\left[\boldsymbol{K}^{(i-1)}\right]^{-1}\left[\boldsymbol{I}+\boldsymbol{v}^{(i)}\left\{\boldsymbol{w}^{(i)}\right\}^{T}\right] . \tag{12.23}
\end{equation*}
$$

The indicated matrix multiplications are never carried out in the computer implementation; instead $\boldsymbol{p}^{(i)}$ and $\boldsymbol{w}^{(i)}$ are stored and used only in computing the new search direction

$$
\begin{equation*}
\Delta d^{(i)}=\left[\boldsymbol{K}^{(i)}\right]^{-1} \psi\left(\boldsymbol{d}^{(i)}\right) . \tag{12.24}
\end{equation*}
$$

A line search of the form given in (12.21) is adopted. The BFGS formulae for $\boldsymbol{v}^{(i)}$ and $\boldsymbol{w}^{(i)}$ are

$$
\begin{equation*}
\boldsymbol{v}^{(i)}=\boldsymbol{\psi}\left(\boldsymbol{d}^{(i)}\right)\left(1+a^{(i-1)}\left[\frac{\left\{\Delta d^{(i-1)}\right\}^{T} \gamma^{(i)}}{\left\{\boldsymbol{\delta}^{(i)}\right\}^{T}\left\{\psi\left(d^{(i-1}\right)\right\}}\right]^{1 / 2}\right)-\psi\left(d^{(i)}\right), \tag{12.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{w}^{(i)}=\frac{\boldsymbol{\delta}^{(i)}}{\left\{\boldsymbol{\delta}^{(i)}\right\}^{T} \gamma^{(i)}}, \tag{12.26}
\end{equation*}
$$

where

$$
\boldsymbol{\delta}^{(i)}=\boldsymbol{d}^{(i)}-\boldsymbol{d}^{(i-1)}=a^{(i-1)} \Delta d^{(i-1)},
$$

and

$$
\gamma^{(i)}=\psi\left(d^{(i)}\right)-\psi\left(d^{(i-1)}\right) .
$$

The method has been successfully implemented and used by Matthies and Strang ${ }^{(91)}$ and Geradin and Hogge ${ }^{(92)}$ for both static and transient dynamic nonlinear problems. The stability of BFGS with respect to unloading has been emphasised by Matthies and Strang. ${ }^{(91)}$ A related method by Crisfield ${ }^{(93)}$ also shows much promise.

Rather than work with the inverse of $\boldsymbol{K}^{(t)}$ as given in (12.23), Geradin and Hogge ${ }^{92)}$ work with the update formula

$$
\begin{equation*}
\boldsymbol{K}^{(i)}=\boldsymbol{K}^{(i-1)}+\frac{\gamma^{(i)}\left\{\boldsymbol{\gamma}^{(i)}\right\}^{T}}{\left\{\boldsymbol{\gamma}^{(i)}\right\}^{T} \boldsymbol{\delta}^{(i)}}-\frac{\left\{\boldsymbol{K}^{(i-1)} \boldsymbol{\delta}^{(i)}\right\}\left\{\boldsymbol{K}^{(i-1)} \boldsymbol{\delta}^{(i)}\right\}^{T}}{\left\{\boldsymbol{\delta}^{(i)}\right\}^{T} \boldsymbol{K}^{(i-1)} \boldsymbol{\delta}^{(i)}} \tag{12.27}
\end{equation*}
$$

and use a frontal solution scheme.

### 12.5.3 Conjugate gradient methods

In the conjugate gradient ${ }^{(94)}$ algorithm we take

$$
\begin{equation*}
d^{(i+1)}=d^{(i)}+a^{(i)} \boldsymbol{\delta}^{(i)}, \tag{12.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta^{(i)}=\psi\left(d^{(i)}\right)+\beta^{(i)} \delta^{(i-1)}, \tag{12.29}
\end{equation*}
$$

in which $a^{(t)}$ is chosen using a line search with the criterion that the total potential energy $\pi\left(d^{(i+1)}\right)$ should be minimised.

Initially, $\beta^{(0)}$ is set to zero. We list two possible values for $\beta^{(i)}$ :
(i) The Hestenes-Stiefel ${ }^{(94)}$ (Fletcher-Reeves ${ }^{(95)}$ ) algorithm

$$
\begin{equation*}
\beta^{(i)}=\frac{\left\{\boldsymbol{\psi}^{(i)}\right\}^{T} \psi^{(i)}}{\left\{\boldsymbol{\psi}^{(i-1)}\right\}^{T} \psi^{(i-1)}} . \tag{12.30}
\end{equation*}
$$

(ii) The Polak-Ribiere ${ }^{(96)}$ algorithm

$$
\begin{equation*}
\beta^{(i)}=\frac{\left\{\psi^{(i)}\right\}^{T} \gamma^{(i)}}{\left\{\psi^{(i-1)}\right\}^{T} \psi^{(i-1)}} . \tag{12.31}
\end{equation*}
$$

The method, which requires modest computer core requirements, has been improved by scaling and other techniques. ${ }^{(97-99)}$ The Conjugate-Newton method of Irons ${ }^{(100)}$ is also a development of the basic conjugate gradient algorithm.

### 12.5.4 Other useful solution techniques

Among the remaining solution procedures, dynamic relaxation (DR) methods are quite popular. The main idea in DR originated from the observation that with about $90 \%$ of critical damping, an equivalent transient dynamic analysis rapidly converges to the steady state, static solution. Recent modifications ${ }^{(101-103)}$ of the method have concentrated on finding improved replacements for the mass matrix $\boldsymbol{M}$ and the damping matrix $\boldsymbol{C}$ which are used in DR. Although DR methods are generally not as powerful as the various Newton and conjugate gradient methods, they require very little computer core storage and explicit transient dynamic programs such as DYNPAK, described in Chapter 10, can be rapidly modified to be used as DR solvers for ad hoc static problems when no other static program is available and results are urgently required.

It is usually difficult to decide on the form of load incrementation to adopt for elasto-plastic problems and exploratory analyses are often required. The work of Bergan and Soreide ${ }^{(104)}$ in this area appears to be quite promising.

Schemes which work with local and global modes, several meshes or hierarchical representations ${ }^{(105-111)}$ for the displacements may also prove to be of prime importance in nonlinear finite element equation solving.

### 12.6 Other enhancements in elasto-plastic analysis

### 12.6.1 Substructuring and boundary element methods

Economies can be made in the numerical solution of elasto-plastic problems by the use of substructuring techniques. A substructure analysis generally comprises the following steps. ${ }^{(112)}$

- Separate groups of elements within the solid are collectively identified as substructures as indicated in Fig. 12.10.
- For each substructure, the element stiffness matrices are assembled to give the global stiffness matrix of the substructure.
- The equations relating to the internal nodal points (i.e. nodes not on the boundary) are eliminated. This process is known as condensation.
- Solution of the system of resulting simultaneous equations is obtained by assembling all the individual substructures and any remaining elements which have not been associated with a substructure. This gives the nodal displacements and reactions for all nodal points on interfaces between substructures and for nodes of elements which are not related to any substructure.
- Return to the individual substructures to evaluate the displacements at interior nodes and finally obtain the element stresses.


Fig. 12.10 Substructure analysis of elasto-plastic problems.
The very nature of the frontal equation solution process described in Section 6.4.12 makes the use of substructure techniques a simple affair, since, when the front has advanced into a structure to a certain position, the reduced frontal equations are essentially the condensed equations for a substructure corresponding to the part of the structure already considered.

For elasto-plastic problems, the part of the structure which (by physical considerations or experience!) is known to remain elastic during the deformation process can be defined as one substructure and the remaining elements considered individually. Thus during incremental/iterative solution the substructure stiffness will remain unaltered, for solution by the tangential stiffness method, and the substructure assembly and condensation process described above need be performed only once with an equation resolution process, necessitating only reduction of the R.H.S. terms being followed thereafter. The individual elements not associated with the substructure (and which model the elasto-plastic behaviour) are treated in the normal way as described in Chapter 7.

This approach can result in considerable computational economies, particularly if the mesh subdivision within the substructure is a fine one. It can be argued that a fine mesh subdivision is not warranted for regions where elastic behaviour is anticipated, but for structures which are to be subjected to more than one type of loading such an optimal mesh grading may not be possible. For example, with reference to Fig. 12.10, two stparate loadings may cause plastic yielding in substructures II and III respectively and consequently a fine mesh grading within each of these regions cannot be avoided.

An extension of the above process is afforded by the use of the boundary integral method. ${ }^{(113-115)}$ The boundary integral procedure requires trial functions which satisfy the governing equations directly and then attempt to satisfy the boundary conditions by a collocation, least-squares or Galerkin
procedure. In order to find trial functions which satisfy the governing equations we are, at present, generally confined to linear elastic situations. Thus for the solution of elasto-plastic problems a coupled approach can be employed ${ }^{(113,115)}$ with the elastic region of the structure being modelled by boundary elements and conventional finite elements employed to treat the elasto-plastic zones. Such direct coupling leads to nonsymmetric matrices which is acceptable if the equation set is dominated by the boundary integral equations.

This approach promises efficient numerical solutions particularly for cases of limited yielding in three-dimensional solids where the surface area/volume ratio is relatively small. The process can also be used to advantage in infinite domain structures such as rock mass problems or soil/structure interaction problems with boundary elements being employed to model the exterior domain.

### 12.6.2 Interactive computing

The solution of elasto-plastic problems inevitably requires some degree of insight into the structural behaviour before choice of solution parameters, such as load increment sizes, can be made. Even then it is difficult, if not impossible, to specify the most suitable values of load increments, tolerance factors for each load case and also choice of the optimal solution process (e.g. initial stiffness, tangential stiffness or some combined algorithm) is equally difficult to arrive at.

To this end, the developments which are currently taking place in interactive computing will become increasingly important. Here we envisage the situation where the results for a particular load increment are held in core while the solution is scrutinized. Depending on the convergence characteristics, etc., the load increment size and convergence tolerance factor are then input and solution continued for a further increment. If required the nonlinear solution process can be redefined at this stage changing, for example, from a tangential stiffness to an initial stiffness algorithm if collapse conditions are being approached. Furthermore if the numerical process did not converge in the previous increment, the calculations could be repeated for a smaller load increment size or a different solution algorithm.

### 12.6.3 Computational techniques

Many new and improved programming strategies are developing in connection with finite element software and the interested reader is directed to the work of Schrem ${ }^{(116,117)}$ and others ${ }^{(118)}$ who are active in this area.

### 12.7 Concluding remarks

Throughout this text we have described numerical techniques and computer codes for a variety of engineering applications. Treatment has been limited to situations where the finite element method can be used to provide
nonlinear solutions with a measure of confidence. In this final chapter we have attempted to indicate some areas of further study and here the applicability to design problems is not so clear. For example, for soils and concrete some divergence of opinion still exists as to selection of an appropriate material model. Indeed at the present time it is true to say that numerical solution capabilities are in advance of the knowledge of fundamental material behaviour. This is particularly true for dynamic problems where there is a scarcity of information on material response under transient conditions. In this respect it would appear that nonlinear finite element methods offer the possibility of conducting 'numerical experiments' to provide insight on material behaviour which could not be obtained by experiment alone.

### 12.8 References

1. Naylor, D. J., Stress-strain laws for soil, In: Developments in Soil Mechanics, Ed. C. R. Scott, Applied Science Publishers (1978).
2. Schofield, A. N. and Wroth, C. P., Critical State Soil Mechanics, McGrawHill, New York (1968).
3. Atkinson, J. H. and Bransby, P., Mechanics of Soil, McGraw-Hill, New York (1979).
4. Nilsson, L., Impact loading on concrete structures, Publication 79: 1, Dept. of Structural Mechanics, Chalmers University of Technology, Sweden (1979).
5. Zienkiewicz, O. C., Owen, D. R. J., Phillips, D. V. and Nayak, G. C., Finite element methods in the analysis of reactor vessels, Nuclear Engng. and Design, 20, 507-542 (1972).
6. Mohraz, B., Schnobrich, W. C. and Gomez, A. E., Crack development in a prestressed concrete reactor vessel as determined by a lumped parameter method, Nuclear Engng. and Design, 11, 286 (1970).
7. Valanis, K. C., A theory of viscoplasticity without a yield surface, Archiwum Mechaniki Stossowanej, 23, 4, 517-533 (Warsaw, 1971).
8. Valanis, K. C., On the foundations of the endochronic theory of viscoplasticity, Archiwum Mechaniki Stossowanej, 27, 5-6, 857-869 (Warsaw, 1975).
9. Bazant, Z. P., A new approach to inelasticity and failure of concrete, sand and rock: Endochronic theory, Proc. Soc. of Engng. Science, Eleventh Annual Meeting, Ed. G. J. Dvorak, Duke University, Durham, North Carolina (1974).
10. Bazant, Z. P., Bhat, P. D. and Shieh, C. L., Endochronic theory for inelasticity and failure analysis of concrete structures, Struct. Engng. Report No. 1976-12/259, Department of Civil Engineering, Northwestern University (1976).
11. Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, London (1977).
12. Zienkiewicz, O. C., Viscoplasticity, plasticity, creep and viscoplastic flow, Proc. Int. Conf. on Computational Methods in Nonlinear Mechanics, University of Texas, Austin (1974).
13. Price, J. W. H. and Alexander, J. M., The finite element analysis of two high temperature metal deformation processes, Proc. Second Int. Symp. on Finite Element Methods in Flow Problems, Santa Margharita Ligure, Rappelo, Italy (June 1976).
14. Hinton, E., Salonen, E. M. and Bicanic, N., A study of locking phenomena in isoparametric elements, In: The Mathematics of Finite Elements and Applications III, 437-447, Ed. J. R. Whiteman, Academic Press, London (1979).
15. Skelland, A. N. P., Non-Newtonian Flow and Heat Transfer, John Wiley, New York (1967).
16. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, John Wiley, New York (1960).
17. Lyness, J. F., Owen, D. R. J. and Zienkiewicz, O. C., The finite element analysis of engineering systems governed by a nonlinear quasi-harmonic equation, Computers and Structures, 5, 65-79 (1975).
18. Laird, W. M., Slurry and suspension transport, Ind. Engng. Chem. 49, 1, 138-141 (1957).
19. Journal of Strain Analysis (Special Issue), Vol. 10, No. 4 (October, 1975).
20. Knott, J. F., Fundamentals of Fracture Mechanics, Butterworths, London (1973).
21. Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mechanics, 379-386 (1968).
22. Hutchinson, J. W., Singular behaviour at the end of a tensile crack in a hardening material, J. Mech. Phys. Solids, 16, 13-31 (1968).
23. Rice, J. R. and Rosengrun, G. F., Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, 16, 1-12 (1968).
24. McClintock, F., Fracture, An Advanced Treatise, Chapter 2, Ed. H. Liebowitz, Academic Press, New York (1971).
25. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press (1950).
26. Levy, N., Marcal, P. V., Ostergren, W. J. and Rice, J. R., Small scale yielding near a crack in plane strain: a finite element analysis, Int. J. Fract. Mech. 9, 98-100 (1973).
27. Rice, J. R. and Tracey, D. M., Computational fracture mechanics, In: Numerical and Computer Methods in Structural Mechanics, Eds. S. J. Fenves et al., Academic Press (1973).
28. Zienkiewicz, O. C., Finite elements in the time domain, Contribution for 'State-of-Art' Survey by the Committee in Computing in Applied Mechanics of ASME (to be published).
29. Park, K. C., Partitional transient analysis procedures for coupled field problems, Report No. LMSC-D633955, Lockheed Palo Alto Laboratory (1979).
30. Park, K. C., Fellipa, C. A. and Deruntz, J. A., Stabilization of staggered solution procedures for fluid-structure interaction analysis, In: Computer Methods for Fluid-Structure Interaction Problems-AMD, Vol. 26, Eds. T. Belytschko and T. L. Geers (1977).
31. Hughes, T. J. R., Recent developments in computer methods for structural analysis, Division M Principal Lecture, Fifth SMIRT Conference, Berlin (to appear in Nuclear Engng. and Design).
32. Zienkiewicz, O. C., Chang, C. T., Hinton, E. and Leung, K. H., Effective stress dynamic modelling for soil structures including drainage and liquefaction, In: Proc. of Int. Symp. on Soils Under Cyclic and Transient Loading, Eds. G. N. Pande and O. C. Zienkiewicz, 551-554, A. A. Balkema, Rotterdam (1980).
33. Fredriksson, B. and Mackerle, J., Finite Element Review, Publication No. AEC-L-003, AEC, Box 3944, S-58903, Linköping, Sweden.
34. Ashweli., D. G. and Gallagher, R. H. (Eds.), Finite Elements for Thin Shells and Curved Members, Wiley, London (1976).
35. Armen, H., Pifko, A., and Levine, H. S., A finite element method for the plastic bending analysis of structures, Proc. Second Conf. on Matrix Methods
in Structural Mechanics, DOC.AFFDL-TR-69-150, Wright-Patterson Air Force Base, Ohio, 1969.
36. Bushnell, D., Buckling of elastic-plastic complex shells of revolution including large deflections and creep, Computers and Structures, 6, 221-239 (1976).
37. Wegmuller, A. W. and Kostem, C. N., Finite element analysis of elastoplastic plates and eccentrically stiffened plates, Report No. 378A.4, Fritz Engg. Laboratory, Lehigh University (1973).
38. Bergan, P. G., Application of finite element method to nonlinear problems, Finite Element Congress, Baden-Baden, FRG, 18-19 Nov. (1974).
39. Crisfield,. M. A., Large deflection elasto-plastic buckling analysis of plates using finite elements, TRRL Report LR 593, Crowthorne (1973).
40. Crisfield, M. A., Some approximations in the nonlinear analysis of rectangular plates using finite elements, TRRL Suppl. Report 51 UC, Crowthorne (1974).
41. Crisfield, M. A., On an approximate yield criterion for thin steel shells, TRRL Report 658, Crowthorne (1974).
42. Crisfield, M. A., Large deflection elasto-plastic buckling analysis of eccentrically stiffened plates using finite elements, TRRL Report 725, Crowthorne (1976).
43. Crisfield, M. A. and Putali, R. S., Approximations in the nonlinear analysis of thin plated structures, Int. Conf. Finite Elements in Nonlinear Solid and Structural Mechanics, Geilo, Norway (1977).
44. Crisfield, M. A., Ivanov's yield criterion for thin plates and shells using finite elements, TRRL Lab. Report 919, Crowthorne (1979).
45. Bergan, P. G., Nonlinear analysis of plates considering geometric and material effects, Ph.D. Thesis, University of California, Berkeley, SESM Report No. 71-7 (1971).
46. Horrigmoe, G. and Bergan, P. G., Incremental variational principles and finite element models for nonlinear problems, Comp. Meths. Appl. Mech. and Engng. 7, 201-217 (1976).
47. Horrigmoe, G., Large displacement analysis of shells by a hybrid stress finite element method, IASS World Congress on Space Enclosures (NCOSE76, Montreal, 489-499 (1976).
48. Horrigmoe, G., Finite element instability analysis of free-form shells, Report No. 77-2, The Norwegian Inst. Techn., University of Trondheim (1977).
49. Wood, R. D., The application of finite element methods to geometrically nonlinear structural analysis, Ph.D. Thesis, University College of Swansea (1973).
50. Pıca, A., Geometrically nonlinear analysis of Mindlin plates by finite element method, M.Sc. Thesis, University College of Swansea (1978).
51. Pica, A., Wood, R. D. and Hinton, E., Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation, Computers and Structures, 11, 203-215 (1980).
52. Gallagher, R. H., Geometrically nonlinear shell analysis, In: Advances in Computational Methods in Structural Mechanics and Design, Eds. J. T. Oden, R. W. Clough and Y. Yamamoto, Univ. Alabama Press, 641-678 (Proc. Second US-Japan Seminar) (1972).
53. Frey, F. and Cescotto, S., Some new aspects of the incremental total Lagrangian description in nonlinear analysis, Proc. Int. Conf. Finite Elements in Nonlinear Solid Mechanics, Geilo, Norway, Paper CO5 (1977).
54. Batoz, J. L., Cattopadhyay, A. and Dhatt, G., Finite element large deflection analysis of shallow shells, Int. J. Num. Meth. Engng. 10, 39-58 (1976).
55. Argyris, J. H. and Dunne, P. C., Non-linear and post-buckling analysis of structures, In: Formulations and Computational Algorithms in Finite Element Analysis, Eds. K. J. Bathe, J. T. Oden and W. Wunderlich, 525-571, MIT Press, Massachusetts (1977).
56. Ahmad, S., Irons, B. M. and Zienkiewicz, O. C., Curved thick shell and membrane elements with particular reference to axisymmetric problems, Proc. Second Conf. Matrix Method Struct. Mech., Wright-Patterson Air Force Base, Ohio (1968).
57. Zienkiewicz, O. C., Taylor, R. L. and Too, J. M., Reduced integration technique in general analysis of plates and shells, Int. J. Num. Meth. Engng. 3, 275-290 (1971).
58. Hinton, E., Razzaque, A., Zienkiewicz, O. C. and Davies, J. D., A simple finite element solution for plates of homogeneous, sandwich and cellular construction, Proc. Inst. Civ. Engrs. Part 2, 59, 43-65 (1975).
59. Zienkiewicz, O. C. and Hinton, E., Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates), J. of the Franklin Inst., 302, 443-461 (1976).
60. Hinton, E., Owen, D. R. J. and Shantaram, D., Dynamic transient nonlinear behaviour of thick and thin plates, In: The Mathematics of Finite Elements and Applications II MAFELAP, Ed. J. R. Whiteman, 423-438, Academic Press, London (1977).
61. Hinton, E. and Pugh, E. D. L., Some quadrilateral isoparametric finite elements based on Mindlin plate theory, Proc. of Symp. on Applications of Computer Methods in Engineering, Univ. of S. California, Vol. II, 851-858 (1977).
62. Bicanic, N. and Hinton, E., Spurious modes in two-dimensional isoparametric elements, Int. J. Num. Meths. Engng. 14, 1545-1557 (1979).
63. Hinton, E. and Bicanic, N., A comparison of Lagrangian and Serendipity Mindlin plate elements for free vibration analysis, Computers and Structures, 10, 483-493 (1979).
64. Hughes, T. J. R., Cohen, M. and Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nuclear Engng. Design, 46, 203-222 (1978).
65. Hughes, T. J. R. and Cohen, M., The 'Heterosis' finite element for plate bending, Computers and Structures, 9, 445-450 (1978).
66. Malkus, D. and Hughes, T. J. R., Mixed finite element methods-reduced selective integration techniques: a unification of concept, Comp. Appl. Mech. Engng. 15, 63-81 (1978).
67. Ramm, E., A plate/shell element for large deflection and rotations, In: Formulations and Computational Algorithms in Finite Element Analysis, Eds. K. J. Bathe, J. T. Oden and W. Wunderlich, 264-293, MIT Press, Massachusetts (1977).
68. Krakeland, B., Large displacement analysis of shells considering elastoplastic and elasto-viscoplastic materials, Report No. 776, The Norwegian Institute of Technology, The University of Trondheim, Norway (1977).
69. Bathe, K. J. and Bolourchi, S., A geometric and material nonlinear plate and shell element (to be published).
70. Larsen, P. K. and Popov, E. P., Large displacement analysis of viscoelastic shells of revolution, Comp, Meth. Appl. Mech. Engng. 3, 237-253 (1974).
71. Noor, A. K. and Harley, S. J., Nonlinear shell analysis via mixed isoparametric elements, Computers and Structures, 7, 615-626 (1977).
72. Frey, F., L'analyse statique non linéaire des structures par la méthode des éléments finis et son application à la construction metallique, Ph.D. Thesis, University of Liège, Belgium (1978).
73. Bolourchi, S., On finite element nonlinear analysis of general shell structures, Ph.D. Thesis, Mechanical Engineering Department, MIT (1979).
74. Martins, R. A. F. and Owen, D. R. J., Elastoplastic and geometrically nonlinear thin shell analysis by the Semiloof element, Computers and Structures (to be published).
75. Dinis, L. M. S., Martins, R. A. F. and Owen, D. R. J., Analysis of material and geometrically nonlinear thin plates and arbitrary shells, Proc. Int. Conf. Numerical Methods for Nonlinear Problems, Swansea, 425-442, Pineridge Press, Swansea, U.K. (1980).
76. Owen, D. R. J. and Dinis, L. M. S., Transient dynamic analysis of thin shells including viscoplastic and large displacement effect, In: The Mathematics of Finite Elements and Applications III, Ed. J. R. Whiteman, Academic Press (1978).
77. Wegner, R., Finite element models for reinforced concrete, In: Formulation and Computational Algorithms in Finite Element Analysis, Eds. K. J. Bathe, J. T. Oden and W. Wunderlich, 393-439, MIT Press, Massachusetts (1977).
78. Jofreit, J. C. and McNiece, G. M., Finite element analysis of reinforced concrete slabs, J. Struct. Div. ASCE, 97, 785-806 (1971).
79. Hand, F. R., Pencold, D. A. and Schonbrich, W. C., Non-linear layered analysis of reinforced concrete plates and shells, Univ. Illinois, Struct. Research Report No. 389 (1972).
80. Lin, C. S., Nonlinear analysis of reinforced concrete slabs and shells, Report UC SESM 73-7, Univ. of California, Berkeley (1973).
81. Cope, R. J. and Rao, P. U., Non-linear finite element analysis of concrete slab structures, Proc. Inst. Civ. Engrs. Part 2, 63, 149-179 (1977).
82. Schnobrich, W. C., Behaviour of reinforced concrete structures predicted by the finite element method, Computers and Structures, 7, 365-376 (1977).
83. Bashur, F. K. and Darwin, D., Non-linear model for reinforced concrete slabs, J. Struct. Divn., ASCE, 104, 157-170 (1978).
84. Gilbert, R. F. and Warner, R. F., Tension stiffening in reinforced concrete slabs, J. Struct. Divn. ASCE, 104, 1885-1900 (1978).,
85. Duncan, W. and Johnarry, T., Further studies on the constant stiffness method of non-linear analysis of concrete structures, Proc. Inst. Civ. Engrs., Part 2, 67, 951-969 (1979).
86. Cormeau, I. C., Viscoplasticity and plasticity in the finite element method, Ph.D. Thesis, University College of Swansea (1976).
87. Dinis, L. M. S., Finite element viscoplastic analyses of plates, M.Sc. Thesis, University College of Swansea (1975).
88. Nayak, G. C., Plasticity and large deformation problems by finite element method, Ph.D. Thesis, University of Wales, Swansea (1971).
89. Basu, A. K., Letter to the Editor, 'New light on the Nayak alpha technique', Int. J. Num. Meth. Engng. 6, 152 (1973).
90. Irons, B. M. and Ahmad, S., Techniques of Finite Elements, Ellis Horwood, Chichester (1980).
91. Matthies, H. and Strang, G., The solution of nonlinear finite element equations, Int. J. Num. Meth. Engng. 14, 1613-1626 (1979).
92. Geradin, M. and Hogge, M. A., Quasi-Newton iteration in non-linear structural dynamics, Paper M7/1, Trans. Fifth Int. Conf. on SMIRT, Berlin, North-Holland, Amsterdam (1979).
93. Crisfield, M. A., Iterative solution procedure for linear and non-linear structural analysis, TRRL Lab. Report 900, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K. (1979).
94. Hestenes, M. and Stiefel, E., Method of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49, 409-436 (1952).
95. Fletcher, R. and Reeves, C. M., Function minimisation by conjugate gradients, The Computer Journal, 7, 149-154 (1964).
96. Polak, E., Computational methods in optimisation: a unified approach, Academic Press, London (1971).
97. Jennings, A. and Malik, G. M., The solution of sparse linear equations by the conjugate gradient method, Int. J. Num. Meth. Engng. 12, 141-1 58 (1978).
98. Fried, I. and Metzler, J., SOR v. conjugate gradients in a finite element discretization, Int. J. Num. Meth. Engng. 12, 1329-1342 (1978).
99. Kershaw, D. S., The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations, J. Comp. Phys., 26, 43-65 (1978).
100. Irons, B. M. and Elsawaf, A. F., The conjugate Newton algorithm for solving finite element equations, In: Formulations and Computational Algorithms in Finite Element Analysis, Eds. K. J. Bathe, J. T. Oden and W. Wunderlich, MIT Press, 655-672 (1977).
101. Brew, J. S. and Brotton, D. M., Non-linear structural analysis by dynamic relaxation, Int. J. Num. Meth. Engng. 3, 463-483 (1971).
102. PiCA, A. and Hinton, E., Transient and pseudo-transient analyses of Mindlin plates: Theory and applications, Int.J. Num. Meth. Engng. 15, 189-208 (1980).
103. Underwood, P., An adaptive dynamic relaxation technique for nonlinear structural analysis, Draft Report, Lockheed Palo Alto Research Laboratory.
104. Bergan, P. G. and Soreide, T., Solution of large displacement and instability problems using current stiffness parameter, Proc. Conf. on Finite Elements in Nonlinear Solid and Structural Mechanics, Geilo, Norway (1977).
105. Mote, C. D. J., Global-local finite element, Int. J. Num. Meth. Engng. 3, 565-574 (1971).
106. Crisfleld, M. A., A combined Rayleigh-Ritz/finite element method for the non-linear analysis of stiffened plate structures, Computers and Structures, 8, 679-689 (1978).
107. Wilson, E. L., Special numerical and computer techniques for the analysis of finite element systems, Proc. US-German Symposium on Formulations and Algorithms in Finite Element Analysis, Eds. K. J. Bathe, T. J. Oden and W. Wunderlich, 3-25, MIT Press, Boston (1977).
108. Wachspress, E. L., Two-level finite element computation, Proc. US-German Symposium on Formulations and Algorithms in Finite Element Analysis, Eds. K. J. Bathe, T. J. Oden and W. Wunderlich, 877-913, MIT Press, Boston (1977).
109. Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comptr., 31, 333-390 (1977).
110. Felippa, C. A., Procedures for computer analysis of large nonlinear structural analysis, Int. Symp. on Large Engineering Systems, The University of Manitoba, Winnipeg, Canada, 1976, Pergamon Press, Oxford (1977).
111. Peano, A. M., Fanelli, M., Riccioni, R. and Sandella, L., Self-adaptive convergence at the crack tip of a dam buttress, Proc. of First Int. Conf. on Numerical Methods in Fracture Mechanics. Eds. A. R. Luxmoore and D. R. J. Owen, 268-280, Pineridge Press, Swansea, U.K. (1978).
112. Row, D. G. and Powell, G. H., A substructure technique for nonlinear static and dynamic analysis, Report No. UCB/EER/C-78/15, University of California, Berkeley (1978).
113. Zienkiewicz, O. C., Kelly, D. W. and Bettess, P., 'Marriage à la mode', Finite elements and boundary integrals, Proc. Conf. Innovative Numerical Analysis in Engineering Science, CETIM, Paris (1977).
114. Banerjee, P. K., Cathie, D. N. and Davies, T. G., Two- and three-dimensional problems of elastoplasticity, In: Developments in Boundary Integral Methods, Chapter 4, Eds. P. K. Banerjee and R. Butterfield, Applied Science Publishers (1979).
115. Kelly, D.W., Mustoe, G. G. W. and Zienkiewicz, O. C., Coupling boundary element methods with other numerical methods, In: Developments in Boundary Integral Methods, Chapter 10, Eds. P. K. Banerjee and R. Butterfield, Applied Science Publishers (1979).
116. Schrem, E., Trends and aspects of the development of large finite element software systems, Computers and Structures, 10, 419-425 (1979).
117. Schrem, E., From program systems to programming systems for finite element analysis, In: Formulations and Computational Algorithms in Finite Element Analysis, Eds. K. J. Bathe, J. T. Oden and W. Wunderlich, MIT Press, 163-189 (1977).
118. Zave, P. and Rheinboldt, W. C., Design of an adaptive, parallel finiteelement system, ACM Transactions on Mathematical Software, 5, No. 1, 1-17 (1979).

