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Preface 

The purpose of this text is to present and demonstrate the use of finite 
element based methods for the solution of problems involving plasticity. As 
well as the conventional quasi-static incremental theory of plasticity, attention 
is given to the slow transient phenomenon of elasto-viscoplastic behaviour 
and also to dynamic transient problems. We make no pretence that the text 
provides a complete treatment of any of these topics but rather we see it as 

- an attempt to present numerical solution techniques, which have been well 
tried and tested, for selected important areas of application. 

In our earlier books on finite elements we have concentrated on linear 
applications. Here we attempt the much more daunting task of introducing, 
in detail, the use of finite elements for solving problems in which plasticity 
effects are present. To our knowledge it is the first such book. Our main idea 
is to present the theory and detailed algorithms in the form of modular 
routines written in FORTRAN which can be linked together to form 13 
finite element plasticity programs. 

Writing this book has been in itself, rather like solving a nonlinear finite 
element problem. We have gone through many iterations and we hope that 
we have now converged to a reasonable 'solution'. As in many real engineer- 
ing situations our convergence criterion has been influenced by a deadline. 
In our case the deadline was largely self-imposed as we have already been 
engaged on this project for more than three years. We do not believe our 
solution to be unique or in any sense optimal. We merely offer it to fill a 
gap in the existing literature. 

The text is arranged in three main parts. Part I is devoted to one- 
dimensional problems. These relatively simple applications are possibly the 
most important in the book; since all the essential features of nonlinear finite 
element analysis are immediately recognisable without the distractions and 
complications that are present in general continuum problems. Part I1 
deals with the two-dimensional applications of plane stress/strain and axi- 
symmetric continua and plate bending problems. Finally in Part I11 we 
present some dynamic transient applications and briefly describe some 
further developments. 

All of the programs presented in this text have been specially written by 
the authors. In the development of the subroutines for the solution algo- 
rithms described, a conflict inevitably arose between computational efficiency 
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and clarity of coding. Whatever sacrifices have been made have been biased 
towards satisfying the latter condition. However, we believe that the codes 
presented are both reasonably efficient and flexible and have potential usage 
in commercial as well as teaching and research environments. A total of 132 
subroutines are presented which amount to more than 8,000 statements. The 
13 assembled programs comprise approximately 20,000 statements. To aid 
readers wishing to implement the programs a magnetic tape of the computer 
codes together with the test input data listed in Appendix IV is available 
kom the publishers. Although every attempt has been made to verify the 
programs, no responsibility can be accepted for their performance in practice. 

A further feature of the book is that each chapter contains several exercises 
for further study. 

We are indebted to many people for their direct or indirect assistance in 
the preparation of this text. This preface would not be complete without an 
acknowledgment of this debt and a record of our gratitude to the following: 
To Professor 0. C. Zienkiewicz for his pioneering work and stimulating 
influence. To Professor G. C. Nayak whose work on numerical analysis of 
plasticity problems has significantly influenced the present text. To Dr. I. C. 
Cormeau whose thesis on viscoplasticity has been an invaluable source of 
information. To Professor K. J. Bathe for permission to use the profile 
equation solver included in Chapter 11. To N. Bicanic, D. K. Paul, H. H. 
Abdel Rahman and M. M. Huq for their generous assistance in the prep- 
aration of several chapters. To our colleagues and former research workers 
in the Department of Civil Engineering, University College of Swansea for 
helpful discussions and suggestions. To E. S. Caldis for his care in preparing 
annotated computer listings and, finally, to Mrs. M. J. Davies for her skill 
and patience in typing the manuscript. 

D. R. J. OWEN 
E. HINTON 

Swansea, May 198 0 







Chapter 1 
Introduction 

1.1 Introductory remarks 
The finite element method is now firmly accepted as a most powerful 

general technique for the numerical solution of a variety of problems 
encountered in engineering. Applications range from the stress analysis of 
solids to the solution of acoustical, neutron physics and fluid dynamics 
problems., Indeed the finite element process is now established as a general 
numerical method for the solution of partial differential equation systems, 
subject to known boundary and/or initial conditions. 

For linear analysis, at least, the technique is widely employed as a design 
tool. Similar acceptance for nonlinear situations is dependent on two major 
factors. Firstly, in view of the increased numerical operations associated 
with nonlinear problems, considerable computing power is required. 
Developments in the last decade or so have ensured that high-speed digital 
computers which meet this need are now available and present indications are 
that reductions in unit computing costs will continue. Secondly, before the 
finite element method can be used in design, the accuracy of any proposed 
solution technique must be proven. The development of improved element 
characteristics and more efficient nonlinear solution algorithms and the 
experience gained in their application to engineering problems have ensured 
that nonlinear fifiite element analyses can now be performed with some 
confidence. Hence barriers to the common use of nonlinear finite element 
techniques are being rapidly removed and the process is already economi- 
cally acceptable for selected industrial applications. 

1.2 Aims and layout 
The object of this book is to describe in detail the application of the finite 

element method to the solution of materially nonlinear engineering analysis 
problems. Unlike other texts on linear and nonlinear finite element 
analysiscl-*) which have dealt predominantly with theoretical aspects, this 
book is intended to be more practical and therefore focuses attention on the 
computer implementation of nonlinear finite element schemes. 

Nonlinearities arise in engineering situations from several sources. For 
example a nonlinear material response can result from elasto-plastic material 
behaviour or from hyperelastic effects of some form. Additionally nonlinear 
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characteristics can be associated with temporal effects such as viscoplastic 
behaviour or dynamic transient phenomena. Each of these nonlinearities 
may occur in a variety of structural types such as two- or three-dimensional 
solids, frames, plates or shells. Therefore it becomes clear that a textbook 
dealing with nonlinear finite element programming must at least be restricted 
to selected topics. For this reason three classes of problems will be examined 
in depth in the three parts of this text. 

Part I: One-dimensional materially nonlinear problems. All the essential 
features of a nonlinear finite element solution can be described in 
relation to one-dimensional models. The applications considered 
are : 

Nonlinear quasi-harmonic problems 
Nonlinear elastic situations 
Elasto-plastic behaviour of axial bar systems 
Time dependent elasto-viscoplastic analysis of bar systems 
Elasto-plastic beam bending 

Part 11: Two-dimensional materially nonlinear problems. In this part the 
ideas developed in Part I are extended to continuum problems. The 
following applications are presented : 

Elasto-plastic analysis of plane stress, plane strain and axi- 
symmetric solids 
Time dependent elasto-viscoplastic analysis of plane stress, 
plane strain and axisymmetric solids 
Elasto-plastic plate bending problems 

Part 111: Nonlinear transient dynamic problems. In this time-dependent 
class of problems inertia effects are included in the analysis. In this 
part, the following topics are considered: 

Elasto-plastic and geometrically nonlinear material behaviour 
Explicit and implicit time integration schemes 
Combined explicit/implicit algorithms 

It should be pointed out that several different programming options are 
open for solution of the above problems and the methods presented in this 
text are the ones which are physically the most clear and which experience 
indicates give reliable results for a wide range of applications. An important 
feature of this text is the step-by-step development of thirteen finite element 
programs to deal with the above problems. 

For the one-dimensional applications considered in Part I, only a %-node 
element with linear displacement variation between nodes is considered. 
This allows the basic steps of a nonlinear finite element analysis to be pre- 
sented without unnecessary distractions. In Parts I1 and I11 of the text, 
where two-dimensional continuum and plate bending problems are con- 
sidered, isoparametric elements are exclusively employed. In particular, a 
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4-node linear element and 8- and 9-node quadratic versions are used. These 
elements are illustrated in Fig. 1.1 and are extremely versatile, good per- 
formers which have been well tried and tested in both linear and nonlinear 
situations. A typical elasto-plastic application using 8-node isoparametric 
elements is shown in Fig. 1.2 where the incremental loading of a notched 
beam is illustrated. The progressive development of plastic zones with 
increasing load levels are compared for a Tresca and Von Mises yield 
criterion. 

Fig. 1.1 The two-dimensional isoparametric elements employed in the text : 
(a) Linear 4-node; (b) Serendipity 8-node; (c) Lagrangian 9-node. 

The layout of the book will now be briefly described. The remainder of 
Chapter 1 discusses the basic notation and style adopted in program 
presentation. 

Chapter 2 discusses the general nonlinear problem and some solution 
techniques are outlined. For the one-dimensional applications to be con- 
sidered, basic theoretical expressions are developed in a form suitable for 
numerical solution. 

In Chapter 3, the solution techniques presented in Chapter 2 are pro- 
grammed in FORTRAN and numerical examples are solved for each 
separate application. 

Chapter 4 is devoted to one-dimensional elasto-viscoplastic problems. 
The basic theory for this time-dependent phenomenon is first presented. 
The process is then coded and the program used to solve some numerical 
examples. 

In Chapter 5 elasto-plastic beam bending is considered. This topic forms a 
bridge between uniaxial and continuum applications since now more than 
one degree of freedom exists at each nodal point. Some measure of con- 
tinuum behaviour is also introduced since a layered approach is used to 
trace the development of plasticity through the cross-section of the beam. 
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Fig. 1.2 Elasto-plastic analysis of a notched beam under bending showing plastic zone distributions for both a Von Mises and a 
Tresca yield criterion. 
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Chapter 6 forms an introduction to two-dimensional continuum problems. 
The basic theory for two-dimensional isoparametric elements is presented 
and some standard subroutines required for applications described in later 
chapters are listed. ~ h e s e  include routines which perform some standard 
linear elastic operations, such as nodal load generation, equation solution, 
etc., as well as nonlinear subroutines common to more than one application. 

Two-dimensional elasto-plastic problems are considered in Chapter 7. 
Basic theoretical expressions for a general continuum are first reviewed, and 
manipulatd into forms convenient for numerical analysis. Particular 
'C 

expressions for plane stress/strain and axisymmetric situations are then 
developed and coded. Four different yield criteria are employed. The Tresca 
and Von Mises laws which closely approximate metal plasticity behaviour 
are considered and the Mohr-Coulomb and Drucker-Prager criteria, which 
are applicable to concrete, rocks and soil are presented. 

Chapter 8 is concerned with the transient phenomenon of elasto- 
viscoplasticity where again the situations of plane stresslstrain and axial 
symmetry are considered. Both explicit and implicit time integration schemes 
are presented and the four yield criteria considered in Chapter 7 are em- 
ployed. The FORTRAN program developed is illustrated by application to 
some numerical examples. 

Elasto-plastic plate bending problems are discussed in Chapter 9. The 
basic theoretical expressions are presented in a form suitable for numerical 
analysis with both a layered and nonlayered approach to plastification 
through the plate thickness being considered. Treatment in this chapter is 
limited to the Tresca and Von Mises yield conditions. 

Chapters 10 and 11 deal with the transient dynamic analysis of two- 
dimensional continua. In this application inertia effects are included in the 
computation and problems such as blast loading and seismic phenomena 
are  ons side red. Nonlinear effects due to both elasto-plastic material behaviour 
and gross geometric deformations are included. Both explicit and implicit 
techniques are employed for the time integration of the equations of motion as 
well as a combined implicit/explicit algorithm. The computer codes developed 
are applied to the solution of some practical problems. 

Finally in Chapter 12 further aspects of nonlinear material behaviour are 
discussed. Alternative solution techniques and material models are referred 
to and some additional fields of application indicated. 

Three appendices are included which contain user instructions for the 
computer programs described throughout the text. Appendices I and I1 
provide user instructions for one-dimensional and two-dimensional con- 
tinuum problems respectively. A user's guide for transient dynamic problems 
is provided in Appendix 111. Finally in Appendix IV sample input data and 
lineprinter output are provided for both one- and two-dimensional appli- 
cations. 
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1.3 Program structure 

1.3.1 Introduction 
This section describes the main features of the computer programs to be 

developed later in the book. A modular approach is adopted, in that separate 
subroutines are employed to perform the various operations required in a 
nonlinear finite element analysis. Generally each program consists of 9 
modules, each with a distinct operational function. Each module in turn is 
composed of one or more subroutines relevant only to its own needs and, 
in some cases, of subroutines which are common to several modules. Control 
of the modules is held by the main or master segment. 

The modules, shown schematically in Fig. 1.3, are described in relation 
to their general functions as follows : 

Initialisation or zeroing module-this is the first module entered and its 
function is to initialise to zero various vectors and matrices at the begin- 
ning of the solution process. 
Data input and checking module-this is the second module entered. It 
handles input data defining the geometry, boundary conditions and 
material properties. This data is checked using diagnostic routines and if 
errors occur they are flagged and the remainder of the input data is 
printed out before the program is terminated. For isoparametric elements, 
Gaussian integration constants and mid-side nodal coordinates for 
straight-sided elements are also evaluated in this section. Once used 
this module is not needed again. 
Loading module-this module organises the calculation of nodal forces 
due to the various forms of loading for two-dimensional application. 
These include pressure, gravity and concentrated loadings. 
Load incrementing module-Any materially nonlinear finite element 
solution must proceed on an incremental basis. Therefore the function 
of this section is to control the incrementing of the applied loads evaluated 
by the loading module. It also ensures that any specified displacement 
values are also incrementally applied. 
Stiflness module-this is the next module entered and organises the 
evaluation of the stiffness matrix for each element. The stiffness matrices 
are stored on disc and ordered in the sequence required for equation 
assembly and reduction. 
Solution module-the general purpose of this routine is to assemble, 
reduce and solve the governing set of simultaneous equations to give the 
nodal displacements and force reactions at restrained nodal points. 
Residual force module-the function of this module is to calculate the 
residual or 'out of balance' nodal forces at each stage of the analysis. 
Convergence module-in this module the convergence of the nonlinear 
solution is checked against criteria given in later chapters. 
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9. Output module-this module organises the output of the requested 
quantities. 

Main or master segment I 
Increment loop 

- - - - Iteration loop 

Initialising or 

zeroing module 

Data input 

and checking module 

Loading module 

Load incrementing module 

4--- 
I 
I 
I 

Stiffness module I 
I 
I 
I 
1 

Solution module 
I ---- ! I I 

Residual force module I 
I 
I 
I 
I 

Convergence module I 
I 
I 

*----I 

Output module 

Fig. 1.3 Program modules for nonlinear solution codes. 
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The main purpose of the main or master segment is to call the above 
modules and to control the load increments and iteration procedure according 
to the solution algorithm being employed and the convergence rate of the 
solution process. 

1.3.2 Programming notation 
In the programs presented in this text an attempt has been made to name 

variables in a logical manner. By choosing descriptive names, the use of 
many of the variables becomes self-apparent, thus assisting the reader in the 
task of program assimilation. All variable names are chosen to be 5 charac- 
ters in length; this occasionally causes a little difficulty in abbreviation but 
has an advantage with regard to neatness of program presentation. For 
example, the following names will be employed. 

NMATS The Number of different MATerialS 
PROPS ( ) The array of material PROPertieS 
NEVAB The Number of Element VAriaBles 
NNODE The Number of NODes per Element 
NDOFN The Number of Degrees Of Freedom per Node 

Furthermore a 'common root' principle will be adopted; where a single 
basic variable name is employed with different prefixes depending on its 
usage in the program. In particular: 

i) Prefix I, J or L will be used to indicate a DO loop variable 
ii) Prefix K will indicate a counter 

iii) Prefix M will indicate a maximum value 
iv) Prefix N will indicate a given number 

For example IPOIN, NPOIN, MPOIN will indicate respectively a par- 
ticular nodal point, the number of nodal points in the problem and the 
maximum permissible number of nodal points in the program. 

Similarly, any DO loop will be of the general form 

KEVAB =O 
DO 1 INODE= 1, NNODE 
DO 1 IDOFN= 1, NDOFN 

1 KEVAB = KEVAB + 1 

which indicates that the outer and inner DO loop indices range respectively 
over the number of nodes per element and the number of degrees of freedom 
per node. The prefix K is employed in KEVAB to indicate a counter over 
the number of element variables, NEVAB. 

All programming is undertaken in standard FORTRAN IV. A listing is 
presented for all subroutines described in this text and detailed notes on 
each group of statements are provided. Comment cards have also been used 
to assist in the understanding of the programs. 
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Chapter 2 
One-dimensional nonlinear problems 

2.1 Introduction 
Several classes of nonlinear problems of interest in many branches of 

science and engineering can be reduced to the solution of a system of simul- 
taneous equations in whiqh the equation coefficients are dependent on some 
function of the prime variables.(l) In this chapter some basic techniques for 
the numerical solution of such problems are examined. In order to introduce 
the essential details of the solution processes as simply as possible, the 
applications will be restricted to one-dimensional situations. In particular, 
elasto-plasticity, nonlinear elasticity problems and systems governed by a 
nonlinear quasi-harmonic equation will be considered. In each case a com- 
puter program will be developed and its use illustrated by application to 
simple problems. The aim of this chapter is to prepare the reader for the 
more comprehensive two-dimensional treatment of these topics which will 
be undertaken in Chapters 6-9. Indeed, all the essential features of nonlinear 
finite element analysis detailed in these later chapters will be recognisable 
from the s i q l e  treatment considered here. It should be emphasised that 
the subroutines developed in this chapter will not be used in the main finite 
element programs discussed in Parts I1 and 111. 

2.2 Basic numerical solution processes for nonlinear problems 
The use of finite element discretisation in a large class of nonlinear prob- 

lems results in a system of simultaneous equations of the form 

in which g, is the vector of the basic unknowns, f is the vector of applied 
'loads' and H is the assembled 'stiffness' matrix. For structural applications, 
the terms 'load' and 'stiffness' are directly applicable, but for other situations 
the interpretation of these quantities varies according to the physical problem 
under consideration. 

If the coefficients of the matrix H depend on the unknowns p or their 
derivatives, the problem clearly becomes nonlinear. In this case, direct 
solution of equation system (2.1) is generally impossible and an iterative 
scheme must be adopted. Many options remain open for the iterative 



14 FINITE ELEMENTS IN PLASTICITY 

sequence to be employed. Some of the most generally applicable methods 
available will now be outlined. 

2.2.1 Method of direct iteration (or successive approximations) 
In this approach@) successive solutions are performed, in each of which 

the previous solution for the unknowns p is used to predict the current 
values of the coefficient matrix H(p). Rewriting (2.1) as 

then the iterative process yields the (r+ l)th approximation to be 

If the process is convergent then in the limit as r tends to infinity pr tends 
to the true solution. 

It is seen from (2.3) that it is necessary to recalculate the 'stiffness' matrix 
H for each iteration. To commence the process, an initial guess for the 
unknown p is required in order to calculate H. Generally a value of p0 
based on the solution for an average material property throughout the 
regi0n.i~. found to be satisfactory. If the nonlinearity of the material prop- 
erties is very marked at certain values of p, an approximate prescription of 
the field variable at all nodes may be necessary. 

For practical purposes, the iterative process is deemed to have converged 
when some measure (usually a norm of the nodal unknowns) of the change 
in the unknown between successive iterations has become tolerably small. 
The process is illustrated diagrammatically for a single variable in Figs 2.1 
and 2.2, in which case the matrix H a n d  vector p reduce to the scalar equiv- 
alents H and $. The assumed dependence of H on + is a basic problem 
function which must be prescribed before solution can commence. This 
material property is included in Figs 2.1 and 2.2 and, for convenience, the 
relationship between H(+).+ and + is prescribed rather than the H(+) -4 
dependence. Figure 2.1 shows the convergence paths for initial trial values, 
$O, which are below and above the true solution, +T, and for a convex 
H - $  relation. From the initial trial value, $0, the corresponding value of H 
is immediately given from the prescribed H(+). + -+ relationship, to be HO. 
Equation (2.3) is then solved to give $1. The value of H corresponding to 
$l is then determined from the H(+).+-+ relationship and (2.3) then 
resolved to obtain $2. This cycling process is continued until and +* 
are deemed to be sufficiently close, indicating that convergence has occurred. 
The quantity W is represented by the slope of the secant to the H-+ curve 
and decreases with increasing values of +. Both the high and low initial trial 
solutions produce monotonic convergence paths. Figure 2.2 shows the 
unsuitability of the method for problems with a concave H - 4  relationship. 
Both low and high initial trial solutions produce convergence paths which 
oscillate around the true solution. Although the solution converges for the 
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I H(+)+ Assumed H(+)+ - 4 
I dependence 

Slope HO 
H' 

f / 

4O 4' 42 43 Basic variable, 4 

(a) Low initial solution 

Fig. 2.1 Direct iteration method for a single 
relation. 

(b) High initial solution 

variable problem4onvex H-4 

single variable case, in multi-degree of freedom problems the coupling of 
stiffness terms is likely to lead to instability of the iterative process. A dis- 
advantage of the direct iteration method is that convergence of the solution 
scheme is not guaranteed and cannot be predicted at the initial solution 
stage. 

2.2.2 The Newton-Raphson method 
During any step of an iterative process of solution, (2.1) will not be satisfied 

unless convergence has occurred. A system of residual forces can be assumed 
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(a) Low initial solution 

(b) High initial solution 

Fig. 2.2 Direct iteration method for a single variable problem4oncave H-4 
relation. 

to exist, so that 
y = Hp+f # O .  

These residual forces y can be interpreted as a measure of the departure 
of (2.1) from equilibrium. Since H is a function of p and possibly its deriv- 
atives, then at any stage of the process, y = ~ ( 9 ) .  
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If the true solution to the problem exists at (pr+Aqr then the Newton-- 
Raphson approximati~n(~) for the general term of the residual force vector, 
ycr corresponding to solution at qr is 

in which N is the total number of variables in the system and the superscript 
r denotes the rth approximation to the true solution. Substituting for 
from (2.4), the complete expression for all the residual components can be 
written in matrix form as 

~($9') = - J(vr)Avr. (2.6) 

in which a typical term of the Jacobian matrix J is 

where hij is the general term of matrix H. The last term in (2.7) gives rise to 
nonsymmetric terms in the Jacobian matrix. If these nonsymmetric terms are 
neglected in order to maintain symmetry, then substitution of (2.7) in (2.6) 
results in 

H((pr) . A(pr = - ry((pr ). (2.8) 
Or since 

a(pr = q - + l  - p r ,  (2.9) 

equation (2.8) reduces, on use of (2.4), to 

This equation is identical to equation (2.3), Section 2.2.1, which governs the 
method of direct iteration. Therefore in order to achieve the better con- 
vergence rate associated with the Newton-Raphson process it is essential 
that the unsymmetric terms in J be retained. 

The explicit form of the nonlinear terms in (2.7) will clearly depend on the 
way in which the stiffness matrix coefficients, hij,  depend on the unknowns, q .  
The terms of the Jacobian matrix, given in (2.7), can be assembled to give 
the general expression 

J(d = H(9) + H ' ( d  (2.11) 

where the last term contains the unsymmetric terms only. The Newton- 
Raphson process can be finally written, using (2.6) and (2.1 l), in the form 
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This allows the correction to the vector of unknowns 9 to be obtained from 
the residual force vector y/ for any iteration. Again an iterative approach 
must be followed, with the vector of unknowns g, being corrected at each 
stage according to (2.12) until convergence of the process is deemed to have 
occurred. The technique is illustrated schematically in Figs 2.3 and 2.4 for 

H ( 4 M  
Assumed H ( 4 ) 4  - 4 
dependence 

(a) Low initial solution 

(b) High initial solution 

Fig. 2.3 The Newton-Raphson method for a single variable problem-onvex 
H-4 relation. 
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I H(+)+ 

(a) Low initial solution 

(b) High initial solution 

Fig. 2.4 The Newton-Raphson method for a single variable problem-oncave 
H-4 relation. 

a single variable situation. Solution to the nonlinear problem will be achieved 
when the residual force y vanishes, since this term directly measures the lack 
of equilibrium of the governing equation as indicated in (2.4). A trial value 
po of the basic unknown is assumed and the material stiffness associated 
with this value calculated according to the prescribed H-p relationship. 



20 FINITE ELEMENTS IN PLASTICITY 

The residual force, yo is then calculated from (2.4) and the Jacobian evalu- 
ated according to (2.7). The correction Ago to the first approximation for 
the basic unknown, can finally. be found from (2.12). Thus an improved 
approximation to the solution has been found, as g1 = gO+AgO. This 
process can then be continually repeated until the residual force, y n ,  is 
sufficiently small; or equivalently that pr-1 and pr are sufficiently close. 
The Newton-Raphson process generally gives a more rapid and stable 
convergence path than the direct iteration method. 

2.2.3 The tangential stiffness method 
For structural applications the matrix H can be interpreted physically as 

the stiffness matrix of the structure. For nonlinear situations, in which the 
stiffness depends on the degree of displacement in some manner, H is equal 
to the local gradient of the force/displacement relationship of the structure 
at any point and is termed the tangential stiffness. The analysis of such 
problems must proceed in an incremental manner since the solution at any 
stage may not only depend on the current displacements of the structure, 
but also on the previous loading history. Consequently the problem can be 
linearised over any increment of load and therefore the matrix, which con- 
tains the nonlinear terms, can be discarded from (2.11) and (2.12). With 
this modification, the solution process is identical to that described in the 
previous section and for this reason the method is sometimes termed a 
generalised Newton-Raphson method. 

The solution algorithm is illustrated in Fig. 2.5; again for a single variable 
situation. Solution is commenced from a trial value 9 0  of the unknown (for 
structural problems the starting position of solution is almost invariably 
go = 0). The tangential stiffness, H(gO), corresponding to this displacement 
state is then determined and the residual force yo calculated according to 
(2.4). The correction, Ago, to the trial value is computed according to the 
linearised form of (2.12), which is 

An improved approximation to the unknown is then obtained as 
gl  = gO+AgO. This iterative process is then continued until the solution 
converges to the nonlinear solution which is indicated by the condition that 
pr practically vanishes. 

2.2.4 The initial stiffness method 
I n  the methods described in the three previous sections, the complete 

factorisation (or reduction) and solution of the full set of simultaneous 
equations describing the discretised structure is essential for each iteration. 
For the method of direct iteration the equation solution indicated by (2.3) is 
necessary, whilst the Newton-Raphson technique and tangential stiffness 
method demand the equation solutions indicated by (2.12) and (2.13) 
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Applied 
force, f 

Basic variable d, 

Fig. 2.5 Tangential stiffness solution algorithm for a single variable situation. 

respectively. If in (2.13) the tangential stiffness matrix is replaced, at all steps 
of the computation, by the stiffness corresponding to the initial trial value 
of Q, a complete factorisation, or reduction, of the assembled equations can 
be avoided.(3) In this case a complete equation solution need only be per- 
formed for the first iteration and subsequent approximations to the nonlinear 
solution performed, via the expression 

Since the same stiffness matrix H(@) is employed at each stage, the reduced 
equations can be stored in their reduced or factored form and a second or 
subsequent solution merely necessitates the reduction of the right-hand side 
( ~ ( 9 ~ ) )  terms, together with a backsubstitution. This has the immediate 
advantage of significantly reducing the computing cost per iteration but 
reduces the convergence rate as can be seen from Fig. 2.6 where the scheme 
is schematically illustrated. The iterative algorithm is identical to that 
described in the preceding section. This method can be shown to be uncon- 
ditionally convergent(4) and can even be employed in situations where the 
material exhibits negative stiffness. The relative economies of the initial 
stiffness and tangential stiffness methods depend to a large extent on the 
degree of nonlinearity inherent in the problem under consideration. The 
optimum algorithm is generally provided by an amalgamation of both 
processes, in which the stiffnesses are changed at  selected iterative intervals 
only. 
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Applied 
force, f 

4O 4 4* 43 
Basic variable, 4 , 

Fig. 2.6 Initial stiffness solution algorithm for a single variable situation. 

2.3 Systems governed by a quasi-harmonic equation 
Many physical situations in engineering science are governed by a quasi- 

harmonic equation containing coefficients which are dependent on the 
unknown variable or its derivatives according to some prescribed law. The 
most common problem of this type occurs in heat conduction under steady- 
state conditions when the material conductivity is itself a function of tem- 
perature. This phenomenon also arises in diffusion problems where the 
diffusivity of the medium often varies with the concentration of the diffusing 
matter. Further physical examples are provided in Ref. (5). 

For a one-dimensional 
sidered is 

situation the governing equation to be con- 

in which + is the unknown function and the terms K and Q may be functions 
of the position coordinate, x. The problem becomes nonlinear if K and/or Q 
are also functions of the unknown + or its derivatives, according to some 
prescribed function. 

Two types of boundary condition will be considered: 

(a) The value of the unknown specified on the boundary 

(b) The gradient of the unknown at the boundary specified to be zero 
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(A more general form of this latter boundary condition is considered 
in Ref. 6.) 

Equation (2.15) can be transformed to finite element form by suitable 
discretisation and use of the Galerkin weighted residual process.(5*6) The 
scalar product of equation (2.15) with any arbitrary weighting function, W, 
must be zero if + satisfies (2.15) throughout any region I', so that 

Integrating the first term by parts results in 

where the limits of integration in the first term are the end points of the 
region I?. The unknown function + may be approximated as 

in which n is the total number of nodes in the finite element idealisation and 
Na are the global shape functions. In the Galerkin process the number of 
weighting functions must equal the total number of unknown nodal values. 
The weighting function Wi corresponding to node i can then be conveniently 
chosen such that Wi = Ni. It should be noted that at nodes where the 
values of + are prescribed, there is no associated unknown and consequently 
the weighting function for such nodes is zero. Therefore the first term 
in (2.19) always vanishes since at the tyo  end points of the interval either + is prescribed according to (2.16), in which case the weighting function 
for that point is zero, or d+/dx is specified as zero according to (2.17). 
Substituting for + and Win (2.19) and assembling all element contributions 
in the usual manner results in 

H$9 +f' = 0, (2.21) 

in which typical element components are 
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where N&e) are the element shape functions specifying the distribution of the 
unknown, 4, over the element. For the specific case of a two-noded element 
with a linear variation in q5 as shown in Fig. 2.7, the shape functions are 
simply 

where L is the length of the element. 

Fig. 2.7 One-dimensional two-noded element with linear variation of the un- 
known, 4, showing element shape functions. 

Substituting in (2.22) and (2.23), and assuming no variation of K with 
position in the element, gives 

and 

Provided that the variation of K with 4 or its derivatives is specified, the 
problem falls into the category discussed in the previous section and can be 
solved by either the method of direct iteration or the Newton-Raphson 
approach. 

In the numerical examples considered later in this chapter a specific form 
of nonlinearity will be considered, namely 

in which KO is a reference value and a and b are known constants. For 
solution by the ~... Newton-Raphson process the Jacobian matrix can be con- 
sidered to be the--.su&--of symmetric and nonsymmetric components as indi- 
cated in (2.1 1). The symmetric part has already been calculated in (2.25) and 
the nonsymmetric contribution must now be calculated according to the last 
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term in (2.7). From (2.7), (2.22) and (2.27) the general term is given as 

Noting that + is given by (2.20) and that the shape functions are given by 
(2.24), the evaluation of (2.28) results in 

As expected, it is seen that the derivative matrix H'@) is unsymmetric. 

2.4 Nonlinear elastic problems 
The simplest case of nonlinear behaviour in structural problems arises 

from nonlinear elastic material action. The stresslstrain relationship of the 
material is nonlinear but the material behaviour is elastic with all defor- 
mations and displacements recoverable on unloading. For example, this 
type of behaviour arises in hyperelastic problems(7) where the stresses are 
functions of a strain dependent material modulus. 

The nonlinear constitutive relation may be specified, for a one-dimensional 
situation, as 

where a is the stress, E the strain and Eo some reference value of the material 
modulus. The material performance will be nonlinear according to the form 
of the specified strain energy function, W(E). 

I Cross sectional area A 

1. 1 . 2  

Fig. 2.8 Forces and displacements for a two-node element. 

The simplest form of one-dimensional finite element is the constant stress 
element shown in Fig. 2.8 in which a linear displacement variation is assumed 
between nodes 1 and 2. The force in the element is given, from (2.30), by 

F = EoAg(G/L), (2.3 1)  
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where A is the element cross-sectional area and 8 the element extension. The 
tangential stiffness for the material is then 

Or, in particular, the element tangential stiffness matrix is given by 

Provided that g ' ( ~ )  is positive for all strain values, the tangential stiffness 
method of solution described in Section 2.2.3 can be employed in solution 
with KT(e' being directly equivalent to H(9T). Jf the tangential stiffness 
matrix becomes zero, the assembled stiffness equations will become singular 
and the inversion process required by (2.13) cannot be undertaken. Solution 
for situations in which the material tangential stiffness becomes non-positive 
can be performed by use of the initial stiffness method described in Section 
2.2.4. Since the initial material stiffness is employed throughout this latter 
process, the assembled stiffness matrix will remain positive definite through- 
out the computation. 

2.5 Elasto-plastic problems in one dimension 
In this section the essential features of elasto-plastic material behaviour 

are introduced, and the basic expressions are developed in a form suitable 
for numerical solution by some of the methods described in the previous 
sections. 

Elasto-plastic behaviour is characterised by an initial elastic material 
response on to which a plastic deformation is superimposed after a certain 
level of stress has been reached.@) Plastic deformation is essentially irre- 
versible on unloadiug and is incompressible in nature. The onset of plastic 
deformation (or yieiding) is governed by a yield criterion and post-yield 
deformation generally occurs at a greatly reduced material stiffness. Basic 
theoretical expressions for a general continuum are provided in Chapter 7. 

For one-dimensional situations, the material parameters required to com- 
pletely define elasto-plastic behaviour are most conveniently obtained from a 
uniaxial tension test. Figure 2.9 shows an idealised stress-strain curve for a 
material and identical behaviour is assumed in tension and compression. 
The material initially deforms according to the elastic modulus, E, until the 
stress level reaches a value a, designated the uniaxial yield stress. On increas- 
ing the load further, the material is assumed to exhibit linear strain-hardening, 
characterised by the tangential modulus, ET. 

At some stage after initial yielding, consider a further load application 
resulting in an incremental increase of stress, do, accompanied by a change of 
strain, de. A s s u e - t h a t  the strain can be separated into elastic and plastic 
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Y I '  
Elastic behaviour 
Slope, E I I 

Strain. c 

Fig. 2.9 Elastic, linear strain-hardening stress-strain behaviour for the uniaxial 
case. 

components, so that 

d~ = dee +dep, 

we define a strain-hardening parameter, H', as 

This can be interpreted as the slope of the strain-hardening portion of the 
stress-strain curve after removal of the elastic strain component. Thus 

With reference to Fig. 2.8, consider the behaviour of a linear displacement 
element, which has a cross-sectional area A, when it is subjected to a gradu- 
ally increasing axial force, F, which results in an extension, 8. Provided that 
FJA is less than or equal to the uniaxial yield stress, a F, the material behaviour 
will be elastic, exhibiting a stiffness of 
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then the element stiffness matrix is simply 

Suppose F is increased until the material has yielded. Consider a further 
incremental increase in load dF which causes an additional element extension, 
d8. Then 

where L is the element length. Also, on use of (2.35) 

The tangential stiffness for the material is then 

dF AH' dep 
- Kep = - - 

d8 L(du/E+ de,) ' 

(2.41) 

Or, using (2.35) and rearranging 

Finally, the element stiffness for elasto-plastic material behaviour is given by* 

E 1 - 1  
KeP(.' = " ( I  - [ , ] . 

L E+ H' 

In (2.42) it can be seen that the first term represents the elastic stiffness, as 
given by (2.38). The second term accounts for the reduction in stiffness from 
the elastic value due to yielding. 

* The element stiffness matrix can be written in the standard finite element form 

where integration is made over the volume of the element. For this one-dimensional 
application, D = E and 

where Nl(e) and Nde) are given by (2.24). The tangential stiffness matrix for elasto- 
plastic material behaviour is obtained by replacing D by 



ONE-DIMENSIONAL NONLINEAR PROBLEMS 29 

For a perfectly plastic material behaviour, after initial yielding equation 
(2.36) implies that H' = 0 and it is then evident from (2.43) that Kep(e) = 0. 
This implies that the tangential (elasto-plastic) stiffness matrix for such a 
material is singular and the tangential stiffness method cannot generally be 
employed in solution. If a significant number of elements in the structure 
has yielded, the assembled tangential stiffness matrix will be singular, and 
the inversion or reduction demanded by (2.13) cannot be performed. This 
difficulty can be avoided by use of the initial stiffness method in which the 
elastic element stiffnesses are employed at every stage of the computation, 
thereby ensuring a positive definite assembled stiffness matrix. 

2.6 Problems 
In this section some tasks are set for the reader which illustrate some 

further points in connection with the topics discussed in the chapter. 
Use the direct iteration method to solve the following one degree of 
freedom problem, H++f = 0 where f = 10 and H depends on 4 
according to H = 10(l+ e3#). 

Repeat Problem 2.1 using the Newton-Raphson method. Compare the 
solutions and the computational effort required in each. 
Solve the following one degree of freedom problem by both the tan- 
gential stiffness and initial stiffness method. Apply the total load f as 
two equal increments 

The more general form of the boundary condition (2.17) in Section 2.3 is 
d+/dx+q+a. + = 0, where q and a are constants and + is the unde- 
termined value of the unknown at the boundary point. Repeat the 
Galerkin process of Section 2.3 to include these additional terms. In 
particular, determine the additional nodal force contribution and the 
discrete 'external' nodal stiffness which arise. 
For the two-noded element with linear variation in + with shape 
functions as given by (2.24), evaluate the element stiffness matrix when 
K is a function of x. Assume that the spatial variation of K within the 
element is linear and obtained by interpolation of the specified nodal 
values by use of the element shape functions. 
Suppose that a heat loss also occurs by convection from the surface 
area of an element, which is given by h . +  where /z is the convection 
coefficient. If C is the circumference of the element, determine the 
additional contribution to H ( e )  resulting from this.@) 
Determine the nonlinear portion, H ' ( e ) ,  of the Jacobian matrix for a 
material dependence K = Ko(1 +eb#) .  Assume a two-noded linear 
element. 
Evaluate the stiffness matrix H ( e )  for a three-noded element for a 
heat conduction problem. Assume that the element has shape functions 
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and also that K = Ko(a+b+) where KO, a and b are constants. 
Repeat,Problem 2.8 for the case where KO is additionally a function of 
x. Assume that the nodal values of KO are given. 
Solve the nonlinear elastic problem of Fig. 2.10 by hand calculation. 
Use the tangential stiffness method and assume the total load to be 
applied in two equal increments. 

A =  1.0 

Fig. 2.10 Nonlinear elastic example-Problem 2.10. 

Solve Problem 2.10 if the structure is loaded by incrementally increas- 
ing the prescribed value of displacement at node 2. Increase the applied 
displacement in two equal increments up to a maximum value of 
4 2  = 3.0. Since the element stiffnesses become negative at the higher 
increment, use the initial stiffness method. 
A locking material is one in which the stiffness increases with increasing 
strains. For example, if g ( ~ )  = 3 can both the tangential stiffness and 
the initial stiffness methods be used to solve such material problems? 

Fig. 2.1 1 Elasto-plastic example-Problem 2.13. 

Determine the nodal displacement of node 2 of the structure shown in 
Fig. 2.11 as the applied load is increased to 10 units in two equal 
increments. Assume elasto-plastic material behaviour and use the 
tangential stiffness approach for solution. . 

20 
Element I I Element I1 

Fig. 2.12 Bimaterial elasto-plastic example-Problem 2.14. 
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2.14 Determine the displacement of node 2 of the elasto-plastic structure 
shown in Fig. 2.12. Assume the load to be applied in two equal 
increments. What happens if HI' =200, HII' = -200? 
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Chapter 3 
Solution of nonlinear problems 

3.1 Introduction 
A modular approach is adopted for the programs presented in this text, 

with the various main finite element operations being performed by separate 
subroutines. Any nonlinear finite element program must essentially contain 
all the subroutines necessary for elastic analysis. Briefly these consist of a 
subroutine to accept the input data, a subroutine for element stiffness formu- 
lation, subroutines for equation assembly and solution and a subroutine 
for output of the final results. 

In order to implement the solution algorithms described in Section 2.2, 
additional subroutines are clearly necessary. In particular two primary 
DO LOOPS are necessary to iterate the solution until convergence of the 
solution occurs and to increment the applied loading, if appropriate. Sub- 
routines must be included to evaluate the residual forces and also to monitor 
convergence of the solution. Figure 3.1 shows the organisation of the pro- 
grams presented in this chapter, particularly the sequence in which the 
subroutines are accessed. Four separate programs are developed to solve 
the following specific situations. 

Solution of nonlinear quasi-harmonic situations by direct iteration. 
Solution of nonlinear quasi-harmonic situations by the Newton- ' 

Raphson method. 
Solution of nonlinear elastic problems by either the tangential stiffness 
or the initial stiffness method or a combination of both. 
Solution of elasto-plastic problems by either the tangential stiffness or 
the initial stiffness method or a combination of both approaches. 

With reference to Fig. 3.1, most of the subroutines are common to all four 
programs presented; the only exceptions being the subroutines necessary for 
stiffness matrix generation, residual force calculation and solution conver- 
gence checking. The element stiffness formulation subroutines for quasi- 
harmonic direct interation, quasi-harmonic ~ e w t d n - ~ a ~ h s o n ,  nonlinear 
elastic situations and elasto-plastic problems are respectively named STIFFI, 
ASTIFI, STIFF2 and STIFF3. The evaluation of residual forces is not 
required in the direct iteration method and the appropriate subroutines for 
the quasi-harmonic Newton-Raphson, nonlinear elastic and elasto-plastic 
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I 

1 DATA 1 
Input data defining geometry, loading, boundary 
conditions, material properties, etc. 

I 
INITIAL 

Initialise various arrays to zero 

1 .- d 

INCLOD 
Increment the applied loads 

I 
NONAL 

Set indicator to identify type of solution 
algorithm, e .g . , direct iteration, tangential 
stiffness, etc. 

1 

Calculate the element stiffnesses depending on 
the type of problem, e.g., quasi-harmonic, 
elasto-plasticity, etc. 

I 
I 

1 ASSEMB 1 
Assemble the element loads and stiffnesses to 
give the global stiffness matrix and load vector 

I 
I 

GREDUC, BAKSUB & RESOLV 
Solve the resulting systems of simultaneous 
equations for the unknowns, $J 

I 

I REFOR l/REFOR2/REFOR3 I 

I 

1 RESULT 1 

N O  

Output the results L 

Calculate the residual force vector JI for 
the Newton-Raphson, Tangential Stiffness and 
Initial Stiffness methods only 

I 
MONITR/CONUND 

'Check to see if the solution has converged 

Fig. 3.1 Program organisation for one-dimensional nonlinear applications. 

I 

situations are named respectively REFORI, REFOR2 and REFOR3. 
Finally, since the basis of solution convergence differs for the direct iteration 
method from that of the other procedures, it requires a separate convergence 
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checking subroutine, termed MONITR. The equivalent subroutine for all 
other applications is named CONUND. 

The programs presented in this chapter also form the basis of an elasto- 
viscoplastic program for one-dimensional applications developed in Chapter 4 
and an elasto-plastic beam bending program considered in Chapter 5. In 
order to allow several of the subroutines developed in this chapter to be used 
for beam bending applications it will be necessary to permit the number of 
degrees of freedom per nodal point to be variable and to dimension some 
arrays to accommodate additional quantities. 

Sections 3.2 to 3.8 are devoted to the development of the subroutines which 
are common to the four programs presented. 

3.2 Input data subroutine, DATA 
For any finite element analysis the input data can be subdivided into three 

main classifications. Firstly the data required to define the geometry of the 
structure and the support conditions must be supplied. Secondly the material 
properties of the constituent materials must be supplied and finally the 
applied loading must be furnished. 

To allow a subroutine to be employed in more than one application, 
several control parameters must be supplied as input data. For example, the 
number of properties required to define the behaviour of a material will 
differ between quasi-harmonic problems and elasto-plastic situations. The 
use of variables in place of specific numerical values also generally aids 
program clarity. 

A list of control parameters required as input is now presented: 

NPOIN Total number of nodal points in the structure. 
NELEM Total number of elements in the structure. 
NBOUN Total number of boundary points, i.e. nodal points at which the 

value of the unknown is prescribed. In this context an internal 
node can be a boundary node. 

NMATS Total number of different materials in the structure. 
NPROP The number of material parameters required to define the charac- 

teristics of a material completely: 
&For elasto-plastic problems, 
2-For all other applications. 

NNODE Number of nodes per element. For linear displacement one- 
dimensional elements this equals 2. 

NINCS The number of increments in which the total loading is to be 
applied. 

NALGO Indicator used to identify the type of solution algorithm to be 
employed : 
1 -Direct iteration. 
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2-Newton-Raphson method for quasi-harmonic problems. Tan- 
gential stiffness method for structural problems (nonlinear 
elastic and elasto-plastic situations). 

3-Initial stiffness method. 
4-Combination of the initial and tangential stiffness methods, 

where the stiffnesses are recalculated on the first iteration of a 
load increment only. 

5-Combination of the initial and tangential stiffness methods, 
where the stiffnesses are recalculated on the second iteration of 
a load increment only. This can aid the rate of convergence 
considerably, if on the application of an increment of load 
there is substantial further yielding. When calculating the 
element stiffnesses the total plastic strains evaluated during 
the previous iteration are used to indicate whether the element 
has yielded or not. If the element stiffnesses are recalculated on 
the first iteration, the elements which have now yielded may 
have been elastic at the end of the previous load increment and 
consequently the reformulated stiffness will be based on elastic 
behaviour. This can reduce the convergence rate of the process 
since generally H' - 0.1 E. From (2.42) the elasto-plastic stiff- 
ness is proportional to E(l -E/(E+ H')) - Ell 1, whereas the 
elastic stiffness depends linearly on E. Hence the tangential 
stiffness calculated grossly overestimates the true material 
response. This problem can be alleviated by reformulating the 
element stiffnesses during the second iteration of a load incre- 
ment rather than the first, since the plastic strain evaluated on 
the first iteration will indicate yielding to have initiated. 

NDOFN The number of degrees of freedom per nodal point: 
1-For uniaxial problems. 
2-For beam bending problems (considered in Chapter 5). 

The geometry of the structure is completely defined on prescription of the 
nodal point coordinates and the element nodal connections. The coordinate 
of each nodal point must be defined with reference to a global coordinate sys- 
tem. For the one-dimensional situation being currently considered, the 
position of each nodal point is completely defined by a single coordinate 
whose value will be stored in the array 

COORD (IPOIN) 

where IPOIN corresponds to the number of the nodal point. 
The origin of the coordinate system can be arbitrarily chosen. The geometry 

of each individual element must be specified by listing in a systematic way 
the numbers of the nodal points which define its outline. For the two-noded 
linear displacement element the nodal numbers can obviously be read in any 
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order. The element topology is read into the array 

LNODS (NUMEL, INODE) 

where NUMEL corresponds to the number of the element under consider- 
ation and subscript INODE ranges from 1 to NNODE. Since each element 
may conceivably be assigned different material properties, a material property 
identification number is also allocated to each element and stored in the array 

MATNO (NUMEL) 

This implies that element number NUMEL has material properties of type 
MATNO (NUMEL). 

The material properties required for solution will differ for the various 
applications considered, but the same array will be employed for storage of 
this information. Namely 

PROPS (NUMAT, IPROP) 

where NUMAT denotes the material identification number and the subscript 
IPROP the individual property. Each element is associated with a particular 
material type through the previously mentioned identification array MATNO 
(NUMEL). The relevant material properties associated with the different 
problem types considered here are listed below. 

(a) Quasi-harmonic problems 

PROPS (NUMAT, 1)-The reference value KO of the coefficient K in 
equation (2.27). 

PROPS (NUMAT, 2)-The constant b in equation (2.27) for a linear 
'stiffness' variation. 

(b) Nonlinear elastic problems 

PROPS (NUMAT, 1)-The reference value Eo in (2.30). 
PROPS (NUMAT, 2)-Ttle cross-sectional area A, of the element. Each 

element with a different cross-sectional area must 
be assigned a different material property number. 

Elasto-plastic problems 

PROPS (NUMAT, 1)-The elastic modulus, E, of the material. 
PROPS (NUMAT, 2)-The cross-sectional area, A,  of the element. 
PROPS (NUMAT, 3)-The uniaxial yield stress of the material. 
PROPS (NUMAT, 4)-The linear strain hardening parameter, H', for 

the material (equation (2.35)). 

I t  should be mentioned here that the specific form of dependence of material 
stiffness'on the unknown function for cases (a) and (b) will be directly 
in~rpora ted  into the program by use of a FORTRAN FUNCTION 
statement. 
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Any nodal points at which a degree of freedom has a prescribed value 
must be identified by the temporary variable NODFX. To determine which 
degrees of freedom are to be prescribed at this node, the entries in the array 

ICODE (IDOFN) 

are set to either 0 or 1. (Variable IDOFN ranges over the number of degrees 
of freedom per node NDOFN. In the present case NDOFN= 1, but later 
in Chapter 5, NDOFN has the value 2.) If ICODE (IDOFN) is equal to 1, 
then degree of freedom IDOFN at node NODFX has a prescribed value. 
If NCODE (IDOFN) is equal to 0 then degree of freedom IDOFN at node 
NODFX is a free variable. 

The value for a prescribed degree of freedom is given by 

VALUE (IDOFN) 

It should be noted that if ICODE (IDOFN)=O, then VALUE (IDOFN) is 
ignored. 

In order to simplify the solution process, the information stored in arrays 
ICODE and VALUE is transferred to much larger arrays IFPRE (NPOSN) 
and PEFIX (NPOSN) respectively, where NPOSN ranges over all the degrees 
of freedom for the whole finite element mesh. Both IFPRE and PEFIX are 
initially set equal to zero and as data for each restrained boundary node is 
read, they are modified if necessary. Unit entries in IFPRE indicate that the 
associated variable is prescribed. The prescribed value is obtained from the 
corresponding position in PEFIX. 

Finally, the loads applied to the structure must be specified. For the 
frontal method of equation solution employed in later chapters it is con- 
venient to associate the applied loads with the elements on which they act. 
Thus for each element the nodal loads acting on the two nodes associated 
with the element must be input and these are stored in the array 

RLOAD (IELEM, IEVAB) 

where IELEM indicates the element number and IEVAB relates to the 
degrees of freedom of the element (IEVAB ranges from 1 to NEVAB, the 
number of element variables, which is equal to 2 in the present case but 
which equals 4 in the applications described in Chapter 5). It should be noted 
that a nodal load may be arbitrarily assigned to any one of the elements con- 
nected to that node, since before eventual ~olution all element contributions 
are assembled to form a global load vector. Before entering the solution 
routines the loads are transferred to an array ELOAD (IELEM, IEVAB) as 
described later in Section 3.7. 

Subroutine DATA is now presented and should be largely self-explanatory. 
Descriptive comments are provided immediately after the FORTRAN listing 
of the subroutine. 
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C DATA 
C+~Y+++IYY+I I+Y+~*+YJI*Q~*#~*Q~##**%~***~********************************DATA 

COMMON/UNIMI/NPOIN.NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, DATA 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, DATA 
NITER,NOUTP,FACTO,PVALU DATA 

COMMON/UNIM2/PROPS(5,4) , COORD( 26 ) , LNODS( 25,2) , IFPRE( 52) , DATA 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,~LoAD(25,4), DATA 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XD-ISP(521, DATA 
TDISP(26,2) ,TREAC(26.2) ,ASTIF(52,52) ,ASLOD(52), DATA 
REACT(52) ,FRESV( 13521, PEFIX(52) ,ESTIF(4,4) DATA 

DIMENSION ICODE(2) , VALUE(2) ,TITLE( 1 8) DATA 
READ (5,965 1 TITLE DATA 
WRITE ( 6,965 ) TITLE DATA 

965 FORMAT ( 1 8A4 ) DATA 
READ(5,gOO) NPOIN,NELEM,NBOUN,NMATS,NPROP,NNODE,NINCS,NALGO,NDOFN DATA 

900 FORMAT ( 915 ) DATA 
WRITE ( 6,905 ) NPOIN , NELEM , NBOUN , NMATS , NPROP N O D  I N  , N A G  D O N  DATA 

905 FORMAT(//IX,'NPOIN =',15,3X,'NELEM =',15,3X,'NBOUN =',15,3X, DATA 
INMATS =',15//1X,'NPROP z1,15,3X , 'NNODE = '  ,15,3X, DATA 
'NINCS =',15,3X , 'NALGO =',I5//1X, 'NDOFN =',I51 DATA 

NEVAB=NDOFN*NNODE DATA 
NSVAB=NDOFN*NPOIN 
WRITE(6,910) 

91 0 FORMAT( 1 HO ,5X, 'MATERIAL PROPERTIES ) 

DATA 
DATA 
DATA 

DO 10 IMATS=l,NMATS DATA 
READ ( 5,9 15 ) JMATS, ( PROPS( JMATS, IPROP ) , IPROP= 1 , NPROP) DATA 

10 WRITE(6,gI 5 ) JMATS, (PROPS( JMATS, IPROP) , IPROP=I , NPROP) DATA 
915 FORMAT(I10,4F15.5) DATA 

WRITE(6,920) DATA 
920 FORMAT ( I H0,3X, ' EL NODES MAT. ' ) DATA 

DO 20 IELEM=l,NELEM DATA 
READ (5,925) JELEM, (LNODS( JELEM, INODE), INODEz1 ,NNODE) ,MATNO( JELEM~DATA 

20 WRITE(6.925) JELEM, (LNODS( JELEM, INODE), INODE=I , NNoDE) ,MATNO( JELEM)DATA 
925 FORMAT ( 415 DATA 

WRITE( 6,930 1 DATA 
930 FORMAT(IHO,~X, 'NODE1,5x, 'COORD. ' )  DATA 

DO 30 IPOIN=I ,NPOIN DATA 
READ (5,935) JPOIN, COORD( JPOIN) DATA 

30 WRITE(6,935) JPOIN, COORD( JPOIN) DATA 
935 FORMAT(IIO,F15.5) DATA 

DO 40 ISVAB=I , NSVAB DATA 
IFPRE ( ISVAB =O DATA 

40 PEFIX( ISVAB) =O .O DATA 
IF( NDOFN. EQ. 1 1 WRITE(6.940 ) DATA 

940 FORMAT(IHO,IX, 'RES.NODEt ,2X, 'CODE' ,3X, 'PREs.vALUES') DATA 
IF(NDOFN.EQ.2) WRITE(6.945) DATA 

945 FORMAT(1HO,1X,'RES.NODE',2X,'CODE',3X,'PRES~V~~ES',~X, DATA 
'CODE1 ,3X, 'PRES.VALUESr ) DATA 

DO 50 IBOUN=l,NBOUN DATA 
READ ( 5,950 ) NODFX , ( ICODE ( IDOFN ) ,VALUE ( IDOFN ) , IDOFN= 1 , NDOFN ) DATA 
WRITE(6,950 NODFX, ( ICODE( IDOFN) ,VALUE( IDOFN 1 , IDOFN= 1 , NDOFN DATA 

950 FORMAT(110,2(15,F15.5)) DATA 
NPOSN=(NODFX-I)*NDOFN DATA 
DO 50 U>OFN=l,NDOFN DATA 
NPOSN=NPOSN+l DATA 
IFPRE ( NPOSN) =ICODE( IDOFN ) DATA 

50 PmIX( NPOSN) =VALUE( IDOFN) DATA 
WRITE(6,955) DATA 

955 FORMAT ( 1 H0,2X, ' ELEMENT ' , I OX, ' NODAL LOADS ' ) DATA 
DO 60 IELEM=I,NELEM DATA 
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DO 60 IEVAk1,NEVA.E 
60 RLOAD(IELEM,IEVAB)=O.O 
70 READ (5,960) JELEM,(RLOAD(JELEM,IEVAB),IEVAB=l,NEVAB) 

IF(JELEM.NE.NELEM) GO TO 70 
DO 80 IELEM=1, NELEM 

80 WRITE (6,960 ) IELEM, ( RLOAD ( IELEM , IEVAB) , IEVAB= 1 , NEVAB) 
960 ~ORMAT(110,5F15.5) 

RETURN 
END 

DATA 65 
DATA 66 
DATA 67 
DATA 68 
DATA 69 
DATA 70 
DATA 71 
DATA 72 
DATA 73 

DATA 16-18 Read and write the problem title. 
DATA 19-24 Read and write the control parameters for the problem. 
DATA 27-32 Read and write the material properties for each individual 

material. 
DATA 33-38 Read and write the nodal connection numbers and material 

identification number of each element. 
DATA 39-47 Read and write the coordinate of each nodal point. Also 

initialise the arrays for locating and recording prescribed 
values of the unknown. 

DATA 48-61 Read and write the node number and prescribed value for 
each degree of freedom for each boundary node and store 
in the global arrays IFPRE and PEFIX. 

DATA 62-71 Read and write the nodal loads for each element. 

3.3 Subroutine NONAL 
The main function of this subroutine is to control the solution process 

according to the value of the solution algorithm parameter, NALGO, input 
in subroutine DATA. The subroutine sets the value of indicator KRESL to 
either 1 or 2 according to NALGO and the current value of the iteration 
number IITER and increment number IINCS. A value of KRESL=l 
indicates that the stiffnesses are to be reformulated and consequently a full 
system of simultaneous equations must be subsequently solved. If KRESL =2 
the stiffnesses are not to be redefined and therefore only equation resolution 
need be undertaken. In this the reduced equations from the previous solution 
are stored and only the terms associated with the new loading need be reduced 
in the solution process. This results in a considerable saving in computation 
time with equation resolution generally requiring only 20% of the time 
required for complete analysis. For the algorithm options contained in the . 
four programs presented, the value of KRESL is preset as follows. 

(a) Direct iteration. For this case the stiffnesses must be reformulated, 
according to (2.3), for every iteration. Consequently KRESL= 1 at  
all stages. 

(b) Newton-Raphson method for quasi-harmonic problems and tangential 
stiffness method for structural problems. Again the stiffnesses must be 
reformulated for every iteration according to (2.12) for quasi-harmonic 
situations and (2.13) for structural applications. Therefore KRESL = 1 
at all stages. 
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(c) Initial stiflness method. In this approach the stiffnesses are calculated 
once and for all at the beginning of the computation, according to (2.14) 
and this value is then used throughout. Consequently KRESL = 1 for 
the first iteration of the first load increment and is set equal to 2 there- 
after. 

(d) Combination of initial and tangential stiflness methods. In this algorithm 
the stiffnesses are recalculated only for the first iteration of any load 
increment and kept constant thereafter until convergence of solution 
under that particular loading is achieved. Therefore KRESL= 1 for 
the first iteration of any load increment and is set to 2 at all other 
times. (Alternatively the element stiffnesses may be recomputed at the 
beginning of the second iteration as described in Section 3.2.) 

The final role of subroutine NONAL is to set the vector of prescribed 
unknowns to the correct values. For the method of direct iteration the 
problem is completely reanalysed for every iteration and therefore the vector 
of prescribed unknowns must be introduced unchanged into the solution sub- 
routines at each stage. However, for the three other solution algorithms con- 
sidered, the processes are essentially accumulative with the value of the 
unknowns being totalled from the incremental values obtained for each 
iteration. Therefore, in order to maintain the fixed unknowns at their pre- 
scribed values, it is necessary to input the prescribed values into the solution 
routines for the first iteration of a load increment and then prescribe zero 
values for all subsequent iterations. In this way the final displacements will 
equal the prescribed values on convergence of the solution. If the structure 
is to be loaded by prescribing values of the unknowns then an incremental 
procedure may be adopted with factored values of the prescribed unknowns 
being applied sequentially. The prescribed displacements are factored by use 
of the variable FACTO, whose role is explained in terms of applied loads in 
Section 3.7. The prescribed values of the unknowns 'have been permanently 
stored in array PEFIX in subroutine DATA. These prescribed values, or 
zero values, required as described above, are transferred to the equation 
solution subroutines via the array FIXED. 

Subroutine NONAL is now presented and explanatory notes provided. 

SUBROUTINE NONAL NONL 
C***+*++iiii+Wff+++i**t*i*#i**iiii~~iii********%%****%******************NONL 

C NONL 
C *** SETS INDICATOR TO DENTIFY TYPE OF SOLUTION ALGORITHM NONL 
C NONL 
C*+IYCW+****+l*fWfl*W%ii*ittiYiYt**i*IY*******%*%***********************NONL 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, NONL 
KRESL,NCHEK,TOLER,NAU;O,NSVAB,NDOFN,NINCS,NEVm, NONL 
NITER,NOUTP,FACTO,PVALU NONL 

COMMON/UNIM2/PROPS(5,4) ,COORD(26), LNODS(25,2), IFPRE(52), NONL 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), NONL 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), NONL 
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TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,AsLoD(~~), NONL 13 
REACT( 52) , FRESV( 1352) , PEFIX( 52) , ESTIF( 4,4) NONL 14 

KRESL=2 NONL 15 

IF(IITER.EQ.l.oR.NALGo.EQ.1) GO TO 20 
DO 10 ISVAEk1,NSVAB 
FIXED(ISVAB)=O.O 
RETURN 
DO 30 ISVAB=l,NSVAB 
FIXED(ISVAE)=PEFIX(ISVPB)*FACTO 
RETURN 
END 

NONL 15 
NONL 16 

NONL 17 

NONL 18 

NONL 19 

NONL 20-21 

NONL 22 

NONL 23-25 
NONL 26-27 

NONL 
NONL 
NONL 
NONL 
NONL 
NONL 
NONL 
NONL 
NONL 
NONL 
NONL 
NONL 
NONL 28 
NONL 29 

Preset KRESL to the condition of equation resolution. 
For the direct iteration method set KRESL = 1 for recompu- 
tation of the stiffnesses at all stages. 
For the Newton-Raphson method for quasi-harmonic prob- 
lems or the tangential stzflness method for structural problems, 
recompute the stiffnesses at all stages. 
For the initial stiflness method for structural problems, com- 
pute the stiffnesses only at the beginning of the computation 
procedure. 
For the combined initial and tangential stiflness approach and 
NALGO =4, recompute the stiffnesses at the first iteration of 
each load increment only. 
For the hitialltangential approach with the option NALGO 
=5 (Section 3.2), the stiffnesses are recalculated on the 2nd 
iteration of any load increment. However, at the start of the 
computation the stiffnesses must be evaluated. 
For all stages of the direct iteration method or the first iter- 
ation of the other techniques, go to 20 to set the unknowns 
equal to the prescribed values. 
Set the vector of prescribed unknowns to zero and return. 
Set the vector of prescribed unknowns equal to the input 
prescribed values multiplied by a specified factor. 

3.4 . Subroutines for equation assembly and solution 
For finite element analysis by the displacement process, the stiffness and 

load contributions of each element must be assembled into the global stiff- 
ness matrix and load vector respectively. The resulting set of simultaneous 
equations must then be solved to give the unknown nodal values. These 
aspects have been dealt with in detail elsewherecl-3) and only the essential 
steps of the process will be reproduced here. 
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3.4.1 Numerical example of equation assembly and solution 
In order to introduce the global stiffness matrix assembly and equation 

solution process we consider the example of a simple axial load structure 
shown in Fig. 3.2. The structure is subdivided into four elements in each of 
which a linear displacement variation is assumed. At each node i of the 
element there is an axial displacement degree of freedom, 4s. 

Fig. 3.2 Structural example for illustration of equation solution process. 

The stiffness matrix for this element has already been derived in Section 2.5 
and is given, for elastic material behaviour, by equation (2.38). The element 
stiffness matrices can be written as 

where 

k~ = , etc., 
L(I' 

in which E(I), A(I) and L(I) are respectively the elastic modulus, cross- 
sectional area and length of element I. The vector of applied nodal forces 
for each element is 

The vectors of the unknown nodal displacements for the elements are 

We also assume the following prescribed displacement values 

4 2  = d,,. 4 5  = 0. (3.5) 
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The Theorem of Minimum Total Potential Energy will now be used to 
derive the stiffness equations for this problem. The total potential energy 
for each element may be calculated separately. For example, the total 
potential energy of element I can be expressed as 

The augmented total potential energy of the assemblage is given by the sum 
of the individual element potentials plus extra terms to account for the pre- 
scribed values 

Note that R2 and R5 are the associated nodal reactions. 
Using the principle of minimum potential energy, we obtain 

These equilibrium equations for the assembled elements of the structure can 
be expressed i n  matrid form as 

The assembly process can be clearly appreciated by comparing the indi- 
vidual stiffness matrices (3.1), and load vectors (3.3), with the final assemblage. 
Obviously, the individual element contributions can be added directly into 
the overall stiffness matrix of the structure in positions appropriate to the 
element nodal connection numbers. 
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It is noted that the global stiffness matrix is both symmetric and banded. 
By banded we mean that all the non-zero stiffness coefficients lie within a 
band adjacent to the leading diagonal. Banding of the stiffness equations is a 
direct consequence of the order in which the nodal points are numbered. 

In the equation solution subroutines presented later in Sections 3.4.2-3.4.5 
no advantage will be taken of the banded symmetric form of the stiffness 
equations. 

Some elementary concepts of equation solution are now introduced. In 
particular we describe the Gaussian direct elimination process which will be 
used in a more efficient form in the main solution routine described later in 
Chapter 6 .  

3.4.1.1 Gaussian direct elimination method for the solution of simultaneous 
equation systems 

Formulation of the global stiffness matrix resulted in equation system (3.9) 
which is of the general form 

The Gaussian direct elimination method seeks to reduce equation system 
(3.10) to the following triangular formc4) 

Then all the unknowns can be systematically determined by taking these 
reduced equations in reverse order, since each new equation, proceeding in 
an upward direction, only introduces one additional unknown value. The 
last equation is solved for +,, then +n-l can be recovered from the next 
equation and so on. This phase of the solution scheme is termed back- 
substitution. 

3.4.1.2 The equation reduction or elimination phase 
Reduction of system (3.10) to the form (3.11) can be accomplished by 

employhg the ith equation to eliminate +i from all equations below, i.e. 
from equations i+ 1 to n. Formally this can be done by subtracting from the 
rth equation (i < r < n), the ith equation factored by kri("/kii(", where the 
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superscript i indicates that these coefficients have been already modified 
(i- 1) times prior to the elimination of the ith degree of freedom. For ex- 
ample, the first equation is used to eliminate & from equations 2 to n as 
follows : 

Then the second equation is used to eliminate 4 2  from equations 3 to n and 
so on. Note that the modified terms in the equation system are still sym- 
metric. 

3.4.1.3 The case of a prescribed displacement 
If a displacement is prescribed its value is known. Therefore the nodal 

force necessary to maintain the specified displacement becomes the unknown 
value associated with the node. Suppose for example that $2  is prescribed 
to be some given value +,, in which case fz is the reaction value. In this case 
the elimination of 4 2  is trivial and all that need be done is to substitute 
+2 =+, in equations 3 to n and transfer the now known quantity 

to the right-hand side of each equation. This is illustrated below 

For the particular case of a zero prescribed displacement value due to a 
pinned support, an alternative approach is to delete the row and column 
corresponding to the zero displacement from the equation system. The 
column can be deleted since it always multiplies a zero quantity and the row 
is removed since it only relates to equilibrium at the supported node. How- 
ever this means that if the support reaction is required, it must be computed 
separately from the element forces meeting at the pinned node. 

The complete solution process is best illustrated by application to a 
particular problem. We will now substitute explicit values for the terms 
contained in (3.9) in order to permit numerical solution. Assume that 
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then equations (3.9) can be written as 

where Rz and R5 are the nodal reactions associated with the displacement 
values prescribed at nodes 2 and 5. For example, Rz must balance the sum 
of the elastic forces provided by all the elements meeting at node 2. We 
also imply by the notation adopted that 42 = 2. 

To solve these equations by the Gaussian reduction process we first 
eliminate from all equations, except (3.15a). Then we eliminate 4 2  from 
all equations below (3.15b), then 43 is eliminated from all equations below 
(3.1%) and so on. Therefore, we eliminate a particular variable only below 
the current or active equation. (If we are eliminating +,, the rth equation is 
active.) 

We commence the process by eliminating 41 from equations (3.15b)- 
(3.15e) by using (3.15a). In fact, we need only operate on (3.15~) since 
does not appear in the other equations. Thus we eliminate 41 from (3.1%) 
by adding (3.15a) to (3.15~). This gives the first reduced set of equations as 

Next we eliminate 42 from (3.16~)-(3.16e) by using (3.16b). In fact, since 4 2  

is prescribed to be 2, all we need do is substitute $2 = 2 directly into the 
remaining equations. We also do this for (3.16b) in this case. 
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We then use (3.17~) to eliminate $3 from (3.17d) and (3.17e). We need only 
operate on (3.17d), since $3 does not appear in (3.17e), and in particular we 
add (3.17d) to 3/5 of (3.17~). 

To complete the elimination process, we eliminate 44 from (3.18e) by adding 
(3.18e) to 20/26 of (3.18d). 

We now have a set of equations which can be solved directly if we take them 
in reverse order. Starting with (3.19e) we have R5 = -84/13, since $5 = 0. 
Knowing $5 then (3.19d) gives $4 = 21/13. Having obtained $4 and $5 

equation (3.19~) gives 43 = 49/13. Then knowing 43, 44, 4 5  and with $2 

prescribed, (3.19b) gives R, = -46113 immediately. Finally we complete the 
back substitution process by determining $1 from (3.19a) since 42, $3, $4 

are known at this stage. This gives = 179/13. Since the above procedure 
is quite systematic it can be readily programmed. 

The global stiffness matrix must be assembled and the stiffness equations 
reduced only if the element stiffnesses have been changed for the current 
iteration. The full assembly and reduction process must be followed if 
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KRESL = I, but only the global load vector need bc formed and reduced 
if KRESL = 2. In this way a considerable number of arithmetic operations 
are avoided if only equation resolution is to be undertaken. This facility is 
incorporated in the equation solution subroutines presented in the following 
sections. 

The principles discussed in this section can now be repeated as a 
FORTRAN operation. Four subroutines are presented which undertake 
the respective tasks of equation assembly, equation reduction by Gaussian 
direct elimjnation, the back substitution process and reduction of subsequent 
load vectors for equation resolution. 

3.4.2 Subroutine ASSEMB 
This subroutine assembles the element nodal loads to form the global 

load vector. Also, the contributions of individual elements are assembled to 
form the global stiffness matrix. The variables employed in the subroutine 
are listed below and descriptive notes are again provided immediately after 
the FORTRAN listing. 

Dictionary of variable ~ a t n e s  (ttith dimensions) 

ASLOD (MSVAB) 
ASTIF (MSVAB, MSVAB) 
RLOAD (MEVAB) 
ESTIF (MEVAB, MEVAB) 
IELEM, NELEM, MELEM 

IFILE 
IDOFN, JDOFN, NODFN 

INODE, JNODE, NNODE, 
MNODE 
ISVAB, JSVAB, MSVAB, 
NSVAB 
JFILE 
KRESL 
LNODS (MELEM, MNODE) 

NODE1 
NODEJ 
NCOLS 

NROWS . 

Assembled LOaD vector 
Assembled global STIFfness matrix 
Element load vector 
Element STIFfness matrix 
Inde.x, Number, Maximum of 
ELEMents 
Input FILE 
Index, Index, Number of Degrees Of 
Freedom per Node 
Index, Index, Number, Maximum of 
NODes per Element 
Index, Index, Maximum, Number of 
global Structural VAriaBles 
Output file 
Equation resolution index 
ELement NODe numbers listed for 
each element 
NODE I 
NODE J 
Number of the COLumn in the global 
Structural stiffness matrix 
Number of the ROW in :he global 
Structural stiffness matrix and load 
vector 
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NCOLE Number of the COLumn in the 
Element stiffness matrix 

NROWE Number of the ROW in the Element 

MEVAB 
stiffness matrix and load vector 
Maximum of Element VAriaBles 

ELEMENT ASSEMBLY ROUTINE 

REWIND 1 
DO 10 ISVAB=l,NSVAB 

10 ASLOD(ISVAB)=O.O 
IF(KRESL.EQ.2) GO TO 30 
DO 20 ISVAB=l.NSVAB 
DO 20 JSVAB=l,NSVAB 

20 ASTIF( ISVAB , JSVAB) =O . 0 
30 CONTINUE 

ASSEMBLE THE ELEMENT LOADS 

DO 50 IELEM=l,NELEM 
READ( 1 ESTIF 
DO 40 INODE=l,NNODE 
NODE1 =LNODS( IELEM , INODE) 
DO 40 IDOFN=l,NDOFN 
NROWS=(NODEI-1)*NDOFN + IDOFN 
NROWE=( INODE-1 ) "NDOFN + IDOFN 
ASLOD(NR0WS) =ASLOD(NROWS) + ELOAD( IELEM, NROWE) 

ASSEMBLE THE ELEMENT STIFFNESS MATRICES 

IF(KRESL.EQ.2) GO TO 40 
DO 40 JNODE = 1,NNODE 
NODEJ=LNODS( IELEM, JNODE) 
DO 40 JDOFN =1,NDOFN 
NCOLS= ( NODEJ-1) * N D M  + JDOFN 
NCOLE=(JNODE-1)"NDOFN + JDOFN 
ASTIF( NROWS, NCOLS) =ASTIF( NROWS, NCOLS) + ESTIF( NROWE, NCOLE) 

40 CONTINUE 
50 CONTINUE 

RETURN 
END 

ASEM 18 Rewind file ready for reading the individual element stiffness 
matrices. 

ASEM 19-20 Set the global load vector, ASLOD, to zero. 
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ASEM 21-25 If only equation resolution is to be performed during this - 

iteration, do not set the global stiffness coefficients to zero. 
Loop for each element. 
Read ESTIF for the current element. 
Loop for each node 'INODE' of current element. 
From LNODS array identify node number of current node 
'INODE'. 
Loop for each degree of freedom of the current node 'INODE'. 
Establish the row position in the global stiffness matrix and 
load vector. 
Establish the row position in the element stiffness matrix and 
load vector. 
Add the contribution to the global load vector from the 
element load vector. 
If equation resolution is to be performed, avoid assembling 
the global stiffness matrix. 
Loop for each node 'JNODE' of the current element. 
From LNODS array identify node number of current node 
'JNODE'. 
Loop for each degree of freedom of the current node 'JNODE'. 
Establish the column position in the global stiffness matrix. 
Establish the column position in the element stiffness matrix. 
Add the contribution to the global stiffness matrix from the 
element stiffness matrix. 
End element loop. 

For the problem described in Section 3.4.1, the main variables have the 
following values 

NNODE = 2, NELEM = 4, NDOFN = 1, NSVAB = 5, 

- Element I 

- Element I1 

- Element IT1 

- Element IV. 

3.4.3 Subroutine GREDUC 
This subroutine undertakes the equation elimination process for equation 

solution by Gaussian reduction as outlined in Section 3.4.1. The additional 
variable names employed are defined below. 

Dictionary of variable names 

ASLOD (MEQNS) ASembled LOaD vector. 
ASTIF (MEQNS, MEQNS) Assembled global STIFfness matrix. 
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IEQNS, NEQNS, MEQNS 

IFPRE (MEQNS) 

FIXED (MEQNS) 

ICOLS 

IROWS 

FACTR 
FRESV ( ) 
PIVOT 

Index, Number, Maximum of 
EQuatioNS. 
Vector of parameters defining the fixity 
of a node. 0 - free; 1 - fixed. 
Vector of prescribed displacements 
(zero if not prescribed). 
Index COLumn of Structural stiffness 
matrix. 
Index ROW of Structural stiffness 
matrix. 
Gaussian reduction FACTOR. 
Stored Gaussian reduction factors. 
Diagonal term of variable which is cur- 
rently being eliminated. 

SUBROUTINE GREDUC GRED 1 C***********************************************************************~ 2 
C GRED 3 
C *** GAUSSIAN REDUCTION ROUTINE GRED 4 

COMMON/UNIMl/NPOIN .NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITEH, 
KRESL,NCHEK,TOLER,NALG09NSVAB,NDOFN,NINCS,NEV~, 
NITER,NOUTP,FACTO,PVALU 

COMMON/UNIM2/ PROPS( 5,4 , COORD( 26 ) , LNODS( 25 2) IFPRE( 52) 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), 
MATNO(25) ,STRES(25,2) JLAST(25) ,XDISP(52) , 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASL(52) , 
REACT(52) ,FRESV( 1352) JEFIX(52) ,ESTIF(4,4) 

C 
C GAUSSIAN REDUCTION ROUTINE 
C 

KOUNT=O 
NEQNSzNSVAB 
DO 70 IEQNS=l , NEQNS . 

P 

IF(IFPRE(IEQNS).EQ.l) GO TO 40 
L 

C REDUCE EQUATIONS 
C 

PIVOT=ASTIF( IEQNS, IEQNS) 
IF(ABS(PIV0T) .LT. 1 .OE-10) GO TO 60 
IF(IEQNS.EQ.NEQNS1 GO TO 70 
IEQNI =IEQNS+I 
DO 30 IROWS=IEQNl,NEQNS 
KOUNT=KOUNT+l 
FACTR=ASTIF( IROWS. IEQNS)/ PIVOT 
FRESV ( KOUNT) =FACTR 
IF(FACTR.EQ.O.0) GO TO 30 
DO 10 ICOLS=IEQNS,NEQNS 
ASTIF( IROWS, ICOLS) =ASTIF( IROWS, ICOLS) -FACTR*ASTIF( IEQNS , ICOLS) 

10 CONTINUE 
ASLOD( IROWS) =ASLOD ( IROWS) -FACTR*ASLOD ( IEQNS) 

30 CONTINUE 
GO TO 70 

C 
C ADJUST RHS(L0ADS) FOR PRESCRIBED DISPLACEMENTS 

GRED 7 
GRED 8 
CRED 9 
GRED 10 
GRED 11 
GRED 12 
GRED 13 
GRED 14 
GRED 15 
GRED 16 
GRED 17 
GRED 18 
GRED 19 
GRED 20 
GRED 21 
GRED 22 
GRED 23 
GRED 24 
GRED 25 
GRED 26 
GRED n 
GRED 28 
GRED 29 
GRED 30 
GRED 31 
GRED 32 
GRED 33 
GRED 34 
GRED 35 
GRED 36 
GRED 37 
GRED 38 
GRED 39 
GRED 40 
GRED 41 
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C 
40 DO 50 IROWS=IEQNS,NEQNS 

ASLOD( IROWS) =ASLOD( IROWS) -ASTIF( IROWS. IEQNS) *FIXED( IEQNS) 
50 CONTINUE 

GO TO 70 
60 WRITE( 6,900 
900 FORMAT( 5X, 15HINCORRECT PIVOT ) 

STOP 
70 CONTINUE 

RETURN 
END 

GRED 
GRED 
GRED 
GRED 
GRED 
GRED 
GRED 
GRED 
GRED 
GRED 
GFiLD 

GRED 18 Set the counter over the Gaussian reduction factorisation 
terms to zero. 

GRED 19 Set the number of equations to be solved equal to the total 
number of variables in the structure, NSVAB. 

GRED 20 Loop for each equation-this equation is associated with the 
variable about to be eliminated. 

GRED 21 If this variable is fixed, skip to 40. 
GRED 25 Extract PIVOT-the leading diagonal term. 
GRED 26 Check for zero PIVOT in which case write a message and 

stop the program. 
GRED 27-38 Alter equations below equation 'IEQNS', not those above, 

according to (3.12). Note that the Gaussian factorisation 
terms are stored for use during equation resolution. 

GRED 43-45 For prescribed variables adjust the R.H.S. (or load) terms 
aqcording to (3.13). 

GRED 4749  For an invalid pivot value, write a message and terminate 
execution of the program. 

For the problem considered in Section 3.4.1 the main variables have the 
following values : 

NEQNS = 5, ASLOD = 

ASTIF = 
modified 

, ASTIF = rl 0 -1 0 0 

, modified ASLOD = - 10 

-4 

14 

4215 

- 84/13 
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FIXED 

The computational effort in this reduction process is proportional to n3. 
This can be approximately halved if we take advantage of the symmetry of 
the stiffness matrices. 

3.4.4 Subroutine BAKSUB 
The object of this subroutine is to perform the back substitution process 

required after equation elimination by Gaussian reduction. This results in 
sequential solution for all the unknowns and reactions at nodal points at 
which values of the unknown have been prescribed. In the nonlinear solution 
processes described in Chapter 2, the values of the unknown determined 
during any iteration may or may not be the total values depending on the 
solution algorithm being employed. If the method of direct iteration is being 
used, then, according to equation (2.3), the value of g, determined during any 
iteration is the total value. For all other solution techniques considered the 
total values of the unknown are accumulated according to the corrections 
determined during each iteration, as indicated for example by (2.12). 

Therefore, for the direct iteration process, it is simply necessary to transfer 
the calculated values of the unknowns and the reactions to the arrays TDISP 
(ISVAB, IDOFN) and TREAC (ISVAB, IDOFN) for output later. This 
transfer is only necessary to allow the same subroutine to be employed for 
output of results for all four programs. 

Subroutine BAKSUB will now be presented in a form suitable for non- 
linear solution dy direct iteration. 

Dictionary of variable names 
ASLOD (MEQNS) Reduced load vector. 
ASTIF (MEQNS, MEQNS) Reduced global stiffness matrix. 
IEQNS, NEQNS, MEQNS Index, Number, Maximum of 

EQatioNS. 
IFPRE (MEQNS) Vector of parameters defining the 

fixing of a node. 0 - free; 1 - fixed. 
FIXED (MEQNS) Vector of prescribed displacements 

(zero if not prescribed). 
PIVOT Diagonal term of variable currently 

being evaluated. 
REACT (MEQNS) REACTions at nodes with prescribed 

displacements. 
XDISP (MEQNS) Displacement at nodes. 
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C *** BACK-SUBSTITUTION ROUTINE 
t. 

BAKS 4 
BAKS 5 

Y 

COMMON/UNIW~/NPOIN.NELEE~,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, 
KRESL,NCHEK,TOLER,NAU;O,NSVAB,NDOFN,NINCS,NEVAB, 
NITER,NOUTP,FACTO,PVALU 

COMMON/UNIM~/PROPS( 5.4) , COORD ( 26 ) , LNODS( 25,2) , IFPRE( 52 , 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(~~), 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,fLSLOD(52), 
REACT(52) ,FRESV( 1352) ,PEFIX(52) ,ESTIF(Q14) 

C 
C BACK-SUBSTITUTION ROUTINE 
C 

NEQNS =NSVAB 
DO 10 IEQNS=l,NEQNS 
REACT ( IEQNS) =O . 0 

10 CONTINUE 
NEQN 1 =NEQNS+1 
W 4'0 IEQNS=I,NEQNS 
NBACKzNEQNI-IEQNS 
PIVOT=ASTIF(NBACK,NBACK) 
RESIDzASLOD ( NBACK ) 
IF(NBACK.EQ.NEQNS) GO TO 30 
NBAC 1 =NBACK+1 
.DO 20 ICOLS=NBACl,NEQNS 
RESIQ=&SU>-ASTIF(NBACK , ICOLS) *XDISP( ICOLS) 

20 CONTINUE 
30 IF(IFPRE(NBACK).EQ.O) XDISP(NBACK)=RESID/PIVOT 

IF( IFPRE( NBACK) . EQ. 1 ) XDISP( NBACK) =FIXED( NBACK) 
IF( IFPRE( NBACK) . EQ. 1 ) REACT(NBACK)=-RESID 

40 CONTINUE 
KOUNT=O 
DO 50 IPOIN=l,NPOIN 
DO 50 IDOFN=1, NDOFN 
KOUNT=KOUNT+I 
TDISP( IPOIN, IDOFN) = XDISP(K0UNT) 

50 TREAC ( IPOIN , IDOFN ) = REACT ( KOUNT ) 
RETURN 
END 

BAKS 7 
BAKS 8 
BAKS 9 
BAKS 10 
BAKS 11 
BAKS 12 
BAKS 13 
BAKS 14 
BAKS 15 
BAKS 16 
BAKS 17 
BAKS 18 
BAKS 19 
BAKS 20 
BAKS 21 
BAKS 22 
BAKS 23 
BAKS 24 
BAKS 25 
BAKS 26 
BAKS 27 
BAKS 28 
BAKS 29 
BAKS 30 
BAKS 31 
BAKS 32 
BAKS 33 
BAKS 34 
BAKS 35 
BAKS 36 
BAKS 37 
BAKS 38 
BAKS 39 
BAKS 40 
BAKS 41 
BAKS 42 
BAKS 43 

BAKS 19-21 Zero space for reactions. 
BAKS 22-24 Loop backwards over each equ 
BAKS 25 usethe same PIVOT as in subroutine GREDUC. 
BAKS 27 For the last equation (the first to be solved) we do not have 

any other variables to substitute (i.e. bypass the loop). 
BAKS 28-31 Evaluate RESID from previously calculated variables. 
BAKS 32 If the variable is not prescribed evaluate the variable. 
M K S  34 If the variable is prescribed evaluate the R.H.S. reaction. 
BAKS 36-41 Store the solved variables and reactions in new arrays for 

output. 

For the problem described in Section 3.4.1, the arrays employed in addition 
to those utilised in Subroutine GREDUC have the following'values: 
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It should be noted that nonzero reactions are obtained only for nodal 
positions at  which the value of the unknown has been prescribed. For the 
Newton-Raphson, Tangential Stiffness and Initial Stiffness methods, the 

- 0 

-46113 

0 

0 

- -84113 

TDISP = XDISP = 

calculated unknowns and reactions must be accumulated from the values 
obtained during each iteration. Therefore, for these applications, statements 
BAKS 36-41 in the above listing must be replaced by 

' 179113 - 

2 

49/13 

21/13 

0 - - 

KOUNT=O 
DO 50 IPOIN=l,NPOIN 
DO 50 IDOFN=l,NDOFN 
KOUNT=KOUNT+l 
TDISP( IPOIN. IDOFN) TDISP( IPOIN. IDOFN) +XDISP(KOUNT) 

50 TREAC(IPOIN,IDOFN)= TREAC(IPOIN,IDOFN)+REACT(KOUNT) 

, TREAC = REACT = 

BAKS 36 
BAKS 37 
BAKS 38 
BAKS 39 
B M S  40 
BAKS 41 

with the arrays TDISP and TREAC being initially set to zero at the begin- 
ning of the program. 

For these three solution algorithms a final further programming addition 
must be made. When dekrmining the residual forces according to (2.4), the 
contribution to f of the reactions at nodal points at which the value of the 
unknown is prescribed must be accounted for, since any reactions can be 
interpreted as additional applied loads necessary to maintain the prescribed 
value of the unknown. Therefore, the evaluated reactions must be added into 
the vector of applied nodal loads at every iteration. This task can be 
accomplished by the following coding inserted immediately before the 
RETURN statement : 

DO 90 IPOIN=l,NPOIN 
DO 60 IELEM=l,NELEM 
DO 60 INODE=l,NNODE 
NLOCA=LNODS( IELEM , INODE 

60 IF(IPOIN.EQ.NL0C.A) GO TO 70 
70 DO 80 IDOFN= 1 , NDOFN 

NPOSN=(IPOIN-l)YNDOFN+IDOFN 
IEVAB=(INODE-l)*NDOFN+IDOFN 

80 TLOAD( IELEt.1, IEVAB) =TLOAD( IELEM, IEVAB) +REACT( NPOSN) 
90 CONTINUE 

BAKS 42 
BAKS 43 
BAKS 44 
BAKS 45 
BAKS 46 
BAKS 47 
BAKS 48 
BAKS 49 
E M S  50 
E M S  51 

BAKS 42 Loop over each nodal point. 
BAKS 43-46 Search through the element nodal connections until one is 

found corresponding to the nodal point currently under con- 
sideration. As soon as one is found, abandon the search. Note 
that it is immaterial in which element the node is found since 
all element contributions will be finally assembled. 
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BAKS 47-50 Add the nodal reaction into the appropriate position in the 
array of applied element loads. 

3.45 Subroutine RESOLV 
As stated in Section 3.4.1, for equation resolution (indicated by KRESL 

= 2) only the global load vector need be formed and reduced. Subroutine 
RESOLV merely reduces the R.H.S. (or load) terms by standard Gaussian 
elimination using the same operations as employed in Subroutine GREDUC, 
Section 3.4.3. The Gaussian factorisation terms were evaluated and stored 
in GREDUC and are now utilised in this subroutine. The programming logic 
follows that of Subroutine GREDUC and can be readily understood by 
reference to Section 3.4.3. 

C RSLV 5 
C l l i i t * * i i * * * * Y t * i * * * * * * * * * * * * I * * * * * * * t * * * * * * * * * *  6 

COMMON/UNIM~/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE.IINCS,IITER, 
KRESL,NCHEK,TOLER,NALGO.NSVAB,NDOFN,NINCS,NEVAB, 
NITER,NOUTP.FACTO,PVALU 

COMMON/UNIW/PROPS(5,4) ,COORD(26) ,LNODS(25,2), IFPRE(521, 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), 
TDISP(26,Z) ,TREAC(26.2) ,ASTIF(~~,~~) ,ASLOD(52), 
REACT(52) ,FRESV( 1352) ,PEFIX(52) ,ESTIF(4,4) 

KOUNT=O 
NEQNS=NSVAB 
DO 40 1EQNS:l.NEQNS 
IF( IFPRE( IEQNS) . EQ. 1 ) GO TO 20 

C 
C REDUCE RHS 
C 

IF( IEQNS. EQ. NEQNS) GO TO 40 
IEQN1 =IEQNS+l 
DO 10 IROWS=IEQNl,NEQNS 
KOUNT=KOUNT+l 
FACTR=FRESV( KOUNT ) 
IF(FACTR.EQ.0) GO TO 10 
ASLOD( IROWS) =ASLOD( IROWS) -FACTR*ASLOD( IEQNS) 

10 CONTINUE 
GO TO 40 

C 
C ADJUST RHS TO PRESCRIBED DISPLACEMENTS 
C 
20 DO 30 IROWS=IEQNS,NEQNS 

AsLOD(IROWS)=ASLOD( 1ROWS)-ASTIF( IROWS, IEQNS) *FIXED( IEQNS) 
30 CONTINUE 
40 CONTINUE 

RETURN 
END 

RSLV 7 
RSLV 8 
RSLV 9 
RSLV 10 
RSLV 1 1  
RSLV 12 
RSLV 13 
RSLV 14 
RSLV 15 
RSLV 16 
RSLV 17 
RSLV 18 
RSLV 19 
RSLV 20 
RSLV 21 
RSLV 22 
RSLV 23 
RSLV 24 
RSLV 25 
RSLV 26 
RSLV 27 
RSLV 28 
RSLV 29 
RSLV 30 
RSLV 31 
RSLV 32 
RSLV 33 
RSLV 34 
RSLV 35 
RSLV 36 
RSLV 37 
RSLV 38 
RSLV 39 
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3.4.6 Improved numerical algorithm for equation solution 
Substantial economies can be achieved in both core storage requirements 

and execution times if advantage is taken of the banded symmetric form of 
the global stiffness matrix. Since: 

By recognising that the global stiffness matrix is symmetric, it is 
necessary only to store the upper (or lower) triangular part of the 
stiffness matrix. 

By noting that all the non-zero coefficients in the global stiffness 
matrix occur in a band adjacent to the leading diagonal, further 
reductions in the core storage requirements can be made, as well as a 
significant reduction in the number of arithmetic operations under- 
taken in the equation reduction and backsubstitution phases. 

In order to introduce these enhancements it is convenient to store the 
global stiffness matrix as a one-dimensional array. The necessary program- 
ming changes required to the subroutines presented in Sections 3.4.2-3.4.5 
are fully documented in Ref. 5. 

3.5 Output of results 

The next subroutine common to all four programs presented is subroutine 
RESULT whose function is to output the results at a frequency governed 
by a parameter input in Subroutine INCLOD described in Section 3.7. In 
order to make the subroutine applicable to all four cases, quantities will be 
output for some situations which are physically meaningless. In particular 
for quasi-harmonic problems, output items termed stress and plastic or non- 
linear strain are output as zero values for this reason. For nonlinear elastic 
problems the latter term is the total strain, E ,  defined in Section 2.4 and for 
elasto-plastic situations it is the plastic strain component, €3, defined in 
Section 2.5. For both cases the stress quantity output is the axial stress 
existing in each constant stress element employed. 

Subroutine RESULT will now be listed. 
k 

SUBROUTINE RESULT RSLT 
CIQ+~~~%++++~+++++~*I**~***~***I~I*P*I~*****~********~******************RSLT 

C RSLT 
C *** OUTPUTS DISPLACEMENT , REACTIONS AND STRESSES RSLT 
C RSLT 
~IYll++tI++t~+#iti+C**i**%#*iWiiiiYi***i***it***************************RSLT 

COMMON/UNIMI/NPOIN , NELEI.1, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, RSLT 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, RSLT 
NITER,NOUTP,FACTO,PVALU RSLT 

COMMON/UNIM2/PROPS(5,4) ,COORD(26) ,LNODS(25,2) lI~PRE(52) RSLT 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25 4) ,ELoAD(25,4), RSLT 
MATNO(25) ,STRESt25,2) , P L A S T ( ~ ~ ~  ,xDISP(~~), RSLT 
TDISP(26.2) ,TREAC(26.2) ,ASTIF(52,52) ,AsLOD(~~), RSLT 
REACT(52) ,FRESV( 1352) ,PEFIX(52) ,ESTIF(~,~) RSLT 

IF(NDOFN.EQ.1) WRITE(6.900) RSLT 
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900 FORMAT(1H0,5X,1NODE1,4X,1DISPL.1,12X,1REACTIONS') 
IF(NDOFN.EQ.2) WRITE(6,910) 

910 FORMAT(lH0,5X, 'NODE1 ,4X, 'DISPL. ' ,12X, 'REACTION1 , 
7X,1DISPL.1,12X,1REACTION1) 

-DO 10 IPOIN=I ,NPOIN 
10 WRITE(6,920) IPOIN , (TDISP( IPOIN, IDOFN) ,TREAC( IPOIN, IDOFN) , . IDOFN= 1 , NDOFN ) 
920 F O R M A T ( I ~ O , ~ ( E ~ ~ . ~ , ~ X , E ~ ~ . ~ ) )  

IF(NDOFN.EQ.2) WRITE(6.930) 
930 FORMAT(1H0,2X,~ELE~1ENT',12X,1STRESSES',12X,'PL.STRAIN') 

IF(NDOFN.EQ. 1) WRITE(6.940) 
940 FORMAT ( 1 KO, 2X, ' ELEMENT ' ,5X, ' STRESSES ,5X, ' PL . STRAIN ' ) 

DO 20 IELEM=I,NELEM 
20 WRITE( 6,950) IELEM ( STRES( IELEM , IDOFN , IDOFM , NDOFN ) , 

PLAST Z IELEM 
RETURN 
END 

RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 
RSLT 29 
RSLT 30 

RSLT 32 
RSLT 33 

RSLT 15-23 Write titles and output the calculated unknown and reaction 
at each nodal point. Non-zero reactions are only obtained for 
nodal points at which the value of the unknown is prescribed. 

RSLT 24-31 Write titles and output the stress and plastic or nonlinear 
elastic strain for each element. 

Note that provision is made for output of results for the beam bending 
application of Chapter 5. 

3.6 Subroutine INITAL 
The function of this subroutine is to initialise to zero some arrays used by 

other subroutines. 

SUBRC'UTINE INITAL INTL 
C***********~************t*****k*******Z*%**~~***************************INTL 
C INTL 
C *** INITIALIZES TO ZERO ALL ACCUNULATIVE ARRAYS INTL 
C INTL 
C*+***IIW+IIY+~~+*+*%%*~%Q~*~Q~~E~~~~#~#B*******%******%E*~%%%%*%*%******I~TL 

COMMON/UNIH~/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, INTL 
INTL 
INTL 
INTL 
INTL 
INTL 
INTL 
INTL 
INTL 
INTL 
INTL 
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10 STRES( IELEM, IDOFN) =O . 0 
DO 20 IEVAB=1, NEVAB 
ELOAD ( IELEM , IEVAB) =O . 0 

20 TLOAD ( IELEM , IEVAB) =O. 0 
DO 30 IPOIN=l,NPOIK 
DO 30 IDOFN=1, NDOFN 
TDISP(IPOIN,IDOFN)=O.O 

30 TREAC( IPOIN , IDOFN) =O . 0 
RETURN 
END 

INTL 18 
INTL 19 
INTL 20 
INTL 21 
INTL 22 
INTL 23 
INTL 24 
INTL 25 
INTL 26 
INTL 27 

INTL 15-18 Initialise to zero the plastic or nonlinear strain vector and the 
stress vector. 

INTL 20 Initialise the array, ELOAD, which will contain the out of 
balance loading to be applied in solution for any iteration. For 
techniques other than the direct iteration method, this vector 
will contain the residual nodal forces and thus differs from 
the vector of applied loads. 

INTL 21 Initialise the vector of applied loads. 
INTL 22-25 Initialise the vector of total unknowns and total reactions to 

zero. 

3.7 Load increment subroutine, INCLOD 
This subroutine controls the incrementing of the applied loads. For each 

increment of load, data is input to this segment to control the upper limit to 
the number of iterations, the output frequency, the size of load increment . 
and the convergence tolerance limit. These quantities are specifically input as : 

NITER Maximum permissible number of iterations. This is a safety 
measure to cover situations where the solution process does not 
converge. After performing NITER iteration cycles the pro- 
gram wilr then stop. 

NOUTP This parameter controls the frequency of output of results. 
In order to examine the iterative procedure the user may wish 
to obtain results at stages other than the converged solution. 
0 - Print the results on convergence to the nonlinear solution 

only, for each load increment. 
1 -Print the results after the first iteration and after conver- 

gence for each load increment. 
2-Print the results after every iteration for each load 

increment. 
FACT0 This quantity controls the magnitude of any load increment. 

The applied loading is input in subroutine DATA into the 
array RLOAD as described in Section 3.2. The size of any 
load increment is then defined to be FACTO*RLOAD 
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(IELEM, INODE) with the increment size factor, FACTO, 
being input for each increment. This permits unequal load 
increments to be taken. It should be noted that the applied 
loading at  any instant is accumulative. Therefore, if FACTO is 
input for the first three increments as respectively 0.5, 0.3 and 
0.1, the total loading applied to the structure during the third 
increment is 0.9 times the loading input in subroutine DATA. 
The above also holds for loading by incremental prescribed 
displacements. 

TOLER This item of data controls the tolerance permitted on the 
convergence process. Its use will be described in detail in 
Sections 3.9.2 and 3.9.3. 

Subroutine INCLOD is now presented and described : 

C *** INPUTS DATA FOR CURRENT INCREMENT AND UPDATES LOAD VECTOR INCL 
P INCL 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, INCL 
KRESL , NCHEK , TOLER , NALGO, NSVAB, NDOFN , NINCS, NEVU , INCL 
NITER.NOUTP,FACTO,PVALU INCL 

COMMON/UNIM~/PROPS~ 5,4) , ~ 0 0 ~ ~ ( 2 6  ,LNODS( 25,2) , IFPRE( 521 , 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4) 9 

MATNO(25) ,STRES(25,2) ,PLAST(25) ,xDIsP(~~), 
TDISP(26.2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), 
REACT(52) ,FRESV( 1352) ,PEFIX(52) ,ESTIF(~,~) 

READ ( 5,900 ) NITER, NOUTP , FACTO, TOLER 
900 FORMAT(215,2F15.5) 

WRITE( 6,905 ) IINCS, NITER, NOUTP , FACTO , TOLER 
905 FORMAT(lH0,5X,'IINCS =',15,3X, 'NITER =',15,3X , 'NOUTP z1,15, 

3X,'FACTO =',E14.6,3X,'TOLER =',E14.6) 
DO 10 IELEM=l,NELEM 
DO 10 IEVAB= 1 . NEVAB 

INCL 
INCL 
INCL 
INCL 
INCL 
INCL 
INCL 
INCL 
INCL 
INCL 
INCL 
INCL 

UOAD( IELEM, IEVAB) =ELOAD( IELEM . IEVAB) +RLOAD ( IELEM , IEVAB) *FACT0 INCL 22 
TLOAN IELEM ; IEVAB) =TLOAD ( IELEM ; IEVU) +RLOAD ( IELEM ; IEVAB) *FACTO INCL 23 
CONTINUE INCL 24 
RETORN INCL 25 
END INCL 26 

INCL 15-19 Read and write the input data required for each load increment 
as described previously in this section. 

INCL 20-24 Add the current increment of load into the out of balance load 
array ELOAD and the total applied load vector TLOAD. 

3.8 The master or controlling segment 
The final portion of the program which will be common to all four pro- 

grams (subject to  the minor differences indicated in Fig. 3.1) is the master 
segment which controls the calling, in order, of the other subroutines. This 
program segment also controls the iterative process and also the incrementing 
of the applied loads, where appropriate. 
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The following channel numbers are employed by the programs: 5 (card 
reader), 6 (line printer), 1 (scratch file). 

The MASTER segment will now be presented in the form required in the 
next section for the solution of one-dimensional quasi-harmonic problems 
by direct iteration. For other applications it is only necessary to arrange for 
the calling of appropriate subroutines as indicated in Fig. 3.1. 

MASTER UN1DII.I QUIT 1 C*****************+*****************************************************Q 2 
C QUIT 3 
C **3 PROGRMI FOR THE 1-D SOLUTION OF NONLINEAR PROBLEMS QUIT 4 
C QUIT 5 
~ l t % * + + + * * t * w l + + + + + * i % * * I * Q % Y * P i Q W * * * k * * Q  6 

COMMON/UNIM1/NPOIN,NELEl.II,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, QUIT 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEV~, QUIT 8 
NITER,NOUTP,FACTO,PVALU QUIT 9 

CON!4ON/UNIM2/PROPS( 5,4) , COORD ( 26 ) , LNoDS( 25,2) , IFPRE( 52) , QUIT 10 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), QUIT 11 
MATMO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), QUIT 12 
TDISP(26,2> ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(S2), QUIT 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) QUIT 14 

CALL DATA QUIT 15 
CALL INITAL 
DO 30 IINCS=l,NINCS 
CALL INCLOD 
DO 10 IITER=1, NITER 
CALL NONAL 
IF(KRESL.EQ.1) CALL STIFF1 
CALL AESEMB 
IF(KRESL. EQ. 1 CALL GREDUC 
IF ( KRESL . EQ. 2 CALL RESOLV 
CALL BAKSUB 
CALL MONITR ( RINTL) 
IF(NCHEK.EQ.0) GO TO 20 
IF(IITER.EQ.l.AND.NOUTP.EQ.1) CALL RESULT 
IF(NOUTP.EQ.2) CALL RESULT 
CONTINUE 
WRITE( 6,900 
FORMAT ( 1 F,0,5X, SOLUTION NOT COI\IVERGED ) 
STOP 
CALL RESULT 
CONTINUE 
STOP 
END 

QUIT 16 
QUIT 17 
QUIT 18 
QUIT 19 
QUIT 20 
QUIT 21 
QUIT 22 
QUIT 23 
QUIT 24 
QUIT 25 
QUIT 26 
QUIT 27 
QUIT 28 
QUIT 29 
QUIT 30 
QUIT 31 
QUIT 32 
QUIT 33 
QUIT 34 
QUIT 35 
QUIT 36 
QUIT 37 

QUIT 15 Call the subroutine which reads the input data as described in 
Section 3.2. 

QUIT 16 Call the subroutine which initialises various arrays to zero. 
QUIT 17 Enter the DO LOOP over the number of load increments. 
QUIT 18 Call the subroutine which increments the applied loads. 
QUIT 19 Enter the DO LOOP over the maximum permissible number 

of iterations. 
QUIT 20 Call the subroutine which controls the solution process as 

described in Section 3.3. 
QUIT 21 If the element stiffnesses are to be reformulated, call the 

appropriate subroutine. 
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QUIT 22-25 Call the subroutines which assemble the element stiffnesses and 
solve for the unknowns and reactions. 

QUIT 26 Call the subroutine which monitors the convergence process. 
This subroutine differs for the direct iteration method from 
that for the three other cases. 

QUIT 27 If the solution has converged, abandon the iterative process. 
QUIT 28-29 Output the results according to the display code, NOUTP, 

supplied as input for this particular load increment. 
QUIT 31-33 If the solution procedure reaches the maximum number of 

iterations permitted without convergence occurring, write a 
message and stop the program. 

QUIT 34 Otherwise output the converged results. 
QUIT 35 Return to process the next increment of load. 

3.9 Program for the solution of one-dimensional quasi-harmonic problems 
by direct iteration 

We now assemble a computer program which permits the solutior~ of one- 
dimensional problems governed by a nonlinear quasi-harmonic equation. 
The behaviour of several physical situations can be described by such a 
model and some numerical examples will be provided at the end of this 
section. 

Most of the subroutines required for this program have been already 
described in the preceding sections of this chapter and, in particular, the 
master segment which controls the entire numerical process was described 
in Section 3.8. The additional subroutines, pertinent only to this application 
which must be developed, are the element stiffness generation subroutine, 
STIFFl, and the solution convergence monitoring subroutine, MONITR. 
Detailed 'user instructions', listing the required input data, are included in 
Appendix I. 

3.9.1 Element stiffness subroutine, STIFF1 
The purpose of this subroutine is to formulate the stiffness matrix for each 

element in turn and store this data on a disc file. For solution by the method 
of direct iteration, the stiffness matrix for a one-dimensional element with a 
linear variation of the unknown is given by equation (2.25). The term K is, 
however, a specified function of the unknown or its derivatives which must 
be accounted for when formulating the element stiffnesses for each iteration 
of the solution sequence. In particular, K is assumed to vary according to 

where KO is a reference value of K and is specified as material property 
PROPS (NUMAT, 1) in subroutine DATA. The function f(4, d+/dx) is 
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defined by means of a FORTRAN FUNCTION statement and must be 
appropriately specified for each application. 

Subroutine STIFF1 is now presented and descriptive notes provided. 

DO 10 IELEM=l,NELEM 
LPROP=MATNO(IELEM) 
STERM=PROPS( LPROP ,1) 
NODE1 =LNODS( IELEM ,1) 
NODE2=LNODS( IELEM, 2) 
ELENG=ABS( COORD ( NODE 1 -COORD ( NODE2 ) 
AVERC=(TDISP(NODE1,1>+TDISP(NODE2,1))/2.0 

ESTIF ( 2,1) =-FMULT 
ESTIF(2,2) =FMULT 
WRITE( 1 ESTIF 

10 CONTINUE 
RETURN 
END 

SUBROUTINE STIFF 1 STFl 1 
C Y S ~ Q ) * * + + + I + + Q + ~ Y Y * * * I # % I ~ ~ J C * ) C ~ * * Q ~ ~ * ~ * * ~ ~ * ~ Q * * * * * * * * * * * * * * * * * * * * * * * * * * S T  2 
C STF1 3 
C *** CALCULATES ELEMENT STIFFNESS MATRICES STFl 4 
C STF1 5 
~ + ~ ~ * ~ ~ * ~ ~ + * Y + Y + Y + + * * # i i * ~ Y i i # ~ i ~ ~ ~ i ~ ~ J t i * i i Q i ~ * * * Q * i * R * * ~ * Q * t * * t i * t * * * * * S T  6 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE.IINCS,IITER, STFl 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVU, STF1 8 
NITER,NOUTP,FACTO,PVALU STFl 9 

COMFlON/UNIM2/PROPS( 5,4) , COORD(26), LNODS( 25,2) , IFPRE( 521, STFl 1C 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), STFl 11  
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), STF1 12 
TDISP(26,2) ,TREAC(26.2) ,ASTIF(52,52) ,ASLOD(52), STFl 13 
REACT(52) ,FRESV( 1352) ,PEFIX(52) ,ESTIF(4,4) STFl 14 

REWIND 1 STF1 15 
STF1 16 
STF1 17 
STFl 18 
STF1 19 
STFl 20 
STF1 21 
STFl 22 
STFl 23 
STF1 24 
STFl 25 
STFl 26 
STF1 27 
STF1 28 
STFl 29 
STF1 30 
STF1 31 

STFl 15 Rewind the file on which the st :iffness matrix for each element 
will be stored in sequence. 