## Appendix I

## Instructions for preparing input data for one-dimensional problems

In Part I of this text computer codes have been presented for the nonlinear analysis of several classes of one-dimensional problems. In Chapter 3 the data structure for the following applications was discussed:

- Direct iteration solution of nonlinear quasiharmonic problems.
- Use of the Newton-Raphson process for the solution of nonlinear quasiharmonic problems.
- Nonlinear elastic applications.
- Elasto-plastic material behaviour.

In Chapter 4 the time transient phenomenon of one-dimensional viscoplasticity was discussed. In Chapter 5 solution techniques were presented for elasto-plastic beam bending problems. In this appendix user instructions for preparing input data for each of these applications are provided.

## A.1. 1 Program QUITER for the solution of nonlinear one-dimensional quasiharmonic problems by direct iteration <br> CARD SET 1 TITLE CARD (12A6)-One card

Cols. 1-72 Title of the problem-limited to 72 alphanumeric characters.
CARD SET 2 CONTROL CARD (915)-One card

Cols. 1-5 NPOIN
6-10 NELEM
11-15 NBOUN

16-20 NMATS
21-25 NPROP
26-30 NNODE
31-35 NINCS

Total number of nodal points.
Total number of elements.
Total number of restrained boundary points-nodes at which the value of the unknown (e.g. temperature) is prescribed. Total number of different materials.
Number of independent properties per material ( $=1$ ).
Number of nodes per element (=2).
Number of increments in which the total 'loading' is to be applied.

36-40 NALGO Nonlinear solution process indicator ( $=1$, for solution by direct iteration).
41-45 NDOFN Number of degrees of freedom per node ( $=1$ ).

CARD SET 3 MATERIAL CARDS (I5, F15.5)-One card for each different material. Total of NMATS cards (See Card Set 2).

Cols. 1-5 JMATS Material identification number.
6-20 PROPS(JMATS,1) The material coefficient, $K_{0}$ in (2.27).
CARD SET 4 ELEMENT CARDS (4I5)-One card for each element. Total of NELEM cards (See Card Set 2).

Cols. 1-5 JELEM Element number.
6-10 LNODS(JELEM,1) 1st nodal connection number.
11-15 LNODS(JELEM,2) 2nd nodal connection number.
16-20 MATNO(JELEM) Material property number.
NOTE: The two nodal connection numbers for an element can be taken in any order.

CARD SET 5 NODAL COORDINATE CARDS (I10,F15.5)—One card for each node. Total of NPOIN cards (See Card Set 2).

Cols. 1-10 JPOIN
11-25 COORD(JPOIN)

Node number.
The $x$ coordinate of the node.

Note: The origin of the coordinate system may be arbitrarily located.
CARD SET 6 RESTRAINED NODE CARDS (I10,15,F10.5)-One card for each restrained node. Total of NBOUN cards (See Card Set 2).

| Cols.$1-10$ NODFX <br> $11-15$ $\operatorname{ICODE}(1)$ <br> $16-25$ PRESC(1) | Condition of restraint $(=1)$. |
| :--- | :--- |
|  | The prescribed value of the nodal |
| variable. |  |

CARD SET 7 APPLIED 'LOAD' CARDS (I10,2FI5.5)-One card for each loaded element.

Cols. 1-10 IELEM The element number.
11-25 RLOAD(IELEM,1) The applied load at the 1st node of the element.
26-40 RLOAD(IELEM,2) The applied load at the 2nd node of the element.

Notes: 1) The 1st and 2nd nodes must be taken in the order listed in Card Set 4.
2) This card set must terminate with data for the highest numbered element whether it is loaded or not.

CARD SET 8 LOAD INCREMENT CONTROL CARDS (2I5,2F15.5)One card for each load increment. Total of NINCS cards (See Card Set 2).

Cols. 1-5 NITER
6-10 NOUTP

11-25 FACTO

26-40 TOLER

Maximum number of iterations allowed for the 'load' increment.
Output control parameter:
1-Results output only after the first iteration and after convergence,
2-Results output after each iteration.
Applied 'load' factor for the incrementspecified as a factor of the loading input in Card Set 7.
Convergence tolerance factor.-The term TOLER in (3.21).

Note: The applied loading factors are accumulative. If FACTO is specified as $0.6,0.3,0.3$ for the first three 'load' increments, then the total loading acting during the third increment is 1.2 times that specified in Card Set 7.

If the form of the material nonlinearity is to be changed, then FUNCTION VARIA must be modified in accordance with the process described in Section 3.9.1.

## A.1.2 Program QUNEWT for the solution of nonlinear one-dimensional quasiharmonic problems by the Newton-Raphson process

Data input for this application is identical to that described in Section A.1.1 above with the following exceptions:

## CARD SET 2 CONTROL CARD

Cols. 21-25 NPROP Number of independent properties per material ( $=2$ ).
Nonlinear solution process parameter ( $=2$, for Newton-Raphson solution technique).

CARD SET 3 MATERIAL CARDS (I5,2F15.5)-One card for each different material.

Cols. 1-5 JMATS Material identification number.
6-20 PROPS(JMATS,1) The material coefficient $K_{0}$ in (2.27).
21-35 PROPS(JMATS,2) The term $b$ in (2.27).

## A.1.3 Program NONLAS for the solution of one-dimensional nonlinear elastic problems

The input data for this application is again identical to that described in Section A.1.1 with the following exceptions. The basic nodal variable is now the axial displacement.

## CARD SET 2 CONTROL CARD

Cols. 21-25 NPROP
36-40 NALGO

Number of independent properties per material( = 2).
Nonlinear solution process indicator :
1 or 2 Tangential stiffness algorithm. The element stiffnesses are recalculated for each iteration of the solution process.
3 Initial stiffness method. The stiffnesses are calculated at the beginning of the solution process and maintained constant thereafter.
4 Combined algorithm (Version I). The element stiffnesses are recomputed for the first iteration of each load increment.
5 Combined algorithm (Version II). The element stiffnesses are recomputed for the second iteration of each load increment.

CARD SET 3 MATERIAL CARDS (I5,2F15,5) - One card for each different material.

Cols. 1-10 JMATS Material identification number.
6-20 PROPS(JMATS,1) Elastic modulus, $E$.
21-35 PROPS(JMATS,2) Cross-sectional area, $A$.

## A.1.4 Program ELPLAS for the solution of one-dimensional elastoplastic problems

The input data for this application is again identical to that described in Section A.1.1 with the following exceptions. The basic nodal variable is the axial displacement.

CARD SET 2 CONTROL CARD (9I5)

Cols. 21-25 NPROP
36-40 NALGO

Number of independent properties per material ( $=4$ ).
Nonlinear solution process indicator: 1 or 2 Tangential stiffness algorithm.

3 Initial stiffness method.
4 Combined algorithm with stiffnesses recomputed for the lst iteration.
5 Combined algorithm with stiffnesses recomputed for the 2nd iteration.

CARD SET 3 MATERIAL CARDS (15,4F15.5)-One card for each different material.

| Cols. | $1-5$ | JMATS | Material identification number. |
| ---: | :--- | :--- | :--- |
| 6-20 | PROPS(JMATS,1) | Elastic modulus, $E$. |  |
| 21-35 | PROPS(JMATS,2) | Cross-sectional area, $A$. |  |
| 36-50 | PROPS(JMATS,3) | Uniaxial yield stress, $\sigma_{Y}$. |  |
| 51-65 | PROPS(JMATS,4) | Linear strain-hardening parameter, $H^{\prime}$. |  |

## A.1.5 Program UNVIS for the solution of one-dimensional elastoviscoplastic problems

The input data for this application is once again identical to that described in Section A.1.1 with the following exceptions. The basic nodal variable is the axial displacement.

## CARD SET 2 CONTROL CARD

Cols. 21-25 NPROP Number of independent properties per material ( $=5$ ).
36-40 NALGO Nonlinear solution process indicator ( $=1$, for Euler time stepping scheme).

CARD SET 3 MATERIAL CARDS (I5,5F15.5)—One card for each different material.

| Cols. 1-5 | JMATS | Material identification number. |
| :---: | :---: | :---: |
| 6-20 | PROPS(JMATS,1) | Elastic modulus, E. |
| 21-35 | PROPS(JMATS,2) | Cross-sectional area, $A$. |
| 36-50 | PROPS(JMATS,3) | Uniaxial yield stress, $\sigma_{Y}$. |
| 51-65 | PROPS(JMATS,4) | Linear strain-hardening parameter, $H^{\prime}$. |
| 66-80 | PROPS(JMATS,5) | Fluidity parameter, $\gamma$. |

CARD SET 8 TIMESTEPPING PARAMETER CARD (3FI5.5)-One card.

Cols. 1-15 TAUFT

16-30 DTINT
31-45 FTIME
The factor $\tau$ employed to limit the timestep length according to (4.38).
The initial time step length (required to initiate the time stepping process.
The factor $k$ in (4.39).

## CARD SET 9 LOAD INCREMENT CONTROL CARDS

This card set is identical to Card Set 8, Section A.1.1 where the term 'iteration' is now replaced by 'timestep'.

## A.1.6 Program TIMOSH for the nonlayered elasto-plastic analysis of Timoshenko beams

The input data for this application is identical to that described in Section A.1.1 with the following exceptions.

## CARD SET 2 CONTROL CARD (9I5)

Cols. 21-25 NPROP
36-40 NALGO

41-45 NDOFN

Number of independent properties per material ( $=4$ )
Nonlinear solution process indicator: 1 or 2 Tangential stiffness algorithm.
3 Initial stiffness method.
4 Combined algorithm with stiffnesses recomputed for the 1st iteration.
5 Combined algorithm with stiffnesses recomputed for the 2 nd iteration. Number of degrees of freedom per node ( $=2$ ).

CARD SET 3 MATERIAL CARDS (I5, 4F15.5)-One card for each different material.

Cols. 6-20 PROPS(JMATS, 1) Flexural rigidity, EI.
21-35 PROPS(JMATS,2) Shear constant, GA/1.5.
36-50 PROPS(JMATS, 3) Yield moment, $M_{0}$.
51-65 PROPS(JMATS, 4) Strain hardening parameter, $H^{\prime}$.
CARD SET 6 RESTRAINED NODE CARDS (I10, 2(I5, F10.5))—One card for each restrained node. Total of NBOUN cards.

Cols. 11-15 ICODE(1)

16-25 VALUE(1)
26-30 ICODE(2)

31-40 VALUE(2)

Condition of restraint on nodal displacement, $w$.
$\left\{\begin{array}{l}0-\text { No displacement restraint. } \\ 1-\text { Nodal displacement restrained. }\end{array}\right.$
The prescribed value of nodal displacement, $w$.
Condition of restraint on nodal rotation, $\theta$.
$\left\{\begin{array}{l}0-\text { No rotation restraint. } \\ 1 — \text { Nodal rotation restrained. }\end{array}\right.$
The prescribed value of nodal rotation, $\theta$.

CARD SET 7 APPLIED LOAD CARDS (I10, 4FI5.5)-One card for each loaded element.

Cols. 1-10 JELEM Element number.
11-25 RLOAD(JELEM,1) Transverse load applied at the first node.
26-40 RLOAD(JELEM,2) Couple applied at the first node.
41-55 RLOAD(JELEM,3) Transverse load applied at the second node.
56-70 RLOAD(JELEM,4) Couple applied at the second node.
Note: The last card should be that for the highest numbered element whether it is loaded or not.

## A.1.7 Program TIMLAY for the layered elasto-plastic analysis of Timoshenko beams

The input data for this application is identical to that described in Section A.1.6 with the following exceptions.

## CARD SET 2 CONTROL CARD (1015)

| Cols. 21-25 | NPROP | Number of independent properties per ma- <br> terial $(=4+2 \times$ Total number of layers $)$. |
| ---: | :--- | :--- |
| $46-50$ | NLAYR | Total number of layers. |

## CARD SET 3 MATERIAL CARDS

1st Card (I5, 4F15.5)
Cols. 1-5 NUMAT Material identification number.
6-20 PROPS(NUMAT,1)Young's modulus, $E$.
21-35 PROPS(NUMAT,2) Modified shear modulus, G/1.5.
36-50 PROPS(NUMAT,3) Yield stress, $\sigma_{Y}$.
51-65 PROPS(NUMAT,4) Strain hardening parameter, $H^{\prime}$.
2nd and subsequent cards (4F15.5)
Cols. 1-15 BRDTH(1) Breadth of the 1st layer.
16-30 THICK(1) Thickness of the 1st layer.
31-45 BRDTH(2) Breadth of the 2nd layer.

- BRDTH(NLAYR) Breadth of the last layer.
- THICK(NLAYR) Thickness of the last layer.


## Appendix II

## Instructions for preparing input data for plane, axisymmetric and plate bending problems

In this appendix user instructions are provided for the computer programs developed in Part II of this text. Chapter 7 dealt with elasto-plastic problems in two dimensions and in Chapter 8 the corresponding time-dependent situation of elasto-viscoplasticity was discussed. The elasto-plastic behaviour of plates in bending was considered in Chapter 9.

## A.2.1 Program PLANET for the elasto-plastic analysis of plane and axisymmetric solids <br> CARD SET 1 TITLE CARD (12A6)--One card.

Cols. 1-72 Title of the problem-limited to 72 alphanumeric characters.

## CARD SET 2 CONTROL CARD (1115)-One card.

Cols. 1-5 NPOIN
6-10 NELEM
11-15 NVFIX

16-20 NTYPE

21-25 NNODE

26-30 NMATS
31-35 NGAUS

Total number of nodal points.
Total number of elements.
Total number of restrained boundary points-where one or more degrees of freedom are restrained.
Problem type parameter:
1-Plane stress,
2-Plane strain,
3-Axial symmetry.
Number of nodes per element:
4-Linear quadrilateral element,
8-Quadratic Serendipity element,
9-Quadratic Lagrangian element.
Total number of different materials.
Order of integration formula for numerical integration:
2-Two point Gauss quadrature rule,
3-Three point Gauss quadrature rule.

36-40 NALGO

41-45 NCRIT

46-50 NINCS
51-55 NSTRE

Nonlinear solution parameter:
1 Initial stiffness method. The element stiffnesses are calculated at the beginning of the solution process and remain unchanged thereafter.
2 Tangential stiffness method. The element stiffnesses are recalculated for every iteration of each load increment.
3 Combined algorithm (Version I). The element stiffnesses are recalculated for the first iteration of each load increment only.
4 Combined algorithm (Version II). The element stiffnesses are recalculated for the second iteration of each load increment only.
Yield criterion parameter:
1-Tresca, 2-Von Mises, 3-Mohr-Coulomb, 4-Drucker-Prager. Number of increments in which the total loading is to be applied.
Number of stress components at a point:
3-Plane stress or plane strain,
4-Axial symmetry.

CARD SET 3 ELEMENT CARDS (1115)-One card for each element. Total of NELEM cards (See Card Set 2).

Cols. 1-5 NUMEL Element number.
6-10 MATNO(NUMEL) Material property number.
11-15 LNODS(NUMEL,1) 1st Nodal connection number.
16-20 LNODS(NUMEL,2) 2nd Nodal connection number.

51-55 LNODS(NUMEL,9) 9th Nodal connection number.
Notes: 1) Columns 31-55 remain blank for linear 4-noded elements.
2) Columns $51-55$ remain blank for 8 -noded elements.
3) The nodal connection numbers must be listed in an anti-clockwise sequence, starting from any corner node.

CARD SET 4 NODE CARDS (IS,2F10.5)-One card for each node whose coordinates are to be input.

Cols. 1-5 IPOIN Nodal point number.
6-15 COORD(IPOIN,1) $x$ (or $r$ ) coordinate of the node.
16-25 COORD(IPOIN,2) $\quad y$ (or $z$ ) coordinate of the node.
Notes: 1) The total number of cards in this set will generally differ from NPOIN (see Card Set 2) since for quadratic elements whose sides are linear, it is only necessary to specify data for corner nodes, intermediate nodal coordinates being automatically interpolated if on a straight line.
2) For Lagrangian elements the coordinates of the 9th (central) node are never input.
3) The coordinates of the highest numbered node must be input regardless of whether it is a midside node or not.

CARD SET 5 RESTRAINED NODE CARDS (1X,I4,5X,I5,5X,2F10.5)One card for each restrained node. Total of NVFIX cards (See Card Set 2).
Cols. 2-5 NOFIX(IVFIX) Restrained node number.

11-15 IFPRE

21-30 PRESC(IVFIX,1) The prescribed value of the $x$ (or $r$ ) component of nodal displacement.
31-40 PRESC(IVFIX,2) The prescribed value of the $y$ (or $z$ ) component of nodal displacement.

CARD SET 6 MATERIAL CARDS
6(a) CONTROL CARD (15)-One card.
Cols. 1-5 NUMAT Material identification number.
6(b) PROPERTIES CARDS (7F10.5)-One card for each different material.
Cols. 1-10 PROPS(NUMAT,I) Elastic modulus, $E$.
11-20 PROPS(NUMAT,2) Poisson's ratio, $\nu$.
21-30 PROPS(NUMAT,3) Material thickness, $t$ (leave blank for plane strain and axisymmetric problems).
31-40 PROPS(NUMAT,4) Mass density, $\rho$.
41-50 PROPS(NUMAT,5) Uniaxial yield stress, $\sigma_{Y}$ (or cohesion $c$ for Mohr-Coulomb or Drucker-Prager materials).
51-60 PROPS(NUMAT,6) Strain hardening parameter, $H^{\prime}$.