STFl 16 Loop over each element. 
STFl 17 
STFl 18 
STFl 19-20 
STFl 21 
STFl 22 

STFl 23 
STFl 24-27 

STFl 28 
STFl 29 

lde*tify the material property of each element. 
Set STERM equal to KO. 
Identify the node numbers of the element. 
Calculate the element length. 
Calculate the element temperature as the average of the nodal 
values. 
calculate' the temperature gradient. 
Compute the components of the element stiffness matrix 
according to  (2.25) with the function f(4, d$/dx) being 
VARIA (AVERG) . 
Write the element stiffness matrix on to disc file. 
Termination of DO LOOP over each element. 

The function f($, d$/dx) must be defined for each application. Below we 
show, for example, the appropriate function for the variation K =  &(l+ 10dl 
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FUNCTION VARIA(AVEEG) STF1 32 
STF1 33 

MULTIPLYING FUNCTION FOR QUASI-HARMONIC STIFFNESS VARIATION STFl 34 

VARIk1.0+1C.@*AVERG 
RETURN 
END 

STFI 35 
STFl 36 
STF1 37 
STF1 38 

3.9.2 Solution convergence monitoring subroutine, MONITR 
Convergence of the numerical process to the nonlinear solution must be 

monitored by comparing, in some way, the values of the unknowns yl deter- 
mined during each iteration. One possible method is to compare each indi- 
vidual nodal value with the corresponding value obtained on the previous 
iteration. Then, provided that this change is negligibly small for all nodal 
points, convergence can be deemed to have occurred. In this chapter we will 
employ a global convergence check rather than such a local one. We will 
assume that the numerical process has converged if 

where N denotes the total number of nodal points in the problem and 1.- I 
and r denote successive iterations. It is assumed that the positive root is 
always considered ar?d I I signifies the absolute value of the numerator. The 
multiplication factor of 100 on the left-hand side allows the specified toler- 
ance factor TOLER to be considered as a percentage term. Equation (3.21) 
states that convergence is assumed to have occurred if the difference in the 
norm of the unknowns between two successive iterations is less than or 
equal to TOLER times the norm of the unknowns on the first iteration. In 
practical situations a value of TOLER = 1.0 (i.e., 1 %) is found to be 
adequate for the majority of applications. Convergence of the solution is 
indicated by the parameter NCHEK. A value of NCHEK = 1 indicates 
that convergence has not yet occurred, whereas NCHEK = 0,  denotes a 
converged solution. Subroutine MONITR is now presented and descriptive 
notes provided. 

SUBROUTINE MONITR ( RINTL) MNTR 1 
C*********************************************************************** 2 
C 
C *** CHECKS FOR SOLUTION CONVERGENCE 

MNTR 3 
MNTR 4 

COMMDN/UNIMl/NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, MNTR 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVM, MNTR 8 
NITER,NOUTP,FACTO,PVALU MNTR 9 

COMMON/UNIM2/PROPS(5,4) ,COORD(26) ,LNODS(25,2) ,IFPRE(52), MNTR 10 
 FIXED(^^) ,~LoAD(25,4) , R L O A D ( ~ ~ , ~ )  , E L O A D ( ~ ~ ~ ~ )  MNTR 1 1  
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MATNO(25) ,STRES(25,2), PLAST(25) ,XDISP(52), MNTR 12 
TDISP(26.2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), MNTR 13 
REACT( 52) , FRESV( 1352) , PEFIX( 52) , ESTIF( 4,4 MNTR 14 

MNTR 15 

DO 10 IPOIN=l,NPOIN 
10 RCURR=RCURR+TDISP( IPOIN , 1 ) *TDISP( IPOIN ,1) 

IF( IITER. EQ. 1 ) RINTL=RCURR 
IF(I1TER. EQ. 1 ) NCHEK=1 
IF(IITER.EQ.1) GO TO 20 
RATIO= lOO.O*SQRT ( ABS( RCURR-PVAL U ) ) /  SQRT ( RINTL) 
IF( RATIO. GT. TOLER) NCHEK= 1 

20 PVALU=RCURR 
WRITE( 6,900 1 NCHEK, RATIO 

900 FORMAT( 1 HO 5X 1 8HCONVERGENCE CODE = ,I4,3X, 28HNORM 
.RATIO =,~14.6j 
RETURN 
END 

MNTR 16 
MNTR 17 
MNTR 18 
MNTR 19 
MNTR 20 
MNTR 21 
MNTR 22 
MNTR 23 
MNTR 24 
MNTR 25 

AL SUM MNTR 26 
MNTR 27 
MNTR 28 
MNTR 29 

MNTR 15 Set the indicator monitoring convergence to zero. If conver- 
gence has not yet occurred this will be set to 1 later in the 
subroutine. 

MNTR 16-18 Compute the norm of the unknowns 

for the current iteration. 
MNTR 19 For the first iteration only compute the denominator of (3.21). 
MNTR 20-21 Convergence cannot possibly have occurred on the first 

iteration, therefore set NCHEK = 1 and skip the remainder 
of the checking procedure by going to 20. 

MNTR 22 Compute the left-hand side of (3.21). 
MNTR 23 If (3.21) is not satisfied (i.e., convergence not taken place), 

set NCHEK = 1. 
MNTR 24 Store the current value of the norm of the unknowns for use as 

during the next iteration. 
MNTR 25-27 Output the value of NCHEK and the left-hand side of (3.21). 

3.9.3 Numerical examples 
The first numerical example considered is illustrated in Fig. 3.3. The 

situation shown could physically represent the diffusion of a gas through a 
membrane in which case 4 is the gas concentration and K is the diffusivity 
of the membrane. Alternatively, the problem also represents the conduction 
of heat through a one-dimensional solid in which case g5 is the temperature 
and K the thermal conductivity. The boundary conditions assumed are 
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specified values of the unknown at the two boundaries. The term K is 
assumed to vary with the unknown 4 according to 

An analytical solution(6) exists for this problem which enables 4 to be 
determined from 

where 

In the present case, g(4) = 104 which gives on substitution in (3.24) and 
then in (3.23) 

which allows 4 to be determined for any value of x and is shown as the full 
line in Fig. 3.3. The initial finite element solution (i.e., after the first iteration) 
is shown in Fig. 3.3 as the broken line and, as expected, is linear. The results 
upon convergence, after 10 iterations, of the process are then included as 
circles and it is seen that the numerical solution coincides with the theoretical 
values. For example, for x = 6, the theoretical solution is 4 = 0.6, whilst 
the finite element analysis yieds + = 0-599999 (see Appendix IV). 

The second example considered includes the effect of the term Q in (2.15). 
For thermal problems this can be physically interpreted as a heat generation1 
unit length and must be specified as a loading, according to (2.26), in sub- 
routine DATA. Figure 3.4 shows the problem to be considered. A bar with 
its surface insulated generates heat internally and the temperature at its 
ends is maintained at zero value. Due to symmetry only one half of the 
problem is analysed with the symmetry condition d+/dx = 0 at the centre- 
line being invoked. The initial solution corresponding to K = KO is shown 
and is practically identical to the theoretical value. The process converged 
to the nonlinear solution after 12 iterations with the temperature being 
markedly reduced. The reduction is greater in regions of higher initial tem- 
perature due to the comparatively greater increase in material 'stiffness' in 
these areas. 

3.10 Program for the solution of one-dimensional quasi-harmonic 
problems by the Newton-Raphson method 

As seen in Section 2.3, use of this method results in the assembled stiffness 
equations being nonsymmetric. The equation assembly and solution routines 
developed in Section 3.4 made no use of the symmetry properties of the 
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stiffness matrices. They are therefore applicable to this method of analysis 
without modification. 

Three additional subroutines need to be developed. These are the element 
stiffness subroutine ASTIFl and, since solution convergence is now based 
on the elimination of the residual forces, subroutine REFORl must be 
formed to calculate these forces and subroutine CONVER to monitor their 
convergence to zero. The master segment controlling the solution process is 
again that developed in Section 3.8 and the remaining subroutines accessed 
by this segment have also been described previously. 

3.10.1 Element stiffness formulation subroutine, ASTIFl 
For solution by the Newton-Raphson process, the 'stiffness' equations 

which require solution are summarised in (2.12) where it is seen that the 
total stiffness is the sum of symmetric, H, and nonsymmetric, H', contri- 
butions. The symmetric stiffness matrix is given by (2.25) and the nonsym- 
metric terms depend on the particular form of material nonlinearity. For a 
material nonlinearity of the form (2.27), the nonsymmetric portion of the 
stiffness matrix is given by (2.29). The subroutine which evaluates and sums 
these separate contributions is now presented below. 

SUBROUTINE ASTIF1 ASTF 1 
C*************+*********%***********************************************~ 2 
C ASTF 3 
C *** CALCULATES ELEMENT STIFFNESS MATRICES ASTF 4 
C ASTF 5 
~+~+~t+~t*+*~~~*+~~~*~*~****~********~*~i*************************f*****AS 6 

C~10N/UN1M1/NP01N.NELEM,NB0UM1NL0AD,NPR0P,NN0DE.11HCS,11TER, ASTF 7 
KRESL,NCHEK,TOLEH,NALGO.NSVAB,NDOFN,NINCS,NEVAB, ASTF 8 
NITER.NOUTP.FACTO,PVALU 

COMMON/UNIM2/PROPS(5.4) ,COORD(26) ,LNODS(25,2), IFPRE(521, 
FIXED(52) .TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), 
MATNO(25) ,STRES(25,2), PLAST(25). XDISP( 52). 
TDISP(26.2) .TREAC(26.2) .ASTIF(52,52) .ASLOD(52). 
REACT(52) ,FRESV( 1352) ,PEFIX(~~) ,ESTIF(4.4) 

REWIND 1 
DO 10 IELEM=l,NELEM 
LPROP=HATNO( IELEM 
STERM=PROPS( LPROP, 1 ) 
GRADU=PROPS( LPROP, 2) 
NODE1 =LNODS( IELEM - 1  
NODE2=LNODS( IELEM .2 
ELENG=ABS( COCRD( NODE1 ) -COORD( NODE21 ) 
AVERG=(TDISP( NODE1 .I )+TDISP( NODE2,l) )/2.O 
FMULT=STERM*VARIA(AVERG)/ELENG 
DIFFR=TDISP( NODE1 .1) -TDISP( NODE2 , 1 
COEFF=STERM*GRADUrDIFFR/ (2.O*ELENG) 
ESTIF(l,l)=FMULT+COEFF 
ESTIF(1,2)=-FMULT+COEFF 
ESTIF(2,1)=-FMULT-COEFF 
ESTIF ( 2,2 ) =FMULT-COEFF 
WRITE( 1 ESTIF 

10 CONTINUE 
RETURN 
END 

ASTF 9 
ASTF 10 
ASTF 1 1  
ASTF 12 
ASTF 13 
ASTF 14 
ASTF 15 
ASTF 16 
ASTF 17 
ASTF 18 
ASTF 19 
ASTF 20 
ASTF 21 
ASTF 22 
ASTF 23 
ASTF 24 
ASTF 25 
ASTF 26 
ASTF n 
ASTF 28 
ASTF 29 
ASTF 30 
ASTF 31 
ASTF 32 
ASTF 33 
ASTF 34 
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ASTF 15 Rewind the file on which the stiffness matrix of each element 
will be stored. 

ASTF 16 Loop over each element. 
ASTF 17 Identify the material property of each element. 
ASTF 18 Set STERM equal to KO in (2.27). 
ASTF 19 Set GRADU equal to h in (2.27). 
ASTF 20-21 Identify the node numbers of the element. 
ASTF 22 Calculate the element length. 
ASTF 23 Calculate the element temperature as the average of the nodal 

values. 
ASTF 24 Calculate the multiplying term in (2.25) by use of FUNCTION 

statement VARIA. 
ASTF 25-26 Evaluate the multiplying term in (2.29). 
ASTF 27-30 Compute the components of the total stiffness matrix. 
ASTF 31 Write the elenlent stiffness matrix on to disc file. 
ASTF 32 Termination of DO LOOP over each element. 

3.10.2 Residual force calculation subroutine REFORl 
The residual forces after any step of the process are obtained from (2.4). 

The applied nodal forces,f, are known and it only remains to evaluate the 
'equivalent nodal forces', Hp, which are the nodal forces consistent with the 
unknowns, p. It should be noted that H is the linear symmetric matrix 
defined in (2.25). The equivalent nodal forces at the nodes 1 and 2 of the 
linear element can be explicitly written, using (2.25), as 

The subroutine which evaluates these forces for each element is now 
presented. 

C 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES 
C RFRl 5 
C * * * * * I * + I * f t + # + ~ + + * ~ * * * i * 8 * ~ * 3 i * * * i % ~ * * * i * i i ~ * * * * * t i ) i f ~ t t * * 4 * * Y i C * * * i C * * * * ~  6 

COI.IMON/UNIMl/NPOIN. NELEM, NBOUN, NLOAD, NPROP, NNODE. IINCS, IITER, 
KRESL,NCHEK,TOLER,NALGO.NSVAB,NDOFN,NINCS,NEVAb, 
NITER, NOUTP , FACTO. PVALU 

COMMON/UNIMZ/PROPS(5.4) ,COORD(26) ,LNODS(25,2) ,IFPRE(~~), 
FIXED(52) ,TLOAD(25,4),RLOAD(25,4) ,ELoAD(25,4). 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52). 
TDISP(26.2) ,TREAC(26.2) ,ASTIF(52,52) ,ASLOD(S2), 
REACT( 52) ,FRESV( 1352) , PEFIX(52) , ESTIF'(4 I 4 )  

DO 10 IELEM=l,NELEW 
DO 10 IEVAB=l,NEVAE 

RFRl 7 
RFRl 6 
RFRl 9 
RFRl 10 
RFRl 1 1  
RFRl 12 
RFRl 13 
RFRl 14 
RFRl 15 
RFRl 16 
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ELOAD( IELE14 ,, IEVAB) =O . O 
DO 20 IELEM= 1 . NELEII 
LPROP=14ATEJO( IELEC1) 
STERM=PROPS(LPROP, 1 ) 
NODE1 =LNODS( IELEM ,1) 
NODE2=LNODS( IELEM, 2 ) 
ELENG=ABS( CORD( NODE1 ) -COORD( NODE21 ) 
AVERC=(TDISP(NODE1.1)+TDISP(NODE2,1))/2.0 
STIFF=STERM*VARIA(AVERG)/ELENG 
ELOAD( IELEM, 1 ) = STIFF*(TDISP( NODE1,l) -TDISP( NODE2,l) ) 
ELOAD(IELEM, 2) =-STIFF*(TDISP( NODE1 ,1) -TDISP( NODE2,l) ) 
RETURN 
END 

RFRl 15-17 

RFRl 18 
RFRl 19 
RFRl 20 
RFRl 21-22 
RFRl 23 
RFRl 24 

RFRl 25 
RFRl 26-27 

RFR1 28 
RFRl 29 

Initialise to zero the array in which the equivalent nodal forces 
for each element will be stored. 
Loop over each element. 
Identify the material property of each element. 
Set STERM equal to KO in (2.27). 
Identify the node numbers of the element. 
Calculate the element length. 
Calculate the element temperature as the average of the nodal 
values. 
Calculate the n~ultiplying term in (2.25). 
Compute the equivalent nodal forces according to (3.26). 

3.10.3 Solution convergence monitoring subroutine, CONUND 
This subroutine must essentially differ from subroutine MONITR 

described in Section 3.9.2 since convergence is now based on the residual 
force values rather than values of the unknowns. The convergence criterion 
employed is similar to that described in (3.21) and is 

J [ ; ($iT ] 
i-1 

x 100 < TOLER. 

where N is the total number of nodal points in the problem and r denotes 
the iteration number. This criterion states that convergence occurs if the 
norm of the residual forces becomes less than TOLER times the norm of 
the total applied forces. Again the parameter NCHEK is used to indicate 
whether or not convergence has occurred. Three values of NCHEK are 
utilised : 

NCHEK = 0 
= 1 

Solution has converged. 
Solution converging, with the norm of the residual forces 
being less for the rtll iteration than the ( r -  I)t" iteration. 
Solution diverging. The norm of the residual forces is 
greater for the tath iteration than the (r - I)t" iteration. 
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Subroutine CONUND is now listed and descriptive notes provided. 

SUBHOUTINE CONUND COND 1 
C+OD%****Y**** * *X***#*** * *~%***** * *%***H**** * * * * * * * * * * * * * * * * * * * * * * * * * * * *N 2 
C COND 3 
C **" CHECKS FOR SOLUTION CONVEKGEIKE COND 4 
C COND 5 
C + * ~ * + * 4 * * C * * * + t * + 3 * Q f * t t I l i t * 3 i * * I f * Z t * % * #  6 - 

COMMON/U~iI!~11/FjPOIN,NELEH,NBOUN,I!LOAD, NPROP, NNODE. IINCS. IITER, 
KRESL, NCHEK , TOLER, NALCO, NSVAB, NDOF'IJ, NINCS, NEVAB, 
NITER,NOUTP,FACTO,PVALU 

COMMON/UPiIF~2/PROPS(S, 41, COORD(26) ,LNODS(25,2), IFPRE(521, 
FIXED(52) ,TLOAD(25,4) ,RLo~D(25,4) ,ELoAD(25,4), 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), 
TDISP(2G.2) ,TREAC(26.2) ,ASTIF(~~,~~) ,ASLOD(52), 
REACT( 52) ,FRESV( 1352) , PEFIX( 52) , ESTIF( 4,4) 

DIMENSION STFOR ( 52 ) , TOFGR ( 52) 
NCHEK=O 
RESID=O . 0 
RETOT =O . 0 
DO 10 ISVAB=l.NSVAB 
STFOR( ISVAE)=O.O 

10 TOFOR(ISVAB)=O.O 
DO 20 IELEN= 1 , NELEE1 
IEVAB=O 
DO 20 INODE=l.NNODE 
NODNO=LNODS( IELEN . INODE 
DO 20 IDOFN=l,NDOFN 
IEVAEk IEVAB+1 
NPOSN=(NCDNO-l)*NDOFN+IDOFN 
STFOR( NPOSN) =STFOR( NPOSIJ) +ELOAD( IELEM, IEVm) 

20 TOFOR(NP0SN) =TOFOR( NPOSN) +TLOAD( IELEM. IEVAB) 
DO 30 ISVAB=1, NSVAB 
REFOR=TOFOR ( ISVB) -STFOR ( ISVAB ) 
RESU>=RESID+REFOR*REFOR 

30 RETOT=RETOT+TOFOR ( ISVAB 1 *TOFOR ( ISVAB) 
DO 40 IELEII= 1 , NELEI.1 
DO 40 IEVAB= 1 , NEVAB 

40 ELOAD( IELEM, IEVAEj) =TLOAD ( IELEM , IEVAB) -ELOAD( IELE14, IEVAB) 
RA?'lO=lOO.O*SQRT(RESID/RETOT) 
IF( RATIO. GT . TOLER ) NCHEK= 1 
IF(IITER.EQ.1) GO TO 50 
IF(RATIO.GT.PVALU) N C H E K = ~ ~ ~  

50 PvALU=RATIO 
WRITE(6,gOO) IITER, NCHEK, RATIO 

900 FORFIAT( 1H0,5X, ITERATION NUMBEh = ' , I5/ 
1 HO ,5X, COf4VEKGENCE CODE = ' ,I4,3X, 
'NORM OF RESIDUAL SUN RATIO = '  ,El 4.6) 

RETURN 
END 

COND 7 
COND 8 
COND 9 
COND 10 
COND 11 
COND 12 
COND 13 
COND 14 
COND 15 
CUND 16 
COND 17 
COND 18 
COND 19 
COND 20 
COND 21 
COND 22 
COND 23 
COND 24 
COND 25 
COND 26 
COND 27 
COND 28 
COND 29 
COND 30 
COND 31 
COND 32 
COND 33 
COND 34 
COND 35 
COND 36 
COND 37 
COND 38 
COND 39 
COND 40 
COND 41 
COND 42 
COND 43 
COND 44 
COND 45 
COND 46 
COND 47 
COND 48 

COND 16 Initialise the convergence indicator to zero. If convergence 
has not occurred during this iteration this value will be reset 
later in the subroutine. 

COND 17 Initialise to zero the norm of the residual forces. 
COND 18 ' Initialise to zero the norm of the total applied loads. 
COND 19-21 Initialise the arrays which will contain the equivalent nodal 

forces and the applied loads for each nodal point. 
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COND 22-30 Assemble the equivalent nodal forces and applied load con- 
tributions of each element to give the total nodal values, as 
required for use in (3.27). This manipulation is necessary as 
we have decided to associate loads with an element rather 
than nodal points. 

COND 32 Calculate the nodal residual force according to (2.4). 
COND 33 Evaluate the norm of the residual forces. 
COND 34 Evaluate the norm of the total applied forces. 
COND 35-37 Calculate the residual nodal forces for each element, for 

application as forces for the next iteration according to (2.12). 
COND 38 Compute the left-hand side of (3.27)-the residual sum ratio. 
COND 39 If (3.27) is not satisfied reset NCHEK = 1 to indicate that 

convergence has not yet occurred. 
COND 40-41 For second and subsequent iterations check to see if the 

residual sum ratio has decreased from the previous iteration. 
If not, set NCHEK = 999. 

COND 42 Store the residual sum ratio, in order to perform the check 
indicated in COND 41 during the next iteration. 

COND 43-46 Write the convergence code and the residual sum ratio. 

3.10.4 Numerical examples 
The numerical example considered in Section 3.9.3 and illustrated in 

Fig. 3.3, was reanalysed using the Newton-Raphson approach. The process 
converged to the nonlinear solution in 5 iterations compared to the 10 cycles 
required for the direct iteration method. The reduction in the number of 
iterations must, however, be balanced against the increased computing 
effort required for the solution of nonsymmetric equations. This remark is 
applicable only when advantagc of thc synlmetric property of the equations 
is taken in  solution as is tlic case in  the more sophisticated equation solvcr 
described later in Chapter 6. The numerical results are practically identical 
to those obtained by the method of direct iteration and consequently both 
solutions are represented by the full circles in Fig. 3.3. The problem of Fig. 3.4 
was also reanalysed and a similar improvement in convergence behaviour 
was obtained with only 7 iterations being required in place of the 12 necessi- 
tated by direct iteration. 

3.11 Program for the solution of nonlinear elastic problems 
In this section a program is developed which permits the solution of non- 

linear elastic problems by either the tangential stiffness or the initial stiffness 
approach or by a combination of both methods. The options open are con- 
trolled by the parameter NALGO, the possible values of which are described 
in Section 3.2. 
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The structure of this program is identical to that described in Section 3.10 
and it is only necessary to develop appropriate subroutines for element 
stiffness formulation, STIFF2, and residual force evaluation, REFOR2. 

3.11.1 Element stiffness subroutine, STIFF2 
For any value of the total strain, E, in an element, the tangential stiffness 

matrix is explicitly given by (2.33). It is seen from this exprcssion that the 
first derivative of the strain function must be known. For the calculation of 
the residual forces, the strain function itself must be input. Since the com- 
puter cannot perform even the simplest differentiation it is necessary to 
supply both quantities in the form of FUNCTION statements. As an 
example, the strain function will be assumed to be of the form 

in which case 

g1(e)  = 1 - lo€. 

Subroutine STIFF2 is now listed below. 

COMt~lON/UNIM1/PiPOIN, NELEI.1 , NIK)UN , FILOAD ,NPROP, NNODE IINCs, IITER 9 

KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEV~, 
NITER, NOUTP ,FACTO, PVALU 

COMIIION/UfdIM2/ PROPS( 5,4 ) , COORD (26 1, LNODS( 25 12) 1 IFPRE( 52) 1 

FIXED(52) ,TLOAD(25,4) ,RLOAD(2594) lELOAD(25t4) 1 

rIATNO(25) ,STRES(25,2) JLAST(25) ,XDISP(52), 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52) , 
REACT(52) , FRESV( 1352) JEFIX (52) , ESTIF( 4,4 

REHIND 1 
DO 10 IELEEI= 1 , NELE1.I 
LPROP=IItATIIO( IELEPi) 
YOUNG=PROPS(LPROP, 1 
XAREA=PROPS(LPROP, 2) 
NODE 1 =LNODS( IELEM $ 1  ) 
!JODE2=LNODS( 1ELEI.I ,2) 
ELENC=ABS( COORD ( NODE1 ) -COORD ( NODE2 ) ) 
PTRAN=PLAST ( IELE3.I ) 
COEFF=YOUNC"XAREA/ELENC 
FMULT=COEFF*STDIV ( PTRAN ) 
ESTIF( 1,1 ) =FHULT 
ESTIF ( 1 $2 ) =-FMULT 
ESTIF( 2,1) =-FNULT 
ESTIF(2,2)=FHULT 
DRITE ( 1 ESTIF 

1C CONTINUE 
RETURN 
EIiD 
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Rewind the file on which the stiffness matrix of each element 
will be stored. 
Loop over each element. 
Identify the material property of each element. 
Set YOUNG equal to the reference value of the material 
modulus, Eo. 
Set XAREA equal to the cross-sectional area. 
Identify the node numbers of the element. 
Calculate the element length. 
Set PTRAN equal to the total strain, E .  

Compute the multiplying tern1 in (2.33) with g'(r) given by 
STDIV (PTRAN). 
Compute the components of the stiffness matrix. 
Write the element stiffness matrix on to disc file. 
Termination of DO LOOP over each element. 

For a strain derivative function as defined by (3.29), the appropriate 
function statement is provided below. 

FUIJCTIGli STDIV ( PTRAIJ) 
C%%i>G 
C STRAIK DERIVATIVE FUIJCTIOIJ 
C*ma 

STDlV=1 .O-lO.C"!TRAI! 
RETURN 
END 

3.11.2 Residual force calculation subroutine REFOR2 
The residual forces existing at the end of any iteration must be calculated 

according to (2.4). The first step in this calculation entails the evaluation of 
the equivalent nodal forces, which are the forces required to produce the 
total displacements existing in the element. The element strain is simply 

where x, and x 2  denote the coordinates of the element nodes. This notation 
is required to ensure that tensile strains are positive and enables the nodal 
connections to be assigned in any order. 

Then from (2.30) the stress in the element is given by 

and the equivalent nodal forces are 

-OE A  for x2 > xl 
fl = -.f2 = 

U E A  for x 2  < X I .  



SOLUTION OF NONLINEAR PROBLEMS 7 7 

Subroutine REFOR2 is now listed and described. 
SUBROUTINE REFOR2 RFR2 

C * * + Y I C T I + Z + W W W Y W W * ~ ~ * * Y * ~ Y ~ ~ ~ ~ ~ ~ * ~ ~ H Y ~ * % * % # % ~ ~ % % U ~ % * * % ~ ~ % * * % * % # % * * * % ~ * # # * % * ~ F R ~  

C RFR2 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFRZ 
C RFR2 
C * * I ~ + ~ W Z + ~ ~ W + I % * * * Q H # Q * * * * * Q ~ H % * * ~ ( ~ I K Y % ~ % ~ % * ~ Y S ~ B ~ ~ % ~ % % K % * ~ * ~ * * * * * * * * * * * * ~ ~ R ~  

COI~11.IOIJ/UNI~~11/NPO1Nl NELW4, NBOUN, NLOAD, NPROP, IJNODE, IIHCS, IITEH , RFR2 
KRESL , NCHEK , TOLER , NALCO, NSVAB, NDOFIJ , fdIIJCS, NEVAL , RFR2 
NITER,NOUTP,FACTO,PVALU RFR2 

COMIION/UNIM2/PROPS( 5,4), COORD( 26 1, LNODS(25,2 , IFPRE( 52 1, RFR2 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4) , RFR2 
MATllrO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), RFR2 
TDISP(26,2) ,TREAC(26,2) ,AS'I'IF(52,52) ,ASLOD(52), RFRZ 
REACT(521 ,FRESV( 1352) ,PEFIX(52) ,ESTIF(4,4) RFR2 

DO 10 IELWI=l ,NELEM RFR2 
DO 10 IEVAB=l,NEVAB RFR2 

10 ELOAD(IELEI4,IEVAB)=O.O RFR2 
DO 30 IELEM= 1, NELEt.1 RFR2 
LPROP=MATNO( IELEI.1) RFR2 
YOUNG=PROPS(LPROP, 1 ) RI.'R2 
XAREA=PROPS(LPROP, 2) hFH2 
NODE1 =LNODS( IELEII ,I ) RFR2 
NODE2=LNODS( IELEM $21 liFTt2 
ELENG=ABS( COORD( NODE1 ) -COORD( NODE21 ) RFH2 
IF(CORD( NODE21 .GT.COORD( NODE1 ) STRAN=(XDISP( NODE2)-XDISP( NODE1 ) 1 RFR2 . /ELENC RFR2 

PTRAN=PLAST( IELEM) 
STRES( IELEM ,I 1 =YOUNG*STNFN( PTRAN 
IF( CORD(  NODE^) .CT. CORD( NODE 1 ) ) GO TO 20 
ELOAD ( IELEM ,I) =STRES ( IELEM $1  ) *XAREA 
ELOAD( IELEM, 2) =-STRES( IELEM , 1 *XAREA 
GO TO 30 

20 ELOAD( IELEM ,I ) =-STRES( IELEN $ 1  ) *XAREA 
ELOAD( IELEM ,2) =STRES( IELEEl , 1 ) *XAREA 

30 CONTINUE 
RETURN 
END 

RFR2 15-17 

RFR2 38 
RFR2 39 
RFR2 40 

Initialise to zero the array in which the equivalent nodal forces 
for each element will be stored. 
Loop over each element. 
Identify the material property of each element. 
Set YOUNG equal to the reference value of the material 
modulus, Eo. 
Set XAREA equal to the cross-sectional area. 
Identify the node numbers of the element. 
Calculate the .element length. 
Calculate the increase in element strain which occurred during 
the current iteration according to (3.30) (since XDISP measures 
the displacement change only). 
Compute the total strain. 
Compute the element stress according to (3.31). 
Compute the equivalent nodal forces according to (3.32). 
Termination of DO LOOP over the elements. 
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For calculation of the element stress in steps RFR2 30-31 (equation 
(3.31)) the strain function g ( ~ )  must be defined. The FUNCTION statement 
appropriate to the variation indicated in (3.28) is provided below. 

FUNCTION STIJFN ( PTRAN ) 
C**** 
C STRAIN FUNCTION 
C***K 

STNFN=PTRAN-5.O"PTRAII"PTEAN 
RETURN 
END 

The equivalent nodal forces evaluated here are converted into residual 
forces in subroutine CONUND as described in Section 3.10.3. 

3.11.3 Numerical examples 
The first example considered is the uniaxial loading of a two-element 

system. The stresslstrain relationship is assumed to be defined in terms of 
the nonlinear expression (3.28). The applied load is incrementally increased 
and the combined tangential/initial stiffness solution algorithm, NALGO = 4, 
is employed. Figure 3.5 shows the solution behaviour during iteration to 
the nonlinear solution. The element stiffnesses are initially assembled at the 
beginning of a load increment and then kept constant during iteration to 
the nonlinear solution. The convergence path is plotted and it is seen that 
the process converges within 7 iterations for the first load increment. For the 
second load increment the process requires 9 iterations before convergence 
takes place. The process diverged rapidly on further increase of load to a 
total value of 11; which is expected since no solution can exist for this 
load value. 

As an illustration of the application of the initial stiffness method to 
strain-softening problen~s, the above problem was reanalysed with the 
structure being loaded by prescribing an increasing value of displacement to 
node 3, rather than incrementing an applied load. For strain values at and 
beyond the peak load, the structural stiffness is either zero or negative and 
an initial stiffness approach must be employed. Figure 3.6 shows the results 
when the structure is strained beyond the peak load value. 

3.12 Program for the solution of elasto-plastic problems 
A computer program is now developed for the solution of one-dimensional 

elasto-plastic problems. Once again a tangential stiffness, initial stiffness or 
combined approach is permitted for solution. The program differs only from 
that described in the previous section in the explicit form of the element 
stiffness and residual force subroutines. 

3.12.1 Element stiffness subroutine, STLFF3 
Before yielding, the stiffness matrix of an element with linear displacement 

variation is given by (2.38). After the onset of plastic deformation, as 
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- Theoretical 

o Combined initial/tangential 
stiffness method 
(T = E ~ ( E  - 56') 

E,, = 200 
A = 1.0 

0 0.2 0.4 0.6 0.8 1 .O 1.2 

Axial extension A 

Fig. 3.5 Load/extension response of a nonlinear elastic bar under applied axial 
loading. 

governed by the uniaxial yield stress o,, the material stiffness is reduced and 
the elasto-plastic stiffness matrix is explicitly given by (2.43). Thus when 
forming the stiffness matrix for each element, it is first necessary to check 
whether the element behaviour is elastic or elasto-plastic. This can best be 
monitored by recording the plastic strain component, s,, for each element 
and noting that this will be zero for a completely elastic material response. 
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Solution after 1st iteration 

- 

- 

Converged solution 
after 2nd iteration 

Theoretical solution 

I I I I I I 
I I I I I 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.6 
- Axial extension, A 

- 

- 

- -41 
a = Eo(c - 5c2) E,=200 - A =  1.0 

- \ 

Fig. 3.6 Solution for a nonlinear elastic bar by initial stiffness, incremented 
prescribed displacement approach. 

Subroutine STIFF3 can now be presented. 

SUBROUTINE STIFF3 STF3 1 
C***********************************************************************~ 2 
C STF3 3 
C *** CALCULATES ELEMENT STIFFNESS MATRICES STF3 4 
c STF3 5 
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COMMON/UNIM~/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, 
NITER,NOUTP,FACTO,PVALU 

CoMMON/UNIM2/PROPS(5,4) ,COORD(26) ,LNODS(25,2) ,IFPRE(~~) , 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), 
MATNO(~~),STRES(~~,~),PLAST(~~),XDISP(~~), 
TDISP(26,2> ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52) , 
REACT(52) ,FRESV( 1352) ,PEFIX(52) ,ESTIF(4,4) 

REWIND 1 
DO 10 IELEM=1, NELEM 
LPROP=MATNO( IELEM) 
YOUNG=PROPS(LPROP,l) 
XAREA=PROPS( LPROP, 2) 
HARDS=PROPS( LPROP, 4 ) 
NODE1 =LNODS( IELEM ,I ) 
NODE2=LNODS( IELEM, 2) 
ELENG=ABS( COORD ( NODE1 ) -COORD( NODE21 ) 
FMULT=YOUNG*XAREA/ELENG 
IF( PLAST( IELEM) .GT. 0 .O) FMULT=FMULT*( 1 .O-YOUNG/(YOUNG+HARDS) ) 
ESTIF( 1 ,1) =FMULT 
ESTIF(1,2)=-FMULT 
ESTIF ( 2,1) =-FMULT 
ESTIF( 2,2 =FMULT 
WRITE( 1 ESTIF 

10 CONTINUE 
RETURN 
END 

STF3 15 Rewind the file on which the stiffness matrix of each element 
will be stored. 

STF3 16 Loop over each element. 
STF3 17 Identify the material property of each element. 
STF3 18 Set YOUNG equal to the material elastic modulus. 
STF3 19 Set XAREA equal to the cross-sectional area. 
STF3 20 Set HARDS equal to the strain hardening parameter, H'. 
STF3 21-22 Identify the node numbers of the element. 
STF3 23 Calculate the element length. 
STF3 24 Compute the multiplying term in (2.38) as FMULT. 
STF3 25 Check if the element has yielded. If yes, compute FMULT as 

the multiplying term in (2.43). 
STF3 26-29 Compute the components of the stiffness matrix. 
STF3 30 Write the element stiffness matrix on to disc file. 
STF3 31 Termination of DO LOOP over each element. 

3.12.2 Residual force subroutine, REFOR3 
The purppse of this subroutine is to calculate the equivalent nodal forces 

from which the residual nodal forces will be evaluated in subroutine 
CONUND. In view of the essentially incremental nature of the equations of 
plasticity, the subroutine is somewhat more intricate than the residual force 
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subroutines developed to date. All stress and strain components must be accu- 
mulated from the values obtained during each iteration. The situation is 
further complicated by the fact that an element may yield when the residual 
forces are applied as loads for any iteration. The precise load at which 
yielding begins will generally lie somewhere between the total load corre- 
sponding to the previous iteration and the total load for the present cycle. 
Consequently the yield load must be determined and the plastic strain 
computed for only the post yield portion of the load. The general procedure 
adopted is to determine the stress in each element so that the yield criterion 
is satisfied. If the actual stress in any element is greater than this permissible 
value, then the additional part is removed but is included in the residual force 
vector to maintain equilibrium. 

Consider the situation existing for the rth iteration of any particular load 
increment. The solution algorithm employed is presented below. 

Step a 

Step b 

Step c 

Step d 

The applied loads for the rth iteration are the residual forces ~ / r - 1  

calculated at the end of the ( I . -  iteration according to (2.4). 
These applied loads give rise to displacement increments, Apr, 
according to (2.12). Hence calculate the corresponding increment of 
strain Aer.  For the general element denote this value by h e r  and 
it is shown in Fig. 3.7. 

Compute the incremental stress change assuming linear elastic 
behaviour. This will introduce errors if the element has yielded and 
the material is behaving elasto-plastically. However, we will correct 
any discrepancy when the residual forces are calculated. Therefore 
we calculate the stress change according to A u , ~  = E A E ~ ,  where 
the subscript e is used to denote that this stress is based on elastic 
behaviour. 

Accumulate the total stress for each element as oer = ur-1 +Aoer .  
The stress o r - 1  will have been determined to satisfy the yield con- 
dition during the (r - l)th iteration. Consequently, the error in the 
stress oer is limited to Acre'. Again the subscript e denotes that 
mer is based on an elastic behaviour. 

The next step in the process depends on whether or not the element 
had previously yielded on the (r - I) th iteration. This can be checked 
from the known value of the yield stress for the (1.-  iteration. 
The stress limit for this cycle is given from Fig. 2.9 as 

Since the plastic strain E ,  will differ from element to element, each 
element will generally have a different permissible stress level. 
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Slope = E I 

Fig. 3.7 Incremental stress and strain changes in a one-dimensional elasto-plastic 
material. (a) Initial yielding of material. (b) Material previously yielded. 
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Therefore we check if or-' > cry + H' ~ ~ r - 1 .  If the answer is: 

YES 
which implies that the element had already 
yielded during the previous iteration, then 
check to see if oer > or-'. If the answer 
is: 

NO YES 

The element is 
unloading which 
according to 
plasticity theory 
must take place 
elastically, and no 
further action 
need be taken. 
Go directly to 
Step g. 

The element had 
reached the 
threshold stress 
during the previous 
iteration and the 
stress is still 
increasing. There- 
fore all the excess 
stress acre or- 
must be reduced to 
the yield value as 
indicated in 
Fig. 3.7(b). There- 
fore the factor, R, 
which defines the 
portion of the stress 
which must be 
modified to satisfy 
the yield condition, 
is equal to 1 in this 
case as shown in 
Fig. 3.7(b). 

NO 
which implies that the element had not 
previously yielded. We now check to see 
if aer > ay .  If the answer is: 

NO YES 

The element is The element has 
still elastic and no yielded during the 
further action need application of load 
be taken. Go 
directly to Step g. 

corresponding to 
this iteration as 
illustrated in Fig. 
3.7(a). Therefore the 
portion of the stress 
greater than the 
yield value must be 
reduced to the 
elasto-plastic line. 
The removed por- 
tion will be included 
in the residual force 
vector. The re- 
duction factor, R, is 
found, with refer- 
ence to Fig. 3.7(a) 
to be 

Step e For yielded elemei~ts onlj), calculate the increment of stress AoeP'i, 
which is the portion after yielding, permitted by elasto-plastic theory. 
This stress value is shown in Fig. 3.7 for the two cases when (a) yield- 
ing has commenced during this iteration and (b) when the element 
had previously yielded. Using (2.4) we have 

where the subscript ep denotes elasto-plastic behaviour. For 
the above to be generally true we must restrict ourselves to small 
increments of stress and strain. For the situation of Fig. 3.7(a), 
noting that triangles ADC and AEB are similar, we have 
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Defining R = 1 for the situation of Fig. 3.7(b), then (3.34) is 
still correct. Therefore 

The total current stress is given by 

where the second term accounts for the elastic portion of the stress 
increment occurring before the onset of yielding. 

Step f For yielded elements only, evaluate the total plastic strain for the 
element as rpr = epr-l+ A ~ p r  where the plastic strain increment 
for the iteration is calculated as follows. For the elastic component 
of strain, Are', we have 

Substituting for Aar  from the linearised form of (2.35) into (3.37) 
and then using (2.34) we obtain 

Since the plastic strain component must be calculated for the part 
of the strain after the element yields, then, with reference to Fig. 
3.7, A E ~  must be replaced by Acep'. Or, using (3.34), we have 

Then the total current plastic strain for the element is 

Step g For elastic elements only, store the correct current stress as 

(This in fact repeats Step c.) 

Step h Finally, calculate the equivalent nodal forces from the element 
stress according to 

-orA for x2 > xl 
fi = -f2 =( (3.42) 

orA for x2 < XI. 
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Subroutine REFOR3 is now presented below and explanatory notes pro- 
vided. 

SUBROUTINE REFOR3 RFR3 1 
C***********************************************************************~ 2 
C 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES 
C RFR3 5 C++******+*~*~*+~*+****~************************************************w 6 

COMMON/UNIM~/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, RFR3 7 
KRESL,NCHEK,TOLER,NAU;O,NSVAB,NDOFN,NINCS,NEVAB, RFR3 8 
NITER,NOUTP,FACTO,PVALU RFR3 9 

COMMON/UNIM~/PROPS( 5,4) , COORD(26 ) , LNODS( 25 12) 1 I'FPRE( 52) , RFR3 10 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,EL0AD(25,4), RFR3 11 
MATNO(25) tSTRES(25,2) ,PLAST(~~) ,XDISP(52), RFR3 12 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), RFR3 13 
REACT(52) ,FRESV( 1352) , PEFIX(~~), ESTIF( 4,4) RFR3 14 

DO 10 IELEM=l,NELEM RFR3. 15 
DO 10 IEVAB= 1 , NEVAB RFR3 16 

10 ELOAD(IELEM,IEVAB)=O.O RFR3 17 
DO 70 IELEM=l,NELEM RFR3 18 
LPROP=MATNO( IELEM) RFR3 19 
YOUNG=PROPS( LPROP, 1 RFR3 20 
XAREA=PROPS( LPROP ,2) RFR3 21 
YIELD=PROPS( LPROP, 3 RFR3 22 
HARDS=PROPS( LPROP, 4 ) RFR3 23 
NODE1 =LNODS( IELEM, 1 ) RFR3 24 
NODE2zLNODS ( IELEM ,2) RFR3 25 
ELENG=ABS( COORD( NODE1 ) -COORD( NODE21 ) RFR3 26 
IF(COORD( NODE2) .GT. COORD(NODE1) ) STRAN=(XDISP(  NODE^) -XDISP(  NODE^ ) ) RFR~ 27 . /ELENG RFR3 28 
IF(COORD( NODE21 .LT. CooRD(NODE1) ) STRAN= (XDISP( NODE1 -XDISP( NODE21 ) RFR3 29 . /ELENG RFR3 30 
STLIN=YOUNG*STRAN RFR3 31 
STCUR=STRES( IELEM, 1 ) +STLIN RFR3 32 
PREYS=Y IELD+HARDS*AsS( PLAST ( IELEM ) ) RFR3 33 
IF(ABS(STRES( IELEM, 1 1 .GE. PREYS) GO TO 20 RFR3 34 
ESCUR=ABS( STCUR) -PREYS RFR3 35 
IF(ESCUR.LE.0.0) GO TO 40 
RFACT=ESCUR/ABS( STLIN) 

RFR3 36 
RFR3 37 

GO TO 30 RFR3 38 
20 IF( STRES( IELEM ,1) . GT . 0.. 0. AND. STLIN . LE . 0.0 1 GO TO 40 RFR3 39 

IF(STRES(IELEM,l) .LT.O.O.AND.STLIN.GT.O.O GO TO 40 RFR3 40 
RFACT= 1 .0 RFR3 41 

30 REDUC=I.O-RFACT RFR3 42 
STRES( IELEM, 1 ) =STRES( IELEM, 1 ) +REDUC*STLIN+RFACT*YOUNGI( 1 .O- RFR3 43 
YOUNG/ (YOUNG+HARDS) ) *STRAN RFR3 44 
PLAST( IELEM) =PLAST( IELEM) +RFACT*STRAN*YOUNG/ (YOUNG+HARDS) RFR3 45 
GO TO 50 RFR3 46 

40 STRES(IELEM,l)=STRES(IELEM,l)+STLIN RFR3 47 
50 IF(COORD(NODE2).GT.C00RD(NODE1)) GO TO 60 RFR3 48- 

LOAD ( IELEM , I  ) =STRES ( IELEM $ 1  ) *XAREA RFR3 49 
LOAD( IELEM, 2 =-STRES ( IELEM, 1 *XAREA RFR3 50 
GO TO 70 RFR3 51 

60 ELOAD ( IELEM 1 ) =-STRES ( IELEM , I  *XAREA RFR3 52 
LOAD( IELEM, 2) =STRES( IELEM, 1 ) *XAREA 

70 CONTINUE 
RFR3 53. 

RETURN 
RFR3 54 

END 
RFR3 55 
RFR3 56 
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RFR3 15-17 lnitialise to zero the array in which the equivalent nodal forces 
for each element will be stored. 

RFR3 18 Loop over each element. 
RFR3 19 Identify the material property of each element. 
RFR3 20 Set YOUNG equal to the elastic modulus, E, of the material. 
RFR3 21 Set XAREA equal to the cross-sectional area. 
RFR3 22 Set YIELD equal to the uniaxial yield stress, al-, of the material. 
RFR3 23 Set HARDS equal to the hardening parameter, H', of the 

material. 
RFR3 24-25 Identify the node numbers of the element. 
RFR3 26 Calculate the element length. 
RFR3 27-30 Calculate the element strain, so that a tensile strain is positive. 
RFR3 3 1 Calculate AoJ according to Step b. 
RFR3 32 Calculate oer according to Step c. 
RFR3 33-34 Check if the element had yielded on the previous iteration, i.e., 

if or-' > u y  + H t c p r - 1  which is the first operation of Step d. 
The absolute value of or-' is taken to account for yielding in 
compression. 

RFR3 35-36 If the element was previously elastic, check to see if it has 
yielded during this iteration. 

RFR3 37 For an element which yields during this iteration, calculate 

(Fig. 3.7(a)). The absolute value sign is taken to account for 
compressive loading. 

RFR3 3940 Check to see if an element which had previously yielded is 
unloading during this iteration. If yes, go to 40. 

RFR3 41 Otherwise, set R = 1. 
RFR3 42 Evaluate, ( 1  - R). 
RFR3 43-44 For plastic elements, calculate the correct current stress, or, 

according to (3.36). 
RFR3 45 Also calculate the plastic strain, epr, according to (3.40). 
RFR3 47 For elastic elements, calculate the current stress, 07, according 

to Step g. 
RFR3 48-53 Evaluate the equivalent nodal forces, according to Step h. 
RFR3 54 Termination of DO LOOP over the elements. 

3.12.3 Numerical examples 
The first example considered is the yielding of a bar under self weight 

loading.   he problem and finite element idealisation employed is illustrated 
in Fig. 3.8. Progressive yielding is induced in the system by increasing the 
gravitational field incrementally. The gravitational force due to self weight 



FINITE ELEMENTS IN PLASTICITY 

2 
loading 
(incrementally 

3 

0.01 0.02 0.03 
End displacement (node 6) 

Fig. 3.8 Load/displacement response of a vertical bar loaded by a progressively 
increasing self-weight. 

acting on each element is equally distributed to its two nodes. The structure 
is capable of carrying load beyond first yield, due to the strain hardening 
characteristic of the material. 

The second example considered is the compound bar shown in Fig. 3.9. 
The two bars have a different yield stress and cross-sectional area in order 
to induce differential yielding. The structure is loaded by an end load, P, 
which is systematically incremented. The load/extension characteristics for 
the system are shown in Fig. 3.9. It is seen that there is an initial loss of stiff- 
ness corresponding to yielding of the first bar followed by a further reduction 
when the second bar becomes plastic. 

This simple example suggests a method by which more complex material 
responses can be generated. By connecting two bars with different properties 
in parallel b e  obtain a material behaviour made up of three linear portions. 
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By connecting n bars in parallel and choosing the yield stress and cross- 
sectional area of each appropriately we can approximate any arbitrary 
stresststrain response piecewise linearly by (11 + 1) intervals. This is the basis 
of the 'overlay method'(" which will be described later in Chapter 8. 

Also included in Fig. 3.9 are the results for the case when the load is 
cycled. First the load is incremented in tension up to a certain level, then 
removed and applied compressively, before final removal. It is immediately 
seen that a Bauschinger effect@) is obtained with initial yield in compression 
taking place at a reduced value. This occurs even though we have assumed 
an equal yield stress in tension and compression. This behaviour is attribu- 
table to the differential straining of the two components and is a phenomenon 
evident in real materials. 

Problems 
Reanalyse the problem of Fig. 3.3, Section 3.9.3, for the case where 
the term K is assumed to vary with the unknown 46 according to 

K = 10(1+ e3$). 

Use the direct iteration solution code QUITER, user instructions for 
which are provided in Appendix I, Section Al.1, for solution. 
Resolve Problem 3.1 using the Newton-Raphson procedure which is 
coded in program QUNEWT. User instructions for this program are 
provided in Appendix I, Section A1.2. Compare the computation 
times required for the two different solution procedures. 
The quasi-harmonic equation described in Section 2.3 is also applicable 
to groundwater flow problems.(s) In this application 46 is the pressure 
head potential, K is the material permeability and Q is the rate at 
which water is being injected per unit volume of material. The flow 
velocity at any point is then given by u = -K(d+/dx). Figure 3.10 
illustrates the problem of water seeping through two permeable strata 
whose permeabilities depend on the seepage velocity as shown. By 
treating the problem as one-dimensional in the vertical direction 
obtain a numerical solution for the steady state potential and velocity 
distribution in the two strata. 
Following the approach of Section 2.3, develop the stiffness matrix 
H(e) and the load vector f ( e )  for the one-dimensional axisyrnrnetric 
situation. In this application all quantities are symmetric with respect 
to a central axis and the radial coordinate r now replaces x. 
Implement the formulation of Problem 3.4 in program QUITER. 
Use the computer code developed in Problem 3.5 to solve the problem 
of water flow in the horizontal place of the confined aquifer shown in 
Fig. 3.1 1. In this case 4 is the piezometric head, K is the material 
permeability and Q is the rate at which water is being injected per 
unit volume of material. 
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Fig. 3. l O  Groundwater flow example-Problem 3.3. 

Fig. 3.1 1 Water flow in a confined aquifer-Problem 3.6. 
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The circular region shown in Fig. 3.1 1 has a central well point a t  
which water is being extracted at a rate of 200 m3/day. Determine the 
steady state potential distribution for this system assuming the material 
permeability to be nonlinear in the manner shown. 
The relationship between stress, o, and strain, c, for a certain locking 
material is given by the relationship 

in which Eo is the elastic modulus and EL is the limiting strain value of 
the material. Implement this relation in program NONLAS docu- 
mented in Appendix I, Section A1.3, by modifying the strain derivative 
function in Section 3.1 1.1. Also allow the behaviour of certain elements 
to be linear elastic. Use this modified program to determine the force 
displacement/relationship of the central node in Fig. 3.12 for a total 
applied load of 100 units. 

Cross-sectional area, A = 1 
for both members 

Linear elastic 
material, E = 1000 

Eo = 1000 
EL = 0.1 

Fig. 3.12 Nonlinear elastic example-Problem 3.7. 

3.8 Use program ELPLAS, for which user instructions are provided in 
Appendix I, Section A1.4, to solve the one-dimensional elasto-plastic 
problem shown in Fig. 3.13. 

3.9 Develop the elastic stiffness matrix, Kce), for a two-node finiteelement 
in the form of a thin disc of thickness t which is to  be subjected to 
axisymmetric in-plane loading. Assume a linear variation between 
nodes, as shown in Fig. 2.7, and note the following relationships 
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Prescribed axial 
displacement. 4 = 0.25 

Material I Material 2 

loo0 
1 .o 
15.0 

- 100.0 

Fig. 3.13 Elasto-plastic example-Problem 3.1 

in which u is the radial displacement and E and v are respectively the 
elastic modulus and Poisson's ratio of the material. Also express the 
stresses ar and a0 in terms of the nodal displacements +I and +2. 

3.10 Use the stiffness matrix evaluated in Problem 3.9 to modify program 
ELPLAS to allow solution of one-dimensional axisymmetric problems 
by the initial stiffness method. Assume a Tresca yield criterion (dis- 
cussed in Chapter 7) where yielding is assumed to begin when the 
maximum shearing stress reaches a critical value. For the present 
application this implies commencement of yielding when either a, or 
a, reaches the uniaxial yield stress, a,. 

3.11 Employ the program developed in Problem 3.10 to determine the 
elasto-plastic stress distribution in a thin disc, of thickness 1 mm, 
subjected to internal pressure loading. Take the internal and external 

Axis of 

Fig. 3.14 Axisymmetric membrane element-Problem 3.9 
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radii of the disc as 5 cm and 10 cm respectively, the elastic modulus 
E=2 x 105N/mm2, Poisson's ratio v =0.3 and the uniaxial yield stress, 
UY = 300 N/mm2. Compare your solution with the theoretical ex- 
pressions given in Ref. 8. 
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Chapter 4 
Viscoplastic problems in one 

dimension 

4.1 Introduction 
In this chapter the basic concepts of viscoplasticity are introduced by the 

consideration of one-dimensional situations. This topic is then studied 
further in Chapter 8 where the case of a general continuum is treated. 

Viscoplastic theory allows the modelling of time rate effects in the plastic 
deformation process. Thus after initial yielding of the material the plastic 
flow, and the resulting stresses and strains, are time dependent. Such effects 
are always present to some degree in all materials but they may or may not 
be significant depending on the physical situation being considered. 

The basic theory of viscoplasticity in one dimension is developed and a 
numerical solution process is then described. All the essential features of 
viscoplasticity can be demonstrated with reference to one-dimensional 
behaviour. Finally the solution process is coded in FORTRAN to form a 
working program and the basic characteristics of a viscoplastic material 
response are illustrated by the solution of numerical examples. 

4.2 Basic theory 
The concept of viscoplastic material behaviour is best introduced by means 

of the one-dimensional rheological model illustrated in Fig. 4.1. The friction 
slider component develops a stress up, becoming active only if u > Y, 
where a is the total applied stress and Y is some limiting yield value. The 
excess stress od = u - up is carried by the viscous dashpot. Instantaneous 
elastic response is, of course, provided by the linear spring. The presence of 
the dashpot allows the stress level to instantaneously exceed the value pre- 
dicted by plasticity theory, the solution tending to this equilibrium level as 
steady state conditions are achieved in the system. 

The total strain in the model is given by the sum of the elastic and visco- 
plastic components as 

€ = €e + €vp. (4.1) 

The stress in the linear spring is equal to the total applied stress and is 
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Inactive if  
up < Y 

Fig. 4.1 Basic one-dimensional elastic-visco~lastic model. 

related to the elastic strain by 

where E is the elastic modulus of the linear spring. 
The stress level in the friction slider depends on whether or not the 

threshold or yield stress, Y, has been reached. The onset of viscoplastic 
deformation is governed by a uniaxial yield stress o,. The stress level for 
continuing viscoplastic flow depends on the strain-hardening characteristics 
of the material. Restricting discussion to a linear strain-hardening response 
as discussed in Section 2.5, the stress level for viscoplastic yielding at any 
stage is given by 

Y = cry + H' c V p ,  (4.3) 

in which H' is the slope of the strain hardening portion of the stress-strain 
curve after removal of the elastic strain component and E p p  is the current 
viscoplastic strain. Thus the stress in the friction slider is 
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The stress in the viscous dashpot, oft, is related to the viscoplastic strain by 

where p is a viscosity coeficient and t denotes the time. We note that 

Before the onset of viscoplastic yielding E,, = 0, giving o,l = 0 from (4.5) 
and consequently up = a. It now remains to establish the constitutive 
relationship for the model under both elastic and elasto-viscoplastic con- 
ditions. 

Before viscoplastic yielding, E , ,  = 0 and from (4.1) and (4.2) we have the 
elastic stress-straiit relation to be 

Substituting from (4.4) and (4.5) in (4.6) gives 

Substituting for cup from (4.1) and using (4.2) results in 

which is a first order ordinary differential equation defining the time- 
dependent relationship between stress and strain under viscoplastic con- 
ditions. At this stage we introduce afluidity pnrarneter, y, such that 

Substituting in (4.9) and rearranging 

in which (.) denotes derivative with respect to time, t. Or 

i = i, + iVp, 
where 

and 
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Expression (4.14) defines the viscoplastic strain rate in terms of the portion 
of stress in excess of the steady state yield value. 

It is instructive to consider the closed form solution to (4.9). Consider the 
case when a constant applied stress a = U A  is applied to the model. Then 
(4.9) reduces, (using (4. lo)), to 

The solution to this first-order ordinary differential equation is elementary 
and is 

Strain. r 1 
A 

UA - pY 
H ' 

\' 
4 

UA - 
E 

7 Time, t 

Strain, E 

Fig. 4.2 Strain response with time for the model of Fig. 4.1 due to a constant 
applied load. (a) Linear strain hardening material. (b) Perfectly plastic material. 
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provided that H' is nonzero. The form of the response is shown in Fig. 
4.2(a). Following an initial elastic response, the strain in the model attains 
the steady state value indicated in an exponential fashion. 

The case of a perfectly viscoplastic material in which H' = 0, can be 
obtained by taking the limit as H' tends to zero in (4.16) and applying 
L'Hopital's rule. This results in 

This response is shown in Fig. 4.2(b). In this case it is seen that a steady state 
condition is not achieved and that viscoplastic deformation continues 
indefinitely at a constant strain rate. The different behaviour shown in 
Figs. 4.2(a) and 4.2(b) arises from the fact that for a strain hardening material 
the viscoplastic yield stress increases according to (4.3) until it reaches tLe 
applied stress level c~-4 at which stage the viscoplastic strain rate becomes 
zero. On the other hand, for a perfectly viscoplastic material there is always 
a stress imbalance of u,i-ay in the system which does not reduce and 
consequently steady state conditions cannot be achieved. 

We note that in (4.16) and (4.17) that the time t only enters the expressions 
through the term yt. Therefore the solution for a material with a different 
fluidity parameter y can be obtained by a simple adjustment of the time scale. 

4.3 Numerical solution process 
Viscoplasticity is a transient phenomenon and therefore the essential 

objective of a numerical solution process is to determine the displacement, 
strains and stresses throughout the time interval of interest. Consequently 
some time stepping or time marching scheme must be introduced in order to 
allow the solution to be advanced from a time tn to time tn+l = tn+Atn, 
where subscripts n and n+ 1 denote successive times and A t ,  the interval 
between. The simplest method of incrementing quantities over a time 
interval is afforded by Euler's rule. In this the mean rate of change over the 
interval is taken as the value at the beginning of the interval and thus the 
predicted value of some quantity X at time tn+l is extrapolated from the 
value at time tn to be 

Xn+l = Xn + (8)' Atn. (4.18) 

This scheme becomes unstable for time steps exceeding a critical value and 
estimation of the limiting step length is discussed in Section 4.4. The Euler 
method, however, remains attractive due to its simplicity. 

With the viscoplastic strain rate defined by (4.14) we can define the strain 
increment ' A E , , ~  occurring in a time interval Atn = tn+l - m, using (4.18), as 
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We note that the time step length can, in general, be different for each time 
interval. 

Fig. 4.3 One-dimensional two-noded element with linear displacement variation. 

With reference to Fig. 4.3, consider the behaviour of a linear displacement 
element, which is of length L and has a cross-sectional area, A. The change 
of length in this element associated with strain increment (4.19) is 

or adding the displacement change due to a change in applied loading Afn 
occurring between times tn and tn+l we obtain the total change in element 
length to be 

This can be rewritten in matrix form, in terms of the nodal displacements 
and forces as 

Apn = [K]-1  A Vn, (4.22) 
where 

and 

In the above, A Vn are termed the ~seudo forces and Apn and Af are respec- 
tively the incremental changes in the nodal displacements and applied forces 
for the element. 
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We note in passing that expressions (4.24) and (4.25) could be written in 
the standard finite element form 

since for the linear element considered 

I V d v  = AL. 

The displacements at time tn+l are then obtained by simple accumulation as 

The stress increment is given from (4.1) and (4.7) to be 

where Atjln and A+p are the displacement changes at the nodes of the 
element . 

The stress at time tn+l is then given by 

The total viscoplastic strain at time t,+l is 

and finally the viscoplastic strain rate at tn+l is given, from (4.14) as 

In employing the Euler scheme for time-stepping, we are effectively linear- 
king the variation of quantities over the increment. Therefore the total 
stresses on+l obtained by accumulating all such stress increments may not be 
in exact equilibrium with the applied forces. It is therefore necessary to intro- 
duce an equilibrium correction procedure into the numerical solution algo- 
rithm. The s'implest approach is to evaluate the out-of-balance nodal forces 
at the end of each time step and consider these forces as additional forces to 
be applied at the beginning of the next time increment. 
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The out-of-balance or residual forces, y ~ ,  for the general element are given 
as the algebraic sum of the applied nodal loads and the nodal forces equiv- 
alent to the element stress, so that 

in which an+' is the element stress and f n + l  are the total applied forces at 
time tn+l. These residual forces are then added to the pseudo forces to give 
for the next time increment 

This sequence is repeated for each time step until solution is either obtained 
for the desired time duration or until steady state conditions are achieved. 
Steady state conditions are deemed to have been achieved when the visco- 
plastic strain rate, ivPn, becomes tolerably small. 

4.4 Limiting time-step length 
The critical time-step length for viscoplastic solution using the Euler 

time marching scheme has been established by Cormeau.(l) For the uni- 
axial case considered in this chapter the limiting value is 

Alternatively the time-step length can be limited according to a semi- 
empirical relationship. Such an approach is essential for some general con- 
tinuum problems where a theoretical value of the critical time-step length 
may not exist. The most obvious procedure is to limit the viscoplastic strain 
increment to be some specified factor, 7, of the total current strain, 

Since each element generally has a different strain level, expression (4.37) 
will yield a different limiting step value when applied to each element in 
turn. Therefore the limiting value is restricted according to 

where the minimum value of At, obtained after considering each element is 
taken. Stability of the solution process is also aided by restricting the length 
of successive time steps according to 

where k is a specified constant generally chosen in the range 1-5-2-0. 
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4.5 Computational procedure 
Before proceeding with the development of a computer code for the 

solution of one-dimensional viscoplastic problems we will first summarise 
the essential steps of the computation. Solution to the problem must com- 
mence from the known initial conditions at time t = 0 which of course 
correspond to the initial clastic response. At this stage 90, fO, €0, a0 are 
known and cup0 = 0. The general procedure for advancing the solution 
from a time tn to time tn+l is the following. 

Stage I At time t = tn the values of dL, en, evpn a n d p  are known for each 
element and the nodal displacements are also known. The viscoplastic 
strain rate for each element is then evaluated according to (4.14) as 

Stage 2 (a) Compute the displacement increments, Apn, according to 
(4.22)-(4.25), as 

Agn = [K]-1A Vn, 

where 

and the stiffness matrix for an individual element is 

(b) Calculate thc stress increment hall and thc viscoplastic strain 
increment for each element as 

Stage 3 Determine the total displacements, stresses and viscoplastic strain 

Stage 4 ~aldulate the viscoplastic strain rate for each element 
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Stage 5 Apply the equilibrium correction. Evaluate the residual forces, for 
each element, as 

Add these into the vector of incremental pseudo loads for use in the next 

Stage 6 Check to see if the viscoplastic strain rate &$+1 in each element 
has become tolerably small. If so, steady state conditions have been reached 
and the solution is either terminated or the next load increment is applied. 
If is non-zero return to Stage 1 and repeat the entire procedure for 
the next time step. 

4.6 Program structure 
The organisation of the one-dimensional viscoplastic program is shown in 

Fig. 4.4 where, in particular, the order in which subroutines are accessed is 
indicated. The operations undertaken by the program are those described 
in Section 4.5. Many of the subroutines employed are common to the one- 
dimensional plasticity application described in Chapter 3 and, since they are 
used in the present program without modification, the reader will be referred 
to the appropriate section for details. Only the additional subroutines 
necessary to complete the computer package will be described in this chapter. 

With reference to Fig. 4.4 the following subroutines have been already 
described where indicated below : 

Subroutine ASSEMB S e c t i o n  3.4.2 
Subroutine GREDUC-Section 3.4.3 
Subroutine BAKSUB -Section 3.4.4 
Subroutine RESOLV S e c t i o n  3.4.5 
Subroutine RESULT -Section 3.5 
Subroutine INITAL S e c t i o n  3.6* 

Also, Subroutine DATA described in Section 3.2 is used with some minor 
modifications. A viscoplastic material in one dimension requires five indi- 
vidual quantities to describe it completely. Thus NPROP becomes 5 and 
the following quantities must be specified as material properties. 
PROPS (NUMAT, 1)-The elastic modulus, E, of the material 
PROPS (NUMAT, 2)-The cross-sectional area, A,  of the element 
PROPS (NUMAT, 3)-The uniaxial yield stress, oy, of the material 
PROPS (NUMAT, 4)-The linear strain hardening parameter, H', for the 

material 
PROPS (NUMAT, 5)-The fluidity parameter, y, controlling the visco- 

plastic strain rate. 

* Subroutine NONAL, described in Section 3.3, is also employed but with 1lTER 
now replaced by the time step index, ISTEP. 
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( START ) 

I 
r 

DATA 
Input data defining geometry, loading, 
boundary conditions, material properties, etc. 

I 
r 

STUNVP 

Calculate the stiffness matrix for each element 

I 
I 

ASSEMB 
Assemble the element loads and stiffnesses 
to give the global stiffness matrix and 
load vector I 

1 
1 

GREDUC, BAKSUB & RESOLV 
Solve the resulting system of simultaneous 
equations for the displacements 6 

I 

CONVP 
Check for convergence of the time stepping 
process to steady state conditions 

I 
RESULT 

Print the results for the current timestep 
I 

1 

1 INCVP 1 
1 a) Evaluate quantities at the end of 1 

the timestep 
b) Calculate the pseudo loads for 
application during the next time step 

1 

(END) 
Fig. 4.4 Operational sequence for the one-dimensional viscoplastic stress analysis 

program. 

Input data are also received by this segment which controls the time- 
stepping algorithm. The following information is input: 

TAUFT The parameter T discussed in Section 4.4 
DTINT The time-step length for the first time step 
FTIME The factor k defined in (4.39) which limits the rel- 

ative length of successive time steps 
The additional subroutines which are required will now be described in 

turn. 
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4.7 Element stiffness subroutine STUNVP 
In all stages of the viscoplastic solution the elastic element stiffness 

matrix is employed, as indicated in (4.25). Consequently the structure of sub- 
routine STUNVP, which evaluates the stiffness matrix for each element in 
turn, is straightforward and can be presented without further comment. 

SUBROUTINE STUNVP SNVP 
C++#++~*+++*~+W+~~ZY*I**I*~*I**~Z*~W***********S**S*****************S***SNV~ 

C SNVP 
C *** CALCULATES ELEMENT STIFFNESS MATRICES SNVP 
C SNVP 
~ * + * + * ~ * + * t ~ ~ * * t * * + ~ * * ~ * i * * * I ( i i i i i * i i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ N v p  

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,ISTEP, SNVP 
KRESL,NCHEK,TOLER,NALCO,NSVAB,NDOFN,NINCS,NEVAB, SNVP 
NSTEP,NOUTP,FACTO,TAUFT,DTINT,FTIME,FIRST,PV~U, SNVP 
DTIME,TTIME SNVP 

COMMON/UNIM2/PROPS( 5,5) , COORD( 26 ) , LNODS( 25,2) , IFPRE( 52) , SNVP 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), SNVP 
MATNO(25) ,STRES(25 $2) ,PLAST(25) ,XDISP(52), SNVP 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), SNVP 
REACT(52) ,FRESV(1352) ,PEFIX(52) ,ESTIF(4,4) ,VNEL(25) SNVP 

REWIND 1 SNVP 
DO 10 IELEM=I, NELEM SNVP 
LPROP=MATNO( IELEM ) SNVP 
YOUNG=PROPS(LPROP, 1 ) SNVP 
XAREA=PROPS( LPROP ,2) SNVP 
NODE1 =LNODS( IELEM , I  ) SNVP 
NODE2=LNODS( IELEM ,2) SNVP 
ELENG=ABS( COORD ( NODE1 ) -COORD( NODE21 I SNVP 
FMULT=YOUNG*XAREA/ELENG SNVP 
ESTIF( 1 ,I) =FMULT SNVP 
ESTIF ( 1 ,2 ) =-FMULT SNVP 
ESTIF ( 2,1) =-FMULT SNVP 
ESTIF( 2.2 =FMULT SNVP 
WRITE( 1 j 

10 CONTINUE 
RETURN 
END 

SNVP 16 

SNVP 17 
SNVP 18 
SNVP 19-20 

SNVP 2 1-22 
SNVP 23 
SNVP 24 
SNVP 25-28 

SNVP 29 
SNVP 30 

SNVP 29 
SNVP 30 
SNVP 31 
SNVP 32 

Rewind the file on which the stiffness matrix of each element 
will be stored. 
Loop over each element. 
Identify the material property of the current element. 
Set YOUNG equal to the material elastic modulus and 
XAREA equal to the cross-sectional area. 
Identify the node numbers of the element. 
Calculate the element length. 
Compute EA/L as FMULT. 
Evaluate the components of the element stiffness matrix 
according to (4.25). 
Write the element stiffness matrix on to disc file. 
End of loop over each element. 
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4.8 Subroutine INCVP for the evaluation of end of time-step quantities 
and equilibrium correction terms 

This subroutine evaluates quantities such as stresses and viscoplastic 
strains at  the end of the current time step and also calculates the loading 
to be applied during the next time step. Essentially it undertakes Stages 3-5 
described in Section 4.5. All quantities at the end of time step n are calcu- 
lated as ()*+l. 

The program presented is restricted to loading which is applied in dis- 
crete increments and is assumed to remain constant during the time-stepping 
process for any given increment. Thus in (4.35) Afn = 0 for all stages other 
than the first time step of a particular load increment. 

Subroutine INCVP is now presented and described. 

SUBROUTINE INCVP INVP 
C***********************************************************************INVp 
C INVP 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES INVP 
P INVP 
Y 

............................................................................ 
COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,ISTEP, INVP 

KRESL,NCHEK,TOLER,WO,NSVAB,NDOFN,NINCS,NEVAB, INVP 
NSTEP,NOUTP,FACTO,TAUFT,DTINT,FTIME,FIRST,PVALU, INVP 
DTIME , TTIME INVP 

CoMMoN/UNIM2/ PROPS( 5,5) , COORD( 26 1 LNODS(25,2) IFPRE(~~) , INVP 
FIXED(52) ,TLoAD(25,4j ,~~0AD(25,4j ,ELOAD(25,4), INVP 
MATNO(251, STRES(25,2), PLAsT(~~), XD1SP(52), INVP 
TDISP(26 2) ,TREAC(26 2) ,AsTIF( 52,52) ,ASLOD( 52) , INVP 
 REACT(^^^ ,FRBV( 13521, PEFIX(52) ,ES~1F(4,41 ,VIVEL(25) INVP 

DO 10 IELEM=l,NELEM INVP 
DO 10 IEVAB=l, NEVAB 

10 ELOAD(IELEM.INAB)=O.O 
DNEXT=FTIME*DTIME 
DO 30 IELEM=I, NELEM 
LPROP=MATNO( IELEM) 
YOUNG=PROPS( LPROP, 1 
XAREA=PROPS( LPROP, 2 
YIELD=PROPS( LPROP, 3) 
HARDS=PROPS( LPROP ,4 
GAMMA=PROPS( LPROP ,5 
NODE1 =LNODS( IELEM, 1 ) 
NODE2=LNODS( IELEM, 2) 
ELENC=ABS( COORD( NODE1 ) -COORD( NODE21 ) 
IF(COORD( NODE) .GT. COORD( NODE1 ) ) STRAN=( xDISP( NODE;!) . /ELENG 

INVP 
INVP 
INVP 
INVP 
INVP 
INVP 
INVP 
INVP 
INVP 25 
INVP 26 
INVP n 
INVP 28 
INVP 29 

-XDISP( NODE1 ) INVP 30 
INVP 31 

IF(COORD( NODE) .LT.COORD(NODEl ) )  STRAN=(XDISP(NODEI 1-XDISP(  NODE^) ) INVP 32 . /ELENG INVP 33 
STRES( IELEM, 1 ) =STRES( IELEM, 1 )+( STRAN-vIVEL( IELEM) *DTIME) *YOUNG 
PUT( IELEM) =PLAST( IELEM) +VIVEL( IELEM) *DTIME 
IF(Sl'RES(IELEM,l).LT.O.O) YIELD=-YIELD 
PREYS=YIELD+HARDS*PLAST( IELEM) 
IF(ABs(STRES( IELEM, 1 1) .LE.ABS(PREYS) ) GO TO 20 
VIVEL( IELEM) =CAMMA*( STRES( IELEM, 1 I-( YIELD+HARDS*PLAST( IELEM) 
SNTOT=(TDISP( NODE, 1 )-TDISP(NODE1,l) )/ELENC 
DELTM=TAUFT*ABS( SNTOT/VIVEL( IELEM) ) 
IF(DELTM. LT. DNEXT) DNEXT=DELTM 
GO TO 30 

20 VIVEL( IELEM) =O .O 

INVP 34 
INVP 35 
INVP 36 
INVP 37 
INVP 38 
INVP 39 
INVP 40 
INVP 41 
INVP 42 
INVP 43 
INVP 44 
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CONTINUE 
DTIME=DNEXT 
IF( ISTEP. EQ. 1 ) DTIME=DTINT 
DO 50 IELEM= 1 , NELEM 
LPROP=MATNO( IELEM) 
YOUNG=PROPS( LPROP, 1 ) 
XAREA=PROPS( LPROP ; 2) 
FACTR=(YOUNG*VIVEL( IELEM) "DTIME-STRES( IELEM, 1 ) ) *UREA 

ELOAD(IELEM,~)= FACTR 
ELOAD(IELEM,2)=-FACTR 
W TO 50 
ELOAD( IELEM, 1 =-FACTR 
ELOAD(IELEM,2)= FACTR 
CONTINUE 
DO 60 IELEM=1, NELEM 
DO 60 IEVAB=l,NEVAB 
WAD( IELEM, IEVAB) =WAD( IELEM, IEVAB)+TLOAD( IELEM, IEVAB) 
RETURN 
END 

1 

I 
1 

INVP 1618 Zero the array in which the pseudo loads for the next time step 
will be stored. 

INVP 20 Loop over each element. 
INVP 21 Identify the element material property number. 
INVP 22-26 Store the elastic modulus as YOUNG, the cross-sectional area 

as XAREA, the uniaxial yield stress as YIELD, the uniaxial 
hardening parameter as HARDS and the fluidity parameter as 
GAMMA. 

INVP 27-28 Identify the element node numbers. 
INVP 29 Evaluate the length of the element. 
INVP 30-33 Calculate the element strain so that a tensile strain is positive. 
INVP 34 Evaluate the total current stress onf1 according to (4.30) and 

(4.31). 
INVP 35 Evaluate the total viscoplastic strain ~ ~ , ~ + l ,  according to (4.32). 
INVP 36 For a compressive stress take a negative value of the initial 

yield stress. 
INVP 37 Compute the current yield level oy + H' cVpn+l. 
INVP 38 If the current stress is less than the current yield stress, avoid 

evaluation of the viscoplastic strain rate. 
INVP 39 Otherwise evaluate the viscoplastic strain rate according to 

(4.33). 
INVP 40-42 Evaluate the next time-step length according to (4.38). 
INVP 44 For elastic elements set the viscoplastic strain rate to zero. 
INVP 45 End of element loop. 
INVP 47 For the first timestep of a load increment choose the timestep 

as the initial value. 
INVP 48 Enter element loop to evaluate pseudo loads, AVn+l, for the 

next time step. 
INVP 49 Identify the element material property number. 

INVP 45 
INVP 46 
INVP 47 
INVP 48 
INVP 49 
INVP 50 
INVP 51 
INVP 52 
INVP 53 
INVP 54 
INVP 55 
INVP 56 
INVP 57 
INVP 58 
INVP 59 
INVP 60 
INVP 61 
INVP 62 
INVP 63 
INVP 64 
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INVP 50-51 Store the elastic modulus as YOUNG and the cross-sectional 
area as XAREA. 

INVP 52 Evaluate the factor AE &n+l Atn+l + A a n + l .  

INVP 53-62 Evaluate A V n + l  according to (4.34) and (4.39, taking the 
appropriate signs for tensile or compressive stresses and 
strains. Note that f n+l + Af n+l is the total load applied for 
time step n + 1 which is stored as TLOAD. 

4.9 Convergence monitoring subroutine, CONVP 
Convergence of the numerical process to the steady state solution must be 

mmitored by comparing, in some way, the values of the viscoplastic strain 
rate determined during each time step. This can be done in several ways and 
in this section we describe a procedure based on a global convergence check 
only. In particular we will assume that steady state conditions have been 
achieved if 

M 

C l(kJpn)2 I 
i= l  

M 
x 100 < TOLER, (4.41) 

where M denotes the total number of elements in the problem and I I 
denotes the absolute value. The multiplication factor of 100 on the left-hand 
side allows the specified tolerance factor TOLER to be considered as a 
percentage term. Equation (4.41) states that steady state conditions are 
deemed to have been achieved if the sum of the absolute values of the strain 
increment for any time step is less than or equal to TOLER times the cor- 
responding value for the first time step. For practical purposes a value of 
TOLER 6 1-0 (i.e. 1%) is generally adequate. Parameter NCHEK indi- 
cates convergence of the solution to steady state, where; 

NCHEK = 1 indicates that the solution is converging to steady state, 
with the viscoplastic strain increment reducing between two 
successive time steps. 

NCHEK = 999 indicates a divergence, with the viscoplastic strain incre- 
ment increasing between two successive time steps. 

NCHEK = 0 indicates that steady state conditions have been achieved. 
Subroutine CONVP is now presented and described. 

SUBROUTINE CONVP CNVP 1 
C%%%%%%%%*%*************************************************************vp 2 
C 
C **it CHECKS FOR SOLUTION CONVERGENCE 

CNVP 3 
CNVP 4 

C CNVP 5 
C~~*%%** * * i * * * * i * * * * * * * * * i * * * * * * * * * * * * * * * * i * i * * i * * * i * * * * * *# * * * * * * * * * * * * *~~  6 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOADlNPROP,NNODE,IINCS,ISTEP, CNVP 7 
KRESL,NCHEK,TOLER,NAU;O,NSVAB,NDOFN,NINCS,NEVAB, CNVP 8 
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NSTEP,NOUTP,FACTO,TAUFT,DTINT,FTIME,FIRST,~~AL~, CNVP 9 
DTIME, RIME CNVP 10 

cOMMON/UNIWPROPS( 5,5), COORD( 26 1, LNODS( 25,2) , IFPRE( 52) , CNVP 11 
FWED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,E~oAD(25,4), CNVP 12 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), CNVP 13 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), CNVP 14 
REACT(52) ,FRESV( 13521, PEFIX(52), ESTIF(~ ,4) ,VIVEL(~~) CNVP 15 

NCHEK=1 CNVP 16 

DO 10 IELEM=1, NELEM 
TOTAL=TOTAL+ABS(VIVEL( IELEM) ) *DTIME 

RATIO=O .O 
CONTINUE 
IF( RATIO. LE. TOLER ) NCHEK=O 
IF( RATIO. GT. PVALU NCHEKz999 
PVALU =RATIO 

CNVP 17 
CNVP 18 
CNVP 19 
CNVP 20 
CNVP 21 
CNVP 22 
CNVP 23 
CNVP 24 
CNVP 25 
CNVP 26 
CNVP 27 
CNVP 28 

WRITE(6,gOO) TTIME CNVP 29 
FORMAT(lHO,5X,12HTOTAL TIME =,E17.6) CNVP 30 
WRITE (6,9 1 0 NCHEK , RATIO CNVP 31 
FORMAT( 1 H0,5X, 18HCONVERGENCE CODE = ,14,3X, 28HNORM OF RESIDUAL SUM CNVP 32 
.RATIO =,E14.6) 
RETURN 
END 

CNVP 33 
CNVP 34 
CNVP 35 

CNVP 16 Set the indicator monitoring convergence to 1. This will be 
reset later in the subroutine if necessary. 

CNVP 17-19 Compute 
M 

C l(A'vpn)f I 
I=1 

for the current time step as required in (4.41). 
CNVP 20 For the first time step evaluate the denominator in (4.41). 
CNVP 21-25 Evaluate the left-hand side in (4.41). If the denominator is 

zero there is no viscoplastic flow for the particular load incre- 
ment, therefore set RATIO = 0 indicating a steady state 
condition. 

CNVP 26 If (4.41) is satisfied, set NCHEK = 0 indicating a steady 
state condition. 

CNVP 27 If the viscoplastic increment has increased from the value 
obtained on the previous time step set NCHEK = 999. 

CNVP 28 Store the current value of the left-hand side of (4.41) for use 
in Statement CNVP 27 during the next time step. 

CNVP 29-30 Output the current time. 
CNVP 31-33 Output the value of NCHEK and the left-hand side of (4.41). 

4.10 Subroutine INCLOD 
Subroutine INCLOD described in Section 3.7 is employed for this appli- 

cation with one minor change: The iteration limit NITER is now replaced 
by the time-step limit NSTEP. 



VISCOPLASTIC PROBLEMS 1N ONE DIMENSION 1 1 1  

For each increment of load, data is accepted by INCLOD to control the 
upper limit to the number of time steps, the output frequency, the size of 
load increment and the convergence tolerance limit. These quantities are 
specifically input as : 
NSTEP Maximum permissible number of time steps. This is a safety 

measure to cover situations where steady state conditions are 
not achieved. After performing NSTEP time steps the pro- 
gram will then stop. 

NOUTP This parameter controls the frequency of output of results: 
&Print the results on convergence to steady state conditions 

only, for each load increment. 
I-Print the results after the first time step and at steady state, 

for each load increment. 
2-Print the results for each time step for each load increment. 

FACT0 This quantity controls the magnitude of any load increment. 
The applied loading is accepted by subroutine DATA and 
stored in array RLOAD. The size of any load increment is 
then RLOAD factored by FACTO. Therefore if FACTO is 
input for the first three increments as respectively 0-3, 0.3 and 
0.1, the total loading applied to the structure during the third 
increment is 0.7 times the loading input in subroutine DATA. 

TOLER This item of data controls the tolerance permitted on the 
steady state convergence process, and has been described in 
Section 4.9. 

Subject to the replacement of NITER by NSTEP, the form of this subroutine 
for the present application is identical to that provided in Section 3.7. 

4.11 The main, master or controlling segment 
This master segment controls the calling, in order, of the other sub- 

routines. This program segment also controls the time-stepping process and 
also the incrementing of the applied loads, where appropriate. 

The following channel numbers are employed by the program: 5 (card 
reader), 6 (line printer), 1 (scratch file). 

MASTER UNVISC WIS 
C~*i***i**~****~**~**~~~%***********4**********************************WIs 
C WIS 
C *H) PROGRAM FOR THE 1-D SOLUTION OF NONLINEAR PROBLEMS WIS 
C UVIS 
C**~*****************~***ff******i******************s********************WIs 

COMMOWUNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,ISTEP, WIS 
KRESL,NCHEK,TOLER,NALCO,NSVAB,NDOFN,NINCS,WAB, WIS 
NSTEP,NOOTP,FACTO,TAUFT,DTI~,FTIME,FIRST,PVALU, WIS 
DTIME , TTIME WIS 

COMMON!UNIM2/PROPS( 5,5 , COORD( 26) LNODS( 25,2) IFPRE( 52) , WIS 
FIXED(52) ,~L0AD(25,41 ,~~0AD(25,41 ,ELOAD(25,4), WIS 
MATNO( 25) , STRES(25,2) , PLAST( 25) ,XDISP(52) , WIS 
TDISP(26 2) ,TREAC(26 21, ASTIF( 52,521 ,ASLOD( 521, WIS 
 REACT(^^^ ,FRESV( 13521, PEFIX(521, ESTIF( 4,4) ,vIVEL(25) WIS 
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TrIME=o. 0 
CALL DATA 
CALL INrrAL 
CALL m N v p  
DO 30 IINCS=I,NINCS 
CALL INCLOD 
DTIME=O . 0 
DO 10 ISTEP=1 ,NSTEP 
ITIME=TTIME+DTIME 
CALL NONAL 
CALLASSEMB 
IF(KRESL. EQ. 1 CALL GREDUC 
IF(KRESL. EQ.2) CALL RESOLV 
CALL BAKSUB 
CALL INCVP 
CALL CONVP 
IF(NCHEK.EQ.0) CO TO 20 
IF( ISTEP. EQ. 1 .AND. NOUTP. EQ. 1 CALL RESULT 
IF( NOUTP. EQ. 2) CALL RESULT 

10 CONTINUE 
WRITE(6,900 

900 FORMAT( 1 H0,5X, ' STEADY STATE NOT ACHIEVED ' ) 
STOP 

20 CALL RESULT 
30 CONTINUE - 

STOP 
END 

UVIS 16 
UVIS 17 

UMS 18 

UVIS 19 

UVIS 20 
UVIS 21 

UVIS 23 
UVIS 24 

UVIS 25 

WIS 16 
WIS 17 
WIS 18 
WIS 19 
WIS 20 
UVIS 21 
UVIS 22 
WIS 23 
UVIS 24 
WIS 25 
WIS 26 
WIS 27 
WIS 28 
WIS 29 
WIS 30 
WIS 31 
WIS 32 
WIS 33 
UVIS 34 
UVIS 35 
WIS 36 
WIS 37 
WIS 38 
UVIS 39 
WIS 40 
WIS 41 
WIS 42 

Initialise the total time to zero. 
Call the subroutine which reads the input data as described in 
Section 3.2. 
Call Subroutine INITAL which: 

(i) Initialises to zero the viscoplastic strain vector and the 
stress vector. 

(ii) Initialises the array, ELOAD, which will contain the 
pseudo loads to be applied during each time step. 

(iii) Initialises the vector of applied loads. 
(iv) Initialises the vector of total displacements and total 

reactions. 
Call the subroutine which evaluates the stiffness matrix for 
each element. 
Enter the DO LOOP over the number of load increments. 
Call Subroutine INCLOD which: 

(i) Reads and writes the input data required for each load 
increment as described previously in Section 4.10. 

(ii) Adds the current increment of load into the pseudo load 
vector, ELOAD, and into the total applied load vector, 
TLOAD. 

Begin the time-stepping process. 
Calculate the total time elapsed (note that the first time step 
corresponds to the elastic solution). 
Call the subroutine which sets the parameter KRESL con- 
trolling equation resolution facility. 
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UVIS 26-29 

UVIS 30 

UVIS 31 

UVIS 32 

UVIS 33-34 

UVIS 35 
UVIS 36-38 

UVIS 40 

Call the subroutines which assemble the element stiffnesses 
and solve for the unknown displacements and reactions. 
Call the subroutine which evaluates quantities at the end of the 
time step and evaluates the loads for the next time step. 
Check whether or not steady state conditions. have been 
achieved. 
If so, terminate the time-stepping process for the current load 
increment. 
Output the results at a frequency controlled by parameter, 
NOUTP. 
End of time-stepping loop. 
If steady state conditions have not been achieved when the 
upper time-step limit has been reached, write a message and 
terminate the execution. 
End of load increment loop. 

4.12 Numerical examples 
The first example considered is the viscoplastic deformation of a single 

element under constant applied loading. The element is of length 10 units 
and the applied load is 15 units. The material properties assumed are included 
in Fig. 4.5, where it is noted that the strain hardening parameter is taken to 
be zero. The finite element prediction is seen to be in excellent agreement 
with the theoretical result (4.17) for this problem. 

The problem was then reanalysed for a strain-hardening material with 
H' = 5000. The finite element results are compared with the theoretical 
expression (4.16) in Fig. 4.6 for three different values of the time-stepping 
parameter, T, defined in Section 4.4. For a value of T = 0.01 excellent 
agreement is obtained, but as the time-step length is increased (7 = 0.05 
and 7 = 0.1) comparison with the theoretical solution deteriorates. In 
particular, an increase in the time-step length progressively overestimates 
the viscoplastic strain increment, which is a characteristic of the Euler 
method of time stepping. It is noted that the time-step length is not so 
critical in the perfectly viscoplastic case of Fig. 4.5 since the exact visco- 
plastic strain increment is in fact linear for this case. 

For the material properties assumed, the theoretical value of the limiting 
time step is given from (4.36) to be 1.0. It is seen from Figs. 4.5 and 4.6 that 
the time-step lengths employed in solution are well within this critical value. 
However, Fig. 4.6 shows that to achieve an accurate result even smaller 
time-step lengths must be taken. Thus although the theoretical value of the 
limiting time-step length guarantees numerical stability of the solution process 
it may not always lead to an accurate solution. 

The second example considered illustrates the redistribution of stress 
with time which generally takes place in viscoplastic problems. Figure 4.7 
shows two members in parallel which are subjected to an end load P which 
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Fig. 4.5 End displacement with time for a single viscoplastic element under constant applied 
load-No strain hardening. 
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0.014 + Finite element T = 0.05 1% 
Finite element T = 0.01 = 0.1 % 
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Fig. 4.6 End displacement with time for a single viscoplastic element under constant appIied load showing 
finite element results for different time-step lengths-Linear strain hardening. 
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is incrementally applied. The material properties for each element are 
included in Fig. 4.7 with the only difference between the two members being 
the initial yield stress of the materials. The load is applied in four incre- 
ments and steady state conditions are allowed to develop for each increment 
before application of further load. The end displacement with time is shown 
in Fig. 3.7. Steady state conditions are achieved for the first three load 
increments but not for the fourth since both elements, which behave perfectly 
plastically, have become yielded at this stage. 

4.13 Problems 
4.1 Develop the relationship between the applied stress, a, and the total 

strain, E ,  for the rheological model shown in Fig. 4.8. Plot the strain 
response with time when the model is subjected to a constant applied 
stress, UA. 

4.2 Repeat Problem 4.1 for the rheological model shown in Fig. 4.9. In 
this case the friction slider becomes active for a 2 Y where, for a 
linear strain hardening material, Y = UY + H' cvp. 

Fig. 4.8 Problem 4. I .  

Ez Y 

Fig. 4.9 Problem 4.2. 

4.3 Use the unidimensional computer code developed in this chapter to 
determine the stress relaxation with time when the Maxwell model 
shown in Fig. 4.10 is subjected to a constant displacement condition. 
The critical time-step length for this model can be shown to be 
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At = 2/yE. Solve the problem for several time-step lengths up to the 
critical value, thereby showing that numerical divergence occurs as 
soon as the limiting value is reached. For computation let E = 100, 
y = 0.01 and +, = 0-1. 

Fig. 4.10 Problem 4.3. 

4.4 Modify the computer code developed in this chapter to allow solution 
of the material model of Problem 4.1. 

4.5 In Section 4.9, Subroutine CONVP, monitoring convergence to steady 
state conditions, was based on a global criterion. Modify this sub- 
routine so that convergence is based upon the condition 

I %p7$ 1 
x 100 6 TOLER, 

I4+p1 I 
for each individual element. 

4.6 Develop the elastic stiffness matrix, Kce), for a two-node finite element 
in the form of a sphere and which is to be subjected to spherically 
symmetrical radial loading only. Assume a linear variation between 
nodes and note the following relationships 

u 1 
- -[(I - v)o, - vu,], €6 = 9  = - -  r E 

in which u is the radial displacement and E,, re, r6 and or, u,, o6 are 
respectively the strain and stress components. Also express the stress 
components in terms of the nodal displacements. 

4.7 Use the stiffness matrix evaluated in Problem 4.6 to modify the one- 
dimensional viscoplastic program UNVIS to allow solution of spheri- 
cally symmetrical problems. Assume a Tresca yield criterion which 
implies commencement of yielding when a, - a, = a,, . 

4.8 Employ the program developed in Problem 4.7 to determine the vari- 
ation of the elasto-viscoplastic stress distribution with time in a sphere 
which is instantaneously loaded by an internal pressure of 500 N/mm2. 
The internal and external radii of the sphere are 10 cm and 25 cm 



VISCOPLASTIC PROBLEMS IN ONE DIMENSION 119 

respectively, the elastic modulus E = 2 x 105 N/mm2, Poisson's ratio 
v = 0.3, the uniaxial yield stress oy = 300 N/mm" hardening par- 
amater, H' = 0 and take the fluidity parameter y = 0.001. Compare 
your steady state solution with the theoretical elasto-plastic results of 
Ref. 2. 

4.14 References 
1. CORMEAU, I., Numerical stability in quasistatic elasto-visco-plasticity, Int. J. 

Nwn. Meth. Engng., 9, 109-127 (1975). 
2. H ~ L ,  R., The Mathematical Theory of Plasticity, Oxford University Press, 1950. 





Chapter 5 
Elasto-plastic Timoshenko 

beam analysis 
Written in collaboration with H. H. Abdel Rahman 

5.1 Introduction 
In this chapter we introduce some elasto-plastic beam formulations which 

are useful in their own right but which also provide insight into the elasto- 
plastic plate formulations presented later. 

There are two main beam theories on which we could base our studies: 

(i) Euler-Bernoulli beam theory. This theory, which is usually favoured by 
engineers because of its simplicity, takes no account of transverse shear 
deformation. The simplest Euler-Bernoulli beam element based on the dis- 
placement method is the well-known Hermitian element(l' with cubic 
displacements. Bending moments may vary linearly over this element. 

(ii) Tinloshenko beam tlicory. This theory allows for transverse shear 
deformation effects. The simplest Timoshenko beam element is the Hughes 
element@) with linear displacements and normal rotations. Bending moments 
are constant over this element. 

Although the Euler-Bernoulli theory is frequently adopted we choose the 
Timoshenko beam theory as a basis for our study of the elasto-plastic analysis 
of beams since we may make use of a finite element which involves constant 
bending moments and is more in keeping with the presentations given in the 
previous chapters. Furthermore, Timoshenko beam theory can rightly be 
considered as the one-dimensional precursor of Mindlin plate theory which 
is used in Chapter 9. 

Firstly in this chapter the basic assumptions of Timoshenko beam theory 
are outlined. The Hughes element formulation is then presented for the 
elastic case. 

There are two approaches to the elasto-plastic analysis of Timoshenko 
beams : 

(i) Non-layered approach. In this method, when the bending moment 
reaches the yield moment, the whole cross-section of the beam is assumed to 
become plastic instantaneously. This is however a convenient fiction as in 
reality there is always a gradual plastification of the beam with the outer 
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fibres becoming plastic initially. The zone of plasticification then spreads 
inwards until the whole section ultimately becomes plastic. 

(ii) Layered .rpproach. In this method we attempt to capture the spread of 
plasticity over the depth of the beam. The beam is thus divided into a number 
of layers each of which may become plastic separately. As the number of 
layers is increased, this model provides a more realistic representation of the 
gradual spread of plasticity over the beam cross-section. 

Both non-layered and layered approaches are described in detail and 
program TIMOSH for the non-layered beams and program TIMLAY for 
the layered beams are presented and their use is illustrated with the aid of 
some examples. 

5.2 The basic assumptions of Timoshenko beam theory 

5.2.1 Introductory comments 
There are several basic assumptions adopted~in the derivation of the 

governing equations of Timoshenko beam theory. Here we reiterate these 
assumptions for elastic, small deflection analysis and then in later sections 
we present some extensions of the theory to allow for elasto-plastic analysis. 

5.2.2 Assumed displacement field 
In a typical Timoshenko beam, such as the one shown in Fig. 5.1, it is 

usual to assume that normals to the neutral axis before deformation remain 
straight but not necessarily normal to the neutral axis after deformation. This 
implies that the axial displacement z i  at any point (x,  r) may be expressed 
directly in terms of e(x) the rotation of the normal so that 

Note that the normal rotation 8(x) is equal to the slope of the neutral axis 
dwldx minus a rotation which is due to the transverse shear deformation. 

Fig. 5.1 Timoshenko beam. 
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Thus we have 

Notice also that the lateral displacement G at any point (x, z) is given by the 
lateral displacement at the neutral axis so that 

5.2.3 Stress-strain relationships 
In Timoshenko beam theory, the elastic stress-strain relationships used 

for plane stress analysis are usually adopted in a slightly modified form. For 
convenience we assume that the beam is loaded in the x z  plane and thus for 
an isotropic elastic material the relevant stress-strain relationships are 

where E is the Young's modulus and v is the Poisson's ratio. 
If az is assumed to be equal to zero then 

and by eliminating E ,  from (5.4) and (5.9, it  is possible to write the following 
stress-strain relationship 

U, = Eez and = Gyxt (5.6) 

where for an isotropic material G = E/[2(1 + v)] is the shear modulus. 

5.2.4 Strain-displacement relationships 
Usually small deflection theory is adopted and the axial strain E, is given as 

If'approximation (5.1) is adopted then this strain can be written as 

Similarly the shear strain y,, is given as 

yzz = _+- 
cz i 4 x  
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and if approximation (5.2) is adopted we obtain 

5.2.5 Virtual work expression 
Consider a Timoshenko beam of depth t in which the breadth b varies with 

depth symmetrically about the neutral axis. The beam is subjected to a dis- 
tributed loading of intensity q. If the beam undergoes a set of virtual lateral 
displacements Sw, virtual normal rotations 68 and associated virtual cur- 
vatures - z [d (M) /dx ]  and virtual shear strains 6 8  then the virtual work 
equation can be written as 

where the bending moment 

and the shear force 

Using (5.12) and (5.13), -if we substitute for ox and T,, in (5.6) respectively 
we obtain 

and 

where El is the flexural rigidity and GA, the shear rigidity, is replaced by GA 
where the area A is replaced by Ala.  The parameter CY is a correction factor 
to allow for cross-sectional warping. For a rectangular section CY is usually 
taken as 1.5.* 

* Many different definitions of a have been presented in the various papers on 
Timoshenko beams. Cowper(3) summarises some definitions for beams of various 
cross-sections. For example, he shows that a may be taken as (12+ 11v)/(10+ 10v) for 
rectangular cross-sections and (7 + 6~)/(6+ 6 ~ )  for circular cross-sections. Here we 
take a = 1.5 unless otherwise stated. 
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If we substitute for M and Q from (5.14) and (5.15) we can rewrite the 
virtual work equation (5.1 1) as 

5.2.6 A comparison of various beam approximations 
In order to compare the various beam approximations consider a simply 

supported beam of rectangular cross-section, flexural rigidity EI, Poisson's 
ratio V, depth t and length L which is subjected to a uniformly distributed 
loading q. The lateral deflection in the elastic range is given as 

when plane stress (PS) assumptions are adopted, 

4L4 3 x 2  

(ii) w=-([(t) 24EI 
- -  2 L +~]+-(~)'[2a(l+~)][~-(~)~]] (5.17b) 

when Timoshenko beam (TB) assumptions are adopted and 

"4 I [ (T)~- ! (L)~+~ 1 (5.17~) (iii) \v = 
24EII L 2 L  

when Euler-Bernoulli (EB) assumptions are adopted. 
Thus, for long slender beams in which (t/L) is small, EB theory is adequate 

If we take Cowper's value (3) of a = (12 + 1 1 v)/(10 + 10v) then the ratio of 
the second-order additional lateral deflections due to shear deformation 
obtained under TB and PS assumptions is (24 +22v)/(24 + 1 5 )  which varies 
from 1-00 to 1.1 1 as v varies from 0.0 to 0-5. Thus TB theory is an accurate 
theory for beams of all dimensions. 

5.3 Finite element idealisation for linear elastic Timoshenko beams 

5.3.1 Introduction 
The theoretical and programming aspects of the finite element analysis of 

linear elastic Timoshenko beams have been dealt with in detail in previous 
books by the authors(l9 5). Here we derive the stiffness matrix and con- 
sistent load vector for a linear element and set the scene for the analysis of 
elasto-plastic Timoshenko beams which will be discussed later. 

5.3.2 Displacement and strain representation 
In the Hughes element representation, the lateral displacement w is 

represented by the relationship 
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where wl@) and w2(e) are the nodal lateral displacements a t  local nodes 1 
and 2 of element e and the shape functions (shown in Fig. 5.2) are 

and 

in which xl@) and x2@) are the x-coordinates of local nodes 1 and 2, x@) 
is the x-coordinate of a point within the element and Ice) is the length of 
the element. 

Fig. 5.2 Beam element shape functions. 

Similarly the normal rotation 6(e) within element e is represented as 

where and B2(e1 are the normal rotations at local nodes 1 and 2 of 
element e. 

The curvature-displacement relationship can be expressed as 

1 62(e) 1 
where Bfce) is the curvature-displacement matrix. 
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The shear strain-displacement relationship is given as 

where Bs@) is the shear strain-displacement matrix. 

5.3.3 Stiffness matrix evaluation 
Given the element strain-displacement relationships outlined in Section 

5.3.2, Hughes has shown that using a virtual work approach the governing 
equations can be expressed as 

where the submatrices of Kf and Ks and subvectors off for element e can 
be written as 

The flexural element stiffness matrix can be evaluated using a 1-point 
Gauss-Legendre rule and takes the form 

If K*(e) is evaluated exactly using a 2-point Gauss-Legendre rule we obtain 



FINITE ELEMENTS IN PLASTICITY 

(el 

Unfortunately it has been shown that with this formulation, overstiff sol- 
utions are obtained. This phenomenon, known as locking, may be 'cured' 
by integrating Ka@)  with a 1-point Gauss-Legendre rule. If such a selectively 
integrated element is adopted we find that 

and the results obtained are excellent. 
The consistent nodal force vector is given as 

which, unlike the Euler-Berno'ulli cubic Hermitian element, only has 
lateral nodal point forces. 

For the nonlayered elasto-plastic Timoshenko beam finite element analysis, 
when the beam bending moment reaches the yield moment Mo, the whole 
element becomes plastic and acts as a plastic hinge. In such a situation the 
flexural rigidity EI is replaced by an elasto-plastic flexural rigidity (EI),, 
whereas the shear rigidity GK is assumed to be unchanged. 

5.3.4 Element stress resultants 
We can obtain expressions which enable us to calculate the bending 

moments and shear forces within each element using (5.14) and (5.15). The 
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bending moment, which is constant in each element e, is given as 

1 
Mle) = ( )  e )  p e  = ( )  , , 0, 

I ( e )  

- - - - 02(e)). (5.28) 

The shear force varies linearly over each element but we evaluate it at  

and assume it to be constant over the element. This is consistent with the 
practice of using selective integration in the evaluation of K @ ) .  The shear 
force is therefore given as r W P ~  

5.4 Elasto-plastic nonlayered Timoshenko beams 

5.4.1 The yield moment 
Consider a Timoshenko beam subjected to a bending moment. Timo- 

shenko's assumptions imply that the axial stress and strain vary linearly 
across the depth of the section. As the bending moment is increased the 
yield stress is attained at the top and bottom fibres and with a further increase 
the yield will spread from these outer fibres inwards until the two zones of 
yield meet. The cross-section is then said to be fully plastic. It should be 
noted that the interaction of ux and rzz has been ignored during yield. This 
is inexact, but experience shows that the effect is not of prime importance 
especially when thin beams are considered. 

The value of this ultimate moment in the fully plastic condition can be 
calculated in terms of the yield stress 00." Thus 

* Note that for beam and plate problems the uniaxial yield stress is designated by 
.uo and not ay. 
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and for a rectangular beam of breadth 6,  M, = oo(bt2/4). However, it should 
be noted that the assumption used in the finite element solution implies that 
the whole cross-section becomes plastic as soon as the bending moment 
reaches its yield value Mo. This means that, for the beam case shown in 
Fig. 5.3, the whole cross-section is assumed to be plastic when the bending 
moment of situation (c )  becomes equal to the bending moment of situ- 
ation (d)-in which case the extreme fibre stress in situation ( c )  exceeds the 
actual yield stress of the material. 

Fig. 5.3 Yielding of non-layered beam. 

5.4.2 Elasto-plastic bending 
As mentioned earlicr, elasto-plastic behaviour is characterised by an 

initial elastic material response with an additional plastic deformation when 
the bending moment \MI exceeds the yield moment Mo. The plastic defor- 
mation is irreversible on unloading and its onset is governed by a very 
simple yield criterion. Post-yield deformation usually occurs with a con- 
siderably reduced material stiffness. 

The moment-curvature relationship for a Timoshenko beam of elasto- 
plastic material is shown in Fig. 5.4. The beam initially deforms elastically 
with a flexural rigidity of EI until the ultimate bending moment is reached 
at which stage the whole beam ,cross-section becomes plastic. On increasing 
the load further, the material is assumed to exhibit linear strain-hardening 
characterised by the tangential flexural rigidity ( E I ) T .  

At some stage after initial yielding consider a further load application 
resulting in an incremental increase of bending moment accompanied by a 
change of curvature def. Assuming that the curvature can be separated into 
elastic and plastic components, so that 

we define as a strain hardening parameter 



ELASTO-PLASTIC TIMOSHENKO BEAM ANALYSIS 

Bending 

response 

Elastic +/ 
behaviour 
slope El 

Fig. 5.4 

-4 Curvature 
d ~ f  

Moment curvature relationship for a Timoshenko beam. 

This can be interpreted as the slope of the strain-hardening portion of the 
moment-curvature curve after the removal of the elastic curvature compo- 
nent. Thus 

It is therefore possible to rewritc (5.31) as 

dM LIM d M ( H '  I E I )  - dEf = - - 1  -- - (5.33) 
El  H '  EIH'  

and then the incremental moment-curvat ure relationship can be written in 
the form 

EIH'  
clM = dq. 

( E L -  H ' )  

Thus during yielding the incremental stress-strain resultant relationship 
is 
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The shear forcelshear strain relationship is always elastic whereas the 
moment-curvature relationship is elasto-plastic. After yielding the flexural 
rigidity EI is replaced by 

If the hardening parameter H' is equal to zero then the material behaviour 
is elasto-perfectly plastic and as mentioned in Section 3.5 for elasto-plastic 
axial bar elements this may lead to tangential stiffness matrices which are 
singular. This difficulty can also be avoided by use of the initial stiffness 
method in which the elastic element stiffnesses are employed at every stage 
of the computation thereby guaranteeing a positive definite assembled 
stiffness matrix. 

5.4.3 Solution of nonlinear equations 
Let us now generate the nonlinear equilibrium equations using the virtual 

expression (5.11). In order to do this we require the global rather than the 
element expressions for the lateral displacements, rotation, curvature and 
shear strain. At any point in the finite element mesh the lateral displacement 
and rotation can be obtained from the expression 

where the shape function matrix is 

N1, 0, Nz, 0, . . ., Nn, 0 
N = r 1 

and the vector of nodal displacements is 

where wi, 91 and Ni are the lateral displacement, rotation and global shape 
functions associated with node i. 

The curvature and shear stratn at any point within the entire finite element 
mesh is given as 

d0 dw 
-- = B ~ Q )  and -- 9 = Bscp 

dx dx 

where dN1 dN2 dNn 
, 0, --, . . ., 0 - 1  

dx dx dx 
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Virtual curvatures and shear strains are given as 

d ( W  d(6w) 
-- = B f 8 q  and ------ 68 = BsSp 

d x  d x  

respectively, where the vector of virtual nodal displacements is written as 

Thus the virtual work expression (5.1 1) can now be written as 

where 

Since (5.44) must be true for any set of virtual displacements 6 q  then we 
have 

or p - f  = 0. 

In fact this equation is identical to (5.22) when there is no plasticity. 
Unfortunately in elasto-plastic problems M is a nonlinear function and 

in general we can only predict the vector p  approximately. Thus (5.46) is 
nonlinear and since p is only approximately known than p  - f  will equal a 
residual value y ( p )  which we attempt to reduce to zero in our solution 
procedure. 

We evaluate contributions to p  element by element and assemble in the 
usual manner. The contribution from element e has the form 

*The second integral evaluation is equivalent to using a 1-point Gauss rule. 
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I DATA I 
I Input data defining geometry, loading and 

I boundary conditions, material properties, etc. 

I 
I 

INITAL 

Input data for current increment. 

INCREM 

Initialize accumulative arrays to zero. 
Update load vector. 

I 
NONAL 

Set indicator to identify type of solution algorithm. 

element stiffness \ 
matrix required? / 

I STIFFB I 
Calculate the element stiffness matrices 

and store on disc. 

Assemble global stiffness matrix (or take 
previous one) and global load vector and solve 
the resulting equations for unknowns. 

I 
I 

REFORB 

1 Calculate the residual force vector. 1 
8 I 

I 

1 CONUND 1' 
No 1 Has solution converged? I 

I Yes 

RESULT 

Output the results. 

Fig. 5.5 Overall structure of program TIMOSH. 
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Note that the appropriate value of bending moment M ( e )  is inserted in 
(5.47). 

Table 5.1 shows the complete sequence of nonlinear equation solving 
which is very similar to the one adopted for the axially-loaded bars in 
Chapter 3. 

1. Begin load incrcmcnt. 
Set f  = f  t-hf, iteration counter i = 0 and Wi = Af + W (that is, include 
equilibrium correction from previous increment). 

2. Evaluate the new tangential stiffness matrix KT if necessary. 
3. Solve Wi = KTApi 
4. Evaluate yl = p + Apt. 
5. For each element evaluate M(') and Q(". Check M(" and adjust its valuc accord- 

ingly to account for any plastic behaviour. Evaluate the elenicnt residual force 
vector [ ~ ( " ) ] ~ + l  = ~ ( ~ ) - f ( ' )  and asseniblc into the global residual forcc vcctor 
@+l. 

6. Check Api for convergence. 
7. If solution has converged set W = Wi-+ ' and go to step I ,  otherwise sct i = i A I 

and go to step 2. 

Table 5.1 Solution procedure for elasto-plastic nonlayered Timoshcnko beam 
analysis. 

5.4.4 Overall program structure of TIMOSH 
A modular approach is adopted for program TIMOSH. In fact the 

overall structure is identical to the structure in thc programs of Chapter 3. 
Figure 5.5 shows the overall structure of TIMOSH. Routines DATA, 
INITAL, INCREM, NONAL, ASSEM B, GREDUC, BAKSUB, 
CONUND, RESOLV and RESULT have already been described in Chap- 
ter 3. Thc only new routines are STIFFB, REFORB and, of course, the 
MASTER routine BEAM. 

5.4.5 New routines for nonlayered elasto-plastic Timoshenko beam analysis 
Master BEAM The master calling routine BEAM simply organises the 
calling of the main routines as described in Fig. 5.5. 

MASTER BEAM EPBM 
~*+***+t*i+~+i*i**i~*s****i**i**ii*ii*iiiii*i*iiiiii**********i********t~p~~ 

C EPBM 
C *** ELSTO-PLASTIC NONLAYERED TIMOSHENKO BEAM PROGRAM EPBM 
C EPBM 
C * * ~ * t i ~ f f + ~ ~ i ? * * i * i t * # ~ * i I * * 4 t S * * i i i * i * * * ~ i S i * i * i i i * * * * * J I * * i * * * * * * * * * * * * E p B M  

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, EPBM 
KRESL,NCHEK,TOLER,NAU;O,NSVAB,NDOFN,NINCS,NEVAB, EPBM 
NITER,NOUTP,FACTO EPBM 

CoMMON/UNIM2/PROPS(5,4 , COORD( 26 LNODS( 25,2) IFPRE (52) , EPBM 
FIXED(52) , T L O A D ( ~ ~ , ~ ~ , R L O A D ( ~ ~ , ~ ~  ,~LoAD(25,4), EPBM . MATNO(25) ,STRES(25,2) ,PLAST(25) ,xDISP(~~), EPBM 
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TDISP(26,2) ,TREAC(26 2) ,ASTIF(~~,~~) ,ASLOD(~~), . REACT(52) ,FRESV( 13521 ,pEF1~(52) ,ESTIF(4,4) 
CALL DATA 
CALL INITAL 
DO 30 IINCS= 1 , NINCS 
CALL INCLOD 
DO 10 IITER=l,NITER 
CALL NONAL 
IF(KRESL. EQ. 1 ) CALL STIFFB 
CALL ASSEMB 
IF(KRESL. EQ. 1 CALL GREDUC 
IF ( KRESL . EQ. 2 ) 'CALL RESOLV 
CALL BAKSUB 
CALL REFORB 
CALL CONUND 
IF(NCHEX.EQ.0) GO TO 20 
IF( IITER. EQ. 1 .AND. NOUTP. EQ. 1 CALL RESULT 
IF(N0UTP. EQ. 2) CALL RESULT 

10 CONTINUE 
WRITE(6,900) 

900 FORMAT ( 1 HO ,5X , 'SOLUTION NOT CONVERGED ' ) 
STOP 

20 CALL RESULT 
30 CONTINUE 

STOP 
END 

EPBM 13 
EPBM 14 
EPBM 15 
EPBM 16 
EPBM 17 
EPBM 18 
EPBM 19 
EPBM 20 
EPBM 21 
EPBM 22 
EPBM 23 
EPBM 24 
EPBM 25 
EPBM 26 
EPBM 27 
EPBM 28 
EPBM 29 
EPBM 30 
EPBM 31 
EPBM 32 
EPBM 33 
EPBM 34 
EPBM 35 
EPBM 36 
EPBM 37 
EPBM 38 

Subroutine STIFFB The purpose of this routine is to evaluate the element 
stiffness matrices and store them on disc prior to their use in the assembly 
and equation solving routines. 

SUBROUTINE STIFFB 
c****************************************************************** 
C 
C *** CALCULATES ELEMENT STIFFNESS MATRICES 
C 
~ * + i * * ~ ~ % i + * ~ t a + t t + * ~ * * * i ~ * * * i * ~ ~ * * f f * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~  

COMMON/UNIMl/NPOIN, NELEM, NBOON, NLOAD, NPROP, NNODE, IINCS, IITER, . KRESL,NCHEK,TOLER,NAU;O,NSVAB,NDOFN,NINCS,NEVAB, . NITER,NOUTP,FACTO 
COMMON/UNIMUPROPS(5,4) , COORD( 26 1, LNODS( 25,2) , IFPRE( 52) , 

FIXED(52) ,TLoAD(25,4) ,RLOAD(25 4) ,ELoAD(~~,~), 
MATNO(25) ,STRES(25,2) ,PLAST(~~~ ,xDISP(~~), 
TDISP(26.2) ,TREAC(26,2) ,ASTIF(52.52) ,ASLOD(~~), 
REACT(52) ,FRESV( 1352) ,PEFIX(52) ,ESTIF(4,4) 

REWIND 1 
DO 20 IELEM= 1 , NELEM 
LPROP=MATNO( IELEM) 
EIVAL=PROPS(LPROP, 1 ) 
SVALU=PROPS( LPROP, 2) 
HARDS=PROPS( LPROP, 4) 
NODE1 =LNODS( IELEM ,1) 
NODE2=LNODS( IELEM, 2) 
ELWG=ABS ( COORD ( -COORD ( NODE 1 ) ) 
IF(PLAST(IELEM).NE.O.O) EIVAL=EIVAL*(I.O-EIVAW(EIVAL+HARDS)) 
VALU 1 =o . 5"SVALU 
VALU2=SVALU/ELENG 
VALU3=EIVAWELENG 
VALU4=0.25*SVALU*ELENC 
ESTIF( 1,1) = VALU2 
ESTIF(1,2)= VALU1 

STFB 1 
*****STFB 2 

STFB 3 
STFB 4 
STFB 5 

,*****STFB 6 
STFB 7 
STFB 8 
m 9 
STFB 10 
STFB 11 
STFB 12 
STFB 13 
STFB 14 
STFB 15 
STFB 16 
STFB 17 
STFB 18 
STFB 19 
STFB 20 
STFB. 21 
STFB 22 
STFB 23 
STFB 24 
STFB 25 
STFB 26 
STFB 27 
STFB 28 
STFB 29 
STFB 30 
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ESTIF( JSTIF, ISTIF) ZESTIF( ISTIF, JSTIF) 
WRITE( 1 ESTIF 
CONTINUE 
RETURN 
END 

STFB 
STFB 
STFB 
STFB 

STFB 
STFB 
STFB 
STFB 
STFB 
STFB 
STFB 
STFB 
STFB 

STFB 15 Rewind disc ready for writing element stiffnesses. 
STFB 16-38 For each element evaluate the upper triangular portion of the 

element stiffness matrix Kce). Note that if plasticity has taken 
place the elastic EI is replaced by the elasto-plastic (E i )T .  

STFB 39-41 Obtain using symmetry the lower triangular portion of K @ ) .  
STFB 42 Write all element stiffness matrices on to disc. 

Subroutine REFORB This routine evaluates the equivalent nodal forces. 

SUBROUTINE REFORB RFRB 
C***********************************************************************~~ 
C RFRB 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFRB 
c RFRB 
~*~*~********+*+*******************~~*~***~*****************************RFRB 

COMMON/UNIM~/NPOIN.NEL~,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, RFRB 
KRESL,NCHEK,TOLER,NALCO,NSVAB,NDOFN,NINCS,NEVAB, RFRB 
NITER,NOUTP,FACTO RFRB 

COMMON/UNIM2/PROPS( 5.4) , COORD(26 1, LNODS(25,2) , IFPRE(~~) , RFRB 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25 4) ,ELoAD(25,4), RFRB 
MATNO(25) ,STRES(25,2) ,PLAST(~~~ ,WISP(52), RFRB 
TDISP(26.2) ,~REAc(26.2) ,As~IF(52,52) ,ASLOD(~~), RFRB 
REACT(52) ,FRESV( 1352) ,PEFIx(52) ,ESTIF(4,4) RFRB 

DO 10 IELEk1,NELEM RFRB 
W 10 IEVAB=l,NEVAB RFRB 

10 ELOAD( IELEM , IEVAB ) z0.0 RFRB 
DO 70 IELEM=1, NELEM RFRB 
LPROP=MATNO( IELEM) RFRB 
EIVAL=PROPS( LPROP ,1) RFRB 
SVALU=PROPS( LPROP ,2 RFRB 
YIELD=PROPS( LPROP, 3) RFRB 
HARDS=PROPS( LPROP ,4 ) RFRB 
NODE1 =LNODS( IELEM, 1 ) RFRB 
NODE2=LNODS( IELEM ,2 ) RFRB 
ELENG=ABS(COORD( NODE21 -COORD( NODE1 ) ) RFRB 
WNODI=XDISP(NODEI*NDOFN-1) RFRB 
WNOD2=XDISP( NODE2*NDOFN-1) RFRB 
THTAl =XDISP( NODE1 *NDOFN) RFRB 
THTAEXDISP( NODE2*NDOFN ) RFRB 
STRAN= ( THTAI -THTA2 )/ ELENG RFRB 
STLIN=STRAN*EIVAL RFRB 
STCUR=STRES( IELEM, 1 +STLIN RFRB 
PREYS=YIELD+HARDS*ABS( PLAST( IELEM) RFRB 
U(ABS(STRES(IELEM,l)) .GE.PREYS) GO TO 20 RFRB 
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ESCUR=ABS(STCUR)-PREYS 
IF(ESCUR.LE.O.0) GO TO 40 
RFACTzESCU WABS( STLIN ) 
GO TO 30 

20 IF(STRES(IELEM, 1) .GT.O.O.AND.STLIN.LE.O.O GO TO 40 
IF(STRES(IELEM,l) .LT.O.O.AND.STLIN.GE.O.O GO TO 40 
RFACT= 1 . 0 

30 REDUC=l .O-RFACT 
STRES( IELEM, 1 ) =STRES( IELEM, 1 ) +REDUC*STLIN+ 

RFACT*EIVAL*( 1 . 0-EIVAW ( EIVAL+HARDS) ) *STRAN 
PLAsT( IELEM) =PLAST( IELEM) +RFACT*STRAN*EIVAL/ ( EIVAL+HARDS) 
GO TO 50 

40 STRES( IELEM, 1 ) =STRES( IELEM,1) +STLIN 
50 STRES(IELEM,~) =STRES( IELEM,~)+( SVALU/ELENG)*(WNOD~-WNODI 

-0.5*SVALU* (THTA1 +THTA2) 
ELOAD(IELEM, 1 =LOAD( IELEM, 1 -STRES( IELEM, 2) 
ELOAD(IELEM,2) =ELOAD( IELEM,2) +STRES( IELEM, 1 ) 

-0 .S*ELENG*STRES( IELEM, 2) 
ELOAD( IELEM, 3 =ELOAD( IELEM, 3) +STRES( IELEM, 2) 
ELOAD(IELEM, 4) =ELoAD( IELEM, 4) -STIES( IELEM, 1 ) 

-0.5*ELENG*STRES( IELEM, 2) 
70 CONTINUE 

RETURN 
END 

RFRB 36 
RFRB 37 
RFRB 38 
RFRB 39 
RFRB 40 
RFRB 41 
RFRB 42 
RFRB 43 
RFRB 44 
RFRB 45 
RFRB 46 
RFRB 47 
RFRB 48 
RFRB 49 
RFRB 50 
RFRB 51 
RFRB 52 
RFRB 53 
RFRB 54 
RFRB 55 
RFRB 56 
RFRB 57 
RFRB 58 
RFRB 59 

RFRB 15-17 Zero space for storing p. 
RFRB 18-57 For each element evaluate p(e) and assemble into p. 

5.4.6 Examples of nonlayered elasto-plastic Timoshenko beam analysis 
Two numerical examples are considered. The first example, Example 5.1, 

involves the yielding of a rectangular simple beam under uniforlnly dis- 
tributed load. The beam material has the following properties: 

E = 210.0 kN/mm' 
v = 0.3 

00 = 0.25 kN/mm2 
H' = 0.0 

and the beam proportions are: 
h = 150 mm 
t = 300mm 
I = 3000 mm 

Typical input data is provided in Appendix IV. 
The problem, finite element idealisation employed and the results are 

illustrated in Fig. 5.6, which shows that the beam fails as soon as a plastic 
hinge forms at the centre of the beam. Note that the beam material is 
assumed to have no strain hardening. 

The second example considered, Example 5.2, is the clamped I beam 
shown in Fig. 5.7. The beam has the same material properties as those of 
Example 5.1 . 

The dimensions and finite element discretisation of the beam are given in 
Fig. 5.7; the load-displacement relationship at the bean1 centre is also pro- 
vided. It is seen that there is an initial loss of stiffness corresponding to the 
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Applied load intensity 
(KN/mm) 

Each point loaded by 68.85 KN 20 mm I *  

- I 

3000 mm Beam 
Finite element idealisation cross-section 

Fig. 5.7 Nonlayered elasto-plastic clamped beam. 
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yielding of the end sections followed by a further reduction when the central 
section becomes plastic resulting in a beam failure mechanism. 

5.5 Elasto-plastic layered Timoshenko beams 

5.5.1 Yielding of layered beams 
In the 'layered' approach the beam or the plate is subdivided into a chosen 

number of layers, as shown in Fig. 5.8. 

(a) Layered beam 

Fig. 5.8 Layered subdivision of beam and plate. 

In the finite element solution it is assumed that as soon as the stress in the 
middle of the outer layers reaches the yield value, then the outer layers 
become plastic, while the rest of the layers remain elastic, as shown in 
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Fig. 5.9 Yielding of layered beam. 

Fig. 5.9. Then, as plastification propagates, more layers become plastic, 
until the whole cross-section eventually becomes plastic. 

5.5.2 Formation of the stiffness matrix in the layered approach 
In the layered approach, we work in terms of stresses and not in terms of 

stress resultants as in the nonlayered approach. The state of stress at the 
middle of a layer is taken as representative for the entire layer. 

Contributions to the stress resultants M and Q are found for each layer 
separately by integrating over the layer thickness only. The bending moments 
and shear forces are then found from the contributions of all the layers of 
the beam element. 

The displacement field, stress-strain relationship and strain-displacement 
relationship are given in (5.1)-(5.10). 

The virtual work expression is given by (5.1 1) and when we evaluate the 
bending moment M and shear force Q we use a mid-ordinate rule as follows: 

where 

and 

and where 

and 

I - )  and = c A s  

b2 is the layer breadth 
11 is the layer thickness 
zl is the z-coordinate at the middle of the layer 
El is the Young's modulus of the layer material 
GI is the Shear modulus of the layer material. 
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However, if the stress at the middle surface of a layer reaches the uniaxial 
yield stress of the layer material, the whole layer is considered to be plastic 
and El is replaced by 

where H' is the uniaxial strain hardening parameter. As mentioned before, 
the shear force-shear strain relationship is always elastic. 

5.5.3 Solution of nonlinear equations 
Recall that the virtual work expression (5.11) has the form 

The mid-ordinate rule is again used to evaluate the first two integrals in 
(5.51) so that we obtain 

where 

and 

in which Bf, B, and 6p have been defined in (5.40), (5.41) and (5.43) respec- 
tively and in which 

M = 2 hl ax/ 11 tl (5.53) 
I 

and 
0 = 2: bl 7 . ~ ~ 1  11. (5.54) 

I 

Note that ( ~ ~ 1  and 7,,1 are the direct and shear stresses in the layer respec- 
tively. Since (5.52) is true for any arbitrary set of virtual displacements then 

pf fps-f = 0. (5.55) 

Contributions to pf and ps may be evaluated separately from each element 
so that 
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and 

The complete sequence of nonlinear equation solving is very similar to 
the one adopted in Table 5.1 for the nonlayered beam. Step 5 is now written 
as: 
5. For each element evaluate for each layer a ~ l ( ~ )  and T Z Z ~ @ ) .  Check 

and adjust its value accordingly to account for any plastic 
behaviour. Evaluate the stress resultants @ ( e )  and &(el and hence 
evaluate the residual force vector [ r y ( e ) ] i + l  = p(e) - f ( e ) .  Assemble 
[ r y ( e ) ] i + l  into the global residual force vector ryz+l. 

5.5.4 Overall structure of layered beam program TIMLAY 
The overall structure of the layered beam program is exactly the same as 

that of the nonlayered beam program given in Fig. 5.5. Subroutine STIFBL 
replaces STIFFB and subroutine RFORBL replaces REFORB. Subroutine 
STIFBL calls a further new routine called LAYER. The master routine 
BEML has minor changes as shown in the next section. 

5.5.5 Modified and new routines 
Master BEML This routine is almost identical to routine BEAM dcscribed 
earlier. 

MASTER BEML LYBM 
C*******#*****##********************************************************LyBM 
C LYBM 
C *** ELSTO-PLASTIC LAYERED TIMOSHENKO BEAM PROGRAM LYBM 
C LY BM 
C**S*~+~*+~~***+~+*~~**~**~*~**~~*~~************************************L~BM 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLAYRlNPROP,NNODE,IINCS,IITER, LY BM 
KRESL,NCHEK,TOLER,NALGO,NSVI1B,NDOFN,NINCS,NEVAB, LY BM 
NITER,NOUTP,FACTO LYBM 

COMMON/UNIM2/PROPS( 5,25 , COORD( 26), LNODS( 25,2 , IFPRE ( 52) , LYBM 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,EI.LMD(25,4), LYBM 
MATNO(25) ,STRES(25,2) ,PLAST(250) ,XDISP(52), LYBM 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), LY BM 
REACT(52) ,FRESV( 13521, PEFIX(52) ,ESTIF( 4,4), LYBM 
STRSL(250,2) LYBM 

CALL DATA LYBM 
CALL INITAL LYBM 
DO 30 IINCS=l,NINCS LY BM 
CALL INCLOD LY BM 
W 10 IITER=l,NITER LY BM 
CALL NONAL LY BM 
IF( KRESL. EQ. 1 CALL STIFBL LY BM 
CALL ASSEKB LY BM 
IF(KRESL. EQ. 1 ) CALL GREDUC LYBM 
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IF ( KRESL . EQ. 2 CALL RESOLV 
CALL BAKSUB 
CALL RFORBL 
CALL CONUND 
IF(NCHEK.EQ.0) GO TO 20 
IF( IITER. EQ. 1 .AND. NOUTP. EQ. 1 CALL RESULT 
IF( NOUTP. EQ. 2) CALL RESULT 

10 CONTINUE 
WRITE( 6,900 1 

900 FORMAT( 1 HO , 5X, ' SOLUTION NOT CONVERGED ' 
STOP 

20 CALL RESULT 
30 CONTINUE 

STOP 
END 

LYBM 25 
LYBM 26 
LYBM 27 
LYBM 28 
LYBM 29 
LYBM 30 
LYBM 31 
LYBM 32 
LYBM 33 
LYBM 34 
LYBM 35 
LYBM 36 
LYBM 37 
LYBM 38 
LYBM 39 

Subroutine STIFBL This routine calculates the element stiffness matrices 
for the elasto-plastic layered Timoshen ko beam element. 

C~ON/UNIMI/NPOIN,NELEM,NBOUN,NLAYR,NPROP,NNODE,IINCS,IITER, 
KRESL,NCHEK,TOLER,NALCO,NSVAB,NDOFN,NINCS,NEVAB, 
NITER,NOUTP,FACTO 

COMMON/UNIM;I/PROPS( 5,25 , COORD( 26 1 ,MODS( 25,2) , IFPRE( 52) , 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), 
MATNO(25) ,STRES(25,2) ,PLAST(250) ,xDIsP(~~), 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), 
REACT(52) ,FRESV( 1352) PEFIX(52) ,ESTIF(4,4), 
STRSL ( 250,2 

REWIND 1 
DO 20 IELEM=l,NELEM 
LPROP=MATNO( IELEM) 
CALL LAYER ( IELEM , EIVAL , SVALU 
HARDS=PROPS( LPROP, 4 ) 
NODE1 =LNODS( IELEM, 1 
NODE2=LNODS( IELEM ,2) 
ELENG=ABS( COORD ( NODE2 ) -COORD ( NODE 1 I ) 
VALU1=0.5*SVALU 
VALU2=SVALU/ELENG 
VALU3=EIVAL/ELENG 
VALU4=O .25*SVALU*ELENG 
ESTIF( 1,1) =VALU2 
ESTIF( 1,2) =VALU1 
ESTIF( 1 ,3 =-VALU2 
ESTIF(1,4)= VALUI 
ESTIF(2,2)= VALU3+VALU4 
ESTIF(2,3)= -VALU1 
ESTIF(2,4 = -VALU3+VALU4 
ESTIF( 3,3 = VALU2 
ESTIF(3,4)=-VALU1 
ESTIF(4,4)= VALU3+VALU4 
DO 10 ISTIF=1, 4 
DO 10 JSTIF=ISTIF,4 
ESTIF( JSTIF, ISTIF j =ESTIF( ISTIF, JSTIF) 
WRITE(1) ESTIF 
CONTINUE 
RETURN 
END 

STBL 7 
STBL 8 
SrBL 9 
STBL 10 
STBL 11 
STBL 12 
STBL 13 
STBL 14 
STBL 15 
STBL 16 
STBL 17 
STBL 18 
STBL 19 
STBL 20 
STBL 21 
STBL 22 
STBL 23 
STBL 24 
STBL 25 
STBL 26 
STBL 27 
STBL 28 
STBL 29 
STBL 30 
STBL 31 
STBL 32 
STBL 33 
STBL 34 
STBL 35 
STBL 36 
STBL 37 
STBL 38 
STBL 39 
STBL 40 
STBL 41 
STBL 42 
STBL 43 
STBL 44 
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STBL 19 Call routine LAYER which evaluates approximate values of EI 
and exact values of GA using a mid-ordinate rule. Note that cer- 
tain layers may be plastic. 

Subroutine RFORBL This routine evaluates p for the layered beam using 
the mid-ordinate rule. 

SUBROUTINE RFORBL RFRL 1 
............................................................................ 2 
C RFRL 3 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFRL 4 
C RFRL 5 
~ + % t * * * % ~ * % i * + + + * % + ~ % % * Y t % % % * * ~ * % * * * * * * * * * % * * * * * * * * * * ~ ~ * * * * ~ * * ~ * * % * * * * Y * ~  6 

COMMON/UNIMl/NPOIN, NELEM, NBOUN, NLAYR, NPROP, NNODE, IINCS, IITER, RFRL 7 
KRESL,NCHEK,TOLER,NALL;O.NSVAB,NDOFN,NINCS,NEVAB, RFRL 8 
NITER.NOUTP.FACT0 RFRL 9 

COMMON/UNIWPROPS~~, 25) ;cOORD( 26) , LNODS(25,2) , IFPRE( 52) , 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4 ,ELOAD(25,4), 
MATNO(25) ,STRES(25 $21, PLAST(250) ,XDISP(52), 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), 
REACT( 52) ,FRESV( 13521, PEFIX( 521, ESTIF(~ ,4), 
STRSL( 250,2 ) 

DIMENSION STRAN ( 2 
DO 15 IELEM=1, NELEM 
DO 10 IEVAB=1, NEVAB 

10 ELOAD(IELEM,IEVAB)=O.O 
DO 15 IDOFN=l,NDOFN 

15 STRES( IELEM , IDOFN ) =O . 0 
KLAY R=O 
DO 70 IELEM=I,NELEM 
LPROP=MATNO( IELEM) 
YOUNC=PROPS(LPROP, 1 ) 
SHEAR=PROPS( LPROP, 2) 
YIELD=PROPS( LPROP, 3) 
HARDS=PROPS( LPROP ,4 ) 
THKTO=PROPS( LPROP ,5 ) 
NODE1 =LNODS( IELEM, 1 
NODE2=LNODS( IELEM, 2) 
ELENC=ABS( COORD ( NODE2.I -COORD ( NODE 1 ) 
WNOD 1 =XDISP( NODE1 *NDOFN-1) 
WNOD2=XDISP( NODE2"NDOFN-1) 
THTA1 =XDISP( NODE1 *NDOFN 
THTA2=XDISP ( NODEZ*NDOFN ) 
STRAN( 1 I =(THTA1 -THTA2)/ELENG 
STRAN ( 2) = (WNOD2-WNOD 1 /ELENG 

-O.5* ( THTA 1 +THTA2 ) 
WIDL=-THKT0/2.0 
KOUNT=5 
DO 50 ILAYR=I,NLAYR 
KLAY R=KLAYR+1 
KOUNT=KOUNT+l 
BRDTH=PROPS( LPROP, KOUNT) 
KOUNT=KOUNT+I 
THICK=PROPS(LPROP, KOUNT) 
ZMIDL=ZMIDL+THICK/2.0 
STLIN=YOUNG*STRAN( 1 ) *ZMIDL 
STCUR=STRSL( KLAYR, 1 ) +STLIN 
PREYS=YIELD+HARDS*ABs( PLAST( KLAY R 
IF(AES(STRSL(KLAYR, 1 ) )  .CE.PREYS) GO TO 20 
ESCUR=ABS(STCUR)-PREYS 
IF(ESCUR.LE.O.0) GO TO 40 

RFRL 10 
RFRL 11 
RFRL 12 
RFRL 13 
RFRL 14 
RFRL 15 
RFRL 16 
RFRL 17 
RFRL 18 
RFRL 19 
RFRL 20 
RFRL 21 
RFRL 22 
RFRL 23 
RFRL 24 
RFRL 25 
RFRL 26 
RFRL 27 
RFRL 28 
RFRL 29 
RFRL 30 
RFRL 31 
RFRL 32 
RFRL 33 
RFRL 34 
RFRL 35 
RFRL 36 
RFRL 37 
RFRL 38 
RFRL 39 
RFRL 40 
RFRL 41 
RFRL 42 
RFRL 43 
RFRL 44 
RFRL 45 
RFRL 46 
RFRL 47 
RFRL 48 
RFRL 49 
RFRL 50 
RFRL 51 
RFRL 52 
RFRL 53 
RFRL 54 



ELASTO-PLASTIC TIMOSHENKO BEAM ANALYSIS 

RFACT=ESCUR/ ABS( STLIN ) 
GO TO 30 

STRSL(KLAYR ,I ) =STRSL(KLAYR, 1 ) +REDUC*STLIN+ 
RFACT*YOUNG*( 1 .O-YOUNG/ ( YOUNC+HARDS) ) *STRAN( 1 *ZMIDL 

PLAsT ( KLAY R ) =PLAST( KLAY R ) +RFACT*STRAN ( 1 ) *YOUNG/ ( YOUNG+HARDS ) . *ZMIDL 
GO TO 45 

40 STRSL(KLAYR, 1 ) =STRSL(KLAYR. 1 ) +STLIN 
45 STRSL(KLAYR,~)=STRSL(KLAYR,~)+STRAN(~)*SHEAR 

STRES( IELEM, 1 ) =STRES( IELEM, 1 ) +STRSL(KLAYR, 1 ) * 
BRDTH*THICK*ZMIDL 

STRES(IELEM,2) =STRES(IELEM,2)+STRSL(KLAYR,2)* 
BRDTH*THICK 

ZMIDL=ZMIDL+THICW 2.0 
50 CONTINUE 

ELOAD( IELEM, 1 ) =ELOAD( IELEM, 1 -STRES( IELEM, 2) 
ELOAD(IELEM,2)=ELOAD(IELEM,2)+STRES(IELEM, 1 ) 

-0 .S*ELENG*STRES( IELEM,2) 
ELOAD( IELEM, 3 ) =ELOAD( IELEM, 3 ) +STRES( IELEM ,2) 
ELOAD( IELEM, 4 ) =ELOAD( IELEM, 4) -STRES( IELEM, 1 ) 

-0.5*ELENG*STRES( IELEM,2) 
70' CONTINUE 

RETURN 
END 
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RFRL 55 
RFRL 56 
RFRL 57 
RFRL 58 
RFRL 59 
RFRL 60 
RFRL 61 
RFRL 62 
RFRL 63 
RFRL 64 
RFRL 65 
RFRL 66 
RFRL 67 
RFRL 68 
RFRL 69 
RFRL 70 
RFRL 71 
RFRL 72 
RFRL 73 
RFRL 74 
RFRL 75 
RFRL 76 
RFRL 77 
RFRL 78 
RFRL 79 
RFRL 80 
RFRL 81 
RFRL 82 

Subroutine LA YER This routine evaluates El and GA using the mid- 
ordinate rule. Note that ccrtain layers may be plastic and therefore have a 
modified E. 

SUBROUTINE LAYER( IELEM , EIVAL , SVALU ) LAY R 
C**ii+Pi**ii+***i****i*iII******i****************************************LAyR 
C LAY R 
C *** CALCULATES INTEGRATED VALUES FOR EI AND GA THROUGH DEPTH LAY R 
C LAY R 
~llt***++#*tt**i****i1(ii*********i*****f****i***************************LAyR 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLAYR,NPROP,NNODE,IINCS,IITER, LAY R 
KRESL,NCHEK,TOLER,NAU;O,NSVAB,NDOFN,NINCS,NEVAB, LAY R . NITER,NOUTP,FACTO LAYR 

COMMON/UNIM2/PROPS( 5,251, COORD( 26 1 ,LNODS( 25,2), IFPRE(521, LAY R 
FIXED(52) ,TLOAD(25,4) ,RLOAD(25,4) ,ELOAD(25,4), LAY R 
MATNO(25) ,STRES(25,2) ,PLAST(250) ,xDIsP(~~), . LAYR 
TDISP(26,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52), LAY R 
REACT(52) ,FRESV( 13521, PEFIX(521, ESTIF(4,4), LAY R 
STRSL(250,2) LAY R 

EIVAL=O . 0 LAY R 
SVALU=O. 0 LAY R 
LPROP=MATNO( IELEM LAY R 
KLAY R= ( IELEM-1) *NLAY R LAY R 
SHEAR=PROPS(LPROP, 2) LAY R 
HARDS=PROPS( LPROP, 4 ) LAY R 
THKTO=PROPS( LPROP ,5 ) LAY R 
ZMIDLz-THKT0/2.0 LAY R 
KOUNT=5 LAY R 
DO 10 ILAYR=l.NLAYR LAY R 
KLAY R=KLAY R+l LAY R 
YOUNG=PROPS(LPROP, 1 LAY R 
IF(PLAST(KLAYR) .NE.O.O) YOUNG=YOUNG*( 1 .O-YOUNG/(YOUNG+HARDS)) LAY R 
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KOUNT=KOUNT+l 
BRDTH=PROPS( LPROP , KOUNT) 
KOUNT=KOUNT+1 
THICK=PROPS( LPROP, KOUNT) 
WIDL=ZMIDL+THICK/2.0 
EIVAL=EIVAL+YOUNG*BRDTH*THICK*ZMU>L*ZMIDL 
SW=SVALU+SHEAR*BRDTHWICK 
ZMIDL=WIDL+THICK/2 .o 

1 0  CONTINUE 
RETURN 
END 

LAYR 29 
U Y R  30 
LAYR 3 1  
LAYR 32 
LAYR 33 
LAYR 34 
LAYR 35 
LAYR 36 
LAYR 37 
LAYR 38 
LAYR 39 

5.5.6 Examples of layered elasto-plastic Timoshenko beam analysis 
The third example considered in this chapter is the elasto-plastic analysis 

of the simple beam of Example 5.1. The layered solution is adopted in this 
case. A typical input data listing is provided in Appendix IV. 

The results for both nonlayered and layered solutions to this beam prob- 
lem are reproduced in Fig. 5.10. 

The last example to be considered here is the layered solution of the 
clamped I-beam given in Example 5.1. 

Again, both nonlayered and layered solution results are illustrated in 
Fig. 5.1 1. 

From Figs. 5.10 and 5.11 it is obvious that the layered solution is more 
realistic. Yielding takes place gradually through the layers, resulting in 
smoother curves representing the load-displacement relationship. 

5.6 Problems 

5.1 Derive the main expressions for the elasto-plastic analysis of Timo- 
shenko beams using elements with 

(i) Quadratic shape functions 
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(ii) Cubic shape functions 

For the quadratic and cubic elements use 2-point and 3-point Gauss- 
Legendre integration rulcs respectively. 

5.2 Develop a layered finite element Timoshenko beam program which 
allows for combined in-plane and bending behaviour of axially loaded 
beams or beams with cross-sections which are nonsymn-ietric about the 
neutral axis. Choose a displacement representation of the form 

in which uo('x) is the axial displacement at thc neutral axis. 
5.3 Use the concepts developed in Chapters 4 and 5 to develop the necessary 

relationships for layered and nonlayered elasto-viscoplastic Timoshenko 
beam analysis. 

5.4 (i) Evaluate the additional stiffness tcrms required to represent the 
Winkler foundation by a 2-node linear Timoshenko beam element. For 
a foundation modulus k note that the additional virtual work term 
associated with the elastic foundation is 

in which 6cv is the virtual lateral displacement. 
(ii) Modify programs TI MOSH and TIMLAY to allow for beams on 
elastic foundations. 
(iii) Use the program to analyse a uniformly loaded, simply supported 
beam on a Winkler foundation. The elastic closed form solution for 
an Euler-Bernoulli bean1 predicts lateral displacements 
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and bending moments 

Q) 

4qL2/(nn)3 nnx 

M =  2 sin -. (5.62) 
1 + kL4/(n4 7 4  EI) 

n=1,3.5, ... L 

Compare the elastic results from the modified programs with the above 
solution for various values of kL4/EI and t/L where EI is the flexural 
rigidity, t is the thickness and L is the length of the beam. 
(iv) For a given yield stress, 00, evaluate the ultimate load for various 
values of kL4/EI and t/L. 

5.5 (i) Consider the problem of finding the elastic deflections of a simply 
supported beam of length L, flexural rigidity EI, shear rigidity GA which 
is subjected to a uniform load q. The beam is elastically supported 
at mid-span by a single linear spring of stiffness K. Modify programs 
TIMOSH and TIMLAY to solve this problem. Check your finite 
element solutions by noting that the elastic Euler-Bernoulli solution 
is given as 

in which 

(ii) When the load carried by the elastic support reaches a value F the 
supported beam becomes perfectly plastic. How can this be catered for 
in the modified version of TIMOSH and TIM LAY ? 

5.6 Use program TIMLAY to examine the effects of choosing 
(i) different load incrementations 
(ii) various convergence tolerances 
(iii) various numbers of layers 
on the example given in Section 5.4 and also Problems 5.4 and 5.5. 
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Chapter 6 
Preliminary theory and standard 
subroutines for two-dimensional 

elasto-plastic applications 

6.1 Introduction 
In Part I1 of this text we extend the concepts and techniques developed in 

Part I for one-dimensional situations to now permit the solution of two- 
dimensional problems. In particular the following applications are presented: 

Chapter 7 discusses the solution of elasto-plastic problems conforming 
to either plane stress, plane strain or axially symmetric conditions. 
Chapter 8 deals with plane stress/strain and axisymmetric problems 
where the material exhibits a time-dependent elasto-viscoplastic 
behaviour. 
Chapter 9 covers elasto-plastic plate bending situations. 

The nonlinear algorithms developed in Chapter 2 will be employed in 
solution. These processes are general and the main modifications necessary 
are those appropriate to two-dimensional continuun~ theory or plate bending 
expressions which must now be used. For example the level of initial yielding 
will now be dependent on three or more independent stress components in 
place of the uniaxial case considered earlier. 

The development of an elasto-plastic stress analysis program requires all 
of the basic features of the corresponding elastic program. In particular the 
same basic element formulation is employed and a wide choice of element 
types is available. In this text we consider three different element types all 
based on an isoparametric formulation. The elements in\cluded are illustrated 
in Fig. 6.1 and are : 

The 4-node isoparametric quadrilateral element with linear displace- 
ment variation, Fig. 6.l(a). 
The &node Serendipity quadrilateral element with curved sides and a 
quadratic variation of the displacement field within the element, 
Fig. 6.l(b). 
The Pnode Lagrangian quadrilateral element which additionally has 
a central node, Fig. 6.1 (c). 

The basic theoretical expressions for these elements are provided in Section 
6.3. The use of these higher order elements leads to particularly efficient 
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- 

Local nodc 
number 4 7,  

Fig. 6.l(a) The 4-node isoparametric quadrilateral element and shape functions. 

elasto-plastic solution packages. In order to simplify matters as much as 
possible consideration is restricted to isotropic situations.* 

For all the plasticity applications presented in this text the classical 
incremental theory is employed with the full elasto-plastic material response 
being reproduced. Thus we are not concerned with limit state behaviour as 
predicted by rigid-plastic theories, etc. 

Consideration is liniited to small deformation situations where the strains 
can be assumed to be infinitesimal and Lagrangian and Eulerian geometric 
descriptions then coincide. 

Extension to orthotropic situations is feasible and has indeed been dealt with in 
Ref. I .  
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8-node Serendipity element %node Lagrangian element 

0 for comer nodes 

NY1= % ( I  +[&)(I +qqj)(Hi+qq.- I), i =  1, 3, 5 ,  7. 

0 for rnidside nodes 

Fig. 6.l(b) T h e  8-node Serendipity quadrilateral element. 
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0 for central node 
NJeI= ( I  - - q2),  

Fig. 6.l(c) The 9-node Lagrangian quadrilateral element. 
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Fig. 6.l(c) The %ode Lagrangian quadrilateral element (continued). 

For each application, a computer code is developed which allows the 
solution of practical problems. The computation times of elasto-plastic 
problems are relatively high with solution costs being typically ten times 
those of the corresponding linear elastic analysis. Of course a direct com- 
parison would depend on the extent of plastic yielding and how close to the 
ultimate load carrying capacity a solution is sought. In view of these rel- 
atively high computer costs it is essential that the codes developed should be 
as efficient as possible and that any numerical techniques which reduce the 
computational requirements be employed. Since the main aim of this text 
is to fulfil a teaching role some compromise must however be inevitably made 
between program clarity and efficiency. The applicability of the programs 
presented is demonstrated by the solution of practical examples. Detailed 
user instructions for all of the computer programs presented in Part I1 of 
this text are provided in Appendix 11. 

In Section 6.2 the basic expressions for the linear elastic finite element 
analysis of two-dimensional continua and plate bending problems are pre- 
sented. Section 6.3 outlines the principles of isoparametric element formu- 
lation with particular attention being given to the role of numerical 
integration. Standard subroutines pertaining to linear elastic finite element 
analysis are reviewed in Section 6.4 and some subroutines common to the 
three nonlinear applications considered in Chapters 7, 8 and 9 are presented 
in Section 6.5. 
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6.2 Virtual work expressions for various solid mechanics applications 

6.2.1 Introduction 
In this section we briefly describe various two-dimensional solid mechanics 

finite element applications in the elastic range only. Later in Chapters 7-9 
we demonstrate how elasto-plastic or elasto-viscoplastic behaviour may be 
included in these applications using finite elements. 

In Part I we presented some very simple finite element representations. By 
contrast, in Part I 1  we include numerically integrated isoparametric quadri- 
lateral elements. 

6.2.2 Virtual work expression 
If a body is subjected to a set of body forces b then by the Virtual Work 

Principle we can write 

where a is the vector of stresses, t is the vector of boundary tractions, Su is 
the vector of virtual displacements, SE is the vector of associated virtual 
strains, is the domain of interest, I't is that part of the boundary on which 
boundary tractions are prescribed and I;, is that part of the boundary on 
which displacements are prescribed. 

6.2.3 Plane stress 
Consider some typical plane stress problems shown in Fig. 6.2. ~ ~ ~ i c a l l ~  

a thin plate is subjected to  loads applied in the xy plane, that is the plane of 
the structure.(2' The thickness of the plate is assumed to be small compared 
with the plan dimensions in the xy plane. Stresses are assumed t o  be constant 
through the thickness of the plate and oz, TZ,  and T,, are ignored. Thus the 
displacements may now be expressed as 

where u and v are the in-plane displacements in the x and y directions 
respectively. 

The strain components may be listed in the vector 

where for small displacements the normal strains are given as 
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(a)  
Fig. 6.2 Typical plane stress problems. 

and the shear strain is given as 
i l l  i r  

Note that virtual displacen~ents arc listed in the vector 

Su = [Su, S l y ,  

and the associated virtual strains are 

The relevant stress-strain relationships may be written as 

where 

in which a, and a, are the normal stresses and T,, is the shear stress. 
For linear elastic situations the stress-strain or constitutive matrix is 

given as 
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in which E and v are the elastic modulus and Poisson's ratio respectively. 
The body forces b are written as 

b = [bz, b,lT, (6.8) 

in which b, and b, are the body forces per unit volume in the x and y direc- 
tions respectively. 

Boundary tractions t may be expressed as 

in which tZ and t, are the boundary tractions per unit length. 
An element of volume dQ is given as 

dQ = r dx dy, (6.10) 

where t is the plate thickness. 

6.2.4 Plane strain 
For plane strain problems the thickness dimension normal to  a certain 

plane (say the xy plane) is large compared with the typical dimensions in 
the xy plane and the body is subjected to loads in the xy plane only. For 
plane strain problems(2) it may be assumed that the displacements in the 
z direction are negligible and that the in-plane displacements u and v are 
independent of z. Figure 6.3 illustrates some typical plane strain problems. 

The displacements are then listed in the vector 

(b) 
Fig. 6.3 Typical plane strain problems. 
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in which u and v are the in-plane displacements in the x and y directions 
respectively. 

The in-plane strain components may be expressed as 

where E Z ,  cy and yzd ,  have the same meaning as the strain components in 
plane stress applications. 

Again the virtual displacements and associated virtual strains are respec- 
tively given as 

8u = [8u, 6v]T, (6.13) 
and 

a(su) a(8u) a(84 T 
(6.14) 

The stress-strain relationships may be written in the form 

where the stresses a = [az, a,, T ~ ~ ] ~  have the same meaning as the stresses 
in plane stress applications. 

For linear elastic materials the stress-strain or constitutive matrix D is 
given as 

Note that the stress normal to the xy plane is nonzero and may be evaluated 
as 

az = v(n, -i- av). (6.1 7) 

The body forces b and surface tractions t have the same meaning as those 
adopted for plane stress problems. 

A typical element of volume is given as 

d!J = dx dy. (6.18) 

under the assumption that a unit slice of the problem is being analysed. 

6.2.5 kdsymmetric solids 
For a three-dimensional solid which is symmetrical about its centreline 

.axis (which coincides with the z axis) and which is subjected to loads and 
boundary conditions that are symmetrical about this axis, then the behav- 
i o ~ r ( ~ '  is independent of the circumferential coordinate 0. Figure 6.4 shows 
a typical axisymmetric solid. 
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The displacements may here be expressed as 

u = [u, WIT, 

- 

Axisymme~ric 
loading 

where u and w are the displacements'in the r and -. directions respectively. 
The nonzero strains are given as 

Fig. 6.4 A typical axisymmetric solid. 

:. II 

1 
I 

I 

where for small displacements, the normal strains are given as 

Axisymmclric - loading 

A r. t, 

and the shear strain is 
i-u kll' 

Virtual displacements and associated virtual strains are respectively given as 

Su = [Su, SwIT, (6.21) 
and 

~ ( S U )  Su i-(Sw) i-(6u) 
- - 
I' i-z 2: 

(6.P) 

The stress-strain relationships are given as 

a =  D E ,  

&re a = [a,, og,  az, T ~ ~ ] T ,  in which or, o ,  and oz are the normal stresses 
in the r, 0 and 2 directions respectively and T,Z is the shear stress in the rz 
plane. 
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For linear elastic materials, the stress-strain matrix is given as 

r0-V) 0 O 1 

where br and b, are the body forceslunit volume in the r and z direction 
respectively. 

The boundary tractions may be expressed as 

f = [ t r ,  (,IT, (6.26) 

E 
D = 

(1 + ( 1  - 2  

where t ,  and t ,  are the boundary tractionslunit surface in the r and z 
directions. 

An elemental volume is given as 

dQ = 2rrr dr dz. (6.27) 

v (1-v) v 0 

0 v (1-v) 0 
(1 -2v) 

0 0 0 
2 

- - 

6.2.6 Mindlin plates 
In Mindlin plate theory it is possible to allow for transverse shear 

deformation. It  thus offers an alternative to classical Kirchhoff thin plate 
theory. The main assumptions are that: 

The bo.iy forces are given as  

6 = [br, &IT, 

(a) displacements are small compared with the plate thickness, 
(b) the stress normal to  the midsurface of the plate is negligible, 
(c) normals to the midsurface before deformation remain straight but not 

necessarily normal to  the midsurface after deformation. 

A typical Mindlin plate is shown in Fig. 6.5. Note that Mindlin plate 
theory is the two-dimensional equivalent of Timoshenko beam theory 
which was discussed in Chapter 5. 

The main displacement parameters can be expressed 

u = [M', OZ, By]*, (6.28) 

in which w is the lateral plate displacement normal to the xy plane and 
variables 0, and 0, are the normal rotations in the xz and yz planes. Here 
it should be noted that 

where 8, and 0, are the rotations of the normal in the xz and yz planes 



FINITE ELEMENTS IN PLASTICITY 

Q s 

Fig. 6.5 A typical Mindlin plate. 

respectively and are integrated measures of the transverse shear strain. In 
thin plate theory it is assumed that shear rotations 4, and 4y, defined below, 
are equal to zero. 

The strains, or more exactly the strain resultants, may be expressed as 

where the curvatures are given as 

00, 3Sy 
r z  = -- and r y  = --, 

2x 3.y 

and the twisting curvature is 

The shear strains are expressed as 

4 - - 0 ,  "" ax 1 and +,= 
Virtual displacements and rotations and associated virtual curvatures and 

shear strains are respectively given as 

Su = [Sw ,  SO,, 60y]T, (6.32) 
and 

a(se,) gss,) qse,) w e , )  

ax a 17 S ax 

2 ( W  2(* w )  T 
-- a,, --SO.] 

ax ay 
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The constitutive relationships are given in the form 

where 

in which Mx and M, are the direct bending moments and M,, is the twisting 
moment. The quantities Qx and Q, are the shear forces in the xz and yz 
planes. 

For an  isotropic elastic material 

0 

0 O 0 O l  0 

L o  O 0 o s ]  
in which for a plate of thickness t 

Et3 GI 
D = and S = - 

12(1 - v2) 1.2' 

where G is the shear modulus and the factor 1.2 is a shear correction term. 
Here we will not consider surface tractions. For a more complete dis- 

cussion of this and other aspects of Mindlin plate theory the reader is 
directed to the work of Hughes and his coworkers.@) We will only consider 
body forces of the form 

b = [q, 0, OIT, (6.36) 

where q is the lateral distributed loading per unit area. 
An elemental plate area is given as 

dQ = dx dy. (6.37) 

6.3 Isoparametric fmite element representation 

6.3.1 Governing equations 
I n  this section we present the discretised governing equations for the 

solid mechanics applications described in Sections 6.2.3-6.2.6. In a finite 
element representation, the displacements and strains and their virtual 
counterparts may be expressed by the relationships 
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where, for node i ,  di is the vector of nodal variables,' 6dt is the vector of 
virtual nodal variables, Ni = I  Nt is the matrix of global shape functionst 
and Bi is the global strain-displacement matrix. The total number of nodes 
in the whole mesh is n. 

If (6.38) and 6.39) are substituted into the virtual work expression (6.1) 
then we obtain 

and since (6.40) must be true for an arbitrary set of virtual displacements adg 
then we have for each node i an equation of the form 

If we use C(0) isoparametric finite element representations we can evaluate 
contributions to (6.41) separately from each element. 

The displacements can be expressed in the usual way as 

where, for local node i of element e, N @ )  = I N @ )  is the matrix of shape 
functions and the vector of variables is dtcel. There are r local nodes in each 
element e. 

Typical 4-, 8- and 9-node isoparametric element shape functions are 
shown and listed in Figs. 6.l(a), (b) and (c) respectively. 

Note that in an isoparametric representation we may use the following 
representation for the x and y coordinates within an element 

In Part I of this text the nodal variables were symbolised by cp; since for non- 
structural applications, such as nonlinear heat conduction, these parameters are not 
associated with displacements. In Parts II and LTI, for the continuum and plate situations 
considered, the nodal variables are always the displacement (and rotation) components 
and will now be symbolised by d. 

t Note that I is the p x p  identity matrix in which p=2 for the plane stress, plane 
strain and axisyrnrnetric applications and p = 3 for the Mindlin plate applications. 
NI is the global shape function for node i. 



PRELIMINARY THEORY A N D  STANDARD SUBROUTINES 171 

in which N+e) are the same shape functions used in the displacement rep- 
resentation. We may then evaluate the Jacobian matrix as 

The inverse of J(e1 is then evaluated using the expression 

The strain displacement relationships are expressed as 

in which B+el is the strain matrix. 
The discretised elemental volume (or area in the case of 

is given as 
dQ(e) = h(e)  det /(el d t  drl, 

J 

1 .  (6.45) 

J 

(6.46) 

Mindlin plates) 

(6.47) 

where h(el has been defined in Table 6.1 in which we also summarise the 
expressions for dP1 ,  Bt@) and dR(el for the four applications. 

The Cartesian shape function derivatives used in the strain-displacement 
matrices in Table 6.1 may be obtained using the chain rule of differentiation 

* For axisymmetric problems replace x and y by r and z respectively. 
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Application d P  Bt ( e )  d m $ )  

O 1 
Plane stress det J(e)d[dv 

Plane strain [ [:::; ] 

Axial symmetry [ :i:e\ ] 

Mindlin plate det J(e'd5dv 

y e  0 

Table 6.1 Nodal displacements, strain matrices and elemental volumes or areas 
for two-dimensional solid mechanics applications. 

2rrrce) det J(e)dEd? 
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and 

in which the terms atlax, +/ax, a ~ l a y  and atlay may be obtained from 
the inverse of the Jacobian matrix given in (6.45). 

Since we have a linear stress-strain relationship within each element of 
the form 

then the contribution from element e to the first term in (6.41) is given as 

where Kij(e) is the submatrix of element stiffness matrix K @ ) .  
The contribution from element e to  the second term in (6.41) is given as 

For the third term, the contribution from element e is 

where I?# is that part of rt which coincides with a boundary of element e. 
Of course for many elements there will be no contribution to fTt(e). 

6.3.2 Evaluation of the stiffness matrix and consistent load vector 
Let us now consider the evaluation of K. 
The integration is now performed in the natural coordinate system. Thus 

the submatrix of the stiffness matrix Kce) - -_  linking nodes .~. -- i - and -_ j has the form 

The elements of Kirce) are evaluated numerically. If the integrand in (6.53) 
is denoted as 

[&WIT D(e) B p  h(e) det J W  = ~ ~ ~ ( e ) ,  (6.54) 
then 

(6.55) 
-1 
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The numerical integration for a quadrilateral element with 11 xn sampling 
points leads to  

where Wp and Wq are weighting factors and itp, 3,) is a sampling position. 
The consistent nodal forces at  node i caused by body forces are 

The components of f n P  are evaluated numerically. If the integrand in 
(6.57) is denoted as 

g i ( e )  = [Ni(ej]T bW det J W ,  (6.58) 
then 

f~! . '  = J:: /"gi(d&&. (6.59) 
-1  

The numerical integration for a quadrilateral with n x n  sampling points 
leads to  

where Wp and Wq are weighting factors and (&,, & )  is a sampling position. 
The consistent nodal forces for boundary tractions have been dealt with 

in the authors' previous book(" and will be summarised in Section 6.4.5. 
The computer implementation of numerically integrated isoparametric 

elements has been described in detail in the text of Finite Element Program- 
r n i t ~ g . ( ~ )  Here we simply summarise in Fig. 6.6 the main steps involved in 
evaluating the element stiffness matrix. 

6.4 Standard subroutines for linear efastic finite element analvsis * 

Many of the subroutines required for elasto-plastic finite element analysis 
are common to the corresponding linear elastic application. In this section 
we present all the standard linear elastic subroutines required for later use 
in Chapters 7, 8 and 9. The function of each subroutine is explained and a 
FORTRAN listing is provided. The subroutines presented are drawn from 
Ref. 4 where a detailed description is provided. 

In order to make all subroutines modular in form we have adopted a 
type of dynamic dimensioning. Thus no COMMON blocks are used in the 
programs in Part 11. Dimensions are fixed in the main or master routine and 
all necessary information is transmitted between routines by the use of 
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SUBROUTINE STIF2D 

Dimensions and common blocks. 

r- Enter loop over all elements. 

Retrieve element geometry and material properties for the current 
element. 

Zero the stiffness array. 

Call a routine which sets up D(e' the constitutive matrix. 

4 Enter loops covering all integration points. 

Look up sampling position for the current integration point ((,, t,). 

Call shape function routine SFR2-given (&, 7,) this will return 
the shape functions Nice' and their derivatives dNt(e'/iit and 
2Ni(e) /&j  at the point ((,, f,). 

Call JACOB2-given Nice), i'N&e)/d[ and dNi(e'/dv at point (&,, 7,); 
this will return Cartesian shape function derivatives i-N+e'/dx and 
dNi(e'/i.L', the Jacobian matrix Jcel, its inverse [ J ( e l ] - l  and its 
determinant det J(e' and the x and y (or r and z) coordinates all 
at  the point (tp,  7,). 

Call strain matrix routine-given N,(P' ,  iiNi(eJ/ax and dNi(e)/2y at 
(&,, tq)  this will return the strain matrix Bi(el. 

Call a routine to evaluatc DcY1 B(C). 

Evaluate [B+e']D(e' Bj(el det JcP1 x integration weights and assemble 
them into the element stiffness array Ktj@'. 

Asscrnblc D(P1 BcP1 into a stress array for later evaluation of stresses 
from the nodal displacements. 

- End integration loops. 

Write stiffness matrix and stress matrix onto file for use in the 
solution routine. 

LEnd element loop. 

RETURN 
END 

Fig. 6.6 Evaluation of element stiffness matrices for numerically integrated 
isoparametric elements. 
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arguments (and also peripherals in certain instances). Apart from the modu- 
larity, this approach has the advantage that maximum dimensions can be 
updated in a very simple and straightforward manner. Only the DIMEN- 
SION statement in the main segment and some statements in a subroutine 
which sets the maximum dimensions sizes need modification. 

As an example, the relevant statements in a dynamically dimensioned 
program are listed below. 

PROGRAM FRED ( 1 
DIMENSION AMATX (200, 5), . . .* 

CALL DIMENS (MROWS, MCOLS) 

CALL DUMMY (AMATX, MROWS, MCOLS) 

STOP 
END 

SUBROUTINE DIMENS (MROWS, MCOLS) 
MROWS =200* 
MCOLS = 5* 
RETURN 
END 

SUBROUTINE DUMMY (AMATX, MROWS, MCOLS) 
DIMENSION AMATX (MROWS, MCOLS) 

RETURN 
END 

Note that AMATX ( ) has fixed dimensions in the main routine FRED. 
Subroutine DIMENS assigns values of 200 and 5 to the dimensions MROWS 
and MCOLS respective1y.t In subroutine DUMMY we transmit AMATX, 

t Alternatively a DATA statement can be used. 
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MROWS and MCOLS via the argument and therefore the DIMENSION 
statement in DUMMY refers to AMATX (MCOLS, MROWS) and not 
AMATX (200, 5). To update FRED for arrays AMATX with different 
maximum dimensions, we simply modify those statements indicated by an 
asterisk. 

Note also that the use of such arguments is not very expensive since only 
the address of the first term of an array is passed through the argument and 
not of all the terms in the array. 

More sophisticated versions of this approach can be implemented as 
illustrated in the book by Irons and Ahmad.(5) Such approaches undoubtedly 
save core storage but they do require careful housekeeping and checking 
procedures. 

In Part 111 we have generally dispensed with the use of maximum dimen- 
sion variables in the programs. Thus main segment FRED would then be 
written as  

PROGRAM FRED ( 1 
DIMENSION AMATX (200, S), . . . 

CALL DUMMY (AMATX) 

STOP 
END 

SUBROUTINE DUMMY (AMATX) 
DIMENSION AMATX (200, l)t 

RETURN 
END 

Although this approach uses nonstandard FORTRAN IV it does work on 
most machines and it has been adopted elsewhere in the literature.@) If 
more than one subroutine such as DUMMY uses AMATX then the relevant 
dimensions must be identical in all of these subroutines. 

The list of variables in the argument list will differ between linear and 
nonlinear applications. For each subroutine presented in this section the 
fohn of the argument list and the dimension statements will be those required 
for two-dimensional elasto-plastic applications. 

t Note that AMATX (number, 1) will also workprovided that number < 220, 
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6.4.1 Subroutine NODEXY for generating coordinate values for midside 
nodes 

For the quadratic 8- and 9-node elements described in Section 6.3 sub- 
routine NODEXY checks each midside node (a midside node being recog- 
nisable from the element topology cards). I f  both coordinates of a midside 
node are found to be zero, its coordinates are linearly interpolated between 
the two adjacent corner nodes. Subroutine NODEXY is common to plane 
stress/strain, axisymmetric and plate bending situations. 

SUBROUTINE NODEXY(COORD, LNODS, MELEM, MPOIN , NELEM, NNODE) NODE 1 
C * ~ * * * * * * ~ * * * * * ~ * ~ * * * ~ * * * * ~ * * * * ~ * * ~ * * * C * * * * * * * * * * *  NODE 2 
C NODE 3 
C**** T H I S  SUBROUTINE INTERPOLATES THE MlDE SIDE NODES OF STRAIGHT NODE 4 
C SIDES OF ELEMENTS AND THE CENTRAL NODE OF 9 NODED ELEMENTS NODE 5 
C NODE 6 

C 
C*** LOOP OVER EACH ELEMENT 
C 

DO 30 IELEM=l,NELEM 
C 
C*** UX)P OVER EACH ELEMENT - EDGE 

Ca** COMPUTE THE NODE NUMBER OF THE F I R S  NODE 

NODST=LNODS( IELEM, INODE) 
IGASH=INODE+Z 

COMPUTE THE NODE NUMBER OF THE LAST NODE 

NODFN:WODS( IELEM, ICASH) 
MIDPT=INODE+l 

COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE 

IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO 
INTERWLATE BY A STRAIGHT LINE 

20 CONTINUE 
GO TO 30 

NODE 8 
NODE 9 
NODE 1 0  
NODE 1 1  
NODE 1 2  
NODE 1 3  
NODE 14  
NODE 1 5  
NODE 1 6  
NODE 17 
NODE 1 8  
NODE 1 9  
NODE 20 
NODE 2 1  
NODE 22 
NODE 23 
NODE 2 4  
NODE 25 
NODE 26 
NODE 27 
NODE 28 
NODE 29 
NODE 30 
NODE 3 1  
'NODE 32 
NODE 33 
NODE 3 4  
NODE 35 
NODE 36 
NODE 37 
NODE 38 
NODE 39 
NODE 4 0  
NODE 4 1  
NODE 4 2  
NODE 4 3  
NODE 4 4  
NODE 4 5  
NODE 4 6  
NODE 4 7  
NODE 4 8  
'NODE 4 9  
NODE 50 
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LNOD1 =WODS(  I E L M ,  1 ) 
WOD3=LNODS( IELEM, 3)  
WOD5=LNODS( IELEM, 5) 

NODE 51 
NODE 52 
NODE 53 
NODE 54 
NODE 55 

40 COORD(WODE,KOUNT)=(C~~RD( W O D 1  ,KWM)+COORD(LNOD3,KMJNT) ~ o b E  56 . +COORn(WOD5,KOU~)+COORD(LNOD7,KWNT))/4.0 NODE 57 
KOUNT:KOuNT+l NODE 58 
IF(KOUNT.EQ.2) GO TO 4 0  NODE 59 

30 CONTINUE NODE 60 
RETURN NODE 6 1  
END NODE 62 

6.4.2 Subroutine GAUSSQ for generating Gaussian quadrature data 
The function of this subroutine is to set up the sampling point positions 

and weighting factors for numerical integration. The Gauss quadrature 
processes utilised in this text are restricted to either two or three point . 

integration rules." The role of numerical integration in the isoparametric 
formulation was discussed in detail in Section 6.3. The order of integration 
rule to  be employed is defined by NGAUS and the sampling point positions 
and weighting factors are stored respectively in arrays POSGP ( ) and 
WEIGP ( ). 

SUBROUTINE GAUSSQ(NGAUS.POSGP WEICP)  GAUS 1 
C n ~ n i n ~ t ~ ~ n ~ t ~ i ~ t ~ ~ a ~ ~ ~ u ~ ~ i ~ i ~ n i ~ i i t i ~ ~ * i * ~ ~ ~ n i ~ ~ ~ n t ~ i ~ ~ t ~ ~ ~ t ~ ~ ~ ~ ~ ~ * *  GAUS 2 
C GAUS 3 
C**** T H I S  SUBROUTINE S E T S  UP THE GAUSS-LEGENDRE INTEGRATION CONSTANTS GAUS 4 
C GAUS 5 
C ~ ~ C I I * I ~ I I I I ~ l t l l * * * i i f f X * * X X * X * X C I t t t * f f * f f f  CAUS 6 - 

DIMENSION P O S G P ( 4 )  , W E I G P ( 4 )  
IF(NGAUS.GT.2) GO TO 4 

6 KGAUS=NGAUS/2 
DO 8 I C A S H r l  ,KGAUS 
JGASH=NCAUS+l -1GASH 
W S C P (  JGASH):-POSCP( IGASH) 

W E I G P (  JCASH) =WEIGP( IGASH) 
8 CONTINUE 

RETURN 
END 

~ 

GAUS 7 
GAUS 8 
GAUS 9 
GAUS 1 0  
GAUS 1 1  
GAUS 1 2  
GAUS 13 
CAUS 1 4  
GAUS 1 5  
GAUS 1 6  
GAUS 1 7  
GAUS 1 8  
CAUS 12 
GAUS 20 
GAUS 2 1  
GAUS 22 
GAUS 23 

6.4.3 Subroutine SFR2 for evaluating the element shape functions 
The role of this subroutine is to evaluate the shape functions Nice'((, 7 )  

and their derivatives aN&e)/af, aNi(e]/+ at any sampling point fp, 71. within 
the element for each of the 4-, 8- or 9-noded elements described in Sec- 
tion 6.1. The shape functions for these elements are listed in Figs. 6.l(a), (b) 
and (c). The sampling point coordinates [ p ,  ~p are specified as EXISP and 
ETASP respectively. The evaluated shape functions for each node of an.  
element are stored in array SHAPE (INODE) and their derivatives ia: 

Except for selectively inkgrated &node Mindlin plates in which we modify 
GAUSSQ so that if NGAUS - 1 then POSGP(1) - 0.0 and WEIGP(1) = 2.0. 
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array DERIVLNODE, IDIME) where INODE ranges over the element 
nodes and IDIME over the coordinate dimensions. 

" 
C 3 
c**** T H I ~  SUBROUTINE EVALUATES SHAPE FUNCTIONS AND THEIR DERIVATIVES S F R ~  4 
C FOR LINEAR.OUADR4TIC LACRANGLAN AND S E R E N D I P I U  mQ 5 
C ISOPARAHETRIC 2-0 ELEMENTS S F R 2  - 6 

L. 

C*** SHAPE F U N m I O N S  FOR 4 NODED ELEMENT 
r 

C*** SHAPE FUNCTION DERIVATIVES S F R 2  22 
r SFR? 23 

D E R I V ( 2 , 4 ) = ( + 1 - S l ' O . 2 5  
RETURN 

S T = S * S * T  
SIT=S.T*T 
s T 2 = S V r * 2 . 0  

C 
C*** SHAPE FUNCTIONS FOR 8 NODED ELEMENT " 

SHAPE(7 ) :(-I . O-ST+SS+TT+SST-STT)/4.O 
S H A P E ( 8 ) = ( 1  .O-S-TT+SIT) /2 .0  

C*** M A P E  FUNCTION DERIVATIVES 
C 
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RETURN 
30 CONTINUE 

SS=s*s 

C 
C*** SHAPE FUNCTIONS FOR 9 NODED ELEMENT 
C 

I; 

C*** SHAPE FUNCTION DERIVATIVES 
C 

DERIV( 1, 1)=0.25"TCT9*(-1 .O&) 
DERIV( 1,2)=-STY9 
DERIV(1,3)=0.25*(1.O+S2)ITNT9 
DERIV(1,4)=0.5*(1 .O&)*(l .O-Tl') 
DERN(1,5)=0.25*(1 .O&)*T*Tl 
DERIV(1,6)=-ST'T1 
DERN(1,7)=0.25*(-1 .O+$~)*T*TI 
DERIV(1,8)=0.5*(-1 .O+S2)*(1 .O-'IT) 
DERIVC 1,9)=-S2*( 1 .O-TT) 
DERN(2,1)=0.25*(-1 .0+T21NS*S9 
DERIV(2,2)=0.5'(1 .O-SIN(-1 .0+T2) 
DERIV(2,3) -0. 25*S*Sl*( -1 .O+T2) 
DERIV(2,4)=4*Sl 
DERIV(2.5)=0.3*S*Sl*(l .O+T2) 

' DERIV(2,6)=0.5*(1 .O-SS)*(l .O+T2) 
DERIV(2,7)=0.3*S*S9*(1 .O+T2) 
DERIV(2,8)=-ST*Sg 
DERN(2,9)=-T2*(1 .O-S) 

20 CONTINUE 
RETURN 

6.4.4 Subroutine JACOB2 for evaluating the Jacobian matrix 
This subroutine calculates, for any sampling position, ( p ,  V P  (usually the 

Gauss point), the following quantities: 
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The Cartesian coordinates of the Gauss point which are stored in the 
array GPCOD ( ). 
The Jacobian matrix which is stored in XJACM ( ). For two- 
dimensional applications the Jacobian matrix is defined by (6.44). 
The determinant of the Jacobian matrix, DJACB. 
The inverse of the Jacobian matrix which is stored as XJACI ( ). 
The Cartesian derivatives a N P / a x ,  aNi(e'/ay (or aNi(el/ar, aNt(el/az) 
of the element shape functions. These quantities are defined in (6.48/ 

- 

C JACB 4 
Ca*** THIS SUBROUTINE EVALUATES THE JACOBIAN MATRIX AND THE CARTESIAN JACB 5 
C SHAPE FUNCTION DERIVATIVES JACB 6 
C JACB 7 
C S ~ I S I I I I . I ~ * ~ I I I ( L I ~ S ~ S ~ I ~ f I I ~ ~ I ~ ~ i ~ I ~ S S  JACB 8 

DIHENSION CARTD(~.~),DERIV(~,~),ELCOD~~,~) ,GPCOD(2,9) ,SHAPE(9), JACB 9 
XJACI(2,2) ,XJACM(2,2) JACB 10 

JACB 11 
CALCULATE COORDINATES OF SAMPLING POINT JACB 12 

JACB 13 
DO 2 IDIME=l,2 JACB 14 
GPCOD(DIME,KGASP)=O.O JACB 15 
DO 2 INODE:l,NNODE JACB 16 
CPCOD( DIME ,KGASP) :GPCOD( DIME ,KGASP)+ELCOD( DIME, INODE) JACB 17 
.*SHAPE( INODE) JACB 18 
2 CONTINUE 

C 
Ca** CREATE JACOBIAN MATRIX XJACM 
C 

DO 4 DIME=1,2 
DO 4 JDIHE:1,2 

~ACM(IDI~,JDIME)=XJACM(IDIHE,  JDIME)+DERIV(DIME,INODE)* . ELCOD( JDIME, INODE) 
4 CONTINUE 

C 
Ca** CALCULATE DETERMINANT AND INVERSE OF JACOBIAN MATRIX 
C 

DJACB=XJACM(l, l)*XJACM(2,2)-XJACM( 1,2)'XJACM(2,1) 
IFCDJACB) 6 6,8 

6 WRITE(~.~OO~ IELEM 
STOP 

8 CONTINUE 
XJACI( 1,1 )=XJACM(2,2)/DJACB 
XJACI(2.2)=XJACM(l. 1 )/DJACB 

CALCULATE CARTESIAN DERIVATIVES 

DO 10 DIME=1.2 

JACB 19 
JACB 20 
JACB 21 
JACB 22 
JACB 23 
JACB 24 
JACB 25 
JACB 26 

~ ...- -. 

JACB 27 
JACB 28 
JACB 29 
JACB 30 
JACB 31 
JACB 32 
JACB 33 
JACB 34 
JACB 35 
JACB 16 
JACB 7 
JACB 38 
JACB 39 
JACB 40 
JACB 41 
JACB 42 
SACB 43 
JACB 44 
JACB 45 

DO lo 1NODE:l ;NNODE JACB 4 i  
CARTD(IDIHE,INODE)=O.O JACB 47 
DO 10 JDIME:1,2 JACB 48 
CARTD( DIME, INODE)=CARTD( DIME, INODEI+XJACI( IDIME, JDIME)~ JACB 49 
.DERIV( JDIHE, INODE) JACB 50 
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10 CONTINUE JACB 51 .- . -~ - 

600 FORMAT(//, 36H PROCRAM HALTED IN SUBROOTINE JACOB2 ,/, 1 lX, JACB 52 
.22H ZERO OR NEGATIVE AREA,/,lOX,lhH ELEMENT NUMBER ,I5) JACB 53 
RGTURN JACB 54 
END JACB 55 

6.4.5 Subroutine LOADPS for evaluating the element nodal forces for 
plane and axisymmetric situations 

The role of this subroutine is to evaluate the consistent nodal forces for 
each element due to discrete point loads, gravity loading and distributed 
edge loading/unit length of element. This subroutine is described in detail in 
Chapter 7, Ref. 4. The types of loading to be considered are controlled by 
input parameters IPLOD, IGRAV, IEDGE. Nonzero values of these 
respective items indicate that point loads, gravity loading or distributed 
edge loading is to be considered. 

The consistent nodal loads are evaluated for each elcrnent separately and 
stored in the array RLOAD (IELEM, IEVAB) where IELEM indicates the 
element and IEVAB ranges over the degrees of freedom of the element. For 
equation solution by the frontal process it is not necessary to evaluate the 
total applied load acting at each node, with instead each element contribution 
being assembled directly into the global load vector during equation assembly 
and solution. 

Point loads 
If parameter IPLOD is nonzero the applied nodal loads are read as input. 

For each particular node the applied forces arc associated with any one of 
the elements attached to it; since each element contribution will be assembled 
before equation solution. Thus a search is performed over all elements until 
the node number is found in an elerncnt and the nodal loads are then associ- 
ated with the appropriate degrees of freedom of that element. 

Gravity loading 
For plane stress or plane strain problems the direction in which gravity 

acts need not coincide with either of the coordinate axes. Therefore the 
direction in which gravity acts must be defined as shown in Fig. 6.7 by 
specifying the angle 0 which the gravity axis makes with the positive y axis. 
The intensity of the loading is defined by specifying the gravitational acceler- 
ation, g, which acts. For axisymmetric problems, of course, the gravity axis 
must coincide with the z axis. 

The consistent nodal forces for node i of an element are then given by 

in which p is the material mass density. Integrated numerically this becomes 
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where t is the element thickness for plane problems. For axisymmetric appli- 
cations t is replaced by 2 w p ,  where rp is the radial distance to  the Gauss 
point under consideration. = + I 

.t 

u ; - -  0 = 0 for axisymmetric problems 
x, r 

'( Direction in which gravity acts 
Fig. 6.7 Specification of the gravity axis for two-dimensional problems. 

Distributed edge loading 
Any element edge can have a distributed loading per unit length in a 

normal and tangential direction prescribed to it as shown in Fig. 6.8. These 
distributed forces can vary (independently) along the edges. For the quad- 
ratic elements considered in this text, a quadratic loading distribution can, 
a t  best, be accommodated. The variation is defined by prescribing the normal 
and tangential values at  the three nodal points forming the element edge to 
which the loads are applied. For linear quadrilateral elements, only a linear 
distributed load variation can be accommodated. In order to be consistent 
with the order of listing of nodal connection numbers in the element topology 
definition, the three (or two) nodes forming the loaded edge must also be 
listed in an anticlockwise sequence with respect to the loaded element. The 
positive directions of normal and tangential loading are indicated in Fig: 6.8. 

The consistent nodal forces for node i can be shown to be(41 

where pn and pt are the normal and tangential distributed loads respectively. 
Integration is taken along the loaded element edge F @I, which is arbitrarily 
chosen to be defined by 7 =. - I ,  as shown in Fig. 6.8. 
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Fig. 6.8 Normal and tangential distributed loading on an element edge. 

For axisymmetric problems the edge loading is in fact a distributed 
loading/unit area, since integration is additionally made over the circum- 
ferential direction. 

If more than one type of loading acts on an element, the total nodal forces 
are accumulated and stored in array RLOAD. This total loading is then 
applied incrementally during elasto-plastic solution. 

SUBROUTINE LOADPS(COORD,LNODS,MATNO,MELEM,MMATS,MWIN,NELU.I, LDPS 1 
NEVAB,NGAUS,NNODE,NPOIN,NSTRE,NTYPE,POSGP, LDPS 2 
PROPS. RLOAD .WEIGP. NDOFN) LDPS 3 

-- ~ - 

C**** THIS SUBRWTINE EVALUATES THE CONSISTENT NODAL FORCES FOR EACH LDPS 7 
C ELEMENT LDPS 8 
C LDPS 9 
C********n*nn******nn*nn***n*n*n*******nn*nn**n*n*n*n***n*n***nnn**** LDps 10 

DIMENSION CARTD(2,9) ,COORD(MPOIN,2) ,DERIV(2,9) ,DCASH(2), LDPS 11 
DEIATX(4,4) ,ELCOD(2,9) ,LNODS(MELEM,9) ,MATNO(MELEM), LDPS 12 
NOPRS(4) ,PCASH(2) ,POINT(2) ,POSGP(4) ,PRESS(4,2), LDPS 13 
PROPS(MMATS,7) ,RLOAD(MELEM,18) ,SHAPE(9),STRAN(4), LDPS 14 
STRES(4),TITLE(12), LDPS 15 
WEICP(4) ,CPCOD(2,9) LDPS 16 

IWOPI=6.283185308 LDPS 17 
DO 10 IELEM=l,NELEM LDPS 18 
DO lO,IEVAB-l,NEVAB LDPS 19 

10 RLOAD(IELEM,IEVAB)=O.O LDPS 20 
READ( 5,901 TITLE LDPS 21 

901 FORMAT(12A6) LDPS 22 
WRITE(6,903) TITLE LDPS 23 

903 FORMAT( 1H0,12A6) LDPS 24 
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C 
C*** READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED 
C 

READ(5 919) IPLOD IGRAV IEDCE 
WRITE( b,9 i 3 ) 1 ~ ~ 0 6 ,  IGRAG, I ~ E  

919 FORMAT(315) 
C 
C*** READ NODAL POINT LOADS 
C 

IF(IPUID.EQ.0) GO TO 500 
20 READ(5,&) LODPT,(POINT(IDOFN),IDOFN:1,2) 

WRITE(6,931) LODPT,(POINT(DOFN),IDOFNrl,2) 
931 FORHAT(I5,2F10.3) 

C 
C*** ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT - 
L 

DO 30 IELEMz1,NELEM 
DO 30 INODE:l,NNODE 
NLOCA:IABS( MODS( IELEM, INODE) ) 

30 IF(UIDPT.EQ.NLOCA) GO TO 40 

NGASH= (INODE-1 *2+DOFN 
50 RLOAD( IELEM, NGASH) =POINT( IDOFN) 

IF(LODFT.LT.NPOIN) GO TO 20 
500 CONTINUE 

IF(ICRAV.EQ.O) GO TO 600 
C 
C*** GRAVITY LOADING SECTION 
C 

LDPS 25 
LDPS 26 
LDPS n 
LDPS 28 
LDPS 29 
LDPS 30 
LDPS 31 
LDPS 32 
LDPS 33 
LDPS 34 
LDps 35 
LDPS 36 
LDPS 37 
LDPS 38 
LDPS 39 
LDPS 40 
LDPS 41 
LDPS 42 
LDPS 43 
LDPS 44 
LDPS 45 
LDPS 46 
LDPS 47 
LDPS 48 
LDPS 49 
LDPS 50 
LDPS 51 
LDPS 52 
LDPS 53 - - 

C LDPS 54 
C*** READ GRAVITY ANGLE AND GRAVITATIONAL CONSTANT 
C 

LDPS 55 
LDPS 56 

REAM5 906) THETA,GRAW 
906 FORMAT(~FIO.~) LDPS 57 

LDPS 58 
WRITE(6,gll) THETA,GRAVY LDPS 59 

91 1 FORMAT( IHO, 1Bk GRAVITY ANGLE =,FlO.3,19H GRAVITY CONSTANT = ,F10.3)LDPS 60 
THETA=THETA/57.295779514 LDPS 61 

LOOP OVER EAZH ELEMENT 

DO 90 IELEMz1,NELEM 

SET UP PRELIMINARY CONSTANTS 

LPROP:E(ATNO( IELEM) 
THICK=PROPS(LPROP. 7 )  

~ ,-. 
DENSE=PROPS(LPROP, 4) 
IF(DENSE.EQ.O.0) GO TO 90 
GXCOM=DENSE*GRAVY*SIN( THETA) 
GICOM:-DENSE%RAVY*COS(THETA) 

COMPUTE COORDINATES OF THE ELEMENT NODAL POINTS 

LDPS 62 
LDPS 63 
LDPS 64 
LDPS 65 
LDPS 66 
LDPS 67 
LDPS 68 
LDPS 69 
LDPS 70 
LDPS 71 
LDPS 72 
LDPS 73 
LDPS 74 
LDPS 75 
LDPS 76 
LDPS 77 

DO 60 1NODE:l , NNODE LDPS 78 
WODE=IABS(LNODS( IELEM, INODE) LDPS 79 
W 60 IDIME=1,2 LDPS 80 

60 ELCOD( DIME, INODE) =COORD(LNODE, DIME) LDPS 81 
C LDPS 82 
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION LDPS 83 
C LDPS 84 

KGASP:O LDPS 85 
DO 80 IGAUSz1, NGAUS LDPS 86 
DO 80 JGAUS:l,ffiAUS . LDPS 87 
U[ISP=POSGP(IGAUS) LDPS 88 
ETASP=POSGP( JGAUS ) LDPS 89 
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C 
Car* COMPUTE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS AND ELEMENTAL 
C VOLUME 
C 

CALL SFKXDERIV, ETASP,EXISP, NNODE, SHAPE) 
KGASP=KGASP+l 
CALL JACOB2(CARTD,DERIV DJACB,ELCOD,GPCOD,IELEM,KGASP, 

NNODE,SHAPE) 
DVOLU=DJACBWEIGP(IGAUS).WEIGP(JGAUS) 

C 
Cfff CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODAL POINTS 
C 

W 70 INODEs1,NNODE 

90 CONTINUE 
600 CONTINUE 

IF(IEDGE.EQ.0) GO TO 700 
C 
C*** DISTRIBUTED EDGE LOADS SECTION 
C 

WRITE(6.912) NEDCE 
912 FoRMAT(~Ho,~x,~~HNo. OF LOADED EDGES =,I51 

WRITE(6,915) 
915 FORMAT(lH0,5X,38HLIST OF LOADED EDGES AND APPLIED LOADS) 

NODEG-3 

Crf* LOOP OVER EACH LOADED EKE 
C 

W 160 IEDGE.1 ,NUX;E 
C 
C4** READ DATA LOCATING THE LOADED EDGE AND APPLIED LOAD 
C 

READ(5,902) NEASS, (NOPRS(IODEG), IODEGzl, NODEG) 
902 FORHAT(415) 

WRITE(6,913) NEASS, (NOPRS(IODEG), IODEG-1, NODEG) 
913 FORMAT(I10,5X,315) 

W ( 5  914) ((PRESS(IODEG, IDOFN) ,IDOFN:1,2) ,IODEG:l ,NODEG) 
WRITE(6,914) ((PRESS(IODEG,IDOFN),IDOFNI~,~),IODEG=~,NODEG) 

914 FORHAT(6F10.3) 
ETASP=-1 .O 

C 
c*** CALCULATE THE COORDINATES OF THE NODES OF THE ELEMENT EDGE 
C 

DO 100 1~1t&1,2 
100 ELCOD(IDIME, IoDEG) =COORD( LNODE, IDIME) 

C 
Cfff ENTER UXlP FOR LINEAR NUMERICAL INTEGRATION 

DO 150 ICAUS=l.NCAUS 
EXISP=POSCP( IG~S) 

C 
CfSf EVALUATE THE W E  FUNCTIONS AT THE SAMPLING POINTS 
C 

LDPS 90 
LDPS 91 
LDPS 92 
LDPS 93 
LDPS 94 
LDPS 95 
LDPS 96 
LDPS 97 
LDPS 98 
LDps 99 
LDPS 100 
LDPS 101 
LDPS 102 
LDPS 103 
LDPS 104 
LDPS 105 
LDPS 106 
LDPS 107 
LDPS 108 
LDPS 109 
LDPS 110 
UPS 111 
LDPS 112 
LDPS 113 
LDPS 114 
LDPS 115 
LDPS 116 
LDPS 117 
LDPS 118 
LDPS 119 
LDPS 120 
LDPS 121 
LDPS 122 
LDPS 123 
LDPS 124 
LDPS 125 
LDPS 126 
LDPS 127 
LDPS 128 
LDPS 129 
LDPS 130 
LDPS 131 
LDPS 132 
LDPS 133 
LDPS 134 
LDPS 135 
LDPS 136 
LDPS 137 
u)PS 138 
LDPS 139 
LDPS 140 
LDPS 141 
LDPS 142 
LDPS 143 
LDPS 144 
LDPS 145 
LDPS 146 
LDPS 147 
LDPS 148 
LDPS 149 
LDPS 150 
LDPS 151 
LDPS 152 
LDPS 153 
LDPS 154 
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CALL SFR,?(DERIV,ETASP,EXISP,NNODE,SHAPE) 
C 
C*** CALCULATE COMPONENTS OF THE EQUIVALENT NODAL LOADS 

FGASH(IDOFN~ =P~A.~H( JDOFN)+PRESS( IODEG, IDOFN) *SHAPE( IODEG) 
110 DGASH(ID0FN) =DGASH(IDOFN)+ELCOD( IDOFN, IODEG)*DERIV( 1, IODEG) 

RADUS=O .O 
W 125 IODEG=l ,NODEG 

125 RADUS=RADUS+2HAPE( IODEG) *ELCOD( 1 . IODEG) 
DVCLU=DVOLU'TWOPI*RADUS 

115 CONTINUE 
C 
C*** ASSOCIATE THE EWSVALENT NODAL EDGE LOADS WITH AN ELEMENT 
" 

NCASH= (KNODE-1 *NWFN+I 
MCASH: (KNODE- 1 ) *NDOFN+2 
IF(KNODE.GT. NCODE) NGASH=l 
IFCKNODE. GT. NCODE) MCASH=2 
RLOADLD(NEASS,NGASH)=RLOAD(NWIS:, NGASH)+SHAPE(KOUNT)*PXCOM*DVOLU 

140 RLOAD(NEASS,MGASH) =RLOAD( NEASS, MGASH)+SHAPE(KWNT) *PYCM.(*DVOLU 
150 CONTINUE 
160 CONTINUE 
700 CONTINUE 

LDPS 155 
LDPS 156 
LDPS 157 
LDPS 158 
UPS 159 
LDPS 160 
LDPS 161 

LDPS 163 
LDPS 164 
LDPS 165 
LDPS 166 
LDPS 167 
LDPS 168 
LDPS 169 
LDPS 170 
LDPS 171 
LDPS 172 
LDPS 173 
LDPS 174 
LDPS 175 
LDPS 176 
LDPS 177 
LDPS 178 
LDPS 179 
LDPS 180 
LDPS 181 
LDPS 182 
LDPS 183 
LDPS 184 
LDPS 185 
LDPS 186 
LDPS 187 
LDPS 188 
LDPS 189 
LDPS 190 
LDPS 191 
LDPS 192 

WRITE(6 907) LDPS 193 
907 FORMAT( !HO,~X, 3 6 ~  TOTAL NODAL FORCES FOR EACH ELEMENT) LDPS 194 

W 290 IELEMzl, NELEM LDPS 195 
290 WRITE(6,905) IELEM, (LOAD( IELEM, IEVAB) , IEVAk1, NEVAB) LDPS 196 
905 FORMAT(lX,I4,5X,8E12.4/(1OX,8E12.4)) LDPS 197 

RETURN LDPS 198 
END LDPS 199 

6.4.6 Subroutine LOADPB for evaluating the element nodal forces for 
plate bending applications 

For plate bending applications two forms of loading will be considered. 
Firstly load components corresponding to the permissible generalised forces 
may be prescribed at the nodal points. Thus with respect to Fig. 6.9, a load 
in the z direction and couples acting in both the xz and yz planes may be 
input at each nodal point. Secondly a uniformly distributed load acting 
normal to the plate (i.e. in the z direction) may be applied. As in Section 6.4.5 
such a loading must be converted into equivalent nodal forces before 
equation solution takes place. The equivalent nodal forces for node i take 
the form(4' 
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where q is the distributed load intensity and integration is taken over the 
element area. The structure of the subroutine is similar to that of subroutine 
LOADPS described in Section 6.4.5. 

Fig. 6.9 Applied nodal and distributed forces for plate applications 

SUBROUTINE LOADPB ( COORD, LNODS, MATNO, MELD4 , MMATS, MPOIN , LOAD 1 
NELM,NEVAB.ffiAUS.NNODE,NPDIN,PROPS, LOAD 2 

DO 10 IEVAB=l;NEVAB 
10 RLOAD(IELEM,IEVAB)rO.O 

%%)(5,901) TITLE 
901 FORMAT( 12661 

C 
Cm4 READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED 
C - 

RW 5,919)IPLOD 
WRITE 1 6.919)IPLOD 

. . 
C 
C4** REMI NODAL POIW LOADS 
C 

LOAD 15 
LOAD 16 
LOAD 17 
UlAD 18 
LOAD 19 
LOAD 20 
LOAD 21 
LOAD 22 
LOAD 23 

LOAD 26 
LOAD 27 
LOAD 28 -~ 
LOAD 29 
LOAD 30 
LOAD 31 
LOAD 32 
LOAD 33 
LOAD 34 
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C*** ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT 
C 

DO 30 IELEM-1, NELEM 
DO 30 INODEI,NNODE 
NLOCAIIABS( MODS( IELM, INODE) 

30 IF(LODPT.EQ.NLOCA) GO M 40 

IF(LODPT.LT:NPOIN) GO TO 20 
500 CONTINUE 

C 
C*** LOOP OVER EACH ELEMENT 
C 

DO 220 IELEM=l, NELEM 

C 
C*** EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

DO 140 1NODE:l NNODE 
LNODE=LNODS( I E ~ ,  INODE) 
LNODE=IABS( LNODE) 
DO 140 IDIME:1,2 
ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) 

140 CONTINUE 
KGASP=O 
CALL GAUSSQ (NGAUS, POSGP,WEIGP) 

C 
C*** ENTER LOOPS FOR NUMERICAL INTEGRATION 
C 

DO 200 IGAUS: 1 . NGAUS 
, -- - 

ETASP:PO&P( JCAUS) 
KGASPrKGASP+l 

C 
c*** EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING 
C POINTS AM) ELEMENTAL AREA 
C 

CALL SFR2 (DERIV. ETASP, EXISP, NNODE. SHAPE) 
CALL JACOBZ (CARTD;DERIV,DJACB. ELCOD;CPCOD,IELEM, 

KGASP,NNODE,SHAPEI 

.. DAREA=DJACB*WEIGP( IGAUS) *WEEP( JCAUS) 
L 

C*** CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODALPOINK 
C 

DO 180 INODEzl NNODE 
NPOSN:( INODE-1 *3+1 
RLOAD(IELEM,NWSN)=RLOAD( IELEM, NPOSN)+ . SHAPE(INODE)*UDLOD*DAREA 

180 CONTINUE 
200 CONTINUE 
220 CONTINUE 

WRITE( 6,907 
907 FORMAT(lH0,5X,36H TOTAL NODAL FORCES FOR EACH ELEMENT) 

DO 290 IELEMz1,NELEM 
290 WRITE(6,905) IELEM, ( RLOAD( IELEM, IEVAB) , IEVAB=l, NEVAB) 
905 FORMAT(lX,I4,5X,8E12.4/(10X,8E12.4)) 

RETURN 
END 

LOAD 35 
LOAD 36 
LOAD n 
LOAD 38 
LOAD ,39 
LOAD 40 
LOAD 41 
LOAD 42 
LOAD 43 
LOAD 44 
LOAD 45 
LOAD 46 
LOAD 47 
LOAD 48 
LOAD 49 
LOAD 50 
WAD 51 
LOAD 52 
LOAD 53 
LOAD 54 
LOAD 55 
LOAD 56 
LOAD 57 
LOAD 58 
LOAD 59 
LOAD 60 
UlAD 61 

LOAD 63 
LOAD 64 - 

LOAD 65 
LOAD 66 
LOAD 67 
LOAD 68 
LOAD 69 
UlAD 70 
LOAD 71 
LOAD 72 
UlAD 73 
LOAD 74 
LOAD 75 

LOAD 77 
LOAD 78 
LOAD 79 
UIAD 80 
LOAD 81 
U1AD 82 
LOAD 83 
LOAD 84 
LOAD 85 
LOAD 86 
toPs 87 
UlAD 88 
LOAD 89 
LOAD 90 
UlAD 91 
UlAD 92 
LoAD 93 
LOAD 94 
L W  95 
LOAD 96 
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6.4.7 Subroutine BMATPS for evaluating the strain matrix B for plane 
and axisymmetric situations 

The function of this subroutine is to evaluate the strain matrix B at  any 
position within an element. The relevant expressions are given in Table 6.1. 
The B matrix is stored in array BMATX ( ). 

SUBROUTINE BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NI'YPE,KCASP) BMPS 1 
Caaa*a*aaaa*a**aa***aaaaaaaaaaa**aa**aaaa*aaa*a*aa*aaaaaaaaaaaaaa*a*a* BMps 2 
L 

C**aa THIS SUBROUTINE EVALUATES THE STRAIN-DISPLACEMENT MATRIX 
C 
C*aaaa***a*aaaa**a*a*aaa***ia*a***aaa*aaa**a*a**aa**aa**aa**a*a**aa**a 

DIMENSION BMATX(4,18),CARTD(2,g),SHAPE(g),GPCOD(2,9) 
NGASHzO 

10 CONTINUE 
RETURN 
END 

BMPS 3 
BMPS 4 
BMPS 5 
BMPS 6 
BMPS 7 
BMPS 8 
BMPS 9 
BMPS 10 
BMPS 11 
BMPS 12 
BMPS 13 
BMPS 14 
BMPS 15 
BMPS 16 
BMPS 17 
BMPS 18 
BMPS 19 
BMPS 20 
BMPS 21 
BMPS 22 
BMPS 23 

6.4.8 Subroutine BMATPB for evaluating the strain matrix B for plate 
bending problems 

This subroutine evaluates the strain matrix B within any point of an 
element for plate bending applications according to Table 6.1. The B matrix 
is partitioned into plane, BPLAN, flexural, BFLEX, and shear, BSHER, 
contributions. 

C*** EVALUATES STRAIN-DISPLACEMENT MATRIX FOR BMAT 5 
C*** MINDLIN PLATE 
C 

BMAT 6 
BMAT 7 

DIMENSION BFLEX(3,3) ,BPLAN(3 2) ,BSHER(2,3), 
CARTD(2.9)   SHAPE(^^ 

DNKDY=CARTD(~;KNODE) 
Can* FORM BPLAN 

IF(IFPLA.EQ.0) GO TO 10 
DO 1 IROHS=1,3 
DO 1 JCOLS=1,2 

1 BPLAN(IROWS,JCOLS)=O.O 
BPLAN( 1,l ):DNKDX 
BPLAN(2,2)=DNKDY 
BPLAN(3,l) =DNKDY 
BPLAN(3,2)=DNKDX 

BMAT 9 
BMAT 10 
BMAT 11 
BMAT 12 
BMAT 13 - 
BMAT 14 
BMAT 15 
BMAT 16 
BMAT 17 
BMT 18 
BMAT 19 
BMAT 20 
BMAT 21 
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C*** FORM BFLEX 
10 IF(IFFLE.EQ.O) GO TO 20 

BMAT 22 
BMAT 23 

BFLEX(~,~):-DNKDX 
C*** FORM BSHER 

END 

BMAT 24 
BMAT 25 
BMAT % 
BMAT n 
BMAT 28 
BMAT 29 
BMAT 30 
BMAT 31 - ~- 

BMAT 32 
BMAT 33 
BMAT 34 
BMAT 35 
BMAT 36 
BMAT 37 
BMAT 38 
BMAT 39 
BMAT 40 
BMAT 41 

6.4.9 Subroutine MODPS for evaluating the D matrix for plane and 
axisymmetric situations 

This subroutine simply evaluates the elasticity matrix D for either plane 
stress, plane strain or axisymmetric situations according to (6.7), (6.16) or 
(6.24) respectively. The D matrix is stored in the array DMATX ( ). 

SUBROUTINE MODPS(DMATX,LPROP,HMATS, NTYPE, PROPS) MDPS 1 
~r************************a*a***************************************** MDps 2 - 
C MDPS 3 
C**** THIS SUBROUTINE EVALUATES THE D-MATRIX MDPS 4 
C MDPS 5 
C**********~~~*Z~~*C*****~X*C***************************************** MDPS 6 

DIMENSION DMATX(4,4),PROPS(MMATS,7) MDPS 7 
YCUNG=PROPS(LPROP, 1 ) MDPS 8 
WISS:PROPS( LPROP, 2) MDPS 9 
DO 10 ISTRlrl,4 MDPS 10 
DO 10 JSTRl=l,4 MDPS 11 

10 DMATX(ISTR1 ,JSTR1)=0.0 MDPS 12 
IF(NTYPE.NE.I) GO TO 4 MDPS 13 

C MDPS 14 
C*** D MATRIX FOR PLANE STRESS CASE MDPS 15 
C MDPS 16 

CONSTrYOUffi/(l.O-POISS'POISS) MDPS 17 
MTX( 1,1) :CONST MDPS 18 
DMATX(2,2)zCONST MDPS 19 
DMATX(1,2)=CONST*POISS MDPS 20 
DMATX(2,l) =CONST*WISS MDPS 21 
DMATX(3,3)r(l .O-WISS)*CONST/2.0 MDPS 22 
RETURN MDPS 23 

4 IF(NTYPE.NE.2) GO TO 6 MDPS 24 
C MDPS 25 
C*** D MATRIX FOR PLANE STRAIN CASE MDPS 26 
C MDPS 27 

CONST=YOUNC*(l .O-POIS)/( (1 .O+POISS)*( 1 .O-2.O*POISS) MDPS 28 
DMATX(1,l)sCONST MDPS 29 
DMATX(2,2)zCONST MOPS 30 
DMATX( 1,2):CONST*M)ISS/( 1 .O-WISS) MOPS 31 
DMATX(2,l )sCONST*WISS/( 1 .O-WISS) MDPS 32 
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8 CONTINUE 
RETURN 
END 

MOPS 33 
MDPS 34 
MDPS 35 
MDPS 36 
MDPS 37 
MDPS 38 
MOPS 39 
MDPS 40 
MDPS 41 
MDPS 42 
MDPS 43 
MDPS 44 
MDPS 45 
MDPS 46 
MDPS 47 
&PS 48 
MDPS 49 
MDPS 50 
MDPS 51 
MOPS 52 
MDPS 53 

6.4.10 Subroutine MODPB for evaluating the D matrix for plate bending 
applications 

This subroutine evaluates the elasticity matrix D for plate bending situ- 
ations according to (6.35). Again the result is partitioned into plane, DPLAN, 
flexural, DFLEX, and shear, DSHER, contributions. 

DIMENSION DFLU((7. 

,-. 
C*** FORM DPLAN 

IF(IFPLA.EQ.0) GO TO 10 
DO 1 IR&IS:1,3 
DO 1 JCOLSrl,3 

1 DPLAN(IROWS,JCOLS)=O.O 
CONST:(YOUNG*THICK)/ (1 .O-POISS'POISS) 
DPM( 1 .I) :CONST 

MODP 9 
MODP 10 
MODP 1 1  
MODP 12 
MODP 13 
MODP 14 
MODP 15 
MODP 16 
MODP 17 
MODP 18 
MODP 19 
MODP 20 
MODP 21 
MODP 22 
MODP 23 
MODP 24 
MODP 25 
MODP 26 
MODP n 
MODP 28 
MODP 29 
MODP 30 
MODP 31 
MODP 32 
MODP 33 
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DFLM(2,l )rCONSTiPOISS 
DFLEX(~,~):CONST*(~ .-POISS)/2. 

CM* FORM DSHER 
20 IF(IFSHE.EQ.0) RETURN 

DO 3 IR(XJSrl.2 
W 3 JCOLS=l;2 

3 DSHERUROWS, JCOLS)=O.O 
DSHER( 1,l )z(YCUNGVHICK)/(2.4+2.4*POISS) 
DSHER(~,~):(YCUNG*THICK)/(~.~+~.~*POISS) 
RETURN 
END 

MODP 34 
MODP 35 
MODP 36 
MODP 37 
MODP 38 
MODP 39 
MODP 40 
MODP 41 
MODP 42 
MODP 43 
MODP 44 

6.4.11 Subroutine DBE for formulating the matrix product DB 
This subroutine simply multiplies the elasticity matrix D by the strain 

matrix B. 

C DBYB 3 
C**** THIS SUBROUTINE MULTIPLIES THE D-MATRIX BY THE B-MATRIX DBYB 4 
C DBYB 5 

DIMENSION WTX( NSTR1 .MEVAB) ,DBMAT( NSTR1, MEVAB) , 
DMATX(NSTRl.NSTR1) 

DBHAT(ISTRE, IEVAB)=DBMAT( ISTRE, IEVAB) t 
.DMATX( ISTRE. JSTRE)*BMATX( JSTRE.IEVAB) - - -  
2 CONTINUE 
RETURN 
END 

DBYB 7 
DBYB 8 - - - -  

DBYB 9 
DBYB 10 
DBYB 11 
DBYB 12 
DBYB 13 
DBYB 14 
DBYB 15 
DBYB 16 
DBYB 17 

6.4.12 Subroutine FRONT for equation solution by the frontal method 
The function of this subroutine is to assemble the contributions from each 

element to form the global stiffness matrix and global load vector and to  
solve the resulting set of simultaneous equations by Gaussian direct elimin- 
ation. The main feature of the frontal solution technique is that it assembles 
the equations and eliminates the variables at the same time. Complete details 
of the frontal process can be found in Chapter 8, Ref. 4. The subroutine 
presented in Ref. 4 differs from the one listed in this section in three 
important ways: 

As described in Sections 3.3 and 3.4 for one-dimensional problems, a 
full equation solution need only be undertaken for iterations during which 
the element stiffnesses are being modified. Such a situation is recognised by 
the resolution counter KRESL = 1. On the other hand if the element stiff- 
nesses have not been changed during the iteration, signified by KRESL = 2, 
only the R.H.S. or load terms need be reduced during the elimination phase. 
This situation is identical to the case of solution for second and subsequent 
loading cases in elastic problems. 
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The reduced equations corresponding to eliminated variables are 
stored in core in a temporary array termed a buffer area. As soon as  this 
array is full, the information is then transferred to disc. The number of 
reduced equations that can be accommodated in the buffer area is governed 
by the specified parameter, MBUFA. Thus on elimination of a variable a 
counter over the number of eliminated variables is incremented by one and 
the reduced equations stored in core. The counter is checked against the 
permissible buffer length, MBUFA. If this has been reached, the buffer 
array is transferred to disc file and the counter reset to zero. On back- 
substitution the contents of a complete buffer length are read from discfile 
by backspacing. 

0 The displacement and reaction values evaluated by subroutine FRONT 
during each iteration are jncremental values and must be accumulated to 
give the total displacements, TDISP ( ) and total reactions, TREAC ( ). 
Also the incremental reactions must be added into the vector of total applied 
loads, TLOAD ( ), in order to check for convergence of the iteration pro- 
cess; since equilibrium is satisfied when the applied loads and reactions at  
restrained nodes balance with the nodal forces equivalent to the internal 
stress field. 

The displacements and reactions evaluated in Subroutine FRONT are 
stored for output by Subroutine OUTPUT described in Section 7.8.8. 

SUBROUTINE FRONT(ASDIS,ELOAD, EQ~HS,EQUAT, ESTIF,FIXED, IFFIX,IINCS, FRNT 1 
IITER,GLOAD,GSTIF,LOCEL,LNODS,KRESL,MBUFA,MELEM, FRNT 2 
MEVAB,MFRON,MSTIF,MTOTV,MVFIX,NACVA,NAMEV,NDEST, FRNT 3 
NDOFN,NELEM,NEVAB,NNODE,NOFIX NPIVO,NPOIN, FRNT 4 
NTOTV, TDISP, TLOAD, TREK , VECRV 5 FRNT 5 

C * * ~ * N N Z * ~ * N ~ ~ ~ ~ ~ ~ ~ X ~ ~ ~ N * ~ ~ N I ~ ~ N N ~ ~ N * I ~ * N N N N N N N N N N * * * N N ~ ~ N N  FRNT 6 
C FRNT 7 
C**** THIS SUBROUTINE UNDERTAKES EQUATION SOLUTION BY THE FRONTAL FRNT 8 
C METHOD F R M  9 
C FRNT 1 0  
C * ~ * * * ~ i t ~ N N N * * N i N C ~ Y ~ i Z N ( I ~ X I N ~ Z I ~ * ~ ~ ~ I ~ N ~ I i i ~ N N I N N N N N * N N * * * N * f f * ( I * U  FRNT 11  

DIMENSION ASDIS(Eff0TV). ELOADCMELEM .MEVAB) .EQRHS(MBUFA). FRNT 1 2  
EQUAT(HFR0N ~ B U F A )  , ESTIF~MEVAB, tkvAE3) F I x E D ( ~ O T V ) ,  FRNT 13 IFFIX~~OTVI,NPIVO~MBUFA~,VECRV~MFRONI,GLOAD~MFRON~, FRNT 1 4  
GSTIF(WIF) ,LNODS(MELEM,~) ,LOCEL(MEVAB) ,NACVA(MFRON), FRNT 15 
NAMEV(MBUFA) ,NDEST(MEVAB) ,NOFIX(MIIFIX) ,NOUTP(2), FRNT 16 
TDISP(MTOTV) .TUIAD(MELEM.MEVAB) .TREAC(MVFIX.NDOFN) FRNT 17  

NFUNC(I,J)=(J*J-J) /2+I F R K  18  
C FRNT 1 9  
C*** CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE FRNT 20 

FRNT 2 1  

WT=INODE 
CONTINUE 

FRNT 22 
FRNT 23 
FRNT 2 4  
FRNT 25 
FRNT 26 
FRNT n 
FRNT 28 
FRNT 29 
FRNT 30 
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130 CONTINUE 
IF(KLAST.NE.0) LNODS(KLAST,NLAST)=-IPOIN 

140 CONTINUE 
455 CONTINUE 

C 
c*** START BY INITIALIZING EVERYTHING THAT MATTERS TO ZERO 

DO 160 IBUFA.~ ,MBUFA 
160 EPUAT(IFRON,IEUJFA)=O.O 

C 
C*** AND PREPARE FOR DISC READING AND WRITING OPERATIONS - 

IFCKRESL .GT. 1 ) NBUFA-MBUFA 
REWIND 1 
REWIND 2 
m1ND 3 
REWIND 4 
REWIND 8 

C 
C*** ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOP 
C 

NFRON=O 
KELVAEO 

READ(1) ESTIF 
DO 170 1NODE:l ,NNODE 
DO 170 IDOFN=l,NDOFN 
NPOSI: (INODE-1 )*NWFN+IDOFN 
LENO:WODS( IELM , INODE) 
E(LOCNO.GT.0) LOCEL(NP0S.I) =(LOCNO-1 )*NDOFN+IDOFN 
IF(LENO.LT.0) LOCEL(NPOSI)=(LOCNO+l )*NWFN-IDOFN 

170 CONTINUE 
C 
Car* START BY LOOKING FOR EXISTING DESTINATIONS 
C 

NDEST(KEVAB) =IFRON 
180 CONTINUE 

IF(KExIS.NE.0) Go TO 210 

WE NIX SEEK NEW EMFl'Y PLACES FOR DESTINATION VECTOR 

FRNT 31 
FRNT 32 
FRNT 33 
FRNT 34 
FRNT 35 
FRNT 36 
FRNT 37 
FRNT 38 
FRNT 39 
FRNT 40 

FRNT 42 
FRNT 43 
FRKT 44 ~ 

FRNT 45 
FRNT 46 
FRNT 47 
FRNT 48 
FRNT 49 
FRNT 50 
FRNT 51 
FRNT 52 
FRNT 53 
FRNT 54 
FRNT 55 

FRNT 57 
FRNT 58 
FRNT 59 
FRNT 60 
FRNT 61 
FRNT 62 
FRNT 63 
FRNT 64 
FRNT 65 
FRNT 66 
FRNT 67 
FRNT 68 
FRNT 69 
FRNT 70 
FRNT 71 
FRNT 72 
FRNT 73 
FRrn 74 
FRNT 75 
FRNT 76 
FRNT 77 
FRNT 78 
FRNT 79 
FRrn &I 
FRNT 81 
F~ 82 
FRNT 83 
FRNT 84 
FRNT 85 
FRNT 86 
FRNT 87 
FRKT 88 
FRNT 89 
FRKT 90 
FRNT 91 
FRNT 92 
FRNT 93 
FRNT 94 
FRNT 95 
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190 CONTINUE 
C 
C*** THE NEW PLACES MAY DEMAND AN INCREASE IN CURRENT FRONTWIDTH 
C 
200 IF(NDEST(KEVAB1 .CT.NFRON) NFRON:NDEST(KEVAB) 
210 CONTINUE 

WRITE( 8) LOCEL,NDEST NACVA, NFRON 
400 IF(KRESL.CT. 1)  READ(^) LOCEL,NDEST, NACVA, NFRON 

I. 