## 61-70 PROPS(NUMAT,7) Friction angle $\phi$ (measured in degrees) for Mohr-Coulomb and Drucker-Prager materials only).

Note: This card set to be repeated for each different material. Total of NMATS card sets (See Card Set 2).
CARD SET 7 LOAD CASE TITLE CARD (12A6)-One card.
Cols. 1-72 TITLE Title of the load case-limited to 72 alphanumeric characters.
CARD SET 8 LOAD CONTROL CARD (315)-One card.
Cols. 1-5 IPLOD Applied point load control parameter: 0 No applied nodal loads to be input, 1 Applied nodal loads to be input.
6-10 IGRAV Gravity loading control parameter:
0 No gravity loads to be considered,
1 Gravity loading to be considered.
11-15 IEDGE Distributed edge load control parameter:
0 No distributed edge loads to be input,
1 Distributed edge loads to be input.
CARD SET 9 APPLIED LOAD CARDS (15,2F10.3)-One card for each loaded nodal point.

Cols. 1-5 LODPT Node number.
6-15 POINT(1) Load component in $x$ (or $r$ ) direction.
16-25 POINT(2) Load component in $y$ (or $z$ ) direction.
Notes: 1) The last card should be that for the highest numbered node whether it is loaded or not.
2) For axisymmetric problems, the loads input should be the total loading on the circumferential ring passing through the nodal point concerned.
3) If IPLOD $=0$ in Card Set 8, omit this set.

CARD SET 10 GRAVITY LOADING CARD (2F10.3)-One card.

Cols. 1-10 THETA
11-20 GRAVY

Angle of gravity axis measured from the positive $y$ axis (see Fig. 6.7).
Gravity constant-specified as a multiple of the gravitational acceleration, $g$.

Note: If IGRAV $=0$ in Card Set 8, omit this set.
CARD SET 11 DISTRIBUTED EDGE LOAD CARDS
11(a) CONTROL CARD (I5)-One card.
Cols. 1-5 NEDGE
Number of element edges on which distributed loads are to be applied.

## 11(b) ELEMENT FACE TOPOLOGY CARD (415)

Cols. 1-5 NEASS
6-10 NOPRS(1) List of nodal points, in an anticlockwise 11-15 NOPRS(2) 16-20 NOPRS(3) $\}$

The element number with which the element edge is associated. sequence, of the nodes forming the element face on which the distributed load acts.

Note: For linear 4-noded elements, Cols. 16-20 remain blank.
11(c) DISTRIBUTED LOAD CARDS (6F10.3)
Cols. 1-10 PRESS(1,1) Value of normal component of distributed load at node NOPRS(1).
11-20 $\operatorname{PRESS}(1,2) \quad$ Value of tangential component of distributed load at node NOPRS(1).
21-30 PRESS(2,1) Value of normal component of distributed load at node NOPRS(2).
31-40 PRESS $(2,2) \quad$ Value of tangential component of distributed load at node NOPRS(2).
41-50 $\operatorname{PRESS}(3,1) \quad$ Value of normal component of distributed load at node NOPRS(3).
51-60 PRESS(3,2) Value of tangential component of distributed load at node $\operatorname{NOPRS}(3)$.

Notes: 1) For linear 4-noded elements, Cols. 41-60 remain blank.
2) Subsets 11 (b) and 11 (c) must be repeated in turn for every element edge on which a distributed load acts. The element edges can be considered in any order.
3) If IEDGE $=0$ in Card Set 8 , omit this card set.

CARD SET 12 LOAD INCREMENT CONTROL CARDS (2F10.5,315)One card for each load increment. Total of NINCS cards (see Card Set 2).

Cols. 1-10 FACTO
11-20 TOLER
21-25 MITER

26-30 NOUTP(1)

Applied load factor for this incrementspecified as a factor of the loading input in Card Sets 8 to 11.
Convergence tolerance factor.-The term TOLER in (3.27).
Maximum number of iterations allowed for the load increment.
Parameter controlling output of results after 1st iteration:
0 -No output,
1-Output displacements,
2-Output displacements and reactions,

3-Output displacements, reactions and stresses.
Parameter controlling output of the converged results:
0 - No output,
1-Output displacements,
2 -Output displacements and reactions,
3-Output displacements, reactions and stresses.

Note: The applied loading factors are accumulative. If FACTO is specified as $0.6,0.3,0.2$ for the first three load increments, then the total loading acting during the third increment is 1.1 times that specified in Card Sets 8 to 11 .

## A.2.2 Program VISCOUNT for the elasto-viscoplastic analysis of plane and axisymmetric solids

The input data for this application is identical to that described in Section A.2.1, for elasto-plastic problems, with the following exceptions.

CARD SET 2 CONTROL CARD (1115)
Cols. 36-40 NALGO
Equation solution parameter:
1 Explicit time stepping scheme (i.e. TIMEX $=0$-See Card Set 12),
2 Implicit or Semi-implicit schemes (TIMEX $\neq 0$ ).

CARD SET 6(b) PROPERTIES CARDS (8F10.5)-Two cards for each different material.

1st Card
Cols. 1-70 Identical to Card Set 6(b), Section A.2.1. 71-80 PROPS(NUMAT,8) Fluidity parameter, $\gamma$.

## 2nd Card

Cols. 1-10 PROPS(NUMAT,9) The constant $M$ in (8.8) or constant $N$ in (8.9).

11-20 PROPS(NUMAT,10) Parameter controlling choice of the flow function:
0 Expression (8.8) to be used,
1 Expression (8.9) to be used.
CARD SET 12 TIMESTEPPING PARAMETER CARD (4F10.3)-One card.

Cols. 1-10 TIMEX Timestepping algorithm parameter, $\Theta$ in (8.10).

11-20 TAUFT
21-30 DTINT

31-40 FTIME

The factor $\tau$ employed to limit the time step length according to (8.29).
The initial time step length (required to initiate the time stepping process).
The factor $k$ in (8.32).

## CARD SET 13 LOAD INCREMENT CONTROL CARDS

This card set is identical to Card Set 12, Section A.2.1 where the term 'iteration' is now replaced by 'timestep'.

## A.2.3 Programs MINDLIN and MINDLAY for the nonlayered and layered elasto-plastic analysis of Mindlin plates

The input data for this application is identical to that described in Section A.2.1, for elasto-plastic plane and axisymmetric solids, with the following exceptions.

CARD SET 2 (1115)-One card
Cols.16-20 NTYPE Problem type parameter:
5-for Heterosis element, 0 -for 4 - or 8 -node elements.
21-25 NNODE Number of nodes per element:
4-Linear 4-node quadrilateral element.
8-Quadratic 8-node Serendipity element.
9- Quadratic 9-node Lagrangian element or Heterosis element.
31-35 NGAUS

41-45 NCRIT

51-55 NLAPS
2 for 4 -node element,
3 for 8 -, 9 -node and Heterosis element.
(N.B. This is the integration rule to evaluate the flexural contribution to the element stiffness matrix. Since selective integration is adopted a (NGAUS-1) integration is automatically used to evaluate the transverse shear contribution to the element stiffness matrix.)
Yield criterion parameter:
1-Tresca,
2--Von-Mises.
(Mohr-Coulomb and Drucker-Prager yield criteria are not included.)
Total number of layers. (for program MINDLAY only-in program MINDLIN leave blank.)

CARD SET 5 RESTRAINED NODE CARDS (1X, I4, 5X, 15, 5X, 3F10.5) One card for each restrained node. Total of NVFIX cards.

Cols.11-15 IFPRE

21-30 PRESC(IVFIX,1)
31-40 PRESC(IVFIX,2) The prescribed value of the nodal
41-50 PRESC(IVFIX.3) The prescribed value of the nodal
rotation $\theta_{x}$. rotation $\theta_{y}$.
Restraint code:
100 Lateral displacement $w$ restrained.
010 Rotation $\theta_{x}$ restrained.
001 Rotation $\theta_{y}$ restrained.
110 Lateral displacement $w$ and rotation $\theta_{x}$ restrained, etc.
The prescribed value of the lateral nodal displacement $w$.

CARD SET 6 MATERIAL CARDS
6(b) PROPERTIES CARDS (7F10.5)-One card for each different material.
Cols.31-40 PROPS(NUMAT,4) Uniform distributed loading value.
41-50 PROPS(NUMAT,5) Blank.
51-60 PROPS(NUMAT,6) Uniaxial yield stress, $\sigma_{0}$.
61-70 PROPS(NUMAT,7) Strain hardening parameter $H^{\prime}$.
CARD SET 6X CONVERGENCE CHECK CARDS
6X(a) DISPLACEMENT CHECK CARD (5I1)-One card.
Cols. 1 IFDIS 1 The displacement check is to be employed.
2 NCDIS(1)
3 NCDIS(2)
4 NCDIS(3)
5 NCDIS(4)
1 Check based on norm involving $w$.
1 Check based on norm involving $\theta_{x}$.
1 Check based on norm involving $\theta_{y}$.
1 Check based on $w, \theta_{x}$ and $\theta_{y}$.
6X(b) RESIDUAL FORCE CHECK CARD (5I1)-One card.
Cols. 1 IFRES 1 The residual force check is to be employed.
2 NCRES(1)
3 NCRES(2)
4 NCRES(3)
5 NCRES(4)

## CARD SET 8 LOAD CONTROL CARD (I5)-One card.

Cols. 1-5 IPLOD Applied point load control parameter:
0 No applied nodal loads to be input.
1 Applied nodal loads to be input.
6-15
Blank.
CARD SET 9 APPLIED LOAD CARDS (15, 3F10.3)—One card for each loaded nodal point.

Cols. 1-5 LODPT
6-15 POINT(1)
16-25 POINT(2)
26-35 POINT(3)

Node number.
Lateral nodal load.
Nodal couple in $x z$ plane.
Nodal couple in $y z$ plane.

Omit CARD SETS $10,11(\mathrm{a}), 11(\mathrm{~b})$ and $11(\mathrm{c})$.

## Appendix III

## Instructions for preparing input data for dynamic transient problems

The program DYNPAK has been described in Section 10.6 and MIXDYN in Section 11.5. These programs perform large displacement or viscoplastic or elasto-plastic, transient dynamic analysis of plane stress/strain or axisymmetric problems respectively. The format of the input data is identical for both programs. In this appendix user instructions for preparing input data are provided.

CARD SET 1 DYNAMIC DIMENSIONING (4I5)-One card.
Cols. 1-5 NPOIN Total number of nodal points.
6-10 NELEM
11-15 NDOFN
16-20 NMATS
CARD SET 2 TITLE CARD (10A4)-One card.
Cols. 1-40 Title of the problem-limited to 40 alphanumeric characters.

CARD SET 3 CONTROL CARD (1315)-One card.

Cols. 1-5 NVFIX
6-10 NTYPE

11-15 NNODE
16-20 NPROP
21-25 NGAUS
26-30 NDIME
31-35 NSTRE

Total number of nodal points with fixed degrees of freedom.
Type of problem:
$=1$, Plane stress,
$=2$, Plane strain,
$=3$, Axisymmetric problem.
Number of nodes per element.
Number of material properties ( $=11$ ). Integration rule for stiffness matrix.
Number of coordinate dimensions ( $=2$ ).
Number of stress components ( $=3$ for plane stress/strain, $=4$ for axisymmetric).

| 36-40 | NCRIT | Yield criterion: <br> = 1 - Tresca, <br> $=2-$ Von Mises, <br> $=3-$ Mohr-Coulomb, <br> $=4-$ Drucker-Prager. |
| :---: | :---: | :---: |
| 41-45 | NPREV | Indicator for the previous state to be read ( $=1$ for previous state, otherwise, $=0$ ). |
| 46-50 | NCONM | Number of concentrated masses ( $\geqslant 1$ if concentrated mass present, otherwise, $=0$ ). |
| 51-55 | NLAPS | Indicator for large displacement analysis: <br> $=0$-Elastic analysis, <br> $=1$-Elasto-plastic small displacement analysis, <br> $=2$ - Elastic large displacement analysis, |
| 56-60 | NGAUM | Integration rule for mass matrix. |
| 61-65 | NRADS | $=0$, Read ( $r, z$ ) coordinates for nodes, $=1$, Read $(R, \Theta)$ coordinates for nodes for axisymmetric analysis. |

CARD SET 4 ELEMENT CARDS (11I5)-One card for each element, total of NELEM cards. The node numbers are read in anticlockwise sequence. The number of nodes depends upon the type of element. For four and eight noded elements read only four and eight nodes respectively.


Element number.
Material identification number.

Nodal connection numbers.

CARD SET 5 NODAL COORDINATE CARDS (I5,2F10.5)-One card for each node. Last nodal point (IPOIN $=$ NPOIN) must be read at the end. Only corner and central nodes need to be specified. Midside nodes are interpolated if not specified. For axisymmetric cases, $(R, \Theta)$ values are read for NRADS $=1$, and $(r, z)$ coordinates are calculated in the program.

Cols. 1-5 IPOIN Current nodal point.
6-15 COORD(IPOIN,1) $x$-coordinate.*
16-25 COORD(IPOIN,2) $y$-coordinate.
CARD SET 6 RESTRAINED NODE CARDS (1X,I4,3X,211)-One card for each restrained node. Total of NVFIX cards.

Cols. 2-5 IPOIN
9 IFPRE(IVFIX,1)
Restrained node number.
Fixity in $x$-direction ( $=0$, Free; $=1$, Fixed).
$10 \quad \operatorname{IFPRE}(I V F I X, 2) \quad$ Fixity in $y$-direction ( $=0$, Free; $=1$, Fixed).

CARD SET 7 MATERIAL CARDS-Three cards for each different material, a total of NMATS*3 cards.

## 1 st Card MATERIAL IDENTIFICATION CARD (I5)

Cols. 1-5 NUMAT Material identification number.
2nd Card MATERIAL PROPERTIES CARD-(a) (8E10.4)
Cols. 1-10 PROPS(NUMAT,1) Young's Modulus, E.
11-20 PROPS(NUMAT,2) Poisson's ratio, $\nu$.
21-30 PROPS(NUMAT,3) Thickness for plane stress problem, $t$.
31-40 PROPS(NUMAT,4) Mass density per unit volume, $\rho$.
41-50 PROPS(NUMAT,5) Temperature coefficient, $a_{t}$.
51-60 PROPS(NUMAT,6) Reference yield value ' $F_{0}$ ':
Von Mises, $\quad F_{0}=\sigma_{Y}$,
Tresca, $\quad F_{0}=\sigma_{Y}$,
Mohr-Coulomb, $\quad F_{0}=c \cos \phi$, Drucker-Prager, $\quad F_{0}=6 c \cos \phi /$

61-70 PROPS(NUMAT,7) Hardening parameter, $H^{\prime}$ :

$$
H^{\prime}=\frac{E_{T}}{1-E_{T} / E},
$$

where $E_{T}$ is the hardening tangent modulus, $E$ is the tangent modulus, $\sigma_{Y}$ is the yield stress, $c$ is the cohesion, $\phi$ is the friction angle.
71-80 PROPS(NUMAT,8) Friction angle ' $\phi$ '.

[^10]
## 3rd Card MATERIAL PROPERTIES CARD-(b) (3E10.4)

Cols. 1-10 PROPS(NUMAT,9) Fluidity parameter, $\gamma$.
11-20 PROPS(NUMAT,10) Exponent, $\delta$.
21-30 PROPS(NUMAT,11) NFLOW code
(NFLOW $=1$-Power law, NFLOW $\neq 1$-Exponential law).

CARD SET 8 TIME INTEGRATION CONTROL CARD (1115)—One card.

Cols. 1-5 NSTEP
6-10 NOUTD

11-15 NOUTP
16-20 NREQD
21-25 NREQS
26-30 NACCE

31-35 IFUNC

36-40 IFIXD

41-45 MITER

Total number of time steps.
Writes displacement and stress history of required points on tapes 10 and 11 respectively at NOUTD timesteps.
Output for displacements and stresses at every NOUTP step (NOUTP $\leqslant 500$ ).
Number of nodes for selective output of displacements at NOUTD steps.
Number of integration points for selective output of stresses at every NOUTP step. Number of acceleration ordinates (If IFUNC $\neq 0$, NACCE is not used, then leave blank).
Time function code:
IFUNC $=0 \quad$ Acceleration time history,
IFUNC $=1 \quad$ Heaviside function, $f(t)=$ 1.0,

IFUNC $=2$ Harmonic excitation, $f(t)$ $=a_{0}+b_{0} \sin \omega t$.
Indicator for excitation:
IFIXD $=0$, Horizontal acceleration read from tape 7, Vertical acceleration read from tape 12.
IFIXD $=1$, Vertical acceleration read from tape 12,
IFIXD $=2$, Horizontal acceleration read from tape 7. (If IFUNC $\neq 0$ IFIXD is not used, then leave blank.)
Maximum number of iterations. 'This variable is not used in DYNPAK, so leave blank.

46-50 KSTEP Number of steps after which the stiffness matrix is reformed. Not used in DYNPAK, leave blank.
51-55 IPRED = 1 Standard algorithm,
$=2$ Modified algorithm.

CARD SET 9 TIME INTEGRATION PARAMETERS CARD (8FI0.3)Two cards.

1st Card

Cols. 1-10 DTIME
11-20 DTEND
21-30 DTREC
31-40 AALFA
41-50 BEETA
51-60 DELTA

61-70 GAAMA

71-80 AZERO
2nd Card
1-10 BZERO
11-20 OMEGA
21-30 TOLER

Time step length.
Time at the end of the excitation force.
Time step of acceleration records.
$\alpha=$ Damping parameter, $\quad C=\alpha M$, $\alpha=2 \xi_{i} \omega_{i}$.
$\beta=$ Damping parameter, $\quad C=\beta K$. $\left(\alpha+\beta \omega_{i}{ }^{2}=2 \omega_{i} \xi_{i}\right.$, not used in DYNPAK) Newmark's integration parameter ( $\delta=0.25(\gamma+0.5)^{2}$, not used in DYNPAK).
Newmark's integration parameter ( $\gamma \geqslant 0.5$ for stable solution, not used in DYNPAK).

Constants for harmonic excitation $f(t)=a_{0}+b_{0} \sin \omega t$.

Specified tolerance (Not used in DYNPAK).

CARD SET 10 CARD FOR NODAL POINTS FOR WHICH DISPLACEMENT HISTORY IS REQUIRED (16I5)-Total of NREQD nodes.

Cols. 1-5 NPRQD(1)
6-10 NPRQD(2)

First nodal point at which displacement history is required.
Second nodal point at which displacement history is required.

CARD SET 11 CARD FOR INTEGRATION POINTS FOR WHICH STRESS HISTORY IS REQUIRED (1615)-Total of NREQS integration points.

Cols. 1-5 NGRQS(1) First integration point at which stress history is required.
6-10 NGRQS(2) Second integration point at which stress history is required.

CARD SET 12 IMPLICIT-EXPLICIT ELEMENT INDICATOR CARDS (16I5). Number of cards depends on number of elements. For each 16 elements one card is needed. In DYNPAK, INTGR(IELEM) is 2 for every element.

INTGR(IELEM) $=1$, Implicit element.
INTGR(IELEM) $=2$, Explicit element.
CARD SET 13 INITIAL DISPLACEMENT CARDS (I5,2F10.5)-One card for each node. If all displacements are zero, read data for last node.

Cols. 1-5 NGASH
6-15 XGASH
16-25 YGASH

Nodal point.
Initial $x$-displacement.
Initial $y$-displacement.

CARD SET 14 INITIAL VELOCITY CARDS (15,2F10.5)—One card for each node. If all velocities are zero, read data for last node.

Cols. 1-5 NGASH . Nodal point.
6-15 XGASH Initial $x$-velocity.
16-25 YGASH Initial $y$-velocity.
CARD SET 15 PREVIOUS LOAD STATE CARDS (15,2F10.3)—One card for one node, a total of NNODE cards. Data for the last nodal point should always be read even when it is not loaded. If NPREV $=0$ then omit this set of data.

| Cols. | 1-5 | NGASH |
| ---: | :--- | :--- |
| 6-15 | XGASH | Nodal point. |
| 16-25 | YGASH | Equivalent nodal load in $x$ direction. |
|  | Equivalent nodal load in $y$ direction. |  |

CARD SET 16 PREVIOUS STRESS STATE CARD (15,4F10.3) - One card for one integration point. Total of (NELEM*NGAUS*NGAUS) cards. If NPREV $=0$ omit this set of data.

Cols. 1-5 KGAUS
6-15 STRESS(1)
16-25 STRESS(2)
26-35 STRESS(3)
36-45 STRESS(4)

Integration point.
Initial stress, $\sigma_{x}$ or $\sigma_{r}$.
Initial stress, $\sigma_{y}$ or $\sigma_{z}$.
Initial stress, $\gamma_{x y}$ or $\gamma_{r z}$.
Initial stress, $\sigma_{z}$ or $\sigma_{\theta}$.

CARD SET 17 LOAD TITLE CARD (10A4)-One card.
Cols. 1-40 Title of load applied-limited to 40 alphanumeric characters.
CARD SET 18 LOAD INDICATOR CARD (4I5)-One card.

Cols. 1-5 IPLOD
6-10 IGRAV
11-15 IEDGE
16-20 ITEMP

Point load indicator.
Gravity load indicator.
Edge load indicator.
Temperature load indicator.

CARD SET 19 POINT LOAD CARD (I5,2F10.3)—One card for each node. Data for the last node must be specified at the end. If IPLOD $=0$ then omit this set of data.

Cols. 1-5 LODPT Node number.
6-15 POINT(1) Load in $x$-direction.
16-25 POINT(2) Load in $y$-direction.
CARD SET 20 GRAVITY LOAD CARD (2F10.3)-One card only. If IGRAV $=0$ then omit this set of data.

Cols. $1-10$ THETA Angle of gravity axis to the positive $y$ axis.
11-20 GRAVY Gravity constant.

CARD SET 21 NUMBER OF PRESSURE EDGE CARD (I5)-One card. If IEDGE $=0$, then omit card sets 21 and 22 .

Cols. 1-5 NEDGE Number of loaded edges.
CARD SET 22 PRESSURE CARDS-Two cards for each pressure loaded edge.

Ist Card PRESSURE NODES CARD (415)-One card for each edge. Total of NEDGE cards.

Cols. 1-5 NEASS
Cols. 6-10 NOPRS(1)
11-15 NOPRS(2)
16-20 NOPRS(3)


Element number with edge load.
Edge nodes read in anticlockwise sequence.

2nd Card PRESSURE CARD (6F10.3)-One card for each edge. Total of NEDGE cards. A pressure normal to a face is assumed to be positive if it acts in a direction into the element. A tangential load is assumed to be positive if it acts in an anticlockwise direction with respect to the loauedWW positive if it acts in an anticlockwise direction with respect to the loaded element.

Cols.
\(\left.\begin{array}{rl}\left.\begin{array}{rl}1-10 \& \operatorname{PRESS}(1,1) <br>
11-20 \& \operatorname{PRESS}(2,1) <br>
21-30 \& \operatorname{PRESS}(3,1) <br>
31-40 \& \operatorname{PRESS}(1,2) <br>
41-50 \& \operatorname{PRESS}(2,2) <br>

51-60 \& \operatorname{PRESS}(3,2)\end{array}\right\}\end{array}\right\}\)| Normal component of edge load for each |
| :--- |
| node. |
|  |
| Tangential component of edge load for |
| each node. |

CARD SET 24 TEMPERATURE CARDS (I5, F10.3)—One card for each node. The last card must be for the highest numbered node. If ITEMP $=0$, omit this set of data.

Cols. 1-5 NODPT
6-15 TEMPE

Node number. Nodal temperature.

CARD SET 25 CONCENTRATED MASSES (I5,2F10.3)-One card for each node. Total of NCONM cards. If NCONM $=0$, omit this set of data.

Cols. 1-5 IPOIN
6-15 XCMAS
16-25 YCMAS

Current nodal point with concentrated mass.
Concentrated mass associated with the $x$-direction.
Concentrated mass associated with the $y$-direction.

## Appendix IV

## Sample input data and line printer output for one - and two-dimensional applications

In this appendix input data and line printer output are provided for a selection of the numerical examples presented in the text. This information will be of assistance to readers who wish to implement the programs contained in the book on their own computer. For economy of space, presentation is limited to one example from each area of application. Also in some cases the line printer output is edited for the same reason.