C*** ASSEMBLE ELEMENT LOADS - 
L 

DO 220 1EVAB:l NEVAB 
IDEST=NDEST( 1dAB) 
W(IDEST) =CLOAD(IDEST)+ELOAD( IELEM, IEVAB) 

C - 
C**@ A E E M L E  THE ELEMENT STIFFNESSES-BUT NOT IN RESOLUTION 
C 

IF(KRESL.GT.1) GO TO 402 
DO 222 JEVAB=l,IEVAB 
JDEST=NDEST ( J NAB) 
ffiASH:NFUNC(IDEST,JDEST) 
ffiISHrNFUNC( JDEST,IDEST) 
IF(JDEST.GE. IDEST) GSTIF(NGASH) &STIF( NCASH) +ESTIF( IEVAB, JEVAB) 
IF(JDEST.LT.IDEST) GSTIF(NCISH)=CSTIF(NGISH)+ESTIF(IEVAB, JEW) 

222 CONTINUE 
402 CONTINUE 
220 CONTINUE 

I: 

&H RE-EXAMINE EACH ELEMENT NODE, TO ENWIRE WHICH CAN BE ELIMINATED 
C 

DO 310 IEVAB+l,NEVAB 
NIKNO=-LOCEL( IEVAB) 
IF(NMNO.LE.0) GO TO 310 

C 
c*** FIND POSITIONS OF VARIABLES READY FOR ELIMINATION 
" 
I; 

DO 300 IFRON-1, NFRON 
IF( NACVA( IFRON ) . NE . NIKNO) GO TO 300 
NBUFA.NBUFA+l 

I: 

C*** WRITE EWATIONS TO DISC OR TO TAPE 
C 

IF(NBUFA.LE.MBUFA) GO TO 406 
NBUFA- 1 
IF(KRESL.CT.1) GO TO 408 
WRITE(2) EWAT,EQRHS,NPIVO, NAMEV 
GO M 1106 .- ... 

408 URITE(~) WRHS 
RElll)(2) EWAT,EQRHS,NPIVO, NAMEV 
CONTINUE 

C 
C*m EXTRACT THE COEFFICIENTS OF THE NEW EQUATION FOR ELIMINATION 
C 

- 404 CONTINUE 
L 

C*H AND EXTRACT THE CORRESPONDING RIGHT HAND SIDES 
C 

FRNT 96 
FRNT 97 
FRNT 98 
FRNT 99 
FRNT 100 
FRNT 101 
FRNT 102 
FRNT 103 
FRNT 104 
FRNT 105 
FRNT 106 
FRNT 107 
FRNT 108 
FRNT 109 
FRNT 110 
FRNT 111 
FRNT 112 
FRNT 113 
FRNT 114 
FRNT 115 
FRNT 116 
FRNT 117 
FRNT 118 
FRNT 119 
FRNT 120 
FRNT 121 
FRNT 122 
FRNT 123 
FRNT 124 
FRNT 125 
FRNT 126 
FRNT 127 
FRNT 128 
FRNT 129 
FRNT 130 
FRNT 131 
FRNT 132 
FRNT 133 
FRNT 134 
FRNT 135 
FRNT 136 
FRNT 137 
FRNT 138 
FRNT 139 
FRNT 140 
FRNT 141 
FRNT 142 
FRNT 143 
FRNT 144 
FRNT 145 
FRNT 146 
FRNT 147 
FRNT 148 
FRNT 149 
FRNT 150 
FRNT 151 
FRNT 152 
FRNT 153 
FRNT 154 
FRNT 155 
FRNT 156 
FRNT 157 
FRNT 158 
FRNT 159 
FRNT 160 
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FRNT 161 
FRNT 162 
FRNT 163 
FRNT 164 

I?*** DEAL WITH PIVOT FRNT 165 
~ - - -  

C FRNT 166 
PIVUT=ELNAT( IFRON , NBUFA) FRNT 167 
IF(PIVOT.CT.O.0) GO TO 235 FRNT 168 
WRITE(6.900) NIKN0,PIVOT FRNT 169 

900 FORMAT(lH0.3X.52HNEGATIVE OR ZERO PIVOT ENCOUNTERED FOR VARIABLE NFRNT 170 .- .~ 
.O. .I4,10H OF VALUE ,E17.6) 
STOP 

235 CONTINUE 
- EWAT(IFRON, NBUFA) =O.O 
G 
C*** ENWIRE WHETHER PRESENT VARIABLE IS FREE OR PRESCRIBED 
C 
" IF(PFIX(NIKNO).EQ.O) GO TO 250 
L 

C*** DEAL WITH A PRESCRIBED DEFLECTION 
C 

DO 240 JFRON=l.NFRON 

c*** ELIMINATE A FREE VARIABLE - DEAL WITH THE RIGHT HAND SIDE FIRS 
C 
250 DO 270 JFRONzl ,NFRON 
mom( JFRON)=CLOAD( JFRON )-EWAT( JFRON, NBUFA)*EQRHS( NBUFAIIPIVOT 

c 
is** N(XJ DEAL WITH THE COEFFICIENTS IN CORE 
C 

IF(KRESL.GT.1) GO TO 418 
IF(EWAT(JFRON,NBUFA).EQ.O.O) GO TO no 
NU)CA:NFUNC(O, JFRON) 
CUREQ=EQlIAT( JFRON, NBUFA) 
DO 260 LFRON=l,JFRON 
NCASH=LFRON+NLOCA 

260 GSTIF(NCASH) &STIF( NGASHI-CURE(rEQUAT(LFRON, NBUFA) . /PIVOT 
~ ~ -. .- 

418 CONTINUE 
no CONTINUE 
280 EWATUFRON ,NBUFA) =PIVOT 

C 
C*** RECORD THE NEW VACANT SPACE, AND REDUCE FRONTWIDTH IF POSSIBLE 
C 

NACVA( IFRON) -0 

C 
GO TO 290 

C*** COnPLETE THE ELMEM LOOP IN THE FORWARD ELIMINATION 
" 
L 
300 CONTINUE 
290 IF(NACVA(NFRON).NE.O) GO TO 310 

NFRONdFRON-1 

c*** ENTER BACKSUBSTITUTION PHASE. LOOP BACKWARDS THROUGH VARIABLES 
C 

DO 340 IELVA=l,KELVA 
I: - 
C***READ A NEW BLOCK OF ELNATIONS - IF NEEDED 

FRNT 171 
FRNT 172 
FRNT 173 
FRNT 174 
FRNT 175 
FRNT 176 
FRNT 177 
FRNT 178 
FRNT 179 
FRNT 180 
FRNT 181 
FRNT 182 
FRNT 183 
FRNT 184 
FRNT 185 
FRNT 186 
FRhT 187 
FRNT 188 
FRNT 189 
FRNT 190 
FRNT 191 
FRNT 192 
FRNT 193 
FRNT 194 
FRNT 195 
FRNT 196 
FRNT 197 
FRNT 198 
FRNT 199 
FRNT 200 
FRNT 201 
FRNT 202 
FRNT 203 
FRNT 204 
FRNT 205 
FRNT 206 
FRNT 207 
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I. 

IF(NBUFA.NE.0) GO TO 412 
BACKSPACE 2 
READ(2) EWAT, EQRHS, NPIVO, NAMEV 
BACKSPACE 2 

BACKSPACE 4 
READ(4) EQRHS 
BACKSPACE 4 

412 CONTINUE 

PREPARE TO BACK-SUBSTITUTE FROM THE CURRENT EQUATION 

IFRONsNPIUO(NBUFA) 
NIKNO=NAMEV( NBUFA) 
PIVOT=EQUAT(IFRON ,NBUFA) 
IF(IFFIX(NIKNO) .NE.O) VECRV(FRON):FIXED(NIKNO) 
IF(IFFIX(NIKN0) .EQ.O) EQUAT(IFRON,NBUFA)=O.O 

BACK-SUBSTITUTE IN THE CURRENT EQUATION 

DO 330 JFRON=l,MFRON 
330 EQRHS(NBUFA) =EQRHS(NBUFA) -vECRV( JFRON )*EQUAT( JFRON, NBUFA) 

C 
C*** PUT THE FINAL VALUES WHERE THEY BELONG 
c 

F(IFFIX(NIKNO) .EQ.O) VECRV(IFRON)=EQRHS(NBUFA)/PIV~ 
IF(IFFIX(NIKNO) .NE.O) FIXED(NIKNO)=-EQRHS(NBUFA) 
NBUFAtNBUFA-1 
ASDIS(NIKNO):VECRV( IFRON) 

340 CONTINUE . 
C 
C*** ADD DISPLACEMENTS TO PRNIOUS TOTAL VALUES 
C 

W 345 ITmv:1, NTmv 
345 TDISP(IT~).TDISP(ITOTV)+ASDIS(IT~) 

C 
C*** STORE REACTIONS FOR PRINTING LATER 
A 

DO 350 IMIFN: 1, NDOFN 
NCUSH=NLOCA+IDOFN 

350 CONTINUE 
GO TO 370 

3M) DO ~IO-II)OFN:I, NDOFN 
NGASH=NLOCA+IDOFN 

510 TREAC(KBOUN,IDOFN)=TREAC(KBCUN, IDOFN)+FIXED(NGASH) 
I(BOUN=KBOUN+~ 

I: 
370 CONTINUE 

6.- ADD REACTIONS INTO THE TOTAL LOAD ARRAY 
C 

DO 700 IPOIN=l, NPOIN 
DO 710 IELEMrl ,NELEM 
DJ 710 INODE-1 ,NNODE 
NLOCA=IlleS(LNODS( IELEM,INODE) 

710 IF(IPOIN.EQ.NLOCA) GO TO 720 
720 DO 730 ID0FN:l NDOFN 

WASH=( INODE-I I*NDOFN+IDOFN 
MGASH=(POIN-1 )*NDOFN+IDOFN 

730 TLOAD( E L M ,  NGASH) :TLOAD( IELPI, NGASH)+FIXED(MGASH) 
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700 CONTINUE 
RETURN 
END 

FRNT 291 
FRNT 292 
FRNT 293 

6.4.13 Data error diagnostic subroutine CHECK1 
The function of this subroutine is to scrutinise the problem control 

parameters, which are accepted by the data input subroutine, INPUT, 
which will be described in Section 6.5.1. Since subroutine INPUT is common 
to plane stresslstrain, axisymmetric and plate bending applications, sub- 
routine CHECK1 will only check that the control parameters are within 
the bounds defined by the correct values for the four cases. 

A counter, KEROR, is employed to indicate whether or not any errors 
have been detected. If errors have been found (indicated by KEROR = I), 
subroutine ECHO, described in the next section, is called to list the remainder 
of the input data. 
Any errors detected are signalled by means of printed error numbers. The 

interpretation of each error message is given in Table 6.2. 

SUBROUTINE CHECKl(NDOFN,NELM,NGAUS,NMATS,NNODE,NPOIN CEK1 1 
NSTRE, NTYPE , NVFIX ,NCRIT, NALCO, NINCSI CEKI 2 

CNNNNNNNNNNNNNNINNMNNNINNiMMNNNNNNNN~NINN*NNNNNNNNNNNNNNNNNNNNNNNNNNN CEKl 3 
C 
C**** THIS SUBROUTINE CHECKS THE MAIN CONTROL DATA 
C 
CNNNNNNNNNlNNNNNNNNNNNNiNN~iNNRNNNNMNNNNNNNNNNNNNNNMNMNNNNNNNNNNNNNNNN 

DIMENSION NEROR(24) 
DO 10 IEROR=1,12 

10 NEROR(IEROR)=O 
C 
CNNN CREATE THE DIAGNOSTIC MESSAGES 
C 

IF(NPOIN.LE.0) NEROR(1):l 
IF(NEUM*NNODE.LT.NPOIN) NEROR(2)=1 
F(NVFIX.LT.2.0R.NVFIX.GT.NPOIN) NEROR(3)=1 
IF(NINCS.LT.1) NEROR(4):l 
IF(NTYPE.LT.l.OR.NTYPE.GT.3) NEROR(5)=1 
IF(NNODE.LT.4.0R.NNODE.GT.g) NEROR(6)=1 
IF(NDOFN.LT.2.0R.NDOFN.GT.5) NEROR(7)=1 
IF(NMATS.LT.1.OR.NMATS.GT.NELM) NEROR(8)=1 
IF(NCRIT.LT.l.OR.NCRIT.GT.4 NEROR(9)=1 
IF(NGAUS.LT.2.0R.NGAUS.GT.3j NEROR(10):l 
IF(NALGO.LT.1 .OR.NALGO.CT.4) NEROR(11)=1 
IF(NSTRE.LT.3.0R.NSTRE.GT.5) NEROR(12)=1 

C 
CNNN EITHER RETURN,OR ELSE PRINT THE ERRORS DIAGNOSED 
C 

KEROR=O . 
W 20 IEROR=l,l2 
IF(NEROR( IEROR) . EQ. o) GO TO 20 
KEROR: 1 
WRITE(6,900) IEROR 

900 FORMAT(//3 1H DIAGNOSIS BY CHECK1 , ERROR, 13) 
20 CONTINUE 

IF(KEROR.EQ.0) RETURN 

- 
CEKl 4 
CEKl 5 
CEKl 6 
CEKl 7 
CEKl 8 
CEKl 9 
ciK1 10 
CEKl 11 
CEKl 12 
CEKl 13 
CEKl 11I 
CEKl 15 
CEKl 16 
CEKl 17 
cEK1 18 
CEKl 19 
CEKl 20 
CEKl 21 
CEKl 22 
CEKl 23 
CEKl 24 
CEKl 25 
CEKl 26 
CEKl 27 
CEKl 28 
CEKl 29 
CEKl 30 
CEKl 31 
CEKl 32 
CEKl 33 
CEKl 34 
CEKl 35 
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C CEK1 37 
C*** OTHERWISE ECHO ALL THE REMAINING DATA WITHOUT FURTHER COMMENT CEKI 38 
C CEKl 39 

CALL ECHO 
END 

Table 6.2 Errors diagnosed by Subroutine CHECK1 . 

CEKl 4 0  
CEKl 4 1  

Error 
Label Interpretation 

The specified total number of node points, NPOIN, in the structure 
is less than or equal to zero. 
The possible maximum total number of node points in the 
structure is less than the specified total, NPOIN. 
The number of restrained nodal points is less than 2 or greater 
than NPOTN (for plane problems at least 2 points must be 
restrained to eliminate rigid body motions). 
The total number of load increments is less than 1. 
The problem type parameter, NTYPE, is not specified as either 
1, 2 o r  3. 
The number of nodes/element is less than 4 (linear quadrilateral) 
or greater than 9 (quadratic Lagrangian elements). 
The number of degrees of freedom per node is not equal to 2 
(plane) or 3 (plate problems). 
The total number of different materials is less than or equal to 
zero or greater than the total number of elements in the structure. 
The parameter specifying the yield criterion to be employed is 
outside the permissible range. 
The number of Gaussian integration points in each direction is 
not equal to either 2 or 3.  
The parameter specifying the nonlinear solution algorithm to be 
employed is outside the permissible range. 
The size of the stress matrix is less than 3 (plane) or greater 
than 5 (plate problems). 

6.4.14 Data echo subroutine, ECHO 
The function of this subroutine is to list all the remaining data  cards after 

at least one error has been detected by either of the diagnostic subroutines 
CHECK1 or CHECK2. This is accomplished by means of a simple read 
and write operation in alphanumeric format. 

C ECHO 3 
C**** IF DATA ERRORS HAVE BEEN DETECTED BY SUBROUTINES CHECK1 OR ECHO 4 
C CHECK2,THIS SUBROUTINE READS AND WRITES THE RFMAININC DATA CARDS ECHO 5 
C ECHO 6 
C * I * I ~ * ~ C * ~ * C I I ~ I I ~ i t i ~ ~ ~ ~ ~ i f O i ~ i i ( I ~ * * ~ ~ ~ * * U f f * * * * * *  ECHO 7 

DIMENSION KTITL( 80) ECHO 8 
WRITE(6 ,900)  ECHO 9 
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900 FORMAT(//50H NOW FOLLOWS A LISTING OF POST-DISASTER DATA CARDS/) ECHO 10 
10 READ(5.905) NTITL ECHO 11 

905 FORMAT(BOAI) ECHO 12 
WRITE(6,glO) NTITL ECHO 13 

910 FORMAT(2OX,80Al) ECHO 14 
GO TO 10 ECHO 15 
END ECHO 16 

6.4.15 Data error diagnostic subroutine, CHECK2 
If the problem control parameters have passed the scrutiny of subroutine 

CHECKI, the geometric data, boundary conditions and material properties 
are then assimilated by subroutine INPUT. This data is then scrutinised 
for possible errors in subroutine CHECK2 where error types 13 to 24, 
listed in Table 6.3, are checked for. 

Probably the most useful check in this subroutine is the one which ensures 
that the maximum frontwidth does not exceed the dimensions specified in 
subroutine FRONT. Subroutine CHECK2 is described in detail in Chapter 9, 
Ref. 4. 

Do 50 IPOIN~~,NPOIN CEK2 18 
KPOINdPOIN-1 CEK2 19 
W 30 JPOIN=l,KPOIN CEK2 20 
W 20 IDIMEE~, 2 CEK2 21 
IF(CIXIRD(IPOIN,IDIME) .NE.COORD( J P O I N , ~  GO TO 30 CEKZ 22 

20 CONTINUE CEK2 23 
NEROR(13):NEROR(13)+1 CEK2 24 

30 CONTINUE CEK2 25 
40 CONTINUE CEK2 26 

C CEK2 27 
CBffff CHECK THE LIST OF ELEMENT PROPERTY NUMBERS CEK2 28 
C CEK2 29 

C CEK2 33 
Cffff* CHECK FOR IMPOSSIBLE NODE NUMBERS CEK2 34 
C CEK2 35 

W 70 IEL.EM=l ,NELE3! CEK2 36 
W 60 INODE= 1 , NNODE cEK2 37 
IF(LNODS(IELEM,INODE).EQ.O) NEROR(15):NEROR(15)+1 CEK2 38 
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C CEK2 42 
C.** CHECK FOR ANY REPElTTION OF A NODE NUMBER WITHIN AN ELEMENT CEK2 43 
C CEK2 44 

c*" SEEK FIRST,LAST AND INTERMEDIATE APPEARANCES OF NODE IPOIN 
C 

cm2 54 
CEK2 55 

&** CALCULATE INCREASE OR DECREASE IN FRONTWIDTH AT EACH ELEMENT STAGE CEK2 j9 
C CEK2 60 

NDFRO(IELEM)=NDFRO(IELEM)+NDOFN CEK2 61 
80 CONTINUE CEK2 62 

C 
C*** AND CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE 
C 

KLAST=IELEM 
NLASTzINODE 

90 CONTINUE 
100 CONTINUE 

IF(KSTAR.EQ.0) GO TO 110 

Ca** CHECK THAT COORDINATES FOR AN UNUSED NODE HAVE NOT BEEN SPECIFIED 
C 
110 WRITE(6,900) IPOIN 
900 FORMAT(/lSH CHECK WHY NODE,I4,14H NEVER APPEARS) 

NEROR(18)=NEROR(18)+1 
SIGHA=O. 0 

C; 

C*** CHECK THAT AN UNUSED NODE NUMBER IS NOT A RESTRAINED NODE 
C 

M) 130 IVFIX=l NVFIX 
130 IF(NoFIX(IVFIX~ .EQ.IPOIN) NEROR(20)=NEROR(20)+1 
140 CONTINUE 

C 
Can* CALCULATE THE LARGEST FRONTWIDTH 
C 

DO 150 IELEM=l ,ELEM 
moN=NFRoN+NDFRo~IEm) 

150 IF(NFRON.GT.KFRON) KFRN=NFRm 
WRITE(~,W~) KFRON 

905 FORMAT(//33H MAXIMUM FRONTWIDTH ENCOUNTERED =,I51 
IF(KFRON.GT.MFRON) NEROR(21)=1 

C 
c**@ CONTINUE CHECKING THE DATA FOR THE FIXED VALUES 
C 
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-- CEK2 110 
160 ~ - h ~ ~ H W  CEK2 111 

IF(KOUNT.EQ.0) NEROR(23)-NEROR(23)+1 CEK2 112 
KVFIXIIVFIX-1 CEK2 113 
DO 170 JVFIX-1 ,KVFIX cm 114 

170 IF(IVFIX.NE. 1 .AND.NOFIX(IVFIX) .EQ. NOFIX(JVFIX) NEROR(24)=NEROR(24CEK2 115 . )+1 CEK2 116 
KER0R:O CEK2 117 
DO 180 IEROR=13,24 CEK2 118 
IF(NEROR(IER0R) .EQ.O) GO TO 180 CEK2 119 
KEROR- 1 CEK2 120 
WRITE(6,910) IEROR,NEROR( IEROR) CEK2 121 

910 FORMAT(//3 1H *** DIAGNOSIS BY CHECK2, ERROR, I3,6X, 18H ASSOCIATED NCEK2 122 
.UMBER, 15) CEK2 123 

180 CONTINUE CEK2 124 
IF(KEROR.NE.0) GO TO 200 CEK2 125 

C CEK2 126 
C*** RETURN ALL NODAL CONNECTION NUMBERS TO POSITIVE VALUES C M ~  la 
C CEK2 128 

DO 190 IELEM=l,NELEM CEK2 129 
DO 190 INODE=l,NNODE CEK2 130 

190 LNODS(IELEM, INODE)=IABS(LNODS( IELEM, INODE) 1 CEK2 131 
RETURN CEK2 132 

200 CALL ECHO CM2 133 
END CEK2 134 

Table 6.3 Errors diagnosed by Subroutine CHECK2 

Error 
Label interpretation 

A total of x identical nodal coordinates have been detected, 
i.e. x nodal points have coordinates which are identical to those 
of one or more of the remaining nodes. 
A total of x element material identification numbers are less than 
or equal to zero or greater than the total number of elements in 
the structure. 
A total of x nodal connection numbers have a zero value. 
A total of x nodal connection numbers are negative or greater 
than the specified maximum value, NPOIN. 
A total of x repetitions of node numbers within individual 
elements have been detected. 
A total of x nodes exist in the list of nodal points which do not 
appear anywhere in the list of element nodal connection numbers. 
Non-zero coordinates have been specified for a total of x nodes 
which do not appear in the list of element nodal connection 
numbers. 
A total of x node numbers which do not appear in the element 
nodal connections list have been specified as restrained nodal 
points. 
The largest frontwidth encountered in the problem has exceeded 
the maximum value specified in subroutine FRONT of the program. 
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22 A total of x restrained nodal points have numbers less than 
or equal to zero or greater than the specified maximum value, 
NPOIN. 

23 A total of x restrained nodal points at which the fixity code is 
less than or equal to zero have been detected. 

24 A total of s repetitions in the list of restrained nodal points 
have been detected. 

6.5 Standard subroutines for elasto-plastic finite element analysis 
In  this section we describe four additional subroutines which are common 

to  all the elasto-plastic and elasto-viscoplastic applications presented in 
Chapters 7, 8 and 9. For each subroutine presented, the form of the argu- 
ment list and common block structure will be that required for two- 
dimensional elasto-plastic applications. 

6.5.1 Data input subroutine, INPUT 
The role of this subroutine is to accept most of the input data required for 

analysis of elasto-plastic problems. The structure of this subroutine follows 
closely that of subroutine DATA described in Section 3.2. Subroutine 
INPUT also closely resembles the data input subroutine presented in 
Chapter 3, Ref. 4 for linear elastic problems. 

The control parameters necessary for two-dimensional applications extend 
beyond those required for one-dimensional analysis and are presented below. 

NPOIN Total number of nodal points in the structure. 
NELEM Total number of elements in the structure. 
NVFIX Total number of boundary points, i.e. nodal points a t  which 

one or more degrees of freedom are restrained. 
NTYPE Problem type parameter: 

1-Plane stress, 
2-Plain strain, 
&Axial symmetry. 

NNODE Number of nodes per element: 
- 

4--Linear isoparametric quadrilateral element, 
%-Quadratic isoparametric Serendipity element, 
9-Quadratic isoparametric Langrangian element. 

NMATS Total number of different materials in the structure. 
NGAUS The order of Gaussian quadrature rule to be employed for 

numerical integration of the element stiffness matrices, etc., as 
described in Section 6.3.2. If NGAUS is prescribed as 2 a two- 
point Gauss rule is to  be employed; if NGAUS is input as 3 a 
three-point rule will be used. 
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NALGO 

NCRIT 

NINCS 

NSTRE 
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Parameter controlling nonlinear solution algorithm: 
1-Initial stiffness method. The element stiffnesses are com- 

puted at  the beginning of the analysis and remain un- 
changed thereafter. 

2-Tangential stiffness method. The element stiffnesses are 
recomputed during each iteration of each load increment. 

3-Combined algorirhm. The element stiffnesses are recom- 
puted for thefirst iteration of each load increment only. 

4--Combined algorithm. The element stiffnesses are recom- 
puted for the second iteration of each load increment only. 
(Of course for the first load increment, the element stiff- 
nesses must be calculated for the first iteration also.) 

The yield criterion to be employed: 
I -Tresca, 
2-Von Mises, 
3-Mohr-Coulomb, 
6Drucker-Prager. 

The total number of increments in which the final loading is to 
be applied. 

The number of independent stress components for the appli- 
cation : 

3-Plane stress/strain, 
4--Axial symmetry. 

For the present two-dimensional applications two coordinate components 
are required to locate each nodal point. With reference to  Figs. 6.2-6.4 the 
x, y components must be specified for plane stress or plane strain problems 
and the r, z components for axisymmetric situations. This information is 
stored in the array 

COORD (IPOIN, IDIME) 
where IPOIN corresponds to  the number of the nodal point and IDIME 
refers to  the coordinate component. As mentioned in Section 6.4.1 nodal 
coordinates need not be supplied for mid-side nodes of 8- and 9-noded 
elements if they lie on a straight line between corner nodes. The coordinates 
of such intermediate nodes are evaluated by subroutine NODEXY by linear 
interpolation. 

For each nodal point at  which the displacement value corresponding to  
one or more degrees of freedom are prescribed, input data must be supplied 
specifying these k&y conditions. The nodes at  which onc or more degrees 
of freedom are restrained are stored in array 

NOFIX (IVFIX) 
which signifies that the IVFIXth boundary node has a nodal point number 
NOFIX (IVFIX). Input parameter IFPRE controls which degrees of free- 
dom of a particular node are to have a specified displacement value. For 
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example, for plane or axisymmetric problems, integer code IFPRE may have 
the following values: 

10 Displacement in the x(r)  direction specified, 
01 Displacement in the y(z) direction specified, 
1 I Displacements in both x(r)  and y(z) directions specified. 

This information is then transferred, for permanent storage, into array 
I FFlX (ITOTV) 

where ITOTV ranges over the total number of degrees of freedom of the 
structure. The prescribed displacement value associated with a restrained 
degree of freedom is stored in array 

PRESC ( V F X  IDOFN) 
where IVFIX indicates that the prescribed displacements pertain to the 
IVFIXt"oundary node and IDOFN ranges over the degrees of freedom of 
that node. 

The list of material properties for two-dimensional applications differs 
from the corresponding one-dimensional case considered in Section 3.2. In 
particular for plane and axisymmetric elasto-plastic problems the following 
- 

material parameters must be input. 

PROPS (NUMAT, 1) Elastic modulus, E. 
PROPS (NUMAT, 2) Poisson's ratio, v. 
PROPS (NUMAT, 3) Material thickness, t (applicable to plane problems 

only). 
PROPS (NUMAT, 4) Material mass density, p. 
PROPS (NUMAT, 5) Uniaxial yield stress, u y  (Tresca and Von Mises 

solids); Cohesion r (Mohr-Coulomb and Drucker- 
Prager materials). 

PROPS (NUMAT, 6) Hardening parameter H' for linear strain hardening. 
PROPS (NUMAT, 7) Angle of internal friction for Mohr-Coulomb and 

Drucker-Prager materials only. 

Consequently NPROP = 7 for two-dimensional elasto-plastic applications. 
The corresponding material data for plate bending problems is listed in 
Chapter 9. 

Subroutine INPUT also calls subroutine GAUSSQ, described in Sec- 
tion 6.4.2, whose function is to  generate the sampling point position and 
weighting factors for numerical integration of the element stiffness matrices, 
etc., by Gaussian quadrature. The order of integration rule to  be employed 
has been specified, through NGAUS, in the control data. 

Subroutine INPUT is now presented and is self-explanatory. 
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SUBROUTINE INPUT(COORD,IFFIX,LNODS,MATNO,MELEM,MEVAB,MFRON,MMATS, INFT 1 
MPOIN.MTOTV.MVFIX.NALC0. TNPT 7 . -  ~- . - 
NCRIT, NDFRO, NDOFN , NELE~, INPT 3 
NEVAB,NGAUS,NGAU2, INPT 4 
NINCS,NMATS,NNODE,NOFIX,NPOIN,NPROP,NSTRE,NSTRl. INFT 5 
NTOTC, NTOTV, NTYPE; NVFIX, POSGP; PRESC; PROPS,WEICP~ INPT 6 

~ i * ~ i i i t + a i C * f l i ~ * ~ I t I I i t * U * f f ~ * * Z Z * * i * * i * * f f U * U  INPT 7 
INPT 8 

" 
DIMENSION COORD( MPOIN .2), IFFIX( hTOTV)J FOI$HELEkI 9) , 

MATNO(MELEM) ,NDFRO(MELEM), J f.C 7 r . 7 ,  ,! ; 
NOFIX( MVFIX) . WSGP( 4) . PRESC(MVFIX. NDOFN) . INPT 13 

INPT 14 
PROPS(MMATS,NPROP) ,TITLE( 12) ,WEIGP( 4) 

REWIND 1 
REMIND 2 
REWIND 3 

READ( 5.920) TITLE 
 WRITE(^, 920) TITLE 

920 FORMAT(12A6) 
C 
C*** READ THE FIRST DATA CARD, AND ECHO IT IMMEDIATELY 
C 

NTOTV=NPOIN*NDOFN 
NGAU2=NGAUS*NGAUS 
NTOTG=NELEM*NGAU2 
WRITE(6,901 )NPOIN ,NELEM, NVFIX, NTYPE , NNODE,NMATS, NGAUS ,.NEVAB, 
.NAU;O,NCRIT,NINCS,NSTRE 

901 FORMAT(//% NPOIN =,14,4X,BH NELEM =,14,4X,8H NVFIX =,I4,4X, 
.8H NTYPE =,14,4X;8H NNODE =,14,// . 8H NMATS =,14,4X,8H NGAUS =,I4, 

4X, 8H NEVAB = ,14,4X, 8H NALGO =, I4// . 8H NCRIT =,14,4X,8H NINCS =,14,4X,8H NSTRE =,I41 
CALL CHECKl(NDOFN,NELEM,NGAUS,NMATS,NNODE,NPOIN, 

NSTRE,N?YPE,NVFIX,NCRIT,NALGO,NINCS) 
C 
c*" READ THE ELEMENT NODAL CONNECTIONS, AND THE PROPERTY NUMBERS. 
C 

WRITE(6.902) 
902 FORHAT(;~~H. ELEMENT, 3X, BHPROPERTI, 6X, 12HNODE NUMBERS) 

DO 2 IELEM=l,NELEM 
RULD(5,900) NUMEL,MATNO(NUMEL) , (LNODS(NUMEL, INODE), INODE=l, NNODE) INFT 51 

2 'IIRITE(6,903) NUMEL,MRTNO(NUMEL) , (LNODS(NUMEL, INODE) ,INODE=l , NNODEIINFT 52 
903 FORMAT(lX,I5,19,6X,815) INFT 53 

C INFT 54 
Ca** ZERO ALL THE NODAL COORDINATES, PRIOR'TO READING SOME OF THEM. INPT 55 
C INFT 56 

DO 4 IPOIN:l,NPOIN INFT 57 
W 4 DIME=1,2 INPT 58 

4 MORD(IPOIN,IDIME)=O.O INFT 59 
C INFT 60 
Car* READ SOME NODAL COORDINATES, FINISHING WITH THE LAST NODE OF ALL. INPT 61 
C INFT 62 

WRITE(6,904) INFT 63 
904 FORMAT(//5H NODE,lOX,1HX,lOX,1HY) INFT 64 

INPT 15 
INFT 16 
INPT 17 
INFT 18 
INPT 19 
INFT 20 
INFT 21 
INFT 22 
INPT 23 
INPT 24 
INPT 25 
INFT 26 
INFT a 
INPT 28 
INPT 29 
INFT 30 
INFT 31 
INFT 32 
INPT 33 
INPT 34 
INFT 35 
INPT 36 
INpT 37 
INPT 38 
INPT 39 
INFT 40 
INFT 41 
INFT 42 
INPT 43 
INFT 44 
INFT 45 
INPT 46 
INK 47 
INPT 48 
INFT 49 
INPT 50 
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L 

C*** INTERPOLATE COORDINATES OF MID-SIDE NODES 
C 

INPT 65 
INPT 66 
INPT 67 
INPT 68 
INPT 69 
INPT 70 

CALL NODEXY(COORD,WODS,MELEM,MPOIN,NELEM,NNODE) INPT 71 
DO 10 IPOIN=l,NPOIN INPT 72 

10 WRITE(6,906) IPOIN, (COORD(IPOIN, IDIME) ,IDIME:1,21 INF'r 73 
906 FORMAT(lX,15,3F10.3) INPT 74 

C INPT 75 
C*** READ THE FIXED VALUES. INPT 76 

WRITE(6,907) 
FORMAT( //5H NODE. 6X. 4HCODE .6X. 12HFIXED VALUES) 

INPT 77 . 

INPT 78 
INPT 79 
INPT 80 

READ(5 908) NOFIX(IVFIX) IFPRE, (PRESC(I\rFIX,IDOFN) IDOFNzl, NDOFN) INPT 81 
WRITE(~,~O~) NOFIX(IWIX~ ,IFPRE, (PRESC(IVFIX,IDOFN~ ,IDOFN=l ,NDOFN)INPT 82 
NLOCA;(NOFIX(IVFIX)-1)'NDOFN INPT 83 
IFDOF=~O**( NDOFN-1 ) 
W 8 IDOFN=l, NDOFN 
NCASH=NLOCA+IDOFN 

C 
C*** RWU) THE AVAILABLE SELECTION OF ELEMENT PROPERTIES. 
C 

16 WRITE(6,glO) 
910 FORMAT(//7H NUMBER ,6X, 18HELEMENT PROPERTIES) 

DO 18 IMATS=l,NMATS 
READ(5,900 ) NUMAT 
READ(5,930) (PROPS(NUMAT, IPROP) , IPROP:l, NPROP) 

930 FORMAT(8F10.5) 

INFT 84 
INFT 85 
INFT 86 
INPT 87 
INPT 88 
INPT 89 
INPT 90 
INPT 91 
INPT 92 
INPT 93 
INPT 94 
INPT 95 
INPT 96 
INPT 97 
INPT 98 
I N  99 
INPT 100 . - 

18 WRITE(6,gll )-NUMAT, (PROPS(EIUMAT,IPROP) ,IPROP=l ,NPROP) INPT 101 
911 FORMAT(lX,I4,3X,8E14.6) INPT 102 

C INPT 103 
C*** SET UP GAUSSIAN INTEGRATION CONSTANTS INPT 104 
C INPT 105 

CALL GAUSSQ(NCAUS,POSGP,WEIGP) INPT 106 
CALL CHECK2(COORD,IFFIX,LNODS,MATNO,MELEM,MFRON,MPOIN,~OTV,INPT 107 

MVFIX,NDFRO,NDOFN,NELEM,NMATS,NNODE,NOFIX,NPOIN,INFT 108 
NVFIX ) INPT 109 

RETURN INFT 110 
END INPT 111 

6.5.2 Subroutine ALGOR 
The function of this subroutine is to control the solution process according 

to  the value of the solution algorithm parameter, NALGO, input in sub- 
routine INPUT. This subroutine is similar in form to subroutine NONAL 
presented in Section 3.3 for one-dimensional applications. The subroutine 
sets the value of indicator KRESL to either 1 or 2 according to NALGO and 
the current values of the iteration number IITER and increment number 
IINCS. A value of KRESL = 1 indicates reformulation of the element 
stiffnesses accompanied by a full equation solution and KRESL = 2 indi- 
cates that the element stiffnesses are not to be modified and consequently 
only equation resolution takes place. 
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With the definitions of the permissible values of NALGO given in Section 
6.5.1, subroutine ALGOR is self-explanatory and is listed below.* 

C ALGR 4 
C**** THIS SUBROUTINE SETS EQUATION RESOLUTION INDEX,KRESL ffiR 5 
C ALGR 6 
C . * l * ~ * 4 * * ( l t t . ( t l * ~ t * i I . O ( I * I I * * * * I * i * i I i i I i i * f f * * l . f * f i * * f S i * i i * * i l  AU;R 7 

DIMENSION FIXED(W0TV) AU;R 8 
KRESLz2 ALGR 9 

DO 100 JTCTfv = 1,NTOTV 
FIXED( 1TOTV):O .O 

100 CONTINUE 
RETURN 
END . 

ALGR 10 
ALGR 1 1  
ALGR 12 
ALGR 13 
ALGR 14 
ALGR 15 
ALGR 16 
ALGR 17 
ALGR 18 
ALGR 19 
ALGR 20 

6.5.3 Subroutine INCREM 
The role of subroutine INCREM is to increment the applied loading or any 
prescribed displacements according to the load factors specified as input. 
This subroutine is accessed on the first iteration of each load increment. For 
each increment of load the following items of information are input as data 
and are similar to those described in Section 3.7. 
FACT0 This controls the magnitude of the load increment. The applied 

loading for each element is evaluated in Subroutine LOADPS 
for plane and axisymmetric situations, or Subroutine LOADPB 
for plate problems, and is stored in the array RLOAD (IELEM, 
IEVAB) as described in Section 6.4.5. The additional element 
load applied during the increment is RLOAD (IELEM, 
IEVAB)*FACTO. The applied loading is accumulative so 
that if FACT0 is input as 0.8, 0.2 and 0.1 for the first three 
increments, the total load acting on the structure during the 
third load increment is 1.1 times the loads calculated in Sub- 
routine LOADPS. This method of load factoring permits 
unequal load increments to be taken. If loading is by pre- 
scribed displacements the same factoring process holds. 

TOLER This controls the tolerance permitted on the convergence pro- 
cess and its use has been described in Section 3.9.3. 

MITER Maximum permissible number of iterations. This is a safety 
measure to cover situations where the solution process does 

'For elasto-viscoplastic applications described in Chapter 8, iteration number 
IITER is replaced by timestep number, ISTEP. 
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not converge. After performing MITER iteration cycles the 
program will then stop. 

NOUTP (1) This parameter controls the output of the unconverged results 
after the first iteration. In order to examine the convergence 
process the user can vary the frequency of output for each load 
increment: 

I-Print the displacements only after the first iteration. 
2-Print the displacements and nodal reactions after the 

first iteration. 
3-Print the displacements, reactions and stresses after the 

first iteration. 

NOUTP (2) This parameter controls the output of the converged results: 
1-Print the final displacements only. 
2-Print the final displacements and nodal reactions. 
3-Print the final displacements, reactions and stresses. 

The loading to which the structure is subjected is monitored by the arrays 
ELOAD (IELEM, IEVAB) and TLOAD (IELEM, IEVAB). The total load- 
ing applied to the structure at any stage of the analysis is accumulated in the 
TLOAD array. On the other hand ELOAD contains the loading to be applied 
to  the structure for each iteration of the solution process. Initially (the first 
iteration of the first load increment) ELOAD contains the first increment of 
applied load. For the second and subsequent iterations ELOAD contains 
the residual nodal forces which must be redistributed as described in Sec- 
tion 3.7. After convergence has occurred, the next increment of load is 
assirnilatdinto ELOAD, so that at this stage ELOAD contains the new 
applied load increment together with any residual forces still remaining after 
convergence of the solution for the previous load increment. These residual 
forces should be negligibly small if the convergence tolerance factor, TOLER, 
is correctly chosen. However, since any residual forces are retained in 
ELOAD and applied as nodal forces during the next load increment, it is 
noted that equilibrium is maintained at every stage of the computation 
process. 

The final role of this subroutine is to insert appropriate values in the fixity 
m a y  to  control any prescribed displacements. As described in Section 3.3, 
in order to  arrive at the correct value of a displacement whose value is pre- 
scribed for a load increment, it is necessary to prescribe the given value for 
equation solution during the first iteration and then prescribe a zero value 
for all subsequent iterations. Since the displacements occurring during each 
iteration accumulate to  give the total displacement then clearly the pre- 
scribed value will be obtained by this process. 

Subroutine INCREM will now be presented and explanatory notes 
provided. 
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SUBROUTINE INCRM(ELOAD,FIXED, IINCS, HELM ,HEVAB, MITER, INCR 1 
MrOTV,MVFIX,NDOFN,NELEM,NEVAB,NOUTP, INCR 2 
NOFIX.hTOTV.NVFIX.PRESC.RLOAD.TFACT. INCR 3 - 
TLOAD ; TOLER j INCR 4 

C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  INCR 5 
C INCR 6 
C**** THIS SUBRWTINE INCREMENTS THE APPLIED LOADING 
C 

DIMENSION ELOAD(MELEM MEVAB) ,FIXED(MTOTV), INCR 10 
~!x(~oT\I), INCR 11 

NOUTP(2) ,NOFIX(MVFIX), INCR 12 
PRESC( MVFIX, NWFN) , RLOAD(MELEt4, MEVAB) ,TLOAD(MELEM, MEVAB) INCR 13 

URITE(6.900) IINCS INCR 14 
900 FORHAT(~HO,~X, 17HINCREMENT NUMBER ,151 

READ(5.950) FACTO TOLER,MITER,NOUTP( 1) ,NOUTP(2) 
950 ~0RMA~(2~10.5.315! 

INCR 15 
INCR 16 
INCR 17 
INCR 18 

WRITE(6,960)TFACT,TOLER ,MITER ,NOUTP( 1) ,NOUTP( 2) INCR 19 
960 FORMAT(lHO,5X,13HLOAD FACTOR :,F10.5,5X, INCR 20 

.24H CONVERGENCE TOLERANCE =,F10.5,5X,24HMAX. NO. OF ITERATIONS =, INCR 21 . 15,//27H INITIAL OUTPUT PARAMETER =,15,5X,24HFINAL OUTPUT PARAMETINCR 22 

.ER =,I51 INCR 23 
DO 80 IELEM= 1, NELEM INCR 24 
DO 80 IEVAB=l ,NEVAB INCR 25 
ELOAD(IELM.IEVAB)~ELOAD(IEL~.IEVAB)+RLOAD(IELEM.IEVAB)*FACTO INCR 26 

L 
Cn** INTERPRET FIXITY DATA IN VECTOR FORM 
C 

DO 100 ITOTV=l,NToTV 
100 FIXED(ITOTV)=O.O 

W 110 IVFIX:l,NVFIX 

FIXED(NGASH) =PRESC( IVFIX, IDOFN)*FACTO 
110 CONTINUE 

RETURN 
END 

INCR 27 
INCR 28 
INCR 29 
INCR 30 
INCR 31 
INCR 32 
INCR 33 
INCR 34 
INCR 35 
INCR 36 
INCR 37 
INCR 38 
INCR 39 
INCR 40 

INCR 14-15 Write the number of the load increment which is being cur- 

INCR 16-23 

INCR 24-27 

INCR 31-32 
INCR 33-38 

rently solved. 
Read and write the load increment control parameters. Note 
that the incremental load factor, FACTO, is input whereas 
the total load factor, TFACT, is output. 
Accumulate the incremental loading into array ELOAD for 
equation solution and also into TLOAD to record the total 
load applied to the structure. 
Zero the global vector of prescribed displacements. 
Insert any prescribed displacement values, factored by the load 
increment factor, into the appropriate positioil in the global 
vector. 

6.5.4 Solution convergence monitoring subroutine CONVER 
This subroutine monitors convergence of the nonlinear solution iteration 

process. It  is almost identical to  subroutine CONUND for one-dimensional 
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applications described in Section 3.10.3. Since for two-dimensional and plate 
bending problems we have more than one degree of freedom per nodal point, 
summation in (3.27) must now be made over the total number of degrees of 
freedom in the structure. As an additional check on the nonlinear solution 
process we also arrange to evaluate the maximum individual residual force 
$f existing in the structure. 

Subroutine CONVER is now presented and can be understood with the 
aid of Section 3.10.3. 

SUBROUTINE CONVER(ELOAD,IITER,LNODS,MELEM,MEVAB,MTOT\r,NCHEK, 
NDOFN,NELEM,NEVAB,NNODE,NTOTV,PVALU,STFOR, 
TLOAD.TOFOR.TOLER) 

C m ~ m m m m m m m u m m t m u u u u ~ m m m u u u u u u m ~ m m m m m m u m m m m m * m ~ m * m ~ * m m * ~ * m m m * m m m m m m m m ~ m  
C 
C**** THIS SUBROUTINE CHECKS FOR CONVERGENCE OF THE ITERATION PROCESS 
C 
Cmt*m**~m*~**~*m*****mmmmmm~*mm*mm*mmmmm**m*mmm*m**mm*mmmmm*m*m**mmmm* 

DIMENSION ELOAD(MELEM, MEVAB) , LNODS( MELEM, 9) , STFOR(tWXV), 
TOFOR(MTOTV) ,TLOJtD(MELEM,MEVAB) 

NCHEKrO 
RES1D:O.O 

STFOR( ITOTVGO .O 
TOFOR(IT0TV):O.O 

5 CONTINUE 

DO 40 INODE=l,NNODE 
U)CNO=IABS(LNODS( IELEM, INODE ) 
DO 40 IDOFNz1,NCOFN 

NPOSI=(LKNO-1) *WFN+IDOFN 
STFOR(NPOSIl:STFOR(NPOSI )+%Om( IELEM ,KEVAB) 

DO 50 ITOTV=l. NTUTV 
REF~%=M: 
RESID: 

CONV 1 
M N V  2 
CONV 3 - 
CONV 4 
CONV 5 
CONV 6 
CONV 7 
CONV 8 
CONV 9 
CONV 10 
CONV 11 
mv 12 
CONV 13 
CONV 14 
CONV 15 
CONV 16 
CONV 17 
CONV 18 
CONV 19 
CONV 20 
CONV 21 
CONV 22 
CONV 21 

CONV 25 
C W  26 
CONV n 
CONV 28 
CONV 29 
CONV 30 

RETOT=RETOT+TOFOR( ITOTV) *TOFOR( ITOTV) CONV 31 
AGASH=ABS( REFOR) CONV 32 

50 IF(ACASH .GT. REMAX) REMAX-AGASH CINv 33 
DO 10 IELEM:\NELEM CONV 34 
DO 10 IEVAB=l,NEVAB cow 35 

10 ELOAD( IELEM, IEVAB):TLOAD( IELEM, IEVABI-ELOAD( IELEM, IEVAB) coNV 36 
RESID=sQKT(RESID) C W  37 
RETOT=SPKT( RETOT) CONV 38 
RATIO=lOO.O*RESID/RETOT COW 39 
IF(RATIO.CT.TOLER) NCHEK:l CONV 40 
IF(IITER.EQ. 1) GO TO 20 CONV 41 
IF( RATI0.a. PVALU) NCHEKz999 CONV 42 

20 PVALUrRATIO COW 43 
WRITE(6,30) NCHEK,RATIO,REMAX CONV 44 

30 FORMAT( THO, 3X, 18HCONVERGENCE CODE : , 14,3X,28HNORM OF RESIDUAL SUM COW 45 
.RATIO =,E14.6,3X,18HMAXIMVM RESIDUAL =,E14.6) CONV 46 
RETURN C O W  47 
END CONV 48 
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Problems 
Using the subroutines described in this chapter devise programs to 
evaluate the stiffness matrices and load vectors for 4-, 8- and 9-node 
quadrilateral isoparametric elements for plane stress, plane strain, 
axisymmetric and Mindlin plate applications. 
Use the shape functions Ltce)(4, 7) from the 9-node Lagrangian quadri- 
lateral isoparametric element to devise a new family of 8-node Seren- 
dipity quadrilateral element shape functions N P ( f ,  r))  of the form 

N ~ ( P )  = L&e)+aLs(@J i = I, 3, 5 and 7 (corner nodes), 
Nice) = Lr(e) +bLg(e) i = 2, 4, 6 and 8 (midside nodes), 

where Ls(" is the shape function of the central node of the Lagrangian 
element. What limits are there on a and b?  
Determine some further diagnostic checks on the input, other than 
those described in Sections 6.4.13 and 6.4.15. Apart from the check on 
the Jacobian determinant given in Subroutine JACOB2 in Section 6.4.4, 
are there any other checks which could be incorporated into the pro- 
gram after the input has been successfully read and checked? 
Determine the consistent nodal forces for the case when a point load 
with components P,, P, acts at  an arbitrary point along an  element 
edge defined by Cartesian coordinates ( x p ,  yp ) ,  which correspond to 
local coordinates (5 ,  7) = (tp, -I). 

References 
1. HILL, R., The Mathematical Theory of Plasticify, Oxford University Press, 1950. 
2. TIMOSHENKO, S. P. and GOODIER, J. N., Theory of Elasticity, McGraw-Hill, 

New York, 1951. 
3. HUGHES, T. J. R., COHEN, M. and HAROUN, M., Reduced and selective inte- 

gration techniques in the finite element analysis of plates, Nrrcl. Eng. Design, 
46,203-222 (1978). 

4. HINTON, E. and OWEN, D. R. J., Finite Element Programming, Academic Press, 
London, 1977. 

5. IRONS, B. M. and AHMAD, S., Techniques of Finite Elements, Ellis Honvood, 
Chichester, 1980. 

6. BATHE, K. J. and WILSON, E. L., Numerical Methods in Finite Element Analysis, 
Rentice-Hall, Englewood Cliffs, New Jersey, 1977. 



Chapter 7 
- 

Elasto-plastic problems in 
two dimensions 

7.1 Introduction 
In this chapter we consider the elasto-plastic stress analysis of solids which 

e n f o r m  to plane stress, plane strain or axisymmetric conditions. Most of 
the problems encountered in engineering can be approximated to satisfy one 
of these classifications. 

The basic laws governing elasto-plastic material behaviour in a two- 
dimensional solid must be presented before the numerical aspects of the 
problem can be considered and to this end new concepts, such as the plastic 
potential and the normality condition will be introduced. Only the essential 
expressions will be provided in this text and the reader will be directed to 
other sources for a more complete theoretical treatment. 

The situation is complicated by the fact that different classes of materials 
exhibit different elasto-plastic characteristics. In this chapter four different 
yield criteria are employed. The Tresca and Von Mises laws, which closely 
approximate metal plasticity behaviour, are considered and the Mohr- 
Coulomb and Drucker-Prager criteria, which are applicable to concrete, 
rocks and soils, are presented. 

In the latter sections of this chapter a computer code is developed to allow 
the solution of practical problems. Many of the subroutines required for 
elasto-plastic solution have been reviewed in Chapter 6. In this chapter the 
additional subroutines are developed and assembled to provide a working 
program. 

7.2 The mathematical theory of plasticity 
The object of the mathematical theory of plasticity is to  provide a theor- 

etical description of the relationship between stress and strain for a material 
which exhibits an elasto-plastic response. In essence, plastic behaviour is 
characterised by an irreversible straining which is not time dependent and 
which can only be sustained once a certain level of stress has been reached. 
1x1 this section we outline the basic assumptions and associated theoretical 
expressions for a general continuum. For a more complete treatment the 
reader is directed to  Refs. 1-3. In order to formulate a theory which models 
ehto-plastic material deformation three requirements have to be met : 
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An explicit relationship between stress and strain must be formulated 
to  describe material behaviour under elastic conditions, i.e. before the 
onset of plastic deformation. 
A yield criterion indicating the stress level a t  which plastic flow com- 
mences must be postulated. 

8 A relationship between stress and strain must be developed for post- 
yield behaviour, i.e. when the deformation is made up of both elastic 
and plastic components. 

Before the onset of plastic yielding the relationship between stress and 
strain is given by the standard linear elastic expression.* 

where U ~ J  and are the stress and strain components respectively and Cfjk l  
is the tensor of elastic constants which for an isotropic material has the 
explicit form 

Cijrl = A S t j S x l + p  &xs j i+p  &+c, (7.2) 

where A and p are the Lam6 constants and S t j  is the Kronecker delta defined 
by 

1 if i = j  

(7.3) 

7.2.1 The yield criterion 
The yield criterion determines the stress level at  which plastic deformation 

begins and can be written in the general form 

where f is some function and k a material parameter to be determined 
experimentally. The term k may be a function of a hardening parameter K 

discussed later in Section 7.2.2. On physical grounds, any yield criterion 
should be independent of the orientation of the coordinate system employed 
and therefore it should be a function of the three stress invariants only 

Experimental observations, notably by Bridgeman,c4' indicate that plastic 
deformation of metals is essentially independent of hydrostatic pressure. 
Consequently the yield function can only be of the form 

In the indicia1 notation employed, Einstein's summation convention is invoked, - 
whereby it 1s tmplicitly assumed that a summation from 1 to 3 is performed over any 
index which is repeated in any term of an expression. Also indices 1. 2, 3 refer to 
Cartesian components x, y, z respectively. Note that 011 = uxx =oz, 012 =a,,, etc. 
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where Jz' and Js' are the second and third invariants of the deviatoric stresses, 

Most of the various yield criteria that have been suggested for metals are now 
only of historic interest, since they conflict with experimental predictions. 
The two simplest which do not have this fault are the Tresca criterion and the 
Von Mises criterion. 

The Tresca yield criterion (1864) 
This states that yielding begins when the maximum shear stress reaches a 

certain value. If the principal stresses are 01,  02,  0 3  where 01 3 0 2 3  03 then 
yielding begins when 

0 1 - 0 3  = Y(K) ,  (7.8) 

where Y is a material parameter to be experimentally determined and which 
may be a function of the hardening parameter K. By considering all other 
possible maximum shearing stress values (e.g. crz - 01 if 0 2  2 0 3  2 01) it can be 
shown that this yield criterion may be represented in the 0 1  02 0 3  stress space 
by the surface of an inhitely long regular - hexagonal cylinder as shown in 
Fig. 7.1. The axis of the cylinder coincides with the space diagonal, defined 
by points crl = oz = 03,  and since each normal section of the cylinder is 
identical, (a consequence of the assunlption that a hydrostatic stress does not 
influence yielding), it is convenient to represent the yieldsurface geometrically 
by projecting it onto the so-called T plane, o l + a z + u 3  = 0 as shown in 
Fig. 7.2(a). When the yield function f depends on Jz' and J3' alone it can be 

r plane 

Space diagonal 
u,=uz=u3 

Von Mises 

Tresca 

Fig. 7.1 Geometrical representation of the Tresca and Von Mises yield surfaces 
in principal stress space. 
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Von Mises (J; = const .) 

Tresca (max. shear stress 
= const .) 

'J2 

/ Line of  pure 
shear (0 = 0) 

la1 Ibl 

Fig. 7.2 Two-dimensional representations of the Tresca and Von Mises yield 
criteria. (a) rr plane representation. (b) Conventional engineering representation. 

written in the form f ( q -  u3, 02 - 03) and a two-dimensional plot of the 
surface f = k is then possible as shown in Fig. 7.2(b). It can be shown 
generally (1 -2 '  that yield surfaces must be convex (except for local flat areas, 
possibly) and that they must contain the stress origin. 

The Von Mises yield criterion (1913) 
Von Mises suggested that yielding occurs when Jz' reaches a critical value, 

or 
(J2')* = VK), (7.9) 

in which k is a material parameter to be determined. The second deviatoric 
stress invariant, Jz', can be explicitly written as 

Yield criterion (7.9) may be further written as 

where 

and E is termed the effective stress, generalised stress or equivalent stress. 
Some physical insight into the definition of 5 will be apparent later from 
Section 7.2.4 where the case of uniaxial yielding is considered. There are two 
physical interpretations of the Von Mises yield condition. Nadai (1937) 
introduced the so-called octahedral shear stress net, which is the shear stress 
on the planes of a regular octahedron, the apices of which coincide with the 
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principal axes of stress. The value of sect is related to Jal  by 

Thus yielding can be interpreted to begin when  TO,^ reaches a critical value. 
Hencky (1924) pointed out that the Von Mises law implies that yielding 
begins when the (recoverable) elastic energy of distortion reaches a critical 
value. 

Fig. 7.1 shows the geometrical interpretation of the Von Mises yield 
surface to be a circular cylinder whose projection onto the P plane is a circle 
of radius 2/(2)k as shown in Fig. 7.2(a). The two dimensional plot of the 
Von Mises yield surface is the ellipse shown in Fig. 7.2(b). A physical meaning 
of the constant k can be obtained by considering the yielding of materials 
under simple stress states. The case of pure shear (UI = -02, 03 = 0) 
requires on use of (7.9) and (7.10) that k must equal the yield shear stress. 
Alternatively the case of uniaxial tension (or = o3 = 0) requires that 2/(3)k 
is the uniaxial yield stress. 

The Tresca yield locus is a hexagon with distances of 1/(2/3)  Y from 
origin to  apex on the P plane whereas the Von Mises yield surface is a circle 
of radius .\/(2)k. By suitably choosing the constant Y,  the criteria can be 
made to agree with each other, and with experiment, for a single state of 
stress. This may be selected arbitrarily; it is conventional to make the circle 
pass through the apices of the hexagon by taking the constant Y = 4(3)k,  
the yield stress in simple tension. The criteria then differ most for a state of 
pure shear, where the Von Mises criterion gives a yield stress 2IV'(3) (= 1 .15) 
times that given by the Tresca criterion. For most metals Von Mises' law fits 
the experimental data more closely than Tresca's, but i t  frequently happens 
that the Tresca criterion is simpler to  use in theoretical applications. 

The Mohr-Coulomb yield criterion 
This is a generalisation of the Coulomb (1773) friction failure law defined 

by 
r = C-o,  tan$, (7.14) 

where T is the magnitude of the shearing stress, on is the normal stress 
(tensile stress is positive), c is the cohesion and 4 the angle of internal friction. 
Graphically (7.14) represents a straight line tangent to the largest principal 
stress circle as shown in Fig. 7.3 and was first demonstrated by Mohr (1882). 
From Fig. 7.3, and for a1 2 02 2 03 (7.14) can be rewritten as 



FINITE ELEMENTS IN PLASTICITY 

Fig. 7.3 Mohr circle representation of the Mohr-Coulomb yield criterion. 
.+ ., . . . ,, , 

Again, as for the Tresca criterion, the complete yield surface is obtained by 
considering all other stress combinations which can cause yielding (e.g. 
~ 3 2  01 3 02). In principal stress space this gives a &cal yield surface whose 
normal section at any point is an irregular hexagon as shown in Fig. 7.4. 
The conical, rather than cylindrical, nature of the yield surface is a conse- 
quence of the fact that a hydrostatic stress does influence yielding which is 
evident from the last term in (7.14). When ul = 02 = US we have from (7.16) 
that the mean hydrostatic stress, om = c cot4 and therefore the apex of the 
hexagonal pyramid, 0, in Fig. 7.4, lies along the space diagonal at the point 
01 = 02 = 0 3  = c cot$. This criterion is applicable to concrete, rock and 
soil problems. 

The Drucker-Prager yield criterion 
An approximation to the Mohr-Coulomb law was presented by Drucker 

and Prager (1952) as a modification of the Von Mises yield criterion. The 
infiuence of a hydrostatic stress component on yielding was introduced by 
inclusion of an additional term in the Von Mises expression to give 

aJl+(Jzl)* = k'. 

This yield surface has the form of a circular cone. In order to make the 
Drucker-Prager circle coincide with the outer apices of the Mohr-Coulomb 
hexagon at any section, it can be shown that 

a = = (1 .16)  
d(3)(3 - sin 4) ' d(3)(3 -sin 4) * 

Coincidence with the inner apices of the Mohr-Coulomb hexagon is pro- 
vided bv 

2 sin4 6c cos 4 
a = k' = (7.19) 

4(3)(3 +sin 4) ' 4(3)(3 +sin 4) ' 
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. Mohr-Coulomb 

Fig. 7.4 (a) Geometrical representation of the Mohr-Coulomb and Drucker- 
Prager yield surfaces in principal stress space. 

Fig. 7.4 (b) Two-dimensional, IT plane, representation of the Mohr-Coulomb and 
Drucker-Prager yield criteria. 

However, the approximation given by either the inner or outer cone to the 
true failure surface can be poor for certain stress  combination^.(^) 
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7.2.2 Work or strain hardening 
After initial yielding, the stress level at  which further plastic deformation 

occurs may be dependent on the current degree of plastic straining. Such a 
phenomenon is termed work hardening or strain hardening. Thus the yield 
surface will vary at  each stage of the plastic deformation, with the sub- 
sequent yield surfaces being dependent on the plastic strains in some way. 
Some alternative models which describe strain hardening in a materiai are 
illustrated in Fig. 7.5. A perfectly plastic material is shown in Fig. 7 4 a )  
where the yield stress level does not depend in any way on the degree of 
plastification. If the subsequent yield surfaces are a uniform expansion of the 
original yield curve, without translation, as shown in Fig. 7.5(b) the strain- 
hardening model is said to be isotropic. On the other hand if the subsequent 
yield surfaces preserve their shape and orientation but translate in the stress 
space as a rigid body as shown in Fig. 7.5(c), kinematic hardening is said to 
take place. Such a hardening model gives rise to the experimentally observed 
Bauschinger effect on cyclic loading. 

(a) Perfectly plastic 
I 

Initial yield Loading 
surface 

a 

surface 

(b) Isotropic strain hardening 

Initial yield 
surface 

0 

Current yield 
surface 

(c) Kinematic strain hardening 

I 
Fig. 7.5 Mathematical models for representation of strain hardening behaviour. 
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For some materials, notably soils, the yield surface may not strain harden 
but strain soflen instead, so that the yield stress level at a point decreases with 
increasing plastic deformation. Therefore, for an isotropic model, the 
original yield curve contracts progressively without translation. Consequently 
yielding implies local failure and the yield surface becomes a failure criterion. 

The progressive development of the yield surface can be defined by relating . - 

the yield stress k to the plastic deformation by means of the hardening 
parameter K .  This can be done in two ways. Firstly the degree of work 
hardening can be postulated to be a function of the total plastic work, 
Wp, only. Then, 

(7.20) 

in which (dcrj), are the plastic components of strain occurring during a 
strain increment. Alternatively K can be related to a measure of the total 
plastic deformation termed the ~flec~iue, gcweralised or equicnlettt plastic 
strain which is defined incrementally as 

A physical insight of this definition is provided in Section 7.2.4 where uni- 
axial yielding is considered. For situations where the assumption that 
yielding is independent of any hydrostatic stress is valid, (dcrr), = 0 and 
hence (dctjl), = (dcu),. Consequently (7.22) can be rewritten as 

Then the hardening parzmeter, K ,  is assumed to be defined as 

where gP is the result of integrating dcP over the strain path. This behaviour 
is termed strain hardening. Only an isotropic hardening model will be con- 
sidered in this text. 

Stress states for which f = k represent plastic states, while elastic behaviour 
is characterised by,f<k. At a plastic state, f = k, the incremental change in 
the yield function due to an incremental stress change is 

Then if:- 

df<O elastic unloading occurs (elastic behaviour) and the stress point 
returns inside the yield surface 

df=O neutral loading (plastic behaviour for a perfectly plastic material) 
and the stress point remains on the yield surface 
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df>O plastic loading (plastic behaviour for a strain hardening material) 
and the stress point remains on the expanding yield surface. 

It can also be ~hown( l -~ '  that, for a stable material that the initial and all 
subsequent yield surfaces must be convex. 

7.2.3 Elasto-plastic stresslstrain relation 
After initial yielding the material behaviour will be partly elastic and 

partly plastic. During any increment of stress, the changes of strain are 
assumed to be divisible into elastic and plastic components, so that 

The elastic strain increment is related to the stress increment by (7.1). Or, 
decomposing the stress terms into their deviatoric and hydrostatic com- 

where E and v are respectively the elastic modulus and Poisson's ratio of the 
material. 

In order to derive the relationship between the plastic strain component 
and the stress increment a further assumption on the material behaviour must 
be made. In particular it will be assumed that,the plastic strain increment is 
proportional to the stress gradient of a quantity termed the plastic potential 
Q, so that 

where dh is a proportionality constant termed the plastic multiplier. A 
theoretical basis for this assumption is developed in Ref. I .  Equation (7.28) 
is termed the flow rule since it governs the plastic flow after yielding. The 
potential Q must be a function of J2 '  and J3' but as yet it cannot be deter- 
mined in its most general form. However the relation f = Q has a special 
significance in the mathematical theory of plasticity, since for this case 
certain variational principles and uniqueness theorems can be formulated. 
The identity f = Q is a valid one since it has been postulated that both are 
functions of Jz' and J3' and such an assumption gives rise to an associated 
theory of plasticity. In this case (7.28) becomes 

and is termed the normality condition since afla(rir is a vector directed normal 
to  the yield surface at the stress point under consideration as shown in 
Fig. 7.6. I t  is seen that the components of the plastic strain increment are 
required to  combine vectorially in n-dimensional space to give a vector 
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Surface. I= k 

Fig. 7.6 Geometrical representation of the normality rule of associated plasticity. 

which is normal to the yield surface. For the particular case off = Jz' we 
have 

Then (7.29) becomes 
(d~1j)p = d h ' ,  

which are known as the Prandtl-Reuss equations(l) and have been extensively 
employed in theoretical work. Experimental observations indicate that the 
normality condition is an acceptable assumption for metals, but the question 
of normality in rocks and soils is still open to debate@' and is discussed 
further in Chapter 12. Thus on use of (7.26), (7.27) and (7.29) the complete 
incremental relationship between stress and strain for elasto-plastic defor- 
mation is found to be 

7.2.4 Unialdal yield test on a strain-hardening material 
Consider the uniaxial testing of an elasto-plastic material which produces 

the stress-strain curve shown in Fig. 7.7. The behaviour is initially elastic 
characterised by an elastic modulus E until yielding commences at the uni- 
axial yield stress or. Thereafter the material response is elasto-plastic with the 
local tangent to the curve continually varying and is termed the elasto-plastic 
tungent modulus, ET. The hardening law k = k ( ~ )  could just as easily be 
expressed in terms of the effective stress, 6 (since it is proportional to Jz') to 
give, for the strain hardening hypothesis (7.24) 
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Slope E-Elasto-plastic 
/ tangent modulus 

Fig. 7.7 Elasto-plastic strain hardening behaviour for the uniaxial case. 

or differentiating, 

For the uniaxial case under consideration ol = U ,  02 = u3 = 0 and thus 
from (7.12) 

5 = .\/(+){oir'oij1)'/2 = a. (7.35) 

If the plastic strain increment in the direction of loading is dcp, then (dcl), = 

dep and since plastic straining is assumed to be incompressible, Poisson's 
ratio is effectively 0.5 and (dez), = -+dcp and ( d ~ ~ ) ~  = -+dcp. Then from 
(7.23) the effective plastic strain becomes 

dcp = .\/($){(cij')p(~ij')p)1/2 = dc P. (7.36) 

Expressions (7.35) and (7.36) explain the apparent arbitrary constants 
employed in the definition of 5 and Zp, since these terms are required to 
become the actual stress and strain for uniaxial yielding. Using (7.35) and 
(7.36) then (7.34) becomes 
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Thus the hardening function H' can be, determined experimentally from a 
simple uniaxial yield test. (For numerical computation it will be shown in 
the next section that it is H' and not H that is required). 

7.3 Matrix formulation 
The theoretical expressions developed in Section 7.2 will now be converted 

to  matrix form.(7,8' The yield function, first defined in (7.4), can be rewritten 

where a is the stress vector and K is the hardening parameter which governs 
the expansion of the yield surface. In particular, from (7.20) and (7.21), 
d~ = crTdep for the work hardening hypothesis and from (7.24) d~ = LIE, 
for the strain hardening hypothesis. Rearranging (7.38) we get 

By differentiating (7.39) we have 

or 
aTdu -Adh = 0, 

with the definitions 

and 

The vector a is termed theflow ziector. Expression (7.32) can be immediately 
rewritten as 

where D is the usual matrix of elastic constants. Premultiplying both sides of 
(7.44) by ~ D T  = aTD and eliminating aTda by use of (7.41) we obtain the 
plastic multiplier dX to be 

Or substituting (7.45) into (7.44) we obtain the complete elasto-plastic 
incremental stress-strain relation to  be 
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with 
d ~ d ~ ~  

Dcp = D- do = Du. 
~ + d ~ a '  I, 

This expression for D, is similar in form to that for one dimensional appli- 
cation given in Page 28, Chapter 2. It now remains to determine the explicit 
form of the scalar term, A. The work hardening hypothesis is more general 
from a thermodynamic viewpoint@) than the strain hardening hypothesis and 
will be employed for numerical work in this text. Therefore 

d~ = uTdsp. (7.48) 

Equation (7.39) can be rewritten in the form 

F(a, K )  = f (u)  - q ( ~ )  = 0, (7.49) 

since the uniaxial yield stress, ay = Z/(3)k. Thus from (7.43) 

Note that the full differential may be employed in the last term since ay is a 
function of K only. Employing the normality condition in (7.48) to express 
dep we have 

d~ = uTdeP = uTdAa = dAaTu. (7.51) 

Or, for the uniaxial case u = 6 = UY and dq, = d<, where 6 and cp are 
respectively the effective stress and strain. Thus (7.51) becomes 

d~ = oYdCp = dAaTu. (7.52) 

Also, from (7.34) we have 
d6 day 
-- - HI. 
dzp dzp 

Using Euler's theorem7 applicable to all homogeneous functions of order 
one, we can write from (7.49) 

Or from (7.42) 
aTu = oy. (7.55) 

Substituting (7.53) and (7.55) into (7.52) and (7.50) we obtain 

dh = dcp 
A = H'. 

t Euler's theorem on homogeneous functions states that if f(x) is homogeneous and 
of degree n then (afpx). x = n/. 
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Thus A is obtained to be the local slope of the uniaxial stress/plastic strain 
curve and can be determined experimentally from (7.37). 

7.4 Alternative form of the yield criteria for numerical computation 
For numerical computations it is convenient to rewrite the yield function 

in terms of alternative stress invariants. This formulation is due to Nayakclo) 
and its main advantage is that it permits the computer coding of the yield 
function and the flow rule in a general form and necessitates only the specifi- 
cation of three constants for any individual criterion. 

The principal deviatoric stresses (TI', oz', 03' are given as the roots of the 
cubic equation(ll) 

13-J2't -J3' = 0. 

Noting the trigonometric identity 

sin30 -$sin O i  $sin38 = 0, (7.58) 

and substituting t = r sine into (7.57) we have 

Jz' . 53' 
sin3B--slnB-- = 0. 

r 2  r 3 

Comparing (7.58) and (7.59) gives 

The first root of (7.61) with 0 determined for 38 in the range 5 4 2  is a 
convenient alternative to the third invariant, J; By noting the cyclic nature 
of sin(30+2n~) we have immediately the three (and only three) possible 
values of sine which d e k e  the three principal stresses. The deviatoric 
principal stresses are given by t = r sin0 on substitution of the three values 
of sin0 in turn. Substituting for r from (7.60) and adding the mean hydro- 
static stress component gives the total principal stresses to be 

with q> a> us and - 4 6  < 0 s  7716. The term 8 is essentially similar to the 
Lode parameter(1 I' defined by r = - d(3) tan 8. The four yield criteria 
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considered in Section 7.2.1 can now be rewritten in terms of J1, Jz' and 0 as 
follows. 

The Tresca yield criterion 
Substitute for ul and u3 from (7.62) into (7.8) gives 

or expanding we have 

~ ( J z ' ) ~ o s ~  = Y ( K )  = 1 / ( 3 ) k ( ~ )  = oy(tr). (7.63) 

The physical interpretation of 0 is evident from Fig. 7.2. 

The Von Mises yield criterion 
There is no change in this case since this yield function depends on Jz' only. 

From (7.9) 
(J?')! = k(K), 

The Mokr-Coulomb yield criterion 
Substituting from (7.62) for 01 and a3 into (7.16) results in 

The Drucker-Prager yield criterion 
There is no change for this criterion and we can write directly from (7.17) 

that 
aJ1 -I-(Jzt)4 = k', (7.66) 

where a and k' are defined in (7.18) or (7.19). 
In order to  calculate the D,, matrix in (7.47) we require to  express the flow 

vector a  in a form suitable for numerical computation. We can always write 

aF 2F 2J1 
a T = = -  

aF a(Jz1)1/2 aF ae -+ +- -, (7.67) aa ~ J I  an i . ( ~ i ) l l z  zu ae am 
where 

cT = {aZ, c r y ,  at, T ~ Z ,  Ttz, ~ z y } .  

Differentiating (7.61) we obtain 

Substituting this in (7.67) and using (7.61), we can then write 
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aJ3 Jz' I t  Jz' 
a 3 p  = - = ( ( u ~ ~ - 7 y z ~ + - j ,  ( 

aa 3 

and 

Only the constants C1, Cz and C3 are then necessary to define the yield 
surface. Thus we can achieve a simplicity of programming as only these three 
constants have to  be varied between one yield surface and another. The 
constants Ct are given in Table 7.1 for the four yield criteria considered in 
Section 7.2.1 and other yield functions can be expressed in the same form 
with equal ease. 

Table 7.1 Constants defining the yield surface in a form suitable for numerical 
analysis. 

Yield Criterion CI cz c3 

d 3  sin 0 -- 
J,' cos 30 

Von Mises 0 d 3 0 

M~h-Coulprnb isin + cos 0[(1 +tan 0 tan 30) ( d 3  sin 0 +cos 0 sin 4) 
+ sin+(lan 30- tan 0)/d3] (2J2' cos 30) 

Drucker-Prager a 1 .0 0 
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7.5 Basic expressions for two dimensional problems 
For two dimensional problems, the general expressions derived so far in 

this chapter have to be modified. Primarily the main alteration required is 
the deletion of the stress (and strain) components which vanish under the 
conditions of plane stress, plane strain or axial symmetry. We have only four 
non-zero stress or strain components, namely 

UT = {a,, oy, rzy, azj, uz = 0 for Plane Stress 
{OZ, UY, ~ Z Y ,  UZ), €2 = 0 Plane Strain 
{or, OZ, 712, 00) Axial Symmetry. (7.72) 

From Fig. 7.8 it is seen that the z direction is taken as the coordinate inde- 
pendent direction for plane stress and plane strain. It is also found con- 
venient to  order the stress components as indicated in (7.72) with the stress 
in the coordinate independent direction being last. 

(a) Plane stress (b) Plane strain 

I , symmetry 

I 
(c) Axial symmetry 

Fig. 7.8 Two-dimensional applications showing coordinate systems employed. 

The explicit form of the elasticity matrix D can be written 

V 
- 1 

I v  

1 -v  O 1 -  1 - P for plane strain 
I 

1 -2v I 
0 0 I 0 

2(1 - v) _ _ _ _ _ _ _ _ _ I  

and axial symmetry, 
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Note that the components corresponding to the coordinate independent 
direction have been included for the plane stress and strain cases. These 
terms will be excluded for element stiffness formulation and only the first 
3x3 portion indicated will be employed. By eliminating the appropriate 
stress terms the expressions developed to date can be readily modified. The 
flow vector a becomes 

E 
D = 

1 - 9  

with x, y and z being replaced by r, z and 0 respectively for the case of axial 
symmetry. The specific form of the vector, a is still given by (7.69) but in this 
case we have from (7.70) 

and the deviatoric stress invariants become, from (7.5) 

v 1 0 1 0  

1 -v l  
0 0 -10 

2 I 

TO complete the prescription of the elasto-plastic matrix Dep given in (7.47) 
we require d ~ .  Employing the relevant form of D from (7.73) in (7.47) results 
in, for plane strain and axial symmetry 

for plane stress. (7.73) 
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E 
-a1 + MI 
l + v  

E 
-a2 + M I  
I + v  

Gas 

E 
-a4+M1 
I + v  

where G = E/2(1 +v) is the shear modulus and a1 . . . . a4 are the components 
of a. For plane stress we have 

E 
-a l+Mz 
1 + v  

E 
-az+Mz 
1 + v  

Gas 

E 
-a4+Mz 
1 + v  

7.6 Singular points on the yield surface 
For many yield surfaces the flow vector a is not uniquely defined for certain 

stress combinations. For example this arises at the corners of the Tresca and 
Mohr-Coulomb criteria located by 0 = &30° and the direction of plastic 
straining there is indeterminate. Koiter(l2) has provided limits within which 
the incremental plastic strain vector must lie. Numerical difficulties will be 
encountered as 0 approaclies &30° for the Tresca and Mohr-Coulomb laws 
since it is seen from Table 7.1 that for these values of 0 both Cz and Cs 
become indeterminate. This difficulty can be overcome by returning to the 
original expressions (7.63) for the Tresca law and (7.65) for the Mohr- 
Coulomb criterion and rewriting these for the explicit values 6' = &30°. 
Thus we have for the Tresca law 

and thus from (7.71) we have 

Cl = 0, CZ = d(3), C3 = 0 for 0 = f 30". (7.80) 

Physically, since (7.79) is the Von Mises criterion, this is equivalent to 
stating that the direction of plastic straining at  the corners of the Tresca 
criterion is that given by the Von Mises circle which also passes through the 
comer (see Fig. 7.2). Similarly for the Mohr-Coulomb criterion we have 
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from (7.65), 

1 
- J1 sin ( +(Ji)lIZ- : ( 4 3  -%) - e  cos+ = 0 for 6' = +300 
3 

1 sin + 
- J ~  r i n ( + ( J ~ ' ) ~ " ~ ( d ~ + ~ )  - 
3 

or from (7.71) we have 

1 sin ( 
, CI = - sin(, cz = I(.\/, -7), c3 = o o s = + j o o  

3 2 

The practical approach adopted in this text is to use the general expressions 
for C1, Cz, C3 given in Table 7.1 for all values of 101 G29" and to then 
employ either (7.80) for Tresca or (7.82) for Mohr-Coulomb in the vicinity 
of the corners. This makes the direction of straining unique, and also satisfies 
the Koiter requirements. Physically this artifice corresponds to  a 'rounding 

. off' of the yield surface corners. 

7.7 Finite element expressions and program structure 
The basic expressions rcquired for solution can be again obtained by use of 

the principle of virtual work. Consider the solid, in which the internal stresses 
a, the distributed loads/unit volume b and external applied forces f form an 
equilibrating field, to undergo an arbitrary virtual displacement pattern 
Sd* which result in compatible strains Sc* and internal displacements Sa*. 
Then the principle of virtual work requires that 

Then the normal finite element discretising procedure leads to the following 
expressions for the displacements and strains within any element 

Su* = NSd*, Sc* = Bad*, (7.84) 

where N a n d  B are respectively the usual matrix of shape functions and the 
elastic strain matrix. Then the element assembly process gives 

where the volume integration over the solid is the sum of the individual 
element contributions. Since this expression must hold true for any arbitrary 
Sd * value 
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For the solution of nonlinear problems as described in Chapter 2, (7.86) 
will not generally be satisfied at any stage of the computation, and 

where y is the residual force vector. For an elasto-plastic situation the 
material stiffness is continually varying, and instantaneously the incremental 
stresslstrain relationship is given by (7.46). For the purpose of evaluating the 
material tangential stiffness matrix KT at any stage, the incremental form of 
(7.87) must be employed. Thus within an increment of load we have 

Substituting for Au from (7.46) results in 

where 

Expression (7.89) is essentially identical to (2.4) and therefore the solution 
procedures developed in Chapter 2 can be again employed. 

The programming philosophy adopted for this application follows that 
employed in Chapter 3 for one-dimensional elasto-plastic problems. It is 
suggested that the reader reviews the appropriate sections of Chapter 3 
before proceeding to the remainder of this chapter. The solution techniques 
discussed in Chapters 2 and 3 are utilised and iri particular an initial stiffness 
algorithm, a tangential stiffness algorithm and two options of the combined 
initialltangential stiffness approach are included. An outline of the program* 
provided in Fig. 7.9. Many of the subroutines required are common to-the 
corresponding linear elastic solution program and their function and structure 
have already been described. In particular, subroutines BMATS, CHECKI, 
CHECK2, DEE, ECHO, FRONT, GAUSSQ, JACOB2, LOADPS, MODPS, 
NODEXY and SFR2 have been described in sect& 6.4. Also the standard 
nonlinear subroutines ALGOR, CONVER, INCREM and INPUT have 
been presented in Section 6.5. We will now formulate the additional sub- 
routines required and assemble them to form a working program. 
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I Presets the variabl& assodaled with 
the dynamic dimensioning process. - I 

Lnputs data d e f ~  geometry. boundary 
conditions and material properties. 

LOADPS 
Evaluates the equivalent nodal form 
for Dressure loadinn. nravitv loadinn, nc .  

ALGOR 
Sets indicator to identify the typc of 
solution algorithm c.g. initial stiffness. 
tangential stiffness, nc.  

I 

Calculates the element stiffnesses for elastic 

I 

FRONT 
Solves the simultaneous muation svstem bv 

ZERO 
Sets lo zero arrays rquired for 
accumulatiod of data. 

4 
INCREM 

Increments the applied loads according to 
spaificd load factors. 

the frontal method. 
I 

J INVAR 
Evalvata the effective 
stress level. I force vector. $. 1 '  

I I YlELDand ROWPL 1 
Determina the flow vector, 
a, and also do. 

I 
I 

CONVER 
t 

NO 
Olecks to see if the solution proms 
has convaned. 

Prints the results for this load increment. 

Fig. 7.9 Program organisation for two-dimensional elasto-plastic applications. 

7.8 Additional program subroutines 
A total of eight additional subroutines are required some of which will be 

common to other nonlinear applications considered in later chapters of this 
text. 
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7.8.1 Subroutine DIMEN 
The function of this subroutine is to preset the values of variables employed 

in the program. In particular the variables associated with the dynamic 
dimensioning process described in Chapter 6 are defined. Thus if it is required 
to upgrade the magnitude of the maximum problem size which can be solved 
it is only necessary to  modify the dimension statements in the main or master 
subroutine together with the variables set in subroutine DIMEN. All the 
variables preset in this subroutine have been previously defined and their 
specified values are indicated in the following listing. 

r DIMN 4 u -- - 

C**** THIS SUBROUTINE PRESETS VARIABLES ASSOCIATED WITH DYNAMIC DIMN 5 
C DIMENSIONING DIMN 6 
C DIMN 7 
C * * * * C 4 ~ * ~ ~ l * * ~ I I ~ I I i I i X X I * * I ) 1 ) * * ~ I ) i ~ i * U i U I I  DIMN 8 

MBUFA = 10 
MELEMdO 
MFRONz80 
MMATS = 5 
MWIN-150 
MSTIF=(MFRON*MFRON-MFRON)/2.O+MFRON 
MTOTC = MELEM*g 
NDOFN :: 2 
MTOTV = MPOIN*NDOFN 
HVFIX=30 
NPROP:7 
MEVAB = NDOFN*9 
RETURN 
END 

DIMN g 
DIMN 10 
DIMN 11 
DIMN 12 
DIMN' 13 
DIMN 14 
DIMN 15 
DIMN 16 
DIMN 17 
DIMN 18 
DIMN 19 
DIMN 20 
DIMN 21 
DIMN 22 

7.8.2 Subroutine ZERO 
This subroutine merely sets to zero the contents of several arrays employed 

in the program. These arrays will be employed to accumulate data as the 
incremental and iterative process continues and they therefore require to  be 
initialised to zero. This subroutine is self-explanatory and is presented 
without further comment. 

SUBROUTINE ZERO(UOAD, MELEM ,MEVB, MPOIN,mOTG, mOT\r, NDOFN, NELEM , ZROl 1 
NEVAB,NGAUS,NSTRl,mOTG,EPSTN,EFFST, ZROl 2 
mOTV,NVFIX,SRSC,TDISP,TFACT, ZROl 3 
TLOAD,TREAC,MVFIX) ZROl 4 

~ t i * i i * * l r i i l ) i i t * * * * * * * * * * * * * i * * t ~ * t ~ * ~ a * I * * i * * * * a i * * ( I * * * * * * * * * * * * * * * * *  ZROl 5 

. 

DIMENSION ELOAD( ELEM ,MEVAB) , STRSGC 4, KOTG) ,TDISP( MTUl'V), ZROl 16 
TLOAD(MELEM,MEVAB) ,TREAC(MVFIX,2) ,EPSTN(KOTG), ZRO1 11 
EFFST ( m0TG ZROl 12 

TFACT-0.0 ZROl 13 
W 30 ELM-1, NELEM ZRO1 14 
DO 30 IEVABr1,NEVAB ZRO1 15 
ELOAD(IELEM,IEVAB)=O.O ZRO1 16 
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30 TLOAD( IELEM , IEVAB) ~0.0 
DO 40 ITOTV=l, NTmv 

40 TDISP(ITOT\I)=O.O 
DO 50 IVFIX=l,NVFIX 
DO 50 IDOFN=l,NWFN 

50 TREK( IVFIX, IDOFN) ~0.0 
DO 60 ITOTk1. NTOTC 

RETURN 
END 
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ZROI 17 
ZROl 18 
ZROl 19 
ZRO1 20 
ZROl 21 
ZROl 22 
ZROl 23 
ZROl 24 
ZROl 25 
ZROl 26 
ZROI n 
ZROl 28 
ZROl 29 

7.8.3 Subroutine INVAR 
The role of this subroutine is to  evaluate the various functions of stress 

used to  indicate either initiation of or continuing plastic deformation for the 
four yield criteria considered in this text. More explicitly we need to calculate 
the items listed in Table 7.2. 

Table 7.2 Effective stress and uniaxial yield stress levels for the yield criteria 
included in the elasto-plastic computer code. 

- 

Uniaxial 
Stress level (or equivalent 

Equation No. Yield criterion (effective stress) yield stress) 

(7.63) Tresca 2( J2')li2 cos 0 0 r 

(7.65) MohrCoulomb f J, sin 4 + ( J2')'iZ c cos 4 
~ ( C O S  0-sine sin+/d3) 

(7.66) Drucker-Prager a J, + ( J,')'J2 k' 

Whether or not plastic deformation takes place at any point is governed by 
its stress level as monitored by the functions in the third column of Table 7.2. 
For plastic flow to occur this stress level must achieve the values given in the 
final column of Table 7.2. For the Tresca and Von Mises criteria this value is 
precisely the uniaxial yield stress but for the Mohr-Coulomb and Drucker- 
Prager criteria it is an equivalent value defined by the stress-independent 
terms in (7.65) and (7.66) respectively. Note that all the values given in the 
final column of Table 7.2 can be functions of the hardening parameter, K. 

Subroutine INVAR merely computes the effective or deviatoric stress 
components and then evaluates the appropriate function in the third column 
of 'hble  7.2 depending on the yield criterion being employed. The choice of 
yield criterion is governed by the parameter NCRIT, input in subroutine 
INPUT, and the available options are provided below 
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NCRIT = 1 Tresca yield criterion 
2 Von Mises 
3 Mohr-Coulomb 
4 Drucker-Prager 

Subroutine W A R  is now presented and descriptive notes provided. 

SUBROUTINE INVAR(DEVIA, LPROP,MMATS NCRIT, PROPS, SINT3 ,STEFF, STEHP, 
THETA,VARJ~,YIELDJ 

C********************************************************************* 
C 
C**** THIS SUBROUTINE EVALUATES THE STRESS INVARIANTS AND THE CURRENT 
C VALUE OF THE YIELD FUNCTION 
C 
C ~ ~ ~ ~ ~ N ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ N ~ N ~ N ~ ~ N ~ ~ N * ~ N ~ N ~ N N N * * * * N N ~ ~ ~ ~ ~ * ~ * * ~ * * * * * *  

DIMENSION DEVIA( 4). PROPS(MMATS,7) , SMP( 4) 
RWT3=1.7320508W57 
w=(STEHP(l)*STMP(2)+STEMP(4) )/3.O 
DEVIA( 1 )=STMP( 1 1-SMEAN 
DNIA(2)STEMP(2)-sMEAN 
DEVIA(3):STEMP(3) 
DEVIA(Z).STEMP(~)-SMEAN 
VARJ2=DEVIA(3)*DEVIA(3)+0.5*(DEVIA( 1 )*DEVIA(l )+DEvIA(~)*Dwu(~) . +DEVIA(4)QEVIA(4)) 
VARJ~=DEVIA(~)*(DNIA(~)*DEVIA(~)-VARJ2) 
STEFF=SQRT(VARJ2) 
P(STEFF.EQ.O.0) GO TO 10 
-SINT3=-3.O*ROOT3*VARJ3/ (2.O*VARJ2*STEFF) 
IF(SINT3.GT.1.0) SINT3-1.0 
GO TO 20 

10 SINT3=0.0 
20 CONTINUE 

IF(SINT3.LT.-1 .O) SINT3.-1 .O 
IF(SINT3.GT.l.O) SINT3=1 .O 
THETA=ASIN( SINT3 )/3.O 
GO TO (1,2,3,4) NCRIT 

C*** TRESCA 
1 YIELD=2.0*COS(THETA)*STEFF 
RETURN 

C*** VON MISES 
2 YIELD-ROOT3fSTEFF 
RETURN 

C*** MOHR-CCULOMB 
3 PHIRA=PROPS(LPROPJ) '0.0 17453292 
SNPHI=SIN(PHIRA) 
YIELD:SMWLN*SNPHI+STFF*( COS(THETA) -SIN( THETA) *SNPHI/ROOT3) 
RETURN 

C*** DRUMER-PFiAGER 
4 PHIRA=PROPS(LPROP,7)*0.017453292 
SNPHI=SIN( PHIRA) 
YIELD:6.O*SMEAN*SNPHI/ (ROOT3*(3 .O-SNPHI) )+STEFF 
RETURN 
END 

INVR 1 
INVR 2 
INVR 3 
INVR 4 
INVR 5 
INVR 6 
INVR 7 
INVR 8 ~ ~~ . 

INVR 9 
INVR 10 
INVR 11 
INVR 12 
INVR 13 
INVR 14 
INVR 15 
INVR 16 
INVR 17 
INVR 18 
INVR 19 
INVR 20 
INVR 21 
INVR 22 
INVR 23 
INVR 24 
INVR 25 
INVR 26 
INVR 27 
INVR 28 
INVR 29 
INVR 30 
INVR 31 
INVR 32 
IWR 33 
INVR 34 
INVR 35 

INVR 37 
INVR 38 
INVR 39 
INVR 40 
INVR 41 
INVR 42 
INVR 43 
INVR 44 
INVR 45 
INVR 46 

INVR 11-15 Compute the deviatoric stresses according to (7.7) with the 
order of the components being as indicated in (7.72). 

INVR 16-17 Calculate the second deviatoric stress invariant, Jz'. 
INVR 18 Calculate the third deviatoric stress invariant, Js'. 
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INVR 19 
INVR 20-26 
INVR 27 

MVR 28 
INVR 30 

INVR 33 

INVR 36-38 

INVR 41-43 

Compute, (Jz')'. 
Evaluate sin38 according to (7.61). 
Then compute, 6. Note that the principal value is obtained as 
required in Section 7.4. 
Branch according to the yield criterion being employed. 
Evaluate the ~ ie ld  function in Column 3, Table 7.2 for the 
Tresca criterion. 
Evaluate the yield function in Column 3, Table 7.2 for the Von 
Mises criterion. 
Evaluate the yield function in Column 3, Table 7.2 for the 
Mohr-Coulomb criterion. 
Evaluate the yield function in Column 3, Table 7.2 for the 
Dmcker-Prager criterion. 

7.8A.1 Subroutine YIELDF 
The function of this subroutine is to determine the flow vector a defined 

in (7.74). Vector a is given by (7.69) where C1, C2 and C3 are given in Table 7.1 
for the various yield criteria considered and the vectors al, a2 and as are 
given by (7.75) for two dimensional applications. For the Tresca and Mohr- 
Coulomb yield surfaces which have singular points at 8 = *30° the alterna- 
tive values of Cl, C2 and Cs given respectively in (7.80) and (7.82) must be 
employed. 

Subroutine YLELDF is now presented and described. 

SUBROUTINE YIELDFC AVECT, DNIA, LPROP, t4MATS , NCRIT NSTR 1 , YLDF 1 
PROPS, SINT3, STEW, THETA, V A R J ~ ~  YLDF 2 

C~+i~OttttttUtiiiUUUUI*I(IU(t~Ii~***U*U~**iS(I***it*I**CU~~UU*U*U(IC11+* YLDF 3 
C 
CtM* THIS SUBROUTINE EVALUATES THE FL&I VECTOR 
C 

YLDF 4 
YLDF 5 
YLDF 6 

C t t t * t t t t t t t U U t U O i ~ i U U I U i U U i f ~ * i U i ~ U U U * U U U U * f f U ~ * U * * U U U U * * * U U U * U U *  YLDF 
DIMENSION AVECT(~) ,DEVIA( 4), PROPS(MMATS,~), YLDF 

VECA1(4),VECA2(4) ,VECA3(4) 
& 

YLDF 9 

itr CALCULATE VECTOR A1 
C 

l, 

Ctt* CALCULATE VECTOR A2 
C 

YLDF 10 
YLDF 1 1  
YLDF 12 
YLDF 13 
YLDF 14 
YLDF 15 
YLDF 16 
YLDF 17 
YLDF 18 
YLDF 19 
YLDF 20 
YLDF 21 
YLDF 22 
YLDF 23 
YLDF 2 i  
YLDF 25 
YLDF 26 
YLDF n 
YLDF 28 
YLDF 29 
YLDF 30 



242 FINITE ELEMENTS IN PLASTICITY 

C 
C*** CALCULATE VECTOR A3 
r 

YLDF 31 
YLDF 32 
YLDF 33 c. 

VECA3(1)&NIA(2)*DEVIA(4)+VARJ2/3.0 YLDF 34 
VECA3(2)=DEVIA(l )*DEVIA(4)+VARJ2/3.0 YLDF 35 
VECA~(~)=-~.O*DEVIA(~)*DEVIA(~) YLDF 36 
VECA3(4)&EVIA( 1 )*DEVIA(2)-DEVIA(3) *DEVIA(3)+VARJU3.0 YLDF 3g 
GO TO (1,2,3,4) NCRIT YLDF 3 

C YLDF 39 
C*** TRESCA YLDF 40 
e YLDF 41 

C 
C*** VON MISES 
* 

CONS3=0.0 
40 CONTINUE 

DO 50 ISTRl:l,NSTRl 
50 AVECT(ISTR1 )=CONSl*VECAl(ISTRI )+CONS2*VECA2(ISTRl )+CONS3* . VECA3( ISTR1) 

RETURN 
END 

YLDF 42 
YLDF 43 
YLDF 44 
YLDF 45 
YLDF 46 
YLDF 47 
YLDF 48 
Y ~ F  49 
YLDF 50 
Y ~ F  51 
YLDF 52 
YLDF 53 
YLDF 54 
YLDF 55 

YLDF 57 
YLDF 58 
YLDF 59 
YLDF 60 

YLDF 62 
YLDF 63 
YLDF 64 
YLDF 65 
YLDF 66 

YLDF 68 
YLDF 69 
YLDF 70 

YLDF 72 
YLDF 73 
YI.DF 74 
Y ~ F  75 
YLDF 76 

YLDF 78 
YLDF 79 
YLDF 80 
YLDF 81 
YLDF 82 
YLDF 83 
YLDF 84 

YLDF 10 For the (unlikely) case of a Gauss point with zero stress 
(identified by Jz' = J3' = 0) avoid evaluation of the flow 
vector. 

YLDF 1 1  Identify FRICT as the friction angle 4 for Mohr-Coulomb 
and Drucker-Prager materials. 
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YLDF 12-13 Evaluate tan0 and tan38. 
YLDF 14-16 Evaluate sin 8, cos 8 and cos38. 
YLDF 17 Compute .\/(3). 
YLDF 21-24 Evaluate a1 according to (7.75). 
m D F  28-30 Evaluate a2 according to  (7.75). Note that STEFF and DEVIA 

are transferred via the argument list from subroutine 
INVAR. 

YLDF 34-37 Evaluate a3 according to (7.75). 
YLDF 38 Branch according to the yield criterion being employed. 
YLDF 4 1 4 9  Compute the constants C1, CZ and C3 for a Tresca material 

according to  Table 7.1. In the vicinity of a singular point, 
identified by 1 8 1 >29.0° evaluate C1, C2 and CS according to  
(7.80). 

YLDF 53-55 Compute C1, Cz and C3 for a Von Mises material according to  
Table 7.1. 

YLDF 6 1 4 7  Compute C1, CZ and C3 for the Mohr-Coulomb criterion. 
In the vicinity of a singular point defined by ( 01>29.0° 
evaluate C1, CZ and C3 according to (7.82). 

YLDF 75-78 Calculate C1,  C2 and C3 for the Drucker-Prager yield criterion. 
YLDF 8&82 Evaluate a according to  (7.69). 

7.8.4.2 Subroutine FLOWPL 
Themain purpose of this subroutine is to  determine the vector do according 

to either (7.77) or (7.78) depending on the type of analysis being undertaken. 
In the program presented in this chapter only a linear form of strain hardening 
ki explicitly considered, with the coding of alternative models being left as an 
exercise for the reader. In this case the term H' in (7.37) becomes a constant 
and is specified as a material property. 

Subroutine FLOWPL is now listed and described. 

SUBROUTINE FLCNPL(AVECT, ABETA,DVECT , NTYPE, PROPS, LPROP , NSTR1, MMATS)FLPL 1 
C l H l t C l t t ~ l t ~ ( l * 1 * ~ t ~ ~ t ~ ~ 1 ( ~ ~ i ~ f ~ ~ t i f ~ a ~ * * ~ Z I t ~ * ~ ~ * ~ ~ i ~ i ~ I * * ~ ~ * * U * H * * * * O  FLpL 2 
C FLPL 3 
v"* THIS SUBROUTINE EVALUATES THE PWLSTIC D VECTOR 
C 

FLPL 4 
FLPL 5 

~ ~ l ~ * ~ t t l t * ~ t f ~ * ~ ~ * ~ * * ~ ~ ~ ~ ~ * i i i * i i ~ i i ~ i i I ~ i ~ * i ~ i i * i i ~ ( ~ t f * i ( I * I * * * ~ t t ~ t ~  FLpL 6 
FLPL 7 
FLPL 8 
FI.PI. 9 

HARDS=PROPS(LPROP; 6) FiPL 10 
FNULl=YWNW( 1 .O+POISS) FLPL 1 1  
P(Nl'YPE.EQ.1) GO TO 60 FLPL 12 
MULZ=YOUffi*POISS*(AVECT( 1 )+AVECT(2) +AVECT(4) ) / (  (1 .O+WISS)* FLPL 13 . (1.0-2.0*P3ISS)) FLPL 14 

FLPL 15 
FLPL 16 
FLPL 17 
FLPL 18 .. 

GO TO 70 FLPL 19 
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60 FMUL3=YOUNC*POISS+(AVECT( 1 )+AVECT(2) )/( 1 .O-POISS*POISS) FLPL 20 
DVECT( 1 ) =FMUL1 *AVECT( 1 )+FMUL3 FLPL 21 
DVECT(2) =MULl"AVECT(2) +FMUL3 FLPL 22 
DVECT(3)=0.5*AVECT(3)*YWNC/(l .O+POISS) FLPL 23 
DVECT(~):MUL~*AVECT(~)+FMUL~ FLPL 24 

.ABETA=I . O/DENOM 
RETURN 
END 

FLPL 8 
FLPL 9 
FLPL 10 
FLPL 13-18 

FLPL 20-24 
FLPL 26-28 

FLPL 25 
FLPL 26 
FLPL 27 
FLPL 28 
FLPL 29 
FLPL 30 

Identify YOUNG as the elastic modulus, E. 
Identify POISS as the Poisson's ratio, v .  

Identify HARDS as H' for linear strain hardening. 
Evaluate do according to (7.77) for plane strain and axi- 
symmetric situations. 
Evaluate do according to (7.78) for plane stress problems. 
Compute l /(H'idoTa) for later evaluation of the elasto- 
plastic matrix D,, in (7.47). 

7.8.5 Subroutine STIFFP 
This subroutine evaluates the stiffness matrix for each element in turn and 

differs from the linear elastic version, described in Section 6.3.2, only in that 
the elasticity matrix D is replaced (for the tangential stiffness approach at 
least) by the elasto-plastic matrix Dq defined in (7.47). This subroutine is 
called only when the element stiffnesses are to be reformulated as controlled 
by variable KRESL defined in subroutine ALGOR. Obviously the element 
stifhesses must be calculated for the first iteration of the first load increment 
and elastic behaviour must be assumed. Every other time this subroutine is 
accessed the stiffnesses are to be recalculated to account for any plastic 
deformation of the material and consequently the D,, matrix must be em- 
ployed. Apart from this change the element stiffness formulation process is 
identical to that for elastic materials as described in Section 6.3.2. 

Subroutine STIFFP will now be described and explanatory notes provided. 

SUBROUTINE STIFFP(CWRD,EPSTN.IINCS,LNODS,HATNO,MEVAB,HHATS, 
1 MPOIN,~OTV,NELEM,NEVAB,NCAUS,NNODE,NSTRE, 

NSTR1.POSGP.PROPS.WEIGP.MELEM.MfOTG. 

L 

Ci*** THIS SUBROUTINE EVALUATES THE STIFFNESS MATRIX FOR EACH ELEMENT 
C IN TURN 
C 
C*H++III+fl**+a*+++++++**(Ii*++**ii***iii*i*++++++++I)*+**i**+++t*iiI*+* 

DIMENSION BHATX(4,18),CARTD(2,9),COORD(HPOIN,2),DBHAT(4,18), 
DERIV(2,9) ,DEVIA(4) ,DMATX(4,4), 
ELCOD(2,9),EPSTN(m~G),ESTIF(18,18),UJODS(MELM,9), 
MATNO(MELEM) ,W%P(4),PROPS(MMATS,7) ,SHAPE!9), 
WEIGP(4),STRES(4),STRSG(4,mOTG), 
DVECT(4),AVECT(Q),CPCOD(2,9) 

IWOPI=6.283185308 
RGWIND 1 

SITP 1 
STFP 2 
STFP 3 
STFP 4 
STFP 5 
STFP 6 
SITP 7 
STFP 8 
STFP 9 
STFP 10 
STFP 11 
STFP 12 
STFP 13 
STFP 14 
STFP 15 
STFP 16 
STFP 17 
STFP 18 
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C 
.C*** LOOP OVER EACH ELEMENT 
C 

DO 70 IELEM:l,NELEM 
LPROP:MATNO( IELEM) 

C 
W* EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
c - 

W 10 1NODE:l , NNODE 
LNODE:IABS(LNODS( IELEM, INODE) ) 
IWSNr (LNODE-l)*2 
Do 10 IDIME=1,2 
IPOSN:IPOSN+l 

10 EL_COD(IDIME,INODE):COORD(LNODE,IDIME) 
THICK=PROPS(LPROP,3) 

C 
Q** INITIALIZE THE ELEMENT STIFFNESS MATRIX 
C 

DO 20 IEVABz1 , NEVAB 
DO 20 JEVAB:l , NEVAB 

20 ESTIF(IEVAB,JEVAB)=O.O 
ffiAsP.0 

L 

C+H ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 

DO 50 IGAUS=l,NCAUS 
EXISP=POSGP( IGAUS) 
DO 50 JGAUS=l,NCAUS 
ETASP=POSCP( JCAUS) 

STFP 19 
STFP 20 
STFP 21 
STFP 22 
STFP 23 
STFP 24 
STFP 25 
STFP 26 
STFP n 
STFP 28 
STFP 29 
STFP 30 
STFP 31 
STFP 32 
STFP 33 
STFP 34 
STFP 35 
STFP 36 
STFP 37 
STFP 38 
STFP 39 
STFP 40 
STFP 41 
STFP 42 
STFP 43 
STFP 44 
STFP 45 
STFP 46 
STFP 47 
STFP 48 
STFP 49 
STFP 50 
STFP 51 

Caw EVALUATE THE D-MATRIX STFP 52 
C STFP 53 

CALL MODPS(DMATX ,LPROP, MMATS, NTYPE, PROPS) STFP 54 
C STFP 55 

EVALUATE THE SHAPE FUNCTIONS, ELEMENTAL VOLUME, ETC . STFP 56 
C STFP 57 

CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) STFP 58 
CALL JACOB2(CARTD.DERIV.DJACB.ELCOD.CPCOD.IELEM.KCASP. STFP 59 

NNODE; SHAPE) STFP 60 
DVOLU=DJACB*WEICP( IGAUS )WEIGP( JCAUS) STFP 61 
IF(NTYPE.EQ. 3) DVOLU~DVOLU~IWOPI.CPCOD( 1 ,KCASP) STFP 62 
IF(THICK.NE.O.0) DVOLUrDVOLU*THICK 

E 
STFP 63 
STFP 64 

Cfw EVALUATE THE B AND DB MATRICES STFP 65 
C STFP 66 

CALL BMATPS(BMATX ,CARD, NNODE, SHAPE,GPCOD, ~PE,KCASP) STFP 67 
IF(IINCS.EQ. 1) GO TO 80 STFP 68 

GO TO 80 STFP 69 
STFP 70 

'90 STIES( ISTR1 )=STRSC(ISTRl ,KGAUS) STFP 71 
CALL INVAR(DEVIA,LPROP,MTS NCRIT, PROPS, SINT3 ,STEFF,STRES, STFP 72 

THETA,VARJZ,YIELD~ STFP 73 
CALL YIELDF( AVEIX, DEVIA, LPROP, MMATS, NCRIT, NSTR 1 , STFP 74 

PROPS.SINT3,STEFF,THETA,VARJ2) STFP 75 
CALL FLWPL( AVECT, ABETA ,DVECT, NTYPE, PROPS, LPROP, NSTR 1 , MMATS ) STFP 76 
DO 100 ISTRE=l ,NSTRE STFP 77 
DO 100 JSTREz1,NSTRE STFP 78 

100 MTX(ISTRE,JSTRE)=DMATX( ISTRE, JSTRE)-ABETA8DVECT( ISTRE) STFP 79 . DVECT( JSTRE) STFP 80 
80 CONTINUE 

CALL 
STFP 81 

DBE(BMRTX,DBMAT,DHATX,MEVAB,NEVAB,NSTRE,NSTRl) STFP 82 
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C 
C*** CALCULATE THE ELEMENT STIFFNESSES .- 

30 EST&(IEVAB, JEVAB)=ESTIF(IEVAB, JEXAB)+BMATX(ISTRE, IEVW* . DBMAT( ISTRE, JEVAB)*DVOLU 
50 CONTINUE 

C 
C*** CONSTRUCT THE LWER TRIANGLE OF THE STIFFNESS MATRIX 
C 

DO 60 IEVABz1,NEVAB 
W 60 JEVABz1,NEVAB 

60 ESTIFC JEVAB, IEVAB) ZESTIF( IEVAB, JEVAB) 
C 
C*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C CGORDINATES FOR EACH ELEMENT ON DISC FILE 
C 

WRITE( 1) ESTIF 
70 CONTINUE 

REXURN 
END 

STFP 17 
STFP 18 

STFP 19 

STFP 23 
STFP 24 
STFP 28-33 

STFP 34 
STFP 38-40 
STFP 41 

STFP 45-48 

STFP 49-50 
STFP 54 
STFP 58 

STFP 59-60 

STFP 61-63 

STFP 83 
STFP 84 
STFP 85 
STFP 86 
STFP 87 
STFP 88 
STFP 89 
STFP 90 
STFP 91 
STFP 92 
STFP 93 
STFP 94 
STFP 95 
STFP 96 
STFP 97 
STFP 98 
STFP 99 
STFP 100 
STFP 101 
STFP 102 
STFP 103 
STFP 104 
STFP 105 

Compute the value of 2 ~ .  
Rewind the disc file on which the element stiffness matrices will 
be stored in turn. 
Set to zero the counter which indicates the overall Gauss 
point location. So KGAUS ranges from 1 to NGAUS* 
NGAUS*NELEM. 
Enter the loop over each element in the structure. 
Identify the material property type of the current element. 
Store the element nodal coordinates in the local array ELCOD 
for convenient use later. 
Identify the element thickness. 
Zero the element stiffness array. 
Set to zero the element Gauss point counter. So KGASP 
ranges from 1 to  NGAUS*NGAUS. 
Enter the numerical integration loops and locate the position 
( 6 , ~ )  of the current point. 
Increment the local and global Gauss point counters. 
Call subroutine MODPS t o  evaluate the elasticity matrix, D. 
Evaluate the shape functions Ng and the derivatives aNt /a f ,  
aNt/2rl for the current Gauss point. 
Evaluate the Gauss point coordinates, GPCOD(IDIME, 
KGASP), the determinant of the Jacobian matrix, ( 3 ( and the 
Cartesian derivatives of the shape functions aNt/ax, aNg/ay 
(or aNg/&-, aNg/i?z for axisymmetric problems). 
Calculate the elemental volume for numerical integration as 
I J (  W ,  W, taking care to  multiply by the appropriate thickness 
or by 2ar for axisymmetric problems. Note that if a zero 
thickness is specified it is automatically taken to be unity. 
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STFP 67 Evaluate the B matrix. 
STFP 68 For the first time avoid the replacement of D by D,,, as 

defined in (7.47). 
STFP 69 Also for Gauss points a t  which the behaviour is elastic avoid 

the replacement of D by Dep. 
STFP 70-71 Store the total current stresses in the array STRES. 
STFP 72-76 Call subroutines INVAR, YIELDF and FLOWPL to evaluate 

the vectors a, (AVECT) and d ~ ,  (DVECT) and ABETA = 

1 /(HI + doTa). 
STFP 77-80 Evaluate Dep according to (7.47). 
STFP 82 Evaluate Dep B. 
STFP 86-90 Compute the upper triangle of the element stiffness matrix as 

STFP 91 End of loop for numerical integration. 
STFP 95-97 Complete the lower triangle of the element stiffness matrix by 

symmetry. 
STFP 102 Store the element stiffness matrix on disc file 1.  
STFP 103 Return to process the next element. 

7.8.6 Subroutine LINEAR 
The purpose of this subroutine is merely to determine the stresses from 

given displacements assuming linear elastic behaviour. This subroutine is 
employed in the residual force calculation to be described in the next section. 
The element displacement components, ELDIS(IDOFN, INODE) are 
entered into the subroutine, the strain components at the Gauss point under 
consideration, STRAN(ISTR1) calculated and finally the stress components 
are evaluated and stored in STRES(ISTR1). 

The subroutine is now listed and described. 

SUBROUTINE LINEAR( CARTD ,DMATX, ELDIS, LPROP, MMATS,NDOFN, NNODE NSTRE, LINR 1 
NTYPE , PROPS, STRAN. STRES , KCASP, CPCOD , SHAPE J LINR 2 

C * ~ * f f f f ~ i ~ i ~ i i i ~ ~ t i i i ~ ~ i i i * i ~ ~ ~ ~ i i i i ~ ( ~ ~ i i i i i i i i i i i i i ~ i * i i i i i *  LINR 3 
C LINR 4 
eft* THIS SUBROUTINE EVALUATES STRESSES AND STRAINS ASSUMING LINEAR LINR 5 
C ELASTIC BEHAVIOUR LINR 6 

DIMENSION ACASHl7.2) ,CARTD(2,9),DMATX(4,4),ELDIS(2,9), LINR 9 
LINR 10 
LINR 1 1  

DO 20 IDOFN- 1 , NDOFN 
20 JDOFN=l.NDOFN 

LINR 13 
LINR 14 - -. . . . . . 

LINR 15 
LINR 16 
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;*** CALCULATE THE STRAINS 

C 
C*** AND THE CORRESPONDING STRESSES 
C 

W 40 ISTRE.1 NSTRE 
STRES(ISTRE)=~.O 
W 40 JSTRE-1, NSTRE 

40 STRES(ISTRE) =STRES(ISTRE)+DMATX( ISTRE, JSTRE) *STRAN( JSTRE) 
IF(NTfPE.EQ.1) STRES(4)=O.O 
IF(NTYPE.EQ.2) STRES(4):POISS*(STRES(I)+STRES(2)) 
RETURN 
END 

LINR 17 
LINR 18 
LINR 19 
LINR 20 
LINR 21 
LINR 22 
LINR 23 
LINR 24 
LINR 25 
LWR 26 
LINR 27 
LINR 28 
LINR 29 
LINR 30 
LINR 31 
LINR 32 
LINR 33 
LINR 34 
LINR 35 
LINR 36 
LINR 37 
LINR 38 

LINR 12 Identify POISS as the Poisson's ratio of the element material. 
LINR 13-18 Calculate the Cartesian derivatives of the Gauss point dis- 

placement components aulax, aulay, avlax, W a y .  
LINR 22-27 Evaluate the strain components at the Gauss point according to 

for plane problems, 

for axisymmetric problems. 

LINR 31-34 Calculate the stress components, assuming elastic behaviour, 
according to a = DE. 
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LINR 35-36 For a plane stress problem set oz = 0 and set o, = v(a,+a,) 
for plane strain situations. 

7.8.7 Subroutine RESIDU 
The function of this subroutine is to  evaluate the nodal forces which are 

statically equivalent to the stress field satisfying elasto-plastic conditions. 
Comparison of these equivalent nodal forces with the applied loads gives the 
residual forces, according to (2.4), and this operation is carried out in sub- 
routine CONVER. Therefore RESIDU performs the same task for two- 
dimensional continua as subroutine REFOR3 undertook for uniaxial 
situations, and the reader is urged to review Section 3.12.2 before proceeding 
further. The logic applied in this subroutine is almost identical to that 
applied in Section 3.12.2. Below we reproduce the essential steps in an 
abbreviated form and expand only the steps which pertain to the case of two 
dimensional solids. 

During the application of an increment of load an element, or part of an 
element, may yield. All stress and strain quantities are monitored a t  each 
Gaussian integration point and therefore we can deterrninc whether or not 
plastic deformation has occurred at such points. Consequently an element 
can behave partly elastically and partly elasto-plastically if some, but not all, 
Gauss points indicate plastic yielding. For any load increment it is necessary 
to determine what proportion is elastic and which part produces plastic defor- 
mation and then adjust the stress and strain terms until the yield criterion 
and the constitutive laws are satisfied. The procedure adopted is as follows. 

Step a. The applied loads for the rtll iteration are the residual forces yr-l, 
given by (2.4) which give rise to displacement increments ddr, 
,according to  (2.12),?and sgajn increments dg. ,  ,.: :, .-,; ) , . -, - , - - . . ,- :. , , .+, .-, 

. . 
,. .. 

Step 6. Compute the ;kcremental stress changes; duer as doer = Dder 
where the subscript e denotes that we are assuming elastic behaviour. 

Step c. Accumulate the total stress for each element Gauss point as aer 
' = a'-l+dueT where a'-1 are the converged stresses for iteration 

r-1.  

Step d. The next step depends on whether or not yielding took place at the 
Gauss point during the (r- l)ih iteration. Therefore we check if - 
or-l>oy = oyO+H'ipr-l,  where or-' is the effective stress given 
by Column 3, Table 7.2, ay  is the uniaxial yield stress, (Column 4, 
Table 7.2), H' is the linear strain hardening parameter and ~ ~ r - 1  is 
the effective plastic strain existing at  the end of the (r- 1)th iteration. 
This expression is identical to the uniaxial case, Section 3.12.2, with 
a!l quantities replaced by the effective or equivalent values. If the 
answer is: 
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YES 
The Gauss point had previously yielded. 
Now check to see if Licr>ci-l where t i c r  
is the effective stress, Col. 3, Table 7.2 
based on stresses mer. If the answer is: 

NO YES 

The Gauss point is The Gauss point 
unloading elasti- had yielded 
cally and therefore previously and the 
go directly to stress is still 
Step g. increasing. There- 

fore all the excess 
stress usr -mr-1  

must be reduced to 
the yield surface as 
indicated in 
Fig. 7.10(a). There- 
fore the factor R 
which defines the 
portion of stress 
which must be 
modified to satisfy 
the yield criterion is 
equal to I. 

NO 
which implies that the Gauss point had 
not previously yielded. Now check to see 
if e r r >  a#. If the answer is: 

NO YES 

The Gauss point is The Gauss ,point 
still elastic and has yielded during 
therefore go application of load 
directly to Step g. corresponding to 

this iteration as 
shown in 
Fig. 7.10(b). The 
portion of the stress 
greater than the 
yield value must be 
reduced to the 
yield surface. The 
reduction factor R 
is given from 
Fig. 7.10fb) to be 

AB SJ - uy 
R = -  - - 

AC eer-Gr-l 

Fig. 7.10(a) Incremental stress changes in a n  already yielded point in a n  elasto- 
plastic continuum. 
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Fig. 7.10(b) Incremental stress changes at a point in an elasto-plastic con- 
tinuum at initial yield. 

Step e. For yielded Gauss points only compute the portion of the total stress 
which satisfies the yield criterion as ar-I - I -  (1 - R)da,'. 

Stepf. The remaining portion of stress, Rdaer must be effectively eliminated 
in some way. The point A must be brought onto the yield surface by 
allowing plastic deformation to occur. Physically this can be de- 
scribed as follows. On loading from point C, the stress point moves 
elastically until the yield surface is met at B. Elastic behaviour 
beyond this point would result in  a final stress state defined by 
point A. However in order to satisfy the yield criterion, the stress 
point cannot move outside the yield surface and consequently the 
stress point can only traverse the surface until both equilibrium 
conditions and the constitutive relation are satisfied. From (7.45), 
(7.46) and (7.47) we have 

which gives the total stresses ar satisfying clasto-plastic conditions 
when the stresses are incremented from ar-I.  Expression (7.92) is 
illustrated vectorially in Fig. 7.10 and the reader should note the 
similarity to Fig. 3.7(a). It  is seen that if a finite sized stress increment 
is taken, the final stress point D, corresponding to or, may depart 
from the yield surface. This discrepancy can be practically eliminated 
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by ensuring that the load increments considered in solution are 
sufficie.,!ly small. However the point D can be reduced to the yield 
surface by simply scaling the vector or. Denoting the effective stress, 
given by Col. 3, Table 7.2, due to stress or as Cr and noting that this 
value should coincide with or = r ~ y O f H ' 6 ~ '  if the point D lies on 
the yield surface, the appropriate scaling factor is readily seen to be 

This represents a scaling of the vector or which implies that the 
individual stress components are proportionally reduced. The 
normality condition for the plastic strain increment is evident from 
Fig. 7.10 since Ddha = Ddc,. 

Fig. 7.1 1 Refined process for reducing a stress point to the yield surface. 

If relatively large load increment sizes are to be permitted the 
process described'above can lead to an inaccurate prediction of the 
final point D on the yield surface if the stress point is in the vicinity 
of a region of large curvature of the yield surface. This is illustrated 
in Fig. 7.1 1 where the process of reducing the elastic stress to the 
yield surface is shown to end in the stress point D which is then 
scaled down to the yield surface to give point D'. Greater accuracy 
can be achieved by relaxing the excess stress to the yield surface in 
several stages.* Fig. 7.1 1 shows the case where the excess stress is 
divided into three equal parts and each increment reduced to the 
yield surface in turn. After the three reduction cycles to the stress 
point E the drift away from the yield surface can be corrected by 
simple scaling to give the final stress point E'. I! is seen that the final 

Alternative procedures for this operation are presented in Refs. 18 and 19 whilst 
a completely different approach to stress projection is followed in Ref. 20. 
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Step g. 
Step h. 

points D' and E'can be significantly different. An additional refine- 
ment which can be introduced is to scale the stress point to the yield 
surface after the reduction process for each cycle and not only after 
the final cycle as shown in Fig. 7.11. Obviously the greater the 
number of steps into which the excess stress AB is divided, the 
greater the accuracy. However the computation for each step is 
relatively expensive since the vectors a and d~ have to be calculated 
at  each stage. Clearly a balance must be sought and in this text the 
following criterion is adopted. The excess stress RdaSr is divided into 
m parts where n1 is given by the nearest integer which is less than 

where 3J-UY gives a measure of the excess stress AB and UY" is the 
initial uniaxial yield stress in Col. 4, Table 7.2 before the onset of 
work hardening. This criterion can be readily amended by the user. 
For elustic Gmss pni~its otllj~ calculate ar as d' = or-] +rlaer-. 
Finally, calculate the equivalent nodal forces from the element 
stresses according to 

Subroutine RESIDU is now listed and described. 

SUBROUTINE RESIDU(ASDIS.COORD,EFFST,ELOADtFACTO,IITER,LNODS, RSDU 1 
LPROP,MATNO,MELFM,MMATS,MPOIN,~OTG,~OTV,NDOFN,RSDU 2 
NELM,NEVAB,NGAUS,NNODE,N~Rl,NTIPE,POSCP,PROPS,RSDU 3 
NSTRE ,NCRIT, STRSC WEIGP TDISP, EPSTN) RSDU 4 

@md****t*i*ra*******************rt****kkrrrrr*r***rr**r*****~* RSDU 5 
C RSDU 6 
pH* THIS SUBROUTINE REDUCES THE STRESSES TO THE YIELD SURFACE AND RSDU 7 
.C EVALUATES THE ECUIVALENT NODAL FORCES RSDU 8 
C RSDU 9 
..................................................................... RSDU 10 

DWNSION ASDIS(MT0TV) ,AVECT(4) ,CARTD(2,9) ,COORD(MPOIN,2), RSDU 1 1  
DEVIA(4) ,DVECT(4) ,EFFST(KOTG) ,ELCOD(2,9),ELDIS(2,9), RSDU 12 
UOAD(W,l8),LNODS(MELM,9),POSCP(4),PROPS(MMATS,7), RSDU 13 
STRAN(4),STRES(4),STRSC(4,mOTG), RSDU 14 

'IWOPI=6.283185308- ' 
M) 10 UEM=l,NELEM 
DO 10 IEvAB.l, NEVAB 

lo ELOAD( IELM, IEVAB) =o. o 
KGAUSzO 
M) 20 ELEM= 1, NELM 
LPROP=MTNO( IELFM) 
UNIAX=PROPS(LPROP. 5 

RSDU 18 
RSDU 19 
RSDU 20 
RSDU 21 
RSDU 22 
RSDU 23 
RSDU 24 
RSDU 25 
RSDU 26 
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L 
Cue* COMPUTE COORDINATE.AND INCREMENTAL DISPLACEMENTS OF THE 
C ELEMENT NODAL POINTS - 
L 

DO 30 INODE z1,NNODE 
WODE=IABS(LNODS(IELM, INODE) ) 
NWSN=(LNODE-1) UNDOFN 
DO 30 IDOFN=l ,NDOFN 
NWSN=NPOSN+l 
ELCOD(IDOFN,INODE)=CWRD(LNODE, IDOFN) 

30 ELDIS(ID0FN. INODE) =ASDIS(NPOSN) 
CALL MODPS(DHATX, LPROP,MMATS, NTYPE, PROPS) 
THICK=PROPS(LPROP, 3) 
KCASP=O 

CALL SFR2(DERIV, ETASP,EXISP,NNODE,SHAPE) 
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,CPCOD,IELEM,KCASP, 

NNODE.SHAPE) 

IF(THICK.NE.O.0) DVOLU=DVCLU*THICK 
CALL BMATPS(BMATX, CARTD, NNODE, SHAPE ,GPCOD, NTYPE, KGASP) 
CALL LINEAR(CARTD,DMATX,ELDIS.LPROP,MMATS,NDOFN,NNODE,NSTRE, 

NTYPE, PROPS, STRAN. STRES, KGASP, CPCOD , SHAPE ) 
PREYS=UNIAX+EPSTN(KGAUS)*HARDS 

DESIG(ISTR1 )=STRES(ISTRl) 
150 SICHA(ISTRl)=STR%(ISTRl ,KCAUS)+STRES(ISTRl) 

CALL INVAR(DEVIA, LPROP. MMATS. NCRIT. PROPS. SINT?. STEFF. SIGMA, 

C d  INVAR (D~IA, LPROP, MHATS, NCRIT, PROPS, SINT~, STEFF, %TOT, 
THETA VARJ2 YIELD) 

'CALL YIELDF(AVEC~,DEVIA,LPROP,MMATS,NCRIT,NSTRI, 
PROPS,SINT3,STEFF,THETA,VARJ2) 

CALL FLCWPL(AVECT, ABETA,DVECT, WlYPE, PROPS, LPROP, NSTR1 ,MMATS) 
ACASH-0.0 
DO 100 ISTRl=l,NSTRl 

RSDU 28 
RSDU 29 
RSDU 30 
RSDU 31 
RSDU 32 
RSDU 33 
RSDU 34 
RSDU 35 
RSDU 36 
RSDU 37 
RSDU 38 
RSDU 39 
RSDU 40 
RSDU 41 
RSDU 42 
RSDU 43 
RSDU 44 
RSDU 45 
RSDU 46 
RSDU 47 ~, 

RSDU 48 
RSDU 49 
RSDU 50 
RSDU 51 
RSDU 52 
RSDU 53 
RSDU 54 
RSDU 55 
RSDU 56 
RSDU 

52; RSDU 5 
RSDU 59 
RSDU 60 

RSDU 62 
RSDU 63 
RSDU 64 
RSDU 65 
RSDU 66 
RSDU 67 
RSDU 68 
RSDU 69 
RSDU 70 
RSDU 71 
RSDU 72 
RSDU 73 
RSDU 74 
RSDU 75 
RSDU i6 
mu 77 
RSDU 78 
RSDU 79 
RSDU 80 
RSDU 81 
RSDU 82 
RSDU 83 
RSDU 84 
RSDU 85 
RSDU 86 

RSDU 89 
RSDU 90 
RSDU 91 
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@I* ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD 
C 90 CONTINUE 
@H 

GO TO 190 
60 DO 180 ISTAl:l,NSTRl 

180 STRsc(ISTR1 ,KGAUS) =STRSG( ISTR1, KGAUS)+DESIG( ISTR1) 
PTST(KGAUS)=YIELD 

C 
@*a CALCULATE THE EWIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELFMENT NODES 

40 CONTINUE 
20 CONTINUE 

RETURN 
END 
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RSDU 92 
RSDU 93 
RSDU 94 
RSDU 95 
RSDU 96 
RSDU 97 
RSDU 98 
R S D U  99 
RSDU 100 
RSDU 101 
RSDU 102 
RSDU 103 
RSDU 104 
RSDU 105 
RSDU 106 
RSDU 107 
RSDU 108 
RSDU 109 
RSDU 110 
RSDU 111 
RSDU 112 
RSDU 113 
R S D U  114 
RSDU 115 
RSDU 116 
RSDU 117 
RSDU 118 
RSDU 119 
RSDU 120 
RSDU 121 
RSDU 122 
RSDU 123 
RSDU 124 
RSDU 125 
RSDU 126 
RSDU In 

RSDU 18-19 
RSDU 20-22 

RSDU 23 
RSDU 24 
R S W  25 
RSDU 26-28 

RSDU 29 

RSDU 30-3 1 

RSDU 36-42 

Compute d(3) and 2n. 
Zero the array in which the equivalent nodal forces, calcu- 
lated in Step h,  will be stored. 
Zero the Gauss point counter over all elements. 
Loop over each element. 
Identify the element material property number. 
Identify the initial uniaxial yield stress, oyO (or c for Mohr- 
~ o h o m b  or Drucker-Prager criteria), the linear strain 
hardening parameter H' and the friction angle for Mohr- 
Coulomb and Drucker-Prager materials. 
For a Mohr-Coulomb material evaluate the equivalent 
yield stress as c cos4. 
For a Drucker-Prager material evaluate the equivalent 
yield stress as k' according to  (7.18). 
Store the element nodal coordinates in array ELCOD and 
the nodal displacements due to the application of the 
residual forces in array ELDIS. 
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RSDU 43 
RSDU 44 
RSDU 45 
RSDU 46-49 

RSDU 5&51 
RSDU 52 

RSDU 53-54 

RSDU 55-57 

RSDU 58 
RSDU 59-60 

RSDU 61 

RSDU 62-64 
RSDU 65-66 

RSDU 67-68 

RSDU 69-70 

RSDU 71 

RSDU 73-74 

RSDU 75 
RSDU 76-77 

RSDU 78 
RSDU 79-81 

RSDU 82 
RSDU 83-87 

Evaluate the elastic D matrix. 
Identify the element thickness. 
Zero the local Gauss point counter. 
Enter the loops for numerical integration and evaluate the 
local coordinates ( 5 , ~ )  at the sampling point. 
Increment the local and global Gauss point counters. 
Evaluate the shape functions Nr and their derivatives 
a ~ ~ l a t ,  aluilav. 
Evaluate the Gauss point coordinates GPCOD(IDIME, 
KGASP), the determinant of the Jacobian matrix I JI and 
the Cartesian derivatives of the shape functions aNt/a,, 
aNi/ay (or aNl/arr aNi/ar for axisymmetric problems). 
Calculate the elemental volume for numerical integration as 

I JI W g  W ,  taking care to multiply by the appropriate thick- 
ness or by 2 ~ r  for axisymmetric problems. The default 
value of the thickness is 1.0. 
Compute the strain matrix B for the Gauss point. 
Compute the stress increment STRES(ISTRl), assuming 
elastic behaviour as daer = Ddcr. 
Compute the yield stress for the (r-l)th iteration as 
cryo + H'cPr-l. 
Store due' as DESIG(ISTR1) and uer as SIGMA(ISTR1). 
Evaluate the effective stress in Col. 3, Table 7.2 and store as 
YIELD. 
Check if the Gauss point had yielded on the previous 
iteration, i.e. if er-l>cryo + Kcp'-1 which is the first 
operation of Step d. 
If the Gauss point was previously elastic, check to see if it 
has yielded during this iteration. 
For a Gauss point which yields during the iteration calculate 

Check to see if a Gauss point which had previously yielded 
is unloading during this iteration. If yes, go to 60. 

'A Otherwise, set R = 1. ,-:; 

Evaluate the number of-ste;s into which the excess stress, 
Rda/ is to be divided according to (7.94). 
Compute (1 - R). 
Compute a'-1 -+ (1 - R)daer according to Step e and store 
in SGTOT(ISTR1) and evaluate Rdaer/m and store in 
STRES(ISTR1). 
Loop over each stress reduction step. 
Compute the vectors a and do. 
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m D U  88-92 Compute dA according to (7.45) and store as DLAMD. 
mDU 93-96 Compute ar  = a'-' +(I - R)daer +Rdaer/m -dAdn/m. When 

the summation process from 1 to m required in DO 
LOOP to index 90 is completed this will result in 
a' = ar-l+da,r-dhdr, to  give the stress point E in 
Fig. 7.11. 

RSDU 97 Compute the effective plastic strain as follows. From (7.51) 
we have 

d~ = dAaTa = uTdcp, 

or rewriting the right hand side in terms of the effective 
stress 6 and effective plastic strain f P  we have 

dAaTa = CdCp, 

and therefore 

RSDU 98 Return to loop over the next stress reduction step. This 
statement is so placed that the final stresses ar  are scaled 
down to lie on the yield surface only after all the reduction 
steps have been completed. An additional refinement can be 
introduced where, with reference to Fig. 7.11, the stresses 
are scaled to the yield surface after each reduction step. 
Such a refinement is not normally required; however it can 
be introduced by moving statement RSDU 98 to the 
position indicated in RSDU 108. 

RSDU 99-100 Compute the effective stress 61. 
RSDU 101 Evaluate olr0 + H'cpr. 
RSDU 102-105 Factor the stresses a' to  ensure that they lie on the yield 

surface, according to a' = a'(uyO + H'tpr)/6r as indicated 
in Fig. 7.11. 

WDU 106 Store the effective stress 67' in array EFFST. 
108 Location of end of loop if the refinement indicated in 

RSDU 98 is to be included. 
RSDU 111-113 For elastic Gauss points compute ar as a r - l f d a k  and 

store 6' in EFFST. 
RSDU 117-123 Compute the equivalent nodal forces as 

RSDU 124-125 Termination of loop for numerical integration and over 
each element respectively. 
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7.8.8 Subroutine OUTPUT 
This subroutine outputs the results at a frequency determined by the 

output parameters NOUTP(1) and NOUTP(2) whose role is described in 
Section 6.53. The principal stresses and direction are also calculated in this 
subroutine and these are given by the following expressions 

2 7 x y  
8 = tan-'( 

'Jx - 'Jy 

with x and y being replaced by r and z for the axisymmetric case. The term 0 
defines the angle which the maximum principal stress makes with the y (or z )  
axis; a positive angle being measured anticlockwise. 

This subroutine is largely self-explanatory and is listed below. 

SUBROUTINE OUTPUT(IITER,~OTG,~OTV,MVFIX,NELEM,NGAUS,NOFIX, OTPT 1 
NOUTP, NPOIN, NVFIX, STRSG ,TDISP,TREAC, EPSTN, OTPT 2 

... . 

DIMENSION NOFIX(MVF1X) ,NOUTP(2) ,STRSG(II,MTOTG) ,STRSP(3), OTPT 9 
TDISP(~OTV) ,TREAC(MVFIX, 2) ,EPSTN(MTOTG) OTPT 10 

KOUTP=NOUTP( 1) OTPT 11 

C*** OUTPUT DISPLACEMENTS 

WRITE(6,900) 
900 FORMAT( 1 H0,5X, 13HDISPLACEMENTS) 

IF(NTYPE.NE.3) WRITE(6,950) 
950 FORMAT(lH0,6X,IIHNODE,6X,7HX-DISP.,7X,7HY-DISP.) 

IF(NTYPE.EQ.3) WRITE(6,955) 
955 FORMAT(lHO,SX,IIHNODE,6X,7HR-DISP.,7X,7HZ-DISP.) 

DO 20 IPOIN=l,NPOIN 
NGASH:IPOIN*2 
NG1SH:NGASH-2+1 

20 WRITE(6,910) IPOIN, (TDISP( IGASH) , IGASH=NGISH ,NGASH) 
910 FORMAT(I10,3E14.6) 
10 CONTINUE 

C 
Ci** OUTPUT REACTIONS 
C 

OTPT 12 
OTPT 13 
OTPT 14 
OTPT 15 
OTPT 16 
OTPT 17 
OTPT 18 
OTPT 19 
OTPT 20 --. . ~ 

OTPT 21 
OTPT 22 

OTPT 24 
OTPT 25 
OTPT 26 
OTPT 27 
OTPT 28 
OTPT 29 
OTPT 30 
OTPT 31 
OTPT 32 
OTPT 33 
OTPT 34 
OTPT 75 



ELASTO-PLASTIC PROBLEMS IN TWO DIMENSIONS 259 

DO 40 IVFIXr 1 , NVFIX 
WRITE(6.910) NOFIX(IVFIX).(TREAC(IVFIX.IDOFN).IDOFN=l.2~ 

OTPT 37 
OTPT 38 
OTPT 39 
OTPT 40 
OTPT 41 
OTPT 42 
OTPT 43 

- 
C 
C*** OUTPUT STRESSES OTPT 44 
C OTPT 45 

IF(KOUTP.LT.3) GO TO 50 OTPT 46 
IF(NTYPE.NE.3) WRITE(6,970) OTPT 47 

970 FORMAT( lHO,lX,4HG. P., 6X, gHXX-STRESS,5X,gHYY-STRESS,5X, 9HXY-STRESS,OTPT 48 
.5X, 9HZZ-STRESS,6X, 8HMAX P. S., 6X, 8HMIN P.S., 3X,5HANGLE,3X, OTPT 49 
. 6HE.P.S.) OTPT 50 
IF(NTYPE.EQ.3) WRITE(6,975) OTPT 51 

975 FORMAT( 1HO,lX,4HG.P. ,6X,gHRR-STRESS,5X,9HZZ-STRESS,5X, 9HRZ-STRESS,OTPT 52 
.5X, 9HTT-STRESS,6X,8HMAX P.S. ,6X, 8HMIN P.S., 3X, SHANGLE, 3X, OTPT 53 

KELGSzO 
WRITE(6.930) IELEM 

930 FORMAT( i~6,5~, 13HELEMENT NO. =, 15) 
DO 60 IGAUS=l, NGAUS 
DO 60 JGAUS:l,NGAUS 
KGAUS:KGAUS+l 

60 WRITE(6 940) KELGS. (STRSG( ISTR1 ,KGAUS) , ISTR1:1,4), . (STRSPI ISTRE) , ISTREZI ,3) , EPSTN(KGAUS) 
940 FORMAT(I5,2X,6E14.6,F8.3,E14.6) 
50 CONTINUE 

RETURN 

OTPT 54 
OTPT 55 
OTPT 56 
OTPT 57 
OTPT 58 
OTPT 59 
OTPT 60 
OTPT 61 
OTPT 62 
OTPT 63 
OTPT 64 
OTPT 65 
OTPT 66 
OTPT 67 
OTPT 68 
OTPT 69 
OTPT 70 
OTPT 71 
OTPT 72 
OTPT 73 
OTPT 74 
OTPT 75 
OTPT 76 

END OTPT 77 

OTPT 11-13 Set the output indicator, KOUTP, according to whether o r  not 
this is the first iteration of a load increment or not. If it is the 
first iteration the results will be output according to NOUTP(1) 
but for a converged solution the results are output according to 
NOUTP(2). 

OTPT 17-29 For an output code value of 1 or greater, output the nodal 
displacements after printing the appropriate headings. 

OTPT 33-42 For an output code of 2 or greater, output appropriate head- 
ings and the reactions at  restrained nodal points. 

OTPT 46 For an output code of 3 output the Gauss point stresses. 
OTPT 47-54 Write appropriate headings. 
OTPT 56-59 Loop over each element and write the element number. 
OTPT 60-61 Loop over each element Gauss point. 
OTPT 62-71 Evaluate the principal stresses and direction for each Gauss 

point according to (7.97). 
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OTpT 72-74 Output the Cartesian stress components, the principal stresses 
and direction and the total effective plastic strain for each 
Gauss point. This latter quantity gives an immediate indication 
whether the Gauss point has yielded or not, since it will be 
zero for all elastic points. 

7.8.9 The main, master or controlling segment 
This segment controls the calling, in order, of the other subroutines and is 

similar in structure to the segment described in Section 3.8 for one-dimen- 
sional situations. Its other function is to control the iterative process and also 
the incrementing of the applied loads. 

The following channel numbers are employed by the program: 5 (card 
reader), 6 (line printer), l ,2 ,  3,4,8 (scratch files). 

This routine is self-explanatory and is presented below without further 
comment. 

C PROGRAM FOR THE ELASTO-PLASTIC ANALYSIS OF PLANE STRESS, PLAS 3 
C PLANE STRAIN AND AXISYMMETRIC SOLIDS PLAS 4 
C.1I***********************i*ii*************************************** p m  5 

DIMENSION ASDIS(300) ,COORD(150.2) .ELOAD(40,18) ,ESTIF(18,18). PLAS 6 

c*** PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONING 
C 

PLAS 13 
PLAS 14 
PLAS 15 
PLAS 16 
PLAS 17 

MVFIX, NWFN; NPROP; NSTRE~ 
C 
C*** CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA ,. 

CALL DIMEN~HBOFA.MELEM,MEVAB.MFRON,~TS,HPOIN.MSTIF.~OTG.~~, PM 18 
PLAS 19 
PLAS 20 

L 

CALL INPUT(CWRD, IFFIX,LNODS,MATNO,MELM ,MEVAB, MFRON ,WTS, 
MPOIN,KKTV, MVFIX ,NAU;O, 
NCRIT,NDFRO,NWFN,NELEM,NEVAB,NGAUS,NGAU2, 
NINCS,NMATS.NNODE.NOFIX.NWIN.NPROP.NSTRE. 
NSTRI ;~OTG;NTOTV; - NTYPE, NVFIX, WSCP, PRESC, PROPS,WEIGP) 

L 

CSH CALL THE SUBROUTINE WHICH COMPUTES THE CONSISTENT LOAD VECTORS 
C FOR EACH ELFMENT AFTER READING THE RELEVANT INPUT DATA 
C 

CALL LOADPS( COORD, MODS, MATNO, MELM, HMATS ,MPOIN, NELM, 
NEVAB, NCAUS.NNODE,NPOIN NSTRE, NTYPE, POSCP, 
PROPS, RLOAD ,WEEP, NDOFNI 

C -. 

C*** INITIALISE CERTAIN ARRAYS 
C 

PLAS 21 
PWIS 22 
PLAS 23 
PLAS 24 
PLAS 25 
PLAS 26 
PLAS 27 
PLAS 28 
PLAS 29 
PWLS 30 
PLAS 31 
PLAS 32 
PLAS 33 
PLAS 34 
PLAS 35 
PLAS 36 
PLAS 3jj 
PWIS 3 
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C 
C4.4 LOOP OVER EACH INCREMENT 
L 

DO 100 IINCS = 1,NINCS 
C 
C444 READ DATA FOR CURRENT INCREMENT 
C 

CALL INCREM(ELOAD,FIXED,IINCS,MELEM,MEVAB,MITER,hTuTV, 
MvFIX,NDOFN,NELEM,NEVAB,NOUTP,NOFIX,NTOTV, 
NVFIX,PRESC,RLOAD,TFACT,TLOAD,TOLER) 

C 
C*H LOOP OVER EACH ITERATION 
I: - 

W 50 IITER = 1,MITER 
C 
C444 CALL ROUTINE WHICH SELECTS SOLUTION ALORITHM VARIABLE KRESL 
L 

CALL AU;OR(FIXED IINCS, IITER , KRESL , MTOTV, NALGO, NT~TVI 
C 

26 1 

PLAS 39 
PLAS 40 
PLAS 41 
PLAS 42 
PLAS 43 
PLAS 44 
PLAS 45 
PLAS 46 
PLAS 47 
PLAS 48 
PLAS 49 
PLAS 50 
PLAS 51 
PLAS 52 
PLAS 53 
PLAS 54 
PLAS 55 
PLAS 56 
PLAS 57 
PLAS 58 
PLAS 59 
PLAS 60 
PLAS 61 
PLAS 62 

C444 CHECK WHETHER A NEW EVALUATION OF THE STIFFNESS MATRIX IS REQUIRED PLAS 63 
C PLAS 64 

IF(KRESL.EQ. 1 ) CALL STIFFP(CM)RD;EPSTN, IINCS, LNODS,MATNO, PLAS 65 
MEVAB,MMATS,MPOIN,HTOTV,NELEM,NEVAB,NGAUS,NNODE, PLAS 66 
NSTRE,NSTRl,POSGP,PROPS,WEIGP,MELEM,MTOTG, PLAS 67 
STRSG,KlYPE.NCRIT) PLAS 68 

PLAS 69 
PLAS 70 

Ci4* SOLVE EWATIONS PLAS 71 
C PLAS 72 

CALL FRONT(ASDIS,ELOAD,EQRHS, EQUAT, ESTIF,FIXW, IFFIX, IINCS,IITER, PLAS 73 
GLOAD,GSIF,LOCEL,WODS,KRESL,MBUFA,MELEM,MEVAB,MFRON, PLAS 74 
MSTIF,HTOTV,MVFIX,NACVA,NAMEV,NDEST,NDOFN,NELEM,NEVAB, PLAS 75 
NNODE.NOFIX.NPIVO.NPOIN.NTOTV.TD1SP.TLOAD.TREAC. PLAS 76 
VECRV j PLAS 77 

C 
C4** CALCULATE RESIDUAL FORCES 

PLAS is 
PLAS 79 

C PLAS 80 
CALL WIDU(ASDIS,CM)RD,EFFST ,ELOAD,FACTO, IITER,LNODS, PLAS 81 

LPRoP,MATNO,MELEM,MMATS,MPOIN,MTOTG,MTOTV,NDOFN, PLAS 82 
NELEM,NEVAB,NGAUS,NNODE,NSTRl,NTYPE,POSGP,PROPS, PLAS 83 

C 
NSTRE,NCRIT,STRSG,WEIGP,TDISP,EPSTN) PLAS 84 

PLAS 85 
CtW CHECK FOR CONVERGENCE 
C 

PLAS 86 
PLAS 87 

CALL CONVERELOAD, IITER, WODS, MELEM ,MEVAB, MTOTV, NCHEK, NDOFN, PLAS 88 
NELEM ,NEVAB, NNODE, NTOTV, PVALU , STFOR ,TLOAD, TOFOR ,TOLEU) PLAS 89 

C PLAS 90 
Ci44 OUTPUT RESULTS IF REQUIRED - PLAS 91 
L PLAS 92 

IF(IITER.E~.I.AND.NOUTP(I) .GT.O) PLAS 93 
.CALL OUTPUT( IITER, KTOTG, HTOTV, W I X ,  NELEM, NGAUS, NOFIX, NOUTP, PLAS 94 

NWIN,NVFIX,STRSG,TDISP,TREAC,EPSTN,NnPE, NCHEK) PLAS 95 
C PLAS 96 
C4** IF SOLUTION HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS PLAS 97 
C PLAS 98 

IF(NCHEK.EQ.0) GO TO 75 PLAS 99 
50 CONTINUE PLAS 100 

C PLAS 101 
Ci.4 PLAS 102 
C PLAS 103 
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IF(NALGO.EQ.2) GO TO 75 PLAS 104 
STOP PLAS 105 

75 CALL OUTPUT( IITER, MTOTG. mOTV, MVFIX . NELEM, NCAUS , NOFIX, NOUTP , PLAS 106 
NPOIN, NVFIX', STRSC;TDISP;TREAC; EPSTN;NTYPE, NCHEK~ PLAS 107 

loo CONTINUE PLAS 108 
STOP PLAS 109 
END PLAS 116 

7.9 Numerical examples 
The first numerical example considered is illustrated in Fig. 7.12(a). The 

problem studied is that of a thick cylinder subjected to a gradually increasing 
internal pressure, with plane strain conditions being assumed in the axial 
direction. A Von Mises yield criterion is assumed and the numerical solutions 
obtained compared with the theoretical results of Reference 14. The pressure/ 
radial displaceGent characteristics are shown in Fig. 7.12(b) and good 

Elastic modulus. E =  2.1 x 10' dN/mmZ 
Poissons ratio, P = 0.3 
Uniaxial yield stress. n,= 24.0 dN/mmZ 
Strain hardening parameter, H '  = 00 

Von mises yield criterion 

/ ,  I I I I I I I 

4 8 12 16 20 24 28 32 
displacement of inner face ( x  105 mm) 

Fig. 7.12 (a) Mesh and material properties employed in the elasto-plastic analysis 
of an internally pressurised thick cylinder under plane strain conditions. (b) Dis- 
placement of the i ~ e r  surface with increasing pressure for the problem of Fig. 

7.12(a). 
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agreement between the numerical and analytical solutions is cvidcnt. In thc 
numerical studies, collapse was deemed to have occurred if the iterative 
procedure diverged for an incrclnental load increase. 

20 P = 14 dN/mrnZ 

12 

3 polnr gauss 
rule 
2 point gauss 

theory (Ref. 14) 
0 
100 I20 140 160 180 200 

. . . . . . . . 
Fig. 7.13 Hoop stress distributions at various pressure values for the problem 

of Fig. 7.12(a). 

Fig. 7.13 shows the circumferential (hoop) stress distributions for specified 
Pressure values. Again a good agreement is evident. In solution both a two- 
point and three-point Gaussian integration rule was considered. Whilst the 
nodal displacements obtained by use of both rules are practically identical, it 
is seen from Fig. 7.13 that use of a 2 x2  integrating rule gives superior stress 
values to  a 3 x 3 rule. This is a general result for elasto-plastic problems and 
therefore use of a two-point rule is recommended. This phenomenon is an 
example of the benefit of a reduced integration order for parabolic isopara- 
metric elements.('s) 
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No convergence 

0 0.1 0.2 
Central deflection, w 

Fig. 7.14 Load/central deflection response for a uniformly loaded simply supported 
circular plate. 

The second example considered is the simply supported circular plate 
shown in Fig. 7.14. 

The plate is modelled by five axisymmetric elements and the loading takes 
the form of a progressively increasing uniformly distributed load. The growth 
in central deflection with increasing load is shown in Fig. 7.14. A converged 
solution was obtained for P = 270 but the numerical process diverged for 
P = 280 and consequently the collapse load is taken to be 270. This is in 
good agreement with the value of 260 quoted in Ref. 16, particularly in 
view of the coarse mesh employed in the present study. Fig. 7.15 shows the 
deflection profile with increasing applied load. 

Fig. 7.15 Deflection profiles for the problem of Fig. 7.14 at various applied 
load values. 
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7.10 Problems 
-7.1 In Section 7.2.1 it was stated that the Von Mises law implies that 

yielding begins when the (recoverable) elastic energy of distortion, D, 
reaches a critical value. Prove this by showing that Jz' is proportional 
to D, since D can be written as 

Fie. 7.16 Geometric representation of the Berg yield criterion-Problem 7.2. 

7.2 A yield criterion has been proposed by Berg(l7) which attempts to 
account for the tensile failure of a material due to the formation of 
voids at a sufficiently high strain level. The yield surface is illustrated in 
Fig. 7.16 and can be seen to be made up of two distinct portions. For 
stress levels below a mean hydrostatic tension of PI the material yields 
according to the Von Mises cylinder of radius S. The yield surface in 
the tensile range is terminated by an elliptic cap whose extremity is 
defined by Po. The three constants S, PI and Po are material constants 
and must be experimentally determined. The two distinct portions of 
the yield surface can be expressed as 
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d2(Jz1)+ = S for am <PI 

[2Jz'+H(um  PI)^]* = S PI< am<Po, (7.99) 

where H = S 2 / ( P ~ - P ~ ) 2  and urn is the mean hydrostatic pressure. 

Show that this yield criterion can be expressed in the form of three 
constants C1, Cz and C3 as indicated in Section 7.4 where 

7.3 A certain material yields when the maximum principal stress reaches a 
critical value, Y. Assuming identical behaviour in tension and com- 
pression, determine the geometrical form of the yield surface. The 
solution is given in Fig. 7.17. 

Fig. 7.17 n plane representation of a yield criterion based on maximum principal 
stress values-Problem 7.3. 

7.4 The assumption of a linear strain hardening material law may prove to 
be inadequate for certain situations. If the uniaxial stress/strain test 
curve for the material is known, then it is possible to represent the 
stress-plastic strain relationship in a piecewise linear fashion as shown 
in Fig. 7.18 and the instantaneous yield stress can be written in the 
form or = o y o + S ( ~ ~ )  -where S(zP) is the piecewise linear function 
describing the increase (or decrease) in the initial yield stress with 
the increase of effective plastic strain tp. The program modifications 
required to  describe this behaviour will all be included in subroutine 
RESIDU, except for changes in material property specification which 
will need to be made in subroutine INPUT. Carry out all necessary 
modifications. 
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I Stress. o 

- 
Effective plastic strain Fp 

AZP 

Fig.7.18 Piecewiselinear representation of material strain hardening-Problem 7.4. 

By using the mesh of Fig. 7.12(a) and solving as an axisymmetric 
problem, use program PLANET (documented in Appendix 11, Section 
A2.1) to determine the elasto-plastic stress and displacement distri- 
butions in a sphere when it is loaded by an incrementally applied 
internal pressure. The dimensions and material properties of the 
sphere are given by reference to Fig. 7.12. Assume a Tresca yield 
criterion for solution and compare your results with the solution given 
in Ref. 1. 
Use program PLANET to solve the problem illustrated in Fig. 1.2, 
Chapter 1. Use both a Tresca and Von Mises yield criterion and com- 
pare the plastic zone distributions obtained with those of Fig. 1.2. 
Subroutine CONVER, described in Section 6.5.4, bases convergence 
of the nonlinear solution process on the global norm of the residual 
force vector. Modify subroutine CONVER so that convergence is 
based on expression (3.27) in which the summation signs are absent; 
so that convergence is monitored locally at each of the nodes I to N in 
turn. 
Modify subroutine CONVER, Section 6.5.4 so that convergence is 
monitored locally at each node according to the displacement changes 
that occur during a particular iteration, r, as follows. 

l Adr I - X 100 < TOLER, 
Id1 l 

where dl is the elastic displacement occurring upon application of the 
load increment and Ad? is the change in nodal displacement during the 
rth iteration. 
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7.9 Modify program PLANET to undertake the elasto-plastic solution of 
three-dimensional solids. T o  simplify the task consider only the Von 
Mises yield criterion and assume that the solid is loaded by nodal point 
loads only. 

7.10 The yield criterion to be employed in program PLANET is specified by 
means of control parameter NCRIT in subroutine INPUT described in 
Section 6.5.1. In some applications, such as steel-concrete composites, it 
is necessary to employ a different yield surface for different parts of the 
structure. Modify program PLANET so that the yield criterion 
governing elasto-plastic behaviour is separately specified for each 
element in the solid. 
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Chapter 8 
Elasto-viscoplastic problems in 

two dimensions 

Introduction > .  

In all inelastic deformations time rate effects are always present to some 
degree. Whether or not their exclusion has a significant influence on the 
P&iction of the material behaviour depends upon several factors. In the 
study of structural components under static loading conditions at normal 
temperatures it is accepted that time rate effects are generally not important 
and the  conventional theory of plasticity, as described in Chapter 7, then 
models the behaviour adequately. However metals, especially under high 
temperatures, exhibit simultaneously the phenomena of creep and visco- 
plasticity. The former is essentially a redistribution of stress and/or strains 
with time under elastic material response while the latter is a time dependent 
plastic deformation. Experimental observations cannot distinguish between 
the two phenomena and their separation has been largely an analytical 
convenience rather than a physical requirement. Numerical processes, as 
described in this chapter, allow the simultaneous description of both effects. 

Afurther situation in which time rate effects are important is in the dynamic 
transient loading of structures. For example, it can be experimentally demon- 
strated that the instantaneous .. yield stress of materi.alsund_er -~ high strah - rates 

be significantly greater than the corresponding .~ qua--static ylu~. This % of problem z > e &  kith in Chapter 10. 
In this chapter we utilise the theory of viscoplasticity to provide a unified 

approach to  problems of creep and plasticity. As well as providing solutions 
to timedependent situations the viscoplastic algorithm can provide economic 
solution for classic elasto-plastic problems since it can be readily shown that 
the steady-state solution of the viscoplastic problem is identical to the 
E o r ~ e ~ ~ o n d i n g  conventional static elasto-plastic solution. Furthermore, by 
reducing the yield stress of the material to zero, elastic creep problems can be 
solved. 

The concept of 'overlay models' is also introduced in this chapter. In this, 
the solid is assumed, for mathematical convenience only, to be composed of 
several layers o r  overlays each of which undergo the same deformation. By 
assigning different properties to each overlay a composite behaviour can be 
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obtained which exhibits all the essential characteristics of the visco-elastic- 
plastic response of many real materials. 

The basic one-dimensional rheological model developed in Chapter 4 is 
now extended to the case of a general continuum and the essential steps 
employed in the numerical solution algorithm are discussed. Since most of 
the matrix expressions involved in viscoplastic analysis are common to 
conventional elasto-plastic theory, the majority of the subroutines developed 
in Chapter 7 can be again used with little or no change. The additional sub- 
routines required are then constructed and assembled to form a working 
program. Finally it is briefly demonstrated how the overlay principle can be 
used to simulate a complex material response. 

8.2 Theory of elasto-viscoplastic solids 

8.2.1 Basic expressions 
In the usual manner for nonlinear continua problems it is assumed that the 

total strain, E, can be separated into elastic, E,, and viscoplastic, rap, com- 
ponents, so that the total strain rate can be expressed ad-3) 

where (.) represents differentiation with respect to time. The total stress rate 
depends -_ on . ~ the-elastic - strain rate .. according to -- - -  

where D is the elasticity matrix. The onset of viscoplastic behaviour is 
governed by a scalar yield condition of the form 

in which Fo is the uniaxial yield stress which may itself be a function of a 
hardening parameter, K. For frictional materials Fo is the equivalent yield 
stress as given by Column 4, Table 7.2. It is assumed that viscoplastic flow 
occurs . . for values of F> Fo only. 

It is now necessary to choose a specific law defining the viscoplastic strains. 
The simplest option is one in which the viscoplastic strain rate depends only 
on the current stresses, so that 

This relationship can be generalised to include strain hardening and tempera- 
ture dependence and the influence of state dependent variables, such as 
damage parameters for rupture theories, can also be considered. 
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One explicit form of (8.4) which has wide applicability, is offered by the 
following e t &  flow rule.c4) 

in which Q = Q(n, evP, K )  is a 'plastic' potential and y is a fluidity parameter 
controlling the plastic flow rate. The term @(x) is a positive monotonic - 
increasing function for x>O and the notation < ) implies 

(@(x)) = @(x) for x>O 

<w> = 0 x<o .  

Comparison of (8.5) with (7.28) shows an analogy between the flow rule of 
conventional non-associated plasticity and the present definition of visco- 
plastic flow rate. If, once again, we restrict ourselves to  associated .- plasticity 
situa@ns, in which case F = Q, expression (8.5) reducesto- 

where the same definition of the flow vector a is employed as in (7.42). 
Different choices have been recommended@) for the function @. The two 
most common versions are 

and 

in which M and N are arbitrary prescribed constants. The latter option, when 
employed in (8.7) can be made to model the Norton power law of metallic 
creep by assigning the threshold uniaxial yield value, Fo, to  zero (or to an - 
arbitrarily small value for; numerical convenience). . . 

8.2.2 The viscoplastic strain increment 
With the strain rate law expressed by (8.7) we can define a strain increment 

occurring in a time interval At, = [,+I - t ,  using an implicit time 
stepping scheme, ado) 

For O = 0 we obtain the Euler time integration scheme which is also referred 
to as 'fully explicit' (or forward difference method) since the strain increment 
is completely determined from conditions existing at  time, t,. On the other 
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hand O = 1 gives a 'fully implicit' (or backward difference) scheme with the 
strain increment being determined from the strain rate corresponding to the 
end of the time interval. The case O = 4 results in the so-called 'implicit 
trapezoidal' scheme which is also known generally as the Crank-Nicolson 
rule in the context of linear equations. 

To  define 8,,nf1 in (8.10) we can use a limited Taylor series expansion and 
write 

8,,n+l = hvpn + H n  han ,  (8.11) 
where 

(8.12) 

and Aan is the stress change occurring in the time interval At, = t ,+ l - t , .  
Thus (8.10) can be rewritten as 

where 
C'h = @At, HI&. 

We draw the attention of the reader to the fact tha-t the matrix H defined in 
(8.12) is the matrix whose eigenvalues determine the limiting time step length, 
At, which can be employed in the explicit integration schemes. The matrix H 
depends on the stress level and no difficulty arises in its evaluation and 
specific forms will be developed in Section 8.5. 

8.2.3 Stress increments 
Using the incremental form of (8.2) we obtain 

Or expressing the total strain increment in terms of the displacement in- 
crement as 

A@ = BnAdn, (8.1 6) 

and substituting for Ae,,n from (8.13), then (8.15) becomes 

Ann = DnlBnAdn -tiupnAtn), 
where 

Sn = (If DO)-ID = (D-l+Cn)-l. 

I n  (8.16) and (8.17) the notation Bn is employed to denote the possibility 
that the strain matrix may not be constant throughout the solution. For 
example, if large deformations are to be considered, the strain matrix for a 
Lagrangian formulation is nonlinear and can be written 
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where B" represents the standard linear terms which do not vary during 
solution and B.\.L~' contains the nonlinear quadratic terms. These lattcr 
expressions are dependent on the current displacements and therefore vary 
throughout the solution process. 

The matrix Dn is a symmetric matrix when thc visco-plastic law is associ- 
Ge. For the non-associated case, the matrix @ a  is unsymmetric, requiring 
unsymmetric equation solvers for analysis. 

For the solution of linear elastic problems by the explicit scheme (0 = O), 
equation (8.17) simplifies considerably to give 

An'" D(BAd'"-ivpn Atn). (8.20) 

8.2.4 Equations of equilibrium 
The equations of equilibrium to be satisfied at any instant of time, r n ,  are 

where f n  is the vector of equivalent nodal loads due to applied surface 
tractions, body forces, thermal loads, etc. During a time increment the 
equilibrium equations which must be satisfied are given by thc incremental 
form of (8.21) to  be 

in which A f n  represents the change in loads during the time interval At,. In 
the majority of problems encountered in engineering the load increments are 
applied as discrete steps and thus A/l" = 0 for all time steps other than the 

-. . 

fi$ with& an increment. 
Using (8.13)-and (8.20) the displacement increment occu~ring during time 

step Atn can be calculated as 

where is the tangential stiffness matrix with the following form 

and AVn are termed the incremental pseudo-loads. The displacement in- 
crements, Adn, when substituted back into (8.20) give the stress increments 
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A a n  and thus 
,,n+l = a n +  A a n  

Use of (8.1 5) and (8.1 6) gives 

= BnAd* - D-lAa", 
and then 

evpn+l = E upn + A ~ v p ~ .  

Arrival a t  stationary or steady state conditions can be monitored by examin- 
ation of the strain rates. In particular &,, as given by (8.7), is calculated at  
each time interval and the time marching process halted as soon as this 
quantity becomes tolerably small. 

8.2.5 Equilibrium correction 
The stress increment calculation is based on a linearised form of the 

incremental equilibrium equations (8.22). Therefore the total stresses, an+', 
obtained by accumulating all such stress increments are not strictly correct 
and will not exactly satisfy the equations of equilibrium, (8.21). There are 
several solution procedures available for applying the necessary correction 
and Reference 7 discusses the relative merits of various options. The simplest 
approach is to evaluate a"+' according to (8.20) and (8.25) and then compute 
the residual, or out-of-balance, forces, yl, as 

noting, for geometrically nonlinear problems, that Bn+l is evaluated for a 
displacement state dn+l. This residual force is then added to the applied force 
increment at the next time step. Such a technique avoids an iteration process 
and at  the same time achieves a reduction in error. 

8.3 Selection of the time step length 
It can be shown(l4) that the time integration scheme formally represented 

by (8.10) is unconditionally stable for values of O > 4. This implies that the 
time marching scheme is numerically stable but does not guarantee the 
accuracy of the solution at  any stage; so that in practice even for values of 
O 3 4  limits must be placed on the time step length in order to achieve a 
valid solution. 

For O < &  the integration process is only conditionally stable and numerical 
time integration can only proceed for values of At, less than some crit~cal 
value. We now proceed to establish rules for choosing the time step length 
for computation. 
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Schemes can be employed in which the time step length can be either 
constant or vary for each time interval. In the variable scheme the magnitude 
of the time step is controlled by a factor r which limits the maximum effective 

strain increment, . A<,," as a fraction of the total effective strain, -- _ 
zn, SO that 

For isoparametric elements, all strains are evaluated at  the Gaussian inte- 
gration points. Therefore At,  must be computed to  satisfy (8.29) at each such 
point and the least value taken for analysis. A variant on the above is to limit 
the time step length according to 

. - 

in which errn is the first total strain invariant and is the first visco- ..-- - 
plastic strain rate invariant. Thus At, can be formally written for this case as 

The minimum in (8.31) is that taken over all integrating points in the solid. 
- -  - 

The value of the time increment parameter r must be specified by'the user 
and for explicit time marching schemes accurate results have been ob- 
tained(4.8) in the range 0.01 <~<0.15 .  For implicit schemes, values of T up to 
10 have been found to  be stable though the accuracy deteriorates. 

Another useful limit can be imposed while using the variable time stepping 
scheme. The change in the time step length between any two intervals is 
limited according to 

Atn+l< kAtn, (8.32) 

where k is a specified constant. Experience suggests a value of k = 1.5  to be 
suitable although there are no fixed criteria for its specitication. 

The above time step limiting values are basically e r i c a l .  Theoretical 
restrictions on the time step length have been provided by CormeadQJ for 
specific forms of the viscoplastic flow rule and for explicit time integration 
only. In particular, for associated viscoplasticity Q = F and a linear function 
@(F) = F w e  have the following limits on the time step length. 

for Tresca materials 

Von Mises 

Mohr-Coulomb, 
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where y is the fluidity parameter and d, is the angle of internal friction. The 
term FO is the uniaxial yield stress for Tresca and Von Mises solids and is the 
equivalent value (c cosd,) for Mohr-Coulomb materials where c is the co- 
hesion. No  simple expression exists for the limiting time step length in 
Drucker-Prager solids. 

8.4 Computational procedure 
The essential steps in the solution process can be summarised as follows. 

Solution to  the problem must begin from the known initial conditions at 
time t = 0, which are, of course, the solution of the static elastic situation. 
At this stage d o ,  FO, €0, oo are known and E,,O = 0. The time marching 
scheme described in Section 8.2.4 can then be employed to advance the 
solution by one timestep at a time. The solution sequence adopted is as 
follows. 

Stage 1 Suppose at  time f = I ,  we have an equilibrium situation and dn, on ,  
en, fvpn, Fn are known. The following quantities are assembled: 

(a) Bn = Bo + B N L ( ~ ~ ) ,  

@I Cn = Cn(aI1, At,$), 

( 4  i n  = (D-l+ C")-1 

Stage 2 i) Compute the displacement increments Adn according to (8.23) as 

ii) Calculate the stress increment Aan as 

Stage 3 Determine the total displacements and stresses 

Stage 4 Calculate the viscoplastic strain rate 

Stage 5 Apply the equilibrium correction. First calculate Bn+l using dis- 
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placements d78+l. Substitute stresses a7a+1 into the equilibrium equations and 
evaluate the residual forces y n + l  as 

Add these to the vector of incremental pseudo loads for use in the next time 
step 

Stage 6 Check to see if the viscoplastic strain rate i,,,n+' is acceptably 
close to  zero at each Gaussian integrating point throughout the structure 
(ie. to within a specified tolerance). 

If so, steady state conditions are deemed to have been achieved and the 
solution is either terminated or the next load increment is applied. If i,,n+l is 
non-zero return to Stage 1 and repeat the entire procedure for the next time 
step. 

The above algorithm can be employed with either a constant or variable 
time step length. For the variable time step option the interval length Atn+1, 
for the next time step must be calculated according to (8.29) or (8.31) subject 
to  the restriction of (8.32). 

8.5 Evaluation of matrix, H 
For solution by the fully implicit or semi-implicit (trapezoidal) time 

stepping scheme, matrix Cn is required which in turn can be expressed in 
terms of H* as  indicated in (8.14). Matrix Hn must be explicitly determined 
for the yield criterion assumed for material behaviour. From (8.7) and (8.12) 
we have 

where the symbols ( ) on @ and the superscript n are dropped for con- 
venience. Restricting discussion to  the Von Mises yield criterion we have, 
from (7.64), 
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for a three dimensional situation. Thus 

where 

M2 = 

Also from (8.37) 

where 

Substituting from (8.38) and (8.40) into (8.35), and restoring the symbols 
( ), we have finally 

H = pi Mi +pzMz, (8.42) 
where 

The form of d@/dF depends on the explicit form of a) employed, examples of 
which were given in (8.8) and (8.9). Matrix H n  is then obtained by using 

- .  
stresses an to evaluate J2' and Mz. 

For two-dimensional situations (plane stress, plane strain and axial 
symmetry) the only relevant stress terms are given in (7.72). In this case MI 
and M2 reduce, on deletion of the appropriate terms, to 
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and 

M1 = 

, , (uy1)2 2UY'TZY I uy Oz 
M2 = I (8.45) 

Symmetric 

and J2' is given by (7.76). For plane stress and plane strain problems only the 

3 01-4 
I 

Symmetric 2 I 0 

upper 3x3  partition is employed while for axisymmetric situations the 
complete matrices are utilised with x and y being replaced by r and z respect- 
ivel y. 

Similar expressions can be derived for the Tresca, Mohr-Coulomb and 
Drucker-Prager yield criteria by employing the appropriate expression for 
F i n  (8.36) and repeating the above calculations. The form of F is given in 
(7.63), (7.65) and (7.66) for the Tresca, Mohr-Coulomb and Drucker-Prager 

, 

laws respectively. 

8.6 Program structure 
The computation sequence for the program is shown in Fig. 8.1. The 

program structure follows closely that for static elasto-plastic analysis 
described in Chapter 7. In fact, the majority of the subroutines utilised are 
common to both applications and it is only the additional subroutines 
required that are described in this chapter. For the - viscoplastic program 
%ping loop replaces the nonlinear solution iteration loop for 

--.- - -- - 
~~nventionaQlasticitv -- and .subroutine STEPVP, whose main role is to 
evaluate quantities at the end of a timestep, replaces the plasticity subroutine 
RESIDU. In this chapter we need to describe in detail subroutines STIFVP, 
TANGVP, STEPVP, FLOWVP and STEADY. The descriptions of all other 
subroutines required for assembly of a working viscoplastic program have 
been given in Chapters 6 and 7. The version described is restricted to the case 
of infinitesimal strains. The modifications required to include large defor- 
mation effects are straightforward and are left as an exercise to the reader. 
Furthermore, for implicit schemes, only the Von Mises yield criterion is 
Considered. 

The list of material properties accepted in subroutine INPUT described in 
Section 6.5.1 must be extended beyond those required for elasto-plastic 
analysis, since additional material parameters are required to define the 
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Presets the variables associated with 

Inputs data defining geometry, boundary 

Evaluates the equivalent nodal forces for 

ZERO 
Sets to zero arrays required for 
accumulation of data 

I 

Increments the applied loads according to 

FRONT I Solves the simultaneous eauation system I 

I 

by the lrontal method, i.e. Ad" = [Kf]-'AV" 
&'+'=d"+@ I! 

STIFVP 
Calculates the element stiffnesses 
as K ~ * ( a n )  (Eq. (8.24)) 

Prints the results for the current timestep 

I 

- 

STEPVP 
Evaluates quantities at the end of the timestep 

YIELDF & 
FLOWVP 

Determines:- 
a) The flow 

vector, a 
b) &@l= 

Y(@)@+' 

TANGVP 
Evaluates 6. according 
to (0.18) 

INVAR 
Evaluates the 

Fig. 8.1 Flow sequence for the two-dimensional elasto-viscoplastic stress analysis 
program. 

viscoplastic flow. This is accomplished by specifying the value of NPROP 
as 10 in subroutine DIMEN. described in Section 7.8.1, and inputtiqg the 
following properties for each different material. 

a) ~ @ = b y ~ " ~ d - & n A r . )  b) an+' =a" + Aan 
E) FBgnC1=+n+&,nAl. d) Atnil 

effa ive  
stress level 

Calculate residual forces and pseudo loads for 
- 
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PROPS(NUMAT, 1) Elastic modulus, E. 
PROPS(NUMAT, 2)  Poissons ratio, v. 

PROPS(NUMAT, 3) Material thickness, r .  
PROPS(NUMAT, 4) Material mass density, p. 
PROPS(NUMAT, 5) Uniaxial yield stress cry (Tresca and Von Mises solids); 

Cohesion c (Mohr-Coulomb and Drucker-Prager 
materials). 

PROPS(NUMAT, 6) Hardening parameter H' for linear strain hardening. 
PROPS(NUMAT, 7) Angle of internal friction for Mohr-Coulomb and 

Drucker-Prager materials only. 
PROPSCNUMAT, 8) The fluidity parameter, y. 
PROPS(NUMAT, 9) The coefficient M in (8.8) or coefficient N in (8.9). 
PROPS(NUMAT, 10) Indicator specifying type of flow function to be 

employed : 
0 - Flow function (8.8) 
1 - Flow function (8.9) 

8.7 Formulation of the tangential stiffness matrix 
The role of the subroutines described in this section is to calculate the 

tangential stiffness matrix for each element according to (8.24). The complete 
operation is shared between three subroutines which will now be described. 

8.7.1 Subroutine STIFVP 
This subroutine controls the overall formulation of the tangential stiffness 

matrix for each element and is very similar to subroutine STIFFP, described 
in Section 7.8.5, which performs the same task for conventional plasticity. 
For the case of small deforniations, matrix BIZ is constant and cqual to BD the 
usual infinitesimal elastic value. Matrix B,, is given by subroutine RMATPS 
described in Section 6.4.7. To evaluate KT" it is necessary to find 
an whose precise form is given by (8.18). With the normal elastic material 
matrix D replaced by biz, the stiffness evaluation follows the'standard 
procedure described in Section 7.8.5. Subroutine STIFVP can now be 
presented and described. 

SUBROUTINE STINP( COORD, IINCS, LNODS, MATNO, MEVAB, MMkTS, STVP 1 
MPOIN, MTOTV, NELEM, NEVAB, NCAUS, NNODE, NSTRE, STVP 2 
NSTR~,WSGP,PROPS,WEICP,MELEM,~OTG, SrVP 3 
STRSC NTTPE NCRIT TIMEX DTIME) STVP 4 ~.w*ir******************(r***iir*****b*****b*****I,********************** STVP 5 

C STVP 6 
wgH THIS SUBROUTINE EVALUATES THE STIFFNESS MATRIX FOR EACH ELMENT STVP 7 
C IN TURN STVP 8 
C STVP 9 
~.ll****s***************************O********************************* STVp 10 

DIMENSION BMATX(~, 18) ,cARTD(2,9) ,COORD(MPOIN,2) ,DBMAT(4, la), STVP 1 1  
DERIV(2,9),DEVIA(4),DMATX(4,4), SrVP 12 
UCOD(~,~),EPSTN(~OTC),ESTIF(~~,~~) LNODS(MELEM,9), STVP 13 
MATNO(t4ELEM) ,POSGP(4) ,PROPS(MMATS, 105 ,SHAPE(9), STVP 14 
WEICP(~) ,STRES(4) ,STRSG(4,MTOTC), STYP 15 
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. 
REWIND 1 

C 
C*** LOOP OVER EACH ELEMENT 

C 
C*** EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

DO 10 INODE=l,NNODE 
LNODE=IABS(LNODS( IELEM. INODE) ) 

C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX 

ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 

EVALUATE THE D-MATRIX 

$.CALL MODPS(DMATX,LPROP, MMATS, NTYPE, PROPS) 

EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL VOLUME,ETC. 

CALL SFR2(DERIV, ETASP,EXISP,NNODE,SHAPE) 
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,CPCOD,IELEM,KCASP, 

NNODE, SHAPE) 
DVOLU=DJACB'WEIGP(IGAUS)*WEIGP(JGAUS) 

EVALUATE THE B AND DB MATRICES 

DO 25 ISTRI=~,NSTRI 
25 STRES(ISTR1 )=STRSG(ISTRl ,KGAUS) 

IF( TIMEX .GT. 0.0) CALL TANGVP( LPROP. STRES . PROPS. TIMEX. DTIME . 
NSTRE; NTYPE ;!MATS NCRIT; DMATX~ 

CALL DBE( BMATX ,DBMAT , DMATX, MEVAB, NEVAB, NSTRE, NSTR 1 ) 
C 
C*** CALCULATE THE ELEMENT STIFFNESSES 
C 

DO 30 IEVAB=l, NEVAB 
DO 30 JNAB=IEVAB,NEVAB 
DO 30 ISTRE=I ,NSTUE 

30 ESTIF(IEVAB,JNAB)=ESTIF(IEVAB,JEVAB)+BMATX(ISTRE,IEVAB)* . DBMAT( ISTRE, JEVAB) *DVOLU 

STVP 16 
STVP 17 
STVP 18 
STVP 19 
STVP 20 
STVP 21 
STVP 22 
STVP 23 
STVP 24 
STVP 25 
STVP 26 
STVP n 
STVP "' % 
STVP 30 
STVP 31 
STVP 32 
Sn'P 33 
STVP 34 
STVP 35 
STVP 36 
STVP 37 
STVP 38 
STVP 39 
STVP 40 
STVP 41 
STVP 42 
STVP 43 
STVP 44 
STVP 45 
STVP 46 
STVP 47 
STVP 48 
STVP 49 
STVP 50 
STVP 51 
STVP 52 
STVP 53 
STVP 54 
STVP 55 
STVP 56 
STVP 57 
STVP 58 
STVP 59 
STVP 60 
SrVP 61 
STVP 62 
STVP 63 
STVP 64 
STVP 65 
STVP 66 
STVP 67 
STVP 68 
STVP 69 
STVP 70 
STVP 71 
STVP 72 
STVP 73 
STVP 74 
STVP 75 
STVP 76 
STVP 77 
STVP 78 
STVP 79 
STVP 80 
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50 CONTINUE 
C 
C*** CONSTRUCT THE LWER TRIANGLE OF THE STIFFNESS MATRIX 
C 

DO 60 IEVABr 1 , NEVAB 
DO 60 JEVAB:l,NEVAB 

60 ESTIF( JEVAB, IEVAB)=ESTIF(IEVAB, JEVAB) 
C 
C*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C COORDINATES FOR EACH ELEMENT ON DISC FILE 
C 

WRITE( 1 ) ESTIF 
70 CONTINUE 

RETURN 
END 

STVP 17 
STVP 18 

STVP 19 

STVP 23 
STVP 24 
STVP 28-33 

STVP 34 
STVP 38-40 
STVP 4 1 
STVP 45-48 

STVP 49-50 
STVP 54 
STVP 58 

STVP 81 
STVP 82 
STVP 83 
STVP 84 
nvp ss 
STVP 86 
STVP 87 
STVP 88 
STVP 89 
STVP 90 
STVP 91 
STVP 92 
STVP 93 
STVP 94 
STVP 95 

Compute the value of 2n.  
Rewind the disc file on which the element stiffness matrices 
will be stored in turn. 
Set to zero the counter which indicates the overall Gauss point 
location. 
Enter the loop over each element in the structure. 
Identify the material property type of the current element. 
Store theelement nodal coordinates in the local array ELCOD 
for convenient use later. 
Identify the element thickness. 
Zero the element stiffness array. 
Set to zero the elenlent Gauss point counter. 
Enter the numerical integration loops and locate the position 
(5, 7) of the current point. 
Increment the local and global Gauss point counters. 
Call subroutine MODPS to  evaluate the elasticity matrix, D. 
Evaluate the shape functions Ni and 2Nt/25, 2Ntl27 for the 
current Gauss point. 
Evaluate the Gauss point coordinates, GPCOD(IDIME, 
KGASP), the determinant of the Jacobian matrix I Jl and the 
Cartesian derivatives of the shape functions dNt/ax, a N i / a ~  
(or 2Nr/2r, 2Ns/2z for axisymmetric problems). 
Calculate the elemental volume for numerical integration as 
I JI W6 W,, taking care to multiply by the appropriate element 

- ,  
thickness or by 2rr  for axisymmetric problems. 
Evaluate the B matrix. 
Store the current stresses in a local array. 
For an implicit or semi-implicit timestepfing scheme (0 # O ) ,  
call subroutine TANGVP to evaluate Dn which is stored as 
DMATX. 
Evaluate DB (or  fin^ for implicit schemes). 

S"NP 76-80 Compute the upper triangle of the element stiffness matrix as 
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JQ BT& s d n .  

STVP 81 End of loop for numerical integration. 
STVP 85-87 Complete the lower triangle of the element stiffness matrix by 

symmetry. 
STVP 92 Store the element stiffness matrix on disc file 1. 
STVP 93 Return to process the next element. 

8.7.2 Subroutine TANGVP 
A 

The function of this subroutine is to evaluate Dn for use in (8.24). Matrix 
k, which is defined in (8.18), is stress dependent and therefore must be 
calculated for each Gaussian integrating point in turn. The computational 
sequence followed is: 
a) Evaluate Hn according to (8.42) 
b) Calculate C* according to (8.14) 
c) Evaluate f i n  according to (8.18) 
Two forms of the flow function Q, are considered as defined in (8.8) and (8.9). 
Thus, for use in (8.43), we have 

Array DMATX which originally contains the elastic matrix D is used to 
finally store f i n .  The matrix inversions required in (8.18) are performed by a 
separate subroutine, INVERT. 
,Subroutine TANGVP is now presented and described. 

SUBROUTINE TANGVPC LPROP, STRES, PROPS, TIMEX, DTIME 
NSTRE.~PE.MMATS.NCRIT.DMATX~ 

TCVP 1 
TGVP 2 

. 

C TCVP 4 
Ci*** THIS SUBROUTINE EVALUATES THE PSEUDO D-MATRIX TCVP 5 
C TGVP 6 
c****************i**************************************************** TGvp 7 

DIMENSION STRES(II),CMATX(II,4),R(ATX(4,4),TRIX1(4,4) ,TRIX2(4,4), TGVP 8 
PROPS(MMATS,lO).DEVIA(4),DMATX(4.4) TWP 9 

TGVP 10 
TCVP 11 .-.. . 

TCVP 12 
TGVP 13 
TGVP 14 

CALL INVAR(D~IA.  PROP . MMATS . NCRIT. PROPS. SINT3. STEFF.STRES.THETA. TGVP 15 

IF(FNORM.LE.O.0) RETURN 
IF(NFLOW.EQ.1) CO TO 10 
CHULT=EXP( DELTA'FNORM) -I .O 
GRADP=DELTA*(EXP(DELTA*FNORM))/FDATM 
CO TO 20 

TGVP 16 
TGVP 17 
TCVP 18 
TCVP 19 
TGVP 20 
TGVP 21 .- . - 
TCVP 22 
TCVP 23 
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10 CMULT=FNORM**DELTA TGVP 24 . - -- 

GRADPsDELTA*(FNORM**(DELTA-1 .O) )/R)ARI TGVP 25 
20 FACT 1 =GAMMA*ROOT3*CMULT/ ( 2. O'STEFF) TGVP 26 

FACT~=CAMMA*(O.~~*GRADP/VARJ~-~.O*CMULT/(~.O*ROOT~*STEFF*VARJ~)) TGVP n 
C 
C*** MATRICES MI AND M2 FOR A VON MISES MATERIAL 
C 

DO 50 JSTRE:l,NSTRE 
TRIXl(JSTRE,ISTRE)zTRIX1(ISTRE,JSTRE) 

50 TRIX2( JSTRE,ISTRE)=TRIX2( ISTRE, JSTRE) 
DO 60 ISTREz1,NSTRE 
DO 60 JSTRE=l,NSTRE 

60 CMATX(ISTRE,JSTRE)~TIMEX*DTIME*(FACT~*TRIX~(ISTRE,JSTRE) . +FACT2*TRIX2( ISTRE, JSTRE) 
CALL INVERT(DMATX.TMATX.NSTRE) 

DO 70 JSTREZI ; NSTRE 
70 RU\TX(ISTRE,JSTRE)=TMATX(ISTRE,JSTRE)+CMATX( ISTRE, JSTRE) 

CALL INVERT(TMATX ,DMATX,NSTRE) 
RITURN 
END 

TGVP 28 
TGVP 29 
TGVP 30 
TGVP 31 
TCVP 32 
TGVP 33 
TGVP 34 
TGVP 35 
TGVP 36 
TGVP 37 
TGVP 38 
TGVP 39 
TGVP 40 
TGVP 41 
TGVP 42 
TGVP 43 
TGVP 44 
TGVP 45 
TGVP 46 
TGVP 47 
TGVP 48 
TCVP 49 
TGVP 50 
TGVP 51 
TGVP 52 
TGVP 53 
TGVP 54 
TGVP 55 
TGVP 56 
TGVP 57 
TGVP 58 
TGVP 59 
TGVP 60 
TGVP 61 
TGVP 62 
TGVP 63 
TCVP 64 
TGVP 65 
TGVP 66 
TGVP 67 

TGVP 10 Evaluate d(3). 
TGVP 11 Identify the yield stress F as FDATM. 
TGVP 12 Identifv the fluiditv varameter Y as GAMMA. 
TGVP 13 For fl& law (8.8j store the index M as DELTA, or for flow 

law (8.9) store the index N as DELTA. 
TGVP 14 Identify the type of flow function to be used as governed by 

material property PROPS(LPROP,lO) supplied as input: 
NFLOW = 0 - Flow function (8.8) to be used, 
NFLOW = 1 - Flow function (8.9) to  be used. 

TGVP 15-16 Call subroutine INVAR. to evaluate the effective stress com- 
ponents, the effective stress level and J2'. 

TGVP 17-18 Evaluate F-FojFo as FNORM. 
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TGVP 21-22 Evaluate @ and d@/dFfor flow function (8.8). 
TGVP 24-25 Evaluate @ and d@/dFfor flow function (8.9). 
TGVP 26-27 Compute pl and pz according to (8.43). 
TGVP 3 1 4 1  Evaluate MI according to (8.44) taking the full 4 x 4  matrix 

for axisymmetric situations. 
TGVP 42-52 Evaluate Mz according to (8.45) taking the full 4 x 4  matrix for 

axisymmetric situations. 
TGVP 53-56 Complete the lower triangle of MI and Mz by symmetry. 
TGVP 57-60 Compute matrix Cn according to  (8.14) and (8.42). 
TGVP 61 Call subroutine INVERT to evaluate D-I and store as 

TMATX. 
TGVP 62-64 Compute D-I + Cn. 
TGVP 65 Call subroutine INVERT to evaluate (D-l+Cn)-l  and store 

as DMATX. 

8.7.3 Subroutine INVERT 
The function of this subroutine is to determine the inverse of any arbitrary 

square matrix. In particular, the subroutine accepts a matrix AMATX with 
dimensions NARAY xNARAY and evaluates the inverse as BMATX. The 
procedure employed is the standard method of reduction in which starting 
from the original matrix AMATX and assuming an identity matrix for 
BMATX, an elimination process is followed until AMATX is reduced to an 
identity form. Then at  this stage BMATX is the inverse of AMATX. 

The subroutine is presented below without further comment. 

C*'* TO PROVIDE THE INVERSE OF AMATX AS BMATX 
C 

INVT 4 
INVT 4 

DIMENSION AMATX(4,4) ,BMATX( 4,4) 
DO 10 IARAY=l.NARAY 

INVT 7 
INVT 8 

DO lo JARAY:~ ~NARAY INVT 9 

DO 20 IARAY =l , NARAY 
DENOM=AMATX(IARAY,IARAY) 
DO 30 JARAY=l.NARAY 

IF(KARAY.GT.NARAY) GO TO 40 
DO 20 JARAY=KARAY, NARAY 
CONST=AMATX( JARAY , IARAY) 
DO 20 LARAY=IARAY,NARAY 
AMATX( JARAY , LARAY) =AMATX( JARAY , LARAY) -AMATX( IARAY , LARAY) 

*rnNST . --..-A 

20 BMATX( JARAY, LARAY) =BMATX( JARAY , LARAY) -BMATX ( IARAY , LARAY . "CONST 
40 CONTINUE 

DO 50 IARAY.2,NARAY 
KARAYzNARAY-IARAY+2 

INVT 10 
INVT 1 1  
INVT 12 
INVT 13 
INVT 111 
INW 15 
INVT lb 
INVT 17 
INVT 18 
INVT 19 
INVT 20 
INVT 21 . . 

INVT 22 
INVT 23 
INVT 24 
INVT 25 
INVT 26 
INVT 27 
INVT 28 
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LIMITzKARAY-1 INVT 29 
DO 50 LARAY:l,LIMIT INVT 30 
CONST=AMATX(LARAY,KARAY) INVT 31 
DO 50 JARAYz1,KARAY INVT 32 
AMATX(LARAY,JARAY)=AMATX(LARAY,JARAY)-AMATX(KARAY,JARAY) INVT 33 
. 'CONST INVT 34 

50 BMATX(LARAY,JARAY):BMATX(LARAY,JARAY)-BMATX(KARAY,JARAY) INVT 35 . *CONST INVT 36 
RETURN INVT 37 
END INVT 38 

8.8 Subroutine S T E P V P  for the evaluation of end of time step quantities 
and equilibrium correction terms 

With reference to  Fig. 8.1, this subroutine evaluates quantities, such as  
stresses and viscoplastic strains. at  the end of the current timestep and also 
calculates the loading to  be applied during the next timestep. The subroutine 
is structured t o  perform the following operations sequentially: 
i (a) All quantities a t  the end of timestep J I  are calculated as  ( ) 7 l L l .  

, (b) Subroutine INVAR, YIELDF and FLOWVP are called t o  evaluate the 
current viscoplastic flow rate, &ll  , I .  

(c) The n i a x i m ~ m  permissible interval length, At , , , l ,  for the next timestep 
as governed by (8.29) and (8.32) is calculated. 

(d) The residual forces, t p - l ,  are evaluated and the loads, A V'l-1, for the 
next timestep then calculated. 

In  the program presented we restrict ourselves to  loads applied in discrete 
increments. An increment of load is applied and the time stepping process is 
followed until eithcr steady state conditions are achieved, o r  a specified 
number of timesteps is reached. Then a further increment of load is applied - - 

and the process repeated. Thus in (8.23), if" = 0 for all stages other than 
the first timestep of a particular load increment. 

The attainment of steady state conditions can be monitored by accumu- 
lating some measure of the viscoplastic strain rate for all Gauss points in the 
structure. At  steady state this quantity will become zero. The degree of total 
viscoplastic flow a t  any point is best monitored by evaluating the total 
effective viscoplastic strain rate at  all Gauss points according to  

Subroutine STEPVP is now presented and described 

SUBROUTINE STEPVP(ASDIS, COORD, ELOAD, ISTEP, LNODS,LPROP,TIMEX, SPVP 1 
MATNO,MELEM,~TS,MPOIN,~OTG,TAUFT,DTIME, SPVP 2 
MTOTV,NDOFN,NELEM,NEVAB,NGAUS,NNODE,NSTRl. SPVP 3 
NTYPE, POSGP, PROPS, NSTRE,NCRIT,STRSG;WEIGP. SPVP 4 TDISP,VISTN,VIVEL,TLOAD,FTIME,DTINT,IINCSI SPVP 5 

C t t * * * * * * * * * * ~ t ~ * * ~ ~ ~ * ~ ~ f ~ t ~ * t t * * ~ ~ ~ * * t ~ * * * * * * * * *  SpVp 6 
C SPVP 7 
Cftt* EVALUATES QUANTITIES AT END OF TIME STEP AND CALCULATES THE SPVP 8 
C RESIDUAL FORCES AND PSEUDC FORCES FOR THE NEXT STEP SPVP 9 
C SPVP 10 
C*tt**t*************************************************************** SpVp 1 1  
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DO 10 IEVABrl , NEVAB 
10 ELOAD(IELEM.IEVAB)=0.0 

DNEXT=FTIME'DTIME 
DO 80 IELEMzl. NELEM 

C 
C*** STORE COORDINATES AND INCREMENTAL DISPLACEMENTS OF THE 
C ELEMENT NODAL POINTS 
C 

DO 20 INODE-1, NNODE 
LNODE=IABS(LNODS( IELEM, INODE) ) 
NPOSNd NODE-1 )*NDOFN 
DO 20 IDOFN.1 ,NDOFN 
NPOSN=NPOSN+l 
ELCOD( IDOFN, INODE) =COORD( MODE IDOFN) ~~I~(I~HIFN,INODE)=TDISP(NPOSNI 

20 ELDISC IDOFN, INODE) =ASDIS(NPOSN) 

DO 70 IGAUS=l,NGAUS 
DO 70 JGAUSzl, NGAUS 
EXISP=POSGP( IGAUS) 
ETASP=POSGP( JGAUS) 
KGAUS=KGAUS+l 
KGASP:KGASP+l 
CALL MODPS(DMATX, LPROP, MMATS, NTYPE, PROPS) 
W 30 ISTRl=l,NSTRl 

30 .STRES( ISTR1) =STRSG(ISTRl ,KGAUS) 

SPVP 12 
SPVP 13 
SPVP 14 
SPVP 15 
SPVP 16 
SPVP 17 
SPVP 18 
SPVP 19 
SPVP 20 
SPVP 21 
SPVP 22 
SPVP 23 
SPVP 24 
SPVP 25 
SPVP 26 
SPVP 27 
SPVP 28 
SPVP 29 
SPVP 30 
SPVP 31 
SPVP 32 
SPVP 33 
SPVP 34 
SPVP 35 
SPVP 36 
SPVP 37 
SPVP 38 
SPVP 39 
SPVP 40 
SPVP 41 
SPVP 42 
SPVP 43 
SPVP 44 
SPVP 45 
SPVP 46 
SPVP 47 
SPVP 48 
SPVP 49 
SPVP 50 

CALL I N V ~ ( D E V I A , L P R O P . ~ T S . N C R I T . P R O P S . S I N T ~ . ~ ~ , S T R ~ . T H ~ A .  SPVP 51 - .  
VARJ2,YIELD) SPVP 52 

IF(TIMEX.GT.O. 0) CALL TANGVP(LPROP JTRES, PROPS, TIMEX ,DTIME, SPVP 53 
NSTRE,NTYPE,MMATS,NCRIT,DHATX) SPVP 54 

CALL SFR2(DERIV, ETASP, EXISP,NNODE, SHAPE) SPVP 55 
CALL JACOB2( CARTD ,DERIV, DJACB, ELCOD, GPCOD, IELEM, KGASP, NNODE, SHAPE) SPVP 56 
DVOLU=DJACB*WEIGP(ICAUS)*WEIGP(JGAUS~- \ SPVP 57 
IF(EITYPE.EQ.3) DVOLU=DVOLU*~OPI%PCOD(l.KGASP) SPVP 58 
IFITHICK. NE. o .o) DVOLU=DVOLU*THICK 
CALL STRESS(DMATX,LPROP,NTYPE, PROPS, NDOFN, CARTD, ELDIS, SHAPE, 

GPCOD,NSTRE,VIVEL,DTIHE,STRSG,KGASP,HTOTG,rO.IATS, 
SVECT,NNODE,NSTRl ,KGAUS,TLDIS) 

DO 60 ISTRl=l,NSTRl 
--DESTN( ISTR1) =VIVEL( ISTR1, KGAUS) *DTIME 
60 VISTN( ISTRI ,KGAUS) =VISTN(ISTRl .KGAUS)+DESTN(ISTRl) 

65 STRE~XISTRI )=~T,TRSG(ISTRI ,KGAUS) 
VIVEL(5,KGAUS)=VNEL(5,KGAUS)+DEBAR 
CALL INVAR(DEVIA,LPROP,HHATS.NCRIT.PROPS.SINT~.STEFF.STRES,THETA, -. 

VARJ~,YIELD~ 
CALL YIELDF( AVECT,DEVIA,LPROP,MMATS, NCRIT,NSTRl , 

PROPS.SINT3.STEFF.THnA.VARJ2) 

SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
SPVP 
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IF(FNORM.LT.ALLOW) GO TO 70 SPVP 77 
EPBAR=SQRT( (2.0*(AVECT( 1 )*AVECT( 1 )+AVECT(2)*AVECT(2)+AVECT( 4) SPVP 78 . "AVECT(4))+AVECT((3)*AVECT(3))/3.0) SPVP 79 
TSBAR=SQRT( (2.0*( SVECT( 1 )*SVECT( 1 )+SVECT(2)*SVECT(21+SVECT(4) SPVP 80 
. *SVECT(4))+SVECT(3)*SVECT(3))/3.0) SPVP 81 
DELTM=TAUFT*TSBAR/EPBAR SPVP 82 
IF(DELTM.LT .DNEXT) DNEXT:DELRI SPVP 83 

70 CONTINUE SPVP 84 
80 CONTINUE SPVP 85 

DTIMEzDNEXT SPVP 86 
IF(ISTEP.EQ.1) DT1ME:DTINT SPVP 87 
KGAUS=O SPVP 88 
DO 140 IELEM:l,NELEM SPVP 89 
LPROP:MATNO( IELEM) SPVP 90 
DO 90 INODE=l,NNODE SPVP 91 
LNODE-IABS(LNODS( IELEM, INODE) ) SPVP 92 
NPOSN=(LNODE-l)*NDOFN SPVP 93 
DO 90 IDOFN=l,NDOFN SPVP 94 
NPOSN=NPOSN+l SPVP 95 

90 ELCOD( IDOFN, INODE) =COORD(LNODE, IDOFN) SPVP 96 
THICK=PROPS(LPROP,3) SPVP 97 
KGASP=O SPVP 98 
DO 130 IGAUS=l,NGAUS SPVP 99 
DO 130 JGAUS=l,NGAUS SPVP 100 
EXISP=POSGP( IGAUS) SPVP 101 
ETASP=POSGP( JGAUS) SPVP 102 
KGAUS=KGAUS+l SPVP 103 
KGASP=KCASP+l SPVP 104 
CALL SFR2(DERIV, LTASP, EXISP, NNODE, SHAPE) SPVP 105 
CALL JACOB2(CARTD,DERD,DJACB,ELCOD,GPCOD,IELEM,KCASP,NNODE,SHAPE)SPVP 106 
DVOLU=DJACB*WEIGP( IGAUS) *WEIGP( JGAUS) SPVP 107 
IF( NTYPE. EQ. 3) DVOLU=DVOLU*lWOPI*GPCOD( 1 ,KCASP) SPVP 108 
IF(TH1CK. NE .O. 0) DVOLU=DVOLU*THICK SPVP 109 
CALL BMATPS(BMATX CARTD,NNODE,SHAPE,GPCOD,NTYPE,KCASP) SPVP 110 
CALL MODPS(DMATX.LPROP,MMATS,N~PE.PROPS) SPVP 111 
DO loo ISTRI~I ,NSTRI . SPVP 112 

100 STRES(ISTR1) =STRSG(ISTRI ,KGAUS) SPVP 113 
CALL INVAR (DEVIA,LPROP, MMATS, NCRIT, PROPS, SINT3, STEFF,STRES,THETA, SPVP 114 

VARJ2,YIELD) SPVP 115 
IF(T1MEX .GT. 0.0) CALL TANGVP(LPROP, STRES, PROPS, TIMEX,DTIME SPVP 116 

NSTRE,NTYPE,MMATS,NCRIT,DMATX~ SPVP 117 
C SPVP 118 - . . . . . . 

Ct** CALCULATE THE RESIDUAL FORCES 'ANE INCREMENTAL PSEUDO LOADS SPVP 119 
C SPVP 120 

DO 120 ISTRE=l,NSTRE 
120 ELOAD(IELEM,MGASH) =ELOAD(IELEM, MGASHI+BMATX( ISTRE, WASH) . *(STRES( ISTRE) -STRS( ISTRE , KGAUS) )*DVOLU 
130 CONTINUE 
140 CONTINUE 

DO 150 IELEM=l, NELEM 
DO 150 IEVAB:l,NEVAB 

150 ELOAD(IELEM, IEVAB) =ELOAD( IELEM, IEVAB)+TLOAD( IELEM, IEVAB) 
RETURN 

SPVP 121 
SPVP 122 
SPVP 123 
SPVP 124 
SPVP 125 
SPVP 126 
SPVP in 
SPVP 128 
SPVP 129 
SPVP 130 
SPVP 131 
SPVP 132 
SPVP 133 
SPVP 134 
SPVP 135 
SPVP 136 
SPVP 137 
SPVP 138 
SPVP 139 END 
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SPVP 20 
SPVP 21-23 

SPVP 24 
SPVP 25 

SPVP 26 
SPVP 27 
SPVP 32-39 

SPVP 40 
SPVP 41 
SPVP 42-45 

SPVP 4647 
SPVP 48 
SPVP 49-50 
SPVP 51-52 
SPVP 53-54 

SPVP 55 

SPVP 56 

SPVP 57-59 

SPVP 60-62 

SPVP 63-65 

SPVP 66-67 

SPVP 70 

SPVP 71-76 

SPVP 77 

Compute 2a. 
Zero the array in which the pseudo loads for the next time- 
step will be stored. 
Zero the Gauss point counter over all elements. 
Increase the timestep length from the value used for the 
previous step by the factor FTIME. If this new value is less 
than that predicted later in this routine, this step length will 
be employed for the next time step. 
Loop over each element. 
Identify the element material property number. 
Store the element coordinates in array ELCOD, the incre- 
mental displacements Adn in ELDIS and the total displace- 
ments dn  in TLDIS. 
Identify the element thickness. 
Zero the local Gauss point counter. 
Enter the loops for numerical integration and evaluate the 
local coordinates (6, V) at the sampling point. 
Increment the local and global Gauss 
Compute the elasticity matrix, D. 
Store the total current stresses an locally in STRES. 
Evaluate the deviatoric stresses and 32'. 
For the implicit or semi-implicit time stepping scheme 
evaluate f in.  
Evaluate the shape functions Nc and the derivatives aNr/a6, 
aNt la~.  
Evaluate the Gauss point coordinates GPCOD(IDIME, 
KGASP), the determinant of the Jacobian matrix 1 JI and 
the Cartesian derivatives of the shape functions. 
Calculate the elemental volume for numerical integration as 
I JI Wt Wv taking care to multiply by 2sr for axisymmetric 
problems. 
Call subroutine STRESS to evaluate the stress increment 
Aan according to (8.20) and also an+' = an + Pan.  
Evaluate the incremental viscoplastic strain and the total 
current viscoplastic strain, sPn+l. 

Accumulate the absolute value of the viscoplastic strain 
increment. This will allow us to monitor whether or not 
steady state conditions are being approached. 
Also calculate the total current effective viscoplastic strain 

according to (8.47). 
Evaluate the current viscoplastic flow rate ivpn+l according 
to (8.7). 
If the Gauss point is elastic, avoid calculation of the new time 
step length. 
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SPVP 78-79 

SPVP 80-81 
SPVP 82-83 

SPVP 84-85 

SPVP 87 

SPVP 88 

SPVP 89 
SPVP 90 

SPVP 91-96 
SPVP 97 
SPVP 98 

SPVP 99-102 

Calculate Tvp*+l, the effective value of the viscoplastic strain 
rate. 

Calculate i n + l ,  the total effective strain. 
Evaluate the interval length for the next time step according 
to (8.29) as 

where TFACT is the parameter T and the minimum value of 
Atn+l is taken with respect to all Gauss points throughoyt the 
structure. 
Termination of loops over Gauss points and elements 
respectively. 
For the first time step of a load increment reset the step length 
equal to the initial value input. 
Zero the Gauss point counter over all elements. 
Loop over each element. 
Identify the element material property number. 

Store the element coordinates in array ELCOD. 
Identify the element thickness. 
Zero the local Gauss point counter. 

Enter the loops for numerical integration and evaluate the 
local coordinates ( 6 , ~ )  at the sampling point. 

SPVP 103-104 Increment the local and global Gauss point counters. 

SPVP 105 Evaluate the shape functions and their local derivatives. 

SPVP 106 Evaluate the Gauss point coordinates, determinant of the . 
Jacobian matrix and the Cartesian derivatives of the shape 
functions. 

SPVP 107-109 Calculate the elemental volume for numerical integration. 
SPVP 110 Evaluate the B matrix. 
SPVP 111 Evaluate the D matrix. 

SPVP 112-113 Store the total current stresses an+' locally in STRES. 
' SPVP 114-1 15 Calculate the deviatoric stresses and Jz'. 

SPVP 116-117 For the implicit or semi-implicit time stepping scheme 
evaluate &+I. 

SPVP 121-12s Calculate B n + l t v p n + l ~ t n + l  and store locally in STRES. 

SPVP 126-132 Evaluate the pseudo loads to be applied for the next timestep, 
A V*+l according to (8.28) and (8.34) as 
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SPVP 133-134 Termination of loops over Gauss points and elements 
respectively. 

SPVP 135-137 Complete the computations of SPVP 126-132 by adding the 
term f"+I. 

Subroutine INVAR which calculates the deviatoric stresses and Jz' is 
identical to that employed in Chapter 7 for elasto-plastic problems and is 
described in detail in Section 7.8.3. Subroutine YIELDF has been previously 
described in Section 7.8.4.1. 

8.9 Subroutine FLOWVP 
The function of this subroutine is to determine the viscoplastic strain rate 

according to (8.7). 
Subroutine FLOWVP is now presented and described. 
SUBROUTINE FLOWVP(A ECT, PROPS, LPROP, STEFF,NSTRl , MTOTG VIVEL, 

~ E L D  ,KGAUS ,MMATS, NCRIT,FNORM,  ALLOW^ 
C******************************************************~************** 

C 
C**** THIS SUBROUTINE EVALUATES THE VISCOPLASTIC STRAIN RATE 
C 
...................................................................... 

DIMENSION AVECT(41, PROPS(MHATS, 10) ,VIVEL(5 ,MTOTG) 
ALLCWr0.01 
IF(STEFF.EQ.O.0) CO TO 90 
YWNG=PROPS(LPROP,l) 
POISS=PROPS(LPROP,2) 
HARDSrPROPS( LPROP, 6) 
FRICTrPROPS(LPROP,7) 
GAHMA=PROPS(LPROP.8) 

FLVP 1 
FLVP 2 
FLVP 3 
FLVP 4 
FLVP 5 
FLVP 6 
FLVP 7 
FLVP 8 
FLVP 9 
FLVP 10 
FLVP 1 1  
FLVP 12 
FLVP 13 
FLVP 14 
FLVP 15 
FLVP 16 
FLVP 17 
FLVP 18 
FLVP 19 
FLVP 20 
FLVP 21 

IF(NCRIT.EQ. 4) FDATMz6 .O*FDA?71*COS(FRICT)/(ROOT3*(3 .O-SIN(FR1CT)) )FLVP 22 
IF(HARDS.GT. 0.0) FDARI=FDATM+VNEL( 5, KGAUSIXHARDS FLVP 23 
IF(FDATM.LT.O.001) FDARIz1.0 FLVP 24 

- - .  
DO 80 ISTR1=1 ,NSTRl 

80 VIVEL(ISTR1 ,KGAUS)=AVECT(ISTRl) 
RETURN 

90 DO 100 ISTRl=l,NSTRl 
100 VIVEL(ISTRl,KGAUS)zO.0 

RETURN 
END 

FLVP 25 
FLVP 26 
FLVP 27 
FLVP 28 
FLVP 29 
n v p  30 
FLVP 31 
FLVP 32 
FLVP 33 
FLVP 34 
FLVP 35 
FLVP 36 
FLVP 37 
FLVP 38 
FLVP 39 
FLVP 40 
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FLVP 9 

FLVP 10 

FLVP 11 
FLVP 12 
FLVP 13 
FLVP 14 

FLVP 15 
FLVP 16 

FLVP 17 

FLVP 18 
FLVP 19-22 

FLVP 23 

FLVP 24 

FLVP 25-26 

FLVP 27 

FLVP 29 
FLVP 3 1 
FLVP 32-35 
FLVP 37-38 

Specify ALLOW, the permitted tolerance by which the stress 
point is allowed to deviate from the yield surface. 
For the (unlikely) case of a Gauss point with zero stress 
(identified by Jz' = J3' = 0) avoid all viscoplastic calculations. 
Identify YOUNG as the elastic modulus, E. 
Identify POISS as the Poissons ratio, v. 

Identify HARDS as H' for linear strain hardening. 
Identify FRICT as the friction angle $ for Mohr-Coulomb 
and Drucker-Prager materials. 
Identify GAMMA as the fluidity parameter, y. 
Identify DELTA as  the index M in (8.8) or N in (8.9), according 
to the flow function specified. 
Identify NFLOW as the parameter specifying type of flow 
function : 

NFLOW = 0 - flow function (8.8) to be used, 
NFLOW = 1 - flow function (8.9) to be used. 

Compute .\/(3). 
Identify FDATM as the effective yield stress, uy0, according 
to Column 4, Table 7.2. 
Evaluate the current yield stress as Fo = C T ~ O + H ' < ~ ~ ,  where 
cup is the'current effective viscoplastic strain, according to 
(8.47). 
For elastic creep problems, solved by setting Fo = 0, reset 
Fo as a low value to avoid overflow in (8.8) and (8.9). 
Calculate (F-Fo)/Fo where F is the effective stress value 
evaluated as YIELD in subroutine INVAR. 
If (F-Fo)/Fo is less than ALLOW avoid any further visco- 
plastic calculations, i.e. the stress point is assumed to be 
sufficiently close to the yield surface. 
Evaluate y ( 0 )  for flow function (8.8). 
Evaluate y ( @ )  for flow function (8.9). 
Use flow vector a to form &pn+l = y(U))an+l. 
For elastic points only, set the viscoplastic strain rate to zero. 

8.10 Subroutine STRESS 
The function of this subroutine is to evaluate the increment in stress 

occurring during a time step according to (8.20). 
Subroutine STRESS is presented below : 

SUBROUTINE STRESS(DMATX,LPROP, NTYPE, PROPS, NDOFN, CARTD, ELDIS, STRS 1 
SHAPE.GPCOD.NSTRE.VIVEL,DTIME.STRSG.KGASP. STRS 2 

C STRS 5 
Cffr* EVALUATE THE INCREMENTS OF STRAIN AND STRESS STRS 6 
C STRS 7 
C * ~ f f f f * ~ i f f * ~ i * i ~ ~ i ~ * i i ~ f ~ i i ~ ~ i i i i i i * i ~ i * f t * f * * * * * * * * * * * * * *  STRS 8 
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DIMENSION SVECT(4).PROPS(MMATS.lO).EU)IS(2.9).CARTD(2.9). STRS 9 
DMATX(~,~) ,AGASH(~,~~ ,STRES(~),STRAN(~) ,sTRsc(~,KFYK), STRS 10 
SHAPE(g),VIVEL(5,MTOTC) ,TLDIS(2,9) ,CCASH(2,2), STRS 11 
GPCOD(2.9) STRS 12 

DGASH.DGASH+CARTD( JDOFN, INODE) *TLDIS(IDOFN, INODE) 
20 EGASH=BGASH+CARTD(JDOFN, INODE)*ELDIS(IDOFN, INODE) 

CCASH (IDOFN , JDOFN) =%ASH 
10 ACASHC IDOFN, JDOFN) :DCASH 

C 
C*** CALCULATE THE TOTAL AND INCREMENTAL STRAINS 

DO 60 1NODE:l ,NNODE 
SVECT(4)=SVECT(4)+TLDIS(l ,INODE)*SHAPE(INODE)/GPCOD( 1 ,KCASP) 

60 CONTINUE 
70 CONTINUE 

STRAN(l)=CGASH(l,l) 
STRAN(2):CGASH(2.2) 

DO 80 INODE-1 , NNODE 
STRAN( 4):STRAN(4) +ELDIS( 1 , INODE) *SHAPE( INODE)/GPCOD( 1 ,KGASP) 

80 CONTINUE 
90 CONTINUE 

DO 50 ISTRE=l,NSTRE 
50 STRAN( ISTRE) :STRAN( ISTRE -VIVEL( ISTRE , CAUS ) IDTIME 

C \, 
c*** AND THE INCREMENTAL. STRESSES 
C 

DO 30 ISTREzl ,NSTRE 
STRES(ISTRE)=O.O 
DO 30 JSTRE=l,NSTRE 

30 STRES(1STRE) =STRES( ISTRE) +DMATX(ISTRE, JSTRE *STRAN( JSTRE) 
IF(NTYPE.EQ.1) STRES(4)sO.O 
IF(NTYPE.EQ.2) SRES(4)=POISS*(STRES(1 )+STRES(2)) 
DO 40 ISTRl=l,NSTRl 

40 STRSX ISTRI ,KGAUS)=STRSG( ISTR~ , KGAUS)+STRES(ISTRI ) 
RETURN 
END 

STRS 13 
STRS 14 
STRS 15 
STRS 16 
STRS 17 
STRS 18 
STRS 19 
STRS 20 
STRS 21 
STRS 22 
STRS 23 
STRS 24 
STRS 25 
STRS 26 
STRS 27 
STRS 28 
STRS 29 
STRS 30 
STRS 31 
STRS 32 
STRS 33 
STRS 34 
STRS 35 
STRS 36 
STRS 37 
STRS 38 
STRS 39 
STRS 40 
STRS 41 
STRS 42 
STRS 43 
STRS 44 
STRS 45 
STRS 46 
STRS 47 
STRS 48 
STRS 49 
STRS 50 
STRS 51 
STRS 52 
STRS 53 
STRS 54 
STRS 55 
STRS 56 
STRS 57 
STRS 58 
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STRS 13 
STRS 14-22 

STRS 26-33 
STRS 34-45 
STRS 49-52 
STRS 53-54 

STRS 55-56 

Identify POISS as the material Poisson's ratio. 
Evaluate the Cartesian derivatives of both the displacement 
increment and the total displacement. 
Evaluate the total and incremental strains Bdn and BAdn. 
Calculate the elastic portion of the strains, BAdn -&pnAtn. 
Calculate the stresses according to (8.20). 
For plane stress and plane strain problems evaluate the out-of- 
plane stress component. 
Finally calculate the total current stiess as an+' = @+Ann. 

8.11 Subroutine ZERO 
This subroutine performs the same task as the subroutine described in 

Section 7.8.2 for elasto-plastic problems. I t  merely initializes to zero some 
arrays required for the accumulation of data. Subroutine ZERO is presented 
below without further comment. 

SUBROUTINE ZERO( ELOAD, MELM, MEVAB, MPOIN, MTOTG, MTOTV, NDOFN, NELEM, 
NEVAB,NGAUS. NSTR1 .NTOTG, NTOTV. NVFIX,STRSC. 

...................................................................... 

DIMENSION ELOAD(MELEM,MEVAB) ,STRSC( 4,MTOTG) ,TDISP(KOTV), 
TLOAD(MELEM, MEVAB) ,TREAC(MVFIX, 2) ,VIVEL( 5, MTOTG) , 
VISTN(4,MTOTG) 

TTIME-0.0 
TFACTzO.0 
W 30 IELEMrl .NELEM 
DO 30 IEVAB-1; NEVAB 
ELOAD(IELEM,IEVAB)=O.O 

30 TLOAD(IELEM, IEVAB) ~0.0 
W 40 ITOTV- 1 , NTOTV 

40 TDISP(1TOTV):O.O 

vNu(5, ITOTC~ =o. 0 
W 60 ISTR1:l ,NSTRl 
VISTN(ISTRl,ITOTG)=O.O 
VNEL(ISTR1, ITOTG)=O. 0 

60 STRSC(ISTR1, ITOTG)=0.0 
RETURN 
END 

8-12 Subroutine STEADY for monitoring steady state convergence 
The role of this subroutine is to check whether or not steady state con- 

ditions have been achieved at the end of each time step. Convergence to a 
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steady state condition is monitored according to the increment in visco- 
plastic strain which occurs during the time step. For checking purposes the 
effective viscoplastic strain rate, &pn+l, defined by (8.47) is employed and 
steady state conditions are deemed to have been achieved at the end of time 
step n, if 

( A  2 3 . 1  /atl 2 bl) x 100 c TOLER, (8.48) 

All Gauss 
points 

All Gauss 
points 

where TOLER is a convergence tolerance value prescribed as input in Sub- 
routine INCREM, described in Section 6.5.3. From (8.48) it is seen that a 
global measure of convergence is taken in the subroutine presented in this 
section. A local steady state convergence condition could alternatively be 
enforced by requiring (8.48) to be satisfied for each Gauss point in the 
structure which is yielding viscoplastically. 