## A.4.1 Solution of one-dimensional quasiharmonic problem by direct iteration. Example of Section 3.9.3, Fig. 3.3

## Input data



## Line printer output

-D QUASIHARMONIC EXAMPLE , SECTION 3.9 .3 , FIG. 3.3 NPOIN $=11$ NELEM $=10$ NBOUN $=2$ NMATS $=1$ NPROP $=1$ NNODE $=2$ NINCS $=1$ NALGO $=1$ NDOFN $=$

MATERIAL PROPERTIES

|  | 1 | 10.00000 |
| :---: | :---: | :---: |
| EI | NODES | MAT. |
| 1 | 12 | 1 |
| 2 | 23 | 1 |
| 3 | 34 | 1 |
| 4 | 45 | 1 |
| 5 | 56 | 1 |
| 6 | 67 | 1 |
| 7 | 78 | 1 |
| 8 | 89 | 1 |
| 9 | 910 | 1 |
| 10 | 1011 | 1 |
|  | NODE | COORD. |
|  | 1 | 0.00000 |
|  | 2 | 1.00000 |
|  | 3 | 2.00000 |
|  | 4 | 3.00000 |
|  | 5 | 4.00000 |
|  | 6 | 5.00000 |
|  | 7 | 6.00000 |
|  | 8 | 7.00000 |
|  | 9 | 8.00000 |
|  | 10 | 9.00000 |
|  | 11 | 10.00000 |

RES.NODE CODE PRES.VALUES

| 1 | 1 | 0.00000 |
| :--- | :--- | :--- |
| 11 | 1 | 1.00000 |

ELEMENT NODAL LOADS

| 0.00000 | 0.00000 |
| :--- | :--- |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |
| 0.00000 | 0.00000 |

IINCS $=1$ NITER $=20$ NOUTP $=1$ FACTO $=0.100000 \mathrm{E} 01$ TOLER $=0.500000 \mathrm{E} 00$
CONVERGENCE CODE $=1$ NORM OF RESIDUAL SUM RATIO $=0.000000 \mathrm{E} 00$
NODE DISPL.
1 0.000000E 00
2 0.100000E 00
3 0.200000E 00
40.300000 E 00

REACTIONS
-0.100000E 01
0.000000 E 00
0.000000 E 00
0.000000 E 00

5 0.400000E 00
0.000000 E 00
$6 \quad 0.500000 \mathrm{E} 00$
7 0.600000E 00
8 0.700000E 00
9 0.800000E 00
$10 \quad 0.900000 \mathrm{E} 00$
11 0.100000E 01
ELEMENT
STRESSES
0.000000 E 00
0.100000 E 01

PL.STRAIN
1 0.000000E 00 0.000000E 00
2 0.000000E 00 0.000000E 00
3 0.000000E 00 0.000000E 00
4 0.000000E 00 O.000000E 00
5 O.000000E OO O.000000E 00


## A.4.2 Solution of one-dimensional elasto-plastic problem. Example of Section 3.12.3, Fig. 3.9

Input data


|  |  |  |  |
| :---: | ---: | ---: | ---: |
|  | 6 | 4.0 |  |
|  | 6 | 5.0 |  |
|  | 7 | 4.0 |  |
|  | 8 | 3.0 |  |
|  | 9 | 2.0 |  |
|  | 10 | 1.0 |  |
|  | 11 | 0.0 |  |
|  | 11 | 1 | 0.0 |
|  | 1 | 0.0 |  |
|  | 5 | 0.0 | 10.0 |
| 30 | 2 | 0.0 | 0.0 |
| 30 | 2 | 1.25 | 0.5 |
| 30 | 2 | 0.25 | 0.5 |
| 30 | 2 | 0.25 | 0.5 |
| 30 | 2 | 0.25 | 0.5 |
| 30 | 2 | 0.25 | 0.5 |
| 30 | 2 | -3.5 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
| 30 | 2 | -0.25 | 0.5 |
|  |  |  | 0.5 |

## Line printer output

| 1-D | ELASTO | -PLASTIC | EXAMP | E , SECTIO | ON 3 | 12.3 ,FIG. | 3.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NPOIN $=$ | 11 | NELEM $=$ | 10 | NBOUN $=$ | 2 | NMATS $=$ | 2 |
| NPROP = | 4 | NNODE $=$ | 2 | NINCS $=$ | 16 | NALGO $=$ | 3 |
| NDOFN = | 1 |  |  |  |  |  |  |
| MATERIAL PROPERTIES |  |  |  |  |  |  |  |
| 1 |  | 0000.00000 |  | 1.00000 |  | 5.00000 | 1000.00000 |
|  |  | 0000.00000 |  | 2.00000 |  | 7.50000 | 2000.00000 |
| EL N | NODES | MAT. |  |  |  |  |  |
| 11 | 12 | 1 |  |  |  |  |  |
| 22 | 23 | 1 |  |  |  |  |  |
| 3 | 3 | 1 |  |  |  |  |  |
| 4 | 45 | 1 |  |  |  |  |  |
| 55 | 56 | 1 |  |  |  |  |  |
| 66 | 67 | 2 |  |  |  |  |  |
| 77 | 78 | 2 |  |  |  |  |  |
| 88 | 89 | 2 |  |  |  |  |  |
| 99 | 9 10 | 2 |  |  |  |  |  |
| $10 \quad 10$ | 11 | 2 |  |  |  |  |  |
| NODE |  | COORD. |  |  |  |  |  |
|  | 1 | 0.00000 |  |  |  |  |  |
| 2 | 2 | 1.00000 |  |  |  |  |  |
| 3 | 3 | 2.00000 |  |  |  |  |  |
| 4 | 4 | 3.00000 |  |  |  |  |  |
| 5 | 5 | 4.00000 |  |  |  |  |  |
| 6 | 6 | 5.00000 |  |  |  |  |  |
| 7 | 7 | 4.00000 |  |  |  |  |  |
| 8 | 8 | 3.00000 |  |  |  |  |  |
| 9 | 9 | 2.00000 |  |  |  |  |  |
| 10 |  | 1.00000 |  |  |  |  |  |
| 11 |  | 0.00000 |  |  |  |  |  |
| RES.NODE | CODE | E PRES.V | VALJES |  |  |  |  |
| 1 | 11 |  | . 00000 |  |  |  |  |
| 11 | 1 |  | . 00000 |  |  |  |  |

```
ELEMENT
 NODAL LOADS
 1
 2
 3
 4
 5
 6
 7
 8 0.00000 0.0000 0.0000
 9 0.00000 0.00000
 10 0.00000 0.00000
 IINCS = 1 NITER = 30 NOUTP = 2 FACTO = 0.125000E 01 TOLER = 0.500000E 00
 ITERATION NUMBER = 1
 CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 0.629197E-08
 NODE DISPL. REACTIONS
 1 0.000000E 00 -0.416667E 01
 2 0.416667E-03 0.000000E 00
 3 0.833333E-03 0.000000E 00
 4 0.125000E-02 0.000000E 00
 5 0.166667E-02 0.000000E 00
 0.208333L-02 0.000000E 00
 7 0.166667E-02 0.000000E 00
 0.125000E-02 0.000000E OO
 9 0.833333E-03 0.000000E 00
 10 0.416667E-03 0.000000E 00
 11 0.000000E 00 -0.833333E 01
ELEMENT STRESSES PL.STRAIN
 0.416667E 01 0.000000E 00
 2 0.416667E 01 0.000000E 00
 3 0.416667E 01 0.000000E 00
 4 0.416667E 01 0.000000E 00
 5 0.416667E 01 0.000000E 00
 6 0.416667E 01 0.000000E 00
 7 0.416667E 01 0.000000E 00
 8 0.416667E 01 0.000000E 00
 9 0.416667E 01 0.000000E 00
 10 0.416667E 01 0.000000E 00
```

    IINCS \(=3\) NITER \(=30\) NOUTP \(=2\) FACTO \(=0.250000 \mathrm{E} 00\) TOLER \(=0.500000 E 00\)
    ITERATION NUMBER \(=1\)
    CONVERGENCE CODE \(=1\) NORM OF RESIDUAL SUM RATIO \(=0.490863 E 01\)
    NODE DISPL.
        REACTIONS
        10.000000 E 00
        -0.583333E 01
        \(0.583333 \mathrm{E}-03 \quad 0.000000 \mathrm{E} 00\)
        \(0.116667 \mathrm{E}-02 \quad 0.000000 \mathrm{E} 00\)
        \(4 \quad 0.175000 \mathrm{E}-02 \quad 0.000000 \mathrm{E} 00\)
        5 0.233333E-02 0.000000E 00
        \(6 \quad 0.291667 \mathrm{E}-02\)
        0.000000 E 00
        \(\begin{array}{lll}7 & 0.233333 \mathrm{E}-02 & 0.000 \mathrm{COOE} 00\end{array}\)
        \(8 \quad 0.175000 \mathrm{E}-02 \quad 0.000000 \mathrm{E} 00\)
        9 0.116667E-02 0.000000 E 00
        \(10 \quad 0.583333 \mathrm{E}-03 \quad 0.000000 \mathrm{E} 00\)
        \(11-0.00000\) E
        -0.116667E 02
            STRESSES PL.STRAIN
        \(0.507576 \mathrm{E} 01 \quad 0.757576 \mathrm{E}-04\)
    2 0.507576E 01 0.757570EE-04
    \(3 \quad 0.507576 \mathrm{E} 01 \quad 0.757576 \mathrm{E}-04\)
    \(4 \quad 0.507576 \mathrm{E} 01 \quad 0.757576 \mathrm{E}-04\)
    ```
\begin{tabular}{lll}
5 & \(0.507576 E\) & 01 \\
6 & \(0.583333 E\) & 01 \\
7 & \(0.583333 E\) & 01
\end{tabular}
```

$0.583333 E 01$
$8 \quad 0.583333 E 01$
$9 \quad 0.583333 \mathrm{E} 01$
$10 \quad 0.583333 \mathrm{E} 01$ ITERATION NUMBER = CONVERGENCE CODE = NODE DISPL.

1 0.000000E 00
$20.608586 \mathrm{E}-03$
$3 \quad 0.121717 \mathrm{E}-02$
$4 \quad 0.182576 \mathrm{E}-02$
$5 \quad 0.243434 \mathrm{E}-02$
$6 \quad 0.304293 \mathrm{E}-02$
$7 \quad 0.243434 \mathrm{E}-02$
8 0.182576E-02
9 0.121717E-02
$10 \quad 0.608586 \mathrm{E}-03$
11 0.000000E 00
ELEMENT
STRESSES
1 0.509871E 01
20.509871 E 01
$3 \quad 0.509871 \mathrm{E} 01$
$4 \quad 0.509871 \mathrm{E} 01$
$5 \quad 0.509871 \mathrm{E} 01$
$6 \quad 0.608586 \mathrm{E} 01$
$7 \quad 0.608586 \mathrm{E} \quad 01$
8 0.608586E 01
$9 \quad 0.608586 \mathrm{E} 01$
$10 \quad 0.608586 \mathrm{E} 01$
ITERATION NUMBER =
CONVERGENCE CODE =
NODE DISPL.
1 0.000000E 00
$2 \quad 0.616238 \mathrm{E}-03$
$3 \quad 0.123248 \mathrm{E}-02$
$4 \quad 0.184871 E-02$
$5 \quad 0.246495 \mathrm{E}-02$
$6 \quad 0.308119 \mathrm{E}-02$
$7 \quad 0.246495 \mathrm{E}-02$
$8 \quad 0.184871 \mathrm{E}-02$
$90.123248 \mathrm{E}-02$
$10 \quad 0.616238 \mathrm{E}-03$
110.000000 E 00

STRESSES
0.510567 E 01

2 0.510567E 01
3 0.510567E 01
$4 \quad 0.510567 E 01$
5 0.510567E 01
$6 \quad 0.616238 \mathrm{E} 01$
7 0.616238E 01
$8 \quad 0.616238 \mathrm{E} 01$
$9 \quad 0.616238 \mathrm{E} 01$
$10 \quad 0.616238 \mathrm{E} 01$
$0.757576 \mathrm{E}-04$
0.000000 E 00

2
1 NORM OF RESIDUAL SUM RATIO $=0.147757 E 01$ REACTIONS
-0.532828E 01
0.000000 E 00
-0.121717E 02
PL.STRAIN
$0.987144 \mathrm{E}-04$
$0.987144 \mathrm{E}-04$
$0.987144 \mathrm{E}-04$
$0.987144 \mathrm{E}-04$
$0.987144 \mathrm{E}-04$
0.000000 E 00

3
0 NORM OF RESIDUAL SUM RATIO $=0.446758 \mathrm{E} 00$ REACTIONS
-0.517524E 01
0.000000 E 00
$-0.123248 \mathrm{E} 02$
PL.STRAIN
$0.105671 \mathrm{E}-03$
$0.105671 \mathrm{E}-03$
$0.105671 \mathrm{E}-03$
$0.105671 \mathrm{E}-03$
$0.105671 \mathrm{E}-03$
0.000000 E 00

```
etc.
```


## A.4.3 Solution of one-dimensional elasto-viscoplastic problem. Example of Section 4.12, Fig. 4.6

Input data


Line printer output
1-D ELASTO VISCO-PLASTIC EXAMPLE , SECTION 4.12 , FIG. 4.6

| NPOIN $=$ | 2 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| NPROP | $=5$ | NELEM $=$ | 1 |
| NBOUN $=$ | 1 | NMATS $=$ | 1 |
| NINCS $=$ | 1 | NALGO $=$ | 3 |

NDOFN $=\frac{1}{\text { MATERIAL PROPERTIES }}$

1	10000.00000	1.00000	10.00000	5000.00000	0.00100


EL	NODES	MAT.	
1	1	2	1

NODE COORD.
10.00000
$2 \quad 10.00000$
RES.NODE CODE PRES.VALUES
110.00000

ELEMENT NODAL LOADS
$1 \quad 0.00000 \quad 15.00000$
TAUFT $=0.500000 \mathrm{E}-01$ DTINT $=0.250000 \mathrm{E}-01 \quad$ FTIME $=0.150000 \mathrm{E} 01$
IINCS $=1$ NSTEP $=90$ NOUTP $=2$ FACTO $=0.100000 \mathrm{E} 01$ TOLER $=0.100000 \mathrm{E} 00$
TOTAL TIME $=0.000000$ E 00
CONVERGENCE CODE $=999$ NORM OF RESIDUAL SUM RATIO $=0.100000 \mathrm{E} 03$
NODE DISPL. REACTIONS
$0.000000 \mathrm{E} 00-0.150000 \mathrm{E} 02$
$20.150000 \mathrm{E}-01 \quad 0.000000 \mathrm{E} 00$
ELEMENT STRESSES PL.STRAIN
0.150000E 02 0.000000E 00

TOTAL TIME $=0.250000 \mathrm{E}-01$
CONVERGENCE CODE $=1$ NORM OF RESIDUAL SUM RATIO $=0.650000 \mathrm{E} 02$
NODE DISPL. REACTIONS
$0.000000 \mathrm{E} 00-0.150000 \mathrm{E} 02$
ELEMENT STRESSES PL.STRAIN
$i \quad 0.150000 \mathrm{E} 02 \quad 0.125000 \mathrm{E}-03$
TOTAL TIME $=0.435714 \mathrm{E}-01$
CONVERGENCE CODE $=999$ NORM OF RESIDUAL SUM RATIO $=0.682500 E 02$
NODE DISPL. REACTIONS
10.000000 E 00
-0.150000E 02
0.170625E-01
0.000000 E 00

ELEMENT STRESSES PL.STRAIN
1 0.150000E $020.206250 \mathrm{E}-03$
TOTAL TIME $=0.650675 \mathrm{E}-01$
CONVERGENCE CODE $=999$ NORM OF RESIDUAL, SUM RATIO $=0.716625 E 02$
NODE DISPL.
REACTIONS
$1 \quad 0.000000 \mathrm{E} 00 \quad-0.150000 \mathrm{E} 02$
$2 \quad 0.179156 \mathrm{E}-01 \quad 0.000000 \mathrm{E} 00$


## A.4.4 Solution of elasto-plastic layered Timoshenko beam. Example of Section 5.5.6, Fig. 5.11

## Input data



## Line printer output

1-D EP TIMOSHENKO LAYERED BEAM EXAMPLE , SECTION 5.5.6, FIG. 5.11



6	0.225237 E 01	0.000000
7	0.208417 E 01	0.000000
8	0.161862 E 01	0.000000
9	0.972874 E 00	0.000000
10	0.342210 E 00	0.000000
11	0.000000 E 00	-0.206550
ELEMENT		ESSES
	-0.743580E 05	0.185895 E 03
2	-0.247860E 05	0.144585 E 03
3	$0.123930 E 05$	0.103275 E 03
4	0.371790 E 05	0.619650 E 02
5	0.495720 E 05	0.206550 E 02
6	0.495720 E 05	$-0.206550 \mathrm{E} 02$
7	0.371790 E 05	-0.619650E 02
8	0.123930 E 05	-0.103275E 03
9	-0.247860E 05	-0.144585E 03
	-0.743580E 05	-0.185895E 03

IINCS $=6$ NITER $=100$ NOUTP $=2$ FACTO $=0.500000 \mathrm{E}-01 \quad$ TOLER $=0.500000 \mathrm{E} 00$ ITERATION NUMBER $=1$
CONVERGENCE CODE $=1$ NORM OF RESIDUAL SUM RATIO $=0.464588 \mathrm{E} 01$ NODE DISPLACEMENTS REACTIONS

1	0.000000E 00	-0.550800E 03	0.000000 E 00	-0.272646E 06
2	0.912561 E 00	0.000000 E 00	$0.416571 \mathrm{E}-02$	0.000000 E 00
3	0.259433 E 01	0.000000E 00	$0.555429 \mathrm{E}-02$	0.000000 E 00
4	0.431631 E 01	0.000000 E 00	$0.486000 \mathrm{E}-02$	0.000000 E 00
5	0.555778 E 01	0.000000 E 00	$0.277714 \mathrm{E}-02$	0.000000 E 00
6	0.600632 E 01	0.000000 E 00	-0.645258E-13	0.000000 E 00
7	0.555778 E 01	0.000000 E 00	-0.277714E-02	0.000000 E 00
8	0.431631 E 01	0.000000 E 00	-0.486000E-02	0.000000 E 00
9	0.259433 E 01	0.000000 E 00	-0.555429E-02	0.000000 E 00
10	0.912561 E 00	0.000000 E 00	-0.416571E-02	0.000000 E 00
11	0.000000 E 00	-0.550800E 03	0.000000 E 00	0.272646 E 06

## ELEMENT STRESSES

$1-0.189331 \mathrm{E} 06 \quad 0.495720 \mathrm{E} 03$
$2-0.660960 \mathrm{E} 05 \quad 0.385560 \mathrm{E} 03$
$3 \quad 0.330480 \mathrm{E} 05 \quad 0.275400 \mathrm{E} 03$
$4 \quad 0.991440 \mathrm{E} 05 \quad 0.165240 \mathrm{E} 03$
$5 \quad 0.132192 E \quad 06 \quad 0.550800 \mathrm{E} \quad 02$
$6 \quad 0.132192 \mathrm{E} 06-0.550800 \mathrm{E} 02$
$7 \quad 0.991440 \mathrm{E} 05-0.165240 \mathrm{E} 03$
$8 \quad 0.330480 \mathrm{E} 05-0.275400 \mathrm{E} 03$
$9-0.660960 \mathrm{E} 05-0.385560 \mathrm{E} 03$
$10-0.189331 \mathrm{E} 06-0.495720 \mathrm{E} 03$
ITERATION NUMBER $=2$
CONVERGENCE CODE $=0$ NORM OF RESIDUAL SUM RATIO $=0.210144 \mathrm{E}-08$

NODE DISPLACEMENTS

-0.550800 E 03	0.000000 E 00	-0.265108 E 06
0.000000 E 00	$0.479915 \mathrm{E}-02$	0.000000 E 00
0.000000 E 00	$0.602936 \mathrm{E}-02$	0.000000 E 00
0.000000 E 00	$0.517672 \mathrm{E}-02$	0.000000 E 00
0.000000 E 00	$0.293550 \mathrm{E}-02$	0.00000 E 00
0.000000 E 00	$-0.118097 \mathrm{E}-12$	0.000000 E 00
0.000000 E 00	$-0.293550 \mathrm{E}-02$	0.000000 E 00
0.000000 E 00	$-0.517672 \mathrm{~F}-02$	0.000000 E 00
0.000000 E 00	$-0.602936 \mathrm{E}-02$	0.000000 E 00



3 0.784888E 05 0.327522E 03
$4 \quad 0.156624 \mathrm{E} 06 \quad 0.197302 \mathrm{E} 03$ $5-0.131161 \mathrm{E} 14 \quad 0.684992 \mathrm{E} 02$ 6 0.196000E $06-0.616594 \mathrm{E} 02$ 7 0.156896E $06-0.197302 \mathrm{E} 03$ $8 \quad 0.787157 \mathrm{E} 05-0.325057 \mathrm{E} 03$ $9-0.388044 \mathrm{E} 05-0.458235 \mathrm{E} 03$ $10 \quad 0.573122 \mathrm{E} 13-0.590427 \mathrm{E} 03$ ITERATION NUMBER = 3 CONVERGENCE CODE $=999$ NORM OF RESIDUAL SUM RATIO $=0.247769 \mathrm{E} 12$ NODE DISPLACEMENTS REACTIONS

0.000000 E 00	0.386547 E 11	0.000000 E 00	0.131941 E 14
$2-0.256689 E 18$	0.000000 E 00	-0.171126E 16	0.000000 E 00
$3-0.770066 \mathrm{E} 18$	0.000000 E 00	-0.171126E 16	0.000000 E 00
$4-0.128344 E 19$	0.000000 E 00	-0.171126E 16	0.000000 E 00
$5-0.179682 \mathrm{E} 19$	0.000000 E 00	-0.171126E 16	0.000000 E 00
$6-0.707142 \mathrm{E} 18$	0.000000 E 00	0.897579 E 16	0.000000 E 00
$0.559323 E 18$	0.000000 E 00	-0.532688E 15	0.000000 E 00
0.399516E 18	0.000000 E 00	-0.532688E 15	0.000000 E 00
0.239710E 18	0.000000 E 00	-0.532688E 15	0.000000 E 00
$0.799033 E 17$	0.000000 E 00	-0.532688E 15	0.000000 E 00
0.000000 E 00	0.316249 E 09	0.000000 E 00	-0.594731E 13

ELEMENT STRESSES
$0.719122 \mathrm{E} 13-0.381105 \mathrm{E} 11$
2 -0.195980E 06 -0.169380E 11
$3-0.195887 E$ E 06 -0.846899E 10
4 -0.195820E 06 0.197302E 03
$5-0.131161 \mathrm{E} 14 \quad 0.684992 \mathrm{E} 02$
$6 \quad 0.196000 \mathrm{E} 06-0.616594 \mathrm{E} 02$
7 0.196011E 06 0.148207E 11
$8 \quad 0.195954 \mathrm{E} 06 \quad 0.211725 \mathrm{E} 10$
$9 \quad 0.195971 \mathrm{E} 06 \quad 0.635174 \mathrm{E} 10$
$10-0.253560 \mathrm{E} 23 \quad 0.211725 \mathrm{E} 10$
ITERATION NUMBER $=4$
CONVERGENCE CODE $=999$ NORM OF RESIDUAL SUM RATIO $=0.576146 \mathrm{E} 14$ NODE DISPLACEMENTS REACTIONS

1	0.000000 E 00	0.386547 E 11	0.000000 E 00	0.131941 E 14
2	0.808314 E 27	0.00000 E 00	0.538876 E 25	0.000000 E 00
3	0.808244 E 27	0.000000 E 00	-0.538923 E 25	0.000000 E 00
4	-0.940584 E 28	0.000000 E 00	-0.627047 E 26	0.000000 E 00
5	-0.116832 E 25	0.000000 E 00	0.125402 E 27	0.000000 E 00
6	0.679753 E 25	0.00000 E 00	-0.12534 E 27	0.000000 E 00
7	-0.395493 E 26	0.00000 E 00	0.125040 E 27	0.000000 E 00
8	0.230105 E 27	0.000000 E 00	-0.123243 E 27	0.000000 E 00
9	-0.133880 E 28	0.000000 E 00	0.112783 E 27	0.000000 E 00
10	0.778935 E 28	0.000000 E 00	-0.519290 E 26	0.000000 E 00
11	0.000000 E 00	-0.198094 E 21	0.000000 E 00	0.507119 E 23

1 -0.255902E $33-0.381105 \mathrm{E} 11$ -0.195980E $06 \quad 0.241990 \mathrm{E} 18$ 3 -0.195887E 06 -0.290992E 21 4 -0.195820E 06 0.197302E 03 5 0.119358E $35-0.124894 \mathrm{E} 21$ $6-0.119186 \mathrm{E} 35-0.254618 \mathrm{E} 21$ 7 0.196011E 06 -0.109122E 21 8 0.195954E 06 0.109122E 21
$9 \quad 0.195971 \mathrm{E} 06 \quad 0.145496 \mathrm{E} 21$
$10-0.253560 \mathrm{E} 23 \quad 0.211725 \mathrm{E} 10$

## A.4.5 Solution of two-dimensional elasto-plastic problem. Example of Section 7.9, Fig. 7.12



$\begin{gathered} 1 \\ 21000.0 \end{gathered}$	0.3		0.0		0.0	24.0	0.0	0.0	0.0
INTERNAL PRESSURE									
$3 \mathrm{~N}: \therefore 1$									
13	32	1							
20.0	0.0		20.0		0.0	20.0	0.0		
25	54	3							
20.0	0.0		20.0		0.0	20.0	0.0		
37	76	5							
20.0	0.0		20.0		0.0	20.0	0.0		
0.7	1.0		730	3	3				

## Line printer output




REACTIONS
NODE X-REAC. Y-REAC.
$10.000000 \mathrm{E} 00-0.761999 \mathrm{E} 02$ $7-0.761999 E 02 \quad 0.000000 \mathrm{E} 00$
$8 \quad 0.000000 \mathrm{E} 00-0.269921 \mathrm{E} 03$ 11 -0.269921E $03 \quad 0.000000 \mathrm{E} 00$ $12 \quad 0.000000 \mathrm{E} 00-0.116327 \mathrm{E} 03$
18 -0.116327E $03 \quad 0.000000 \mathrm{E} 00$
$19 \quad 0.000000 \mathrm{E} 00-0.210260 \mathrm{E} 03$ $22-0.210260 E 03 \quad 0.000000 \mathrm{E} 00$
$23 \quad 0.000000 \mathrm{E} 00-0.117156 \mathrm{E} 03$
$29-0.117156 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$30 \quad 0.000000 \mathrm{E} 00-0.250153 \mathrm{E} 03$
$33-0.250153 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$34 \quad 0.000000 \mathrm{E} 00-0.110283 \mathrm{E} 03$
$40-0.110283 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$41 \quad 0.000000 \mathrm{E} 00-0.203189 \mathrm{E} 03$
$44-0.203189 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$45 \quad 0.000000 \mathrm{E} 00-0.465120 \mathrm{E} 02$
51 -0.465120E 02 0.000000E 00

G.P	XX-STRESS	YY-STRESS	-STRESS	2Z-STRESS	MAX	MIN P.S	ANGLE	. 5.
ELEMENT NO. =								
1	-0.893805E 01	0.180284 E 02	-0.307422E 01	0.304329 E 01	0.183744 E 02	-0.928408E 01	6.422	0.2
2	-0.485865E 01	0.139487 E 02	-0.101400E 02	0.304318 E 01	0.183743 E 02	-0.928420E 01	23.579	$0.240580 \mathrm{E}-03$
3	-0.880961E 01	$0.181337 E 02$	-0.306125E 01	0.280970 E 01	0.184771 E 02	-0.915305E 01	6.401	$0.770100 \mathrm{E}-05$
4	-0.472518E 01	0.140487 E 02	-0.101362E 02	0.280953 E 01	0.184768 E 02	-0.915334E 01	23.599	$0.770430 \mathrm{E}-05$
ELEMENT NO. =								
1	0.465341 E 00	$0.862395 E 01$	-0.132139E 02	290E 01	183739E	28461E	36.422	
2	0.862395 E 01	0.465341 E 00	-0.132139E 02	24290E 01	183739E 02	-0.928461E 01	-36.422	03
3	0.577107 E 00	$0.874645 E 01$	-0.131974E 02	0.280952E 01	,		6.	
4	0.874645 E 01	0.577107 E 00	-0.131974E 02	0.280952 E 01	0.184769 E	$15330 E 01$	36.	0.768219E-05
ELEMENT NO. $=3$								
1	0.139487 E 02	-0.485865E 01	-0.101400E 02	0.304318 E 01	0.183743 E 02	-0.928420E 01	-23.579	03
2	0.180284 E 02	-0.89 ${ }^{\text {d }}$ (05E 01	-0.307422E 01	0.304329 E 01	0.183744 E 02	-0.928408E 01	-6.422	$0.240602 \mathrm{E}-03$
	0.140487 E 02	-0.472518E 01	-0.101362E 02	0.280953 E 01	$0.184768 \mathrm{E}^{0} 02$	-0.915334E 01	-23.599	$0.770431 \mathrm{E}-05$
4	0.181337 E 02	-0.880961E 01	-0.306125E 01	0.280970 E 01	0.184771 E 02	-0.915305E 01	-6.401	0.770100E-05
ELEMENT NO. =								
	-0.713097E 01	0.164644 E 02	-0.267828E 01	0.280004 E 01	0.167646 E	-0.743116E 01	6.395	0.000000E 00
2	-0.355180E 01	0.128851 E 02	-0.887785E 01	0.280000 E 01	0.167646 E 02	-0.743124E 01	23.604	0.000000E 00
	-0.520488E 01	0.145383 E 02	-0.224680E 01	0.280002 E 01	0.147907 E 02	-0.545735E 01	6.411	0.000000 E 0


$-0.221523 E 01$	01	0.279991 E 01	E	E	23.588	0.000000E 00
EMENT NO.						
$0.108723 E 01$	0.824570E $01-0.115562 \mathrm{E} 02$	0.279988 E 01		E	36.395	0.000000 E 00
$0.824570{ }^{0} 01$	$0.108723 E 01-0.115562 E 02$	0.279988 E 01	0.167643 E 02	-0.743133E 01	-36.395	0.000000 E 00
0.167670 E 01	$0.765648 \mathrm{E} 01-0.967249 \mathrm{E} 01$	$0.279995 E 01$	0.147906 E 02	-0.545747E 01	36.411	0.000000 E 00
0.765648 E 01	$0.167670 E 01-0.967249 E 01$	$0.279995{ }^{01}$	0.147906 E 02	47 E		0.000000 E 00
ELEMENT NO. =						
0.128851 E	-0.355180E $01-0.887785 \mathrm{E} 01$	0.280000 E 01	0.167646 E	-0.743124E	-23.604	0.00
0.164644 E 02	-0.713097E $01-0.267828 \mathrm{E} 01$	0.280004 E 01	0.167646 E 02	-0.743116E 01	-6.395	0.000000 E
0.115483 E 02	-0.221523E $01-0.742551 \mathrm{E} 01$	0.279991 E 01	0.147906 E 02	-0.545755E 01	-23.588	0.000000E
0.145383 E 02	-0.520488E $01-0.224680 \mathrm{E} 01$	0.280002 E 01		35 01		0.000000 E
ELEMENT NO. =						
-0.383616E 01	$0.131694 \mathrm{E} 02-0.193148 \mathrm{E} 01$	0.279998E 01	0.133861 E 02	-0.405278E 01	6.399	0.000000 E
-0.125760E 01	$0.105909 E 02-0.639778 E 01$	$0.279999 E 01$	0.133861 E 02	-0.405277E 01	23.600	0.000000 E
-0.212632E 01	$0.114596 \mathrm{E} 02-0.154577 \mathrm{E} 01$	0.279997 E 01	0.116332 E 02	-0.229997E 01	6.410	0.000000 E
-0.686952E-01	0.940184 E 01 -0.510990E 01	0.279994 E 01	0.116332 E 02	005E 01	23.590	0.000000 E 00
ELEMENT NO. =						
0.208787 E 01	$0.724522 E 01-0.832942 E 01$	0.279993 E 01	0.133860 E 02	-0.405291E 01	36.399	0.000000 E
0.724522 E 01	$0.208787 \mathrm{E} 01-0.832942 \mathrm{E} 01$	$0.279993 E 01$	0.133860 E 02	-0.405291E 01	-36.399	0.000000 E
0.260888 E 01	$0.672438 \mathrm{E} 01-0.665579 \mathrm{E} 01$	0.279998 E 01	0.116333 E 02	-0.229999E 01	36.410	0.000
0.672438 E 01	$0.260888 \mathrm{E} 01-0.665579 \mathrm{E} 01$	0.279998 E 01	0.1	229999E	-36.410	0.000000 E 00
ELEMENT NO. =						
0.105909 E 02	-0.125760E $01-0.639778 \mathrm{E} 01$	$0.279999 E 01$	0.133861 E 02	-0.405277E 01	-23.600	0.000000 E
0.131694 E 02	-0.383616E $01-0.193148 \mathrm{E} 01$	0.279998 E 01	0.133861 E 02	-0.405278E 01	-6.399	0.000000 E
0.940184 E 01	-0.686952E-01 -0.510990E 01	0.279994 E 01	0.116332 E 02	-0.230005E 01	-23.590	0.000000 E
0.114596 E 02	-0.212632E $01-0.154577 \mathrm{E} 01$	$0.279997 E 01$	$0.116332 E$	-0.229997E 01	-6.4	
ELEMENT NO. $=10$						
-0.118841E 01	$0.105216 \mathrm{E} 02-0.132981 \mathrm{E} 01$	0.279995 E 01	0.106707 E 02	-0.133753E 01	6.398	0.000000E 00
0.587478 E 00	$0.874580 \mathrm{E} 01-0.440564 \mathrm{E} 01$	0.279998 E 01	0.106707 E 02	-0.133746E 01	23.602	0.000000 E 00
-0.186150E 00	$0.951929 E 01-0.110110 \mathrm{E} 01$	0.279994 E 01	0.964264 E 01	-0.309504E 00	6.392	0.000000
0.128661 E 01	$0.804648 \mathrm{E} 01-0.365206 \mathrm{E} 01$	0.279993 E 01	0.964263 E	-0.309548E 00	23.608	.
ELEMENT NO. = 11						
0.289070 E 01	$0.644254 \mathrm{E} 01-0.573552 \mathrm{E} 01$	0.279997E 01	0.106708 E 02	-0.133755E 01	36.398	0.000000 E 00
0.644254 E 01	$0.289070 \mathrm{E} 01-0.573552 \mathrm{E} 01$	$0.279997 E 01$	0.106708 E 02	-0.133755E 01	-36.398	0.000000 E
0.319390 E 01	$0.613950 \mathrm{E} 01-0.475323 \mathrm{E} 01$	0.280002 E 01	0.964288 E 01	-0.309476E 00	36.392	0.000000 E
0.613950E 01	$0.319390 E 01-0.475323 E 01$	0.280002 E 01	0.964288 E 01	-0.309476E 00	-36.392	00000
ELEMENT NO. $=12$						
0.874580 E 01	$0.587478 \mathrm{E} 00-0.440564 \mathrm{E} 01$	0.279998 E 01	0.106707 E 02	-0.133746E 01	-23.602	0.000000 E
0.105216 E 02	-0.118841E $01-0.132981 \mathrm{E} 01$	0.279995 E 01	0.106707 E 02	-0.133753E 01	-6.398	0.000000
0.804648 E 01	$0.128661 \mathrm{E} 01-0.365206 \mathrm{E} 01$	0.279993 E 01	$0.964263 E$	0.309548 E	-23.608	0.000000 E

-145383E 02 ELEMENT NO. = $-0.383616 \mathrm{E} 01$ -0.125760E 01 -0.212632E 01 -0.686952E-01
ELEMENT NO. = 8 0.724522 E 01 0.208787E 01 -0.832942E 01 0.260888 E 01 0.672438E 01 -0.665579E 01 0.672438 E 01 0.260888E 01 -0.665579E 01

ELEMENT NO. $=9$
$0.105909 \mathrm{E}^{=} 02-0.125760 \mathrm{E} 01-0.639778 \mathrm{E} 01$ $0.131694 \mathrm{E} 02-0.383616 \mathrm{E} 01-0.193148 \mathrm{E} 01$ 0.940184 E 01 -0.686952E-01-0.510990E 01 $0.114596 \mathrm{E} 02-0.212632 \mathrm{E} 01-0.154577 \mathrm{E} 01$
ELEMENT NO. $=10$
-0.118841E 01 0.105216E $02-0.132981 \mathrm{E} 01$ $0.587478 \mathrm{E} 00 \quad 0.874580 \mathrm{E} 01$-0.440564E 01 -0.186150E 00 0.951929E 01 -0.110110E 01 0.128661 E 01 0.804648E $01-0.365206 \mathrm{E} 01$ ELEMENT NO. = 11 0.289070E 01 0.644254E 01 - O.573552E 01 0.644254 E 01 0.289070E 01 -0.573552E 01 0.319390 E 01 0.613950E 01 -0.475323E 01 0.613950E 01 0.319390E 01 -0.475323E 01 ELEMENT NO. $=12$
$0.874580 \mathrm{E} 01 \quad 0.587478 \mathrm{E} 00-0.440564 \mathrm{E} 01$ $0.105216 \mathrm{E} 02-0.118841 \mathrm{E} 01-0.132981 \mathrm{E} 01$ $0.804648 \mathrm{E} 01 \quad 0.128661 \mathrm{E} 01-0.365206 \mathrm{E} 01$

CONVERGENCE CODE $=1$ NORM OF RESIDUAL SUM RATIO $=0.556571 E 01$ MAXIMUM RESIDUAL $=0.222848 \mathrm{E} 02$ CONVERGENCE CODE = CONVERGENCE CODE = CONVERGENCE CODE = DISPLACEMENTS

## NODE <br> X-DISP.

 $0.139121 E 00$ $0.134201 E 00$ 0.120482 E 00 $0.982428 \mathrm{E}-01$ 0.695626E-01 0.359609E-01 0.000000 E 00 $0.127126 E 00$ $0.110094 E 00$ $0.635643 \mathrm{E}-01$ 0.000000 E 00 $0.118379 E 00$ $0.114299 E 00$ 0.102520 E 00 $0.836738 \mathrm{E}-01$ $0.591908 \mathrm{E}-01$ 0.306268E-01 0.000000 E 00 0.111650 E 00 0.966928E-01 $0.558264 \mathrm{E}-01$ 0.000000 E 00 $0.106084 E 00$ $0.102421 E 00$ 0.918730E-01 $0.749788 \mathrm{E}-01$ $0.530435 \mathrm{E}-01$ $0.274436 \mathrm{E}-01$ 0.000000 E 00 $\begin{array}{ll}0.000000 \mathrm{E} 00 & 0.106084 \mathrm{E} 00 \\ 0.993465 \mathrm{E}-01 & 0.000000 \mathrm{E} 00\end{array}$ $0.860377 \mathrm{E}-01 \quad 0.496741 \mathrm{E}-01$ $0.496741 \mathrm{E}-01 \quad 0.860377 \mathrm{E}-01$$0.000000 \mathrm{E} 00-106084 \mathrm{E} 00$
$37 \quad 0.665485 \mathrm{E}-01 \quad 0.665485 \mathrm{E}-01$
0.000000 E 00
0.359609E-01
$0.695626 \mathrm{E}-01$
$0.982428 \mathrm{E}-01$
0.120482 E 00
0.134201 E 00
0.139121 E 00 0.000000 E 00 $0.635643 \mathrm{E}-01$ 0.110094 E 00 $0.127126 E 00$ 0.000000 E 00 $0.306268 \mathrm{E}-01$ $0.591908 \mathrm{E}-01$ $0.836738 \mathrm{E}-01$ 0.102520 E 00 0.114299 E 00 $0.118379 E 00$ 0.000000 E 0 $0.558264 \mathrm{E}-01$ $0.966928 \mathrm{E}-01$ 0.111650 E 00 0.000000 E 00 $0.274436 \mathrm{E}-01$ $0.530435 \mathrm{E}-01$ $0.749788 \mathrm{E}-01$ $0.918730 \mathrm{E}-01$ $0.102421 E 00$

MAXIMUM RESIDUAL $=0.222848 \mathrm{E}$ O2 MAXIMUM RESIDUAL $=0.728396 E 01$ MAXIMUM RESIDUAL $=0.415713 E 01$



## A.4.6 Solution of two-dimensional elasto-viscoplastic problem. Example of Section 8.16, Fig. 8.10

## Input data



5	1	14	20	25	26		21	16	15
6	1	16	21	27	28	29	22	18	17
7	1	23	30	34	35	36	31	25	24
8	1	25	31	36	37	38	32	27	26
9	1	27	32	38	39	40	33	29	28
10	1	34	41	45	46	47	42	36	35
11	1	36	42	47	48	49	43	38	37
12	1	38	43	49	50	51	44	40	39
1	100.0		0.0			27	70.0		121.243
2	96.592		25.882			28	36.234		135.230
3	86.602		50.0			29	0.0		140.0
4	70.710		70.710			30	155.0		0.0
5	50.0		86.602			31	134.234		77.5
6	25.882		96.592			32	77.5		134.234
7	0.0		100.0			33	0.0		155.0
	110.0		0.0			34	170.0		0.0
9	95.263		55.0			35	164.207		43.999
10	55.0		95.263			36	147.224		85.0
11	0.0		110.0			37	120.208		120.208
	120.0		0.0			38	85.0		147.224
	115.911		31.058			39	43.999		164.207
14	103.923		60.0			40	0.0		170.0
15	84.853		84.853			41	185.0		0.0
1	60.0		103.923			42	160.215		92.5
17	31.058		115.911			43	92.5		160.215
18	0.0		120.0			44	0.0		185.0
19	130.0		0.0			45	200.0		0.0
20	112.583		65.0			46	193.185		51.764
21	65.0		112.583			47	173.205		100.0
22	0.0		130.0			48	141.421		141.421
23	140.0		0.0			49	100.0		173.205
24	135.230		36.234			50	51.764		193.185
25	121.243		70.0			51	0.0		200.0
26	98.995		98.995						
	1	01	1	0.0		0.	. 0		
	7	10	0	0.0		0.	. 0		
	8	01	1	0.0		0.	. 0		
	1	10	0	0.0		0.	. 0		
1	2	01	1	0.0		0.	. 0		
	8	10	0	0.0		0.	. 0		





$0.100000 \mathrm{E}-02$

00

!
8
8
8
0
0

0.000000 E 00

0.000000 E 00

8
4
8
8
0
0

## 24

 00 덩띤 0000 • 0 0501
EN ENCOUNTERED

$$
\begin{aligned}
& \text { EDGES }=3 \\
& 0 \text { EDGES AND APPLIED LOADS }
\end{aligned}
$$



### 0.000

20.000
8989898888888



 O




 $00^{\circ 0} 0^{\circ \circ} 0^{\circ 0} 0^{\circ \circ} 0^{\circ}$
8888888888888


8888888888888



 .000
$70 R$
7800 $\begin{array}{r}0.000 \\ 3 \\ 0.000 \\ 5 \\ 5 \\ \hline .000\end{array}$
OF LOADED
OF LOADED

> RCES
응ㅇㅇㅇㅇ́ㅇㅇ8ㅇ888


2
20.000
NO.
LIST
容 แ以 TOTAL

$$
\begin{aligned}
& 0.000 \\
& 0.000
\end{aligned}
$$

 응형ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ


## G.P.

5	0.697974E-01	0.120888 E 00
6	0.360826E-01	0.134655 E 00
7	0.000000 E 00	0.139590 E 00
8	0.127595 E 00	0.000000 E 00
9	0.110501 E 00	0.637993E-01
10	0.637993E-01	0.110501 E 00
11	0.000000 E 00	0.127595 E 0
12	0.118811 E 00	0.000000 E 00
13	$0.114717 E 00$	$0.307387 \mathrm{E}-01$
14	0.102894 E 0	$0.594071 \mathrm{E}-01$
15	0.839794E-01	$0.839794 \mathrm{E}-01$
16	0.59407 IE-01	0.102894 E 00
17	$0.307387 E-01$	0.114717 E 00
18	0.000000 E 00	0.118811 E 00
19	0.112058 E 00	0.000000 E 00
20	0.970459E-01	0.560303E-01
21	0.560303E-01	$0.970459 \mathrm{E}-01$
22	0.000000 E 00	0.112058 E 00
23	0.106472 E 00	0.000000 E 00
24	0.102796 E 00	0.275438E-01
25	0.922085E-01	$0.532372 \mathrm{E}-01$
26	$0.752527 \mathrm{E}-01$	0.752527E-01
27	$0.532372 \mathrm{E}-01$	$0.922085 \mathrm{E}-01$
28	0.275438E-01	0.102796 E 00
29	0.000000 E 00	0.106472 E 0
30	0.997092E-01	0.000000 E 00
31	$0.863519 \mathrm{E}-01$	0.498555E-01
32	0.498555E-01	0.863519E-01
33	0.000000 E 00	$0.997092 \mathrm{E}-01$
34	$0.945016 \mathrm{E}-01$	0.000000 E 0
35	$0.912376 \mathrm{E}-01$	0.244471E-01
36	$0.818419 \mathrm{E}-01$	$0.472516 \mathrm{E}-01$
37	0.66791 GE-01	$0.667916 \mathrm{E}-01$
38	0.472516E-01	0.818419E-01

[^11] XX-STRESS MENI NO. = -0.125015E 02 0.145585E $02-0.308575 \mathrm{E} 01$ -0.840843E $01 \quad 0.104656 E \quad 02-0.101747 E 02$ -0.959430E $01 \quad 0.174053 \mathrm{E} 02-0.306854 \mathrm{E} 01$ $-0.550191 E 01 \quad 0.133124 \mathrm{E} 02-0.1 \mathrm{C} 1570 \mathrm{E} 02$

39	$0.244471 \mathrm{E}-01$	$0.912376 \mathrm{E}-01$
40	0.000000 E	00

NODE X-REAC. Y-REAC.
$10.000000 \mathrm{E} 00-0.456968 \mathrm{E} 02$
$7-0.456968 \mathrm{E} 02 \quad 0.000000 \mathrm{E} 00$
8 0.000000E $00-0.217851 E 03$
$11-0.217851 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$12 \quad 0.000000 \mathrm{E} 00-0.125513 \mathrm{E} 03$
$18-0.125513 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$19 \quad 0.000000 \mathrm{E} 00-0.226754 \mathrm{E} 03$
$22-0.226754 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$23 \quad 0.000000 \mathrm{E} 00-0.126319 \mathrm{E} 03$
$29-0.126319 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$30 \quad 0.000000 \mathrm{E} 00-0.269717 \mathrm{E} 03$
$33-0.269717 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$34 \quad 0.000000 \mathrm{E} 00-0.118912 \mathrm{E} 03$
$40-0.118912 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$41 \quad 0.000000 \mathrm{E} 00-0.219087 \mathrm{E} 03$
$44-0.219087 \mathrm{E} 03 \quad 0.000000 \mathrm{E} 00$
$45 \quad 0.000000 \mathrm{E} 00-0.501497 \mathrm{E} 02$
$51-0.501497 \mathrm{E} 02 \quad 0.000000 \mathrm{E} 00$
ZZ-STRESS
MAX P.S.
MIN P.S.
$0.617103 \mathrm{E} 00 \quad 0.149059 \mathrm{E} 02-0.128489 \mathrm{E} 02$ $0.617146 \mathrm{E} 00 \quad 0.149060 \mathrm{E} 02-0.128488 \mathrm{E} 02$ $0.234329 E 01 \quad 0.177496 E 02-0.993866 E 01$
$0.234314 \mathrm{E} 01 \quad 0.177494 \mathrm{E} 02-0.993889 \mathrm{E} 01$
$0.177494 \mathrm{E} 02-0.993889 \mathrm{E} 01$
$6.424 \quad 0.452901 \mathrm{E}-03$
$23.577 \quad 0.452852 \mathrm{E}-03$
$6.4030 .112244 \mathrm{E}-03$
$23.598 \quad 0.112237 \mathrm{E}-03$
$\qquad$

$\qquad$

11

EMENT NO. = 2
-0.306428E 01 0.512105E 01 -0.132601E 02 $0.512105 \mathrm{E} 01-0.306428 \mathrm{E} 01-0.132601 \mathrm{E} 02$ $-0.187011 \mathrm{E} 00 \quad 0.799786 \mathrm{E} 01-0.132254 \mathrm{E} 02$ $0.799786 \mathrm{E} 01-0.187011 \mathrm{E} 00-0.132254 \mathrm{E} 02$ LLEMENT NO. =
$0.104656 \mathrm{E}^{-} 02-0.840843 \mathrm{E} 01-0.101747 \mathrm{E} 02$ $0.145585 \mathrm{E} 02-0.125015 \mathrm{E} 02-0.308575 \mathrm{E} 01$ $0.133124 E 02-0.550191 E 01-0.101570 E 02$ $0.174053 \mathrm{E} 02-0.959430 \mathrm{E} 01-0.306854 \mathrm{E} 01$ LEMENT NO. = 4 -0.768855E $01 \quad 0.177524 \mathrm{E} 02-0.288931 \mathrm{E} 01$ $-0.383066 \mathrm{E} 01 \quad 0.138944 \mathrm{E} 02-0.957149 \mathrm{E} 01$ $-0.561211 \mathrm{E} 01 \quad 0.156759 \mathrm{E} 02-0.242231 \mathrm{E} 01$ $-0.238836 \mathrm{E} 01 \quad 0.124516 \mathrm{E} 02$ - 0.800669 E 01 LEMENT NO. $=5$
0.117360 E 01 0.888913E 01 -0.124607E 02 $0.888913 \mathrm{E} 010.117360 \mathrm{E} 01-0.124607 \mathrm{E} 02$ 0.180755 E 01 0.825572E 01 -0.104291E 02 $0.825572 \mathrm{E} 010.180755 \mathrm{E} 01-0.104291 \mathrm{E} 02$ ELEMENT NO. $=6$
$0.138944 E 02-0.383066 E 01-0.957149 E 01$ $0.177524 E 02-0.768855 E 01-0.288931 E 01$ $0.124516 \mathrm{E} 02-0.238836 \mathrm{E} 01-0.800669 \mathrm{E} 01$ $0.156759 \mathrm{E} 02-0.561211 \mathrm{E} 01-0.242231 \mathrm{E} 01$ EMENT NO. = 7 -0.413632E 01 0.141999E $02-0.208235 E 01$ $-0.135581 \mathrm{E} 01 \quad 0.114194 \mathrm{E} 02-0.689847 \mathrm{E} 01$ $-0.229264 \mathrm{E} 01 \quad 0.123561 \mathrm{E} 02-0.166675 \mathrm{E} 01$ -0.741370E-01
$0.225090 \mathrm{E} 01 \quad 0.781227 \mathrm{E} 01$-0.898102E 01 $0.781227 E 01 \quad 0.225090 \mathrm{E} 01$ - 0.898102 E 01 $0.281300 E 01 \quad 0.725044 \mathrm{E} 01$-0.717655E 01 $0.725044 \mathrm{E} 01 \quad 0.281300 \mathrm{E} 01$-0.717655E 01 LEMENT NO. = 9
$0.114194 \mathrm{E} 02-0.135581 \mathrm{E} 01$-0.689847E 01 $0.141999 E 02-0.413632 E 01-0.208235 E 01$ $0.101375 \mathrm{E} 02-0.741370 \mathrm{E}-01$-0.550962E 01 $0.123561 \mathrm{E} 02-0.229264 \mathrm{E} 01-0.166675 \mathrm{E} 01$
$0.617031 E 00$ 0.617031 E 00 0.234325 E 01 0.234325 E 01
$0.617146 E 00$
0.617103 E 00
0.234314 E 01 $0.234329 E 01$
$0.149057 \mathrm{E} 02-0.128490 \mathrm{E} 0236.424$
$0.149057 \mathrm{E} 02-0.128490 \mathrm{E} 02-36.424$ $0.177495 \mathrm{E} 02-0.993866 \mathrm{E} 01 \quad 36.403$ $0.177495 \mathrm{E} 02-0.993866 \mathrm{E} 01-36.403$
$0.452796 \mathrm{E}-03$
$0.452796 \mathrm{E}-03$
0.112182E-03
$0.112182 \mathrm{E}-03$
$0.149060 \mathrm{E} 02-0.128488 \mathrm{E} 02-23.577 \quad 0.452852 \mathrm{E}-03$
$0.149059 E 02-0.128489 \mathrm{E} 02-6.424 \quad 0.452901 \mathrm{E}-03$
$0.177494 \mathrm{E} 02-0.993889 \mathrm{E} 01$-23.598 $0.112237 \mathrm{E}-03$
$0.177496 \mathrm{E} 02-0.993866 \mathrm{E} 01-6.403 \quad 0.112244 \mathrm{E}-03$
0.301916 E 01
$0.180764 \mathrm{E} 02-0.801257 \mathrm{E} 01 \quad 6.398 \quad 0.000000 \mathrm{E} 00$ $0.180763 \mathrm{E} 02-0.801259 \mathrm{E} 01 \quad 23.601 \quad 0.000000 \mathrm{E} 00$ $0.159481 \mathrm{E} 02-0.588426 \mathrm{E} 01 \quad 6.410 \quad 0.000000 \mathrm{E} 00$ $0.159478 \mathrm{E} 02-0.588457 \mathrm{E} 01 \quad 23.589 \quad 0.000000 \mathrm{E} 00$
$0.180756 \mathrm{E} 02-0.801283 \mathrm{E} 01 \quad 36.399 \quad 0.000000 \mathrm{E} 00$ $0.180756 \mathrm{E} 02-0.801283 \mathrm{E} 01-36.399 \quad 0.000000 \mathrm{E} 00$ $0.159477 \mathrm{E} 02-0.588446 \mathrm{E} 01 \quad 36.411 \quad 0.000000 \mathrm{E} 00$ $0.159477 \mathrm{E} 02-0.588446 \mathrm{E} 01-36.411 \quad 0.000000 \mathrm{E} 00$
$0.180763 E 02-0.801259 E 01-23.601 \quad 0.000000 \mathrm{E} 00$ - $0.180764 \mathrm{E} 02-0.801257 \mathrm{E} 01-6.398 \quad 0.000000 \mathrm{E} 00$ $0.159478 \mathrm{E} 02-0.588457 \mathrm{E} 01$-23.589 0.000000E 00 $0.159481 \mathrm{E} 02-0.588426 \mathrm{E} 01-6.410 \quad 0.000000 \mathrm{E} 00$
0.301908 E 01 $0.144334 E \quad 02-0.436983 E 01$ $0.144334 \mathrm{E} 02-0.436983 \mathrm{E} 0123$
$6.398 \quad 0.000000 \mathrm{E} 00$ $23.601 \quad 0.000000 \mathrm{E} 00$ $6.410 \quad 0.000000 \mathrm{E} 00$ $0.125434 \mathrm{E} 02-0.248000 \mathrm{E} 01 \quad 23.589 \quad 0.000000 \mathrm{E} 00$ $0.144332 \mathrm{E} 02-0.437006 \mathrm{E} 01 \quad 36.398 \quad 0.000000 \mathrm{E} 00$ $0.144332 \mathrm{E} 02-0.437006 \mathrm{E} 01-36.398 \quad 0.000000 \mathrm{E} 00$ $0.125434 \mathrm{E} 02-0.247998 \mathrm{E} 01 \quad 36.410 \quad 0.000000 \mathrm{E} 00$ $0.125434 \mathrm{E} 02-0.247998 \mathrm{E} 01-36.410 \quad 0.000000 \mathrm{E} 00$
$0.144334 \mathrm{E} 02-0.436983 \mathrm{E} 01$-23.601 0.000000E 00 $0.144334 \mathrm{E} 02-0.436983 \mathrm{E} 01-6.398 \quad 0.000000 \mathrm{E} 00$ $0.125434 \mathrm{E} 02-0.248000 \mathrm{E} 01-23.589 \quad 0.000000 \mathrm{E} 00$ $0.125434 \mathrm{E} 02-0.247990 \mathrm{E} 01$-6.410 0.000000 E 00


## A.4. 7 Solution of a non-layered elasto-plastic Mindlin plate. Example of Section 9.7, Fig. 9.6

Input data									
MINDLIN NON-LAYERED			EXAMPLE,		SECTION	2.7 ,	FIG. 9.6		
25	41	5	9	,	3		1	39	0
1	11	2	3	8	13	12	11	6	7
2	13	4	5	-10	15	14	13	8	9
3	111	12	13	18	23	22	21	16	17
4	113	14	15	20	25	24	23	18	19
1	0.0		0.0						
3	0.25		0.0						
5	0.5		0.0						
11	0.0		0.25						
13	0.25		0.25						
15	0.50		0.25						
21	0.0		0.50						
23	0.25		0.50						
25	0.50		0.50						
11	111								
21	110								

ммммммммммммммммммммм
000000000000000000000

888888888888888888888





888888888888888888888
 0Line printer output



4	110	0.000000	0.000000	0.000000
5	110	0.000000	0.000000	0.000000
6	101	0.000000	0.000000	0.000000
10	10	0.000000	0.000000	0.000000
11	101	0.000000	0.000000	0.000000
15	10	0.000000	0.000000	0.000000
16	101	0.000000	0.000000	0.000000
20	10	0.000000	0.000000	0.000000
21	101	0.000000	0.000000	0.000000
22	1	0.000000	0.000000	0.000000
23	1	0.000000	0.000000	0.000000
24	1	0.000000	0.000000	0.000000
25	11	0.000000	0.000000	0.000000
NUMBER	ELEMENT	PROPERTIES		



INCREMENT NUMBER 30

IN CONVER ITERATION NUMBER 1