The structure of this subroutine is identical to that of subroutine C O N V P ,  
presented in Section 4.9, for one-dimensional structures. 

Subroutine STEADY is now presented. 

SUBROUTINE STEADY(NELEM,NGAUS,NCHEK,VIVEL ISTEP,FIRST,TOLER,PVALU,STDY 1 
MTOTG,DTIME, NSTRI ,TTIMEI STDY 2 

C***.******a******a~***aa*************aaaaa*a*a***aa******a*******a*** STDY 3 
C '\ 

C**** THIS SUBROUTINE CHECKS FOR ATTAINMENT OF STEADY STATE CONDITIONS 
C 
C*a**aa*****a*******a***aa**a***a*******a***a********aa*****a********* 

DIMENSION VIVEL5 5, MTOTG) ,DESTN( 4) 
NCHEK-1 
KTOTC=NELM*NGAUS*NGAUS 
TOTAL=O. 0 
W 10 ITOTGzl ,NTOTG 
W 40 ISTRl=l,NSTRl 

40 DESTN( ISTR1 )=VNEL(ISTRl, ITOTG) *DTIME 
10 TOTAL=TOTAL+SQRT((2.O*(DESTN(l)*DESTN(l)+DESTN(2)*DESTN(2)+ 

STDY 4 
STDY 5 
STDY 6 ..-. 

STDY 7 
STDY 8 
STDY 9 
STDY 10 
m y  11 
STDY 12 
S'~Y 13 
STDY 14 
STDY 15 
STDY 16 
STDY 17 
STDY 18 
STDY 19 
STDY 20 

15 RATIO-0.0 STDY 21 
25 CONTINUE STDY 22 

IF(ISTEP.EQ. 1) GO TO 20 STDY 23 
IF(RATIO.LE.TOLER) NCHEK-0 STDY 24 
IF( RATIO.GT. PVALU ) NCHEK-999 STDY 25 

20 PVALU:RATIO STDY 26 
WRITE( 6,900) ?TIME STDY 27 

900 FORMAT(1HO 5X,12HTOTAL TIME =,E17.6) STDY 28 
WRITE(6,30j NCHEK,RATIO,REMAX STDY 29 

30 FORMAT( 1 H0,3X, 1 ~HCONVERGENCE CODE = ,I4,3X, 28HNORM OF RESIDUAL SUM STDY 30 
.RATIO :,E14.6,3X,18HMAXIMUM RESIDUAL z,E14.6) STDY 31 
RETURN STDY 32 
END STDY 33 
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8.13 The main, master or controlling segment 
This segment controls the timestepping process and accesses all the other 

subroutines appropriately. In particular it controls the incremention of the 
applied loads and the output of results at selected time intervals. The fre- - - 
quency of output is controlled by means of two parameters NOUTP(1) and 
NOUTP(2) which are specified as input data for every load increment in 
subroutine INCREM described in Section 6.5.3. The precise specification of 
these parameters is however somewhat different for the present application. 
In  this case NOUTP(1) controls the frequency of output of the displacements 
and NOUTP(2) the frequency of output of the stresses and viscoplastic 
strairis. In particular, if NOUTP(1) is specified as 7 for a particular load 
increment, then the displacements will be output every 7th timestep within 
that increment. This is accomplished by evaluating for every timestep, 
ISTEP, the quantity 

(ISTEP/NOUTP(l))*NOUTP(l) 

and then checking this value against ISTEP. The two will be equal only when 
ISTEP is an exact multiple of NOUTP(1). A similar check for stress output is 
undertaken for NOUTP(2). 

The parameter MSTEP specifies the maximum number of timesteps to be 
considered for the load increment. If steady state conditions are achieved 
before MSTEP timesteps, the next load increment, is applied immediately 
condition (8.48) is satisfied. 

The role of the load incrementing factor, FACTO, is identical to that 
described in Section 6.5.3. 

In  this segment input data is also received which controls the timestepping 
algorithm to  be employed. The following information is input: 

TIMEX Parameter, O, which controls the type of timestepping algorithm to 
be employed: 
TIMEX = 0.0-Explicit scheme, 

= 0.5-Semi-implicit or trapezoidal scheme, 
= 1 .O-Fully implicit. 

TAUFT- The parameter 7 discussed in Section 8.3. 
DTINT The initial time step length. This specifies the step length for the 

first time step of each load increment. The time step length needs to  
be readjusted at the beginning of a new load increment since the 
step length computed as steady state conditions are approached in 
the previous time step will in general be too large. 

FTIME The factor by which it is attempted to increase the step length from 
the value used for the previous time step. This is generally 
input as 1.5 as mentioned in Section 8.3. 

The following channel numbers are employed by the program: 5 (card 
reader), 6 (line printer), 1, 2, 3, 4, 8 (scratch files). This main segment is now 
presented and descriptive notes provided where necessary. 
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" 
DIMENSION ASDISC 120) ,COORD(60,2) ,ELOAD(20, 

EQRHS( 
18).ES~IF(18.18). VISC 6 ~ , ~ . ,  

~o),EwAT(~o,~o) ,FIXED(120), VISC 7 
GLOAD(40) ,GSTIF(986), VISC 8 
IFFIX( 120) ,LN0~~(20,9) ,LOCEL( 18) ,MATNO(20), VISC 9 
NACVA(40) . . . .- - . . ,NAMEv(Io),NDEST(~~) ,NDFRO(20),NOFIX(25), VISC 10 

"-IVO(lo). VISC 11 
4) ,PRESC(25,2),PROPS(5,10),RLOAD(20,18), VISC 12 
~~O),TREAC(~~,~),VECRY(~O),WEIGP(~), VISC 13 

STRSG(4,180),TDISP(120), VISC 14 
TLOAD(20, ~~),VIVEL(~,~~O),VISTN(~, 180) VISC 15 

r VISC 16 
C*** PRESET VARIABLES RSSOCIATED WITH DYNAMIC DIMENSIONING 
P 

VISC 17 
VTSC 18 * .-  

CALL DIMEN(MBUFA,MELEM ,MEVAB, MFRON ,MMATS ,MPOIN, MSTIF, MTOTG, HTOTV, VISC 19 
MVFIX , NDOFN , NPROP, NSTRE VISC 20 

r: VISC 21 
h** CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA VISC 22 
C VISC 23 

CALL INPUlXCOORD , IFFIX, LNODS, MATNO, MELEM, MEVAB, MFRON , MMATS, VISC 24 
MPOIN,MTOTV,MVFIX,NALGO, VISC 25 
NCRIT,NDFRO,NDOFN,NELEM,NEVAB,NGAUS,NGAU2, VISC 26 
NINCS,NMATS,NNODE,NOFIX,NPOIN,NPROP,NSTRE, VISC 27 
NSTRl , NTOTG, NTDTV, VISC 28 
NlYPE,NVFIX,POSGP,PRESC,PROPS,WEIGP) VISC 29 

C VISC 30 
c*** CALL THE SUBROUTINE WHICH COMPUTES THE CONSISTENT LOAD VECTORS VISC 51 
C FOR EACH ELEMENT AFTER READING THE RELEVANT INPUT DATA VISC 32 
C VISC 33 

CALL LOADPS( COORD , LNODS, MATNO, MEL MMATS , MPOIN , NELEM , "Xt VISC 34 
NEVAB, NGAUS , NNODE, NPOI ,WTRE, NTYPE , POSGP , VISC 35 
PROPS,RLOAD ,WEIGP, NDOFN) VISC 36 

C VISC 37 
C*** INITIALISE CERTAIN ARRAYS VISC 38 
C VISC 39 

CALL ZERO(ELOAD,MEL~,MEVAB,MPOIN,MTOTG,~DTV,NDOFN,NELEM, VISC 40 
NEVAB, NGAUS , NSTR 1 , NTDTG, NTOTV, NVFIX , STRSG, TDISP , VISC 'I1 
VNEL,VISTN.TTIME,TLOAD,TREAC,TFACT,MVFIX) VISC 42 

READ( 5,900) TIMEX,TAUFT,DTINT,FTIME VISC 43 
WRITE(6,910) TIMEX,TAUFT,DTINT,FTIME VISC 44 

900 FORMAT(4F10.3) VISC 45 
910 FORMAT( lH0,5X,25HTIME STEPPING PARAMETER =,F10.3,5X, VISC 46 

28HTIME STEP STABILITY FACTOR :,F10.5,// VISC 47 
. 5X,26HINITIAL TIME STEP LENGTH = ,F10.5,5X, 32HTIME STEP INCREMENT VISC 48 
.PARAMETER = ,F10.5) VISC 49 

C VISC 50 
c*** LOOP OVER EACH INCREMENT 
C 

DO 100 IINCS = 1,NINCS 
C 
C*** READ DATA FOR CURRENT INCREMENT 

vrsc 51 
VISC 52 
VISC 53 
VISC 54 
VISC 55 

C VISC 56 
CALL INCREMC ELOAD ,FIXED, IINCS, MELEM , MEVAB, MITER, WOTV, VISC 57 

MVFIX,NDOFN,NELEM,NEVAB,NOUTP,NOFIX,NTOTV, VISC 58 
NVFIX,PRESC,RLOAD,TFACT,TLOAD,TOLER) VISC 59 

C VISC 60 
C*** LOOP OVER EACH ITERATION VISC 61 

VISC 62 
VISC 63 
VISC 64 
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VISC 65 
VISC 66 

c*** CALL ROUTINE WHICH SELECTS SOLUTION ALORITHM VARIABLE KRESL VISC 67 
VISC 68 

CALL AffiOR(FIXED, IINCS, ISTEP,KRESL,TIMEX,MTLXV, NAffi0,NTOTV) VISC 69 
CHECK WtlETHER A NEW EVALUATION OF THE STIFFNESS MATRIX IS REQUIRED VISC 70 

VISC 71 
IF(KRESL.EQ.1) CALL STIFVP(COORD,IINCS,LNODS,MATNO, VISC 72 

MEVAB,MMATS,MPOIN,MTOTV,NELEM,NEVAB,NGAUS,NNODE, VISC 73 
NSTRE,NSTRl,POSGP,PROPS,WEIGP,MELEM,MTOTG, VISC 74 
STRSG, NTYPE, NCRIT ,TIMEX ,DTIME ) VISC 75 

VISC 76 

SOLVE EQUATIONS 
VISC 77 
VISC 78 
VISC 79 

CALL FRONT( ASDIS, LOAD , EQRHS, EQUAT, ESTIF, FIXED, IFFIX, IINCS, ISTEP, VISC 86 
GLOAD , GSTIF , LOCEL, LNODS, KRESL , MBUFA, MELEM , MEVAB, MFRON , VISC 81 
MSTIF ,MTOTV, MVFIX, NACVA, NAMEV, NDEST, NDOFN, NELEM, NEVAB, VISC 82 
NNODE,NOFIX,NPIVO,NPOIN,NTOTV,TDISP,TLOAD,TREAC, 
VECRV) 

CALCULATE RESIDUAL FORCES 

CALL STEPVP(ASDIS,COORD,ELOAD,ISTEP,LNODS,LPROP,TIMEX, 
MATNO,MELEM,MMATS,MPOIN,MTOTG,TAUFf,DTIME, 
WWTV,NDOFN,NELEM,NEVAB,NGAUS,NNODE,NSTRl, 
NTYPE,POSGP,PROPS,NSTRE,NCRIT,STRSG,WEIGP, 
TDISP,VISTN,VIVEL,TLOAD,FTIME,DTINT,IINCS) 

CHECK FOR CONVERGENCE TO STEADY STATE 

CALL STWLDY(NELEM,NGAUS,NCHEK,VIVEL,ISTEP,FIRST,TOLER,PVALU, 
MTOTG, DTIME , NSTR 1 ,TTIME ) 

OUTPUT RESULTS IF REQUIRED 

IF(KOUTD.NE.ISTEP.OR.KOUTS.NE.ISTEP) GO TO 110 
KOUTP=2 
IF(KOUTS. EQ. ISTEP) KOUTPz3 
CALL OUTPUT( ISTEP,MTOTG, KOTV, MVFIX, NELEM, NGAUS, NOFIX, NOUTP, 

NPOIN,NVFIX,STRSG,TDISP,TREAC,NTYPE,NCHEK,VIVEL, 
KOUTP) 

110 CONTINUE 
C 
caw IF XILUTION HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS 
C 

IF(NCHEK.EQ.0) GO TO 75 
50 CONTINUE 

C 
E.H 
C 

75 CALL OUTPUT( ISTEP , ~ O T G ,  WOTV, MVFIX , NELEM , NGAUS , NOFIX, NOUTP , 
NPOIN,NVFIX,STRSG,TDISP,TREAC,NTYPE,NCHEK,VIVEL, 
KOUTP) 

100 CONTINUE 
STOP 
END 

VISC 83 
VISC 84 
VISC 85 
VISC 86 
VISC 87 
VISC 88 
VISC 89 
VISC go 
VISC 91 
VISC 92 
VISC 93 
VISC 94 
VISC 95 
VISC 96 
VISC 97 
VISC 98 
VISC 99 
VISC 100 
VISC 101 
VISC 102 
VISC 103 
VISC 104 
VISC 105 
VISC 106 
VISC 107 
VISC 108 
VISC 109 
VISC 110 
VISC 111 
VISC 112 
VISC 113 
VISC 114 
VISC 115 
VISC 116 
VISC 117 
VISC 118 
v1sc 119 
VISC 120 
VISC 121 
VISC 122 
VISC 123 
VISC 124 
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VISC 64 
VISC 65 
VISC 66 
VISC 70 

VISC 73-85 

VISC 89-94 

VISC 98-99 

For each load increment, initialise the time step length. 
Enter the time-stepping loop for the current load increment. 
Compute the total time elapsed. 
For the first timestep of the first load increment prepare for a 
full equation solution rather than a resolution for an explicit 
formulation. For the implicit or semi-implicit algorithm a 
complete equation solution is required each and every time- 
step. 
Formulate the element stiffnesses and solve the resulting 
equations. 
Calculate quantities at the end of the timestep and evaluate 
the loads for the next timestep. 
Check for convergence of the time stepping process to steady 
state conditions. 

VISC 103-105 Check to see if either displacement or stress output is required 
for this timestep. 

VISC 10€+107 Set KOUTP = 2 for displacement output only and KOUTP 
= 3 for both stress and displacement output. 

VISC 108-1 10 Output the results. 
VISC 115 If steady state conditions have been reached, output the 

converged results, increment the loads and proceed with the 
time-stepping process. 

8.14 General comparison of implicit and explicit time integration schemes 
Before discussing the general case of a two-dimensional continuum it is 

instructive to consider the behaviour of a single degree of freedom system. 
In particular we will consider the response of a simple linear Maxwell model, 
as illustrated in Fig. 8.2. This situation is equivalent to the uniaxial visco- 
plastic model when the initial yield or threshold value, Fo, is reduced to zero. 
Figure 8.2 shows the stress relaxation histories for different time integration 
schemes when the model is subjected to a constant total strain. It is observed 
that all results obtained using the fully implicit scheme ( 0  = 1) lie to one side 
of the theoretical solution while the semi-implicit method (0 = 4) gives 
results which lie to either side of the true curve. It is also evident that the 
explicit method ( 0  = 0) gives an oscillatory solution with the rate of con- 
vergence decreasing as the time step stability limit is approached. However, 
in each case the steady state solution is eventually correctly predicted. For the 
solution of elasto-plastic problems by use of the viscoplastic algorithm it is 
only the steady state solution that is of importance. Similarly in problems of 
creep, the transient stage may not be of interest in itself, as long as the steady 
state values are correctly arrived at. 

For problems which are geometrically linear the solution process simplifies 
considerably. The strain matrix Bn is then constant throughout the analysis 
and from (8.19) it is seen to be equal to Bo. For solution by the explicit time 
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- 0- 0 =O Explicit 
-A- 0 = .$ Semi-implicit (C.N.) -* 0 = I Fully-implicit 

6 = E y o = E i  o(O)=I 

d o ~ = ( @ d . n i ( ~  - @)+,+,)d, 
dl* =2 /Ey  for 0 =0 

Stress relaxation-single dof system- 
curves showing time wise modes of  
relaxation for different schemes 

Fig. 8.2 Characteristics of explicit and implicit time stepping algorithms when 
applied to a linear Maxwell model. 

marching scheme, O = 0 and from (8.14) we have that Cn = 0. Conse- 
quently, from (8.18), fin = D and (8.24) implies that the tangential stiffness 
matrix becomes the linear elastic stiffness matrix and is constant throughout 
the solution process. Thus for the equation solution demanded by (8.23), a 
complete reduction and back-substitution is only required for the first time 
Step and subsequent time intervals only require equation resolution. 

Experience to  date(2) indicates that solution by the implicit method increases 
the computation time by approximately a factor of 4-5 in comparison with 
the explicit approach, for the same solution tolerance factor (or time step 
length). This cost differential must be balanced against the greater time step 
lengths permitted by the unconditionally stable implicit method. However, 
increasing the time step length beyond prescribed limits results in a deterio- 
ration in solution accuracy. Where a variable stiffness approach is employed 
for some other reasons, such as to include geometric nonlinearity effects or 
time dependent material properties, solution by an implicit scheme entails 
little or no additional computing effort and such an approach is particularly 
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advantageous. Modification of the program presented to account for large 
deformation effects is set as an exercise to the reader in Section 8.17. 

Implicit and explicit time integration schemes are considered further in 
Chapters 10 and 11 for the solution of dynamic transient problems. 

8.15 Tbe overlay method for improved material response 
The viscoplastic model described in the previous sections gives a material 

response whose general form is in keeping with experimental observations. 
However the precise strainltime histories (or creep curves) of many real 
materials cannot be accurately represented by a simple viscoplastic model. 
This is particularly so for materials whose strain response curves are non- 
linear with regard to the applied stress level, so that a doubling of the applied 
stress does not result in twice the strain at any given time. 

A more elaborate material response can be modelled by use of the so-called 
overlay or mechanical sublayer merhod(l0-13) in which the solid to be analysed 
is assumed to be composed of several layers or overlays each of which under- 
goes the same deformation. The total stress field is obtained by summing the 
different contributions of each overlay. By introducing a suitable number of 
overlays and assigning different material characteristics to each, a variety of 
sophisticated composite actions can be reproduced. In this section it is 
demonstrated how time-dependent overlay models can be used to simulate 
some experimentally observed material behaviours. 

I primary creep F 

El .- 
E z 

Fig. 8.3 

Secondary creep 

A 

C 

0 , D I ! ' Permanent set 

TI 
I 

Time T2 

Strain/time relationship at constant stress for many typical materials. 

The strain-time relationship at constant stress which most materials 
exhibit to some degree or other is illustrated in Fig. 8.3. The instantaneous 
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elastic strain, OA, is followed by a primary creep AB during which if un- 
loading takes place an instantaneous elastic recovery results, followed by 
delayed elastic recovery, CD. If the load is not removed a t  time Tl secondary 
creep begins which is accompanied by permanent deformation. Unloading at  
any time on the curve BE leaves a permanent set in the material. On con- 
tinued loading past time Tz tertiary creep begins, leading almost inevitably to  
failure. 

(a) Standard visco-elastic model (b) Four parameter model 

Fig. 8.4 Material models for simulation of the material behaviour of Fig. 8.3. 
(a) Standard viscoelastic model. (b) Four parameter model. 

This behaviour can be numerically simulated by use of the rheological 
models shown in Fig. 8.4. The standard linear solid illustrated in Fig. 8.4(a) 
provides a visco-elastic response and represents the behaviour of the material 
up to time TI.  After this time the behaviour is closely approximated by the 
five parameter model shown in Fig. 8.4(b) where a friction slider component 
in parallel with a viscous dashpot has been added. This component becomes 
active only if the applied stress exceeds some limiting value, Y and the 
.&'iction slider provides the permanent deformation or viscoplastic effect. 
For use in the overlay method it is desirable to consider 'Maxwell equivalents' 
~f these models. Figure 8.5(a) shows the equivalent model to that of 
pig. 8.4(a) both being governed by the differential equation 

where pt and qi are constants and D denotes the differential operator with 
mwt to time. Similarly Fig. 8.5(b) illustrates the Maxwell equivalent of 
.Fig. 8.4(b), the governing equation for this case being 
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I Hookean element 

(b) 
before yielding 

Fig. 8.5 Equivalent representation of the models of Fig. 8.4 using Maxwell type 
components. 

The constants for the various components of the models in Figs. 8.4 and 8.5 
are different but unique relationships exist. The configurations of Fig. 8.5 
immediately suggest the use of overlay models. By employing at least one 
viscoplastic overlay and one Maxwell overlay (i.e. setting the threshold 
uniaxial yield value, Fo = 0) the complete behaviour in the visco-elastic 
range as well as irrecoverable creep deformation can be generated. The model 
behaves as a 'standard linear solid' until failure of the friction slider in thc 
visco-plastic overlay after which it behaves as a four parameter solid. In fact 
a fifth parameter, the yield limit of the slider must also be defined. These 
parameters are material characteristics and their values must be experi- 
mentally determined. 

Fig. 8.6 The overlay model in two-dimensional situations. 
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8.15.1 Basic expressions of the overlay concept 
The overlay model in a two-dimensional situation is illustrated sche- 

matically in Fig. 8.6. Each overlay can have a different thickness and material 
behaviour. With the nodes in each overlay coincidental, the same strain 
pattern is produced in each component. This results in a different stress field 
a, in each layer which contribute to the total stress field c according to the 
overlay thickness, t j ,  so that 

in which k is the total number of overlays in the model, and 

The equilibrium equations (8.21) which must be satisfied at  each stage become 

Also the element stiffnesses (8.24) are the sum of each overlay contribution 
so that 

KT. = 2 IG [Bn]T(Dnh B n d Q  (8.54) 

1-1 

where (&), is the value of h n  for each overlay in turn. Matrix ( b ~ ) ~  will 
differ from overlay to overlay according to the material properties of each. 
The solution process is then identical to that described in the preceding 
sections with stress and strain terms being calculated for each overlay 
separately. I t  should be noted that the viscoplastic strain in each overlay will 
SneraUy be different due to differences in threshold yield values and flow 
rates but the total strains must be the same. 

Although the name ovcrlay model arises from the physical interpretation 
of the two-dimensional situation the technique is essentially a mathematical 
convenience and can be readily extended to three-dimensional problems. In 
such cases the thickness can no longer bc interpreted as a physical quantity 
and becomes merely a weighting parameter for combining the contribution 
of individual overlays. Indeed this is also the case in two-dimensional 
Problems where negative thicknesses can be employed to simulate strain- 
softening conditions.(l2) 
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8.15.2 Overlay models for some standard material behaviours 
In this section we reproduce some standard material responses by com- 

bining different viscoplastic components through the overlay concept.(ls' 

Fig. 8.7 Use of the overlay concept for the simulation of some standard material 
behaviours. 

(i) Visco-elast ic response 
A two overlay model with Fo set to  zero for one overlay and infinitely 

large in the other reproduces a standard linear visco-elastic solid 
(Fig. 8.7). Any higher order time dependent constitutive relation can be 
simulated by the introduction of more overlays of the Maxwell type 
(i.e. Fo = 0). Quite generally a stress-strain relationship of the form 

in which ak and bk  are real valued functions of the spatial coordinates 
and D denotes the differential time operator, can be modelled by the 
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use of n Maxwell type overlays. The overlay approach reduces the nth 

order differential equation (8.55) to n first order equations. 

(ii) Four parameter viscous model 
Two overlays with Fo set to zero in each case provides a four par- 

ameter viscous model of the first kind (Fig. 8.7). Three overlays with 
Fo set to (a) zero for one overlay (b) infinitely large for the second unit, 
(c) zero for the third overlay together with a small prescribed elastic 
modulus, reproduces a four parameter model of the second kind. 

(iii) Three element viscous model 
A two overlay model with Fo set to zero in both and the elastic 

modulus assigned to  be infinitely large in one reproduces the three 
element viscous model. 

(iv) Visco-elastic-plastic four parameter model 
This two overlay model is capable of reproducing the behaviour of 

most real engineering materials and is achieved by setting the threshold 
yield value of one overlay to zero. Before yielding of the friction slider, 
the material behaviour is visco-elastic followed by a viscoplastic 
response after initial yielding. By choosing the viscosity coefficients of 
the two dashpots appropriately the rate of straining after first yield can 
be controlled. 

In order to illustrate how the combination of two simple material responses 
by the overlay method can simulate a more complex material behaviour the 
load cycling problem indicated in Fig. 8.8 is presented. One elastic (yield 
value set very large) and one viscoplastic overlay are considered. A static 
analysis of the load cycling of this model was performed by allowing steady 
state conditions to be achieved after application of each increment of load. 
The results are shown in Fig. 8.8 where the material properties employed are 
also included. A Bauschinger effect is immediately apparent on reversal of 
loading with yielding in compression commencing at a reduced value com- 
pared with initial yield in tension. Thus although each overlay has been 
assumed to  be non-strain hardening with equal yield stress in tension and 
compression, the composite model exhibits a kinematic hardening behaviour. 

As a further demonstration of the overlay approach, Fig. 8.9 shows how 
two overlays can be used to simulate the response of a real engineering 
material. The solid lines represent experimentally obtained creep curves for a 
rock salt and it is evident that the material behaviour is highly nonlinear with 
regard to the strain obtained at  any time for a given applied load. The broken 
lines are the numerical material response obtained by using two overlays with 
material properties as shown in Fig. 8.9. The agreement obtained is acceptable 
for engineering purposes but a closer correspondence could be readily 
achieved by the use of additional overlays. 
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The main advantage of the overlay technique is that it allows the descrip- 
tion of complex material behaviours by the use of components which indi- 
vidually exhibit a simple response. 

A11 the program changes required to implement the overlay method in the 
viscoplastic program described earlier in this chapter are of a minor nature. 
Almost all the changes are associated with the summation process over each 
overlay demanded by (8.51), (8.53) and (8.54). Several array sizes must also 
be extended to  allow separate storage of quantities for each overlay. Modifi- 
cation of the program is set as an exercise for the reader in Section 8.17. 

8.16 Numerical examples 
The first problem considered is the elasto-viscoplastic deformation of a 

thick tube under the action of internal pressure loading with the exterior 
surface remaining free. The mesh of Fig. 7.12(a) is employed in analysis with 

Rheological analogue 

Y A / Y .  = 2.0 
v = 0 . 3  
E = E a = 2 x  I@ psi 

Fig. 8.8 Load cycling response of an overlay composite illustrating the Bauschinger 
effect. 
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plane strain conditions being assumed in the axial direction. The material 
properties employed are identical to the case of Fig. 7.12(a) and the fluidity 
parameter is chosen as y = 0.001. Again a Von Mises yield surface is adopted 
in solution and the flow function @(F) = F is assumed. An explicit time 
stepping algorithm (O = 0) is initially employed and the radial displacement 
of the inner surface with time is shown in Fig. 8.10 for two increments of 
applied pressure. Steady state conditions are allowed to develop for an applied 
pressure of 12 dN/mmZ before a further pressure increment of 2 dN/mmZ 
is added. For each increment the time stepping parameter values 7 = 0.01, 
k = 1.5 were employed, the initial time-step length was chosen as 0.1 days 
and the steady state convergence tolerance parameter taken as 0.1 %. Also 
shown in Fig. 8.10 are the results for the situation when an internal pressure 
of P = 14 dN/mmZ is instantaneously applied. The steady state displacement 
is seen to  be in good agreement with that obtained from the two-load 

of inner face (mm) 

explicit time integration scheme 

E = 21000 dN/mm2 

applied 
pressure 

P = 12 dN/mm2 

v = 0.3 
FO = cry = 24.0 dN/mm2 
H '  =0.0 
y =O.OOl/day 
flow function @(F) = F 
von mises yield criterion 

. d 
0.110 time (days) 

I 

Fig. 8.10 Displacement of the inner surface with time of an elasto-viscoplastic 
cylinder subjected to an incrementally applied internal pressure (Mesh ol' 

Fig. 7.12(a)). 

increment solution. The problem was reanalysed for an applied pressure, 
P = 14 dN/rnmZ using larger time-step lengths as governed by 7 = 0.05. 
The loss of accuracy is immediately apparent, with the larger time steps 
overestimating the viscoplastic strain rates. 

The problem was then resolved using in turn, the implicit trapezoidal 
time stepping scheme (O = $) and the full implicit or backward difference 
scheme (O = 1). Good agreement between the three time integration schemes 
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of inner face (mm) 

elasto-plastic 
0.136 displacement 

P = 14 dNlmm' 

explicit (euler) integration scheme 0 = 0  0 
implicit trapezoidal scheme e = 0 . 5  
fully implicit scheme 0 = 1 . 0  x 
(time stepping parameters T = 0.01. k = 1.5) 

1 time (days) 

Fig. 8.11 Comparison of various time integration schemes for the internally 
pressurised cylinder of Fig. 8.10. 

Fig. 8.12 Steady state tangential stress distribution in an elasto-viscoplastic 
internally pressurised cylinder. 

24 - tangential stress 

is evident in Fig. 8.11 with the steady state displacement in each case com- 
Paring well with the corresponding elasto-plastic value of Fig. 7.12(b). 

The steady state hoop stress distributions are shown in Fig. 8.12 for the 
time integration schemes @ = 0 and O = 1, and the results are compared 
with the elasto-plastic solution of Fig. 7.13. Excel!ent agreement is obtained 

22 

20 

ue(dN/mm2) 

>\+, 
\ 

+ elastic solution 
- \ - elasto-plastic solution 

\ 
\ steady state viscoplastic solutions: 

12 - applied pressure 
P = 14 dN/mm2 10 - 

8 - 
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as required; since theoretically the steady state viscoplastic solution coincides 
with the corresponding elasto-plastic solution. 

The problem of the stresses induced in the vicinity of an excavated under- 
ground storage cavity is illustrated in Fig. 8.13. Applications in this area 
include oil and gas reservoirs, nuclear waste disposal and geothermal 
energy problems. The cavity is assumed to be axisymmetric and Fig. 8.13 

-0.6 steady state 
-0.8' radial 

displacement (m) 

r 
gravity and pressure loading 
instantaneously applied at time, t = O  

E = 6.9 x la5 KN/m2 
v = 0.4 
p = 2550 Kglm:' 
FO = 1OOOO KN/rn2 
7 = 0.075/year 
*(F) = F 
H '  =O.O 
Von mises yield criterion 
explicit time integration, T =0.05 
steady state conditions 
achieved in 0.7 years. 

Fig. 8.13 Elasto-viscoplastic analysis of a subterranean cavity, showing zones 
of plasticity and steady state radial displacement at mid-height. 

shows the finite element idealisation of a cylindrical portion of the surround- 
ing rock mass. Before excavation of the cavity the tectonic stress field in the 
rock is assumed to be hydrostatic. This condition is simulated by a gravity 
loading together with a lateral hydrostatic pressure applied to the cylindrical 
face of the model. The material properties employed are indicated in Fig. 
8.13. The cavitv is assumed to be instantaneouslv excavated at time r = 0 . 
and viscoplastic solution to steady state conditions performed by explicit 
time integration (O = 0). Steady state conditions are achieved in 0.7 years 
and the zones of viscoplastic deformation at  this time are illustrated in 
Fig. 8.13. It should be emphasised that since the fluidity parameter y only 
enters the viscoplastic expressions through the product y . r ,  then solution 
for different material fluidity values simply necessitates an adjustment of the 
time scale. Figure 8.13 also shows the radial displacement along section AB 
at  steady state. The displacement distribution is seen to be made up of a 



Fig. 8.14 Radial and tangential stress distributions for the problem of Fig. 8.13. 

linear field caused by the external applied p r c s s ~ ~ r r .  superimposed on ~ t h i c h  
is the effect of the cavity prcscnce (the shaded area). 

Finally, Fig. 8.14 shows the steady state radial and tangential strcss 
distributions along the line of  Gaussian integration points nearest section 
AB. It is notcd that away from the vicinity of the cavity. the hydrostatic 
condition 0,. = 0, is reproduced. 

8-17 Problems 
8.1 Use program VISCOUNT documented in Appendix 11. Section A2.2 to 

solve the thick sphere considered in Problem 7.5 for the viscoplastic 
case. Emplo) the same material properties and load increment sizes 
as  used in the elasto-plastic analysi,. As:;~lmc the fluidit) parameter 



FINITE ELEMENTS IN PLASTICITY 

y = 0.001 and flow function @(F) = F. Use explicit time integration 
(O = 0) and compare your steady state solutions with the results of 
Problem 7.5. 
Repeat Problem 8.1 for different limiting time step lengths employing 
explicit time integration. Take the factor 7, described in Section 8.3, in 
the range 0.01 < ~G0.5 .  Comment on the accuracy of solution in each 
case. 
Repeat Problem 8.1 using the flow functions (8.8) and (8.9). Take the 
indices M and N in the range 2 to 4. Comment on the solutions. 
Repeat Problem 8.1 using (a) Fully implicit method (O = 1) and 
(b) Implicit trapezoidal rule (O = 4). Comment on the accuracy and 
computational costs of solution. 
Modify program VISCOUNT to include the strain-hardening law 
considered in Problem 7.4. 
Undertake all the coding changes required to program VISCOUNT to 
include the overlay concept described in Section 8.15. 
Test the modified program of Problem 8.6 by employing it in the 
solution of the uniaxial problem of Fig. 8.15. A constant stress of 100 is 
applied at time t = 0 to the plane stress model shown. Determine the 
development of strain with time. Verify the numerical solution by 
noting Figs. 8.4 and 8.5 and hence comparing with the analytical 
solution of Problem 4.2. 

t t t t t  Overlay 1 Overlay 2 
E 1000.0 1000.0 
P 0.0 0.0 
t 0.5 0.5 
0, 0.0 25 .O 
H'  100.0 100.0 
v 0.01 0.01 

Fig. 8.15 Overlay model example-Problem 8.7. 

8.8 In Section 8.2.3 it was stated that large deformation effects could be 
included, adopting a Lagrangian formulation, by including both the 
linear and nonlinear terms of the general quadratic relationship 
between strains and displacements according to (8.19). Details of 
geometrically nonlinear expressions can be found in Chapters I0 and1 1. 
Modify program VISCOUNT to include such geometrically nonlinear 
behaviour. 
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8.9 Employ the modified program of Problem 8.8 to solve the creep 
buckling problem illustrated in Fig. 8.16. The creep law employed is 
indicated in Fig. 8.16 and is a particular form of expression (8.9). Using 
the finite element mesh shown, apply the eccentric load to the cantilever 
at time, I = 0, and employ the implicit time integration algorithm 
(O = 1) to  determine the deformation with increasing time. At some 
stage of the solution process the structure will become unstable due to 
creep buckling. Carry out the analysis for X = 1.0, 1.5,2.0 and 2.5 and 
compare the lateral deflectionltime relationships with those provided in 
Ref. 6. 

Fig. 8.16 Creep buckling example-Problem 8.9. 

8.10 Modify program VISCOUNT to undertake the elasto-viscoplastic 
solution of three-dimensional solids. The majority of the subroutines 
required have been already modified in Problem 7.9. 

8.11 Repeat Problem 7.10 for the elasto-viscoplastic program VISCOUNT. 
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Chapter 9 
Elasto-plastic Mindlin plate 

bending analysis 

Written in collaboration with M.  M .  Huq 

9.1 Igodwtion 
In apter 5 we introduced some elastoplastic Timoshenko beam formu- 

lations. In this chapter we introduce some related elasto-plastic Mindlin 
plate bending formulations. 

There are basically three theories which we could use as  a basis for elastic 
plate bending: 

(i) Kirchhoff classical thin plate rlieor~ This theory, which takes no 
account of transverse shear deformation, is usually favoured by 
engineers because of its simplicity. It is the plate bending equivalent of 
Euler-Bernoulli beam theory. Many conforming C(1) and non- 
conforming C(0) plate elements are available. 

(ii) Mindlii~ (or Reismer) plate tlleot.~, Mindlin and the related Reissner 
plate theories allow for transverse shear effects. Mindlin plate theory is 
the plate bending equivalent of Timoshcnko beam theory. Several 
Mindlin plate elements have been presented in the literature and it 
emerges that the most convenient one is the 'Heterosis' element of 
Hughes.(l) 

(iii) FuN three-dinletisioriaI tlieorj. For the grcatest accuracy, full three- 
dimensional theory should bc employed. Many 3D hexahedral and 
tetrahedral elements have been presented. ~ n f o r t u n ~ l y  when the - 
aspect ratio of the element is very large as  in thin plates, an ill-con- - ~- ~ 

conditioned stiffness matrix rcsults and roundoff problems predominate. \ 
Several schemes for avoiding this difficulty have been presented and 
undoubtedly a n  analysis based on this procedure is the most accuratc. 

Let us now consider the various possibilities for elasto-plastic analysis. 

(i) We could use a full 3D analysis with a yield function F(o,, a,, az, TI, ,  

7 x 2 ,  ~ y d .  

(ii) In a Mindlin plate formulation \be can also use the yield function 
F(u5,  o,), UZ, rzy, T Z Z ,  rUZ) .  I t  should be ncted that oz is taken as zero in 
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Mindlin plates. This approach allows for the spread of plasticity from 
the extreme fibre over the entire plate thickness. In the evaluation of the 
internal virtual work integrals we may sample the stresses of the Gauss- 
Legendre or Lobatto integration points. Alternatively we may divide 
the plate into layers and use a mid-ordinate rule. 

(iii) In a Mindlin or Kirchhoff formulation we can use a yield function 
F(u,, uy, rZU). In Mindlin plate theory we ignore the effect of roz and 
ryz on the plastic behaviour. Since, in the absence of inplane forces, 
the inplane stresses are a maximum at the extreme fibres where the 
transverse shear stresses are a minimum and the inplane stresses are a 
minimum at the mid-plane where the transverse shears are a maximum, 
this is a reasonable assumption. (There is also further evidence to 
suggest that it is likely to lead to insignificant errors.) This approach also 
allows for the spread of plasticity over the depth of the plate. 1n the 
evaluation of the internal virtual work integrals we may sample the 
stresses at the Gauss-Legendre or Lobatto integration points. Alterna- 
tively we may divide the plate into layers* and use a mid-ordinate rule. 
This 'layered' approach has been described in Chapter 5 for a Timo- 
shenko beam element and is a very popular method. 

(iv) In a Mindlin or Kirchhoff formulation we can adopt in the absence of 
inplane forces a yield function F(M,, Mu, M,,) which is a function of 
the bending moments. Here it is assumed that at a point the whole 
plate section becomes plastic simultaneously. A similar approach was 
described in Chapter 5 for Timoshenko beam elements. 

The elasto-plastic analysis of Mindlin plates is considered in this chapter, 
where both layered and non-layered approaches are treated in detail. 

Finite elements based on Mindlin's assumptions have one important 
advantage over elements based on classical thin plate theory. Mindlin plate 
elements require only C(0) continuity of the lateral displacement w and the 
two independent nodal rotations 8, and 8,. However elements based on 
classical Kirchhoff thin plate theory require C(1) continuity; in other words 
awlax and 8w/ay as well as w must be continuous across element interfaces. 
Thus, Mindlin plate elements are simpler to formulate and they have the 
added advantage of being able to model shear-weak as well as shear-stiff 
plates. Consequently, if transverse shear deformations are present they are 
automatically modelled with Mindlin elements. 

Recent research(" indicates that the use of a 'Heterosis' quadrilateral 
Mindlin plate element with quadratic Lagrangian interpolation for 8, and 
8, and quadratic Serendipity interpolation for w together with selective 
integration of the stiffness matrix, gives the best overall performance. It 

*These layers are symmetric about the midsurface of the plate in the present 
formulation. 
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avoids locking and contains no spurious mechanisms. The Heterosis element 
is implemented here using a hierarchical formulation described later. 

We have already considered elastic Mindlin plate finite element analysis in 
Chapter 6. Nonlinear Mindlin plate finite element analysis is now considered. 

9.2 Equilibrium equations 

9.2.1 Three-dimensional equilibrium equations 
Let us begin with the equilibrium equations of three-dimensional stress 

analysis. We will assume that, for convenience, no tractions are present on 
the boundary rt of the three-dimensional domain R. The virtual work 
equation may be expressed as 

where the vector of virtual displacements in the x ,  y and z directions is 
Su = [Su, Sv, Sw]T, the vector of associated virtual strains is SE = [&, 
Sry, 8EZ, S Y Z Y ,  8yZZ, SyyZ]T,  the vector of stress is a = [a,, a,, az, T,,, T,Z, 

T,,]T and the vector of applied body forces is b = [b,, b y ,  b,]T. Displacements 
u are prescribed on boundary r, of domain Q. 

The stress-strain relationships for an isotropic material are given as 

where a1 = E/(1 +v)( l  -2v),  a? = 1 v ,  a3 = v and a3 = ( I  -2v) /2 .  Note 
that E is the elastic modulus and v is Poisson's ratio. 

9.2.2 Mindlin plate equilibrium equations 
In Mindlin plate theory, the domain of interest R is of the special form 

R = { (x ,  y, z ) c R 3  I z E [ - ~ / ~ ,  f/2], ( x ,  y )cAcR2}  (9.3) 

where t is the plate thickness which may be a function of x and y and A is 
the plate area. The boundary of A is denoted by r. 

We also make the following set of assumptions: 

(i) Normals to the midsurface (i.e., z = 0 )  before deformation remain 
straight but not necessarily normal to the midsurface after deformation. 
If 8, and 8 ,  are the rotations of the midsurface normal in the xz- and 
yz- plane respectively, then 
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(9.4) 

4 x 9  Y ,  4 
The sign convention is illustrated in Fig. (9.1). Right hand rotations 
8, and 8, are defined by the expression 

It is usually more convenient to develop the theory in terms of 0% and 
8, rather than 8% and 8, since the resulting algebra is greatly simpli- 
fied. 

(ii) The normal stress a, is assumed equal to zero. The virtual work state- 
ment may be expressed as 

In Mindlin plate theory a reduced form of the constitutive relations is obtained by 
making az = 0 and subsequently eliminating r,. Thus 

where for elastic isotropic situations 

t Terms symbolised thus ( A )  denote quantities integrated over the thickness. 
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and 

Using (9.7) and (9.8) we find that (9.6) can be rewritten as 

This equation is adopted in the layered approach. After integration over the 
thickness of the plate (9.9) can be rewritten in the form 

where 

and 

We interpret &, = [M,, My, M,,]T as the bending moments and = 

[Qz, QUIT as the shear force. Usually we take = [q, O,O]T in which q is the 
lateral distributed loading acting on the platc. Wc use (9.10) in the non- 
layered plate formulation. 

Fig. 9.1 Sign convention for. Mindlin plate theory 
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9.3 Dietisation 

9.3.1 Standard representation 
If we adopt a standard C(0) finite element representation then the dis- 

placements can be written as 

u = 2 Nidt (9.1 1) 

1-1 

in which the shape function matrix is Ng = Nils and the vector of nodal 
values 4 = [w, &r, 6911~. 

The flexural strain displacement equations are given as 

in which 

Bji = lo 0 -- -;I -- 
The shear strain displacement equations have the form 

in which 

Bsi = 

If we substitute (9.1 lt(9.13) in (9.9) we obtain the expression 
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Since (9.14) must be true for any set of virtual displacements we obtain the 
expression 

We use (9.15) in the layered approach. I f  we integrate the terms in square 
brackets over the thickness of the plate then we obtain the following equation 

Equation (9.16) is used in the nonlayered approach. 
Note that we obtain equations for the residual force vector yli(d) for every 

node in the finite element discretisation. When the stresses are nonlinear then 
both (9.15) and (9.16) are sets of nonlihear simultaneous equations. 

Contributions to the residual force vector (v = [wlT ,  . . . , y7LT]T may be 
evaluated at  the element level and then assembled to form yl. We may use any 
standard C(0) two-dimensional isoparametric element. Several elements have 
been presented in the literature and it emerges that the most convenient one 
is the 819 node 'Heterosis' element of Hughes.(l1 In the programs described 
later we use 4, 8 and 9-noded isoparametric quadrilateral elements (see 
Chapter 6), as well as the Heterosis element. Selective integration is adopted 
and this will be described later. 

9.3.2 Hierarchical formulation of the Heterosis element 
In the implementation of the Heterosis and the 9-node element a hier- 

archical formulation is adopted. The first 8 shape functions are borrowed 
from the 8-noded Serendipity element and the shape function for the central 
gth node is the bubble function 

which is already available from the quadratic Lagrangian element. This 
means that all variables associated with the central node arc hierarchical in 
nature. In other words, they are departures from the interpolated Serendipity 
values. The hierarchical representation can be used for geometrical rep- 
resentation as well as for interpolating displacements. 

In order to implement the heterosis element we adopt a hierarchical 
f o ~ u l a t i o n  either by adding a stiff spring (large number) to the leading 
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diagonal term of the stiffness matrix associated with the lateral displacement 
parameter for node 9, or by prescribing displacement at  this centre node to 
zero. This has the effect of forcing 1v to behave as though it was represented 
by Serendipity quadratic shape functions. Thus the desired effect is achieved. 

I t  is worth noting that if no spring is added the element obtained is identical 
to the 9-noded Lagrangian element provided that care is taken in evaluating 
the consistent nodal forces. Furthermore if stiff springs are added to  all the 
terms of the leading diagonal associated with node 9, then the element 
reverts to a Serendipity 8-noded element. 

For convenience, in the present case, when representing the geometry of 
the heterosis element, the x and y coordinate departures from the interpolated 
Serendipity values are taken as equal to zero. In other words, as Serendipity 
geometrical representation is adopted this distinction is only of importance 
when elements with curved boundaries are present. (N.B. This is auto- 
matically taken care of by a modified version of Subroutine,NODEXY 
described in Section 6.4.1). 

9.4 Solution of nonlinear equations 

9.4.1 Plasticity in layered plates 
For Mindlin plates we may assume that the yield function F is a function of 

af, the direct stresses associated with flexure, but not of the transverse shear 
stresses 0,. The yield function F i s  also a function of the hardening parameter, 
H. When yielding occurs at some point, it is assumed that, unless unloading 
takes place, the stresses always remain on the yield surface so that 

Thus the incremental stress-strain relationship is given as 

or da' = DEP1dd 

in which (DePt)j is identical to Dep given in Chapter 7 for the elasto-plastic 
plane stress problem. Note that D,' always remains elastic. Recall from 
equation (7.47) that 

where 
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in which h is the proportionality constant. Here we cater for Von Mises and 
Tresca materials only. Wc can thus use a slightly modified version of the 
coding described in Chapter 7 whcn evaluating (D,.,,')/ and when testing for 
yielding etc. 

9.4.2 Solution of the nonlinear equilibrium equations for layered plates 
The increnlental equilibrium equations for the plate can bc written at some 

stage in the solution (i.e., at an iteration during a load increment) as 

where yl is obtained from (9.1 5) and K ~ ( d p )  is the tangential stiffness matrix 
which may be approximated as 

Since [D,,']/ is a function of : we may employ a numerical integration 
technique to  evaluate the integral over the thickness of the plate. Here, we 
divide the plate into layers and use a mid-ordinate rule as described in 
Chapter 5 for the Timoshenko beam. We use a similar method to evaluate 
~ ( d p ) .  Thus we have 

where 

and 

We now use the standard procedure to solve (9.21). Instead of using KT(&) 
we may use some previously calculated value of KT just as in the other 
applications. 

9-43 Plasticity in nonlayered plates 
In  Chapter 5 we considered the elasto-plastic nonlayered analysis of 

Timoshenko beams in which we assumed that whcn the bending moment 
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reaches the yield moment Mo, the whole cross-section of the beam becomes 
plastic instantaneously. We noted that this is a convenient fiction as in 
reality there is always a gradual spread of plasticity over the depth of the 
beam. In elasto-plastic nonlayered Mindlin plate analysis we make a similar 
approximation. Here we assume that the yield function I? is expressed as a 
function of the bending moments as, but not of the shear forces 68. The yield 
function is also assumed to be a function of a hardening parameter fi. During 
yield it is assumed that the stress resultants 6j must remain on the yield 
surface so that 

$(el, 8) = o (9.24) 

where for the Tresca and Von Mises materials under consideration 

Therefore, although replaces F, (M,, M,, Mzy)  replace (a,, a,, s,,) and 
Mo = aot2/4 replaces go, everything else remains unchanged and we can 
again make use of the coding given in Chapter 7. 

The incremental stress-strain resultant relationships are given as 

in which 

in which 

and 

Note also that 
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9.4.4 Solution of nonlinear equilibrium equations for nonlayered Mindlin 
plates 

For  the nonlayered plates the equilibrium equations are  identical to (9.21). 
Here, however, the tangential stiffness matrix is given as  

Apart  from this modification the solution procedure is unchanged. 

9.4.5 Summary of solution procedures 
The solution procedures for elasto-plastic Mindlin plate analysis are 

summarised in Tables 9.1-9.3. The overall process is given in Table 9.1. The 
iteration loop is shown for the nonlayered and layered plates in Tables 9.2 
and 9.3 respectively. 

Table 9.1 Equation solving technique for layered and nonlayered Mindlin plates 

Begin new load increment,/ = f + A .  
Set Af equal to the current load increment vector. 
Set do equal to  0 for the first increment or equal to the total 
displacement vector at the end of the last load increment. 
Set yo equal to the residual force vector at the end of the last 
w e r n e n t  or equal to 0 for the first load increment. 
Set yo = yo+ AJ 
Solve Ado = - [KT]-' yo. 
Use old or updated value KT. 
Set dl = do+ Ad0. 
Evaluate y '(dl) .  
If solution has converged go to 11 ; otherwise continue. 
Iterate until solution has converged. 
If this is not the last increment go to 1 ; otherwise stop. 

Table 9.2 The iteration loop for elasto-plastic nonlayered Mindlin plates. 

1 Set iteration number i = 1. 
2 Solve Adi = - [KT]-1 yi. 

Use old or updated KT. 
3 Set d'f' = d ' f  Ad'. 
4 For each Gauss point, evaluate the increments in strain resultants 

A;,' = B, Adi 

A:,' = B, Ad'. 
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Table 9.2--continuer/ 

5 Using the elastic rigidities estimate, at each Gauss point, the 
increments in stress resultants and hence the total stress resultants 

A 

AG; = D f A z ;  hence &:+I = &;+A&; 
., . A = A hence &:+I = &:+ Am:. 

6 At each Gauss point, depending on the states of 6; and &;+l, 

adjust 6p1 to satisfy the yield criterion and preserve the normality 
condition. 

7 Evaluate the residual force vector 

8 If the solution has converged, continue, otherwise set i = i+ 1 
and go to 2. 

9 Move to next load increment. 

Table 9.3 The iteration loop for elasto-plastic layered Mindlin plates. 

Set iteration number i = 1. 
Solve Adi = - [KT]-l yi. 
Use old or updated KT. 
Set di+l = d i l  Ad', 

For each Gauss point in each layer evaluate the increment in strain 

Estimate the increments in stress at each Gauss point in each layer 
using the elastic stress-strain matrix. Hence evaluate the total 
stress value. 

Am,' = D,'AE~' ,  m f k ~  = =,I+ ~~~i 

Am,' = D,'AeSr, mRi+l = aQi+Am;. 

Depending on the states of m; and m,iil ,  adjust of1" to satisfy the 
yield criterion and preserve the normality condition. 
Evaluate the stress resultants 6i.1 and &,"+I at each Gauss point. 
Evaluate the residual force vector 

If the solution has converged continue, otherwise set i = i+ 1 and 
go to 2. 
Move to  next load increment. 
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In this application we reconimended the following convergence criteria. Let 

where S j  may equal w j ,  OZj o r  O y j .  We take in any combination 

where TOLER is a specified tolerance. We can also takc the residual forcc 
equivalents of t v j ,  B I j  or O U j  in (9.29) and (9.30). 

9.5 Software for the non-layered approach 

9.5.1 Overall program structure 
The overall program structure for the elasto-plastic Mindlin plate bending 

analysis program M l N D L l N  using a nonlayered approach is given in Fig. 9.2. 
The dimensions given in subroutine FEMP agree with those given in sub- 

routine DIMMP and limit the program to the following maximum size 
problems in the present form 

MELEM - maximum number of elements = 25 
MEVAB - maximum number of variables per element = 27 
MFRON - maximum front width = 40 
MMATS -maximum number of material sets = 10 
MPOIN - maximum n mber of nodal points r = 80 
MTOTV - maximum t tal number of degrees of freedom = 240 
MVFIX - maximum number of prescribed boundary nodes = 40 

To modify these values the DIMENSION statement in FEMP and the 
appropriate statements in DIMMP should be carefully changed and checked. 
All new routines are  now documented and these include: FEMP, CONVMP, 
DIMMP, FLOWMP, GRADMP, INVMP, MINDPB, OUTMP, SFR2,* 
RESMP, STIFMP, STRMP, SUBMP, VZERO and ZEROMP. The other 
routines, which have been described earlier, include ALGOR, BMATPB, 
CHECKI,~ CHECK2, ECHO, FRONT, INCREM, INPUT, JACOB2, 
MODPB and NODEXY.* 

The files which are used in the program are 5 (cardreader), 6 (lineprinter) 
and 1, 2, 3, 4, 8 (scratch files). 

Note we include the modified versions of SFR2 and NODEXY to allow for hier- 
archical representation. 

t We include a very slightly modified version o i  C H E C K  I .  Notc :ilso that for 4-nclde 
Mindlin plate clen~ents. GAUSSQ is modified to :~llo\r i;>r ;I singlc point Gauss rule. 
See Section 6.4.2. 
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START 7 
Presets the variables associated with the 

ZEROMP 
Sets to zero arrays required for accumulation 

of data 

MINDPB 
Inputs additional data required for Mindlin 

plate analysis 

LOADPB 
Reads loading data and evaluates the 

equivalent nodal forces for distributed loading 

Increments the applied load according to 

ALGOR 
Sets indicator to identify the type of solution 

algorithm. i.e., initial or tangential stiffness etc. 
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necessary to recalculate No 
stiffness matrix with 
present algorithm'? 

STIFMP 
Calculate element stiffness matrices for nonlayered 

FRONT 
Solve the simultaneous equation system by the 

frontal method 

I 
RESMP 

Evaluate the residual force vector for the nonlayered 
elasto-plastic Mindlin plate 

CONVMP 
Check whether solution has converged using a residual 

force or displacement norm 

OUTMP 
Prints out the displacements, reactions and stress 

resultants for the current load increment 

Fig.  9.2 Overall s tructure of p rogram MINDLIN 
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9.5.2 Subroutine FEMP 
This routine controls the calling sequence of all of the other main routines 

as indicated in Fig. 9.2. 

c*** ELASTO-PLASTIC ANALYSIS OF NON-LAYERED MINDLIN PLATES USING FEMP 5 
C*** 4-,8- , 9-NODED OR HETEROSIS ISOPARAMETRIC QUADRILATERALS FEMP 6 
C FEMP 7 
Cff~~l)l)~llU*ilU~*ffl)ff*l**ttiUlf(lOil*l*~0**f******iI~ff~XI****ii**i*l~R~ff*i~F~p 8 

DIMENSION ASDIS(240) ,COORD(80,2) EFFST(225) ,ELOAD(25,27), FEMP 9 
EPSTN(~~~) ,ESTIF(Z~',~~, FEMP 10 
EQRHS(lO),EQUAT(40,1O),FIXED(240), FEMP 11 
IFFIX(240),GLOAD(40),GSTIF(860),LNODS(25,9),LOCEL(Zj'~, FEMP 12 
MATNO(25) ,NACVA(40) ,NAMEV( 10) ,NCDIS(4) ,NCRES(4), FEMP 13 
NDEST(Z7) ,NDFRO(25),NOFIX(40),NOUTP(2),NPIVO(10), 
POSCP(4) ,PRESC(40,3) ,PROPS(10,8) ,REFOR(240), 
RLOAD(25,27) ,STRSG(5,225) ,TOFOR(240), 
TDISP(240) ,Ti0AD(25,Z7),TREAC(4O13),VECRV(40), 
WEIGP(4) ~. 

C 
C*** PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONS 
C 

CALL DIMMP (MBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN, 
MSTIF,MTOTG,MTOTV,MVFIX,NDIME,NDOFN, 
NPROP, NSTRE) 

C 
C*** CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA 
c - 

CALL INPUT (COORD , IFFIX, LNODS, MATNO, MELEM , MEVAB, 
MFRON,MMATS,MPOIN.hTOTV,MVFIX.NALCO. 

C"* INITIALIZE ARRAYS TO ZERO 
C 

CALL ZEROMP (EFFST,ELOAD,EPSTN,MELEM,MEVAB,MTOTG, 
MTmV,MvFIX,NDOFN,NELEM,NEVAB,NGAUS, 
NTOTC,NTOTV,NVFIX,STRSG.TDISP.TFACT. 
TUIAD;TREAC j 

C 
C"* 
C 

CALL MINDPB (IFDIS,IFFIX,IFRES,LNODS,MELEM,MTOTV, 
NCDIS,NCRES,NELEM,NTYPE) 

C 
C 
C 
C*** CCMPUTE LOAD AFTER W I N G  RELEVANT EXTRA DATA 
C 

CALL LOADPB (COORD,LNODS,MATNO,MELM,MMATS,MPOIN, 
NELEM,NEVAB,NGAUS,NNODE,NPOIN,PROPS, 
RLOAD) 

C 
C*** LOOP OVER EACH INCREMENT 
C 

FEMP 14 
FEMP 15 
FEMP 16 
FEMP 17 
FEMP 18 
FEMP 19 
FEMP 20 
FEMP 21 
FEMP 22 
FEMP 23 
FEMP 24 
FEMP 25 
FEMP 26 
FEMP n 
FEMP 28 
FEMP 29 
FEMP 30 
FEMP 31 
FEMP 32 
FEMP 33 
FEMP 34 
FEMP 35 
FEMP 36 
FEMP 37 
FEMP 38 
FEMP 39 
FEMP 40 
FEMP 41 
FEMP 42 
FEMP 43 
FEMP 44 
FEMP 45 
FEMP 46 
FEMP 47 
FEMP 48 
FMP 49 
FEMP 50 
FEMP 51 
FEMP 52 
FEMP 53 
FEMP 54 
FEMP 55 
FEMP 56 
FEMP 57 
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c*** READ DATA FOR CURRENT INCREMENT 
" 
L 

CALL INCREIM (ELOAD,FIXED,IINCS,MELEbI,MEVAB,MITER, 
MTOTV,MVFIX,NDOFN,NELEM,NEVAB,NOUTP, 
NOFIX,NTOTV,NVFIX.PRESC,RLOAD,TFACT, 
TLOAD, TOLER 

C 
C*** LOOP OVER EACH ITERATION 

L 

C*** CALL ROUTINE WHICH SELECTS SOLUTION ALGORITHM VARIABLE KRESL 
c - 

CALL ALGOR (FIXED, IINCS,IITER,KRESL ,MTOTV, NALGO, 
NTOTV) 

C 
C*** CHECK WHETHER A NEW EVALUATION OF THE STIFFNESS MATRICES IS NEEDED ,. 

- - - -  . 
.CALL STIFMP (COORD,EPSTN,IINCS,LNODS,MATNO,MELEM, 

MEVAB,MMATS,MPOIN,MTOTG,NCRIT NELEM, 
NEVAB, NGAUS, NNODE, PROPS, STRSGI 

C 
Ci** SOLVE EQUATIONS 
C 

CALL FRONT (ASDIS,ELOAD,EQRHS.EQUAT.ESTIF.FIXED. 

- 
Cr** CALCULATE RESIDUAL FORCES 
C 

CALL RESMP (ASDIS,COORD,EFFST,ELOAD,EPSTN,LVODS, 
MATNO, MELEM , MMATS, MPOIN , MTOTG, MTOTV, 
NCRIT,NELEM,NEVAB,NGAUS,NNODE,PROPS, 
STRSC) 

C 
C*** CHECK FOR CONVERGENCE 
C 

CALL CONVMP (ASDIS,ELOAD,IITER,IFDIS,IFRES,LNODS, 
MELEM,MEVAB,MTOTV,NCHEK,NCDIS,NCRES, 
NDOFN,NELEM,NEVAB,NNODE,NPOIN,NTOTV, 
REFOR ,TOFOR ,TDISP,TLOAD ,TOLER) 

C 
C*** OUTPUT RESULTS IF REQUIRED 

C 
IF(IITER.EQ. I.AND.NOUTP(1) .GT.O) 
.CALL OUTMP (EPSTN,IITER,hTOTG,KTOTV,MVFIX,NELEM, 

NGAUS,NOFIX,NOUTP,NPOIN,NVFIX,STRSG, 
TDISP,TREAC) r 

is** IF SOPTION HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS 
C 

IF(NCHEK.EQ.0) GO TO 100 
90 CONTINUE 

FEMP 58 
FEMP 59 
FEMP 60 
FEMP 61 
FEMP 62 
FEMP 63 
FEMP 64 
FEMP 65 
FEMP 66 ~ ~ 

FEMP 67 
FEMP 68 
FEMP 69 
FEMP 70 
FEMP 71 
FEMP 72 
FEMP 73 
FEMP 74 
FEMP 75 
FEMP 76 
FEMP 77 
FEMP 78 
FEMP 79 
FEMP 80 
FEMP 81 
FEMP 82 
FEMP 83 
FEMP 84 
FEMP 85 
FEMP 86 
FEMP 87 
FEMP 88 
FEMP 89 
FEMP 90 
FEMP 91 
FEMP 92 
FEMP 93 
FEMP 94 
FEMP 95 
FEMP 96 
FEMP 97 
FEMP 98 
FEMP 99 
FEMP 100 
FEMP 101 
FEMP 102 
FEMP 10'1 
FEMP 104 
FEMP 105 
FEMP 106 
FEMP 107 
FEMP 108 
FEMP 109 
FEMP 110 
FEMP 1 1 1  
FEMP 112 
FEMP 113 
FEMP 114 
FEMP 115 
FEMP 116 
FEMP 117 
FEMP 118 
FEMP 119 
FEMP 120 
FEMP 121 
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STOP 
100 CALL 

70 CONTINUE 
20 CONTINUE 
10 CONTINUE 

STOP 
END 

FEMP 122 
WTMP (EPSTN, IITER, MTOTC, MTOTV, MVFIX, NELEM , FEMP 123 

NCAUS,NOFIX,NOUTP,NWIN,NVFIX,STRSC, FMP 124 
TDISP,TREAC) FEMP 125 

FEMP 126 
FMP 127 
FEMP 128 
FEiP 129 
FEMP 130 

9.5.3 Subroutine CONVMP 
This routine establishes whether a solution has converged with reference to 

some displacement or residual force norm. 

SUBROUTINE CONVMP (ASDIS,EW, IITER, IFDIS, IFRES, LNODS, CONV 1 
MELEM.MEVAB.kT0TV.NCHEK.NCDIS.NCRES. CONV 2 
NDOFN; NELEM; NEVAB; NNODE; NWIN; NTOTV; CONV 3 
REFOR ,TOFOR ,TDISP, TLOAD, TOLER ) CONY 4 

........................................................................ 5 
C CONV 6 
c*** ESTABLISHES WHnHER A SOLUTION HAS CONVERGED WITH C$ 7 
CW* REFERENCE TO SOME DISPLACEMENT OR RESIDUAL FORCE NORM CONV 8 
C CONV 9 
C*******t*f******f*~I)~**********************I*I*I**i****1***f***********CON 10 

DIMENSION ADIDF(~) ,ASDIS(~TOTV) ,EU)AD(MELEM,HEVAB) ,WODS(HELM,~) ,CONV 11 
NCDIS(4) ,NCRES(4) ,REFDF(3) ,REFOR(MTOTV) ,TDIDF(3), CONV 12 
TDISP(MT0TV) .TLoAD(MELEM.MEVAB) .TOFDF(3) .TOFOR(MTOTV) CONV 13 - .  

WRITE (6,606 IITER 
606 FORMAT(///, IN COWER ' , lOX, 'ITERATION NUMBER ' , I3 ,/) 

C*** COMPUTE ELEMENT RESIDUAL FORCES 
W 10 IELEM=l,NELEM 
DO 10 IEVAB-1, NEVAB 

10 ELOAD(IELM, IEVAB) =TLOAD(IELEM ,IEVAB)-ELOAD(IELM, IEVAB) 
C*** SET CONVERGENCE CODE TO ZERO 

NCHEK=O 
C*** ZISPLACMENT CONVERGENCE CHECK - 

IF(IFDIS.EQ.0) GOT0 1000 
C*** COMPUTE TOTAL AND DIRECTIONAL. NORMS OF DISPLACEMENTS 

mITo=o.o 
CALL VZERO (NDOFN,ADIDF) 
CALL VZERO ( NDOFN ,TDIDF) 
NWST=O . . . . - - - - 
D420 IPOIN=l,NPOIN 
DO30 IDOFNzl, NDOFN 

ADI?O=ADITO+~IDF(IDOFN) 
TDITO=TDITO+TDIDF( IDOFN) 

CONV 
CONV 
CONV 
CONV 
CONV 
CONV 
CONV 
CONV 
CONV 
CONV 
CONV 
CONV 25 
CONV 26 

CONV cONv 2 3 
CONV 29 
cmv 30 
CONV 31 
COMT 32 
CONV 33 
CONV 34 
CONV 35 
CONV 36 
COW 37 
CONV 38 
CONV 39 
CONV 40 
CONV 41 
CONV 42 
CONV 43 
CONV 44 
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TDIDF(IDOFN)~100.*ADIDF(IDOFN)/TDIDF(IDOFN) 
IF(NCDIS(IDOFN).NE.O.ANP.TDIDF(IDOFN).GT.TOLER) NCIIEK=I 
IF(NCDIS(ID0FN) .EQ. 0) TDIDF(IDOFN)=-TDIDF(1DOFN) 

40 CONTINUE 
IF(TDITO.EQ.0.0) GOTO 50 
TDIT0=100.*ADITO/TDITO 
IF(NCDIS(~).NE.O.AND.TDITO.CT.TDLER) NCHEKrl 
IF(NCDIS(q).EQ.O) TDITOz-TDITO 

50 CONTINUE 
WRITE(6,600) 
WRITE(6,601) (TDIDF( IDOFN) ,IDOFN=l ,NDOFN) 

600 FORMAT(lX,'DISPLACEMENT CHANCE NORMt,//) 
601 FORMAT(lX,5(ElO 3,5X)) 

WRITE(6,602) 
602 FDRMAT(5X, 'TOTAL' ) 

WRITE(6,603) TDITO 
603 FORMAT(3X,E10.3) 

C*" RESIDUAL CONVERGENCE CHECK 
1000 IF(IFRES.EQ.0) GOT0 2000 
C*** ASSEMBLE TOTAL AND RESIDUAL FORCE VECTORS 

DO 1 ITOTV= 1 , NTOTV 
REFOR(ITOTV)=O.O 

1 TOFOR(ITOTV)=O.O 
DO 60 IELEM:l,NELEM 
KEVAB=O 
DO 60 INODE-1,NNODE 
LOCNO=IABS(LNODS(IELEM,INODE)) 
DO 60 IDOFN=l,NDOFN 
KEVAB=KEVAB+l 
NPOSIz (LOCNO-1) *NDOFN+IDOFN 
TOFOR(NPOSI):TOFOR(NPOSI)+TLOAD(IELEM,KEVAB) 

60 REFOR(NPOSI)rREFOR(NPOSI)+ELOAD( IELEM ,KEVAB) 
C*** COMPUTE TOTAL AND DIRECTIONAL NORMS OF RESIDUAL AND TOTAL FORCE 

REFTO=O.O 
TOFTO=O. 0 
CALL VZERO (NDOFN, REFDF) 
CALL VZERO (NDOFN ,TOFDF) 
NPOS1:O 
DO 70 IPOIN=l,NPOIN 
DO 70 IDOFN=l,NDOFN 
NPOSI=NPOSI+l 
REFDF(IDOFN)=REFDF(IDOFN)+REFOR(NPOSI)*REFOR(NPOSI) 

70 TOFDF( IDOFN) :TOFDF ( IDOFN) +TOFOR( NPOSI) *TOFOR( NPOSI ) 
DO 80 IDOFN=l,NDOFN 
REFTO=REFTO+REFDF(IDOFN) 
TOFTO=TOFTO+TOFDF(IDOFN) 
REFDF(IDOFN)=SQRT(REFDF(IDOFN)) 

80 TOFDF( IDOFN ) =SQRT(TOFDF( IDOFN) ) 
REFTDzSQRT (REFTO) 
TOFTO=SQRT(TOFTO) 

C*** CHECK FOR CONVERGENCE AND PRINT ERRORS PER CENT 
DO 90 IDOFN:l,NDOFN 
IF(TOFDF(IDOFN).EQ.O.O) GOT0 90 
TOFDF(IDOFi~):100.*REFDF(IDOFN)/TOFDF(IDOFN) 
IF( NCRES( IDOFN) . NE. O.AND.TOFDF( IDOFN) .CT .TOLER) NCHEK-1 
IF(NCRES( IDOFN) .EQ. 0) TOFDF( IDOFN)=-TOFDF( IDOFN) 

90 CONTINUE 
IF~FTO.EQ.O.O) GOTO loo 
TOFTO=~~O.*REFTO/TOFTO 
IF(NCRES(4).NE.O.AND.TOFTO.GT.TOLER) NCHEKz1 
IF(NCRES(4).EQ.O) TOFTOz-TOFT0 

100 CONTINUE 
WRITE(6,604) 
WRITE(6,601) (TOFDF(IDOFN) ,IDOFN=l ,NDOFN) 

CONV 45 
CONV 46 
CONV 97 
CONV 48 
CONV 49 
CONV 50 
CONV 51 
CONV 52 
CONV 53 
CONV 54 
CONV 55 
CONV 56 
CONV 57 
CONV 58 
CONV 59 
CONV 60 
CONV 61 
CONV 62 
CONV 63 
CONV 64 
CONV 65 
CONV 66 
CONV 67 
CONV 68 
CONV 69 
CONV 70 
CONV 71 
CONV 72 
CONV 73 
CONV 74 
CONV 75 
CONV 76 
CONV 77 
CONV 78 
CONV 79 
CONV 80 
CONV 81 
CONV 82 
CONV 83 
CONV 84 
CONV 85 
CONV 86 
CONV 87 
CONV 88 
CONV 89 
CONV 90 
CONV 91 
CONV 92 
CONV 93 
CONV 94 
CONV 95 
CONV 96 
CONV 97 
CONV 98 
CONV 99 
CONV 100 
CONV 101 
CONV 102 
CONV 103 
CONV 104 
CONV 105 
CONV 106 
CONV 107 
CONV 108 



338 FINITE ELEMENTS IN PLASTICITY 

2000 WRITE(6,605) NCHEK 
605 FORMAT( lX, 'CONVERGENCE CODE' ,I4,//) 

RETURN 
END 

CONV 409 
CONV 1 10 
CONV 11 1  
CONV 112 
CONV 113 
CONV 114 
CONV 1 15 
CONV 1 16 

9.5.4 Subroutine DIMMP 
This subroutine sets up the dimensions which must agree with the size of 

the arrays in subroutine FEMP. 

SUBROUTINE DIMMP (MBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN, DIMP 1 
MSTIF,KTOTG,MTOTV,MVFIX,NDIME,NDOFN, DIMP 2 
NPROP, NSTRE DIMP 3 

C***********************************************************************p 4 
C DIMP 5 
Car* SETS UP DYNAMIC DIMENSIONS - MUST AGREE WITH DIMENSIONS DIMP 6 
Cf** IN FMP DIMP 7 
C DIMP 8 
C***********************************************************************p g 

MBUFA = 10 DIMP 10 
HELM = 25 DIMP 11 
MFRON : 40 DIMP 12 
MMATS : 10 DIMP 13 
MPOIN : 80 DIMP 14 
MSTIF=(WRON*MFRON-WRON)/2.O+KFRON DIMP 15 
m c  . MELEM*9 DIMP 16 
NDOFN = 3 DIMP 17 
M'OT\I = MPOIN*NDOFN DIMP 18 
HVFIX : 40 DIMP 19 
NDIME.2 DIMP 20 
NPROP : 8 DIMP 21 
NSTRE r 5 DIMP 22 
MEVAE = NDOFN.9 DIMP 23 
RPTURN 
END 

DIMP 24 
DIMP 25 

9.5.5 Subroutine FLOWMP 
This subroutine determines the yield function derivatives [aFIaM,, 

aFIaM,, aF/aMz,lT for nodayered Mindlin plates of Von Mises or Tresca 
material. This routine is almost identical to the corresponding one given in 
Chapter 7 for plane stress, plane strain and axisymmetric problems. 

SUBROUTINE FLOWMP (ABEXA,AVECT,DEVIA,DMATX,DVECT,HARDS, FLOW 1 
NCRIT, SINT3, STEFF,THETA,VARJ2) FLOW 2 

C ~ * I * * * I * * * I * ~ I ~ I I i ~ * * * t * * * * * * f * i i X ~ * * * I ~ * ~ * i f f i i * ~ ~ * i i i * * i * * * * * * * * * * * * * * F ~  3 
C FLOW 4 
C*** DETERMINES YIELD FUNCTION DERIVATIVES FOR MINDLIN PLATES FLOW 5 
C*** 1 VON MISES FLOW 6 
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C 
DIMENSION AVECT(5),DEVIA(4),DMATX(3,3),DVECT(5) 

VECA~(~),VECA~(~) ,VECA3(3) 
r - 
C*** DETERMINE THE VECTOR DERIVATIVE OF F FOR VON-MISES 

SINTH:SIN(THETA) 
COSTH=COS(THETA) 

L 

C*** CALCULATE VECTOR A1 
C 

VECA1(1)=0.333333333333 
VECA1(2)=0.333333333333 
VECAl(3)zO.O 

C 
C*** CALCULATE VECTOR A2 
C 

L 
C"' CALCULATE VECTOR A3 
c 

VECA3(3)=-2.O*DEVIA( 3)*DEVIA( 4) 
GO TO ( 1,2) NCRIT 

C 
C*** VON MISES 
C 

1 CONS1=0.0 
CONS2zROOT3 

C 
C*** TRESCA 
C 

CONS?-ROOT3 
CONS3:O.O 
GO TO 40 

20 CONS2:2. O*(COSTH+SINTH*SINT~/SQAT( 1.0-SINT3*SINT3)) 
CONS~=RM~T~*SINTH/(VARJ~*SQRT( 1 .O-SINT3*SINT3) ) 

40 CONTINUE 

iff** DETERMINE THE VECTOR D 
C 

RETURN 
END 

FLOW 10 
FLOW 1 1  
FLOW 12 
FLOW 13 
FLOW 14 
FLOW 15 
FLOW 16 
FLOW 17 
FLOW 18 
FLOW 19 
FLOW 20 
FLOW 21 
FLOW 22 
FLOW 23 
FLOW 24 
FLOW 25 
FLOW 26 
FLOW 27 
FLOW 28 
FLOW 29 
FLOW 30 
FLOW 31 
FLOW 32 
FLOW 33 
FLOW 34 
FLOW 35 
FLOW 36 
FLOW 37 
FLOW 38 
FLOW 39 
FLOW 40 
FLOW 41 
FLOW 42 
FLOW 43 
FLOW 44 
FLOW 45 
FLOW 46 
FLOW 47 
FLOW 48 
FLOW 49 
FLOW 50 
FLOW 51 
FLOW 52 
FLOW 53 
FLOW 54 
FLOW 55 
FLOW 56 
FLOW 57 
FLOW 58 
FLOW 59 
FLOW 60 
FLOW 61 
FLOW 62 
FLOW 63 
FLOW 64 
FLOW 65 
FLOW 66 
FLOW 67 
FLOW 68 
FLOW 69 
FLOW 70 
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9.5.6 Subroutine GRADMP 
This subroutine evaluates displacement gradients awlax, awlay, aO,/ax, 

ae,py, ae,lax and ae,py. 

SUBROUTINE GRADMP (CARTD,DGRAD,ELDIS,NDOFN,NNODE) GRAD 1 
C U U U U U U U U U U U U U U U U U U U U U U U U U U U U U ~ ~ U U U U U U U U U U U U U U U U * U U ~ U * * * * ~ * ~ * U ~ U ~ U U U U U ~ * G ~  2 
c GRAD 3 
C*** FORM TOTAL DISPLACEMENTS GRADIENTS GRAD 4 
C GRAD 5 

DIMENSION CARTD(2,g) ,DGRAD(~) ,ELDIS(3,9) 
C*** ZERO DCRAD - 

CALL VZERO(6 ,DGRAD) 
C**' FORM TOTAL DISPLACEMENTS GRADIENTS 

DO 10 INODE=l.NNODE 

RETURN 
END 

GRAD 7 
GRAD 8 . 
GRAD 9 
GRAD 10 
GRAD 11 
GRAD 12 
GRAD 13 
GRAD 1E 
GRAD 15 
GRAD 16 
GRAD 17 
GRAD 18 
GRAD 19 
GRAD 20 

9.5.7 Subroutine INVMP 
This subroutine evaluates the Mindlin plate bending moment invariants. 

It also evaluates the effective moment for the Tresca and Von Mises materials. 

SUBROUTINE INVMP (DEVIA,NCRIT,SINT3,STEFF,STMP,THETA, INVR 1 
VARJ2,YIELD) INVR 2 

C*uu**u*uuluuuuuuu*uu****uuuuuuu*uuuu**********u*uuuuuuu*uu*uu*u**uuuu*u~~ 3 
C INVR 4 
Cis* CALCULATE MINDLIN PLATE STRESS RESULTANT INVARIANTS INVR 5 
C INVR 6 
Cuu**u****.*******.*u***u*uu*uu*uuuuu*uuuuuuu*u*uuuuuuuuuuuuuu*****uu*** 7 

DIMENSION STEMP(5) ,DEVIA( 4) 
SHEAN=(STMP(l )+STMP(2) )/3.O 
DEVIA(l)=STEMP(l)-SMEAN 

INVR 8 
INVR 9 
INVR 10 

DEVIA(2)=STEMP(2)-SMEAN INVR 11 
DEVIA(3)=STEMP(3) INVR 12 
DEVIA( 4) =-SMEAN INVR 13 
VARJ2=DEVIA(3)*DEVIA(3)+0.5*(DEVIA( 1 )*DEVIA( 1 )+DEVIA(2)*DEVIA(2) INVR 14 . +DEVIA(4)*DEVIA(4)) INVR 15 
VMJ3:DEVIA(4)*(DEVIA(4)'DEVIA(4)-VARJ2) INVR 16 
STEFF:SaRT(VARJ2) INVR 17 
SINT3=-2.5980762113*VARJ3/ (VARJ2'STEFF) INVR 18 
THETA=ASIN(SINT3)/3.0 INVR 19 - - 
(X TO (1,2) NCRIT 

C*** VON MISES 
1 YIELD=1.73205080757*STEFF 
r n R N  

C*** TRESCA 
2 YIELD=2.0'COS( THETA) "STEFF 
RETURN 
END 

INVR 20 
INVR 21 
INVR 22 
INVR 23 
INVR 24 
INVR 25 
INVR 26 
INVR 27 
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9.5.8 Subroutine MINDPB 
This subroutine simply reads some additional information required for 

controlling the convergence check and inserting additional constraints for 
the Heterosis element. 

SUBROUTINE MINDPB (IR)IS,IFFIX,IFRES,LNODS,MELEM,MTOTV, 
NCDIS. NCRES.NELEM. NTYPE) 

MIND 
MIND 

~ 

C*f*lii~~**i~***************i**~i.*****t******i*****i********************MIN~ 

C MIND 
C*** READS ADDITIONAL DATA FOR MINDLIN PLATE ANALYSIS MIND 
C MIND 
CIIIIIIIX**I***I**I~*I(*~*II**II~(I~~*****~****************#~*~*************MIND 

DIMENSION DERIV(2,9), IFFIX(~OTV), MIND 
LNODS(MELEM,9) ,NGDIS(4) ,NCRES(4) ,SHAPE(9) MIND 

r MIND " 
C*** READ DATA CONTROLLING CONVERGENCE CHECK 

- ~ , - 
8H IFDIS =,I2,5X,8H NCDIS =,41i,/. . . . 
8H IFRES =,12,5X,8H NCRES =,411,//) 

C*** INSERT ADDITIONAL CONSTRAINT FOR HETEROSIS ELEMENT 
IF(NTYPE.NE.5) GO TO 30 
DO 20 IELEMz1,NELEM 
LNODE=LNODS(IELEM,9) 
NLOCAzLNODE'3-2 
IFFIX(NLOCA)~I 
CONTINUE 
RETURN 
END 

MIND 11 
MIND 12 
MIND 13 
MIND 14 
MIND 15 
MIND 16 
MIND 17 
MIND 18 
MIND 19 
MIND 20 
MIND 21 
MIND 22 
MIND 23 
MIND 24 
MIND 25 
MIND 26 
MIND a 
MIND 28 
MIND 29 

9.5.9 Subroutine NODEXY 
This subroutine evaluates midside nodes for straight sided 8 and 9-node 

quadrilateral elements. In the original subroutine described in Section 6.4.1 
this routine also evaluated the coordinates of the central node. Here, as we 
are choosing a hierarchical formulation, the values at the central node and 
the departures from the interpolated Serendipity values are always taken as 
zero. 

Thus the revised subroutine NODEXY is almost identical to its namesake 
given earlier in Section 6.4.1 and is listed below. 

SUBROUTINE NODEXY (COORD.LNODS.MELEM.MPOIN.ND1ME.NELEM. NODE 1 

Cat* INTERPOLATES MIDSIDE NODE COORDINATES FOR 8-NODED ELEMENTS NODE 5 
C*** INTERPOLATES CENTRAL AND MIDSIDE NODE COORDINATES FOR NODE 6 
C*** %NODE ELEMENTS PROVIDU) THAT THE SIDES ARE STRAIGHT 
C 

NODE 7 
NDDE 8 
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DIMENSION COORD(MPOIN,2),LNODS(MELEM,9) 
IF(NNODE.EQ.4) GO TO 60 

LOOP OVER EACH ELEMENT 

LOOP OVER EACH ELEMENT EWE 

COMWTE THE NODE NUMBER OF THE FIRST NODE 

NODST:LNODS( IELEM, INODE) 
ICASH=INODE+2 

COMPUTE THE NODE NUMBER OF THE LAST NODE 

NODFN:LNODS( IELEM , IGASH) 
MIDPT=INODE+l 

COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE 

NODMD:LNODS( IELEM , MIDPT) 
TOTAL=ABS( COORD( NODMD , 1 )  ) +ABS( COORD( NODMD ,2) ) 

IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO 
INTERPOLATE BY A STRAIGHT LINE 

NODE 10 
NODE 11 
NODE 12 
NODE 13 
NODE 14 
NODE 15 
NODE 16 
NODE 17 
NODE 18 
NODE 19 
NODE 20 
NODE 21 
NODE 22 
NODE 23 
NODE 24 
NODE 25 
NODE 26 
NODE 27 
NODE 28 
NODE 29 
NODE 30 
NODE 31 
NODE 32 
NODE 33 
NODE 34 
NODE 35 
NODE 36 
NODE 37 
NODE 38 
NODE 39 
NODE 40 
NODE 41 
NODE 42 
NODE 43 
NODE 44 

KOUNTz 1 NODE 45 
10 COORD(NODHD,KWNT):(COORD(NODST,KCUNT)+COORD(NODFN,KCUNT))/2.0 NODE 46 

KOUNT:KOUNT+l NODE 47 . 
IF(KCUNT.EQ.2) GO TO 10 

20 CONTINUE 
50 LNODE=LNODS( IELEM , INODE) 
30 CONTINUE 
60 CONTINUE 

RETURN 
END 

NODE 48 
NODE 49 
NODE 50 
NODE 51 
NODE 52 
NODE 53 
NODE 54 

9.5.10 Subroutine OUTMP 
This subroutine outputs nodal displacements and reactions and also the 

Gauss point stress resultants. 

SOBROUTINE CUTMP (EPSTN, IITER,KiVTG,HWTV, MVFIX, NELEM, CUTP 1 
NGAUS,NOFIX,NOUTP,NPOIN,NVFIX,STRSG, OUTP 2 
TDISP ,TREAC) CUTP 3 

......................................................................... 4 

C OOTP 5 
C*** OUTPUT DISPLACEMENTS,REACTIONS AND GAUSS POINT STRESS 0uTP 6 
C*** RESULTANTS FOR EP MINDLIN PLATE ANALYSIS WTP 7 
c OUTP 8 
C****************************************+******************************~p g 
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DIMENSION EPSTN(bVOTG),GPCOD(2,9),NOFIX(MVFIX),NOUTP(2), 
STRSG(5,bVOTG) ,TDISP(MTOTV) ,TREAC(MVFIX,31 

C 
C*** OUTPUT DISPLACEMENTS - 

-~ - 

NGASH=IPOIN*3 ' 
NGISHzNGASH-3+1 

20 WRITE(6,910) IPOIN, (TDISP(IGASH1, IGASH=NGISH,NCASH) 
910 FORMAT(I10,3E14.6) 
10 CONTINUE 

C 
C*** OUTPUT REACTIONS 
L 

IF(KOUTP.LT.2) GO TO 30 
WRITE(6,920) 

920 FORMAT( 1H0,5X, 9HREACTIONS) 
WRITE(6,960) 

960 FORMAT( 1H0,6X, 4HNODE, 6X, 5HFORCE ,3X, 9HXZ-MOMENT, 5X, 9HY Z-MOMENT) 
DO 40 IVFIX=l,NVFIX 

40 WRITE(6,glO) NOFIX(IVFIX),(TREAC(IVFIX,IDOFN),IDOFN=1,3) 
30 CONTINUE - 

C 
C*** OUTPUT STRESSES 
C 

IF(KOUTP.LT.3) GO TO 50 
RrnIND 3 
WRITE(6,970) 

970 FORMAT( 1H0,5X, 8HSTRESSES) 
WRITE(6,980) 

980 FORMAT( 1 HO, 4HG. P., 2X, 8HX-COORD ., 2X, 8HY-COORD., 3X, 8HX-MOMENT, 4X, 
8HY-MOMENT, 3X, 9HXY-MOMENT, 3X, 
13HEFF.PL.STRAIN) 
KCAUS=O 
DO 60 IELEM=l, NELEM 
READ(3)GPCOD 
KELGSzO 
WRITE(6,930)IELEM 

930 FORMAT( 1H0,5X, 13HELEMENT NO. =,I5) 
DO 60 IGAUS-1,NGAUS 
DO 60 JGAUSr1,NGAUS 
KCAUS=KGAUS+l 
KELGS=KELGS+l 
WRITE(6,940)KELGS, (GPCOD( 1DIME ,KELGS) , IDIMEz 1,2), . (STRSG(ISTRE,KGAUS) ,ISTRE=I , 3 ) ,  EPSTN(KGAUS) 

940 FORMAT(I5,2F10.4,6E12.5) 
60 CONTINUE 
50 CONTINUE 

RETURN 
END 

OUTP 10 
OUTP 1 1  
OUTP 12 
OUTP 17 
OUTP 14 
OUTP 15 
OUTP 16 
OUTP 17 
OUTP 18 
OUTP 19 
OUTP 20 
OUTP 21 
OUTP 22 
OUTP 23 
OUTP 24 
OUTP 25 
OUTP 26 
OUTP 27 
OUTP 28 
OUTP 29 
OUTP 30 
OUTP 31 
OUTP 32 
OUTP 33 
OUTP 34 
OUTP 35 
OUTP 36 
OUTP 37 
OUTP 38 
OUTP 39 
OUTP 40 

OUTP 42 
OUTP 43 
OUTP 44 
OUTP 45 
OUTP 46 
OUTP 47 
OUTP 48 
OUTP 49 
OUTP 50 
OUTP 51 
OUTP 52 
OUTP 53 
OUTP 54 
OUTP 55 
OUTP 56 
OUTP 57 
OUTP 58 
OUTP 59 
OUTP 60 
OUTP 61 
OUTP 62 
OUTP 63 
OUTP 64 
OUTP 65 
OUTP 66 
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9.5.11 Subroutine RESMP 
This subroutine evaluates the residual nodal forces. The structure of this 

routine is similar to that given in Chapter 7 for the other two dimensional 
elasto-plastic applications and it is illustrated in Fig. 9.3. 

SUBROUTINE RESMP ( ASDIS, COORD, EFFST, LOAD , EPSTN , LNODS, RESP 1 
MATNO 1 MELEM; MMATS, MPOIN , MTOTC , MTOTV, RESP 2 
NCRIT,NELEM,NEVAB,NGAUS,NNODE,PROPS, RESP 3 
STRSC) RESP 4 

DIMENSION ASDIS(MTOTV),AVECT(5),CARTD(2,9), 
COORD(MPOIN,2),DERIV(2,9) ,DESIG(S) ,DEVIA(4), 
DVECT(51, 
EFFST(KT0TG) ,ELCOD(2,9), 
ELDIS(3,9),ELOAD(MELEM,n) ,EPSTN(MTOTG) ,GPCOD(2,9), 
LNODS(MELEM,g) ,MATNO(MELEM),POSGP(4), 
PROPS(MMATS,8) ,SCTOT(5),SHAPE(g),SIGMA(5), 
STRES(5) ,STRSG(5,MTOTG) ,WEIGP(4), 
DFLEX(3,3),DSHER(2,2) ,BFLEI(3,3),BSHEI(2,3), 
DUMMY(3,3),FORCE(3),DCRAD(6) 

NTIME. 1 
DO 10 IELEM:l,NELEM 
W 10 IEVAB=l ,NEVAB 

lo EUIAD(IELEM,IEVAB)=O.O 
KGAUS-0 
LGAUSzO 

C*** COMPUTE COORDINATE AND INCREMENTAL DISPLACEMENTS OF THE 
C ELEMENT NODAL POINTS 
C 

DO 190 INODE r1,NNODE 
LNODE:IABS( MODS( IELEM, INODE) 
NPOSN. (LNODE-1)*3 
DO 30 IWFN=l, 3 
NPOSNrNPOSN+l 

30 USIS( IDOFN, INODE) =ASDIS( NPOSN) 
W 180 IDIME:1,2 

180 UCW(IDIME,INODE)rCOORD(WODE, IDIME) 
190 CONTINUE 

KCASPEO 
CALL MODPB (DFLEX,DUHm ,DSHER, LPROP, MMATS, PROPS, 

0. 1. 1 )  . . 
CALL GAUSSP ( NGAUS, P O ~ P  ,WE~CP) 
W 40 IGAUS=l.NGAUS 

EXISP=POSGP( IGAUS) 
ETASP=POSGP( JCAUS) 
CALL SFR2 (DERIV, DASP,EXISP, NNODE ,SHAPE) 
KGASP=KCASP+l 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,CPCOD,IELEM, 

KCASP, NNODE, SHAPE) 

RESP 11 
RESP 12 
RESP 13 
RESP 14 
RESP 15 
RESP 16 
RESP 17 
RESP 18 
RESP 19 
RESP 20 
RESP 21 
RESP 22 
RESP 23 
RESP 24 
RESP 25 
RESP 26 
RESP 27 
RESP 28 
RESP 29 
RESP 30 
RESP 31 
RESP 32 
RESP 33 
RESP 34. 
RESP 35 
RESP 36 
RESP 37 
RESP 38 
RESP 39 
RESP 40 
RESP 41 
ESP 42 
RESP 43 
RESP 44 
RESP 45 
RESP 46 
RESP 47 
RESP 48 
RESP 49 
RESP 50 
RESP 51 
RESP 52 
RESP 53 
RESP 54 
RESP 55 
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DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
CALL GRADMP (CARTD, DGRAD, ELDIS, 3, NNODE) 
CALL STRMP (CARTD,DFLEX,DGRAD,DSHER, ELDIS,NNODE, 

SHAPE,STRES, 1, 0) 
PREYSrPROPS(LPROP,6)+EPSTN(KGAUS)*PROPS(LPROP,7) 
DO 150 ISTRE=1,3 
DESIG(ISTRE)=STRES( ISTRE) 

150 SIGMA(ISTRE)=STRSG(ISTRE,KGAUS)+STRES(ISTRE) 
CALL INVMP (DEVIA,NCRIT,SINT3, STEFF,SIGMA,THETA, 

VARJ2,YIELD) 
ESPRE=EFFST(KGAUS)-PREYS 
IF(ESPRE.GE.O.O) GO TO 50 
ESCUR=YIELD-PREYS 

RFACT=I .o 
70 MSTEP=ESCUR*~. O/PROPS(LPROP, 6)+1 .o 

ASTEPzMSTEP 
REDUC: 1 .O-RFACT 
DO 80 ISTRE= 1,3 
%TOT( ISTRE) =STRSG( ISTRE, KGAUS)+REDUC*STRES( ISTRE) 

80 STRES( ISTRE):RFACT*STRES( ISTRE )/ASTEP 
DO 90 ISTEP-1,MSTEP 
CALL INVMP (DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA, 

VARJ2,YIELD) 
HARDS=PROPS(LPROP,7) 
CALL FLOWMP (ABETA,AVECT,DEVIA,DFLEX,DVECT,HARDS, 

NCRIT,SINT3,STEFF,THETA,VARJ2) 
AGASH-0.0 
DO 100 ISTRE=1,3 

100 AGASH=AGASH+AVECT( ISTRE) *STRES( ISTRE) 
DLAMD=AGASH*ABnA 
IF(DLAMD.LT.O.0) DLAMD-0.0 
BCASH:O. 0 
DO 110 ISTRE:1,3 
BCASH=BGASH+AVECT(ISTRE)*SGTOT(ISTRE) 

110 SGTOT(ISTRE)=SGTOT( ISTRE)+STRES(ISTRE) -DLAMD*DVECT( ISTRE) 
90 EPSTN(KCAUS)=EPSTN(KGAUS)+DLAMD*BGASH/YIELD 

DO 120 ISTREz1.3 
120 DESIC(ISTRE)=S&OT( 1STRE)-STRSG(ISTRE,KGAUS) 

CALL INVMP (DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA, 
VARJ2,YIELD) 

60 DO 130 ISTRE=1,3 
SCTOT(ISTRE)=BRING*(STRSG(ISTRE,KGAUS)+DESIG( ISTRE) ) 

130 STRSG(ISTRE,KGAUS) =SGTOT(ISTRE) 
EFFST(KGAUS) =BRING*YIELD 

C 
C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELEMENT NODES 

W 140 INODE=l,NNODE 
C*** ZERO FORCE VECTOR 

VZERO (3,FORCE) 
CALL BMATPB (BFLEI , D U W  , BSHEI , CARTD , INODE, SHAPE, 

RESP 56 
RESP 57 
REP 58 
RESP 59 
RESP 60 
RESP 61 
RESP 62 
RESP 63 
RESP 64 
RESP 65 
RESP 66 
RESP 67 
RESP 68 
RESP 69 
RESP 70 
RESP 71 
RESP 72 
RESP 73 
RESP 74 
RESP 75 
RESP 76 
RESP 77 
RESP 78 
RESP 79 
RESP 80 
RESP 81 
RESP 82 
RESP 83 
RESP 84 
RESP 85 
RESP 86 
RESP 87 
RESP 88 
RESP 89 
RESP 90 
RESP 91 
RESP 92 
RESP 93 
RESP 94 
RESP 95 
RESP 96 
RESP 97 
RESP 98 
RESP 99 
RESP 100 
RESP 101 
RESP 102 
RESP 103 
RESP 104 
RESP 105 
RESP 106 
RESP 107 
RESP 108 
RESP 109 
RESP 110 
RESP 11 1  
RESP 112 
RESP 113 
RESP 114 
RESP 115 
RESP 116 
RESP 117 
RESP 118 
RESP 119 
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IWSN=IPOSN+I 
135 ELOAD( IELEM. IPOSN) :ELOAD( IELEM, IPOSN)+FORCE( IDOFN) 
140 CONTINUE 
40 CONTINUE 

C 
C*** CALCULATE FORCES ASSOCIATED WITH SHEAR DEFORMATION 
C 

NCAUM-NCAUS-1 
CALL GAUSSQ (NGAUM,POSCP,WEIGP) 

C 
G*** ENTER LWPS FOR AREA NUMERICAL INTEGRATION 

KGASPzO 
W 300 IGAUS=l. NGAUM 

CALL SFR2 (DERIV, ETASP, EXISP.NNODE,SHAPE) 
KCASP=KGASP+l 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD, IELEM, 

KGASP, NNODE ,SHAPE) 
DAREA:DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
CALL GRADMP (CARTD, DGRAD, ELDIS, 3, NNODE) 
CALL STRMP (CARTD,DFLEX,DGRAD,DSHER,ELDIS,NNODE, 

SHAPE,STRES, 0, 1) 
DO 310 ISTRE=4,5 
sCTOT(ISTRE):STRSG(ISTRE,LCAUS)+STRES(ISTRE) 

310 STRSG( ISTRE ,LGAUS) =%TOT( ISTRE) 

CALCULATE THE EQUIVALENT NODAL FORCES 

DO 320 INODE=l,NNODE 
ZERO FORCE VECTOR 
CALL VZERO(3 ,FORCE) 
CALL BMATPB (BFLEI,DUMMY,BSHEI,CARTD,INODE,SHAPE, 

0, 0, 1) 
FORCE(I)=(BSHEI(l ,l)*SGTOT(4)+BSHEI(2,1)*SGTOT(5))*DAREA 

+FORCE( 1 ) 
FORCE(2)r(BSHEI( 1,2)*SGTOT(4))*DAREA+FORCE(2) 
FORCE(~)~(BSHEI(~,~)*SGTOT( 5) )*DAREA+FORCE(3) 

, - IPOSN:IPOSN+I 
315 ELOAD( IELEM. IPOSN) =ELOAD(IELEM. IPOSN)+FORCE(TDOFN) 
320 CONTINUE 
300 CONTINUE 
20 CONTINUE 

RETURN 
END 

RESP 120 
RESP 121 
RESP 122 
RESP 123 
RESP 124 
RESP 125 
RESP 126 
RESP 127 
RESP 128 - ~ 

RESP 129 
RESP 130 
RESP 131 
RESP 132 
RESP 133 
RESP 134 
RESP 135 
RESP 136 
RESP 137 
RESP 138 
RESP 139 
RESP 140 
RESP 141 - - 

RESP 142 
RESP 143 
RESP 144 
RESP 145 
RESP 146 
RESP 14'7 
RESP 148 
RESP 149 
RESP 150 
RESP 151 
RESP 152 - - 
RESP 153 
RESP 154 
RESP 155 
RESP 156 
RESP 157 
RESP 158 
RESP 159 
RESP 160 
RESP 161 
RESP 162 
RESP 163 
RESP 164 
RESP 165 
REP 166 
UESP 167 
RESP 168 
ESP 169 
RESP 170 

9.5.12 Subroutine SFR2 
This subroutine evaluates the shape functions and their derivatives for 

4, 8 and 9-node quadrilateral isoparametric elements. The 9-node element is 
treated as a hierarchical element as described in Section 9.3.2. This enables 
the Heterosis element to be easily incorporated. 
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Set to 7er0 F.L.OAD ( , ) 

Extract local element material property set 
numher. displacements and coordinates 

Call MODPB to evaluate D,. D, < 
Call G A U S S 0  to evaluate n-point Gauss- 
Lcgendre sampling positiuns and weights 

Call SFR2. JACOBZ. GKADMP and STRMP to evaluate 
elastic stress increment d3, 

Calculate the effective stress necessary for 
yielding to occur 

Calculate the total bendins momcnts at the 
current Gauss points 

0 -i 
If the currcnt hending momcnts are outside of 
the yield surface bring them back t o  the yield 
surface taking into account unloading if it  has 

taken place 

I 

Fig. 9.3 Overall structure of subroutine RESMP 



FINITE ELEMENTS IN PLASTICITY 

Evaluate [&IT 2, x Gauss weights x det J 
and add into ELOAD ( ). Use routines VZERO and 

BMATPB 

Call GAUSSQ to evaluate (n - 1) point Gauss- 
Legendre sampling positions and weights 

Call SFR2. JACOB2, GRADMP and STRMP to evaluate 
elastic stress increment d& 

Evaluate [Ba]T& x Gauss weights xdet J 
and add into ELOAD ( , ). Use routines VZERO 

and BMATPB 
I 

I RETURN I 

Fig. 9.3 Overall structure of subroutine RESMP (continued). 

Subroutine SFR2 is identical to its namesake given earlier in Section 6.4.3 
except that SFR2 72-118 are replaced by SFRH 67-73. 

IF(NNODE.EQ. 8) RETURN SFR2 67 
C*** BUBBLE FUNCTION FOR HIERARCHICAL AND HETEROSIS ELEMENTS SFRH 68 

SHAF'E(9)=(1 .O-SS)'(l .O-TT) SFRH 69 
DERI11(1,9)=-S2*(1.O-R) SFRH 70 
DERIV(2,9)=-T2*( 1 .O-SS) SFRH 71 
RETURN SFRH 72 
END SFRH 73 

9.5.13 Subroutine STIFMP 
This routine evaluates the stiffness matrix for the nonlayered elasto-plastic 

Mindlin plate elements. The overall structure is shown in Fig. 9.4. 
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1 
Rewind tapes 1 and 3 

I Extract local element material property set number 
and coordinates I 

lnitialise array used to store element 
stiffness matrices 

Call GAUSSQ to evaluate n-point Gauss-Legendre 
sampling positions and weights 

1 I Call SFRZ and JACOB2 to evaluate 

I 

Call MODPB to evaluate D, 

Yes 
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Call INVMP and FLOWMP to evaluate a' and do and hence 
calculate Dep 

Call BMATPB and SUBMP to add 
[Bji (C1]TDIBfj ("  det J@' x Gauss weights into KfjW 

Call GAUSSQ to evaluate (n- 1)-point Gauss-Legendre 
sampling positions and weights 

I 

Call SFR2 and JACOB2 to evaluate 
%Nf (el %Nr " 1  

Nilel, - - and det JIel 

Call MODPB to evaluate Ds 8 
Call BMATPB and SUBMP to add 

[Bsc cc'IT D8 B8j(e1 det J x Gauss weights into K t f ( f l  

I 

Store stiffness matrix K@I and Gauss point 
coordinates on files I and 3 respectively 

Fig. 9.4 Overall m c t u r e  of subroutine STIFMP (continued). 
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SUBROUTINE STIFMP (COORD,EPSTN,IINCS,LNODS,MATNO,MELEM, STIF 1 
M=,MMATS,MPOIN,MTOTC,NCRIT,NELEM, STIF 2 
NEVAB, NGAUS, NNODE, PROPS, STRSG) STIF 3 

C * * I * * * * * C * X X X * * * * * * * * * * I ( * I ) * * i * I * * * * * * i * * * * * I I * * * * ( I * * * * * * * * * * * * * * * * * * * * * * S T  4 

C STIF 5 
C*** EVALUATE STIFFNESS MATRICES FOR NON-LAYERED STIF 6 
C*** ELASTO-PLASTIC MINDLIN PLATE ELEMENTS STIF 7 
C STIF 8 
C***********************************************************************S~ g 

DIMENSION AVECT( 5), STIF 10 
CARTD(2,g) ,COORD(MPOIN,2), STIF 1 1  
DERIV(2,9),DEVIA(4),DVECT(5),ELCOD(2,9), STIF 12 
EPSTN~OTG) ,ESTIF(~~.~) ,GPCOD~Z, 9) .LNODS(MELEM. 9), STIF 13 
MATNO(MELEM) ,POSGP(~) ;PROPS(MMATS;~)   SHAPE(^) ,STRES(~), STIF 14 
STRSG(5,MTOTG),WEIGP(II), STIF 15 
DFLEX(3,3) ,DSHER(2,2) ,BFLEI(3,3),BFLEJ(3,3), STIF 16 
BSHEI(2,3),BSHEJ(2,3),DUMMY(3,3) STIF 17 

REWIND 1 STIF 16 
REWIND 3 STIF 19 

C 
C*** LOOP OVER EACH ELEMENT 

C 
C*** EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

DO 10 INODE=l.NNODE 

. 

C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX 
C 

DO 20 IEVABz1,NEVAB 
DO 20 JEVAB=l,NEVAB 

20 ESTIF(IEVAB,JEVAB)=O.O 
C 

C*** EVALUATE PART OF STIFFNESS MATRIX 
C ASSOCIATED WITH BENDING DEFORMATION 
C 

,. KGASP-L 
L 

Crr* ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C - 
L 

Cis* SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

CALL GAUSSQ (NGAUS,POSGP,WEIGP) 
/ 

DO 50 IGAUS:l,NGAUS 
DO 50 JGAUS:l,NGAUS 
KCASP=KGASP+l 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 

C 
Cr** EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL AREA,ETC 
C 

CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE) 
CALL JACOB2 (CARTD,DERIV,DJACB ELCOD,GPCOD,IELEM, 

KGASP, NNODE, SHAPE\ 
DAREA=DJACB*WEIGP(IGAUS)*WEICP(JGAUS) 
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:*** EVALUATE THE B AND DB MATRICES - 
L; 

CALL MODPB (DFLEX ,DUMMY ,DSHER LPROP,MMATS, PROPS, 
0, 1, ol 

IF(IINCS.EQ.1) GO TO 80 
KGAUS=KGAUS+l 
P(EPSTN(KCAUS) .EQ.o.~) GO TO 80 
DO 90 ISTRE=1,3 

90 STRES( ISTRE)=STRSG( ISTRE, KGAUS) 
HARDS=PROPS( LPROP, 7 ) 
CALL I M P  (DEVIA, NCRIT, SINT3 ,STEFF, STRES ,THETA, 

VARJ~,YIELD~ 
CALL FLiMlP (ABETA,AVECT,DEVIA,DFLEX ,DVECT ,HARDS, 

NCRIT. SINT?. STEFF.THETA.VARJ2) -, - -  , 
DO 100 ISTRE=1,3 
DO 100 JSTRE=1,3 

100 DFLEX(1STRE ,JSTRE) =DFLEX( ISTRE, JSTRE)-ABETArDVECT(ISTRE)* . DVEClY JSTRE) 
80 CONTINUE 

L 

C*** CALCULATE THE ELEMENT STIFFNESSES 
C 

W 30 INODE=l,NNODE 
CALL BMATPB (BFLEI,DUMMY,BSHEI,CARTD,INODE,SHAPE, 

0, 1, 0) 
w 30 JNODE=INODE,NNODE 
CALL BMATPB (BFLEJ,DUMMY,BSHEJ CARTD,JNODE,SHAPE, 

0. 1. ol 
30 CALL SUBMP (BFLEI J BFLEJ ; DAREA~DFLEX, ESTIF , INODE, 

JNODE, 3, 31 3) 
- 50 'CONTINUE 

NALUATE PART OF STIFFNESS MATRIX 
ASSOCIATED WITH SHEAR DEFORMATION 

ENTER D P S  FOR AREA INTEGRATION 

SET UP GAUSSIAN INTEGRATION CONSTANTS 

CALL GAUSSQ (NCAUM, POSGP,WEIGP) 
DO 51 IGAUS=l ,NGAUM Cr 

DO 51 JGAUS=l,NGAUM 
KGASP=KGASP+l 
EXISP=POSCP( IGAUS) 
ETASP=POSCP(JGAUS) 

EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL AREA,ETC 

CALL SFR2 (DERIV, !CTASP,EXISP ,NNODE, SHAPE) 
CALL JACOB2 (CARD, DERIV, DJACB, ELCOD, GPCOD, IELEM, 

KCASP, NNODE, SHAPE) 
DAREA:DJACBWGP( IGAUS) *WEIGP( JCAUS) 

C*** NALUATE THE B AND DB MATRICES 
C 

CALL MODPB (DFLW,DUMMY,DSHER,LPROP,MMATS, PROPS, 

r (1)& 0, 1) " 
Ca** EVALUATE ELEMENT STIFFNESSES 
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L 

DO 31 INODEzl ,NNODE 
CALL BMATPB (BFLEI,DUMMY,BSHEI,CARTD,INODE,SHAPE, 

0. 0, 1) 
DO 31 JNODE:Ih'ODE,NNODE 
CALL BMATPB (BFLEJ,DUMN,BSHEJ,CARTD,JNODE,SHAPE, 

0. 0. 1) 
31 CALL SUBMP (BSHEI ;BSHEJ;DAREA,DSHER, ESTIF, INODE, 

JNODE, 3, 2, 3) 
51 CONTINUE 

C 
C*** CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX 

c*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C COORDINATES FOR EACH ELEMENT ON DISC FILE 
C 
C 

WRITE(1) ESTIF 
WRITE(3) GPCOD 

70 CONTINUE 
RETURN 
END 

9.5.14 Subroutine STRMP 
This subroutine evaluates the bending moments and shear forces for 

Mindlin plates. 