```
DISPLACEMENT CHANGE NORM
 .282E+00 .280E+00 .280E+00
 TOTAL
 -.281E+00
RESIDUAL NORM
 .182E-10
 .896E-06 .896E-06
```

            TOTAL
    -. 605E-07
    CONVERGENCE CODE 1
IN CONVER ITERATION NUMBER 2
DISPLACEMENT CHANGE NORM
.293E-06 .294E-06 .294E-06
TOTAL
-.294E-06
RESIDUAL NORM
$.183 \mathrm{E}-11$.266E-11 .245E-11
TOTAL
-. 183E-11
CONVERGENCE CODE 0
DISPLACEMENTS

NODE	DISP.	XZ-ROT.	YZ-ROT.
1	0.	0.	0.
2	0.	0.	. $455052 \mathrm{E}+04$
3	0.	0.	. $879322 \mathrm{E}+04$
4	0.	0.	. $106738 \mathrm{E}+05$
5	0.	0.	. $118879 \mathrm{E}+05$
6	9.	. $455052 \mathrm{E}+04$	0.
7	0.	. $410180 \mathrm{E}+03$	. $410180 \mathrm{E}+03$
8	.101997E+04	.289215E+04	. $742347 E+04$
9	0.	. $984409 \mathrm{E}+02$	$.623582 \mathrm{E}+03$
10	$.139568 \mathrm{E}+04$	0.	. $102627 \mathrm{E}+05$
11	0.	. $879322 \mathrm{E}+04$	0.
12	. $101997 E+04$	. $742347 \mathrm{E}+04$	. $289215 \mathrm{E}+04$
13	.183493E+04	. $557560 \mathrm{E}+04$	. $557560 \mathrm{E}+04$
14	. $235881 \mathrm{E}+04$	.275674E+04	. $688004 \mathrm{E}+04$
15	$.252626 E+04$	0.	$.772635 \mathrm{E}+04$




```
RESIDUAL NORM
\(.845 \mathrm{E}-08\). 662E-08 .628E-08
- TOTAL
\(-.845 \mathrm{E}-08\)
CONVERGENCE CODE 1
IN CONVER ITERATION NUMBER 2
DISPLACEMENT CHANGE NORM
\(.918 \mathrm{E}-08\).908E-08 .897E-08
TOTAL
-. 903E-08
RESIDUAL NORM
.265E-11 .200E-11 .295E-11
TOTAL
-. 265E-11
CONVERGENCE CODE 0
DISPLACEMENTS
```

NODE DISP.
10.
XZ-ROT.
YZ-ROT.
20 . 0
0.
P.
0.
$61614 E+04$

```
.2083E-01
0.
\(-.5208 \mathrm{E}-02\)
\(0 . \quad-.5208 \mathrm{E}-02\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline .2778E-01 & 0. & 0. & & & & & \\
\hline -.5208E-02 & 0. & 0. & .2083E-01 & 0. & 0. & -.5208E-02 & 0. \\
\hline 0. & .2083E-01 & 0. & 0. & -.5208E-02 & 0. & 0. & .2083E-01 \\
\hline 0. & 0. & -.5208E-02 & 0. & 0. & .2083E-01 & 0. & 0. \\
\hline
\end{tabular}
3
.2778E-01
```



```
\(0 . \quad .2083 \mathrm{E}-01\)
```



```
0.
-. 5208E-02
0.
\(0 . \quad .2083 \mathrm{E}-01\)
70 0
2778E-01
4
```

$-.5208 \mathrm{E}-02$
2778E-01
INCREMENT NUMBER
LOAD FACTOR =
0.
-. 5208E-02
.2083E-01
0.
0.
$0 . \quad 0.2083 \mathrm{E}-01$
INITIAL OUTPUT PARAMETER $=0$ FINAL OUTPUT PARAMETER $=3$

```

\section*{ITERATION NUMBER}
```

DISPLACEMENT CHANGE NORM
$.100 \mathrm{E}+03 \quad .100 \mathrm{E}+03 \quad .100 \mathrm{E}+03$
TOTAL
-. 100E+03都

```
\begin{tabular}{|c|c|c|c|}
\hline 3
4 & 0.
0. & 0. & \(.505686 E+04\)
\(.615962 E+04\) \\
\hline 5 & 0. & 0. & . \(687815 \mathrm{E}+04\) \\
\hline 6 & 0. & \(.261614 \mathrm{E}+04\) & 0. \\
\hline 7 & 0. & . \(230157 \mathrm{E}+03\) & \(.230157 \mathrm{E}+03\) \\
\hline 8 & \(.587914 \mathrm{E}+03\) & . \(167781 \mathrm{E}+04\) & . \(428957 \mathrm{E}+04\) \\
\hline 9 & 0. & \(.639453 E+02\) & . \(362274 \mathrm{E}+03\) \\
\hline 10 & \(.807234 E+03\) & 0. & . \(593553 \mathrm{E}+04\) \\
\hline 11 & 0. & \(.505686 \mathrm{E}+04\) & 0. \\
\hline 12 & . \(587914 \mathrm{E}+03\) & \(.428957 \mathrm{E}+04\) & . \(167781 \mathrm{E}+04\) \\
\hline 13 & . \(105976 \mathrm{E}+04\) & . \(323511 \mathrm{E}+04\) & . \(323511 \mathrm{E}+04\) \\
\hline 14 & . \(136395 \mathrm{E}+04\) & \(.160213 E+04\) & . \(398710 \mathrm{E}+04\) \\
\hline 15 & .146134E+04 & 0. & \(.447417 \mathrm{E}+04\) \\
\hline 16 & 0. & \(.615962 E+04\) & 0. \\
\hline 17 & 0. & \(.362274 E+03\) & \(.639453 \mathrm{E}+02\) \\
\hline 18 & \(.136395 E+04\) & . \(398710 \mathrm{E}+04\) & . \(160213 \mathrm{E}+04\) \\
\hline 19 & 0. & \(.132888 E+03\) & \(.132888 \mathrm{E}+03\) \\
\hline 20 & \(.188400 \mathrm{E}+04\) & 0. & \(.224070 E+04\) \\
\hline 21 & 0. & . \(687815 \mathrm{E}+04\) & 0. \\
\hline 22 & . \(807234 E+03\) & . \(593553 \mathrm{E}+04\) & 0. \\
\hline 23 & \(.146134 \mathrm{E}+04\) & \(.447417 \mathrm{E}+04\) & 0. \\
\hline 24 & . \(188400 \mathrm{E}+04\) & \(.224070 E+04\) & 0. \\
\hline 25 & .202089E+04 & 0. & 0. \\
\hline \multicolumn{4}{|l|}{REACTIONS} \\
\hline NODE & FORCE & XZ-MOMENT & YZ-MOMENT \\
\hline 1 & . 124667E-01 & -. 357597E-03 & -. 357597E-03 \\
\hline 2 & -. \(399935 \mathrm{E}-01\) & -. \(292695 \mathrm{E}-02\) & 0. \\
\hline 3 & . \(280665 \mathrm{E}-01\) & -. \(486232 \mathrm{E}-03\) & 0. \\
\hline 4 & -. \(754754 \mathrm{E}-01\) & -. \(103874 \mathrm{E}-02\) & 0. \\
\hline 5 & .186691E-01 & -. 132162E-02 & 0. \\
\hline 6 & -. \(399935 \mathrm{E}-31\) & 0. & -. 292695E-02 \\
\hline 10 & 0. & -. \(215061 \mathrm{E}-02\) & 0. \\
\hline 11 & .280665E-01 & 0. & -. \(486232 \mathrm{E}-03\) \\
\hline 15 & 0. & -. 105925E-02 & 0. \\
\hline 16 & -. \(754754 \mathrm{E}-01\) & 0. & -. 103874E-02 \\
\hline 20 & 0. & -. \(417385 E-02\) & Q. \\
\hline 21 & .186691E-01 & 0. & -. 132162E-02 \\
\hline 22 & 0. & 0. & -. \(215061 \mathrm{E}-02\) \\
\hline 23 & 0. & 0. & -. \(105925 \mathrm{E}-02\) \\
\hline 24 & 0. & 0. & -. \(417385 E-02\) \\
\hline 25 & 0. & -.783842E-03 & -. \(783842 \mathrm{E}-03\) \\
\hline
\end{tabular}

Line printer output

\begin{tabular}{rrrrrr}
42 & 22.475 & 21.336 & 29 & 5.639 & 21.544 \\
47 & 22.475 & 24.003 & 30 & 5.743 & 21.941 \\
52 & 22.475 & 26.670 & 31 & 6.139 & 21.407 \\
3 & 22.680 & 0.000 & 32 & 6.196 & 21.604 \\
5 & 22.680 & 1.334 & 33 & 6.252 & 21.801 \\
8 & 22.680 & 2.667 & 34 & 6.636 & 21.258 \\
10 & 22.680 & 4.001 & 35 & 6.758 & 21.650 \\
13 & 22.680 & 5.334 & 36 & 7.129 & 21.098 \\
15 & 22.680 & 6.668 & 37 & 7.194 & 21.292 \\
18 & 22.680 & 8.001 & 38 & 7.260 & 21.487 \\
20 & 22.680 & 9.335 & 40 & 7.618 & 20.927 \\
23 & 22.680 & 10.668 & 7.758 & 21.312 \\
25 & 22.680 & 12.002 & 42 & 8.103 & 20.744 \\
28 & 22.680 & 13.335 & 43 & 8.177 & 20.935 \\
30 & 22.680 & 14.669 & 44 & 8.583 & 21.126 \\
33 & 22.680 & 16.002 & 45 & 8.741 & 20.549 \\
35 & 22.680 & 17.336 & 46 & 9.059 & 20.328 \\
38 & 22.680 & 18.669 & 48 & 9.142 & 20.531 \\
40 & 22.680 & 20.003 & 49 & 9.226 & 20.719 \\
43 & 22.680 & 21.336 & 50 & 9.530 & 20.128 \\
45 & 22.680 & 22.670 & 24 & 9.706 & 20.498 \\
48 & 22.680 & 24.003 & 52 & 10.088 & 19.901 \\
50 & 22.680 & 25.337 & 20.084 \\
53 & 22.680 & 26.670 & & & 10.180 \\
& & & 20.267
\end{tabular}
MATERIAL NO 1
YOUNG MODULUS . 1050E+08
POISSON RATIO . 3000
THICKNESS
0.
MASS DENSITY
ALPHA TEMPR
\(0.2450 E-03\)
REFERENCE FO . 2400E +05
HARDENING PAR . \(2143 \mathrm{E}+06\)
FRICT ANGLE 0.
FLUIDITY PAR . 1000E +05
\(\begin{array}{ll}\text { EXP DELTA } & 1.000 \\ \text { NFTO CODE } & 1.000\end{array}\)
TIME STEPPING PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|}
\hline NSTEP \(=\) & 500 & NOUTD \(=\) & 10 & NOUTP= & 250 \\
\hline NREOD \(=\) & 1 & NREQS= & 1 & NACCE= & \\
\hline IFUNC= & 1 & IFIXD \(=\) & 0 & MITER= & \\
\hline KSTEP= & 0 & IPRED \(=\) & 1 & & \\
\hline DTIME \(=\) & . \(4000 \mathrm{E}-06\) & DTEND \(=\) & . 1000E-02 & DTREC= & 0. \\
\hline AALFA \(=\) & 0. & BEETA= & 0. & DELTA= & 0. \\
\hline GAAMA \(=\) & 0. & AZERO= & 0. & BZERO= & 0. \\
\hline
\end{tabular}
NODE INITIAL X-VELO. INITIAL Y-VELO.

OAD CASE TITLE - DISTRIBUTED STEP PRESSURE P=600LB/IN
LOAD INPUT PARAMETERS
POINT LOADS 0
GRAVITY
EDGE LOAD
TEMPERATURE
0
1
0
NO: OF LOADED EDGES \(=10\)
LIST OF LOADED EDGES AND APPLIED LOADS 183

\(1-.80217 \mathrm{E}-36-.24592 \mathrm{E}-01\) \(4-.48654 \mathrm{E}-03-.24378 \mathrm{E}-01\) \(7-.95811 \mathrm{E}-03-.24277 \mathrm{E}-01\) \(10-.12997 \mathrm{E}-02-.24370 \mathrm{E}-01\) \(13-.18173 \mathrm{E}-02-.24753 \mathrm{E}-01\) \(16-.27549 \mathrm{E}-02-.24939 \mathrm{E}-01\) 19 -. 31689E-02 -. \(24317 \mathrm{E}-01\) \(22-.37338 \mathrm{E}-02-.23818 \mathrm{E}-01\) \(25-.39541 \mathrm{E}-02-.24145 \mathrm{E}-01\) \(28-.44904 \mathrm{E}-02-.25223 \mathrm{E}-01\) \(31-.68354 \mathrm{E}-02-.27549 \mathrm{E}-01\) \(34-.68148 \mathrm{E}-02-.27616 \mathrm{E}-01\) \(37-.70445 \mathrm{E}-02-.25897 \mathrm{E}-01\) \(40-.78642 \mathrm{E}-02-.21832 \mathrm{E}-01\) 43-.71315E-02 -. 16874E-01
46 . 15858E-03 -.72532E-02
49 . \(71545 \mathrm{E}-03-.26453 \mathrm{E}-02\) \(52.47545 \mathrm{E}-33 \quad .53008 \mathrm{E}-33\) G.P.
\begin{tabular}{|c|c|c|}
\hline & RR-STRESS & ZZ-STRESS \\
\hline & ELEMENT NO. & 1 \\
\hline & -. 142403E+05 & -. \(105408 \mathrm{E}+04\) \\
\hline 2 & -. \(137476 E+05\) & 35 \\
\hline 3 & . \(147863 \mathrm{E}+05\) & -. \(306845 \mathrm{E}+03\) \\
\hline 4 & -. 130724E+05 & -.794640E+03 \\
\hline & ELEMENT NO. & 2 \\
\hline 1 & -. 152776E+05 & -. \(476674 \mathrm{E}+03\) \\
\hline 2 & -. 123991E+05 & -. \(419294 \mathrm{E}+03\) \\
\hline 3 & -. \(139979 \mathrm{E}+05\) & -. \(424122 \mathrm{E}+03\) \\
\hline 4 & -. \(137154 \mathrm{E}+05\) & . 101627 \\
\hline & ELEMENT NO. & 3 \\
\hline 1 & -. \(120725 \mathrm{E}+06\) & . \(859252 \mathrm{E}+02\) \\
\hline 2 & -. \(155576 \mathrm{E}+05\) & -. \(672336 \mathrm{E}+03\) \\
\hline 3 & -. \(115157 \mathrm{E}+05\) & -. \(754333 \mathrm{E}+02\) \\
\hline 4 & -. 158138E+05 & -. \(995668 \mathrm{E}+03\) \\
\hline & ELEMENT NO. = & 4 \\
\hline \[
1
\] & -. \(133486 E+05\) & -.746264E+03 \\
\hline 2 & -. \(133564 \mathrm{E}+05\) & -.736688E+03 \\
\hline & -. \(161873 \mathrm{E}+05\) & -. \(716272 \mathrm{E}+03\) \\
\hline & -. 105957E+05 & -. \(963920 \mathrm{E}+03\) \\
\hline
\end{tabular}