SUBROUTINE STUMP (CARTD,DFLEX,DGRAD,DSHER,ELDIS,NNODE, STRP 1 
SHAPE, STRES, IFFLE, IFSHE) STRP 2 

c * l * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * X * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * ~ R p  7 - - 
C STRP 4 

DIMENSION CARTD(2,g) ,DFLEX(3,3) ,DCRAD(6) ,DSHER(2,2), 
ELDIS(3,9),SHAPE(9),STRES(5) 

Cr** ~ E R O  STRESS VECTOR 
CALL VZERO (5,STRES) 

C*** EVALUATE ROTATIONS AT GAUSS POINT , IF NEEDED 
IF(IFSHE.EQ.O) COTO 50 

30 YZROT:YZROT+SHAPE( INODE) *ELDIS(3; INODE) 
C*** EVALUATE BENDING STRESS RESULTANTS 

50 IF(IFFLE.EO.0) GOTO 60 

STRP 8 
STRP 9 
STRP 10 
STRP 11  
STRP 12 
STRP 13 
STRP 14 
STRP 15 
STRP 16 
STRP 17 
STRP 18 
STRP 19 
STRP 20 
STRP 21 
STRP 22 
STRP 23 

STRP 25 
STRP 26 



354 FINITE ELEMENTS IN PLASTICITY 

C*** EVALUATE SHEAR STRESS RESULTANTS 
60 IF(IFSHE.EQ.0) RETURN 

ESHYY:DCRAD(4)-YZROT 
STRW 4 ) =DSHER( 1 ,1) *ESHXX 
STRES(5)=DSHER(2,2)*ESHYY 
RETURN 
END 

STRP 27 
STRP 28 
STRP 29 
STRP 30 
STRP 31 
STRP 32 
STRP 33 
STRP 34 

9.5.15 Subroutine SUBMP 
This subroutine evaluates [B#'D [Bj]det JxGauss weights and is used in 

the evaluation of the element stiffness matrices. 
SUBRCUTINE SUBMP (BIMAT,BJMAT,DAREA,DMATX,ESTIF,INODE, SUBP 1 

JNODE, NCOLI, NROIJ , NCOLJ SUBP 2 
C*********#**n***u~**iixItxu~(Itxtt**It***tiIttIttCItu*X**ItZX**fti***ItI*f*X**SUp 3 
C SUBP 4 
C*** CARRY OUT MATRIX MULTIPLICATION SUBP 5 
C SUBP 6 
~ a ~ f f * * a * * * ~ l t C x X ~ i i i ~ a ~ * * * ~ ~ i l i * i l l t * ~ * t Z Y l l ( t ~ * * * X * X Y I C X I * * ~ X Y X * X I I I ~ B p  7 

DIMENSION BIMAT( NROIJ, NCOLI) ,BJEUIT( NROIJ ,NCOLJ) , SUBP 8 
DMATX(NR0IJ NROIJ) DBMAT(3.31, SUBP 9 
ESTIF(~~,~~~,SBSTF~~,~) SUBP 10 

c*** EVALUATE D*BJ SUBP 11 
DO 10 Jz1,NCOLJ SUBP 12 
DO 10 k1,NROIJ SUBP 13 
DBMAT(I,J)=O.O SUBP 14 
DO 10 K=l,NROIJ SUBP 15 

10 DBMAT(I,J):DBMAT(I,J)+DMATX(I,K)*BJMAT(K,J) SUBP 16 
C*** EVALUATE BIT*(D*BJ ) SUBP 17 

DO 20 Jz1,NCOLJ SUBP 18 
DO 20 I=l,NCOLI SUBP 19 
SBSTF(1,J)-0.0 YJBP 20 
DO 20 Kz1,NROIJ SUBP 21 

20 SBSTF(1,J)-SBSTF(I,J)+BIMAT(K,I)*DBMAT(K,J) SUBP 22 
Cr** ASSEHBLE SBSTF INTO ELEMENT STIFFNESS MATRIX SUBP 23 

IFROW-0 YJBP 24 
JFCOL.0 SUBP 25 
IFROW=( INODE-1 *3+IFROW SUBP 26 
JFCOL=(JNODE-1)*3+JFCOL YJBP 27 
DO 30 L1,NCOLI SUBP 28 
IRSUB=IFROW+I SUBP 29 
DO 30 J=l,NCOLJ SUBP 30 
JCSUB=JFCOL+J SUBP 31 

30 ESTIF(IRSUB,JCSUB)~ESTIF(IRSUB,JCSUB)+SBSTF(I,J)*DAR~ YJBP 32 
RETURN SUBP 33 
END SUBP 34 

9.5.16 Subroutines VZERO and ZEROMP 
These routines simply set to zero the components of various vectors and 

C ZERO 3 
C*** ZEROES VECTOR VECTO ZERO 4 
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SUBROUTINE ZEROMP (EFFST,ELOAD, EPSTN ,MELDI,MEVAB, IflOTG, ZERP 1 
MTOTV,MVFIX,NDOFN,NELEM,NEVAB,NGAUS, ZERP 2 
NTOTG,NTOTV,NVFIX,STRSC,TDISP,TFACT, ZERP 3 
TLOAD , TREAC ZERP 4 

C*******************************#**************************************zERP 5 
C ZERP 6 
C*** ZERO EFFST,ELOAD,EPSTN,STRSG,TDISP,TFACT,TLOAD,TREAC ZERP 7 
C ZERP 8 
~*******************************X*****li********************************p 9 

DIMENSION ELOAD(EIELEM,MEVAB) ,STRSC(5,MTOTG) ,TDISP(I.ffmV) , ZERP 10 
TLOAD(MELEM,MEVAB) ,TREAC( MVFIX, 3 ) ,  EPSTN(t.ffOTG), ZERP 1 1  
EFFST(MTOTG1 ZERP 12 

TFACT-0.0 ZERP 13 
DO 30 IELEMz1,NELEM ZERP 14 
DO 30 IEVAB:l,NEVAB ZERP 15 
ELONJ(IELEM,IEVAB):O.O ZERP 16 

30 TLOAD(IELEF;,IEVAB)=O.O ZERP 17 
DO 40 ITOTV=l,NTOTV ZERP 16 

40 TDISP(ITOTV)=O.O ZERP 19 
DO 50 IVFIXz1,NVFIX ZERP 20 
DO 50 IDOFN=l,NDOFN ZERP 21 

50 TREAC(IVFIX,IDOFN)=O.O ZERP 22 
DO 60 ITOTG=l,NTOTG ZERP 23 
EPSTN(1TOTG)zO.O ZERP 24 
EFFST(IT0TG):O.O ZERP 25 
DO 60 ISTR1=1,5 ZERP 26 

60 STRSG(ISTR1,ITOTG):O.O ZERP 27 
RETURN ZERP 28 
END ZERP 29 

9.6 Software for the layered approach 

9.6.1 Overall program structure . 
The overall program structure for the elasto-plastic Mindlin platc bending 

analysis program using the layered approach is given in Fig. 9.5. This program 
is named MINDLAY. 

The program can solve problems of thc same size as  those solved by 
program MINDLIN. A maximum of 26 layers is allowed. 

All new routines are now documcntcd and these include: FEAM, 
DEPMPA, LAYMPA, MDMPA, OUTMPA, RESMPA, STIMPA and 
STRMPA. The outer routines, which have been described earlier, include 
ALGOR, BMATPB, CHECK], CHECK2, ECHO, FRONT, INCREM, 
INPUT, JACOB2 and NODEXY. 

The files which are used in the program are 5 (cardreader), 6 (lineprinter) 
and 1, 2, 3, 4, 8 (scratch files). 

9.6.2 Subroutine FEAM 
This routine organises the calling of the main routines in sequence. 
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START T 
DIMMP 

Presets the variables associated with the dynamic 
dimensioning process 

INPUT 
lnputs data defining geometry. boundary conditions 

I 
ZEROMP 

Sets to zero arrays required for accumulation of 
data 

MINDPB 
Inputs additional data required for Mindlin 

plate analysis 

LOADPB 
Reads loading data and evaluate the equivalent 

nodal forces for distributed loading 

INCREM 
Increments the applied load according to 

specified load factors 

ALGOR 
Sets indicator to identify the type of solution algorithm. 

i.e.. initial or tangential stiffness etc. 

Fig. 9.5 Overall program structure of program MINDLAY. 
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recalculate stiffness No 
matrix with present 

STIFMPA 
Calculatc elcrnent stiffness mqtriccs for layered 

clasto-pla~tic Mindlin plate 

FRONT 
Solve the simultaneous equation system by the frontal 

method 

RESMPA 
Evaluate the residual force vector for the layered 

clasto-plastic M~ndlin platc 

CONVMP 
Check whether solution ha\ con\crgcd using a residual 

force or  d~splacement norm 

I 

OU'I'MPA 
Prints out the displacements. reactions and stre3\r\ 
and stress resultants for the current load increment 

Fig. 9.5 Overall program structure of program M I N D L A Y  (continued) 
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C*** ELASTO-PLASTIC ANALYSIS OF LAYERED MINDLIN PLATES USING FEAM 5 
C*** 4-,8-, 9-NODED OR HETEROSIS ISOPARAMETRIC QUADRILATERALS FEAM 6 
C FEAM 7 
~ f f * ~ t % l 4 i a i i R l X * C X i * I * I ) C L i i * f + * I * * * * * * U * * * * * f F A M  A - 

DIMENSION ASDIS(240),COORD(80,2),EffST(225),ELOAD(25,27), FEAM 9 
EPSTN(225),ESTIF(i7,g), FEAM 10 
EQRHS(10) ,EQUAT(40,10) ,FIXED(240), FEAM 11 
IFFIX(24O) ,GLOAD(40) ,GSTIF( 860) ,LNODS(25,9) ,LOCEL(27), FEAM 12 
MATNO(25) ,NACVA(40) ,NAMEV(lO),NCDIS(4) ,NCRES(4), FEAM 13 
NDEST(2) ,NDFRO(25) ,NOFIX(40),NOUTP(2) ,NPIVO( lo), FEAM 14 
POSGP(~),PRESC(~O,~),PROPS(~O,~),REFOR(~~O), FEAM 15 
RLOAD(25,27),STRSG(5,225),TOFOR(240), FEAM 16 
TDISP(240),TLOAD(25,27),TREAC(40,3),VECRV(40), FEAM 17 
WEIGP(4) FEAM 18 

C 
C*** PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONS 
C 

CALL DIMMP (MBUFA, MELEM, MEVAB, MFRON , MMATS , MPOIN , 
MSTIF,MTOTG,MTOTV,MVFIX,NDIME,NDOFN, 
NPROP, NSTRE ) 

C 
C*** CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA - 
L 

CALL INPUT ( COORD, IFFIX, LNODS , MATNO, MELEM , MEVAB, 
MFRON,MMATS,MPOIN,mOTV,MVFIX,NALGO, 
NCRIT,NDFRO,NDIME,NDOFN,NELEM,NEVAB, 
NGAUS,NLAPS,NINCS,NMATS,NNODE,NOFIX, 
NPOIN,NPROP,NSTRE,NSTRl,NSWIT,fVTOTG, 
NTOTV NTYPE,NVFIX,POSGP,PRESC,PROPS, 
WEICP~ 

C 
C*** INITIALIZE ARRAYS TO ZERO 
C 

CALL ZEROMP (EFFST,ELOAD.EPSTN,MELEM.MEVAB.MTOTG. 

TLOAD, TREAC ) 
c 

CALL MINDPB (IFDIS.IFFIX,IFRES,LNODS,MELEM,MTOTV, 
NCDIS, NCRES,NELEM,NTIPE) 

C 
c 
C 
Cr** COMPUTE LOAD AFTER READING RELEVANT EXTRA DATA 
C 

CALL LOADPB ( COORD , LNODS, MATN0,MELU.I ,MMATS ,MPOIN , 
NELEM,NEVAB,NGAUS,NNODE,NPOIN,PROPS, 
RLOAD) 

C 
C*** LOOP OVER EACH INCREMENT 
C 

L 

C*** READ DATA FOR CURRENT INCREMENT 
C 

CALL INCREM (ELOAD,FIXED,IINCS,HELEM,MEVAB,MITER, 
MTOTV, MVFIX , NDOFN, NELEM , NEVAB, NOUTP , 
NOFIX, NTOTV, NVFIX , PRESC: RLOAD ,FACT, 
TLOAD ,TOLER ) 

FEAM 19 
FEAM 20 
FEAM 21 
FEAM 22 
FEAM 23 
FEAM 24 
FEAM 25 
FEAM 26 
FEAM 27 
FEAM 28 
FEAM 29 
FEAM 30 
FEAM 31 
FEAM 32 
FEAM 33 
FEAM 34 
FEAM 35 
FEAM 36 
FEAM 37 
FEAM 38 
FEAM 39 
FEAM 40 
FEAM 41 
FEAM 42 
FEAM 43 
FEAM 44 
FEAM 45 
FEAM 46 
FEAM 47 
FEAM 48 
FEAM 49 
FEAM 50 
FEAM 51 
FEAM 52 
FEAM 53 
FEAM 54 
FEAM 55 
FEAM 56 
FEAM 57 
FEAM 58 
FEAM 59 
FEAM 60 
FEAM 61 
FEAM 62 
FEAM 63 
FEAM ' 64 
FEAM 65 
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C 
C*** LOOP OVER EACH ITERATION 
C 

DO 90 IITER=I,MITER - 
L 
C*** CALL ROUTINE WHICH SELECTS SOLUTION ALGORITHM VARIABLE ,. 

FEAM 66 
FEAM 67 
FEAM 68 
FEAM 69 
FEAM 70 

KRESL FEAM 71 
FEAM 72 L 

CALL ALCOR (FIXED,IINCS,IITER,KRESL,MTOTV,NALGO, F W  73 
NTOTV FEAM 74 

r FEAM 75 - 
C*** CHECK WHETHER A NEW EVALUATION OF THE STIFFNESS MATRICES IS NEEDED FEAM 76 
C 

IF(KRESL.EQ.1) . CAU STIMPA ( COORD, EPSTN , IINCS, LNODS, MATNO, MELEPI , 
MEVAB,MMATS,MPOIN,MTOTG,NCRIT,NELEM, 
NEVAB,NGAUS,NNODE,NLAPS,PROPS,STRSG) 

C 
C*** SOLVE EQUATIONS 
C 

CALL FRONT (ASDIS,ELOAD,EQRHS.EQUAT.ESTIF,FIXED. 

MSTIF;M~OTV;MVFIX ;NACVA;NAMEV; NEST; 
NDOFN,NELEM,NEVAB,NNODE,NOFIX,NPIVO, 
NPOIN, NTOTV,TDISP,TLOAD,TREAC ,VECRV) 

C*** CALCULATE RESIDUAL FORCES 
C - 

CALL RESMPA (ASDIS.COORD,EFFST,ELOAD,EPSTN,LNODS, 
MATNO.MELEM.MMATS.MPOIN.mOTG.mOTV. 
NCRIT ;NELEM ; NEVAB; NGAUS; NNODE; NLAPS; 
PROPS,STRSG) 

C 
C*** CHECK FOR CONVERGENCE 
C 

CALL CONVMP (ASDIS,ELOAD,IITER,IFDIS,IFRES,LNODS, 
MELEM,MEVAB,MTOTV,NCHEK,NCDIS,NCRES, 
NDOFN,NELEM,NEVAB,NNODE,NPOIN,NTOTV, 
REFOR,TOFOR,TOISP,TLOAD,TOLER) 

C 
C*** OUTPUT RESULTS IF REQUIRED 

IF(IITER.EQ.l.AND.MOUTP(l).GT.O) 
.CALL OUTMPA (EPSTN,IITER,MTOTG,MTOTV,MVFIX,NELEM, 

NGAUS,NLAPS,NOFIX,NOUTP,NPOIN,NVFTX, 
STRSG,TDISP,TREAC) 

C 
C*** IF SOLUTION HAS CONVERGED STOP ITEHATIIG AND OUTPUT RESULTS 
C 

IF(NCHEK.EQ.0) GO TO 100 
90 CONTINUE 

C 
C*** 
C 

IF(NALGO.EQ.2) GO TO 100 
ST0 P 

100 CALL OUTWPA (EPSTN,IITER,MTOTG,mOTV,MVFIX,NELEM, 
NGAUS,NLAPS,NOFIX,NOUTP,NPOI:i,NVFIX, 
STRSG,TDISP,TREAC) 

70 CONTINUE 
, 20 CONTINUE 
10 CONTINUE 

STOP 
END 

FEAM 77 
FEAM 78 
FEAM 79 
FEAM 80 
FEAM 81 
FEAM 82 
FEAM 83 
FEAM 84 
FEAM 85 
FEAM 86 
FEAM 87 
FEAM 88 
FEAII 89 
FEAM 90 
FEAM 91 
FEAM 92 
FEAM 93 
FEAM 94 
FEAM 95 
FEAM 96 
FEAM 97 
FEAN 98 
FEAM 99 
FEAM 100 
FEAM 101 
FEAM 102 
FEAM 103 
FEAM 104 
FUN 105 
FFAM 106 
FEAM 107 
FEAM 108 
FEAM 109 
FEAM 110 
FEAM 1 1 1  
FEAM 112 
FEAM 113 
FEAM 114 
FEAM 115 
FEAM 116 
FEAM 117 
FEAM 118 
FEAM 119 
FEAM 120 
FEAM 121 
FFAM 122 
FEAM 123 
FEAM 124 
FEAM 125 
FEAM 126 
FEAM 127 
FEAM 128 
FEAM 129 
FEAM 130 
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9.6.3 Snbroutine CHECKl (revised) 
In program MINDLAY we remove card CEKl 25 from subroutine 

CHECK1 because NLAPS (the number of layers) replaces NSTRE in sub- 
routine INPUT. The variable NSTRE is set in subroutine DIMMP (see 
Section 9.5.4). 

9.6.4 Subrontine DEPMPA 
This subroutine sets up the layered discretisation. 

C 
C*** SET UP LAYRED DISCRETIZATION 

DEPT 3 
DEPT 4 

C DEPT 5 
C 4 * . I . * * I * C I I I Z I * I * C i i i * i Z i i i * i * i l * C i * * Z * * * * * * * *  6 

DIMENSION PROPS( MMATS, 8) ,DEPTH(26 1 DEPT 7 
C DEPT FI - 
C 

NLAY 1 =NLAYR+l 
ALAY R r  NLAY R 
THICK:PROPS( LPROP, 3)  
CONSl=THICWALAYR 
CONS2.-THICW2.0 
KWNT=O 
W 10 ILAYR=l,NLAYl 
DEPTH( ILAYR) :CONS2+CONSl *KCX.INT 

10 KCUNT:KOUNT+l 
RETURN 
END 

--.- - 
DEPT 9 
DEPT 10 
DEPT 11  
DEPT 12 
DEPT 13 
DEPT 14 
DEPT 15 
DEPT 16 
DEPT 17 
DEPT 18 
DEPT 19 
DEPT 20 

9.6.5 Subroutine LAYMPA 
This subroutine evaluates hf and h, using the mid-ordinate rule. 

C LAYR 5 
C*** CALCULATES THE D-MATRIX INTEGRATED OVER LAYR 6 
C*** THE DEPTH LAYR 7 
C LAYR 8 
C***********************************************************************~y 9 

DIMENSION AVECT(3) ,DEPTH(26) ,DEVIA(4) ,DFLEF(3,3), LAYR 10 
t DPLAN(3,3) ,DVECT(3), LAYR 1 1  
t DSHER(2,2) ,DSHES(2,2) ,EPSTN(MTOTG) ,PROPS(MMATS,~), LAYR 12 

SGTOT(5) ,STRSG(5,bVOTC) LAYR 13 
C LAYR 14 
C LAYR 15 

IF(JFFLE.EQ.0) GO TO 100 LAYR 16 
HARDS=PROPS(LPROP,7) LAYR 17 

C LAYR 18 
C*** ZERO D MATRIX FOR FLEXURE LAYR 19 
C 

DO 20 ISTRE= 1,3 
DO 20 JSTRE=1,3 

20 DFLEF(ISTRE,JSTRE)=O.O 
C 
C*** LOOP AROUND LAYERS 
C 

LAYR 20 
LAYR 21 
LAYR 22 
LAYR 23 
LAYR 24 
LAYR 25 
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EVALUATE 2.-CDORDINATES FOR CURRENT LAYER 

DEPT I =DEPTI(( ILAY R) 
DEPT2=DEPTtI( JLAYR) 
CONS3z(DEPT2+DEPTl)*(DEPT2**2-DEPTlXX2)/4.0 

EVALUATE ELASTO-PLASTIC D MATRIX FOR CURRENT LAYER 

CALL MDMPA(DPLAN,DSHER,LPROP,MMATS,PROPS,~,O) 
IF(IINCS.EQ.1)GO TO 40 
IF(EPSTN(KGAUS).EQ.O.O)GO TO 40 
DO 50 ISTRE=1,5 

50 SGTOT(ISTRE)=STRSG(ISTRE,KGAUS) 
CALL INVMP(DEVIA, NCRIT ,SINT3,STEFF, SGTOT,THETA,VARJ2,YIEUl) 
CALL FLOWMP( ABETA . AVECT . DEVIA ,DPLAN . DVECT. HARDS, NCRIT, SINT3, 

- .  
40 CONTINUE 

C 
C*** SUM D MATRIX OVER ELEMENT DEPTH 
C 

DO 70 ISTRE= 1,3 
DO 70 JSTRE=1,3 

70 DFLEF(ISTRE, JSTRE)=DFLEF(ISTRE, JSTRE)+CONS~*DPLAN(ISTRE, JSTRE) 
30 CONTINUE 

GO TO 200 
C 
Ci** ZERO D MATRIX FOR SHEAR 
C 
100 DO 80 ISTRE=1,2 

DO 80 JSTRE=1,2 
80 DSHES(ISTRE,JSTRE)=O.O 

C 
C4** EVALUATE ELASTIC D MATRIX 
C 

CALL MDMPA(DPLAN ,DSHER ,LPROP,MMATS, PROPS,O, 1) 
C 
c*** LOOP AROUND LAYERS 
C 

DO 90 ILAYR=l, NLAYR 
,. JLAYR=ILAYR+l 
L 

Ci** EVALUATE 2.-COORDINATES FOR CURRENT LAYER " 
L 

DEPTl=DEPTH(ILAYR) 
DEPT2=DEPTH(JLAYR) 

C 
CONS4=DEPT2-DEPT1 

Ci** SUM D MATRIX OVER ELEMENT DEPTH 
C 

DO 110 ISTRE=1,2 
DO 110 JSTRE:1,2 

110' DSHES( ISTRE, JSTRE) =DSHES( ISTRE, JSTRE)+CONS~*DSHER( ISTRE, JSTRE) 
90 CONTINUE 
200 CONTINUE 

RETURN 
END 

LAYR n 
LAYR 28 
LAYR 29 
LAYR 30 
LAYR 31 
LAYR 32 
LAYR 33 
LAYR 34 
LAYR 35 
LAYR 36 
LAYR 37 
LAYR 38 
LAYR 39 
LAYR 40 
LAYR 41 
LAYR 42 
LAYR 43 
LAYR 44 
LAYR 45 
LAYR 46 
LAYR 47 
LAYR 48 
LAYR 49 
LAYR 50 
LAYR 51 
LAYR 52 
LAYR 53 
LAYR 54 
LAYR 55 
LAYR 56 
LAYR 57 
LAYR 58 
LAYR 59 
LAYR 60 
LAYR 61 
LAYR 62 
LAYR 63 
LAYR 64 
LAYR 65 
LAYR 66 
LAYR 67 
LAYR 68 
LAYR 69 
LAYR 70 
LAYR 71 
LAYR 72 
LAYR 73 
LAYR 74 
LAYR 75 
LAYR 76 
LAYR 77 
LAYR 78 
LAYR 79 
LAYR 80 
LAYR 81 
LAYR 82 
LAYR 83 
LAYR 84 
LAYR 85 
LAYR 86 
LAYR 87 
LAYR 88 
LAYR 89 
LAYR 90 
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LAYR 10 If JFFLE is zero D f l  is not evaluated. If it is one D,' is not 
evaluated. 

LAYR 15-17 Initializes Df'. 
LAYR 21 Starts the summation loop to form DFLEF, i.e. 

LAYR 22 Increases the counter for Gauss points in each layer by 1. It is 
needed to use the effective plastic strain (EPSTN) stresses 
(STRSG) calculated in RESMPA. 

LAYR 27-29 Forms $(zi+~ t-zi)(zi;12-zt2). 
LAYR 33-45 Calls MDMPA to get DPLAN and D,,' is formed using 

INVMP and FLOWMP. 
LAYR 49-51 DFLEF is formed. 
LAYR 57-59 DSHES is initialised. 
LAYR 63 Calls MDMPA to form DSHER. 
LAYR 67-74 Starts thc summation loop and the integrating constant for 

DSHES is cvaluatcd, i.e. 

* 
D, = i - . I D &  

t=1 

LAYR 78-81 DSHES is formed. 

9.6.6 Subroutine MDMPA 
This subroutine evaluates Df' and Ds' 

SUBROUTINE MDMPA (DPLAN, DSHER ,LPROP, MMATS, PROPS, MODL 1 
IFPLA, IFSHE) MODL 2 

C C * * * * * I I X * C I C * l t ~ ~ * * t s ~ * s * * x i i f * t t * ~ ~ i ~ . I . I I * I I * i C i t * i ~ * i i i f I * i i i * i i i i i X * * * M O D  3 
C MODL 4 
C*** CALCULATES MATRIX OF ELASTIC RIGIDITIES FOR EACH LAYER 
C*** OF MINDLIN PLATE 
r 

MODL 5 
MODL 6 
MODL 7 " 

~ I * I ~ I ( I I ~ ~ I * ~ ~ I X ~ ~ X ~ ~ ~ C ~ ~ ~ I C ~ X X ~ ~ X X X X I X X X X I I * ~ ~ ( I I I ~ ~ X * ~ ~ I I I ~ I ~ ~ ~ * ~ ~ ~ ~ ~ * X ~ * * * * ~ D  8 
DIMENSION DPLAN(3.3) .DSHER(2.2), MODL ~~ .- 9 

PROPS(F~ATS, 8) 
YOUNG=PROPS(LPROP, 1 ) 
POISS=PROPS(LPROP, 2) 
THICK:PROPS(LPROP, 3)  

C"* FORM DPLAN 

MODL lU 
MODL 1 1  
MODL 12 
MODL 13 

MODL 15 
MODL 16 
MODL 17 
MODL 18 

MODL 20 
MODL 21 
MODL . 22 
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DPLAN(2,1):CONST*POISS 
DPLAN(3,3)=CONST*(l.O-POISS)/2.0 

C**VORM DSHER 
10 IF(IFSHE.EQ.0) RETURN 

RETURN 
END 

MODL 23 
MODL 24 
MODL 25 
MODL 26 
MODL 27 
MODL 28 
MODL 29 
MODL 30 
MODL 31 
MODL 32 
MODL 33 

9.6.7 Subroutine OUTMPA 
This subroutine outputs nodal displacements and reactions and also the 

Gauss point stress resultants and the stresses within each layer. It is very 
similar to subroutine OUTMP which was described in Section 9.5.7. State- 
ments OUTP 1-3 are replaced by OUTL 1-3 and statements OUTP 56-66 
are replaced by statements OUTL 56-67. 

SUBROUTINE OUTMPA (EPSTN,IITER,MTOTG,MTOTV,MVFIX,NELEM, OUTL 1 
NGAUS,NLAPS,NOFIX,NOUTP,NPOIN,NVFIX, OUTL 2 
STRSG,TDISP,TREAC) OUTL 3 

C***********************************************************************  4 
C OUTL 5 
C*" OUTPUT DISPLACEMENTS,REACTIONS AND GAUSS POINT STRESSES OUTL 6 
CX** IN EACH LAYER FOR EP MINDLIN PLATE ANALYSIS OUTL 7 
C OUTL 8 
C * * X * * * * * I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  q 

DIMENSION EPSTN(MT0TG) ,GPCOD(2,9), NOFIX(MVF1X) , NOUTP(2) , 
STRSG(5,t-VOTG),TDISP(MTOTV),TREAC(MVFIX,3) 

Cr** OUTPUT DISPLACEMENTS 
C 

IF(KOUTP.LT.1) GO TO 10 
WRITE(6,gOO) 

900 FORMAT( 1 H0,5X, 13HDISPLACEMENTS) 
WRITE (6,950) 

950 FORMAT( lH0,6X,QHNODE,6X,5HDISP. ,8X,7HXZ-ROT. ,7X,7HYZ-ROT. 
DO 20 IPOIN=l,NPOIN 
NGASHZIPOIN*~ 
NGISHZNGASH-3+1 

20 WRITE(6,glO) IPOIN, (TDISP(ICASH1, IGASH=NGISH,NCASH) 
910 FORMAT(I10,3E14.6) 
10 CONTINUE 

C 
CR** OUTPUT REACTIONS 
C 

IF(KOUTP.LT.2) GO TO 30 
WRITE(6,920) 

920 FORMAT( 1HO,5X, 9HREACTIONS) 
WRITE(6,960) 

960 FORMAT( lH0,6X, 4HNODE,6X, 5HFORCE, 3X, 9HXZ-MOMENT, 5X, 9HYZ-MOMENT) 
' DO 40 IVFIXz1, NVFIX 
40 WRITE(6,910) NOFIX(IVF1X) , (TREAC(IVFIX, IDOFN) , IDOFN=1,3) 
30 CONTINUE 

C 
C*** OUTPUT STRESSES 

OUTL 10 
OUTL 1 1  
OUTL 12 
OUTL 13 
OUTL 14 
OUTL 15 
OUTL 16 
OUTL 17 
OUTL 18 
OUTL 19 
OUTL 20 
OUTL 21 
OUTL 22 
OUTL 23 
OUTL 24 
OUTL 25 
OUTL 26 
OUTL 27 
OUTL 28 
OUTL 20 
OUTL 30 
OUTL 31 
OUTL 32 
OUTL 33 
OUTL 34 
OUTL 35 
OUTL 36 
OUTL 37 
OUTL 38 
OUTL 39 
OUTL 40 
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- 
IF(KOUTP.LT.3) GO TO 50 
REWIND 3 
W R 1 ~ ~ ( 6 , 9 7 0 )  

970 FORMAT( 1 H0,5X, 8HSTRESSES) 
WRITE(6,980) 

980 FORMAT( 1 HO, 4HG. P., 2X, 8HX-COORD., 2X, 8HY-COORD., 3X, 8HX-IKNENT, 
.8HY-HOMEKT, 3X, 9HXY-MOMENT, 3X, 
13HEFF.PL.STRAIN) 

930 FORMAT( 1H0,5X, 13HELEMENT NO. = , I 5 )  
DO 6 0  IGAUS=l,NGAUS 
DO 6 0  JGAUS=l.NGAUS 
KELGS:KELGS+l 
DO 60 ILAYRrl , NLAPS 
KCAUS=KGAUS+l 
WRITE(6,940)KELCS, (GPCOD( IDIME,KELCS), IDIME=1,2), . (STRSC(ISTRE,KGAUS) ,ISTRE:1,3), EPSTN(KCAUS1 

940 FORMAT(I5,2F10.4,6E12.5) 
6 0  CONTINUE 
5 0  CONTINUE 

RETURN 
END 

OUTL 42  
WTL 43 
WTL 44 
OUTL 45 
OUTL 46 

4 X ,  OUTL 47 
OUTL 4 8  
OUTL 49 
OUTL 5 0  
OUTL 51 
WTL 5 2  
OUTL 5 3  
OUTL 54 
OUTL 55 
OUTL 56 
OUTL 57  
OUTL 5 8  
OUTL 59  
OUTL 60 
WTL 61 
OUTL 6 2  
OUTL 6 3  
OUTL 6 4  
OUTL 6 5  
OUTL 66 
OUTL 67 

9.6.8 Subroutine RESMPA 
This routine evaluates the residual forces for the layered Mindlin plate. 

It is very similar to RESMP described in Section 9.5.10. 

SUBROUTINE RESMPA (ASDIS,COORD,EFFST,ELOAD,EPSTN,LNODS, RESL 1 
MATNO, MELEM ,MMATS,MPOIN , MTOTG, MTOTV, RESL 2 
NCRIT,NELEM NEVAB,NGAUS,NNODE,NLAPS, RESL 3 
PROPS, STRSC J RESL 4 

C N N N N + ~ N N N N I N N N N N N N N N N N N N N N N N N ~ N N N ~ ~ N ~ ~ Z N ~ N N N N N N N N N N N ~ ~ * N N ~ N N N N N I N N N N N N N ~ ~ L  5 
C RESL 6 
C*** EVALUATES EWIVALENT NODAL FORCES FOR THE STRESSES RESL 7 
CN** I N  LAYERED MINDLIN PLATES DURING EP ANALYSIS RESL 8 
C RESL 9 
C * * N t N N N N i N i N l N N N t * N * ~ ~ ~ N N i N N N * ~ N N N N f f N N N N N N N N N N N N N N N i N * N N * N N N N N N * N N N N * * * R ~ L  10 

DIMENSION ASDIS(t4TOTV) ,AVECT(5), CARTD( 2 , 9 ) ,  RESL 11 
COORD(MPOIN,2),DERIV(2,9),DESIG(5),DEVIA(4), RESL 12 
DEPTH(26),DVECT(5), RESL 13 
EFFST(t4TOTG) ,ELCOD(2,9), RESL 14 
ELDIS(3,g) ,ELOAD(MELEM,27) ,EPSTN(IlTOTG) ,GPCOD(2,9), RESL 1 5  
LNODS(MELEM, 9 )  ,MATNO(MELEM), POSGP( 

k ( 5 )  
RESL 16 

PROPS(WTS,  8 )  , SCTOT( 51, SHAPE( 9 )  , S RESL I? 
STRES(5) ,STRSG(5 ,MTOTG) ,TOSPB(5) ,WEIGP(4) : RESL 18  
DPLAN(3,3),DSHER(2,2) ,BFLEI(3,3) ,BSHEI(2 ,3) ,  RESL 19 
DUW(3,3),FORCE(3) ,DGRAD(6) RESL 20 

NTIMEz 1 RESL 21 
DO 1 0  IELEM=l ,NELEM RESL 22  
DO 1 0  1EVAB:l ,NEVAB RESL 23 

1 0  ELOAD(IELEM,IEVAB)=O.O RESL 24  
KCAUS.0 RESL 25 
LGAUS=O RESL 26 

RESL n 
RESL 2 8  
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C 
C*" COMPUTE COORDINATE AND INCREMENTAL DISPLACEMENTS OF THE 
C ELEMENT NODAL POINTS 
C 

DO 190 INODE -1,NNODE 
LNODE=IABS(LNODS(IELEM.INODE)) 

190 CONTINUE 
KGASPzO 
CALL DEPMPA(DEPTH,LPROP,MMATS,NLAPS,PROPS) 
CALL MDMPA (DPLAN,DSHER,LPROP,MMATS,PROPS, 

1, 1) 
CALL GAUSSQ ( NGAUS , POYiP, WEIGP) 
DO 40 IGAUS=l,NGAUS 
DO 40 JGAUS-I ; NGAUS 
EXISP=POSGP(ICAUS) 
EXASP=POSGP( JGAUS) 
CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE) 
KGASP=KGASP+l 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, 

KGASP, NNODE, SHAPE) 
DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
DO 400 ISTRE=1,3 

400 TOSPB(1STRE)zO.O 
DO 410 ILAYR=l,NLAPS 
BRING: 1 .0 
KGAUS=KGAUS+l 
JLAYR:ILAYR+l 
DEPTl=DEFTH(ILAYR) 
DEPT2=DEPTH(JLAYR) 
CONST=0.5*(DEPT2+DEPTl) 
CALL GRADMP (CARTD , DCRAD, ELDIS, 3, NNODE) 
CALL STRMPA (CARTD,CONST,DPLAN,DCRAD,DSHER,ELOIS, 

NNODE,SHAPE,STRES, 1, 0) 
PREYS=PROPS(LPROP,6)+EPSTN(KGAUS)*PROPS(LPROP,7) 
DO 150 ISTRE=1,3 
DESIG( ISTRE)=STRES( ISTRE) 

150 SIGMA( ISTRE) =STRSG( ISTRE, KGAUS)+STRES( ISTRE) 
CALL INVMP (DEVIA,NCRIT,SINT3,STEFF,SIGMA,THETA, 

VARJ2,YIELD) 
ESPRE:EFFST(KGAUS)-PREYS 
IF(ESPRE.GE.O.O) GO TO 50 

DO 80 ISTRE=1,3 
SGTOT(ISTRE)=STRSC(ISTRE,KGAUS)+REDUC*STRES(ISTRE) 

80 STRES(ISTRE) =RFACT*STRES( ISTRE)/ASTEP 
DO 90 ISTEP=l,MSTEP 
CALL INVMP (DNIA, NCRIT, SINT3, STEFF,SGTOT,THETA, 

VARJ2,YIELD) 
HARDS=PROPS(LPROP,7) 
CALL FLOWMP (ABETA,AVECT,DEVIA,DPLAN,DVECT,HARDS, 

RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
RESL 
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NCRIT,SINT3 ,STEFF,THETA,VARJ2) 
AGASH:O. 0 
DO 100 ISTRE=1,3 

100 AGASHsAGASH+AVECT( ISTRE) *STRES( ISTRE) 
DLAMD=AGASH*ABETA 
IF(DWLMD.LT.O.0) DM-0.0 
BCASH.O.0 
DO 110 ISTRE=1,3 
BCASH=BCASH+AVECT(ISTRE)*SGTOT(ISTRE) 

110 SGTOT(ISTRE)=SCTOT(ISTRE)+STRES(ISTRE)-DLAMD*DVECT( ISTRE) 
90 EPSTN(KGAUS) =EPSTN(KGAUS) +DLAMD*BGASH/YIELD 

DO 120 ISTRE=l.? 
120 DESIG( ISTRE) =$TOT( ISTREI-STRSG( ISTRE, KGAUS) 

CALL INVMP (DEVIA,NCRIT,SINT3,STEFF,SCTOT,THETA, 
VARJ2,YIELD) 

CURYS:PROPS(LPROP 6)+EPSTN(KGAUS)*PROPS(LPROP,7) IF(YIELD.GT.CURYSI BRING=CURYS/YIELD 
60 DO 130 ISTRErl,3 

SCTOT(ISTRE)=BRING*(STRSG( ISTRE,KGAUS)+DESIG( ISTRE)) 
130 STRSC(ISTRE,KGAUS)=SCTOT( ISTRE) 

EFFST(KGAUS) =BRING*Y IELD 
CONSA:(DEPT2**2-DEPT1**2)/2.0 
DO 440 ISTRE. 1,3 

440 TOSPB(ISTRE)=TOSPB(ISTRE)+SCTOT(ISTRE)*CONSA 
410 CONTINUE 

DO 430 ISTRE=1,3 
430 %TOT( ISTRE)=TOSPB( ISTRE) 

" 
L 
C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 

ELEMENT NODES 
DO 140 INODE=l,NNODE 
ZERO FORCE VECTOR 
CALL VZERO (3,FORCE) 
CALL BMATPB (BFLEI,DUMMY,BSHEI CARTD,INODE,SHAPE, 

0, 1 ,  oj 
FORCE(2):(BFLEI( 1 ,2)*SGTOT(l )+BFLEI(3,2)*SGTOT(3) I'DAREA 

+FORCE(2) 
FORCE(3):(BFLEI(2,3)*SCT(TT(2)+BFLEI(3,3)*SCTOT(3))*DAREA 

+FORCE(3) 
IPOSN=(INODE-1)*3+1 
DO 135 IDOFN:2,3 
IPOSN=IPOSN+l 

135 ELOAD(IELEM,IPOSN):ELOAD( IELEM, IPOSN)+FORCE(IDOFN) 
140 CONTINUE 

" 
40 CONTINUE 

L 

C*** CALCULATE FORCES ASSOCIATED WITH SHEAR DEFORMATION 
C 

NGAUMzNGAUS-1 
CALL GAUSSQ (NGAUM,POSCP,WEIGP) 

C 
C*** ENTER LOOPS FOR ARM NUMERICAL INTEGRATION 
C 

EXISP=POSGP( IGAUS) 
EIASP=POSGP( JGAUS) 
CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE) 
KGASP=KGASP+l . 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, 

KGASP,NNODE,SHAPE) 
DARM=DJACB*WEIGP(IGAUS)WEIGP(JGAUS) 
DO 610 ISTRE=4,5 

610 TOSPB(ISTRE)=O.O 

RESL 94 
RESL 95 
RESL 96 
RESL 97 
RESL 98 
RESL 99 
RESL 100 
RESL 101 
RESL 102 
RESL 103 
RESL 104 
RESL 105 
RESL 106 
RESL 107 
RESL 108 
RESL 109 
RESL 110 
RESL 11 1 
RESL 112 
RESL 113 
RESL 114 
RESL 115 
RESL 116 
RESL 117 
RESL 118 
RESL 119 
RESL 120 
RESL 121 
RESL 122 
RESL 123 
RESL 124 
RESL 125 
RESL 126 
RESL 127 
RESL 128 
RESL 129 
RESL 130 
RESL 131 
RESL 132 
RESL 133 
RESL 134 
RESL 135 
RESL 136 
RESL 137 
RESL 138 
RESL 139 
RESL 140 
RESL 141 
RESL 142 
RESL 143 
RESL 144 
RESL 145 
RESL 146 
RESL 147 
RESL 148 
RESL 149 
RESL 150 
RESL 151 
RESL 152 
RESL 153 
RESL 154 
RESL 155 
RESL 156 
RESL 157 
RESL 158 
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C 
C"* LOOP AROUND LAYRS 
L 

DO 600 ILAYR=l,NLAPS 
LGAUS=LGAUS+l 
JLAYR=ILAYR+l 
DEPT 1 =DEPTH( ILAY R) 
DEPT2=DEPTH( JLAYR) 

RESL 159 
RESL 160 
RESL 161 
RESL 162 
RESL 163 
RESL 164 
RESL 165 
RESL 166 

CONSTzl. 0 RESL 167 
CALL GRADMP (CARTD ,DCRAD ,ELDIS, 3, NNODE) RESL 168 
CALL STRMPA (CARTD.CONST.DPLAN.DGRAD,DSHER,ELDIS. RESL 169 

600 CONTINUE 
DO 605 ISTREy4.5 

L 
C*** CALCULATE THE EQUIVALENT NODAL FORCES 
I: - 

DO 320 INODEz1,NNODE 
C*** ZERO FORCE VECTOR 

CALL VZERO(3,FORCE) 
CALL BMATPB (BFLEI ,DUMMY, BSHEI CARTD, INODE, SHAPE, 

0. 0. 1 I  
FORCE(~)~(BSHEI(~,~)*SCTOT~U)+BSHEI(~,~)*~~TOT~~~~*DAREA 

+FORCE( 1 ) 
FORCE(2)=(BSHEI(1,2)*SGTOT(4))*DAREA+FORCE(2) 
FORCE(3)=(BSHEI(2,3)*SGTOT(5))*DAREA+FORCE(3) 
IPOSN:(INODE-11'3 
DO 315 IDOFN=1,3 
IPOSN=IPOSN+l 

315 ELOAD(IELEM,IPOSN):ELOAD(IELEM,IPOSEI)+FORCE(IDOFN~ 
320 CONTINUE 
300 CONTINUE 
20 CONTINUE 

RETURN 

RESL 170 
RESL 171 
RESL 172 
RESL 173 
RESL 174 
RESL 175 
RESL 176 
RESL 177 
RESL 178 
RESL 179 
RESL 160 
RESL 181 
RESL 182 
RESL 183 
RESL 184 
RESL 185 
RESL 186 
RESL 187 
RESL 188 
RESL 189 
RESL 190 
RESL 191 
RESL 192 
RESL 193 ~. 

RESL 194 
RESL 195 
RESL 146 
RESL 197 
RESL 198 
RESL 199 

END RESL 200 

9.6.9 Subroutine STIFMPA 
This routine evaluates the stiffness matrices for layered elasto-plastic 

Mindlin plate elements. 

SUBROUTINE STIWPA (COORD,EPSTN,IINCS,LNODS,MATNO,MELEM, STFL 1 
MEVAB,MMATS,MPOIN,mOTC,NCRIT,NELEEI, STFL 2 
NEVAB,NGAUS,NNODE,NLAPS,PROPS,STRSG) STFL 3 

C * * * * ~ ~ * * * * ~ * ~ * * ~ * * X X X X X X X X X X X X X I X X X X * ~ X * + ~ ~ * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * ~ ~ F L  4 
C STFL 5 
C*** EVALUATE STIFFNESS MATRICES FOR LAYREED ELASTO-PLASTIC STFL 6 
C*** MINDLIN PLATE ELEMENTS STFL 7 
C STFL 8 
c* * * * * * * * * *~ * * * * * * * * * * * * * * * * * *XX I * * * * * * * *x * * * * * * * * * * * * * * * * * * *+ * * * *L  9 

DIMENSION CARTD(2,9),COORD(MPOIN,2), STFL 10 
DERIV(2,9),DEPTH(26),ELCOD(2.9), STFL 1 1  
EPSTN(MTOTG) ,ESTIF(n ,a)  ,GPCGD~ 2,s) ,LNODS(IELEP!,9), STFL 12 
MATNO(MELEM),POSGP(~),PROPS(M~IATS,~),SHAPE(~), STFL 13 
STRSG(S.IflOTG).WEICP(U). STFL 14 
DFLEX(~:~) ,OSHER(~,Z) ,BFLEI(~,~) ,BFLEJ(3,3), STFL 15 
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BSHEI(2,3) ,BSHEJ(2,3),DUMMY(3,3) 
REWIND 1 
REWIND 3 
KGAUS=O 

C 
C*** LOOP OVER EACH ELEMENT 
C 

w 70 IELEM-1 , NELEM 
,. LPROP=MATNO( IELEM) 
L 
C*** NAUIATE THE COORDINATES OF THE ELEMENT NODAL POINTS 

LNODE=LNODS( IELEM, INODE) 
LNODE:IABS( LNODE) 
DO 10 IDIME=1.2 

C 
C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX 

20 ESTIF(IEVAB, JEVAB)=O.O 
CALL DEPMPA(DEPTH, LPROP, MMATS, NLAPS, PROPS) 

I: - 
C*** NALUATE PART OF STIFFNESS MATRIX 
C ASSOCIATED WITH BENDING DEFORMATION 
C 

KGASP:O 
C 
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 
C 
C*** SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

CALL GAUSSQ (NGAUS,POSCP,WEIGP) 

DO 50 ICAUS=l,NGAUS 
DO 50 JGAUSz1,NGAUS 
KGASP:KGASP+l 
EXISP:POSGP( IGAUS) 
ETASP:POSGP(JGAUS) 

C 
C*** EVALUATE THE SHAPE FUNCTIONS, ELEMENTAL AREA, ETC 
C - 

CALL SFR2 (DERIV, ETASP, EXISP , NNODE, SHAPE 
CALL JACOB2 (CARTD,DERIV;DJACB- ELCOD,GPCOD,IELEM, 

KGASP. NNODE. SHAPE I 
DAREA=DJACB*WEIGP( IGAUS) *WE~GP( JGAUS) 

C 
Ca** EVALUATE THE B AND DB MATRICES 
C 

CALL LAYMPA(DEPTH,DFLEX,DSHER, EPSTN,IINCS,KGAUS, LPROP, 
* MMATS,hTOTG, NCRIT,NLAPS, PROPS, STRSG, 1) 

r 
h** CALCULATE THE ELEMENT STIFFNESSES 
C 

W 30 INODEs1,NNODE 
CALL BMATPB (BFLEI,DUMMY,BSHEI CARTD,INODE,SHAPE, 

0. 1. ol  -, . -. 
DO 30 JNODE:INODE,NNODE 
CALL BMATPB (BFLEJ,DUMMY,BSHEJ,CARTD,JNODE,SHAPE, 

0, 1 ,  0) 
30 CALL SUBMP (BFLEI,BFLEJ,DAREA,DFLEX,ESTIF,INODE, 

JNODE, 3, 3, 3) 

STFL 16 
STFL 17 
STFL 18 
STFL 19 
STFL 20 
STFL 21 
STFL 22 
STFL 23 
STFL 24 
STFL 25 
STFL 26 
STFL 27 
STFL 28 
STFL 29 
STFL 30 
STFL 31 
STFL 32 
STFL 33 
STFL 34 
STFL 35 
STFL 36 
STFL 37 
STFL 38 
STFL 39 
STFL 40 
STFL 41 
STFL 42 
STFL 43 
STFL 4; 
STFL 45 
STFL 46 
STFL 47 
STFL 48 
STFL 49 
STFL 56 
STFL 51 
STFL 52 
STFL 53 
STFL 54 
STFL 55 
STFL 56 
STFL 57 
STFL 58 
STFL 59 
STFL 60 
STFL 61 
STFL 62 
STFL 63 
STFL 64 
STFL 65 
STFL 66 
STFL 67 
STFL 68 
STFL 69 
STFL 70 
STFL 71 
STFL 72 
STFL j 3  
STFL i4 
STFL 75 
STFL 76 
STFL 77 
STFL 78 
STFL 79 
STFL 80 
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50 CONTINUE 
C 
C*** EVALUATE PART OF STIFFNESS MATRIX 
C ASSOCIATED WITH SHEAR DEFORMATION 
C 

KCASP=@ 
NGAUM=NGAUS-1 

L 

C*** ENTER LOOPS FOR AREA INTEGRATION 
C 
C 
C*** SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

CALL GAUSSQ (NGAUM,POSGP,WEIGP) 
DO 51 IGAUS= I, NGAUM 
DO 51 JGAUSZI, NGAUM 
KGASP=KGASP+l 

L 

C*** EVALIJATE THE SHAPE FUNCTIONS,ELEMENTAL AREA,ETC ,. 
L 

CALL SFR2 (DERIV,ETASP,EXISP,NNODE,SHAPE) 
CALL JACOB2 (CARTD,DERIV,DJACB ELCOD,GPCOD,IELEM, 

KGASP. NNODE, SHAPE! 

C*** EVALUATE THE B AND DB MATRICES 
C 

CALL LAYMPA(DEPTH,DFLEX,DSHER,EPSTN,IINCS,KCAUS,LPROP, 

- MMATS, bTOTC, NCRIT, NLAPS, PROPS, STRSG, 0) 
L 
C*** EVALUATE ELEMENT STIFFNESSES 
I: 

DO 31 INODEz1 ,NNODE 
CALL BMATPB (BFLEI,DUMMY.BSHEI,CARTD,INODE,SHAPE, 

DO 31 JNODE:INODE,NNODE 
CALL BMATPB (BFLEJ,DUMMY,BSHEJ,CARTD,JNODE,SHAPE, 

0, 0, 1) 
31 CALL SUBMP (BSHEI,BSHEJ,DAREA,DSHER,ESTIF,INODE, 

JNODE, 3, 2, 3) 
51 CONTINUE 

C 
Cr** CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX 
C 

DO 60 IEVAB-1 . NEVAB 

L 

C*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C COORDINATES FOR EACH ELEMENT ON DISC FILE 
C 
C 

WRITE(1) ESTIF 

STFL 81 
STFL 82 
STFL 83 
STFL 84 
STFL 85 
STFL 86 
STFL 87 
STFL 88 
STFL 89 
STFL 90 
STFL 91 
STFL 92 
STFL 93 
STFL 94 
STFL 95 
STFL 96 
STFL 97 
STFL 98 
STFL 99 
STFL 100 
STFL 101 
STFL 102 
STFL 103 
STFL 104 
STFL 105 
STFL 106 
STFL 107 
STFL 108 
STFL 109 
STFL 110 
STFL 11  1 
STFL 112 
STFL 113 
STFL 114 
STFL 115 
STFL 116 
STFL 117 
STFL 118 
STFL 119 
STFL 120 
STFL 121 
STFL 122 
STFL 123 
STFL 124 
STFL 125 
STFL 126 
STFL 127 
STFL 128 
STFL 129 
STFL 130 
STFL 131 
STFL 132 
STFL 133 
STFL 134 
STFL 135 
STFL 136 
STFL 137 
STFL 138 
STFL 139 

9.6.10 Subroutine STRMPA 
This subroutine evaluates the stresses within each layer. 
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SUBROUTINE STRMPA (CARTD,CONST,DFLEX,DGRAD,DSHER,ELDIS,NNODE, STRL 1 
SHAPE, STRES , IFFLE , IFSHE) STRL 2 

C ~ N N N N N N N I N N N N N N N N ~ ~ * N N N N ~ N N ~ N ~ N ~ ~ N N N N N N N ~ C * I N ~ * N N C N N N N N N * N N N N N * N N N * N * I ~ N N ~ ~ L  3 
C STRL 4 
C*** EVALUATES STRESSES FOR MINDLIN PLATE STRL 5 
C STRL 6 

DIMENSION CARTD(2,9),DFLW((3,3),DCRAD(6) ,DSHER(2,2), 
ELDIS(3,g) ,SHAPE(9) ,STRES(5) 

C*** ~ E R O  STRESS VECTOR 
CALL VZERO (5,STRES) 

C*** EVALUATE ROTATIONS AT GAUSS POINT , IF NEEDED 
P(IFSHE.EQ.0) COTO 50 

(5,STRES) 
C*** EVALUATE ROTATIONS AT GAUSS POINT , IF NEEDED 

P(IFSHE.EQ.0) COTO 50 

STRL 8 
STRL g 
STRL 10 
STRL 11 
STRL 12 
STRL 13 

XZROT=O.O STRL 14 
YZROT=O.O STRL 15 
DO 30 INODE=l,NNODE STRL 16 
XZR~:XZROT+SHAPE(INODE)*ELDIS(2,INODE) STRL 17 

30 YZROTrYZROT+SHAPE(INODE)'ELDIS(3,INODE) STRL 18 
C*'* EVALUATE BENDING STRESS RESULTANTS STRL 19 

50 P(IFFLE.EQ.0) GOT0 60 STRL 20 
EFW(=-DCRAD( 2)*CONST STRL 21 
EFLYYz-DCRAD(6) WONST STRL 22 
EFLXY=-(DCRAD(3)+DGRAD(5) ) WONST STRL 23 
STRES(l)=DFLEX(l,l)*EFLXX+DFLEX(1,2)*EFLYY STRL 24 
STRES(2) =DFLEX(2.1 )*EFLXX+DFLEX( 2.2)'EFLYY STRL 25 
STRES( 3 :DFLEX( 3 ; 3 )'EFLXY STRL 26 

c*** EVALUATE SHEAR STRESS RESULTANTS 
60 IF( IFSHE. EO. 0) RETURN 

RETURN 
END 

STRL n 
STRL 28 
STRL 29 
STRL 30 
STRL 31 
STRL 32 
STRL 33 
STRL 34 

9.7 Examples 
To test the program, the elasto-plastic analysis of a simply supported plate 

is performed and 9 noded and Heterosis elements are used. The geometry, 
material properties of the plate are shown in Fig. 9.6. 

I I 
L 

(L=l.O,E=10.92, v=0.3,t=0.01,q=1.0,00=1600.0) 

Fig. 9.6 Geometry and material properties of siniply supported square plate. 
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Typical input for the nonlaycrcd approach is given in Appcndix 1V together 
with lineprinter output of results. Figures 9.7 and 9.8 show the load displace- 
ment curves for both layered and nonlayercd approachcs. 

Fig. 9.7 Load displacement curves for nonlayered approach. 

o 4-node element 
$-node element 
9-node element 

- hererosis element 

Fig. 9.8 Load displacement c~lrves for layered approach. 
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Fig. 9.9 Infinite clamped plate strip under uniform lateral load q. 

9.8 Problems 
9.1 Consider the uniformly loaded, clamped plate shown in Fig. 9.9. Using 

programs MINDLIN and MINDLAY find the collapse load for the 
plate which has the following properties: 
Elastic modulus E = 10000.0, Poisson's ratio v = 0.3, thickness 
r = 0.01, length L = 1.00 and yield stress uo = 1000.0. Check your 
solution using program PLANET. 

9.2 Use program MINDLlN to find the value of the uniformly distributed 
load intensity q at  which yielding first occurs for rectangular, simply 
supported plates of aspect ratios 1.0, 1.2, 1.4, 1.6, 2.0 and 2.2. Assume 
a thickness/span ratio of 0.05 and locate also the position of first 
yielding. Compare your results with those of Turvey(9) for a Von Miscs 
material. 

9.3 Modify program MINDLAY to allow for in-plane deformation of the 
plate mid-plane. Use a displacement pattern of the form 

in which uo and vo are the in-plane deflections of the plate mid-plane in 
the x and y directions respectively. 

9.4 Modify programs MINDLIN and MINDLAY to allow for an elastic 
Winder foundation of modulus K. The appropriate virtual work term is 

in which 6w is the virtual lateral displacement. 
9.5 Solve the beam problem in Example 5.1 of Chapter 5 using programs 

MINDLIN and MINDLAY. 
9.6 Develop a program for the nonlayered elastoplastic analysis of axi- 

symmetric Mindlin plates using 2-node radial finite elements. The 
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virtual work expression for an annular plate of internal and external 
radii r.0 and rl  respectivcly is givcn as 

in which the radial bending moment A4r = - D [ d O / d r f  vO/r ]  the 
circumferential bending moment A! ,  = - D [ O / r i -  ~ d O j d r ]  the shear 
force Q = [Gt(dw/dr - $ ) ] / I  .2, O is the normal rot ation in the radial 
rz plane and is the lateral displacement in the z direction. 
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Chapter 10 
Explicit transient dynamic analysis 

Written in collaboration with D. K .  Paul and N. Bicanic 

10.1 Introduction 
Earlier, in Parts I and 11, we considered static (or pseudostatic) appli- 

cations. However, many structures are subjected to time-varying loads such 
as impulse, - blast, impact or earthquake loading. Here in Part I11 we consider 
finite element based methods for dealing with such problems. 

Although a form of mode-superposition has been adopted in nonlinear 
transient dynamic stress analysis,(ll it is general practice to use a time 
stepping procedure. Such direct integration schemes may be broadly classified 
as either explicit or implicit methods. 

In the present chapter, we consider the very popular and easily im- 
plemented, explicit, central difference scheme. During each time step, rela- 
tively little computational effort is required since no formal matrix factor- 
isation is necessary. Unfortunately, the method is conditionally stable and 
very small time steps are often needed. 

In implicit schemes, a matrix factorisation is required but we can select an 
unconditionally stable implicit algorithm in which the time step length is 
governed by considerations of accuracy alone. In Chapter 11 we consider 
the Newmark family(2) of time stepping schemes. We then present a pro- 
gram for nonlinear transient dynamic stress analysis in which we may select 
any of the following algorithms: 

(i)  an implicit solution 

(ii) an explicit solution 

(iii) a combined implicit/explicit solution 

The programs in Chapters 10 and 1 I deal with plane stress, plane strain 
and axisymmetric applications using 4, 8 and 9-node, isoparametric quadri- 
laterals. Geometrically nonlinear behaviour is taken into account using a 
Total Lagrangian formulation. I n  Chapter 10 the material behaviour is 
assumed to be elasto-viscoplastic, whereas an elasto-plastic model is used in 
/ 

Chapter 11. Test examples are presented for both programs. 
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10.2 Dynamic equilibrium equations 
For dynamic equilibrium of a body in motion we can use the Principle of 

Virtual Work to write the following equations at time station t n  irrespective 
of material behaviour 

where Sun is the vector of virtual displacements, SE,, is the vector of associated 
virtual strains, bn is the vector of applied body forces, tn is the vector of 
surface tractions, a, is the vector of stresses, p, is the mass density, cn is the 
damping parameter'and a dot refers to dilrerentiation with respect to time. 
The domain of interest Q has two boundaries: I?( on which boundary tractions 
tn are specified and 1; on which displacements u,, are specified. For plane 
stress, plane strain and axisymmetric problems all of these terms were 
defined in Chapter 6. 

Recall that in Chapter 6 we noted that, for a finite element representation, 
the displacements and strains and also their virtual counterparts are given by 
the relationships 

where at time station t f 
O r g o d e  i9 I d f l  

is the vector of nodal displacements, 
[6di ]n  is the vector of virt al nodal variables, Ni = Nilz is the matrix of 
global shape functions and Bi is the global strain-displacement matrix. t The 
total number of nodes is m. 

If (10.2) and (10.3) are substituted into (10.1), and if we note that the 
resulting equation is true for any set of virtual displacements [SdIn  then we 
obtain for each node i the equations. 

" Note that a subscript n refers to a quantity sampled at time station t,, and similarly 
a subscript n+ I refers to a quantity sampled at time station r ,  + At. 

t Here we assume that the strains are linear and hence Br is independent of time. 
Later we show how to cater for nonlinear strains in which is displacement (and hence 
time) dependent and it is written as [Bc],. 
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where the internal resisting forces are 

the consistent forces for the applied body forces are 

the inertia forces are 

( N . B .  [Mfl],, is a submatrix of the mass matrix M,) The damping forces are 

(N.B. [Ctrln is a submatrix of the damping matrix Cn) and the consistent 
forces for the traction boundary forces are 

If we use C(0) isoparametric finite element representations we can evaluate 
contributions t o  (10.4) separately from cach element and then assemble 
them into the appropriate vectors in (10.4). As noted in Chapter 6 the dis- 
placements can be exprcssed in the usual way as 

where for local node i of element e ,  ili2(e' = Nt(e)12  is the local shape function 
matrix and [di(')],, is the vector of nodal displacements. As described in 



380 FINITE ELEMENTS IN PLASTICITY 

Chapter 6 we use 4, 8 and 9 noded isoparametric quadrilateral elements and 
therefore r = 4, 8 and 9 respectively for these cases. 

The strain displacement relationships are expressed as 

in which B&e) is the local element strain matrix which has been defined for 
the various applications in Table 6.1. 

The discretised elemental volume is given as 

in which det Jce) is the determinant of the Jacobian matrix and h(e) is defined 
in Chapter 6. 

Thus the element contributions to the terms in (10.4) may be evaluated 
using numerical integration based on Gauss-Legendre product rules. These 
contributions now take the form 

If n , ] - - / ~ : / + l [ ~ f ( e ) ] p o ( e ) [ N 1 ( e ) ,  Np(.), , . ., Nr(e)]h(e) det J(e)d(dl 
-1 

where rtcer (if it exists) is that part of rt which coincides with the boundary of 
element domain W). 
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We will assume for simplicity that the mass and damping matrices d o  not 
vary with time. 

10.3 Modelling of nonlinearities 

10.3.1 Introduction 
Dynamic loading of structures often causes excursions of stresses well into 

the inelastic range and the influence of geometry changes on the response is 
also significant in many cases. Therefore both material and geometric non- 
linear effects should be considered. 

Although material behaviour under dynamic loading is very complex and 
experimental information is scarce, for most structural materials, some 
general statements can be made. 

For  example, it has frequently been demonstrated that the instantaneous 
yield stress is significantly influenced by the ra teof  straining. Also, the value 
of the elasticity modulus Lo is found to be dependent on the strain rate. For 
structural materials with limited ductility, such as concrete or rock-like 
materials, the rate of straining can completely change the material response 
from elasto-plastic behaviour under low rates to  brittle elastic behaviour 
under hish rates of  straining. For  many structural materials there is still an 
urgent need for a better understanding of the observed phenomena and 
underlying microscopic bchaviour. Howvcr ,  in attempting to pcrform an 
analysis of a dynamically-loaded engineering structure, we must look for an 
idealized material model, whcre possibly some compromises have to  be made. 
Furthermore, the model paramctcrs should readily be measurable and easily 
obtained from reliable experimental data. 

For  transient dynamic analysis, an elasto-viscoplastic model, as developed 
in earlier chapters. presents a very good approximation of the true behaviour 
for many structural materials. The predominant phenomenon of variable 
instantaneous yield stress is adequately modelled. 

In the following. we shall develop the algorithm for the elasto-viscoplastic 
transient dynamic analysis of plane stress, plane strain and axisymmetric 
problems. The computer program DYNPAK will be documented and 
explained and finally, some illustrative examples arc given. 

10.3.2 Material model 
Here we adopt the elasto-viscoplastic matcrial model developed in Chap- 

ter 8, where the constitutive relationship is given in the form 

where D is the elasticity matrix, y is the fluidity parameter, F is the yield 
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function and en, [€,In and [E,,], denote the total, elastic and viscoplastic 
strain rates at time station rn. We also have the relationships 

an = D[~e]n 

en = [eeIn+ [evpln (10.19) 
and 

(%(F)) = 0 if yield has not occurred. 
= 1 if yield has occurred. (10.20) 

Thus we can rewrite the internal resisting forces as 

The - temporal discretization of the equations which govern viscoplastic 
straining is also based on the assumption that the relationship 

is known only for discrete time stations At apart. The simplest, Euler, 
integration scheme will here be employed, i.e., 

The stability limit for the time increment At, which depends on the specific 
form of the viscoplastic potential employed in the flow rule, has already been 
discussed in earlier chapters. 

When we adopt the central difference scheme and the viscoplastic material 
model that we have just described, the algorithm at a particular time station 
tn follows the sequence shown in Fig. 10.1. 

10.3.3 Geometric nonlinearity 
If we wish to  cater for geometrically nonlinear elastic behaviour we can 

choose either a total or updated Lagrangian coordinate system. Here we 
choose a total Lagrangian coordinate system which coincides with the 
initial undeformed position of the body.@) 

It  transpires that, with the central difference scheme, the only changes 
r e q u i a t o  account for geometrically nonlinear effects are 

(i) The modification of the strain-displacement matrix B(dn), 

and 

(ii) The evaluation of the strains using a deformation Jacobian matrix 
Jddn). 

* Note that in dynamic transient analysis, the time interval At is here assumed con- 
stant; whereas for viscoplastic applications in Chapter 8 it is variable. 
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Fig. 10.1 Algorithm for elasto viscoplastic straining during a time step 

We will now describc briefly the relevant background theory. All vectors 
and matrices are given explicitly for the planc stress, plane strain and axi- 
symmetric applications in Table 10.1. 

If the initial undeformed position of a particle of material is x u  and the 
total displacement vector at  time station tr1 is ti,, then thc coordinates of the 
particle are 

XI! = xo i I I n  (10.24) 

In a total Lagrangian forn~ulation wc use Green's strains. The matrix of 
Green's strains is given as 



Table 10.1 Vectors and matrices used in a total Lagrangian formulation 

Variables Plane stresslstrain Axisymmetric 
Coordinates of particle 
in undeformed initial 
configuration x = xo 

Displacements U n  

Coordinates of particle in 
deformed configuration X n  

Deformation Jacobian 
matrix 
J D ( u ~ )  = [ J D ~  

Vector of Green's strains rn 

Matrix of Green's strains 
E n  = * { [ J o ] n T  [ J D ] ~  -1) 

cg 

Linear strains [E& 
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where [ J D ] ~  is the deformation Jacobian matrix at time station t , .  
The Green's strains can be written as 

where   EL]^ are the linear strains given earlier in Chapter 6 and [ E N L I n ,  the 
nonlinear strain terms are given as 

For a set of virtual displacements, the corresponding virtual Green's 
strains are given as 

[a], = [ S E L ] ~ ~  [AolnMn. (10.28) 

Thus the virtual work statement of (lo. 1) can be rewritten as 

where an are the Piola-Kirchhoff stresses. 
As mentioned earlier, all relevant terms are given in Table 10.1. 
If we adopt the finite element discretization scheme described earlier, then 

the displacement gradients 0, are given in terms of the nodal displacements 
[diIn by the linear relation 

where Gt contains Cartesian shape function derivatives as indicated in 
Table 10.2 for the various applications. 

Similarly we have 

The linear strain-displacement relationship can be expressed as 

where [ B L ~ ] ,  is the linear strain displacement matrix introduced earlier. 
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Similarly, we have 
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The components of the vector of Green's strains E ,  can be written as 

where the nonlinear strain-displacement matrix [ B N L ~ ,  is given as 

Furthermore it can be shown that the virtual strains can be expressed as 

where 
[&In = [B~t ln  + [Bn;~iln 
.. 

is given in Table 10.2 for the various applications. 
If we substitute for Sen and Sd, in (10.29) and note that the result is true 

for arbitrary virtual displacements, then we obtain an expression which is 
identical to (10.4). In the present case we only -. deed to remember that [Biln is 
def i~ed by (10.36). 

We again note that contributions to (10.4) from each element can be 
obtained separately and assembled appropriately. 

Note that we now may evaluate [ p i ] ,  as 

where [Bt], is given by (10.36). 

10.4 Explicit time integration scheme 

10.4.1 Central difference approximation 
We can write the equations (10.4) in matrix form so that at  time station h 

we have 
Mdn + c d n  f p n  = fn (10.37)* 

Note that the body force term -MI,, due to seismic excitation, is included in the 
body forces which are taken into account in f,,. Note also that M and C may be assembled 
from the element mass matrices Mce) and damping matrices Cce). 
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where M and C are the - global mass and dnnlping malriccs rcspcctively, p,, 
is the global vector of  internal resisting nodal forces, f;, is thc vector of 
consistent nodal forces for the applied body and surljces traction forccs 
grouped together, &, is the global vcctor of nodal accelerations and j,, is the 
global vector of nodal velocities. 

So far, only spatial discretization has bcen introduced. We now employ a 
temporal discretization of the dynamic equilibrium cquations by approxi- 
mating the accelerations and velocities using finite difikrence expressions. 

In  particular we adopt a central difference approximation(" so that thc 
accelerations can be written as 

and the velocities are written as 

in which Ar is the time step or interval so that we are sampling the displace- 
ments a t  time stations I,-At, I ,  and I , , - : - I f .  If Mte substitute (10.38) and 
(10.39) into (10.37) we obtain 

which can be rearranged t o  give 

Thus we have 

dn-1 = g(dn, d7,-1). 

In  other words the displacements at time station r , , .  1 1  are given explicitly 
in terms of the displacenlents at time stations 11, and t?r - A t .  

If the mass matrix M and the damping matrix C are diagonal then the 
solution of (10.41) becomes trivial and we have for plane strcss and plane 
strain applications the following equations: 
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+2mtt(dva)n - mtt i 2 
(10.44) 

in which at  node i, dut and dvi are the u and v displacement components in 
the x and y directions, fut andfur are the components of the applied nodal 
forces in the x and y directions, put and p,i are the internal resisting nodal 
forces in the x and y directions and mtt and cat are the diagonal terms of the 
mass and damping matrices. For axisymmetric problems replace v by w. 

From (10.43) and (10.44) we see that for each displacement degree of 
freedom at time ?,+At we have a separate equation involving information 
regarding the degree of freedom at times tn and tn -At. No matrix factor- 
isation or sophisticated equation solving is therefore necessary. 

10.4.2 Starting algorithm 
As we have seen the governing equilibrium equation at  time station t, + At 

in the central difference method involves information at the two previous 
time stations t, and tn-At. A starting algorithm is therefore necessary and 
from the initial conditions the values d(O-At) may be obtained. We have 
from (10.39) the condition that 

If this approximatioq)fsubstituted in (10.43) then we can write the expression 

or  

where 

10.4.3 Damping 
Very limited information is available on damping in linear solid mech- 

anics problems and there is even less data available for damping in non- 
linear situations. It  is therefore customary to assume that the damping 
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matrix is proportional to the mass and stiffness matrix. This is known as 
Rayleigh damping and we have 

In  the central difference method we can make the approximation that 
p = 0 SO that 

or  

where 

in which f l -  and W, are the damping factor and circular frequency for the r1I' 
mode. This modelling of damping is rather poor since a is fixed for all modes 
of vibration. Thus if w,e take r = 1 then the higher modes will bc less damped 
whereas the opposite would be more desirable. This is the price we pay for an 
otherwise convenient and efficient solution. 

10.5 Critical time step 
In  explicit and implicit time integration schemes the selection of an 

appropriate time step is crucially important. Small timc steps are required 
for accurate and stable solutions whereas for reasons of economy \be \ ~ o u l d  
prefer large time steps. The analysis of the stability and accuracy character- 
i s t i c ~ ( ~ '  allows us to decide on a suitable time step for the various time 
stepping schemes. On this basis for the conditionally stable, ccntral difrercnce 
scheme, the stability considerations arc of prime importance and the time 
step length is limited by the expression 

where w,,, is the highest circular frequency of the finite element mesh. This 
severe time step limit, required for stability, ensures accuracy in practically 
all modes of vibration. Providing that represents the maximum non- 
linear frequency, (10.49) holds for nonlinear problems. The estimate of the 
critical time step for conditionally stable schemes apparently necessitates 
the solution of the eigenvalue problem for the whole system. This is not so. 
The bound on the highest eigenvalue can be simply obtained by the con- 
sideration of an individual element. This is established by an  important 
theorem proposed by Ironst" which proves that the highest system eigenvalue 
must always be less than the highest eigenvalue of the individual elements. -- 
This allows a very easy estimate of critical time steps (by the above theorem) 
which will err on the safe side. T o  avoid the exact evaluation of thc highest 
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finite element mesh frequency approximate expressions are usually employed. 
The most common form for plane strain is 

where L is the smallest length between any two nodes and p is a coefficient 
dependent on the type of element employed.(5) For problems in which many 
time steps are used it may be beneficial to calculate the exact highest linear 
frequency of the finite element mesh prior to the time steppinganalysis. 

Recall that when an elasto-viscoplastic model is adopted care must be 
taken not to exceed the critical time step for the Euler scheme in evaluating 
the viscoplastic strains. (See Section 8.3). 

10.6 Program DYNPAK 

10.6.1 Overall structure of DYNPAK 
We now present program DYNPAK for the elasto-viscoplastic or geo- 

metrically nonlinear, transient dynamic analysis of plane stress, plane strain 
and axisymmetric problems. The basic structure of the program is shown in 
Fig. 10.2. Many of the subroutines used in DYNPAK have already been 
described in earlier chapters. 

The algorithm adopted has been presented schematically in Fig. 10.1. The 
program is written in a dynamically dimensioned form. Efficiency has some- 
times been sacrificed for clarity of presentation and the reader may consider 
ways of making the program more efficient when reviewing this chapter. 

Isoparametric 4, 8 an-noded quadrila 1 elements are included in the 
program. A special mass lumping procedur (6)  as been adopted and separate 
Gauss-Legendre rule<m?i jbiof led in t e evaluation of the stiffness and 
the lumped mass matrices. 

4 
Impact and seismic loading can easily be specified. Material nonlinearity 

is based on elasto-viscoplastic models with Von Mises, Tresca, Mohr- 
Coulomb or Drucker-Prager yield criteria with isotropic hardening. A total 
Lagrangian formulation is used to allow for the geometric nonlinear behav- 
iour. 

Subroutines GAUSSQ, SFR2 and JACOB2 have already been dealt with 
and only the remaining routines will be listed and described. 

10.6.2 Master routine DYNPAK 
The master routine organises the calling of the main routines as outlined 

in Fig. 10.2. In subroutine CONTOL the variables required for dynamic 
dimensioning are read and a check is made on the maximum available 
dimensions. Note that the values given in the DIMENSION statement in 



EXPLICIT T R A N S I E N T  IIYNAMIC' ANAI  ):<IS 

PREVOS 

MODPS 

LOADPLfO) 

JACOB2 

GAUSSQ I SFR2 I 
LUMASS SFR2 1 ~JACOBZJ 
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DYNPAK should agree with the values specified in CONTOL. Subroutines 
INPUTD, INTIME and PREVOS read the mesh data, the time integration 
data and data for the previous state of the structure. Subroutines LUMASS 
and LOADPL generate the lumped mass and applied force vectors respect- 
ively. FIXITY deals with fixed boundary nodes. In the time step do loop, 
EXPLE performs the dkect time integration and RESVPL calculates 

when an elasto-viscoplastic material model is adopted. 
In  this version of DYNPAK it should be noted that the maximum dimen- 

sions imply that we can solve problems with no more than 50 elements, 
200 nodal points, 50 fixed boundary nodes and 600 acceleration ordinates. 

Of course, larger problems can be accommodated by increasing the values 
in CONTOL and also the appropriate dimensions in the DIMENSION 
statement in the main routine DYNPAK. 

PROGRAM DYNPAK (INPUT ,TAPE5=INPUT ,TAPE4,TAPElO,TAPE12,TAPE3, DYNK 1 

C DYNK 4 

- - . . . . , 
DIMENSION ACCEH( 600) ,ACCEV( 6 0 0 )  ,COORD(200,2) ,DISPL( 4 0 0 )  ,DYNK 8 

FORCE( 4 0 0 )  , IFPRE(2 ,200)  ,LNODS(50 , 9 )  ,MATNO( 5 0 )  ,DYNK 9 
INTGR( 5 0 )  ,NPRQD( 1 0 )  ,NCRQS( 1 0 )  ,POSGP( 4 )  ,DYNK 1 0  
PROPS(10,13)  ,RESID( 4 0 0 )  ,RLOAD(50,18) ,STRIN(4 ,450)  ,DYNK 11 
STRSG(4,450) ,TDISP( 4 0 0 )  ,TEMPE( 1 0 0 )  ,VELOC( 4 0 0 )  ,DYNK 1 2  
VISTN(4,450) ,VIVEL(5,450) ,WEIGP( 4 )  ,YMASS( 4 0 0 )  DYNK 1 3  

DYNK 14 
(NDOFN ,NELEM ,NMATS ,NPOIN DYNK 1 5  

DYNK 16 
CALL CONTOL 

CALL INPUTD 

CALL INTIME 

CALL PREVOS 

CALL LOADPL 

CALL LUMASS 

(COORD ,IFPRE ,LNODS ,MATNO ,NCONM ,NCRIT , DYNK 17 
NDIME ,NWFN ,NELEM ,NGAUM ,NGAUS ,NLAPS , DYNK 1 8  
NMATS ,NNODE ,NPOIN ,NPREV ,NSTRE ,NTYPE , DYNK 1 9  
PUSCP ,PROPS , W E E P  ) DYNK 2 0  

DYNK 21 
(AALFA ,ACCEH ,ACCEV ,AFACT ,ALERO ,BEETA , DYNK 2 2  

BZERO ,DELTA ,DTIME ,DTEND ,GAAMA , IFIXD , DYNK 2 3  
IFUNC ,INTGR ,KSTEP ,MITER ,NDOFN ,NELEM , DYNK 24 
NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD ,NREQD , DYNK 2 5  
NREQS ,NSTEP ,O1.(EGA ,TDISP ,TOLER ,VELOC , DYNK 26  
IPRED DYNK 27 

DYNK 2 8  
(FORCE NDOFN ,NELEM ,NCAUS ,NPOIN ,NPREV , DYNK 29  

STRIN DYNK 3 0  
DYNK 31 

(CWRD ,FORCE ,LNODS ,MATNO ,NDIME ,NDOFN , DYNK 3 2  
NELEM ,NGAUS ,NMATS ,NNODE ,NPOIN ,NSTRE , DYNK 33 
NTYPE ,POSGP ,PROPS ,RLOAD ,STRIN ,TEMPE , DYNK 3 4  
WEICP ) DYNK 35 

DYNK 3 6  
(CWRD .INTGR .LNODS .MATNO .NCONM .NDIME . DYNK 37 

NDOFN ;NELEM ;NGAUM ;NMTS ;NNODE ;NPOIN ; DYNK 38 
NTYPE ,PROPS ,YMASS DYNK 39 
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DYNK 40 
CALL FIXITY (IFPRE ,NDOFN ,NPOIN ,YMASS ) DYNK 41 

DYNK 42 
IF(NPREV.NE.0) DYNK 43 
.CALL RESVPL (COORD ,DTIME ,LNODS ,MATNO ,NCRIT, NDIME , DYNK 44 

NDOFN ,NELU.I ,NGAUS ,NLAPS ,NNODE ,NMATS , DYNK 45 
NPOIN .NSTRE .NTYPE .POSGP .PROPS .RESID . DYNK 46 
RLOAD ~STRIN ;STRSG ;TDISP ;VISTN ;VIVEL ; DYNK 47 
WEICP ) DYNK 48 

DYNK 49 
DO 500 ISTEPz1,NSTEP DYNK 50 

DYNK 51 
CALL EXPLIT 

CALL RESVPL 

CALL OUTDY N 

500 CONTINUE 
STOP 
END 

(ACCEH ,ACCEV ,AFACT ,AZERO ,AALFA ,BZERO , 
DTIME ,DTEND ,FORCE ,IFIXD ,IFPRE ,IFUNC , 
ISTEP ,NDOFN ,NPOIN ,OMEGA ,RESID ,TDISP , 
VELOC ,YMASS 1 

(COORD ,DTIME ,LNODS ,MATNO ,NCRIT ,NDIME , 
NDOFN ,NELEM ,NGAUS ,NLAPS ,NNODE ,NMATS , 
NPOIN ,NSTRE ,NTYPE ,POSGP ,PROPS ,RESID , 
RLOAD ,STRIN ,STRSG ,TDISP ,VISTK ,VIVEL , 
WEIGP ) 

(DISPL ,DTIME ,ISTEP ,NDOFN ,NELEN ,NGAUS , 
NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD NREQD , 
NREQS ,NTYPE ,STRSG ,TDISP ,VIVEL 5 

DYNK 52 
DYNK 53 
DYNK 54 
DYNK 55 
DYNK 56 
DYNK 57 
DYNK 58 
DYNK 59 
DYNK 60 
DYNK 61 
DYNK 62 
DYNK 63 
DYNK 64 
DYNK 65 
DYNK 66 
DYNK 67 
CYNK 68 
DYNK 69 

10.6.3 Subroutine BLARGE 
This subroutine evaluates the strain-displacement matrix for geometrically 

nonlinear displacements using the deformation Jacobian matrix [ J D ] ~ , .  Note 
that for small displacement analysis we pre-set NLAPS = 0. 

SUBROUTINE BLARGE (BMATX ,CARTD ,DJACM ,DLCOD ,GPCOD ,KCASP , BLAR 
NLAPS ,NNODE ,NTYPE ,SHAPE ) BLAR 

C I * * * * X ~ * * I X X I * I * * * X i I I i X * * * t X * * * * * * * * * * * * * * * * * * * *  BLAR 
C BLAR 
Cx** LARGE DISPLACEMENT B MATRIX BLAR 
C BLAR 
C * * * * X * ( I * * I X * I * I I i i i * ~ * ~ t I * * i * * * f i * * i * * * I i * * I I i # * i f i * i i * * * * t * I * l i * I I * * *  RI.AR 

DIMENSION BMATX(4,18) ,CARTD(2,9) ,DJACM(2,2) ,DLCOD(2,9), 
GPCOD(2. 9) .SHAPE( 9) 

BLAR 
BLAR . ~ .  

NGASH-0 BLAR 
DO 10 INODEz1,NNODE BLAR 
MGASH=NGASH+l BLAR 
NGASH:MGASH+l BLAR 
BMATX(I,MCASH):CARTD(l,INODE)*DJACM(l,l) BLAR 
BMATX(l,NCASH)=CARTD(l,INODE)*DJACM(2,1) BLAR 
BMATX(2,MGASH)=CARTD(2,INODE)*DJACM(1,2) BLAR 
BMATX(2,NCASH)=CARTD(2,INODE)*DJACM(2,2) BLAR 
BMATX(3,MCASH)=CARTD(2,INODE)*DJACM(l,1)+CARTD(1,INODE)*DJACM(1,2)BLAR 
BMATX(3.NGASH)=CARTD(l.INODE)*DJACM(2.2)+CARTD(2.INODE)*DJACM(2.1)BLAR 

10 CONTINUE 
IF(NTIPE.NE.3) RETURN 

BLAR 
BI.AR - .  

FMULT:l. BLAR 
BLAR 23 
BLAR 24 
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END 

BLAR 25 
BLAR 2 6  
BLAR 27 
BLAR 28 
BLAR 29 
BLAR 30 
BLAR 3 1  
B U R  32 
BLAR 33 
BLAR 34 
BLAR 35 

BLAR 10-20 Evaluate the complete strain matrix for plane stress/strain 
problems and the first three rows of the strain matrix for axi- 
symmetric problems. 

BLAR 21-33 Evaluate the remainder of the strain matrix for axisymmetric 
problems, if applicable. 

10.6.4 Subroutine CONTOL 
The purpose of this subroutine is to set the values of variables for the 

dynamic dimensions which are used elsewhere in the program. If any change 
in the DIMENSION statement in the master routine is made, then a corre- 
sponding change in this subroutine should also be made. 

SUBROUTINE CONTOL (NDOFN ,NELEM ,NMATS ,NPOIN 1 CONT 1 
CI**I*~~CC*I*IXII I I*~**Z~*~*I~*~*OX~~II I****~*********************** CONT 2 
C CONT 3 
C*** READ CONTROL DATA AND CHECK FOR DIMENSIONS CONT 4 
C CONT 5 
~ ~ ~ ~ ~ ~ i a ~ * i i i i i i i ~ i i i ~ i i i ~ ~ i * i i ~ i ~ i u i ~ ~ i ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ u * * ~ * * ~ * ~ ~ u ~ ~ ~  CONT 6 

GO TO 2 1 0  
200 WRITE(6,120)  

STOP 
120 FORMAT(/'SET DIMENSION EXCEEDED - CONTOL CHECK ' / I  
1 1 0  FORMAT( 1615) 
210 CONTINUE 

RETURN 
END 

~~ - 

CONT 7 
CONT 8 
CONT 9 
CONT 1 0  
CONT 1 1  
CONT 1 2  
CONT 1 3  
CONT 1 4  
CONT 15 
CONT 16 
CONT 1 7  
CONT 18 

10.6.5 Subroutine EXPLIT 
This subroutine performs the direct time integration using expressions 

(10.43) and (10.44) to evaluate the nodal displacements at every time step. 
Special provisions are made for the first time step. 

SUBROUTINE EXPLIT (ACCEH ,ACCEV ,AFACT ,AZERO ,AAL.FA ,BZERO , EXPL 1 
DTIME ,DTWD ,FORCE ,IFIXD , IFPRE ,IFUNC , M P L  2 
I S T E P  ,NDOFN ,NPOIN , W G A  ,RESID ,TDISP  , M P L  3 
VELOC ,YMASS EXPL 4 

C ~ * ~ * * ~ ~ * ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ t * ~ ~ ~ C t ~ ~ ~ ~ ~ ~ t ~ ~ ~ * R 4 * * * * * * * * * *  EXPL 5 
C M P L  6 
C *** TIME STEPPING ROUTINE EXPL 7 
C M P L  8 
..................................................................... M p L  g 
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DIMENSION YMASS( 1 ) ,ACCEH( 1 ) ,TDlSP( 1 ) , RESlD( 1 1, 
FORCE(~),ACCEV(~),VELOC(~),IFPRE(~,~) 

CFACT=1.0+0.5*AALFA*DTIME 

NPOSN-0 
FACTS~JNCTS (AZERO,BZERO,DTEND,DTIME,IFUNC,ISTEP,OMEGA) 
FACTHzFUNCTA ( ACCEH .AFACT.DTEND .DTIME. IFUNC , ISTEP) 

200 CONTINUE 
NPOSN=NPOSN+l 

510 CONTINUE 
500 CONTINUE 

RETURN 
END 

EXPL 12-19 

EXPL 21 

EXPL 22-23 

EXPL 24-3 1 

EXPL 32-35 
EXPL 36-40 
EXPL 41 
EXPL 42 

397 

EXPL 10 
EXPL 1 1  
EXPL 12 
EXPL 13 
EXPL 14 
EXPL 15 
EXPL 16 
EXPL 17 
EXPL 18 
EXPL 19 
EXPL 20 
EXPL 21 
EXPL 22 
EXPL 23 
EXPL 24 
EXPL 25 
EXPL 26 
EXPL 27 
EXPL 28 
EXPL 29 
EXPL 30 
EXPL 31 
EXPL 32 
EXPL 33 
EXPL 34 
EXPL 35 
EXPL 36 
EXPL 37 
EXPL 38 
EXPL 39 
EXPL 40 
EXPL 41 
EXPL 42 
EXPL 43 
EXPL 44 
EXPL 45 
EXPL 46 

Evaluate the various timc integration constants. After the first 
time step modify variable CONS4. 
Evaluate the value of the time varying Heavisidc or harmonic 
function for a particular time step. 
Evaluate the acceleration ordinates (FACTH for horizontal 
and FACTV for vertical acceleration respectively) at a par- 
ticular time step. 
The seismic force is only applied for particular degrees of 
freedom. For IFIXD = 1 only vertical, IFIXD = 2 only 
horizontal or radial and IFIXD = 0 both components of the 
acceleration are considered. 
Assign appropriate values for restrained boundary nodes. 
Evaluate displacements. 
For the first time step modify the displacement. 
Store the current displacements for the next time step. 

10.6.6 Subroutine FIXITY 
This subroutine deals with the restrained degrees of freedom (boundary 

points). The diagonal mass vector, XMASS, is modified-for restrained 



398 FINITE ELEMENTS IN PLASTICITY 

degrees of freedom. The component of the XMASS vector is set to a large 
value such as 1.E30, which artificially makes the displacement zero. 

C *** DEALS WITH FIXED BOUNDARY NODES 
C ..................................................................... - 

DIMENSION IFPRE( 2,l) , YMASS( 1 ) 
NTOTV=NDOFN*NPOIN 

WRITE(6,gOO) 
900 FORMAT(/5X, 19HNODAL LUMPED MASSES/) 

WRITE(6,910) (ITOTV,YMASS(ITOTV),ITOTV=l,NTOTV) 
910 FORMAT(6(lX,I5,El3.5)) 

RETURN 
END 

FIXY 4 
FIXY 5 
FIXY 6 
FIXY 7 
FIXY 8 
FIXY 9 
FIXY 10 
FIXY 11 
FIXY 12 
FIXY 13 
FIXY 14 
FIXY 15 
FIXY 16 
FIXY 17 
FIXY 18 
FIXY 19 

10.6.7 Subroutine FLO WVP 
This routine evaluates the viscoplastic strain rate. 

SUBROUTINE FLOWVP (AVECT ,KGAUS ,LPROP ,NCRIT ,NMATS ,PROPS , FLOV 1 
STEFF VNEL YIELD ) FLOV 2 

C t * i i ~ t i * i t i i ~ i * i i * i ~ i i i ~ i i i i i * ~ * i ~ * ~ * k * * * * * * ~ * * * * * * * ~ * * *  FLOV 3 
C FLOV 4 
C **** CALCULATES VISCOPLASTIC STRAIN RATE FLOV 5 
C FLOV 6 
C I * l ) * * U l U l i i * i * * i * i f f i i * t i i i I * * i C *  FLOV 7 

DIMENSION AVECT(4) ,PROPS(NMATS, 1) ,VIVEL(5,1) FLOV 8 
IF(STEFF.EQ.O.0) GO TO 90 FLOV 9 
NSTR1=4 nov lo 

IF(FNORM.LT.TOLOR) GO TO 90 
IF( NFLCW. EQ. 1 ) GO M 50 
CMULT=GAMM*(EXP(DELTA*FNORM)-1.0) 
GO TO 60 

50 CMULT=GAMMAa(FNORM**DELTA) 
60 CONTINUE 

DO 70 ISTRl:l,NSTRl 
70 AVECT(ISTR1 ):CMULT*AVECT( ISTR1) 

DO 80 ISTRl=l,NSTRl 
80 VIVEL(ISTR1 ,KGAUS)=AVECT(ISTRl) 

RETURN 

FLOV 11 
FLOV 12 
FLOV 13 
FLOV 14 
FLOV 15 
FLOV 16 
FLOV 17 
FLOV 18 
FLOV 19 
FLOV 20 
FLOV 21 
FLOV 22 
nov 23 
FLOV 24 
nov 25 
nov 26 
FLOV n 
nov 28 
nov 29 
FLOV 30 
FLOV 31 

nov 33 
FLOV 34 
FLOV 35 
FLOV 36 

too VIVEL(ISTRI ,KCAUS)=O. 
RETURN 

FLOV 37 
FLOV 38 
FLOV 39 
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10.6.8 Function FUNCTA 
This function interpolates the accclerogram data for a particular time step. 

AFACT is the ratio of the accelerogram record time step length to the compu- 
tational time step length. 

C FUNA 5 
C I * * * ~ * * * * ~ * ~ ~ ~ ~ * ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * * ~ f U ~ ~ ~ ~ ~ ~  FUNA 6 

DIMENSION ACCER(1) FUNA 7 
IF(IFUNC.NE.0) RETURN FUNA 8 
FUNCTAzO.0 FUNA 9 
IF(JSTEP.EQ.O.OR.FLOAT(JSTEP)*DTIME.GT.DTEND) RETURN FUNA 10 
XGASH=(FLOAT(JSTEP)-l.O)/AFACT+l.O FUNA 11  
MCASH=XGASH FUNA 12 

- NCASH=MGASH+l FUNA 13 
XGASHzXGASH-FLOAT(MGASH) 
F ~ N ~ T A ~ A ~ ~ E R ~ M G A ~ H ~ * ~ ~ . O - X C P . S H ) + X G A S H * A C C E R ~ N C A S H ~  
RETURN 
END 

FUNA 14 
FUNA 15 
FUNA 16 
FUNA 17 

10.6.9 Function FUNCTS 
This function sets the value of the time varying function for a particular 

time step. Heaviside functions ( , / ' ( I )  = 1.0 H(1)) or  harmonic functions, 
(f(t) = u - b  sin w r )  can be specified. 

FUNCTION FUNCTS (AZERO,BZERO,DTEND,DTIME,IFUNC,JSTEP,OMEGA) 
C*******I************************************************************ 

C 
CuX* HEAVISIDE AND HARMONIC TIME FUNCTION 
C 
CX**********************************************X********************  

IF(IFUNC.EQ.0) RETURN 
FUNCTS=O.O 
IF(JSTEP.EQ.O.OR.FLOAT(JSTEP)*DTIME.CT.DTEND) RETURN 
IF(lFUNC.EQ.1) FUNCTS : 1.0 
IF(1FUNC. EQ. 2) ARGUM=OMEGA*JSTEP*DTIME 
IF(IFUNC.EQ.2) FUNCTS = AZERO + BZERO*SIN(ARGUM) 
RETURN 

FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 
FUNS 

END FUNS 14 

10.6.10 Subroutine INPUTD 
This subroutine reads and writes most of the control parameters, nodal 

point coordinates, element connectivities, boundary conditions and material 
properties. It also writes the geometric data onto file 13 for deformation 
plotting. A similar routine was described in Chapter 6. 

SUBROUTINE INPUTD (COORD ,IFPRE ,LNODS ,MATNO ,NCONM ,NCRIT , NPUT 1 
NDIME ,NDOFN ,NELEM ,NGAUM ,NGAUS ,NLAPS , NPUT 2 
NMATS ,NNODE ,NPOIN ,NPREV ,NSTRE ,NTYPE , NPUT 3 
POSCP ,PROPS ,WEIGP ) NPUT 4 

C * * ~ ~ * ~ ~ * ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ * ~ ~ * * * ~ * * X * * * * * * * * ~ * * * ~ ~ * * * ~ * * * ~ * * * * * * * * * * * * * * * * *  NPllT 5 ... - - 
C NPUT 6 
C*** DYNPAK INPUT ROUTINE NPUT 7 
C NPUT 8 
C C I ~ ~ ~ X * ~ * * * * * ~ * * * X X ~ ~ * ~ ~ X X ~ * X * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  NPUT 9 

DIMENSION COORD( NPOIN, 1 ) , IFPREC NDOFN, 1) ,WEICP( 1 ) ,MATNO( 1 ) , NPUT 10 
- 
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READ(5,913) TITLE 
911 FORHAT(lOA4) 

NPUT 12 
NPUT 13 
NPUT 14 
NPUT 15 
NPUT 16 
NPUT 17 
NPUT 18 
NWT 19 

< .- - - -  
WR1~~(6,914j TITLE 

- 914 FORMAT(// ,5X, lOA4) 
C; 

C*** READ THE FIRST DATA CARD, AND ECHO IT IMMEDIATELY. 
C 

READ (5,900) NVFIX,NTYPE,NNODE,NPROP,NGAUS,NDIME,NSTRE,NCRIT, 
NPREV,NCONM,NLAPS,NCAUM,NRADS 

WRITE(6,901) NPOIN, NELM, NVFIX, NTYPE, NNODE, NDOFN, NMATS, NPROP, 
NCAUS,NDIME,NSTRE,NCRIT,NPRN,NCONM,NLAPS,NCAUM, 

NPUT 20 
NWT 21 
NWT 22 
NPUT 23 
NPUT 24 
NWT 25 
NPUT 26 
NPUT 27 
NPUT 28 

NRADS 
901 'FORMAT (/5X, 18HCONTROL PARAMETERS/ 

/5X,8H NPOIN s,I10,5X,8H NELEM =,110,5X,8H NVFIX =,I10/ 
/5X,8H NTYPE =,110,5X,8H NNODE =,I10,5X,8H NDOFN =,I10/ 
/5X,8H NMATS =,110,5X,8H NPROP =,110,5X,8H NCAUS :,I10/ 
/5X,8H NDIME =.110,5X,8H NSTRE =.110,5X,8H NCRIT =.I10/ 
/ 5 ~ ; 8 ~  NPREV =;110;5~;8~ NCONM :;110;5~;8~ NLAPS =,110/ 
/5X,8H NCAUM :,110,5X,8H NRADS =,I10/) 

~OO'FORMAT( 1615) 

NPUT 29 
NPUT 30 
NPUT 31 

C NPUT 32 
C *** READ THE ELEMENT NODAL CONNECTIONS, AND THE PROPERTY NUMBERS. NPUT 33 
C NPUT ?4 

WRITE (6,902) 
902 FORMAT(//5X. 8H ELEMENT. 3X. 8HPROPERTY. 6X. 12HNODE NUMBERS) 

NPUT 
NPUT ,- . . , 

DO 530 IELF.~~ .NELEM NPUT 
READ (5,900) NUMEL,MATNO(NUMEL), (LNODS(NUMEL, INODE), INODE-1 ,NNODE)NWT 
WRITE( 13,915 1 NUMEL, (LNODS(NUMEL,INODE) ,INODE=l ,NNODE) NPUT 

530 WRITE(6,903) NUMEL,MATNO(NUMEL) , (LNODS(NUMEL,INODE) ,INODE=l ,NNODE)NPUT 
903 FORMAT(6X,I5,19,6X, 1015) NPUT 
915 FORMAT(1615) NPUT 

C 
C*** ZERO ALL THE NODAL COORDINATES, PRIOR TO READING SOME OF THEM. 
C 

DO 500 IPOIN=l,NPOIN 
DO 500 IDIME=l, NDIME 

500 COORD(IPOIN, IDIME)=O .@ 
C 
C*** READ SOHE NODAL COORDINATES, FINISHING WITH THE LAST NODE OF ALL. 
C 

NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 

904 FORMAT(//5X,5H NODE,9X,lHX,9X,lHY,5X) 
200 READ (5.905) IPOIN.(COORD(IPOIN.IDIME) .IDIME=l .NDIME) 

NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT - 

C*** INTERPOLATE COORDINATES OF MID-SIDE NODES 
C 

- CALL NODXYR (COORD,LNODS,NELEM,NNODE, NPOIN, NRADS, NTIPE) 

NPUT 
NPUT 
NPUT 
NPUT 
NPUT 

L 
WRITE (6,904) 
WRITE(13,916 (IPOIN.(COORD(IPOIN.IDIME) .IDIME:l.NDIME). NWT 

NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 
NPUT 

C*** READ THE FIXED VALUES. 
I: - 

WRITE(6,907) 
907 FORMAT(//5X,SH NODE, 2X, UHCODE) 

DO 540 IPOIN:l,NPOIN 
DO 540 IDOFN=l ,NWFN 

NPUT 
NPUT 
NPUT 
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540 IFPRE( IDOFN, IPOIN)=O 
DO 550 IVFIX:l,NVFIX 

550 READ (5,908) IPOIN, (IFPRE( IDOFN,IPOIN) , IDOFN=l ,NDOFN) 
DO 560 IPOIN=l,NPOIN 

560 WRITE(6,909) IPOIN, (IFPRE(IDOFN,IPOIN) ,IDOFN:l ,NDOFN) 
908 FORMAT(lX,I4,3X,211) 
909 FORMAT(6X,I5,3X,211) 

C 
C*** R W  THE AVAILABLE SELECTION OF ELEMENT PROPERTIES. 
C 

WRITE(6,glO) 
910 FORMAT(//5X,lgHMATERIAL PROPERTIES) 

DO 570 TMATS=l.NMATS 

WRITE(6,gll) NUMAT 
911 FORMAT(/5X,llHMATERIAL NO,I5) 
520 WRITE(6.912) (PROPS(NUMAT.IPROP).IPROP~~.NPROP) ,- - .  .~~ 

912 FORMAT(/5X,13HYWNG MODULUS,G~~;~/~X,~~HPOISSON RATIO,G12.4/ 
5X,13HTHICKNESS ,G12.4/5X,13HMASS DENSITY ,G12.4/ 
5X,13HALPHA TEMPR ,G12.4/5X,13HREFERENCE FO ,G12.4/ 
5X, 13HHARDENING PAR ,G12.4/5X, 13HFRICT ANGLE ,C12.4/ 
5X,13HFLUIDITI PAR ,G12.4/5X,13HEXP DELTA ,G12.4/ 
5X,13HNFLCM CODE ,G12.4) 

917 FORMAT(8E10.4) 
C 
i*** SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

CALL GAUSSQ (NCAUS, POSCP, WEIGP) 
RETURN 
END 

10.6.11 Subroutine INTIME 

40 1 

NPUT 76 
NPUT 77 
NPUT 78 
NPUT 79 
NPUT 80 
NPUT 81 
NPUT 82 
NPUT 83 
NPUT 84 
NPUT 85 
NWT 86 
NPUT 87 
NPUT 88 
NPUT 89 
NPUT 90 
NPUT 91 
NPUT 92 
NPUT 93 
NWT 94 
NPUT 95 
NPUT 96 
NPUT 97 
NPUT 98 
NPUT 99 
NWT 100 
NPUT 101 
NPUT 102 
NPUT 103 
NPUT 104 
NPUT 105 
NPUT 106 

This routine reads and writes all data required for time integration and 
plotting stress and displacement histories. 

SUBROUTINE INTIME ( W A  ,ACCEH ,ACCEV ,AFACT ,AZERO ,BEETA , TIME 1 
BZERO ,DELTA ,DTIME ,DTEND ,W ,IFIXD , TIME 2 
IFUNC ,INTGR ,KSTEP ,MITER ,NDOFN ,NELEM , TIME 3 
NGRQS .NOUTD .NOUTP .NPOIN .NPRQD .NREQD . TIME 4 
NREQS .NSTEP ;OMEGA ;TDISP ;TOLER ;VELOC ; TIME 5 
IPRFn 1 TIME 6 

C 
Ct** READ TIME STEPPING AND SELECTIVE WTPUT PARAMETERS 
C 

TIME i 2  
TIME 13 
TIME 14 
TIME 15 
TIME 16 .. 

READ (5,902) NSTEP,NOUTD,NOUTP,NREQD,NREQS,NACCE,IFUNC, TIME 17 . . IFIXD,MITER,KSTEP,IPRED TIME 18 
READ (5,190) DTIME,DTEND.DTREC.AALFA,BEETA.DELTA.GAAMA. TIME 19 

AZERO;B~ERO;OHECA;TOLER' TIME 20 
WRITE(6,950) NSTEP, NOUTD, NOUTP, NREQD ,NREQS,NACCE, IFUNC, TIME 21 

IFIXD,MITER,KSTEP,IPRED TIME 22 
mITE(6,960) DTIHE , DTEND, DTREC , AALFA, BEnA, DELTA, G W ,  TIME 23 

AZERO,BZERO,OHEGA,TOLER TIME 24 
~~O'FORMAT(/~X. 'TIME STEPPING PARMERS'/ TIME 25 - -- .- - -> 

/SX; INSTEP=',I5,12X, 'NOUTDz1,15,12X, 'NOUTP=',I5,/ TIME 26 
/5X,'NREQD:',15,12X,'NREQSz1,15,12X,'NACCE~',15,/ TIME n 
/~X,'IRINC=',I~,~~X,'IFIXDZ',I~,~~X, 'MITERz1,15,/ TIME 28 
/~x,'KSTEP='.I~.~~X,'IPRED=',I~) TIME 29 
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L 
C*** SELECTED NODES AND GAUSS POINTS FOR CUTPUT 
C 

READ(~.W~) (NPRQD(IREQD) ,IREQD=I ,NREQD) 

WRITE~~;W~) 
909 FORMAT(//5X,41H SELECTIVE OUTPUT REQUESTED FOR FOLLWING ) 

WRITE(6,glO) (NPRQD(IREPD),IREQDz~,NREPD) 
910 FORMAT(/.5X,6H NODES, 1015) 

911 FORMAT(~X,~H C.P. ,1015) 
902 FORMAT( 1615) 

" 
190 FORMAT(8F10.4) 

L 
C*** READ THE INDICATOR FOR EXPLICIT OR IMPLICIT EtEMENT 
I. 

READ (5,902) (INTCR(IELEt4) ,IELEM=l ,NELEM) 
WRITE(6.910) . 
 WRITE^^,^^) (INTGR(1ELEM) , IELEM.1 ,NELEM) 

930 FORMAT(/5X, TYPE OF ELEMENT, IMPLICIT=l,W(PLICIT=2 ' /) 
C 
C*** INITIAL DISPLACEMENTS 
C 

JPO1N:O 
DO 500 IPOIN:l,NPOIN 
DO 500 IDOFN=l,NDOFN 
JFuIN:JPOIN+l 
TDISP( JPOIN)=O. 

500 VELOC( JPOIN)=O. 
WRITE& ,903 

200 READ( 5,904) NCASH , XCASH , YCASH 
NPOSN=(NGASH-1 )*NDOFN+l 
TDISPC NPOSN) =XGASH 

L 

C*** INITIAL VELOCITIES 
C 

WRITE(6,906) 
210 READ(5.904) NGASH.XCASH.YGASH 

VELOC(NP0SN):YGASH 
WRITE( 6,905 1 NGASH, XCASH ,YCASH 
IF(NGAS~.NE.NPOIN) GO TO 210 

904 FORMAT(I5,2F10.5) 
903 FORMAT(//5X,5H NODE,2X, 16H INITIAL X-DISP., 2Xr 

.16H INITIAL Y-DISP./) 
905 FORMAT(I10,2El8.5) 
906 FORMAT(//5X,5H NODE, 2X, 16H INITIAL X-VELO., 2X, . 16H INITIAL Y-VELO./) 

IF (IFUNC.NE.0) M TO 250 
C 
C*w READ ACCUEROCRAM DATA ,X-DIREC FROM TAPE 7,Y-DIREC FROM TAPE 12 
C 

AFACT=DTREC/DTM 
IF(IF1XD-1) 220,230,240 

TIME 30 
TIME 31 
TIME 32 
TIME 33 
TIME 34 
TIME 35 
TIME 36 
TIME 37 
TIME 38 
TIME 39 
TIME 40 
TIME 41 
TIME 42 
TIME 43 
TIME 44 
TIME 45 
TIME 46 
TIME 47 
TIME 48 
TIME 49 
TIME 50 
TIME 51 
TIME 52 
TIME 53 
TIME 54 
TIME 55 
TIME 56 
TIME 57 
TIME 58 
TIME 59 
TIME 60 
TIME 61 
TIME 62 
TIME 63 
TIME 64 
TIME 65 
TIME 66 
TIME 67 
TIME 68 
TIME 69 
TIME 70 
TIME 71 
TIME 72 
TIME 73 
TIME 74 
TIME 75 
TIME 76 
TIME 77 
TIME 78 
TIME 79 
TIME 80 
TIME 81 
TIME 82 
TIME 83 
TIME 84 
TIME 85 
TIME 86 
TIME 87 
TIME 88 
TIME 89 
TIME 90 
TIME 91 
TIME 92 ~~ -~ . 