2 . 16169E-37 -. \(24444 \mathrm{E}-01\) \(5-.47049 \mathrm{E}-03-.24082 \mathrm{E}-01\) 8 -. \(89235 \mathrm{E}-03-.24136 \mathrm{E}-01\) \(8-.89235 \mathrm{E}-03-.24136 \mathrm{E}-01\) -. \(24674 \mathrm{E}-02-.25202 \mathrm{E}-01\) 7 -. 29046E-02 -. 24767E-01 0 -.34286E-02 -. 23956E-01 -. \(36581 \mathrm{E}-02-.23704 \mathrm{E}-01\) -. \(55750 \mathrm{E}-02-.25293 \mathrm{E}-01\)
 -. \(63674 \mathrm{E}-02-.26563 \mathrm{E}-01\)
\(-.65796 \mathrm{E}-02-.27490 \mathrm{E}-01\)
\(-.72371 \mathrm{E}-02-.27120 \mathrm{E}-01\)
-.78704E-02 -. 25402E-01
\(41-.31809 \mathrm{E}-02-.18638 \mathrm{E}-01\)
44 -. 13257E-02 -. \(13014 \mathrm{E}-01\)
\(47-.16481 \mathrm{E}-02-.63066 \mathrm{E}-02\)
\(50-.14109 \mathrm{E}-02-.13718 \mathrm{E}-02\)
\(53-.45643 \mathrm{E}-33-.26357 \mathrm{E}-33\)
3 . 80603E-36-.24278E-01
\(6-.10271 \mathrm{E}-02-.24452 \mathrm{E}-01\)
\(-.16057 \mathrm{E}-02-.24657 \mathrm{E}-01\)
\(9-.16057 \mathrm{E}-02-.24657 \mathrm{E}-01\)
\(12-.19625 \mathrm{E}-02\)
\(-.24907 \mathrm{E}-01\)
\(2-.19625 \mathrm{E}-02-.24907 \mathrm{E}-01\)
\(15-.24494 \mathrm{E}-02-.24886 \mathrm{E}-01\)
\(18-.30484 \mathrm{E}-02-.24575 \mathrm{E}-01\)
11-.38241E-02 -. 23993E-01
\(24-.46693 \mathrm{E}-02-.24321 \mathrm{E}-01\)
27 -. \(50270 \mathrm{E}-02-.25239 \mathrm{E}-01\)
\(30-.53025 \mathrm{E}-02-.26494 \mathrm{E}-01\)
\(33-.63050 \mathrm{E}-02-.27373 \mathrm{E}-01\)
\(33-.63050 \mathrm{E}-02-.27373 \mathrm{E}-01\)
\(36-.61813 \mathrm{E}-02-.26275 \mathrm{E}-01\)
-. 49243E-02 -. 23242E-01
\(42-.51813 \mathrm{E}-02-.17807 \mathrm{E}-01\)
\(45-.55830 \mathrm{E}-02-.10958 \mathrm{E}-01\)
\(48-.35144 \mathrm{E}-02-.55039 \mathrm{E}-02\)
\(51 . .17196 \mathrm{E}-33-.61722 \mathrm{E}-33\)
540.
0 .
\begin{tabular}{llllll}
\(.188251 \mathrm{E}+04\) & \(-.141343 \mathrm{E}+05\) & \(-.790586 \mathrm{E}+03\) & \(-.145038 \mathrm{E}+05\) & -7.968 & 0. \\
\(.175780 \mathrm{E}+04\) & \(-.138344 \mathrm{E}+05\) & \(-.132611 \mathrm{E}+03\) & \(-.139746 \mathrm{E}+05\) & -7.357 & 0. \\
\(.360377 \mathrm{E}+03\) & \(-.144528 \mathrm{E}+05\) & \(-.297881 \mathrm{E}+03\) & \(-.147952 \mathrm{E}+05\) & -1.425 & 0. \\
\(.369614 \mathrm{E}+03\) & \(-.134549 \mathrm{E}+05\) & \(-.783523 \mathrm{E}+03\) & \(-.130835 \mathrm{E}+05\) & -1.723 & 0. \\
\(.112943 \mathrm{E}+04\) & \(-.149803 \mathrm{E}+05\) & \(-.390986 \mathrm{E}+03\) & \(-.153633 \mathrm{E}+05\) & -4.339 & 0. \\
\(.854064 \mathrm{E}+03\) & \(-.129006 \mathrm{E}+05\) & \(-.358713 \mathrm{E}+03\) & \(-.124596 \mathrm{E}+05\) & -4.057 & 0. \\
\(.544093 \mathrm{E}+03\) & \(-.146986 \mathrm{E}+05\) & \(-.402347 \mathrm{E}+03\) & \(-.140197 \mathrm{E}+05\) & -2.292 & 0. \\
\(.580061 \mathrm{E}+03\) & \(-.133725 \mathrm{E}+05\) & \(-.769561 \mathrm{E}+02\) & \(-.137401 \mathrm{E}+05\) & -2.435 & 0. \\
& & & & & \\
\(.104211 \mathrm{E}+04\) & \(-.137897 \mathrm{E}+05\) & \(.174599 \mathrm{E}+03\) & \(-.121612 \mathrm{E}+05\) & -4.864 & 0. \\
\(.121601 \mathrm{E}+04\) & \(-.144822 \mathrm{E}+05\) & \(-.573651 \mathrm{E}+03\) & \(-.156563 \mathrm{E}+05\) & -4.640 & 0. \\
\(.151423 \mathrm{E}+04\) & \(-.131835 \mathrm{E}+05\) & \(.121596 \mathrm{E}+03\) & \(-.117127 \mathrm{E}+05\) & -7.414 & 0. \\
\(.202746 \mathrm{E}+04\) & \(-.149737 \mathrm{E}+05\) & \(-.723272 \mathrm{E}+03\) & \(-.160862 \mathrm{E}+05\) & -7.652 & 0. \\
\(.285467 \mathrm{E}+04\) & \(-.135909 \mathrm{E}+05\) & \(-.129786 \mathrm{E}+03\) & \(-.139651 \mathrm{E}+05\) & -12.186 & 0. \\
\(.284774 \mathrm{E}+04\) & \(-.140809 \mathrm{E}+05\) & \(-.123832 \mathrm{E}+03\) & \(-.139692 \mathrm{E}+05\) & -12.145 & 0. \\
\(.322767 \mathrm{E}+04\) & \(-.145098 \mathrm{E}+05\) & \(-.698999 \mathrm{E}+02\) & \(-.168337 \mathrm{E}+05\) & -11.324 & 0. \\
\(.210077 \mathrm{E}+04\) & \(-.129019 \mathrm{E}+05\) & \(-.525664 \mathrm{E}+03\) & \(-.110339 \mathrm{E}+05\) & -11.784 & 0.
\end{tabular}
\begin{tabular}{llllll}
\(.188251 \mathrm{E}+04\) & \(-.141343 \mathrm{E}+05\) & \(-.790586 \mathrm{E}+03\) & \(-.145038 \mathrm{E}+05\) & -7.968 & 0. \\
\(.175780 \mathrm{E}+04\) & \(-.138344 \mathrm{E}+05\) & \(-.132611 \mathrm{E}+03\) & \(-.139746 \mathrm{E}+05\) & -7.357 & 0. \\
\(.360377 \mathrm{E}+03\) & \(-.144528 \mathrm{E}+05\) & \(-.297881 \mathrm{E}+03\) & \(-.147952 \mathrm{E}+05\) & -1.425 & 0. \\
\(.369614 \mathrm{E}+03\) & \(-.134549 \mathrm{E}+05\) & \(-.783523 \mathrm{E}+03\) & \(-.130835 \mathrm{E}+05\) & -1.723 & 0. \\
\(.112943 \mathrm{E}+04\) & \(-.149803 \mathrm{E}+05\) & \(-.390986 \mathrm{E}+03\) & \(-.153633 \mathrm{E}+05\) & -4.339 & 0. \\
\(.854064 \mathrm{E}+03\) & \(-.129006 \mathrm{E}+05\) & \(-.358713 \mathrm{E}+03\) & \(-.124596 \mathrm{E}+05\) & -4.057 & 0. \\
\(.544093 \mathrm{E}+03\) & \(-.146986 \mathrm{E}+05\) & \(-.402347 \mathrm{E}+03\) & \(-.140197 \mathrm{E}+05\) & -2.292 & 0. \\
\(.580061 \mathrm{E}+03\) & \(-.133725 \mathrm{E}+05\) & \(-.769561 \mathrm{E}+02\) & \(-.137401 \mathrm{E}+05\) & -2.435 & 0. \\
& & & & & \\
\(.104211 \mathrm{E}+04\) & \(-.137897 \mathrm{E}+05\) & \(.174599 \mathrm{E}+03\) & \(-.121612 \mathrm{E}+05\) & -4.864 & 0. \\
\(.121601 \mathrm{E}+04\) & \(-.144822 \mathrm{E}+05\) & \(-.573651 \mathrm{E}+03\) & \(-.156563 \mathrm{E}+05\) & -4.640 & 0. \\
\(.151423 \mathrm{E}+04\) & \(-.131835 \mathrm{E}+05\) & \(.121596 \mathrm{E}+03\) & \(-.117127 \mathrm{E}+05\) & -7.414 & 0. \\
\(.202746 \mathrm{E}+04\) & \(-.149737 \mathrm{E}+05\) & \(-.723272 \mathrm{E}+03\) & \(-.160862 \mathrm{E}+05\) & -7.652 & 0. \\
\(.285467 \mathrm{E}+04\) & \(-.135909 \mathrm{E}+05\) & \(-.129786 \mathrm{E}+03\) & \(-.139651 \mathrm{E}+05\) & -12.186 & 0. \\
\(.284774 \mathrm{E}+04\) & \(-.140809 \mathrm{E}+05\) & \(-.123832 \mathrm{E}+03\) & \(-.139692 \mathrm{E}+05\) & -12.145 & 0. \\
\(.322767 \mathrm{E}+04\) & \(-.145098 \mathrm{E}+05\) & \(-.698999 \mathrm{E}+02\) & \(-.168337 \mathrm{E}+05\) & -11.324 & 0. \\
\(.210077 \mathrm{E}+04\) & \(-.129019 \mathrm{E}+05\) & \(-.525664 \mathrm{E}+03\) & \(-.110339 \mathrm{E}+05\) & -11.784 & 0.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { EMENT NO. }= \\
& -.168527 \mathrm{E}+05
\end{aligned}
\] & - \(-712967 \mathrm{E}+03\) & . \(355630 \mathrm{E}+04\) & -. 151044E+05 & . 358997E+02 & -. \(176015 \mathrm{E}+05\) & -11.891 & \\
\hline 2 & -. \(965035 \mathrm{E}+04\) & -.718838E+03 & . \(203275 \mathrm{E}+04\) & -. 122643E+05 & -. \(277959 \mathrm{E}+03\) & -. \(100912 \mathrm{E}+05\) & -12.237 & 0 \\
\hline 3 & -. \(157929 \mathrm{E}+05\) & -. \(601834 \mathrm{E}+03\) & . \(309818 \mathrm{E}+04\) & -. 154933E+05 & . \(573147 \mathrm{E}+01\) & -. \(164005 \mathrm{E}+05\) & -11.095 & \\
\hline & -. \(109494 \mathrm{E}+05\) & -. \(556352 \mathrm{E}+03\) & . \(189021 \mathrm{E}+04\) & -. \(127634 \mathrm{E}+05\) & -. \(223251 \mathrm{E}+03\) & -. \(112825 \mathrm{E}+05\) & -9.994 & \\
\hline & ELEMENT NO. = & 6 & & & & & & \\
\hline 1 & -. 136993E+05 & -. \(430264 \mathrm{E}+03\) & .276735E+04 & -. 153917E+05 & . \(123755 \mathrm{E}+03\) & -. \(142533 \mathrm{E}+05\) & & \\
\hline 2 & -. \(130603 \mathrm{E}+05\) & -. \(829663 E+03\) & .258448E+04 & -. 139319E+05 & -. \(305957 \mathrm{E}+03\) & -. \(135840 \mathrm{E}+05\) & -11.455 & \\
\hline 3 & -. 100891E+05 & -. \(428639 \mathrm{E}+03\) & . \(185225 \mathrm{E}+04\) & -. 146315E+05 & -. \(856752 \mathrm{E}+02\) & -. \(104321 \mathrm{E}+05\) & -10.490 & \\
\hline 4 & -. 167170E+05 & -. \(106309 \mathrm{E}+04\) & . \(358040 \mathrm{E}+04\) & -. \(158653 \mathrm{E}+05\) & -. 283044E+03 & -. \(174970 E+05\) & -12.291 & \\
\hline & ELEMENT NO. = & 7 & & & & & & \\
\hline 1 & -.748198E+04 & -. \(154126 \mathrm{E}+03\) & . \(155617 \mathrm{E}+04\) & -. 136080E+05 & . 162653E+03 & -. \(779876 E+04\) & -11.506 & \\
\hline 2 & -. \(188538 \mathrm{E}+05\) & -. \(171938 \mathrm{E}+04\) & . \(502582 \mathrm{E}+04\) & -. 172146E+05 & -. \(354022 \mathrm{E}+03\) & -. \(202192 \mathrm{E}+05\) & -15.199 & \\
\hline 3 & -. \(498918 \mathrm{E}+04\) & -. \(283243 \mathrm{E}+03\) & . \(123802 \mathrm{E}+04\) & -. \(118093 \mathrm{E}+05\) & . \(225769 \mathrm{E}+02\) & -. \(529500 \mathrm{E}+04\) & -13.876 & \\
\hline 4 & -. \(211022 \mathrm{E}+05\) & \(-.239729 E+04\) & . \(599980 \mathrm{E}+04\) & -. 181324E+05 & -. 638225E+03 & -. \(228613 \mathrm{E}+05\) & -16.340 & \\
\hline & ELEMENT NO. & & & & & & & \\
\hline 1 & -. \(421590 \mathrm{E}+04\) & -. 332032E+03 & . \(167829 \mathrm{E}+04\) & -. 101971E+05 & . \(292698 \mathrm{E}+03\) & -. \(484063 \mathrm{E}+04\) & -20.417 & \\
\hline 2 & -. \(203671 \mathrm{E}+05\) & -. \(292740 \mathrm{E}+04\) & .739486E+04 & -. 175571E+05 & -. \(213976 \mathrm{E}+03\) & -. \(230805 \mathrm{E}+05\) & -20.150 & \\
\hline 3 & -. \(579043 \mathrm{E}+04\) & -. \(191795 \mathrm{E}+04\) & . \(260848 \mathrm{E}+04\) & -.859256E+04 & -. \(605623 \mathrm{E}+03\) & -.710276E+04 & -26.707 & \\
\hline 4 & -.179717E+05 & -. \(280583 \mathrm{E}+04\) & .716447E+04 & -. \(151334 \mathrm{E}+05\) & \(.434134 \mathrm{E}+02\) & -. \(208210 E+05\) & -21.687 & \\
\hline & ELEMENT NO. \(=\) & 9 & & & & & & \\
\hline 1 & -. \(808480 \mathrm{E}+04\) & -. 179792E+04 & . \(441523 \mathrm{E}+04\) & -.705104E+04 & . \(478552 \mathrm{E}+03\) & -. \(103613 \mathrm{E}+05\) & -27.275 & \\
\hline 2 & -. \(138434 \mathrm{E}+05\) & -. \(337445 \mathrm{E}+04\) & .706677E+04 & -. \(122206 \mathrm{E}+05\) & \(.185344 \mathrm{E}+03\) & -. \(174031 \mathrm{E}+05\) & -26.736 & \\
\hline 3 & -. \(126711 \mathrm{E}+05\) & -. \(279604 \mathrm{E}+04\) & .796913E+04 & -. 613091E+04 & .164120E+04 & -. \(171083 \mathrm{E}+05\) & -29.109 & \\
\hline 4 & -.825151E+04 & -. \(490425 \mathrm{E}+04\) & . \(337893 \mathrm{E}+04\) & -. \(813863 E+04\) & -. \(280717 \mathrm{E}+04\) & -. \(103486 \mathrm{E}+05\) & -31.825 & \\
\hline & ELEMENT NO. = & 10 & & & & & & \\
\hline 1 & -. \(175308 \mathrm{E}+05\) & -. \(460688 \mathrm{E}+04\) & . \(983514 \mathrm{E}+04\) & \(-.674090 \mathrm{E}+04\) & \(.699203 \mathrm{E}+03\) & -. \(228369 \mathrm{E}+05\) & -28.347 & \\
\hline 2 & -. \(149784 \mathrm{E}+04\) & -. \(237914 E+04\) & . \(298633 \mathrm{E}+04\) & -. \(325566 \mathrm{E}+04\) & . \(108018 \mathrm{E}+04\) & -. \(495715 \mathrm{E}+04\) & 40.803 & \\
\hline 3 & -. \(253662 \mathrm{E}+05\) & -. 151577E+05 & . \(109573 \mathrm{E}+05\) & -. \(118829 \mathrm{E}+05\) & -.817417E+04 & -. \(323498 \mathrm{E}+05\) & -32.511 & \\
\hline 4 & . \(721668 \mathrm{E}+04\) & \(.453440 \mathrm{E}+04\) & .661719E+03 & \(.320558 \mathrm{E}+04\) & \(.737105 \mathrm{E}+04\) & . \(438003 \mathrm{E}+04\) & 13.131 & \\
\hline
\end{tabular}

\section*{A.4.9 Solution of dynamic transient elasto-plastic problem by implicit/explicit approach. Example of Section 11.6.1, Fig. 11.4}

Input data

\begin{tabular}{rrrrrr}
2 & 22.475 & 00.0000 & 15 & 22.68 & 6.6675 \\
7 & 22.475 & 2.6670 & 18 & 22.68 & 8.0010 \\
12 & 22.475 & 5.3340 & 20 & 22.68 & 9.3345 \\
17 & 22.475 & 8.0010 & 23 & 22.68 & 10.6680 \\
22 & 22.475 & 10.6680 & 25 & 22.68 & 12.0015 \\
27 & 22.475 & 13.3350 & 28 & 22.68 & 13.3350 \\
32 & 22.475 & 16.0020 & 30 & 22.68 & 14.6685 \\
37 & 22.475 & 18.6690 & 33 & 22.68 & 16.0020 \\
42 & 22.475 & 21.3360 & 35 & 22.68 & 17.3355 \\
47 & 22.475 & 24.0030 & 38 & 22.68 & 18.6690 \\
52 & 22.475 & 26.6700 & 40 & 22.68 & 20.0025 \\
3 & 22.68 & 00.0000 & 43 & 22.68 & 21.3360 \\
5 & 22.68 & 1.3335 & 22.68 & 22.6695 \\
8 & 22.68 & 2.6670 & 58 & 22.68 & 24.0030 \\
10 & 22.68 & 4.0005 & 53 & 22.68 & 25.3365 \\
13 & 22.68 & 5.3340 & & 26.6700
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 22.270 & 0.000 & 32 & 22.475 & 16.002 \\
\hline 4 & 22.270 & 1.334 & 37 & 22.475 & 18.669 \\
\hline 6 & 22.270 & 2.667 & 42 & 22.475 & 21.336 \\
\hline 9 & 22.270 & 4.001 & 47 & 22.475 & 24.003 \\
\hline 11 & 22.270 & 5.334 & 52 & 22.475 & 26.670 \\
\hline 14 & 22.270 & 6.668 & 3 & 22.680 & 0.000 \\
\hline 16 & 22.270 & 8.001 & 5 & 22.680 & 1.334 \\
\hline 19 & 22.270 & 9.335 & 8 & 22.680 & 2.667 \\
\hline 21 & 22.270 & 10.668 & 10 & 22.680 & 4.001 \\
\hline 24 & 22.270 & 12.002 & 13 & 22.680 & 5.334 \\
\hline 26 & 22.270 & 13.335 & 15 & 22.680 & 6.668 \\
\hline 29 & 22.270 & 14.669 & 18 & 22.680 & 8.001 \\
\hline 31 & 22.270 & 16.002 & 20 & 22.680 & 9.335 \\
\hline 34 & 22.270 & 17.336 & 23 & 22.680 & 10.668 \\
\hline 36 & 22.270 & 18.669 & 25 & 22.680 & 12.002 \\
\hline 39 & 22.270 & 20.003 & 28 & 22.680 & 13.335 \\
\hline 41 & 22.270 & 21.336 & 30 & 22.680 & 14.669 \\
\hline 44 & 22.270 & 22.670 & 33 & 22.680 & 16.002 \\
\hline 46 & 22.270 & 24.003 & 35 & 22.680 & 17.336 \\
\hline 49 & 22.270 & 25.337 & 38 & 22.680 & 18.669 \\
\hline 51 & 22.270 & 26.670 & 40 & 22.680 & 20.003 \\
\hline 2 & 22.475 & 0.000 & 43 & 22.680 & 21.336 \\
\hline 7 & 22.475 & 2.667 & 45 & 22.680 & 22.670 \\
\hline 12 & 22.475 & 5.334 & 48 & 22.680 & 24.003 \\
\hline 17 & 22.475 & 8.001 & 50 & 22.680 & 25.337 \\
\hline 22 & 22.475 & 10.668 & 53 & 22.680 & 26.670 \\
\hline 27 & 22.475 & 13.335 & & & \\
\hline NODE & X & Y & & & \\
\hline 1 & 0.000 & 22.270 & 13 & 2.108 & 22.582 \\
\hline 2 & 0.000 & 22.475 & 14 & 2.586 & 22.119 \\
\hline 3 & 0.000 & 22.680 & 15 & 2.633 & 22.527 \\
\hline 4 & . 518 & 22.264 & 16 & 3.100 & 22.053 \\
\hline 5 & . 528 & 22.674 & 17 & 3.128 & 22.256 \\
\hline 6 & 1.036 & 22.246 & 18 & 3.157 & 22.459 \\
\hline 7 & 1.046 & 22.451 & 19 & 3.612 & 21.975 \\
\hline 8 & 1.055 & 22.655 & 20 & 3.679 & 22.380 \\
\hline 9 & 1.554 & 22.216 & 21 & 4.123 & 21.885 \\
\hline 10 & 1.582 & 22.625 & 22 & 4.161 & 22.087 \\
\hline 11 & 2.070 & 22.174 & 23 & 4.198 & 22.288 \\
\hline 12 & 2.089 & 22.378 & 24 & 4.631 & 21.783 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 25 & 4.716 & 22.184 & & & 40 & 7.758 & & . 312 & \multirow[t]{3}{*}{\%} \\
\hline 26 & 5.136 & 21.670 & & & 41 & 8.103 & & . 744 & \\
\hline 27 & 5.184 & 21.869 & & & 42 & 8.177 & & . 935 & \\
\hline 28 & 5.231 & 22.069 & & & 43 & 8.252 & & . 126 & \\
\hline 29 & 5.639 & 21.544 & & & 44 & 8.583 & & . 549 & \\
\hline 30 & 5.743 & 21.941 & & & 45 & 8.741 & & . 928 & \\
\hline 31 & 6.139 & 21.407 & & & 46 & 9.059 & & . 344 & \\
\hline 32 & 6.196 & 21.604 & & & 47 & 9.142 & & . 531 & \\
\hline 33 & 6.252 & 21.801 & & & 48 & 9.226 & & . 719 & \\
\hline 34 & 6.636 & 21.258 & & & 49 & 9.530 & & . 128 & \\
\hline 35 & 6.758 & 21.650 & & & 50 & 9.706 & & . 498 & \\
\hline 36 & 7.129 & 21.098 & & & 51 & 9.996 & & . 901 & \\
\hline 37 & 7.194 & 21.292 & & & 52 & 10.088 & & . 084 & S \\
\hline 38 & 7.260 & 21.487 & & & 53 & 10.180 & & . 267 & -170 \\
\hline 39 & 7.618 & 20.927 & & & & & & & 切 \\
\hline NODE & \multicolumn{8}{|l|}{CODE} & T \\
\hline 1 & 10 & & 19 & 00 & & & 37 & 00 & T \\
\hline 2 & 10 & & 20 & 00 & & & 38 & 00 & 3 \\
\hline 3 & 10 & & 21 & 00 & & & 39 & 00 & 9 \\
\hline 4 & 00 & & 22 & 00 & & & 40 & 00 & 3 \\
\hline 5 & 00 & & 23 & 00 & & & 41 & 00 & \% \\
\hline 6 & 00 & & 24 & 00 & & & 42 & 00 & \\
\hline 7 & 00 & & 25 & 00 & & & 43 & 00 & Z \\
\hline 8 & 00 & & 26 & 00 & & & & 00 & \(\square\) \\
\hline 9 & 00 & & 27 & 00 & & & 45 & 00 & \\
\hline 10 & 00 & & 28 & 00 & & & 46 & 00 & \% \\
\hline 11 & 00 & & 29 & 00 & & & 47 & 00 & \(\square\) \\
\hline 12 & 00 & & 30 & 00 & & & 48 & 00 & \(\bigcirc\) \\
\hline 13 & 00 & & 31 & 00 & & & 49 & 00 & \(\xlongequal{-1}\) \\
\hline 14 & 00 & & 32 & 00 & & & 50 & 00 & r \\
\hline 15 & 00 & & 33 & 00 & & & 51 & 11 & \\
\hline 16 & 00 & & 34 & 00 & & & 52 & 11 & \\
\hline 17 & 00 & & 35 & 00 & & & 53 & 11 & \\
\hline 18 & 00 & & 36 & 00 & & & & & \\
\hline \multicolumn{10}{|l|}{MATERIAL PROPERTIES} \\
\hline \multicolumn{10}{|l|}{Material No 1} \\
\hline OUNG M & ODULUS & \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\(1050 \mathrm{E}+08\)
3000}} \\
\hline OISSON & Ratio & & & & & & & & \\
\hline THICKNE & SS & \multicolumn{8}{|c|}{0.} \\
\hline
\end{tabular}

\section*{AUTHOR INDEX}

Abel, J. F., 11
Ahmad, S., 214, 429, 499, 500
Alexander, J. M., 496
Ang, A. H. L., 373
Argyris, J. H., 31, 499
Armen, H., 268, 373, 497
Atkinson, J. H., 496
Backlund, J., 373
Banerjee, P. K., 502
Baron, M. L., 94
Barrer, R. M., 94
Bashur, F. K., 500
Basu, A. K., 500
Bathe, K. J., 214, 429, 463, 499
Batoz, J. L., 498
Bhaumik, A. K., 373
Bazant, Z. P., 496
Belytschko, T., 462
Berg, C. A., 269
Bergan, P. G., 498, 501
Bettess, P., 502
Bhat, P. D., 496
Bicanic, N., 429, 496, 499
Bird, R. B., 497
Bishop, A. W., 268
Bland, D. R., 268
Bolourchi, S., 499, 500
Booth, A. D., 31
Brandt, A., 501
Bransby, P., 496
Brew, J. S., 429, 501
Bridgman, P. W., 268
Brotton, D. M., 429, 501
Bushnell, D., 498
Cathie, D. N., 502
Cattopadhyay, A., 498
Cescotto, S., 498
Chang, C. T., 497

Chang, T. S., 268
Cohen, M., 214, 373, 499
Cope, R. J., 500
Cormeau, I., 119, 317, 318, 500
Cowper, G. R., 153
Crisfield, M. A., 498, 501
Darwin, D., 500
Davies, J. D., 499
Davies, T. G., 502
Davis, E. M., 268
Deruntz, J. A., 463, 497
Desai, C. S., 11
Dhatt, G., 498
Dinis, L. M. S., 318, 500
Duncan, W., 500
Dunne, P. C., 499
Duwez, P., 318
Dym, C. L., 153
Elsawaf, A. F., 501
Epstein, H. I., 429
Fanelli, M., 501
Felippa, C. A., 463, 497, 501
Fletcher, R., 501
Frederick, D., 268
Fredriksson, B., 497
Frey, F., 498, 500
Fried, I., 501
Fröier, M., 269
Gallagher, R. H., 11, 498
Geradin, M., 500
Gilbert, R. F., 500
Gomez, A. E., 496
Goodier, J. N., 214
Haisler, W., 318
Han氏̛, F. R., 500

Hanley, J. T., 373
Harley, S. J., 499
Haroun, M., 214, 499
Hestenes, M., 501
Hill, R., 31, 94, 119, 214, 268, 497
Hinton, E., 11, 31, 94, 152, 153, 214, \(268,373,429,430,463,496,497,498\), 499, 501
Hodge, P. G., 268
Hoffman, O., 268
Hogge, M. A., 500
Horrigmoe, G., 498
Hughes, T. J. R., 153, 214, 318, 373, 462, 463, 497, 499
Hutchinson, J. W., 497
Irons, B. M., 214, 429, 499, 500, 501
Jennings, A., 94, 501
Jofreit, J. C., 500
Johnarry, T., 500
Johnson, G. R., 429
Kanchi, M. B., 318
Kanoknukulchai, S., 153
Kelly, D. W., 502
Kemp, K. O., 373
Kershaw, D. S., 501
King, I. P., 31, 268
Knott, J. F., 497
Koiter, W. T., 268
Kostem, C. N., 373, 498
Krakeland, B., 499
Kramer, J. M., 269
Krieg, D. B., 269
Krieg, R. D., 269
Kulak, R. F., 269
Laird, W. M., 497
Larsen, P. K., 499
Leung, K. H., 497
Levine, H. S., 268, 373, 497
Levy, N., 497
Lightfoot, E. N., 497
Lin, C. S., 500
Lin, T. H., 429
Liu, S. C., 429
Liu, W. K., 462
Lopez, L. A., 373
Lyness, J. F., 31, 497
Mackerle, J., 497
Malik, G. M., 501

Malkus, D., 499
Marcal, P. V., 497
Martins, R. A. F., 500
Matthies, H., 500
McClintock, F., 497
McNiece, G. M., 373, 500
Metzler, J., 501
Mohraz, B., 496
Mote, C. D. J., 501
Mullen, R., 462
Mustoe, G. G. W., 502
Nagarajan, S., 429, 463
Nayak, G. C., 268, 318, 429, 496, 500
Naylor, D. J., 496
Nickell, R. E., 429
Nilsson, L., 496
Noor, A. K., 499
Oden, J. T., 11, 31
Olszak, W., 317
Ostergren, W. J., 497
Owen, D. R. J., 11, 31, 94, 152, 153, 214, 268, 317, 318, 373, 429, 430, 496, 497, 499, 500
Ozdemir, H., 429, 463
Pande, G. N., 318
Park, K. C.; 463, 497
Paul, D. K., 463
Peano, A. M., 501
Pencold, D. A., 500
Perzyna, P., 317
Phillips, D. V., 496
Pica, A., 429, 498, 501
Pifko, A., 268, 373, 497
Pister, K. S., 463
Polak, E., 501
Popov, E. P., 429, 463, 499
Powell, G. H., 502
Prager, W., 268
Prakash, A., 94, 318
Price, J. W. H., 496
Pugh, E. D. L., 499
Putali, R. S., 498
Raghavan, K. S., 430
Ralston, A., 94
Ramm, E., 499
Rao, P. U., 500
Rao, S. S., 430
Razzaque, A., 499
Reeves, C. M., 501

Reisemann, W., 318
Rheinboldt, W. C., 502
Riccioni, R., 501
Rice, J. R., 497
Rock, T. A., 429
Rosengrun, G. F., 497
Row, D. G., 502
Sachs, G., 268
Sakurai, T., 268
Salonen, E. M., 496
Salvadori, M. G., 94
Samuelsson, A., 269
Sandella, L., 501
Scharpf, D. W., 31
Schnobrich, W. C., 496, 500
Schofield, A. N., 496
Schrem, E., 502
Schreyer, H. L., 269
Seegerlind, L. J., 31
Shames, I. H., 153
Shantaram, D., 430, 499
Shieh, C. L., 496
Skelland, A. N. P., 497
Soreide, T., 501
Stewart, W. E., 497
Stiefel, E., 501
Strang, G., 500
Stricklin, J. A., 318

Taylor, R. L., 153, 318, 463, 499
Timoshenko, S. P., 214
Too, J. M., 499
Tracey, D. M., 497
Turvey, G., 373

Underwood, P., 501

Valanis, K. C., 496
Valliappan, S., 31, 268
Wachspress, E. L., 501
Warner, R. F., 500
Wegmuller, A. W., 373, 498
Wegner, R., 500
White, G. N., 268
Wilson, E. L., 214, 429, 463, 501
Wood, R. D., 498
Wroth, C. P., 496

Yamada, Y., 268
Yen, H. J., 462
Yoshimura, N., 268

Zave, P., 502
Zienkiewicz, O. C., 11, 31, 94, 268, 317, 318, 429, 496, 497, 499, 502

\section*{SUBJECT INDEX}

Accelerogram, 399, 425, 427
Ahmad elements, 489
Alternative form of the yield criterion, 229
Alternative material models, 465
Array initialisation, 238, 297
Associated plasticity, 224, 273
Axisymmetric Mindlin plates, 372
Axisymmetric problems, one dimension, 92
Axisymmetric solids, elastic expressions, 165

Back substitution, 45, 48
Backward difference method, 274
Banded equations, 45, 58
Bauschinger effect, 90, 222, 309
Beams on elastic foundations, 151
Berg yield criterion, 265
BFGS procedures, 491
Bingham plastic, 483
Body forces, 164
Boundary data, 38, 206
Boundary element methods, 493
Boundary tractions, 164
Buffer area, 195

Central difference time stepping scheme, 388
Circular plate, elasto-plastic, 264
Cohesion, 219
Combined initial/tangential algorithm, 21, 41, 206
Computational techniques, 495
Concrete nonlinearity, 477
Conditional stability, 276, 302, 391, 437
Conjugate gradient method, 492
Consistent load vector, 173, 183, 188, 214

Constitutive matrix, \(D\) :
Dynamic applications, 413
Elastic, 163, 165, 167, 169, 192, 193, 232, 233
Elasto-plastic, 227, 244
Elasto-plastic Mindlin plates, 326
Visco-plastic, 274, 286
Convergence, 14, 21, 65, 72, 109, 212, \(267,297,336,451\)
Coupled-field problems, 487
Crack tip elements in plasticity, 487
Creep buckling, 317
Critical state model, 476
Cylinder:
Elasto-plastic, 262
Elasto-viscoplastic, 310

Damping forces, 379, 390
Deformation Jacobian matrix, 382, 404
Diagonal mass matrix, 389, 392, 410
Distortional strain energy, 219, 265
Distributed edge loading, 184
Drucker-Prager yield criterion, 220, 230
Dynamic dimensioning, 174, 238, 396
Dynamic equilibrium equations, 378
Dynamic relaxation, 493
Dynamic transient analysis; 377
Discretisation by isoparametric elements, 379
Equilibrium equations, 378
Geometric nonlinearity, 382
Modelling of nonlinearities, 381

Effective, generalised or equivalent plastic strain, 223
Effective, generalised or equivalent stress, 218
Effective stiffness matrix, implicit dynamic, 435
Effective stress level, 239

Elasto-plastic general solution process, 235
Elasto-plastic one-dimensional problems, 26
Elasto-plastic stress/strain relation, 224
Elasto-plasticity, matrix formulation, 227
Elasto-plasticity, two-dimensional, 232
Element, one-dimensional, 24, 25, 100
Element shape functions, 24, 158, 159, 160, 179
Endochronic theory, 479
Equation assembly and solution, 42, 194
Equation reduction or elimination, 45
Equation resolution, 21, 57, 194
Equation solution, numerical example, 43
Equilibrium correction, 101, 107, 276, 289
Equilibrium equations, 13, 236, 275, 321
Error diagnostics, 200, 202, 214, 360
Euler-Bernoulli beam theory, 121
Euler's rule, 99, 273
Explicit time stepping, 273, 302, 377, 378, 431

Failure criterion, 223
Flow problems, 480
Flow rule, 224
Flow vector, 227, 233, 241, 338, 419
Fluidity parameter, 97, 273
Forward difference method, 273
Fracture mechanics, 484
Friction slider, 95
Frontal equation solution, 194
Further applications, 465
Galerkin process, 23, 29
Gas diffusion, 22, 68
Gaussian direct elimination, 45
Gaussian quadrature data, 179
Geometric data, 36, 206
Geometric nonlinearity, 274, 316, 382
Global shape functions, 23
Gravity dam, seismic example, 424
Gravity loading, 183
Green strains, 383
Groundwater flow problems, 90
Heat conduction, 22, 29, 66
Heterosis element, 319, 325, 370
Hierarchical formulation, 325
Hyperelastic problems, 25

Implicit/explicit time stepping, 377, 431, 434
Implicit time stepping, 274, 302, 377, 431
Implicit trapezoidal time stepping scheme, 274, 302
Improved numerical techniques, 466, 490
Incrementation of load, 60, 110, 210
Inertia forces, 379
Initial stiffness method, 20, 29, 41, 206
In-plane deformation in plates, 372
Input data, 35, 205, 281, 399
Instructions for preparing input data for dynamic transient problems:
Programs DYNPAK and MIXDYN, 521
Instructions for preparing input data for one-dimensional problems:
Program ELPLAS, 506
Program NONLAS, 506
Program QUITER, 503
Program QUNEWT, 505
Program TIMLAY, 509
Program TIMOSH, 508
Program UNVIS, 507
Instructions for preparing input data for plane, axisymmetric and plate bending problems:
Programs MINDLIN and MINDLAY, 517
Program PLANET, 5II
Program VISCOUNT, 516
Interactive computing, 495
Internal friction angle, 219
Isoparametric elements:
Lagrangian 9-node, 5, 157
Linear 4-node, 5, 157
Serendipity, 8-node, 5, 157
Isoparametric finite element representation, 169
Isotropic hardening, 222
J contour integral, 485
Jacobian matrix, 17, 24, 171, 181
Kinematic hardening, 222, 309
Kirchhoff thin plate theory, 319
Lagrangian description, 382
List of computer programs, 466
List of subroutines:
One-dimensional applications, 467
Two-dimensional applications, 469

Load factor, 60, 210
Load vector, 13, 24, 183, 188, 405
Locking material, 30, 92
Lumped mass matrix, 389, 392, 410

Material properties, 37, 207, 281
Mathematical theory of plasticity, 215
Matrix inversion, 288
Maxwell model, 117, 302, 305
Mechanical sublayer method, 304
Metal forming problems, 482
Method of direct iteration, 14, 24, 40, 63
Method of successive approximations, 14
Midside nodal coordinate generation, 178, 341, 413
Mindlin plates:
Elastic expressions, 167
Mindlin plates, elasto-plastic; 319
Discretisation, 324
Equilibrium equations, 321
Mindlin plates, elasto-plastic layered; 326
Nonlinear equilibrium equations, 327
Program structure, 355
Mindlin plates, elasto-plastic nonlayered; 327
Nonlinear equilibrium equations, 329
Program structure, 331
Mohr-Coulomb yield criterion, 219, 230, 234

Newmark time stepping scheme, 432
Newton-Raphson method, 15, 24, 40, 68
No-tension model, 477
Non-associated flow rule, 476
Nonlinear elastic problems, 25, 74
Non-Newtonian fluid flow, 482
Normality condition, 224
Notched bend specimen, 5
Numerical integration, 174

Octahedral shear stress, 218
One-dimensional FORTRAN programs; 33
Direct iteration of quasiharmonic problems, 63
Elasto-plastic problems, 78
Elasto-viscoplastic problems, 104
Newton-Raphson solution of quasiharmonic problems, 68
Nonlinear elastic problems, 74

One-dimensional nonlinear problems, 13
Output of results, \(58,211,258,342,363\), 414
Overlay method, \(90,304,316\)
Overlay simulation of:
Four parameter viscous model, 309
Three element viscous model, 309
Visco-elastic model, 308
Visco-elastic-plastic four parameter model, 309

Pi plane, 217
Piecewise linear strain hardening representation, 266
Piola-Kirchhoff stresses, 386
Plane Strain, elastic expressions, 164
Plane Stress, elastic expressions, 162
Plastic multiplier, 224
Plastic potential, 224, 273
Power law pseudoplastic, 483
Prandtl-Reuss equations, 225
Predictor-corrector algorithm, 434, 436
Prescribed displacements in equation solution, 46
Principal stress evaluation, 258
Profile equation solver, 436, 440
Program structure, 8, 34, 104, 134, 235, \(281,331,355,392,440\)
Programming notation, 10
Pseudo-loads, viscoplastic, 100, 275
Quasi-harmonic equation, 22, 63, 68
Quasi-Newton method, 491
Rayleigh damping, 391
Residual forces, 15, 71, 76, 81, 102, 236, 249, 344, 364

Sample input data and line printer output:
Dynamic transient elasto-plastic explicit time integration example, 567
Dynamic transient elasto-plastic implicit/explicit example, 578
Elasto-plastic layered Timoshenko beam, 537
Non-layered elasto-plastic Mindlin plate problem, 558
One-dimensional direct iteration quasi harmonic example, 529
One-dimensional elasto-plastic problem, 531

Sample input data-contd.
One-dimensional elasto-viscoplastic problem, 535
Two-dimensional elasto-plastic problem, 542
Two-dimensional elasto-viscoplastic problem, 550
Seismic analysis, 377, 399, 424
Selective integration, 128, 325, 482
Shape function derivatives:
Cartesian, 171, 182
Local, 171
Shape function evaluation, 179, 346
Shells, elasto-plastic and geometrically nonlinear, 488
Singular points on the yield surface, 234
Space diagonal, 217
Sphere:
Elasto-plastic, 267
Elasto-viscoplastic, 315
Spherical shell, dynamic example, 421, 458
Starting algorithm for central difference scherne, 390
Steady state conditions, 104, 109, 279, 297
Stiffness matrix, 13, 24, 28, 100, 127, 142, 173, 244, 283, 348, 367, 439, 447
Strain energy function, 25
Strain hardening, 26, 222, 223
Strain matrix, B, 172, 191
Strain matrix, geometric nonlinear, 382, 395
Strain softening, 223
Stress intensity factor, 485
Stress invariants, 216, 233
Stress space, 217
Subroutines, elasto-plastic (additional):
DIMEN, 238
FLOWPL, 243
INVAR, 239
LINEAR, 247
Master segment, 260
OUTPUT, 258
RESIDU, 249
STIFFP, 244
YIELDF, 241
ZERO, 238
Subroutines, elasto-plastic layered Mindlin plates (additional):
CHECK1, 360
DEPMPA, 360

Subroutines-contd.
FEAM, 355
LAYMPA, 360
MDMPA, 362
OUTMPA, 363
RESMPA, 364
STIMPA, 367
STRMPA, 369
Subroutines, elasto-plastic nonlayered
Mindlin plates:
CONVMP, 336
DIMMP, 338
FEMP, 334
FLOWMP, 338
GRADMP, 340
INVMP, 340
MINDPB, 341
NODEXY, 341
OUTMP, 342
RESMP, 344
SFR2, 346
STIFMP, 348
STRMP, 353
SUBMP, 354
VZERO, 354
ZEROMP, 354
Subroutines, elasto-plastic (standard):
ALGOR, 209
CONVER, 212
INCREM, 210
INPUT, 205
Subroutines, elasto-viscoplastic (additional):
FLOWVP, 294
INVERT, 288
Master segment, 299
STEADY, 297
STEPVP, 289
STIFVP, 283
STRESS, 295
TANGVP, 286
ZERO, 297
Subroutines, elasto-viscoplastic transient dynamic analysis:
BLARGE, 395
CONTOL, 396
DYNPAK, 392
EXPLIT, 396
FIXITY, 397
FLOWVP, 398
FUNCTA, 399
FUNCTS, 399
INPUTD, 399

Subroutines-contd.
INTIME, 401
INVAR, 403
JACOBD, 404
LINGNL, 404
LOADPL, 405
LUMASS, 410
MODPS, 413
NODXYR, 413
OUTDYN, 414
PREVOS, 416
RESVPL, 417
YIELDF, 419
Subroutines, implicit/explicit transient dynamic analysis (additional):
ADDBAN, 444
ADDRES, 444
COLMHT, 445
DECOMP, 445
DINTOB, 446
GEOMST, 446
GSTIFF, 447
IMPEXP, 449
ITRATE, 451
LINKIN, 452
MIXDYN, 442
MULTPY, 454
REDBAK, 455
RESEPL, 456
Subroutines, one-dimensional:
ASSEMB, 49
ASTIF1, 70
BAKSUB, 54
CONUND, 72
CONVP, 109
DATA, 35
GREDUC, 51
INCLOD, 60, 110
INCVP, 107
INITAL, 59
Master segment, 61
Master segment (viscoplasticity), 111
MONITR, 65
NONAL, 40
REFOR1, 71
REFOR2, 76
REFOR3, 81
RESOLV, 57
RESULT, 58
STIFF1, 63
STIFF2, 75
STIFF3, 78
STUNVP, 106

Subroutines, Timoshenko beam analysis:
BEAM, 135
BEAML, 144
LAYER, 147
REFORB, 137
RFORBL, 146
STIFBL, 145
STIFFB, 136
Subroutines, two-dimensional (elastic):
BMATPB, 191
BMATPS, 191
CHECK 1, 200
CHECK2, 202
DBE, 194
ECHO, 201
FRONT, 194
GAUSSQ, 179
JACOB2, 181
LOADPB, 188
LOADPS, 183
MODPB, 193
MODPS, 192
NODEXY, 178
SFR2, 179
Substructuring, 493
Subterranean cavity, viscoplastic, 314
Tangent modulus, 26, 225
Tangential stiffness, 20, 26, 28, 236, 275, 327, 329
Tangential stiffness method, 20, 40, 206
Theorem of minimum total potential energy, 44
Time-step limitations:
Dynamic transient, 391, 426, 437
Elasto-viscoplastic, 102, 276
Timoshenko beam analysis; 121
Basic assumptions, 122
Element stress resultants, 128
Finite element idealisation, 125
Formulation of the stiffness matrix, 127, 142
Layered approach, 122, 141
Non-layered approach, 121, 122
Solution of nonlinear equations, 132, 143
Timoshenko layered beam program, TIMLAY, 144
Timoshenko non-layered beam program, TIMOSH, 135
Telerance value, 65, 72, 298
Tresca yield criterion, 217, 230, 234

Unconditional stability, 276, 302, 437
Uniaxial yield stress, 26, 219
Uniaxial tension test, 26, 225
Virtual work, 124, 162
Viscoelastic behaviour, 305, 308
Viscoplastic:
Strain increment, 273
Stress increment, 274, 295
Viscoplastic computational procedure:
One dimension, 103
Two dimensions, 278
Viscoplastic element stiffness formulation, 283
Viscoplastic flow function, 273, 286
Viscoplastic strain rate, \(100,272,294\), 398
Viscoplastic strain rate derivative matrix, 274, 279

Viscoplasticity, basic theoretical response:
Dynamic application, 381
One dimension, 98
Two dimensions, 272
Viscoplasticity in two dimensions, 271
Viscoplasticity in one dimension, 95
Viscosity coefficient, 97
Volume, elemental, 172
Von Mises yield criterion, 218, 230
Weighting functions, 23
Winkler foundation, 151, 372
Work hardening, 222, 223, 228
Yield criterion, 26, 216, 272, 326, 328
Yield function constants, 231, 234, 235
Yield moment, 129
Yield surface, 217```

[^0]: * Note that for beam and plate problems the uniaxial yield stress is designated by σ_{0} and not σ_{Y}.

[^1]: - Extension to orthotropic situations is feasible and has indeed been dealt with in Ref. 1.

[^2]: - In Part I of this text the nodal variables were symbolised by φ; since for nonstructural applications, such as nonlinear heat conduction, these parameters are not associated with displacements. In Parts II and III, for the continuum and plate situations considered, the nodal variables are always the displacement (and rotation) components and will now be symbolised by d.
 \dagger Note that I is the $p \times p$ identity matrix in which $p=2$ for the plane stress, plane strain and axisymmetric applications and $p=3$ for the Mindlin plate applications. N_{i} is the global shape function for node i.

[^3]: * For axisymmetric problems replace x and y by r and z respectively.

[^4]: \dagger Alternatively a DATA statement can be used.

[^5]: - Alternative procedures for this operation are presented in Refs. 18 and 19 whilst a completely different approach to stress projection is followed in Ref. 20.

[^6]: * Note that the implicit and explicit results overlap.

[^7]: * An excellent introduction to fracture mechanics is provided in Refs. 19 and 24.

[^8]: - The Mindlin plate elements described in Chapters 6 and 9 are simply plate versions of the Ahmad elements in which integration has been carried out analytically through the plate thickness. Much work on reduced and selective integration techniques ${ }^{(58-65)}$ eventually led to the recognition that the use of selective integration techniques is equivalent to the use of a special type of mixed formulation. ${ }^{(66)}$ Defects in the Ahmad elements have now been widely acknowledged and the use of the 9 -node heterosis Mindlin plate element and the 16 -node cubic Ahmad element are usually recommended. Other Ahmad/Mindlin $C(0)$ elements should be used with caution as they are known to give overstiff solutions for thin plates and shells and to develop mechanisms (zero energy modes) or near mechanisms (artificially low energy modes) when reduced or selective integration is used.

[^9]: * The superscripts denote the iteration number.

[^10]: * For axisymmetric problems x and y are replaced by r and z respectively (or R and Θ if $\operatorname{NRADS}=1$).

[^11]: YY-STRESS \qquad