TIME 93 
TIME 94 
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WRITE(6,912) DTREC 
WRITE(6.907) (ACCEH(1). 1:l .NACCE) 
READ(~~;~O~)(ACCEV(I);I=~;NACCE) 
WRITE(6,913) DTREC 
WRITE(6.907)(ACCEV(I).I=l.NACCE) 
GO TO 250 

230 READ(12,907)(ACCEV(I),I=l,NACCE) 
WRITE(6,913) DTREC 
WRITE(6,907) (ACCEV(I), I:l ,NACCEl 
GO TO 250 

240 READ(7,907) (ACCEH(1) ,I=1 ,NACCE) 
WRITE(6,912) 
WRITE(6,907)(ACCEH(I) ,I=l , NACCE) 

TIME 95 
TIME 96 
TIME 97 
TIME 98 
TIME 99 
TIME 100 
TIME 101 
TIME 102 
TIME 103 
TIME 104 
TIME 105 
TIME 106 
TIME 107 

907 FORMAT('IFIO.~) TIME 108 
912 FORMAT(/5X, 'HORIZONTAL ACCELERATION ORDINATES AT' ,F9.4,2X, 'SEC ' / I  TIME 109 
913 FORMAT(/5X.'VERTICAL ACCELERATION ORDINATES AT'.F9.4.2X.'SEC'/) TIME 110 . - 
250 CONTINUE 

RETURN 
END 

TIME 14-33 
TIME 34-46 

TIME 54-70 
TIME 71-87 
TIME 89-1 1 1  

. ~ .  . 
TIME 111 
TIME 112 
TIME 113 

Read and write most of the control time integration data. 
Read the selective nodal points and integration points for 
displacement and stress history. 
Read initial displacement. 
Read initial velocities. 
Read appropriate acceleration data. 

10.6.12 Subroutine W A R  
This routine calculates the stress invariants and yield values for the various 

yield criteria. The choice of yield criterion is governed by the parameter 
NCRIT. A similar routine was described in Section 7.8.3. 

SOBROUTINE INVAR (DEVIA ,LPROP ,NCRIT ,NMATS ,PROPS ,SINT3 , INVR 1 
STEFF ,STEMP THETA VARJ2 YIELD INVR 2 ................................................................ INVR 3 

C INVR 4 
C** STRESS INVARLANTS INVR 5 
C INVR 6 
C * * * * * * * ~ ~ * * i * * t * l ~ ~ ~ ~ ~ * I Y ~ * * ~ ~ 4 ~ ~ ~ ~ ~ ~ C ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  INVR 7 

DIMENSION DEVIA(4) ,PROPS( NMATS, 1 ) , STMP( 4) INVR 8 
C TNVR 9 . .. 

INVR 10 
INVR 11 
INVR 12 
INVR 13 
INVR 14 
INVR 15 
INVR 16 
INVR 17 
INVR 18 
INVR 19 
INVR 20 
INVR 21 
INVR 22 
INVR 23 
INVR 2G 
INVR 25 
INVR 26 

-. .. - 
5 sINT3~0.0 
6 CONTINUE 
IF(SINT3.LT.-1.0) SINT3:-1.0 
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IF(SINT3.GT. 1.0) SINT3z 1.0 
THETA:ASIN(SINT~)/~.O 
GO TO (1,2,3,4) NCRIT 

C*** TRESCA 
1 YIELD:2.O*COS(THETA)*STEFF 
RETURN 

C*** VON MISES 
2 YIELD=ROOT3*STEFF 
RETURN 

C*** MOHR-COULOMB 

RETURN 
CW* DRUCKER-PRACER 

4 PHIRA=PROPS(LPROP,8)*0.017453292 
SNPHI=SIN(PHIRA) 
YIELD=6.O*SMEAN*SNPHI/(ROOT3*(3.O-SNPHI) )+STEff 
RETURN 
END 

INVR 28 
INVR 29 
INVR 30 
INVR 31 
INVR 32 
INVR 33 
INVR 34 
INVR 35 
INVR 36 
INVR 37 
INVR 38 
INVR 30 ,, 
INVR 40 
INVR 41 
INVR b' ,L 

INVR JJ' ,> 
INVR U f i  7 7  

INVR 45 
INVR 46 
INVR 47 

10.6.13 Subroutine JACOBD 
This subroutine evaluates the deformation Jacobian matrix [ J D ] ~  for a 

particular sampling point within an element. 

c*** DEFORMATION JACOBIAN 
J 

JACD 4 
C JACD 5 
C**tllff*t*i~*lO*~.1.*I*O*C*Iiii~iii*t*iOYXX*iiiXC*(I*i**X*i**(f****fU**** JACD 6 

DIMENSION CARTD(2,g) ,DLCOD(2,9) ,DJACM(2,2) JACD 7 
IF(NLAPS.GT.1) GO TO 10 JACD 8 

C JACD 9 
C*W FOR SMALL DISPLACENENT JACD 10 
C JACD 11 

DJACM(1,1)=1.0 
DJACM(2,2)=1.0 
DJACM(1,2)=O.O 
DJACM(2,l)cO.O 
RETURN 

L 
C*** FOR LARGE DISPLACEMENT 
C 

10 CONTINUE 
DO 20 IDIMEr1,NDIME 
DO 20 JDIME:l,NDIME 

.+DLW)D( DIME, INODE)*CARTD( JDIME, INODE) 
20 CONTINUE 

RETURN 
END 

JACD i 2  
JACD l7 8 J 

JACD 14 
JACD 15 
JACD 16 .- 
JACD 17 
JACD 18 
JACG 10 

JACD i6 
JACD 21 
JACD 22 
JACD 23 
JACD 24 
JACD ?5 -- 
JACD 26 
JACD 7 
JACD ;b 
JACD 29 

10.6.14 Subroutine LINGNL 
This routine calculates the total elastic strain and corresponding elastic 

stresses at a particular integration point. In this calculation the strains are 
evaluated using the deformation Jacobian matrix if geometric nonlinear 
behaviour is to be taken into account. 
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SUBROUTINE LINCNL (CARTD .DJACM ,DMATX ,ELDIS ,CPCOD ,KCASP , 
KGAUS ;NDOFN ;NLAF'S ;NNODE ;NSTRE NTYPE ; 
POISS ,SHAPE ,STRAN ,STRES ,STRIN j 

C**C**4***************t***~****************************************** 

C 
C"* ELASTIC STRAIN AND STRESSES 
C 
..................................................................... 

DIMENSION CARTD(2,g) ,STRAN(4) ,DMATX(4,4) ,STRIN(4,1) , 
ELDIS(2,g) ,STRES(4) ,DJACM(2,2) ,AGASH(~,~) , 

,. GPCOD(2,g) ,SHAPE(9) 
L 

C*** CALCULATE STRAINS FROM DEFORMATION JACOBIAN 
C 

IF(NLAPS.LT.2) GO TO 15 
STRAN(1)=0.5*(DJACM(l ,l)*DJACM(l,l)+DJACM(2,1)*DJACM(2,1)-1.) 
STRAN(2)=0.5*(DJACM(1,2)*DJACM('1,2)+DJACM(2,2)*DJACM(2,2)-1.) 
STRAN(3):DJACM(1,1 )*DJACM(1,2)+DJACM(2,1)*DJACM(2,2) 

1. 

C *** FOR SMALL DISPLACEMENTS 
C 

GO TO 25 
15 CONTINUE 

DO 10 IDOFN:l,NDOFN 
DO 10 JDOFN-1,NDOFN 
BGASH=O.O - ~ -  

DO 20 INODE=l,NNODE 
20 BGASH=BCASH+CARTD( JDOFN, INODE)*ELDIS( IDOFN, INODE) 

STMN(~):AGASH(~ ;~)+AGAsH(~, 1 ) 
25 CONTINUE 

IF(NTYPE.LT.3) GO TO 90 
STRAN(4):O.O 
DO 70 INODE:l,NNODE 

70 STRAN(4)rSTRAN(4)+ELDIS(l,INODE)*SHAPE(INODE~/GPCOD(1.KGASP) 

STRAN(ISTRE)~~RAN(ISTRE)-STRIN(ISTRE,KGAUS) 
50 CONTINUE 

C 
Ci** AND THE CORRESPONDING STRESSES 
C 

W 30 ISTRE:l,NSTRE 
STRES(ISTRE)=O.O 
DO 30 JSTREz1,NSTRE 

30 STRES( ISTRE )=STRES( ISTRE )+DMATX( ISTRE, JSTRE)*STRAN( JSTRE 
IF(NTYPE.EG.1) STRES(4)=O.O 
IF(NTYPE.EQ.2) STRES(4)=POISS*(STRES(l )+STRES(2)) 
RETURN 
END 

10.6.15 Subroutine LOADPL 

405 

LINR 1 
LINR 2 
LINR 3 
LINR 4 
LINR 5 
LINR 6 
LINR 7 
LINR 8 
LINR 9 
LINR 10 
LINR 11 
LINR 12 
LINR 13 
LINR 14 
LINR 15 
LINR 16 
LINR 17 
LINR 18 
LINR 19 
LINR 20 
LINR 21 
LINR 22 
LINR 23 
LINR 24 
LINR 25 
LINR 26 
LINR 27 
LINR 28 
LINR 29 
LINR 30 
LINR 31 
LINR 32 
LINR 33 
LINR 34 
LINR 35 
LINR 36 
LINR 37 
LINR 38 
LINR 39 
LINR 40 
LINR 41 
LINR 42 
LINR 43 
LINR 44 
LINR 45 
LINR 46 
LINR 47 
LINR 48 
LINR 49 
LINR 50 
LINR 51 
LINR 52 
LINR 53 
LINR 54 
LINR 55 

This routine reads load data and evaluates the consistent nodal forces 
associated with thermal loading. A similar routine was described in Section 
6.4.5. The additions which are included here have been discussed in detail 
in the authors' earlier text Finite Element Programming.(T' 
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SUBROUTINE LOADPL (COORD ,FORCE ,LNODS ,MATNO ,NDIME ,NDOFN , LOAD 1 
NELEM ,NCAUS ,NMATS ,NNODE ,NPOIN ,NSTRE , LOAD 2 
NTlPE ,POSGP ,PROPS ,RLOAD ,STRIN ,TEMPE , LOAD 3 

LOAD 4 
LOAD 5 
LOAD 6 

WEIGP 
C**a***************************************************************** 
I. 

C*** STANDARD LOAD ROUTINE 
C 
r**.***************************************************************** 

DIMENSION COORD(NPOIN, 1 ) 
LNODS(NELEM, 1) 
PROPXNMATS ,I 
RLOADC NELEM ,1) 
STRIN( 4, 1) 
DUATXC 4. 4) 

-'1~0~1=6.2831853&179586- ' 
NEVAB=NNODE*NDOFN 
W 10 IELEM=l,NELEM 
W 10 IEVAk1,NEVAB 

1 o LOAD( IELEM, IEVAB) =o. o 
~ ~ ~ ~ ( 5 , 9 0 1 )  TITLE 

901 FORMAT (10A4) 
WRITE(6,903 TITLE 

903 FOFMAT(/5X, 17HLOAD CASE TITLE -, 10A4) 
C 
c*** READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED 
r - 

READ (5,919) IPLOD,IGRAV,IEDCE,ITEMP 
WRITE(6,990) 

990 FORUAT(/5X. 21HLOAD INPUT PARAMETERS) 
 WRITE(^, 991 IPLOD, ICRAV, EDGE, ITEMP 

991 FORMAT(/5X, 12HW1NT LOADS ,15/5~, 12HGRAVITX , I5/ 
5X, 12HEDGE LOAD , I5/5X, 12HTEMPERATURE ,IS) 

-  FORMAT( 1615) 
L 
C*** READ NODAL POINT LOADS 
C 

. - - ~ .  
998 FORHAT(/5X, 5H NODE, 1 OH PX, 1OH PY/) 
20 REXI (5,931) LODPT,(POINT(IDOFN),IDOFN=l,NDOFN) 

WRITE(6,933) LODPT, (POINT(IDOFN), IDOFN:l ,NDOFN) 
933 FORMAT(5X,I5,X10.3) 

r? 
931 FORMAT(I5,2F10.3) - 

C*** ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT 
C 

W 30 IELEM=l,NELM 
W 30 INODE:l,NNODE 
NLOCA:IABS( LNODS(IELEM, INODE) ) 

30 IF(LODPT.EQ.NLOCA1 GO TO 40 
40 W 50 IDOFNz1 ,NDOFN 

NCASHd INODE-1 *NDOFN+IWFN 
50 RLOAD(IELEM,NGASH)=WI~(IDOFN) 

IF(LODPT.LT.NrnIN) GO To 20 
500 CONTINUE 

IF(IGRAV.EQ.0) GO TO 600 
C 
c*** READ GRAVITY ANGLE AND GRAVITATIONAL CONSTANT 
C 

LOAD 7 
LOAD 8 
LOAD 9 
LOAD 1G 
LOAD 11 
LOAD 12 
LOAD 13 
LOAD 14 
LOAD 15 
LOAD 16 
LOAD 17 
LOAD 18 
LOAD 19 
LOAD 20 
LOAD 21 
LOAD 22 
LOAD 23 
LOAD 24 
LOAD 25 
LOAD 26 
LOAD 21 
LOAD 28 
LOAD 29 
LOAD 30 
LOAD 31 
LOAD 32 
LOAD 33 
LOAD 34 
LOAD 35 
LOAD 36 
LOAD 37 
LOAD 38 
LOAD 39 
LOAD 40 
LOAD 41 
LOAD 42 
LOAD 43 
LOAD 44 
LOAD 45 
LOAD 46 
LOAD 47 
LOAD 48 
LOAD 49 
LOAD 50 
LOAD 51 
LOAD 52 
LOAD 53 
LOAD 54 
LOAD 55 
LOAD 56 
LOAD 57 
LOAD 58 
LOAD 59 
LOAD 60 
LOAD 61 
LOAD 62 

WRITE(6,911 )-~~ETA,GRAVY LOAD 63 
91.1 FORMAT(lH0,16H GRAVITY ANGLE =,F10.3,19H GRAVITY CONSTANT =,F10.3)LOAD 64 
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SET UP PRELIMINARY CONSTANTS 

LPROP=MATNO( IELEM) 
THICK=PROPS(LPROP,3) 
DENSE:PROPS(LPROP, 4 1 
IF(DENSE.EQ.O.0) GO TO 90 
GXCOM=DENSE*GRAVY*SIN(THETA) 
GYCOMz-DENSE*GRAVY*COS( THETA) 

COMPUTE COORDINATES OF THE ELEMENT NODAL POINTS 

DO 60 INODE=l,NNODE 
LNODE=IABS( LNODS( IELEM, INODE) ) 
W 60 DIME1 ,NDIME 

60 ELCOD( IDIME, INODE) =COORD( LNODE, IDIME) 
C - 
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 

KGASP=O 
DO 80 IGAUS= 1, NGAUS 
DO 80 JGAUSzl, NGAUS 
KGASP=KGASP+l 
EXISP=POSGP( IGAUS) 
!3ASP=POSGP( JGAUS) 

C 
C*** COMPUTE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS AND ELEMENTAL 
C VOLUME 
C - 

CALL SFR2 (DERIV, NNODE, SHAPE, EXISP, ETASP) 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELU.I, 

KGASP. NNODE . SHAPE) 

I; 

C*** CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODAL POINTS 
C 

W 70 INODEz1 , NNODE 
NGASHdINODE-l)*NDOFN+l 
M C A S H ~ ~  INODE-1 ~*NDOFN+~ 
RLOAD(IELU.I, NCASH) =RLOAD(IELEM, NGASH)+GXCOM*SHAPE( INODE) *DVOLU 

70 RL~AD(IELEM,~~~ASH)~RLOAD(IELEM,MGASH)+GYCOM*SHAPE(INODE)*DVOLU 
80 CONTINUE 
90 CONTINUE 
600 CONTINUE 

IF(IEDGE.EQ.0) GO TO 700 
C 
C*** DISTRIBUTED EDGE LOADS SECTION 
C 

READ(5,932) NEDGE 
932 FORMT(I5) 

WRITF.(6,912) NEDGE 
912 FORHAT( 1H0,5X,21HNO. OF LOADEC EDGES =, 15) 

WRITE(6,915) 
915 FORHAT( lH0,5X,38HLIST OF LOADED EDGES AND APPLIED LOADS) 

NODEGE~ 
Nc0DE:NNODE 
IF(NN0DE. EQ. 4) NODEG:2 
IF(NNODE.EQ.9) NCODE=8 

407 

LOAD 65 
LOAD 66 
LOAD 67 
LOAD 68 
LOAD 69 
LOAD 70 
LOAD 71 
LOAD 72 
LOAD 73 
LOAD 74 
LOAD 75 
LOAD 76 
LOAD 77 
LOAD 78 
LOAD 79 
LOAD 80 
LOAD 81 
LOAD 82 
LOAD 83 
LOAD 84 
LOAD 85 
LOAD 86 
LOAD 87 
LOAD 88 
LOAD 89 
LOAD 90 
LOAD 91 
LOAD 92 
LOAD 93 
L€JAD 94 
LOAD 95 
LOAD 96 
LOAD 97 
LOAD 98 
LOAD 99 
LOAD 100 
LOAD 101 
LOAD 102 
LOAD 103 
LOAD 104 
LOAD 105 
LOAD 106 
LOAD 107 
LOAD 108 
LOAD 109 
LOAD 110 
LOAD 111 
LOAD 112 
LOAD 113 
LOAD 114 
LOAD 115 
LOAD 116 
LOAD 117 
LOAD 118 
LOAD 119 
LOAD 120 
UlAD 121 
LOAD 122 
LOAD 123 
LOAD 124 
UlAD 125 
LOAD 126 
LOAD in 
LOAD 128 
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C*** LOOP OVER EACH LOADED EDGE 
C 

DO 160 IEDGE=l, NEDCE 
C 
C*** READ DATA LOCATING THE LOADED EDGE AND APPLIED LOAD 
C 

RWU, (5,902) NEASS,(NOPRS(IODEG),IODEC:1,NODEC) 
902 FORMAT( 415) 

WRITE(6,913) NEASS, (NOPRS(IODEC), IODEGzl, NODEC) 
913 FORMAT(I10,5X,315) 

REAC (5,914) ((PRESS(IODEG, IDOFN) , IODEG=l ,NODEG) ,IDOFN= 
WRITE(6,914) ( (PRESS(IODEG, IDOFN) , IODECz1 ,NODEG) ,IDOFN= 

914 FORMAT(6F10.3) 
ETASP:-1 . 0 

C 

1,NDOFN) 
1, NDOFN ) 

C*** CALCULATE THE COORDINATES OF THE NODES OF THE ELEMENT EDGE 
I: 

I. 
C*** ENTER LOOP FOR LINEAR NUMERICAL INTEGRATION 

DO 150 IGAUS=l.NGAUS 

Ir 

C*** EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS 
C 
- CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP) 
L 

C*** CALCULATE COMPONENTS OF THE EQUIVALENT NODAL LOADS 
C 

DO 110 IDOFN:l,NDOFN 
PGASHC IDOFN =O .O 
DGASH(IWFN):O.O 
DO 110 IODEG=I,NODEG 
KASH(IDOFN) rPGASH(IDOFN)+PRESS(IODEG, IDOFN)*SHAPE( IODEC) 

110 DGASH(IDOFN)=KASH( IDOFN)+ELCOD(DOFN, IODEG) *DERIV( 1 , IODEG) 
DVOLU=WEIGP( IGAUS) 
PXCOM=DGASH( 1 )*PGASH(2)-DGASH(2)*PGASH( 1 ) 
PYCDM=DGASH( 1 *PGASH( 1 +DGASH(2) *PGASH( 2) 
IF(NTYPE.NE.3) GO TO 115 
RADus:o .o 

125 RADUS=RADUS+SHAPE(IODEG)*ELCOD( 1 ,  IODEG) 
DVOLU=DVOLUVIWOPI*RADUS 

115 CONTINUE 
C 
C*** ASSOCIATE THE EQUIVALENT NODAL EDGE LOADS WITH AN ELEMENT 
C 

DO 120 INODE=l,NNODE 
NLOCA=IABS( LNODSCNEASS, INODE) ) 

120 IF(NLOCA.EQ.NOPRS(1)) GO TO 130 

. ~~ 

IF(KNODE.GT.NCODE) NGASH-I 
IF(KNODE.GT.NCODE) MCASHz2 
RLOAD(NEASS,NGASH) =RLOAD( NEASS ,NGASH)+SHAPE(KOUNT)*PXCOM*DVOLU 

140 RLOAD(NEASS,MGASH) =WOAD( NEASS,MCASH) +SHAPE(KOUNT)*PYCOM*DVOLU 
150 CONTINUE 
160 CONTINUE 

LOAD 129 
LOAD 130 
LOAD 131 
LOAD 132 
LOAD 133 
LOAD 134 
!.BAD 135 
LOAD 136 
LOAD 137 
LOAD 138 
LOAD 139 
LOAD 140 
LOAD 141 
LOAD 142 
LOAD 147 
LOAD 144 
LOAD 145 
LOAD 146 
LOAD 147 
LOAD 148 
LOAD 149 
LOAD 150 
LOAD 151 
LOAD 152 
LOAD 153 
LOAD 150 
LOAD 155 
LOAD 156 
LOAD 157 
LO& li8 
LOAD 159 
LOAD 160 
LOAD 161 
LOAD 162 
LOAD 163 
LOAD 164 
LOAD 165 
LOAD 166 
LOAD 167 
LOAD 168 
LOAD 169 
LOAD 170 
UlAD 171 
LOAD 172 
LOAD 173 
LOAD 174 
LOAD 175 
LOAD 176 
LOAD 177 
LOAD 178 
LOAD 179 
LOAD 180 
LOAD 181 
LOAD 182 
LOAD 183 
LOAD 184 
LOAD 185 
LOAD 186 
LOAD 187 
LOAD 188 
LOAD 189 

LOAD 191 
LOAD 192 
LOAD 193 
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LOAD 194 
LOAD 195 
LOAD 196 - 

C*** INITIALIZE AND INPUT THE NODAL TEMPERATURES LOAD 197 
C LOAD 198 

DO 170 IPOIN=l,NPOIN LOAD 199 
170 TEMPE(IPOIN)=O.O LOAD 200 

WRITE(6,917) UlAD 201 
917 FORMAT( 1H0,5X, 29HPRESCRIBED NODAL TMPERATURES) LOAD 202 
180 READ (5,916) NODPT,TEMPE(NODPT) LOAD 203 

WAITE(6,916) NODPT,TEMPE(NODPT) LOAD 204 
916 FORMAT(I5,F10.3) LOAD 205 

IF(NODPT.LT.NPOIN) GO TO 180 LOAD 206 
KGAST=O LOAD 207 

C LOAD 208 
C*** LOOP OVER EACH ELEMENT LOAD 209 
C LOAD 210 

DO 280 IELEM-1, NELEM LOAD 211 
LPROP=MATNO(IELEM) LOAD 212 
DO 200 INODE=l,NNODE LOAD 213 
LNODE=IABS(LNODS( IELEM, INODE) U~AD 214 

C LOAD 215 
P** IDENTIFY THE COORDINATES AND TEMPERATURE OF EACH ELEMENT NODE POINTLOAD 216 
C LOAD 217 

DO 190 IDIME:l,NDIME LOAD 218 
190 ELCOD(IDIME,INODE)=CM)RD(LNODE,IDIME) LOAD 219 
200 ELCOD( 2, INODE) zTEMPE(LN0DE) LOAD 220 

C LOAD 221 
Ctw SET UP MATERIAL PROPERTIES LOAD 222 
C LOAD 223 

CALL MODPS (DMATX, LPROP,NMATS,NSTRE , NTY PE , PROPS) LOAD 224 
YOUNG=PROPS(LPROP ,1) LOAD 225 
POISS=PROPS(LPROP ,2) LOAD 226 
THICK=PROPS(LPROP,3) LOAD 227 
ALPHA=PROPS( LPROP ,5) LOAD 228 

C LOAD 229 
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION LOAE 230 
C LOAD 231 

KGASP=O LOAD 232 
w no IGAUS=I ,NGAUS LOAD 233 
DO 270 JGAUS=l,NGAUS LOAD 234 
KGASTrKCAST+l LOAD 235 
KGASP=KGASP+l LOAD 236 
WSP=POSGP( IGAUS) LOAD 237 
El'ASP=WSCP( JGAUS) LOAD 238 

C LOAD 239 
@** EVALUATE THE SHAPE FUNCTIONS AND TEMPERATURE AT THE SAMPLING POINTSLOAD 240 
C ,ELP(ENTAL VOLUME AND CARTESIAN DERIVATIVES LOAD 241 
C LOAD 242 

CALL SFR2 (DERIV, NNODE, SHAPE, EXISP, ETASP) LOAD 243 
CALL JACOB2 (CARTD,DERIV,DJACB ELCOD,GPCOD,IELEM, LOAD 244 

KGASP, NNODE , SHAPE ! LOAD 245 
THEFiM:O. 0 LOAD 246 
M) 210 INODE=l,NNODE LOAD 247 

210 THERM=THERM+ELCOD(2, INODE) *SHAPE( INODE) LOAD 248 
DVOLU=DJACB*WEIGP( IGAUS *WEIGP( JGAUS) LOAD 249 

P** EVALUATE THE INITIAL THERMAL STRAINS 
C 

- 

LOAD 250 
LOAD 251 
LOAD 252 
LOAD 253 
LOAD 254 
LOAD 255 
LOAD 256 
LOAD 257 
LOAD 258 
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C 
C*** AND THE CORRESPONDING INITIAL STRESSES 
I: 
230 DO 250 ISTREz1,NSTRE 

STRES ( ISTRE) -0.0 

LOAD 259 
LOAD 260 
LOAD 261 
LOAD 262 
LOAD 263 
WAD 264 
LOAD 265 
UlAD 266 
LOAD 267 
MAD 268 
LOAD 269 

240 STRES(ISTRE)rSTRES(ISTRE)+DMATX(ISTRE,JSTRE)'gRAN(JSTRE) LOAD 270 
250 STRIN(ISTRE,KGAST)=STRES(ISTRE) LOAD 271 

IF(NTYPE.EO.2) STRIN(s.KCAST)=-YOUNG'EIGEN LOAD 272 

C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELEMENT NODES 
C 

EXTRA:O. 0 
DO 260 1NODE:l , NNODE 
IF( NTYPE. EQ. 3) EXTRA=DVOLUXSHAPE( INODE)*STRES(4)/GPCOD( 1, KCASP) 
NGASH=( INODE-1 *NDOFN+1 
MCASH=(INODE-1)*NDOFN+2 

280 CONTINUE 
800 CONTINUE 

C WRITE(6,907) 
C 907 FORMAT( lH0,5X,36H TOTAL NODAL FORCES FOR EACH ELMENT) 
C DO 290 1ELEM:l .NELEM 

FORCE(NPOSN)=FORCE(NPOSN)+RLOAD(IELEM,KEVAB) 
5 CONTINUE 
RETURN 
END 

LOAD 279 
LOAD 280 
LOAD 281 

LOAD 283 
LOAD 284 
LOAD 285 
LOAD 286 
LOAD 287 
LOAD 288 
LOAD 289 
LOAD 290 
UlAD 291 
LOAD 292 
W 293 
LOAD 294 
LOAD 295 
LOAD 296 
LOAD 297 
LOAD 298 
LOAD 299 
LOAD 300 
LOAD 301 
LOAD 302 
LOAD 303 
LOAD 304 
LOAD 305 
LOAD 306 

10.6.16 Subroutine LUMASS 
This subroutine evaluates the lumped mass vector and consistent mass 

matrix for the finite element mesh. If rNTGR(1) = 1, it generates the consistent 
mass matrix and if INTGR(1) =2, it generates a special lumped mass vector. 
In the special mass lumping scheme which is employed, the diagonal terms of 
the consistent mass matrix are scaled to preserve the total mass. The element 
consistent mass matrices are written on tape 3. The consistent mass matrix 
is not used in DYNPAK. 

This subroutine also reads concentrated masses and assembles them into 
the global diagonal mass vector. 
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SUBROUTINE LUMASS (COORD ,INTCR ,MODS ,MATNO ,NCONM ,NDIME , 
NDOFN ,NELEM ,NCAUM NMATS ,NNODE ,NPOIN , 
NTYPE ,PROPS ,YMASS 

................................................................... 

C 
C *** CALCULATES LUMPED MASS FOR 4 , 8 AND 9 NODED ELEMENT 

TAREA:O. 0 
LPROP:MATNO( IELEM) 
THICK:PROPS( LPROP ,3 ) 
RHOEL=PROPS(LPROP 4) 
DO 10 INODE:l, NNO~E 
DIACM( INODE ) :O . 0 

ELCOD(IDI~, INODE) =COORD(LNODE, ]DIME) 
10 CONTINUE 

DO 70 ICAUS=l,NCAUM 
EXISP=POSCP( ICAUS) 

ETASP=PO~CP~ JGAUS) 
CALL SFR2 (DERIV, NNODE,SHAPE,EXISP,ETASP) 
CALL JACOB2 (&QD,DERIV,JSBCB, ELCOD ,GPCOD, IELEM, 

KCASP, NNODE , SHAPE) 
DVOLU=DJACB*WEICP( IGAUS *WEICP( JCAUS 
IF(NTYPE.EQ.1) DVOLU=DVOLU*THICK 
IF( NTYPE .EQ. 3) DVOLU=DVOLU*lWOPI*CPCOD( 1 ,KCASP) 
IF(IMASS.EQ.1) CO TO 210 
DO 20 INODE=l,NNODE 
SHAPI=SHAPE( INODE) 

m DIACM(INODE) =DIAGM( INODE)+SHAPI*SHAPI*DVOLU 
TAREA=TAREA+DVOLU 

210 JF(IMASS.EQ.2) CO TO 70 
DVOLU=DVOLU*RHOEL 
IEVAB: 1 

DO 60 JNODE=INODE NNODE 
DMASS=DVOLU*SHAPI~~HAPE( JNODE) 
MASS(IEVA!3)=EMAS(IEVAB)+DMASS 
JNAB=IEVAB+KOUNT 
MASS(JNAB):EMASS( JEVAB)+DMASS 

60 IEVABdEVAb2 
KOUNTaOUNT-2 

41 1 

MASS 1 
MASS 2 
MASS 3 
MASS u 
MASS 5 
MASS 6 

MASS 8 
MASS 9 
MASS 10 
MASS 11 
MASS 12 
MASS 13 
MASS 14 ~ 

MASS 15 

MASS 17 
MASS 18 
MASS 19 
MASS 20 
MASS 21 
MASS 22 
MASS 23 
MASS 24 
MASS 25 
MASS 26 
MASS n 
MASS 28 
MASS 29 
MASS 30 
MASS 31 
MASS 32 
MASS 33 
MASS 74 
MASS 35 
MASS 36 
MASS 37 
MASS 38 
MASS 39 
MASS 40 
MASS 41 
MASS 42 
MASS 43 
MASS 44 
MASS 45 
MASS 46 
MASS 47 
MASS 48 
MASS 49 
MASS 50 
MASS 51 
MASS 52 
MASS 53 
MASS 54 
MASS 55 
W 56 
MASS 57 
HASS 58 
MASS 59 
MASS 60 
MASS 61 
MASS 62 
MASS 63 
MASS 64 
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IEVABzJEVAB+l 
30 CONTINUE 
70 CONTINUE 

C 
C*** WRITES CONSISTENT MASS MATRlX ON TAPE 3 

C 
C *** GENERATES LUMPED MASS MATRIX PROPORTIONAL TO DIAGONAL 
C 

SOMASzo. 
DO 40 INODE:l,NNODE 

40 SOMASzSUMAS+DIAGM( INODE) 
TAREA:TAREA*RHOEL 
SUMASzTARWSUMAS 
W 50 INODE:l, NNODE 
LNODEZLNODS( IELEM, INODE) 
IPOSN~LNODE-1 ) *NDOFN 
W 50 IDOFN=l.NDOFN 

C CONCENTRATED MASSES 
r 

900 FO R M ~ T ~  5 ~ ,  1 ~HCONCENTRAT~D MASSES ) 
WRITE(6,910) IPOIN,XCMAS,YCMAS 
NPOSNz(1POIN-1 )*NWFN+l 
YMASS(NP0SN) :YMASS( NPOSN )+XCHAS 
NPOSN=NPOSN+l 
YMASS(NPOSN ) =YMASS(NPOSN)+YCMAS 

520 CONTINUE 
C WRITE(6,90) (~(I),I=l ,NTOTV) 
910 FORMAT(I5.2F10.3) - 

RETURN 
END 

MASS 65 
MASS 66 
MASS 67 
MASS 68 - -  

MASS 69 
MASS 70 
MASS 71 
MASS 72 
MASS 73 
MASS 74 
MASS i5 
MASS 76 
MASS 77 
MASS 78 
MASS 79 
MASS 80 
MASS 81 
MASS 82 
MASS 83 
MASS 84 
MASS 85 
MASS 86 
MASS 87 
MASS 88 
MASS 89 
MASS 90 
MASS 91 
MASS 92 
MASS 93 
MASS 94 
MASS 95 
MASS 96 
MASS 97 
MASS 98 
MASS 99 
MASS 100 
MASS 101 
MASS 102 
MASS 103 
MASS 104 
MASS 105 
MASS 106 
MASS 107 
MASS 108 
MASS 109 

MASS 24 Sets indicator for mass matrix evaluation. INTGR(1) = 1 
for the consistent mass matrix and INTGR(1) = 2 for the 
special lumped mass vector. 

MASS 35-52 Evaluate the diagonal element of the consistent mass matrix 
DIAGM. 

MASS 53-63 Evaluates the element consistent mass matrix. 
MASS 72 Writes element consistent mass matrix on tape 3. 
MASS 78-80 Evaluates ELMAS, the sum of the diagonal elements. 

'MASS 81 Determines the total element mass from the element volume 
TAREA and mass density RHOEL. 
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MASS 83-89 Scales the diagonal terms using the factor TAREAIELMAS 
to preserve element mass and assembles the result into 
diagonal mass vector YMASS. 

MASS 95-107 Reads the concentrated masses and assembles them into 
YMASS. 

10.6.17 Subroutine MODPS 
This subroutine evaluates the elasticity matrix and has been described 

earlier in Chapter 6. The only changes involved are given below. 

10.6.18 Subroutine NODXYR 
It calculates (r, z )  coordinates from (R, O )  coordinates for axisymmetric 

problems. Ifcoordinatesofmidsidenodesarenot read,itevaluatesthemby linear 
interpolation. An almost identical subroutine was described in Chapter 6. 

SUBROUTINE NODXYR (COORD,LNODS,NELEM,NNODE,NPOIN,NRADS,NTIPE) NODX 1 
CfII)fI~II*IIIII.ICtRiI.ff~~ffi.IZiX*~iI*iti**iii.i*C*****tff*ft*****XtC***** NODX 2 
C NODX 3 
C*** INTERPOLATION OF MIDSIDE AND CENTER NODES NODX 4 

C"* CHANGE POLAR COORDINATES TVCARTISIAN 
DO 50 IPOIN=l,NPOIN 
RADDI=COORD(IPOIN, 1) 
THETA=COORD( IPOIN 2) 
THETA:O . 0 1 7 4 5 3 2 9 2 ~ ~ ~ ~ ~ ~  
COORD( IPOIN, 1 ) =RADDI*SIN(THETA) 

50 COORD(IPOIN,2)=RADDI*COS(THETA) 
C 

1K) IF(NNODE.EQ.4) RETURN 
C 

UODE = NNODE - 1 
DO 30 IELM=l.NELEM 

Car* LOW' OVER EACH- ELEMENT EDGE 
DO 20 INODE= 1 , NNODE, 2 
P(INODE.EQ.9) W TO 20 

- - -  - 

IF( ICASH . GT. LNODE IGASH= 1 
Cfu COMPUTE THE NODE NUMBER OF THE LAST NODE 

NODFN=LNODS( IELEM, IGASH) 

NODX 9 
NODX 10 
NODX 11 
NODX 12 
NODX 13 
NODX 14 
NODX 15 
NODX 16 
NODX 17 
NODX 18 
NODX 19 
NODX 20 
NODX 21 
NODX 22 
NODX 23 
NODX 24 
NODX 25 
NODX 26 
NODX 27 
NODX 28 
NODX 29 
NODX 30 
NODX 31 
NODX 32 
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C*** COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE 
NODMD=LNODS( IELEM. MIDPT) 

NODX 33 
NODX 34 

TOTAL=ABS(COORD(NODMD, I )+ABS(COORD( NODMD ,2) 1 NODX 35 
C*** IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO NODX 36 
C INTERPOLATE BY A STRAIGHT LINE NODX 37 

IF(TOTAL.CT.O.0) GO TO 20 NODX 38 
KWNT-1 NODX 39 

10 CO0RD(NODMD,KOUNT)=(COORD( NODST, KOUNT)+COORD( NODFN ,KOUNT) )/2.0 NODX 40 
KOUNT=KOUNT+l NODX 41 
IF(KWNT.EQ.2) GO TO 10 NODX 42 

20 CONTINUE NODX 43 
30 CONTINUE NODX 44 

RETURN NODX 45 
END NODX 46 

10.6.19 Subroutine OUTDYN 
This routine writes out most of the output on the line printer and on 

various tapes for plotting purposes. It outputs the displacements and stresses 
every NOUTP steps. I t  also writes the displacement and stress histories of 
specified nodal and integration points at every NOUTP steps. The complete 
state of displacements is also written on tape 13 for a deformation plot. The 
complete state of the stresses is written on tape 4. The principal stresses and 
their directions are also calculated and output. 

SUBROUTINE OUTDYN (DISPL ,DTIME ,ISTEP ,NDOFN ,NELEM ,NGAUS , OUTP 1 
NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD NREQD , WTP 2 
NREQS ,NTYPE ,STRSG ,TDISP ,VNEL OUTP 3 

C I * f * I l t * i l i U i i i f ~ * t f * * i i i I i * i * I * i i t ( I I ) i * + 4 * * * * *  OUTP 4 
C WTP 5 
C** OUTPUT ROUTINE WTP 6 
C OUTP 7 
~ * * a * t i i i * i * i # i * i i i i * ~ t * * ~ i ~ * i i i * * * * * * * . i i * * * * * * * * * * * * *  ouTp 8 

DIMENSION STRSG(4,l) ,DISPL(l) ,NPRQD(l) ,STRSP(3) , OUTP 9 
VIVEL(5,l) ,TDISP(l) ,NGRQS(l) OUTP 10 

NSTRl.4 OUTP 11 
KSTEP=I~EP OUTP 12 
ffiAUS=NELM*NGAUS*NGAUS OUTP 13 
IF(ISTEP.EQ. 1) WRITE(10,925) OUTP 14 
TTIME=ITIME+DTIME OUTP 15 

C OUTP 16 - ..-~ 

C *** WRITES DISPLACEMENT HISTORY AT REQUESTED NODAL POINTS ON TAPE 10 OUTP 17 
C *** AND STRESS HISTORY AT REQUESTED GAUSS POINTS AT EVERY NOUTD STEPSOUTP 18 
C OUTP 19 

OUTP 20 
OUTP 21 - - ~  

OUTP 22 
OUTP 23 
OUTP 24 
WTP 25 
WTP 26 
WTP 27 

OUTP 29 
WTP 30 
OUTP 31 
WTP 32 
WTP 33 
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DO 520 IGAUS:l,MCAUS OUTP 
DO 520 IREQS:l,NREQS OUTP 
IF( IGAUS. NE. NCRQS(1REQS) ) GO TO 520 OUTP 
WRITE( 11,950) (STRSG(ISTR1 ,IGAUS) ,ISTR1=1 ,NSTRl) OUTP 

520 CONTINUE OUTP 
510 KOUTDr(KSTEP/NOUTP)*NOUTP OUTP 

IF(KOUTD.NE.KSTEP) RETURN OUTP 
XTIME:FLOAT(KSTEP)*DTIME WTP 
WRITE(6,604) KSTEP,XTIME WTP 

604 FORMAT(//5X,28H DISPLACEMENTS AT TIME STEP , I1 0,5X, 5HTIME , E20.11)OUTP 
P WTP 

*** REARRANGE DISPLACEMENT VECTOR 
C 

NODEI=NODEI+l 
DISPL(NODE1) =TDISP( NODEI) 

550 CONTINUE 
C 
c*** OUTPUT DISPLACEMENTS 
P 

MGASJ:NGASJ+l 
MCASK=NGASK+l 
JPOIN=IPOIN+l 
KPOIN:JPOIN+l 

C 
C *** WRITES DISPLACEMENTS ON TAPE 13 FOR DEFORMATION PLOT 
L 

WRITE( 13,910) IPOIN , (DISPL(IGAS1) ,IGASI:NGASI ,ffiASI) 
IF( JPOIN.GT.NPOIN) GO TO 200 
WRITE(13,910) JPOIN , (DISPL(1GASJ) ,IGASJ:ffiASJ,MGASJ) 
IF(KP0IN .GT. NPOIN) GO TO 200 
WRITE( 13,910) KPOIN , (DISPL( IGASK) ,IGASK=NGASK,MGASK) 

200 CONTINUE. 
C 
C *** WRITES DISPLACEMENTS ON OUTPUT FILE 
r ., 
560 WRITE(6,920) IPOIN,DISPL(NGASI) ,DISPL(MGASI), 

JPOIN,DISPL(NGASJ) ,DISPL(MGASJ), 
KPOIN , DISPL( NCASK) , DISPL( MGASK) 

r 
C .** WRITES STRESSES ON OUTPUT FILE 

- - - -  

OUTP 
OUTP 
OUTP 
CUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
WTP 
WTP --.- 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
WTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
OUTP 
nl IT? ---- 
OUTP 
OUTP 
OUTP 
ClllTP ---. 
OUTP 
OUTP 
OUTP 
OUTP . , - .  ~ 

970 FORMAT( lHO,lX;4HG.P., 6X, gHXX-STRESS,5X,gHYY-STRESS,5X, 9HXY-STRESS OUTP 
.5X,9HZZ-STRESS,6X,BHMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X,6H P.S.~OUTP 
IF(NTYPE.EQ.3) WRITE(6,975) OUTP 

975 FORMAT( 1 HO, lX, 4HG. P., 6X, 9HRR-STRESS, 5X, 9HZZ-STRESS, 5X, 9HRZ-STRESS, OUTP 
.5XP9HTT-STRESS36X,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X,6H P.S.)OUTP 
KGAUS=O OUTP 
W 570 IELEMzl ,NELEM 
ms:o 
WRITE(6,930) IELEM 

930 FORMAT( 1H0,5X, 13HELEMENT NO. = ,I5) 

OUTP 
OUTP 
CUTP 
OUTP 
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KGWS=KGAUS+l 
KEU;S=KUI;S+l 
XCASHr(STRSG(1 ,KGAUS)&RSC(2,KGAUS))*0.5 
XGISH=(STRSG(l ,KGAUS)LIRSG(2,KGAUS))*0.5 
XGESH=STRSG ( 3. KCAUS 

c *** WRITES COHPLETE STRESS STATE ON TAPE 4 ,. 
L 

WRITE(4,950) (STRSG(ISTRl,KGAUS),ISTRl:l,NSTRl), . (STRSP(ISTRE1 , ISTRE=l, 3) 
570 WRITE(6,940) KELGS,(STRSC(ISTR1,KGAUS),ISTR1~1,NSTRl), 

(STRSP(1STRE) ,ISTRE=1,3) ,VIVEL(5,KGAUS) 
980 FORMAT(lX,6012) 
960 FORMAT(lX,lOE11.4) 
950 FORMAT (7E10.4) 
940 FO~MA~(15,2~,6~14.6,~8.3,~14.6) 
900 FORMAT(/. 1 OX. 8HSTRESSES ./ 

OUTP 98 
WTP 99 
OUTP 100 
OUTP 101 
OUTP 102 
OUTP 103 
OUTP 104 
OUTP 105 
OUTP 106 
WTP 107 
WTP 108 
WTP 109 
OUTP 110 
WTP 111 
WTP 112 
OUTP 113 
OUTP 114 
OUTP 115 
OUTP 116 
WTP 117 
CUTP 118 
OUTP 119 
WTP 120 
CUTP 121 
OUTP 122 
OUTP 123 
OUTP 124 
OUTP 125 

10.6.20 Subroutine PREVOS 
This routine reads and write the initial forces and stresses. 

SUBROUTINE PRNOS (FORCE ,NDOFN ,NELD.I ,NCAUS ,NPOIN ,NPREV , PREV 1 
STRTN 1 PREV 2 

..................................................................... PREV 7 
DIMENSION @RCE( 1 ) , STRIN(4,l) PREV 8 

C PREV 9 
IF(NPREV.EQ.0) RETURN 

L 
C*** READ GRAVITY LOADS 
- 

WRITE(6,920) 
920 FORMAT(//4X.bH NODE .17H GRAVITY X-LOAD: ,17H GRAVITY Y-LOAD: / I  

900 ~0RMA~~15~4~10.3) . 
910 FORMAT(I10,4E18.5) 

NrnN=(NCASH-1 )*NDoFN+l 
FORCE( NPOSN ) =XCASH 
NrnN:NPOSN+l 
FORCE(NPOSN1 =YGASH 
WRITE(6,910) WASH XGASH,YGASH 
IF ~ASH.NE.NPOINJ GO TO 200 

C 
C*** READ GRAVITY STRESS 
C 

PRN 10 
PRN 11 
PREV 12 
PREV 13 
PREV 14 
PRN 15 
PRN 16 
PUN 17 
PRN 18 
PREV 19 
PRN 20 
PUN 21 
PUN 22 
PRN 23 
PREV 24 
PREV 25 
PREV 26 
PREV 27 
PRN 28 
PRN 29 
PREV 30 
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WRITE(6,930) PREV 31 
930 FORMAT(//2X,gHGAUSS PT., 17H GRAVITY X-STRESS,17H GRAVITY Y-STRESS,PREV 32 

.I ~ H  G R A V ~  XY-STRESS, I ~ H  G R A V I ~  Z-STRESS/ PREV 33 
DO 500 IELEM=l,NELEM PREV 34 
DO 500 IGAUS=l,NGAU2 PREV 35 
READ(5,900) KGAUS, (STRIN(ISTR1,KGAUS) , 1STRI:l ,NSTRl) PREV 36 

500 WRITE(6,910)KGAUS, (STRIN(ISTR1,KGAUS) , ISTRI-1 ,NSTRl ) PREV 37 
RETURN 
END 

10.6.21 Subroutine RESVPL 
This routine evaluates the internal resisting force vector 

It is very similar to the routine described in Section 8.8. 

SUBROUTINE RESVPL (COORD ,DTIME ,NODS ,MATNO ,NCRIT ,NDIME , RESD 1 
NDOFN ,NELEM ,NGAUS ,NLAPS ,NNODE ,NMATS , RESD 2 
NWIN .NSTRE .WPE .WSCP .PROPS .RESID . RESD 3 

RESD 5 
CNNNNNNNNUNNNNUUNUNUNNNNNCNNUNUNNUNU+UNNNNNUUNUUNU~NUNNNUUUNNNNNNNNNU RESD 6 
C RESD 7 . 

C"* EVALUATION OF INTEGRAL (B)*'T'(SIGMA) 
C 

RESD 8 
RESD 9 

DIHENSION COORD(NPOIN, 1) ,DERIV(2,9) ,DJACM(2,2) ,AVECT(4),MTNO(1), RESD 11 
PROPS(NEIATS,1),DLCOD(2,9),STRIN(4,1),DEVIA(4),TDISP(l), RESD 12 
LNODS(NELEH,l),GPCOD(2,9),STRSC(4,1),STRAN(4),POSCP(l), RESD 13 
RLOAD(NELEM,l),CARTD(2,9),VISTN(4,1),STRES(4),WEIGP(l), RESD 14 
DMATX( 4.4).ELCOD(2,9),VIVEL(5.1),SHAPE(9).RESID(l). RED 15 
BMATX( ~,~~);ELDIS(~;~);DDTN( .4). RESD 16 

KGAUSzO RED 17 
NSTR 1 :4 RESD 18 
NEVAB:NNODE*NDOFN RESD 19 
NTOTV=NPOIN'NDOFN RESD 20 
TUOP1=6.283185307179586 RESD 21 
DO 530 IELEM=l.NELM RESD 22 
00 540 INAB=I INEVAB 

540 RLOAD( IELM, IEVAB) =O . 0 
530 CONTINUE 

DO 510 ITUTV=l,NTOTV 
510 RESID(ITOTV)=O.O 

C 
CtN* LOOP OVER ALL THE ELEMENTS 
r. 

FRICT=PROPS(LPROP; 8) 
C 
CNN* COMPUTE NEW COORDINATES AND DISPLACEMENTS OF THE 
c ELEMENT NODAL POINTS 
C 

DO 30 INODE =l,NNODE 
I.NODEcIABS(LNODS(IELEM, INODE) 
NPOSN=(LNODE-1 I'NDOFN 

RESD 23 
RESD 24 
RESD 25 
RESD 26 
uEm 7 
RESD 28 
RESD 29 
RESD 30 
RESD 31 
RESD 32 
RESD 33 
RESD 34 
RESD 35 
RESD 36 
RESD 37 
RESD 38 
RESD 39 
RESD 40 
RESD 41 
RESD 42 
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DO 30 IDOFN=l,NDOFN 
NPOSN=NPOSN+l 
ELCOD(IDOFN,INODE):COORD(WODE,IDOFN) 
DLCOD(IDOFN, INODE)=COORD(LNODE, IDOFN) +TDISP( NPOSN) 

30 ELDISC IDOFN, INODE) =TDISP( NPOSN) 
CALL MODPS (DMATX,LPROP,NMATS,NSTRE,NTYPE,PROPS) 
KCASP-0 
DO 40 IGAUS=l,NGAUS 
DO 40 JGAUS=l,NGAUS 
KGAUS=KGAUS+l 
KCASP=KGASP+l 
EXISP=POSCP( IGAUS) 
ETASP=POSCP( JGAUS) 

C 
CALL SFR2 (DERIV , NNODE ,SHAPE ,EXISP ,ETASP ) 
CALL JACOB2 (CARTD ,DERIV ,DJACB ,ELCOD GPCOD , 

IELEM .KCASP .NNODE .SHAPE I ---- ~ ,~ ~- . 

CALL JACOBD (CARTD ,DLCOD ,DJACM ,NDIME ,LAPS ,NNODE 1 
DVOLU=DJACBrWEIGP( IGAUS)*WEIGP( JGAUS) 
IF( NTYPE. EQ. 1) DVOLU:DVOLU*THICK 

CALL BLARGE (BMATX ,CARTD ,DJACM ,DLCOD ,GPCOD 
KGASP ,NLAPS ,NNODE ,NTYPE ,SHAPE 5 

CALL LINGNL (CARTD ,DJACM ,DMATX ,ELDIS ,GPCOD ,KCASP, 
KGAUS ,NDOFN ,NLAPS ,NNODE ,NSTRE NTYPE, 
POISS ,SHAPE ,STRAN ,STRES ,VISTN I 

C - 
W 580 ISTRl=l,NSTRl 

580 STRES(ISTR1) zSTRES(ISTR1 )+STRIN( ISTR1, KGAUS) 
DO 570 ISTRl=l,NSTRl 

570 STRSC(ISTR1 ,KGAUS):STRES(ISTRl) 
C 

- IF(NLAPS.EQ.2.0R.NLAPS.EQ.O) GO TO 200 
L 

CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF, 
STRES,THETA, VARJ2,YIELD) 

CALL YIELDF (AVECT,DEVIA,FRICT, NCRIT ,SINT3, STEFF,THETA,VARJ2) 
CALL FLOWVP (AVECT.KGAUS.LPROP,NCRIT.NMATS.PROPS. 

STEFF; VIVEL;  YIELD^ 
C 
C*** VISCOPLASTIC STRAIN INCREMENT AND A MEASURE FOR HARDENING 
C 

L 

C*** COMPUT INT(B**T*SIGMA) ON ELEMENT LEVEL 
C 
200 CONTINUE 

KEVAB:o 
DO 502 INODE=l,NNODE 
DO 502 IDOFN= 1 , NDOFN 
KEvAB=KEVAB+l 
W 501 ISTRE=l,NSTRE 

501 RU)AD(IELEM,KNAB):RLOAD(IELPI,KEVAB)+ . BMATX( ISTRE, KEVAB) *STRSC( ISTRE, KGAUS) *DVOLU 
502 CONTINUE 
40 CONTINUE 
20 CONTINUE 

C 
C*** ASSEMBLY OF RESID VECTOR 

RESD 43 
RESD 44 
RESD 45 
RESD 46 
RED 47 
RESD 48 
RESD 49 
RFSD 50 
RESD 51 
RESD 52 
RESD 51 
RESD 54 
RESD 55 
RFSD 56 
RESD 57 
RESD 58 
RESD 59 
RESD 60 
RESD 61 
RESD 62 
RESD 63 
RESD 64 
RESD 65 
RESD 66 
RESD 67 
RESD 68 
RESD 69 
RESD 70 
RESD 71 
RESD 72 
RESD 73 
RESD 74 
RESD 75 
RESD i6 
RESD 77 
RESD 78 
RESD 79 
RESD 80 
RESD 81 
RESD 82 
RESD 83 
RESD 84 
RESD 85 
RESD 86 
RESD 87 
RESD 88 
RESD 89 
RESD 90 
RED 91 
RESD 92 
RESD 93 
RESD 94 
RESD 95 
RESD 96 

98 
RESD 99 
RESD 100 

RESD 102 
RESD 103 
RESD 104 
RESD 105 
RESD 106 
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- -- . . - - - 
DO 500 INODE=l,NNODE 
LNODE=LNODS( IELEM , INODE) 
NPOSN=(LNODE-l)*NDOFN 
DO 500 IDOFN:l.NMIFN 

500 CONTINUE 
RETURN 
END 

RESD 66-68 

RESD 77-78 

RESD 79 

RESD 80-81 

RESD 86 
RESD 87 

RESD 88-90 

RESD 107 
RESD 108 
RESD 109 
RESD 1 10 
RESD 111 
RESD 112 
RESD 113 
RESD 114 
RESD 115 
RESD 116 
RESD 117 
RESD 118 
RESD 119 

Call LINGNL to determine the state of stress at the current 
Gauss point. 
Call INVAR to evaluate stress invariants at the current 
Gauss point. 
Call YIELDF to select the yield function and calculate the a 
vector. 
Call FLOWVP to define the rate of viscoplastic straining 
VIVEL if the stress point is outside the current yield surface. 
Evaluate the increments of viscoplastic strains DESTN. 
Evaluate the viscoplastic strains (r,,),+l for the next time 
station 1, +At ,  VISTN. 
Determine a measure of hardening for the current yield 
surface. 

RESD 95-101 Evaluatep,@) at the element level, RLOAD. 
RESD 108-1 17 Assemble p,, RESID. 

10.6.22 Subroutine YIELDF 
This subroutine selects the yield function and calculates the vector a 

(AVECT) and is almost identical to the version described in Section 7.8.4.1. 

SUBROUTINE YIELDF (AVECT .DEVIA .FRICT .NCRIT .SINT3 .STEW , YELD 

.- 

C *** SELECTS YIELD FUNCTION AND CALCULATES VECTOR 'AVECT' YELD 
C YELD 

DIMENSION AVECT(4) ,DEVIA(4) ,VECA1(4) ,VECA2(4) ,VECA3(4) Y ELD 
IF(STEFF.EQ.O.O) RETURN Y ELD 
NSTRlz4 YELD 
TANTHzTAN (THETA 
SINTH=SIN(THFTA) 
COSTH=COS(THETA) 
COST3=COS(3. OVHETA) 
ROOT3=1.73205080757 

- -- 
YELD 
YELD 
YELD 
YELD 
YELD 
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C*** CALCULATE VECTOR A1 
VECAl(l)=l .O 
vscni(n)=i .o 
VECAl(3)=0.0 
VECA1(4)=1.0 

C*** CALCULATE VECTOR A2 
W 10 ISTRl=l,NSTRl 

10 VECAZ(ISTR~ )=DEVIA(ISTR~ )/(2.0*STEFF) 
VECA2(3)=DEVIA(3)/STEFF 

C*" CALCULATE VECTOR A3 
VECA3( 1 )=DEVIA(2)*DEVIA(4)+VARJ2/3 .O 
VECA3(2)=DEVIA( 1 )*DEVIA(4)+VARJ2/3.O 
VECA3(3)=-2.O*DEVIA( 3)*DEVIA( 4) 
VECA3(4)=DEVIA(l)*DEVIA(2)-DEVIA(3)*DEVIA(3)+VARJ2/3.0 
GO TO (1,2,3,4) NCRIT 

C*** TRESCA 

GOTOM - 
C*** VON MISES 

2 CONS1.0.0 
CONS2rROOT3 - 
UMS3=0.0 
GO TO 40 

C*** MOHR-COULOMB 
3 CONSl:SIN(FRICT*O.017453292)/3.0 
ABTHE:ABS(THETAS7. 29577951 308) 

CON2-3-0. 0 
40 CONTINUE 
W 50 ISTR1-1,NSTRl 

50 AVECT( ISTR1) =CONSl*VECAl (ISTR1 )+CONS2* 
.VECA2( ISTRl )+CONS3*VECA3( ISTR1) 
RETURN 
END 

10.7 Examples 

10.7.1 Introduction 

YELD 16 
YELD 17 
YELD 18 
YELD 19 
YELD 20 
YELD 21 
YELD 22 
YELD 23 
YELD 24 
YELD 25 
YELD 26 
YELD 27 
YELD 28 
YELD 29 
YELD 30 
YELD 31 
YELD 32 
YELD 33 
YELD 34 
YELD 35 
YELD 36 
YuJ, 37 
YELD 38 
YELD 39 
YELD 40 
YELD 41 
YELD 42 
YELD 43 
YELD 44 
YELD 45 
YUD 46 
YELC 47 
YELD 48 
YELD 49 
YELD 50 
YELD 51 
YELD 52 
YELD 53 
YELD 54 
YELD 55 
YELD 56 
YELD 57 
YELD 58 
YELD 59 
YELD 6C 
YELD 61 
YELD 62 
YELC 63 
YELD 64 
YELD 65 
YELD 66 
YELD 67 
YELD 68 
YELD 69 

To illustrate the use of DYNPAK we now describe the nonlinear transient 
dynamic analysis of (i) a spherical shell and (ii) a concrete gravity dam. 
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10.7.2 Spherical shell example 
The shell,(8' shown in Fig. 10.3, is subjected to a distributed step pressure 

of 600 ib/in2. The material is assumed to obey the Von Mises yield condition 
with linear isotropic hardening. The dimensions and properties of the shell 
are given as follows: 

Internal radius R = 22.27 in 
Thickness of shell t = 0.41 in 
Semi angle a = 26.67O 
Elastic modulus E = 10.5 x 106 lb/in2 
Poisson's ratio v = 0.3 
Yield stress oy = 0.024 x 106 ib/in2 
Tangent hardening modulus ET = 0.21 x 106 lb/2 
Mass density p = 2.45 x 10-4 Ib-secz/in4 
Step distributed pressure p = 600 lb/inZ 

Fig. 10.3 Spherical shell and finite element mesh. 

The shell is divided into ten, 8-noded, axisymmetric, isoparametric 
elements. The fundamental period of the shell is Tf = 0.55 x 10-Ssec, 
(Reference 8). For explicit central difference analysis, the time step is taken as 
0.4 x 10-6 sec. 



422 FINITE ELEMENTS IN PLASTICITY 

In order to illustrate the versatility of program DYNPAK we consider 
the following three cases: 
(i) Small elastic displacements 
(ii) Large elastic displacements 
(iii) Small elasto-viscoplastic displacements (with a fluidity parameter value 

of y = 100.0). 

- - - - - - - - Small elastic displacement 

Large elastic displacement . 
Fig. 10.4(a) Results of the transient dynamic analysis of a spherical shell cap. 

Cases (i) and (ii). 

Figure 10.4(a) shows the vertical displacement of the crown lower point for 
the analyses based on both small and large elastic displacement assumptions. 
The results show that the inclusion of geometrically nonlinear effects in the 
analysis elongates the period. Figure 10.4(b) shows the small displacement, 
elasto-viscoplastic response (Case (iii)) of the spherical shell cap in which 
the value of the fluidity parameter is taken as y = 100.0. It should be noted 
that permanent viscoplastic deflections occur thus providing a completely 
diierent response to either of the elastic responses shown in Fig. 10.4(a). 

In Chapter 11 this problem is repeated using an elasto-plastic material 
model. It should be noted that in order to simulate elasto-plastic behaviour 
with DYNPAK a high value of the fluidity parameter (say y = 10000.0) 
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0.10 Small elasto-viscoplastic displacement ( y  = 100.0) 

Fig. 10.4(b) Results of the transient dynamic analysis of a spherical shell cap. 
Case (iii). 

should be adopted. Interested readers may like to compare DYNPAK and 
MIXDYN for elasto-plastic behaviour using a high fluidity parameter. 
However, care should be taken since the use of high fluidity parameter values 
requires the use of a smaller time step when an Euler scheme is used to 
evaluate the viscoplastic strains (see Section 8.3). Typical input data for 
Case (ii) are given in Appendix IV. 

At this stage it is probably worth mentioning the important pioblem of 
combining material and geometric nonlinearities. Among the several papers 
on this topic in the existing literature we suggest that the interested reader 
could profitably refer to the following as a starting point for further study: 

MCMEEKING, R. M. and RICE, J. R., Finite element formulations for problems 
of large elastic-plastic deformation, int. J .  Solids Srructures, 11,601-616 (1975). 
HIBBIIT, H. D., MARCAL, P. V. and RICE, J. R., A finite dement formulation 
for problems of large strain and large displacement, Int. J .  Solids Structures, 
6, 106%1086 (1970). 
BATHE, I$. J., RAMM, E. and WILSON, E. L., Finite element formulations for 
large deformation analysis, Int. J.  Num. Merh. Engng., 9, 353-386 (1975). 
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10.7.3 Gravity dam example 
The geometry of the dam, the seismic acceleration history, the water level 

and material properties for both dam and foundation are arbitrary. 

Fig. 10.5(b) Finite element mesh for concrete gravity dam. 

, 

Fig. 10.5(a) Concrete gravity dam. 

, 8 0 . 0 0 . ~ 7 0 . 2 0 - 8 0 . 0 0  

E 1800000 t/mz 
v 0.20 

- 50.00, e 0.183 tsec2/m' 

/ 
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Both the gravity dam and the foundation shown in Fig. 10.5(a)areidealized 
with two-dimensional, plane-strain, 8-noded isoparametric elements as shown 
in Fig. 10.5(b), using a 2 x 2  Gauss integration rule for the stiffness evaluation, 
and using a special mass lumping scheme with a 3 x 3 Gauss integration rule. 
The adopted 2 x 2  Gauss integration rule for the stiffness terms ensures that 
no locking behaviour will occur in the mesh, whereas the 3 x 3  Gauss 
integration rule for the lumped mass matrix terms renders better mass 
representation. The model base is assumed to be fixed, i.e. u = v = 0, and 
side boundaries are represented by horizontal rollers, i.e. v = 0. 

A short duration analytic earthquake (sinesweep)@' with a maximum 
acceleration level 0.33 g (developed as an equivalent to the E l  Centro NS 
accelerogram) will be used as a prescribed horizontal acceleration history 
a t  the model base level. I t  is assumed that this signal is the result of the 
deconvolution process of a prescribed signal at the foundation level. The 
displacements obtained in the solution process are relative to  the model base. 

Both the concrete and rock are assumed to behave as elasto-viscoplastic 
materials with no hardening. The Mohr-Coulomb yield surface is adopted, 
and the parameters c and 4 are obtained from the uniaxial properties fcu and 
ft as indicated in Table 10.3. 

fi, f,, = tensile, compressive strengths of concrete, 

4 = arc sin - Grs 
Fo (Mohr-Coulomb) = c cos 4. 

concrete 4000 500 0.125 707.11 62.73 323.94 
rock 3600 400 0.133 547.72 61.93 257.75 

Table 10.3 Mohr-Coulornb yield surface parameters for concrete dam example. 

The values of the fluidity parameters y are considered to be the same for 
both the concrete and rock materials. Values of y = 0.00001 and y = 0.001 
have been used for the two analyses presented. The stress level in the structure 
prior to  the seismic excitation is assumed to be due to the self-weight and 
hydrostatic pressure of the water only. 
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The influence of the reservoir water on the dynamic behaviour of the dam 
is considered by taking into account the mass of water attached to the 
upstream face of the dam. The simple representation of 'added mass' with 
concentrated masses is used. The adopted model could be improved sig- 
nificantly with transmitting boundaries, better 'added mass' representation, 
a more realistic signal and a finer mesh. 

The choice of the time step length depends on two criteria. For the explicit 
central difference integration scheme of the dynamic equilibrium equations, 
the highest mesh frequency defines the critical time step length 

For the integration of the equations, which govern viscoplastic straining 
using the Euler method, the critical ti& step for the Mohr-Coulomb 
viscoplastic material is defined as 

For the mathematical model under consideration, (L = 2.4665 m), the 
choice of the time step is governed by the A t c ~  criterion for both analyses. 
Note that since 

A t c o  = 0.000478 sec (10.53) 

the adopted time step length is At = 0.0004 sec. 
On the basis of the adopted mathematical model, (Fig. 10.5), input data 

can be prepared following the user notes, given in the Appendix 111. 

JOHNSON/EPSTEIN SINESWEEP EARTHQUAKE 0.20 SEC 

Fig. 10.6(a) Johnson/Epstein sinesweep earthquake. 
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S I N E S W E E P  D T  13-01 S E C  300 E N T R I E S  
0.0034 

Fig. 10.6(b) Digital form of Johnson/Epstein sinesweep earthquake. 

Prior to the dynamic analysis, the initial stresses a0 must be evaluated 
using some static finite element program. Nodal loads and the stress state 
for every Gauss integration point are recorded, and added to the input data 
for the dynamic analysis. The sinesweep accelerogram and 300 readings for 
At = 0.01 sec are given in Fig. 10.6. The accelerogram information is read 
in from a separate input unit (here tape 7, the assumed seismic excitation in 
the horizontal direction). 

The displacement histories for selected nodal points and stress histories 
for selected Gauss integration points are written on separate output units 
(tape 10, tape 11) and may be used later for plotting the results. The 
displacement histories for nodal points 51 (structure base level) and 127 (dam 
crest) are &en in Fig. 10.7. 
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Fig. 10.7 Results of transient dmamic analysis of a concerte gravity dam. 

Problems 
A simply supported beam is subjected to a step uniformly distributed 
load. The dimensions and material properties of the beam are shown 
in Fig. 10.8(a). Only one quarter of the beam needs to be analysed as 
shown in Fig. 10.8(b). Use DYNPAK to find the midspan lateral 
deflection when the step lateral load is 0.75 po where po is the static 
collapse loaa. Note that this problem has been solved by Liu and 
Lin(lo), Bathe et aI.("' and Nagarajan and Popov.(l2) Use the Von 
Mises yield criterion, a high value of the fluidity parameter y and 
8-node elements. 
Repeat Problem 10.1 using the Tresca yield criterion. 
Repeat Problem 10.1 using loads of intensity 0.625 po and 0.50 PO. 
Compare your results with those of Liu and Lin.(lO1 
For a step lateral load of 0.625 po, repeat Problem 10.1 for various 
degrees of hardening. Compare your results with those of Liu and 
Lin. ('0) 

Solve the problem given in Chapters 7 and 8 using dynamic relax- 
ation.(l3.14) 
Implement an explicit elasto-plastic, transient dynamic, Mindlin plate 
program based on DYNPAK. Typical examples are given else- 
where.('5.16) 
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Fig. 10.8 Simply supported beam example (a) Geometry and loading, (b) Finite 
element idealisation. 
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Chapter 11 
Implicit-explicit transient 

dynamic analysis 

Written in collaboration with D. K. Paul 

11.1 Introduction 
In Chapter 10 we have shown that the explicit, central difference time 

stepping scheme is a simple and powerful method of time integration. The 
main drawback of the scheme is that it is conditionally stable. Thus the 
computational advantages of the central difference scheme are counter- 
. w n c e d  by the very small size of time step necessary when some stiff (and/or 
small) elements are present. For such problems the unconditionally stable im- 
plicit schemes permit the use of larger time steps, the size of which is governed 
only by accuracy considerations. Unfortunately these schemes which require 
matrix factorisations involve larger computer core storage and more oper- 
ations per time step than the central difference scheme. The selection of a 
suitable time integration scheme is therefore largely a matter of experience. 

In some problems, typified by the one illustrated in Fig. 11.1, we may be 
confronted with a situation in which there is a 'soft' subregion Q E  where an 

Fig. 1 1 . 1  Irnpiicitexplicit partitioning. 

43 1 
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explicit schepe is desirable and a 'stiff' subregion 511 where an implicit 
scheme is preferable for greater efficiency. In such cases it is possible to simul- 
taneously make use of both implicit and explicit algorithms. Implicit- 
explicit schemes offer a unified approach to problems of structural transient 
dynamics and can lead to significant computational advantages. 

Implicit-explicit schemes were first introduced by Belytschko and 
Mullen('-3) and were given an alternative form by Hughes and co-~orkers(~-6' 
and Park et d ( 7 - 8 )  It can be shown that the stability of such schemes is 
governed by the explicit elements. 

In this chapter Implicit and Implicit-Explicit methods for nonlinear 
transient dynamic analysis are discussed and we follow the element par- 
titioning approach described by Hughes. A program, named MIXDYN, for 
Implicit-Explicit linear and nonlinear transient dynamic analysis is included. 
Some numerical examples are solved to show some of the capabilities of 
the program. The same program could be modified for static analysis by 
some simple changes. 

11.2 Implicit time integration 

11.2.1 Newmark's algorithm 

In order to introduce the i~plicit/explicit algorithm we describe the 
predictor-corrector form of the Newmark scheme for the integration of the 
semi-discrete system of equations which govern nonlinear transient dynamic 
problems. Typically at time station t ,+At these equations take the fokm 

where M, an+l, pn+l and fn+l are the mass matrix, acceleration vector, 
internal force vector (which may depend on the displacements dn+l and 
velocities &+I and their histories) and applied force vector respectively. Let 

denote the tangent stiffness and damping matrices respectively. 
In the Newmark scheme we endeavour to satisfy the following equations 
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where 

Note that dn, on and an are the approximations to  d(tn), d( tn)  and d(tn) and 
fl and y are free parameters which control the accuracy and stability of the 
method. The values &+1 and 'iin+l are predictor values and dn+l  and on+l 
are corrector values. 

Initially the displacements do and velocities vo are provided and we find 
the accelerations a0 from the expression 

Thus a0 may be found by a factorization, forward reduction and back 
substitution unless M i s  diagonal in which case the solution is trivial. 

We then solve (1 1.3) to (1 1.7) by forming an 'effective static problem'i 
which is solved using a Newton Raphson type scheme, as described earlier. 
The algorithm is summarised in Table 11 .l. 

Table 1 1.1 Newmark's algorithm 

Set iteration counter i = 0. 
Begin predictor phase in which we set 

d.+l[il = &+, = d,+Atu,iAt2(1 -2P)a,/2 (i) 
u , ,+~ [~ ]  = &+I = oR+At(l- y)u, (ii) 
an+lLiI = [dn+lliI - dn+l]/(lt") = 0. (iii) 

Evaluate residual forces using the equation 
vLi1 = fn+l-  M U ~ + ~ [ ~ I  -p(dn+Ji1, nn+l[']). (iv) 

If required, form the effective stiffness matrix using the expression 
K* = M/(AtZP)+yCT/(At~)+KT(dn+l[i]). (v) 

Otherwise use a previously calculated K*. 
Factorize, forward reduction and backsubstitute as required to 
solve 

K* A ~ [ ' I  = v['l. (vi) 
Enter corrector phase in which we set 

dn+,[i+ll = dn+l[il+Ad~l (vii) 
= [dn+l['+lI-dn+l]/(At zP) (viii) 

u . + ~ [ ~ ~ ]  = A ~ Y u . + ~ [ ~ + ~ ~ .  (ix) 
If Ad['] andlor (yli1 do not satisfy the convergence conditions then 
set i = i f1  and go to step 3, otherwise continue. 
Set d n + l  = dn+l[ i+l]  (x) 

V n + l  = ~ n + l [ ' + ' ]  
[ i t  l] 

(xi) 
U n + l  = an+i (xii) 

for use in the next time step. Also set n = n + l ,  formp and begin 
next time step. 

* In this chapter y is a Newmark parameter and not the viscoplastic fluidity parameter. 
+ K* *&I =+ [q, 
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11.2.2 Predictor-corrector algorithm 
Let us now consider an 'explicit' algorithm associated with the Newmark 

schemes described earlier. In this explicit predictor-corrector algorithm we 
assume that the mass matrix M is diagonal and we make use of the expression 

Notice - that the calculation. - is explicit since we use corrector values obtained 
from information given in the previous step. - 

As we would like to eventually combine the implicit and explicit methods 
we organise our implementation of this explicit method in a similar fashion 
to the implementation given of the implicit scheme in the previous section. 
Table 11.2 summarises the algorithm. 

Table 11.2 Explicit predictor-corrector algorithm 

1 Begin predictor phase by setting 
dn+l[O] = 2n+1 = dn+ A h +  At2(1 -2P)an/2 (i) 
U ~ + ~ [ O ]  = = vn+At(l-y)an (ii)  
an+l[O] = 0. (iii) 

2 Evaluate the residual forces using the equation 
y[Ol = f i r + l - ~ ( d n + l [ ~ l ,  urr+t[OI).  (iv) 

3 If required, form the 'effective' stiffness matrix using the expression 
K* = M/(Ar2p). (v) 

Note that as the mass matrix M does not change K* will be formed 
once only. / 

4 Perform factorization, forward reduction and backsubstitution as 
required to solve 

K*Ad[ol = v[OI (vi) 
5 Enter the corrector phase in which we set 

dn+l['I = dn+l[OI+ Ad["] .. (vii) 
~ n + ~ [ l I  = [dn+l[l]-dn+~l/(At~P) (viii) 
vn+l['l = ~n+lSAtyan+l[l]. (ix) 

6 Set dn+l = d,L+l[l] (x) 
U n + l  = On+,  111 (xi) 
an+l = an+I['] (xii) 

for use in the next time step. Also set n = n+ 1, form p and begin 
next time step. 

11.3 Implicit-explicit algorithm 

11.3.1 Introduction 
We now combine the methods described in Sections 1 1.2.1 and 11.2.2 so 

that the finite element mesh contains two groups of elements: the implicit 
group and the explicit group. The superscripts I and E will henceforth refer 
to  the implicit and explicit groups respectively. 

In the implicit-explicit algorithm we iterate within each time step in order 
to  satisfy the equation 
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in which M = MI+ME and fn+l = fn+lI+fn+lE. Note that we assume ME 
is diagonal. 

11.3.2 The structure of the effective stiliness matrix ' 

The algorithm, which is summarised in Table 11.3, is very similar to  the 
implicit algorithm given in Section 11.2.2. The pro£ile structure of K* is very 
interesting. It  has diagonal subregions corresponding to  the explicit group of 
elements. Elsewhere, K* has a profile strueture which corresponds to the 
connectivity of the implicit group only. 

Table 11.3 Implicit-explicit algorithm 

Set iteration counter i = 0. 
Begin predictor phase in which we set - 

dn+1ril = dn+1 = d n + A t u n +  At2(1 - 2P)an/2 (9 
'I - i?n+l = ~ n + A t ( l -  y)an ~ n + l [ '  - (ii) 

= [dn+l[il-dn+l]/(At2~) = 0. (iii) 
Evaluate residual forces using the equation - 

y['l = fn+,- ~ a ~ + ~ [ ~ ]  -pl(dn+l[i], ~ n + i [ ~ ] )  -pE(&+l, ~ n + l ) .  (iv) 
If required, form the effective stiffness matrix using the expression 

K* = ~/(ht~~)+yC~'/(htP)+K~'(d,cl['I). (v) 
Otherwise use a previously calculated K*. 
(Note that KT1 = ap1/ad and CT1 = apl/au). 
Perform factorization, forward reduction and backsubstitution as 
required to solve. 

K * M [ ~ I  = @. ( 4  
Enter corrector phase in which we set 

dn+l["ll = Ad[<] (vii) 
an+Jt+'1 = [dn+l[ '+ ' ] -Jn+t] / (~t~~)  (viii) 
~ n + ~ [ ' + ~ l  = v ~ + I +  Atya~+~['+ll. (ix) 

If Ad['] and/or y['] do not satisfy the convergence conditions, then 
set i = i+l and go to step 3, otherwise continue. 
Set dn+l = dn+l['+'l (x) 

Un+l  = ~ n + t [ ~ + l l  
[i+l] 

(xi) 
 an+^ =  an+^ (xii) 

for use in the next time step. Also set n = n+ 1, form p and begin 
next time step. 

Consider the three meshes and effective stiffness matrices shown in 
Fig. 11.2(a)-(c) : 

When there are only explicit elements, K* is diagonal. In  other words 
K* has the same profile structure as ME (Fig. 11.2(a)). 
For a mesh consisting of only implicit elements K* has the same profile 
structure as KI (Fig. 11.2(b)). 
For the partitioned mesh containing both implicit and explicit groups 
we see the appropriate combination of parts of both profile structures 
(Fig. 11.2(c)). 
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To fully exploit the profile structure of K*, Hughes et have suggested 
the use of profile solvers. In our implementation of the scheme we adopt a 
slightly modified version of the in-core profile solver given by Bathe and - 
Wilson. (9 )  &cZ4, ) * 

- 10 1 lml E explicit element 

(i) Finite element mesh-2 degrees of freedom per node. 

Equation 
1 number 
3 

(ii) Profile of K*. 

Fig. 11.2(a) Two-dimensional finite element mesh and profile structure of the 
effective stiffness matrix K* (explicit elements only). 

11.3.3 Alternative predictor values 
In equations (it(iii) in Table 11.3 we gave the approach described by 

Hughes and Liu.(4) For implicit-explicit problems other predictor values may 
be adopted. Here we consider two cases: 

I. Hughes and Liu predictor values 
dn+~[Ol = &+I = d n  $ At~n-I-At2(1-2j)an/2 (i) 

" 
v ~ + I [ ~ ]  = v n + ~  = ~n+At ( l   an (ii) 
an+~[O] = [dn+~[~l -Zn+~] / (~ t ' j )  (iii) (11.11) 
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Y 

I implicit element 

5 7 9 11 

(i) Finite element mesh-2 degrees of freedom per node. 
Equation 

1 number 
3 
4 
5 
6 
7 

(ii) Profile of K*. 

Fig. 

2. 

11.2(b) Two-dimensional finite element mesh and profile structure of the 
effective stiffness matrix K* (implicit elements only). 

Alternative predictor ua1ue.s 

dn, I["] = dn 0)  

un+l[Ol = v,, (ii) - 
a,+1[~1 = [d,+l[Ol -d,L+l li(At2S) (iii) 

(where &,+I = d,,+Arv,+W(l -2@a,,)/2 (11.12) 

The second approach is recommended for elastoplastic problems for use 
with meshes involving only implicit elements in which y = 4 and when 
large time steps are adopted. 

11.3.4 Stability limits 
Hughes et have discussed the stability limits for this implicit-explicit 

scheme. 
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E explicit element 
I implicit element 

1 3 5 7 9 11 

I x  
(i) Finite element mesh-2 degrees of freedom per node. 

number 

(ii) Profile of K*. 
Fig. 11.2(c : Two-dimensional finite element mesh and profile structure of the 

effective stiffness matrix K* (Implicit and explicit elements). 
0 

If y 2 and = (y++)2/4, we achieve unconditional stability in the 
implicit element group. The time step is then restricted by the explicit element 
group. For the case in which y = g, the critical time step may be written as 

where wmax is the maximum frequency of the explicit group. We can estimate 
o m a x  as 

w m a x d  m a x ( w m a ~ ( ~ ) )  (1 1.14) 
1 

where wmax(e) is the maximum frequency of the eth element of the explicit 
group. 
Since KT is changing from step to step, strictIy speaking the maximum 

frequency should be estimated at  the beginning of every step. In elasto- 
plastic analysis, the structure generally becomes more flexible and (1 1.14) 
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may be used. However, for a better estimate of the critical time step the 
nonlinear eigenvalues should be evaluated. 

If only implicit elements are used and if y >  4 and /3 = (r+$)'/4, then 
error investigations carried out in terms of period elongation and amplitude 
decay with the increase of time step indicate that for reasonable accuracy the 
time step should be limited to 1/100 of the fundamental (largest) period. It is 
observed that the amplitude decay caused by the numerical integration errors 
effectively filters thc higher mode response out of the solution in the Houbolt 
and Wilson 0 method. However when we employ the Newmark constant- 
average-acceleration scheme, which does not introduce amplitude decay, 
the higher frequency response is retained in the solution. In order to obtain 
amplitude decay using the Newmark method, it is necessary to employ 
y > &  

11.4 Evaluation of the tangential stiffness matrix 
In program MIXDYN we adopt an elasto-plastic material model and 

therefore the stresses and the tangential stiffness matrix at any time station 
t n + A t  may be evaluated in the manner outlined in Chapter 7 for static 
problems. As an alternative geometrically nonlinear elastic effects are con- 
sidered using a total Lagrangian formulation. 

The internal resisting force vector for the implicit elements at time station 
t n + A t  is given as 

C 

and therefore the tangential stiffness matrix may be written as 

in which D,>, is the elasto-plastic modulus matrix defincd i n  Chapter 7, 
[ B N L ~ ] , + ~  is the nonlinear strain-displacement matrix defined in Chapter 10, 
the matrix Sn+l is given as 

for plane stress and plane strain problems, and 

0rZz Trz Z? 0 

Sn+1 = 

n-1 

* The second matrix is only included for geon~c~rically nonlinear problems. 
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for axisymmetric problems, and 

for plane stress and plane strain problems, and 

for axisymmetric problems. 
Note that all of the yield d t e r i a  described in Chapter 7 are included in 

program MIXDYN. 

11.5 Program MIXDYN 

11.5.1 Introduction 
The computer program 'MIXDYN' is based on the Implicit-Explicit 

time integration scheme of Hughes and Liu(4) for two-dimensional plane 
stresslstrain and axisymmetric nonlinear dynamic transient problems. Some 
of the subroutines are the same as in DYNPAK. The profile solvers DECOMP 
and REDBAK and a few other subroutines used in this program are based 
on those given in Reference (9). (These subroutines are rewritten using new 
variables names). Some new subroutines have also been included in the 
program. The considers g60metric or elasto-plastic material 
nonlinearity. A total Lagrangian formulation using four-, eight- and 
nine-noded quadrilateral isoparametric elements is adopted to model 
the geometric nonlinear behaviour. The program has several options; 
it can be used for small or large deformation elastic and small deformation 
elasto-plastic transient dynamic analysis and the analysis may be carried 
out using an explicit, implicit or combined implicit-explicit algorithm. 
Furthermore, four types of elasto-plastic material models call be 
considered: (i) Tresca, (ii) Von Mises, (iii) Drucker-Prager and (iv) Mohr- 
Coulomb. 

The flow- diagram for MIXDYN is shown in Fig. 11.3. The program is 
written in modular form and the input and output data representation is 
identical to  that given for DYNPAK. 

The subroutines which have not  appeared elsewhere in the book are now 
described. 
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INPUTD 

LOADPL 

GAUSSQ 

LUMASS 

COLMHT 1 LINKIN ' 

DECOMP 

MULTPY 

IMPEXP 
FUNCTS 

-/ BLARGE I 

A YIELDF 1 
I RESEPL I BLARGE I 

I 

Fig. 11.3 Overall structure of program MIXDYN. 
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11.5.2 Master routine MIXDYN 
The master routine organises the calling of the main routines as outlined 

in the flow diagram (Fig. 11.3). In subroutine CONTOL control parameters 
are read and a check is made on the maximum control dimensions. Note 
that the values used for checking in CONTOL should agree with the maximum 
dimensions in the master routine. Subroutine INPUTD, INTIME and 
PREVOS read the mesh data, time integration data and data for the previous 
state of the structure. Subroutine LINKIN links the rest of the program with 
the profile solver, i.e., it generates all information required for the profile 
solver. Subroutines LUMASS and LOADPL generate the lumped mass and 
applied force vectors respectively. GSTIFF calculates thelglobal stiffness _ _-- 
matrix in compacted form. In the t m e  step do loop I M P E X P ~ & ~ O ~ ~ S  \. 
the direct tifie integration using either of the (i) Implicit, (ii) Explicit or 
(iii) combined Implicit-Explicit schemes. RESEPL calculates the equivalent 
nodal forces using elasto-plastic material behaviour. The maximum dimen- 
sion of the program have been set to a maximum of 50 elements, 200 nodes, 
10 sets of material properties, 6000 coefficients in the mass and stiffness 
matrices and 400 acceleration ordinates. For larger problems the dimensions 
must therefore be changed. 

PROCRAM MIXDYN (INPUT ,TAPE5=INPUT ,TAPE4,TAPElO,TAPEl2,TAPE3, MDYN 1 
OUTPUT ,TAPE6=OUTPUT ,TAPE7 ,TAPE1 1 ,TAPE131 MDYN 2 

C********t**X***********************************************************~y 3 
C 
C TIME INTEGRATION IMPLICIT-EXPLICIT ALGORITHM 
C 

MDYN 4 
MDYN 5 
MDYN 6 

C***********************************P***** 

DIMENSION COOAD( 200,2) , STIFF(~OOO) ,OISPI (400) , POSCP( 4) , MDYN 8 
IFPRE(2.200) .S~1FS(6000) .VEL01(4OO) .WEICP( 4) . MDYN 9 

C 

G 
C 

CALL 
C 

CALL 

C 
CALL 

COMMON STIFF ,XMASS ,OAMPG ,STIF1 ,STIFS ,DAMP1 

CONTOL (NDOFN ,NELEM ,NMATS ,NPOIN 1 

INPUTD (COORD ,IFPRE ,LNODS ,MATNO ,NCONM ,NCRIT , 
NDIME ,NDOFN ,NELEM ,NGAUM ,NCAUS ,NLAPS , 
NMATS ,NNODE ,NPOIN ,NPREV ,NSTRE ,NTYPE , 
POSGP ,PROPS ,WEICP ) 

INTIME (AALFA ,ACCEH ,ACCEV ,AFACT ,AZERO ,BEETA , 
BZERO ,DELTA ,DTIME ,DTEND ,GAAMA ,IFIXD , 
IFUNC .INTGR .KSTEP .MITER .NDOFN .NELEM , 

MDYN 10 
MDYN 11 
MDYN 12 
MDYN 13 
MDYN 14 
MDYN 15 
MDYN 16 
MDYN 17 
MDYN 18 
MDYN 19 
MDYN 20 
MDYN 21 
MDYN 22 
MDYN 23 
MDYN 24 
MDYN 25 
MDYN 26 
MDYN n 
MDYN 28 
MDYN 29 
MDYN 30 
MDYN 31 
MDYN 32 
MDYN 33 
MDYN 34 
MDYN 35 
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CALL PREVOS (FORCE NDOFN ,NELEM ,NGAUS ,NPOIN ,NPREV , 
STRIN I 

CALL LOADPL (COORD ,FORCE , M O D S  ,MATNO , D I M E  ,NDOFN , 
NELEM ,NGAUS ,NMATS ,NNODE ,NPOIN ,NSTRE , 
NTYPE ,POSGP ,PROPS ,RLOAD ,STRIN ,TEMPE , 
WEICP ) 

CALL LUMASS (COORD ,INTGR ,LNODS ,MATNO ,NCONM ,NDIME , 
NDOFN ,NELEM ,NGAUM ,NMATS ,NNODE ,NPOIN , 
NTYPE ,PROPS ,YMASS 

CALL LINKIN (FORCE , I F P R E  ,INTGR ,LEQNS ,MODS , M A W  , 
MAXAJ ,MHIGH ,NDOFN ,NELEM ,NEQNS ,NNODE , 
NPOIN ,NWKTL ,NWMTL , X M A S  ,YMASS) 

CALL CSTIFF  (COORD ,EPSTN ,INTGR , I S T E P  ,KSTEP ,LEQNS , 
LNODS ,MATNO , M I  ,MAXAJ ,NCRIT ,NTlIME , 
NDOFN .NELEM .NGAUS . NLAPS .NMATS ,NNODE , 

CALL IMPEXP (AALFA ,ACCEH ,ACCEI ,ACCEJ ,ACCEK ,ACCEL , 
ACCEV ,AFACT ,AZERO ,BEETA ,BZERO ,CONSD , 
CONSF ,DAMPI ,DAMPG ,DELTA , D I S P I  , D I S P L  , 
DISFT ,DTEND ,DTIME ,GMA ,IFIXD ,IFPRE , 
IFUNC , I I T E R  , I S T E P  ,KSTEP , W I  ,MAXAJ , 
NDOFN .NEQNS .NPOIN .NWKTL .NWMTL .OMEGA , , - -  , 
FORCE , S T I F F  , S T I F 1  , S T I F S  VELOI ,VELOL , 
VELOT ,XMASS ,YMASS ,IPRED 

CALL RESEPL (COORD ,DISFT ,EFFST ,WOAD ,EPSTN ,IITER , 
INTGR ,LEQNS ,LNODS ,MATNO ,NCRIT ,NDIME , 
NDOFN .NELEM .NGAUS .NLAPS .NMATS .NNODE . - .. , - -  
NPOIN ,NSTRE INTYPE IPOSGP ;PROPS ; R E ~  ' 
STRAC ,STRIN ,STRSG , W E E P  , IPRED , I S T E P  $ 

CALL ITRATE (ACCEI ,ACCEL ,CONSD ,CONSF ,XMASS , D I S P I  , 
D I S P L  , D I S P T  , M I  ,NCHEK ,NEQNS ,NWMTL , 
RESID . S T I F S  .TOLER .VELOI .VELOL .VELOT . 
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MDYN 36 
MDYN 37 
MDYN 38 
MDYN 39 
MDYN 4 0  
MDYN 4 1  
MDYN 42 
MDYN 43 
MDYN 44 
MDYN 4 5  
MDYN 46 
MDYN 47 
MDYN 48 
MDYN 4 9  
MDYN 50 
MDYN 51 
MDYN 52 
MDYN 53 
MDYN 5 4  
MDYN 55 
MDYN 56 
MDYN 57 
MDYN 58 
MDYN 59 
MDYN 60 
MDYN 61 
MDYN 62 
MDYN 63 
MDYN 6 4  
MDYN 65 
MDYN 66 
MDYN 67 
MDYN 68 
MDYN 69 
MDYN 70 
MDYN 7 1  
MDYN 72 
MDYN 73 
MDYN 7 4  
MDYN 75 
MDYN 76 
MDYN 77 
MDYN 78 
MDYN 79 
MDYN 80 
MDYN 8 1  
MDYN 82 - 

500 IF(NCHEK.EQ.1) GO TO 5 1 0  MDY N 
C MDY N 

5 1 0  CALL OUTDYN (DISPQ ,DTIME ,EPSTN , IFPRE , I I T E R  , I S T E P  , MDY N 
NDOFN ,NELEM ,NGAUS ,NGRQS ,NITER ,NOUTD , MDY N 
NOUTP ,NPOIN NPRQD ,NREQD ,NREQS ,NTYPE , MDY N 
STRSG , D I S P I  MDY N 

C MDY N 
STOP MDY N 
END MDY N 
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11.5.3 Subroutine ADDBAN 
This routine(s) assembles the element stiffness matrix into the global 

stiffness matrix in a compacted form. 

c ADDB 3 
C *** ASSEMBLY OF TOTAL STIFFNESS VECTOR ADDB 4 
C ADDB 5 
C l * ~ * ~ l * * * f * I I I I X l ( t I * I I * * * I * ~ i i i C i I * i I i i i i I ~ 1 ) * I ) i i i i * * * X * C I * I ~ I * * I I X I  ADDB 6 

,. DIMENSION STIFF( 1 ) , W I (  11, ESTIF( 11, LEQNS( 1 ) 

IT(IEQNS~ 200~200,100 
100 I W = W I  ( IEQNS) 

KEVAB:I N A B  
DO 220 JEVAB:l.NEVAB 

IF( JEVAB.GE. IEVAB) JSIZE=JNAB+KOUNT 

RETURN 
END 

ADDB 7 
ADDB 8 
ADDB g 
ADDB 10 
ADDB 11 
ADDB 12 
ADDB 13 
ADDB 14 
ADDB 15 
ADDB 16 
ADDB 17 
ADDB 18 
ADDB 19 
ADDB 20 
ADDB 21 
ADDB 22 
ADDB 23 
ADDB 24 
ADDB 25 
ADDB 26 
ADDB 27 

11.5.4 Subroutine ADDRES 
This routine(@) addresses the diagonal elements of the global matrix using - - 

the column heights. 

C 
C *** EVUATES ADRESSES OF DIAGONAL ELEMENTS 
C 
C+++++++*++****++**++*+*+++++++++++**++++*+**++++**++****++++**+++** 

DIMENSION  MAX^ 1 ) ,MHIGH( 1) 
NEQNN=NEQNS+l 
DO 20 IEQNNz1,NEQNN 

20 t4AxAI(1)=1 

IF(NEQNS.EQ.~) GO TO 30 
DO 10 IEQNS:2,NEQNS 
P(MHIGH(1EQNS). GT.MKOUN) MKOUN=MHICH( IEQNS) 

10 M I (  IEQNS+l )=WI( IEQNSI +MHIGH( IEQNS)+l 
30 MKWN=MKOUN+l 

NWKTL=WI( NEQNS+l ) - W I (  1 ) 
RETURN 
END 

ADDR 1 
ADDR 2 
ADDR 3 
ADDR 4 
ADDR 5 
ADDR 6 
ADDR 7 
ADDR 8 
ADDR 9 
ADDR 10 
ADDR 11 
ADDR 12 
ADDR 13 
ADDR 14 
ADDR 15 
ADDR 16 
ADDR 17 
ADDR 18 
ADDR 19 
ADDR 20 
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11.5.5 subroutine COLMHT 
This routine@) calculates the vertical column heights above the diagonal 

of the global matrix using equation numbers and the total number of degrees 
of freedom of an element (NEVAB). 

SUBROUTINE COLMHT (MHIGH , NNAB ,LEQNS ) 
C**********************a******************************************** 
C 
C*** EVALUATES THE COLUMN HEIGHT OF STIFFNESS MATRIX 
C 
C******************************************************************* 

DIMENSION LEQNS( 1 ) , MHIGH( 1 ) 
MAXAM:100000 
DO 100 IEVAB=l.NEVAB 

110 IF(LEQNS(INAB)-MAXA~O 120, loo, loo 
120 HAXAM=LEQNS(IEVAB) 
100 CONTINUE 

W 200 IEVAB=l , NNAB 
IEQNS=LEQNS( IEVAB) 

200 CONTINUE 
RETURN 
END 

COLM 1 
COLM 2 
COLM 3 
COLM 4 
COLM 5 
COLM 6 
COLM 7 
COLM 8 
COLM 9 
COLM 10 
COLM 11 
COLM 12 
COLM 13 
COLM 14 
COLM 15 
COD! 16 
COLM 17 
COLM 18 
COLM 19 
COLM 20 
COLM 21 

11.5.6 Subroutine DECOMP 
This routine(9' factorises a matrix into lower, diagonal and upper matrices 

SUBROUTINE DECCMP (STIFF ,MAXAI ,NEQNS , ISHOT ) 
C***..************************************************************** 
C 
C *** FACTORISES (L)*(D)*(L) TRANSPOSE OF STIFFNESS MATRIX 
C 
.................................................................... 

- DIMENSION STIFF( 1 ) ,MAXAT( 1 
L 

IFCNEQNS. EQ. 1) RETURN 
W 200 IEQNS.1, NEQNS 
IMAXArMAXAI ( IEQNS) 
LOWER=IMAXA+I 
KUPER=MAXAI( IEQNS+l)-1 
KHIGHzKUPER-LOWER 
IF(KHIGH1 304,240,210 

210 KSIZEzIEQNS-KHIGH 
ICWN=O 
JUPER=KUPER 
DO 260 JHIGH=l,KHIGH 

DECM 1 
DECM 2 
DECM 3 
DECM 4 
DECM 5 
DECM 6 
DECM 7 
DECM 8 
DECM 9 
DECM 10 
DECM 11 
DECM 12 
DECM 13 
DECM 14 
DECM 15 
DEW 16 
DECM 17 
DECM 18 
DECM 19 
DECM 20 
DECM 21 
DECM 22 
DECM 23 
DECM 24 
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2'70 NCOLM=MINO( ICOUN, NDIAC) 

GO TO 200 
320 WRITE(6,2000) IEQNS,STIFF(IMAXA) 

STOP 
200 CONTINUE 

RETURN 
2000 FORMAT(//48H STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE ,// 

.32H NONPOSITIVE PIVOT FOR EQUATION , I4 ,//10H PIVOT = ,E20.12 ) 
END 

DECM 25 
DECM 26 
DEW 27 
DECM 28 
DECM 29 
DECM 30 
DECM 31 
DECM 32 
DECM 33 
DECM 34 
DECM 35 
DECM 36 
DECM 37 
DECM 38 
DECM 39 
DECM 40 
DECM 41 
DECM 42 
DECM 43 
DECM 44 
DECM 45 
DECM 46 
DECM 47 
DECM 48 
DECM 49 
DECM 50 

11.5.7 Subroutine DINTOB 
This routine multiplies the modulus matrix D with the strain matrix B. 

SUBROUTINE DINTOB (BMATX ,DBMAT ,DMATX ,NEVAB ,NSTRE 
C*n*n*n***nnnnnn*n*cninn**n**n*nn*tn*n*innn********n**n************* 
C 
C*** CALCULATE D INTO B 

DIMENSION DBMAT(~,~~),DMATX(~,~),BMATX(~,~~) 
DO 10 ISTRk1,NSTRE 
DO 10 1EVAB:l .NEVAB 
DBMAT( ISTRE. IEvAB) :O .O 
DO lo JSTRE~I ,NSTRE 
DBMATC ISTRE, IEVAB) =DBMAT( ISTRE, IEVAB) -t 
.DMATX( ISTRE, JSTREInBMATX( JSTRE, IEVAB) 

10 CONTINUE 
RETURN 
END 

11.5.8 Subroutine GEOMST 
This routine adds the initial stress matrix to the stiffness matrix. 

SUBROUTINE GEOMST (CARTD ,DVOLU ,ESTIF ,KGAUS ,NDOFN .NNODE , 

C ADD INITIAL STRESS STIFFNESS MATRIX TO STIFFNESS MATRIX 
C 
Cnnf*n**nnnnn*ninnn*nn*nnnnnnni**i****n**nn***n*n**nnnnnnnnnn*nn***n 

DIMENSION STRES(4) ,cARTD(~,~) ,!!STIF( 171 ) ,STRSG(4,1) , 
SHAPE( 1) ,GPCOD(2,9) 

NEVAB:NNODE*NDOFN 
DO 300 ISTR1=1,4 

DINT 1 
DINT 2 
DINT 3 
DINT 4 
DINT 5 
DINT 6 
DINT 7 
DINT 8 
DINT 9 
DINT 10 
DINT 11 
DINT 12 
DINT 13 
DINT :4 
DINT 15 
DINT 16 

GEOM 1 
GEOM 2 
GEW 3 
GEOM 4 
GEOM 5 
GEOM 6 
CEOM 7 
CEOM 8 
GEOM 9 
GEOM 10 
GEOM 11 
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CEoM 12 
GEOM 13 

KOLINT=NN~ GEOM 14 
W 200 INODEzl , NNODE 
DO 100 JNODE:INODE,NNOCE 
DGASH=STRES( 1) *CAKTD( 1, INODE)*CARTD( 1 ,  JNODE)+ 
.STRES(3)*(CARTD( 1, INODEI'CARTD(2, JNODE)+ 
.CARTD(2, INODE)*CARTD( 1, JNODE) )+  
.STRES(2)*CARTD(2,INODE)*CARTD(2,JNODE) 
DGASY rDCASH*DVOLU 

PRODT=SHAPE( INODE)/(CPCOD( 1 ,KCASP) **2) 
DGASX=DGASY+STRES( 4) *PRODT*SHAPE( JNODE) *DVOLU 
ESTIF(IEVAEl)=ESTIF(IEVAB)+DGASX 

ESTIF(JEVAB)=ESTIF(JEVAB)+DGASY 
IEVAB=INAB+2 
CONTINUE 
KOUNT=KOUNT-2 
IEVAB=JEVA&l 
CONTINUE 
RETURN 
END 

GEOM 15 
CEOM 16 
GEOM 17 
GEOM 18 
GEOM 19 
GEOM 20 
GEOM 21 
GEOM 22 
GEOM 23 
GEOM 24 
GEOM 25 
GEOM 26 
GEOM 27 
GEOM 28 
GEOM 29 
GEOM 30 
GEOM 31 
GEoM 32 
GEOM 33 
GEOM 34 
GEOM 35 

11.5.9 Subroutine GSTIFF 
This routine generates the compacted geometrically nonlinear stiffness 

matrix for two-dimensional plane stresslstrain and axisymmetric problems 
from the element stiffness matrices. 

SUBROUTINE GSTIFF (COORD ,EPSTN ,INTGR ,ISTEP ,KSTEP ,LEQNS , STIF 1 
LNODS ,MATNO , M I  , M J  , NCRIT , NDIME , STIF 2 
NDOFN ,NELEM ,NGAUS ,NLAPS ,NMATS ,NNODE , STIF 3 
NPOIN ,NSTRE ,NTYPE , NWmL ,NWKTL ,POSCP , STIF 4 
PROPS ,STIFF ,STIF1 ,STRSG ,TDISP ,WEICP ) STIF 5 

~ ~ ~ ~ f f ~ ~ ~ ~ * ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ Y ~ ~ * ~ * * * R * * * * * * * * * * * * * * * f f * *  STIF 6 
C STIF 7 
C EVALUATES GEOMETRICALLY NONLINEAR STIFFNESS MATRIX STIF 8 
C FOR 2-D PLANE STRESS/STRAIN 2-D ELEMENT STIF 9 
I: STIF 10 - C***************~**************************************************** 

DIMENSION COORD(NPOIN, 1 ) ,DMATX( 4, 4) ,ELCOD(2,9) ,AVECT(Q) 
LNODS(NELEM,~) ,BMATX(4,18) ,CARTD(2,9) ,DVECT(Q) , 
PROPS(NMATS,~) ,DBMAT(4,18) ,GPCOD(2,9) ,DNIA(4) , 
LEQNS( 18, 1) ,STRSG(~, 1) ,DLCOD(~,~) ,STRES(4) , 
ESTIF( 171 ,DJACM(2, 2 )  ,DERIV(2,9) ,SHAPE(9) 

C 
DIMENSION MAXAI( 1) ,INTGR( 1 ) ,STIFF( 1) ,POSCP( 1) ,EPSTN( 1 ) , 

MAXAJ(1) ,TDISP( 1 ) ,STIFI( 1) ,WEIGP( 1 ) ,MATNO( 1 ) 
C 
C 

IF(ISTEP.EQ. 1 ) GO TO 200 
KWNT:(ISTPP/KSTEP)*KSTEP 
IF(KWNT.NE.ISTEP)RETURN 

200 CONTINUE 
1WOPI=6.283185307179586 
KGAUS-0 

C 
C*** LOOP OVER EACH ELEMENT 
C 
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W 70 ELEM= 1 , NELEM 
LPROP=MATNO( IELEM) 

C 
C*** EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

IPOSN=O 
W 10 INODE=l,NNODE 
LNODE=LNODS( IELEM, INODE) 
W 10 DIME=l.NDIME 

IF(NPOSN.EQ.O) D I S ~ O .  
IF( NPOSN.NE.0) DISPT=TDISP( NPOSN) 
DLCODC DIME. INODE)=COORD(LNODE. IDIME)+DISPT 

YOVNC=PROPS~LPROP, 1 
POISS=PROPS(LPROP, 2) 
THICKsPROPS( LPROP. 7 1 

\r 

Cat* INITIALIZE THE ELEMENT STIFFNESS MATRIX 17l=NEVABt(NEVAE+1)/2 
C 

W 20 ISIZE=1,171 
20 ESTIF(ISIZE).O.O 

KGASPzO 
C 
Ct4* ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 

ETA.?P=PWP( JGAUS) 
KCASP=KGASP+l 
KGAUS=KGAUS+l 
CALL MODPS (DMATX, LPROP, NMATS, NSTRE , W P E  PROPS) 
CALLSFW (DERIV,NNODE,SHAPE,EXISP,ETASPI 
CALL JACOW (CARTD,DERIV,DJACB, ELCOD ,GPCOD, 

IELEM , KGASP , NNODE, SHAPE) 
CALL JACOBD (CARTD,DL~,DJACM,NDIME,NLAPS,NNODE) 
DVOLU=DJACB.WEIGP(IGAUS)*WEIGP( JGAUS) 
IF( NTYPE. EQ. 3 )  DVOLU=DVOLU*TWOPI'GPCOD( 1 ,KCASP) 
IF( NTYPE. EQ. 1 DVOLU=DVOLU*THICK 

C 
Cti* EVALUATE THE B AND DB MATRICES 
C 

CALL BLAKE (BHATX,CARTD,DJACM;DLCOD,GPCOD, 
KGASP, NLAPS, NNODE, NTYPE, SHAPE) 

IF(WS.EQ.2.0R.NLAPS.EP.O") GO TO 80 
IF(ISTEP.EQ.1) GO TO 80 
IF(EPSTN(KCAUS).EP.O.O) GO TO 80 
DO 90 ISTRl=l,NSTRl 

90 STRES(ISTR1 )=STRSG( ISTR1 ,KGAUS) 
CALL INVAR (DEVIA ,LPROP, NCRIT, NMATS PROPS.SINT3 ,STEFF, 

STRES,THETA,VARJZ,YIE~ 
CALL YIEUlF (AVEm,DEVIA,FRICT,NCRIT,SINT3,STEFF, 

THETA, VAR J2 ) 
CALL W P L  (AVECT,ABETA,DVECT, HARDS, NTYPE, POISS,YCVNG) 
W 100 ISTRE1,NSTRE 
DO 100 JrnE=l,NSTRE 

100 DHATX(ISTRE, JSTRE)=DMATX( ISTRE, JSTREI-ABETA*DVECT( ISTRE) . DVECT(JSTRE1 
80 CONTINUE 

CALL DINTOB (BMRTX,DBMAT,DHATX,NNAB,NSTRE) 
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C 
C ***EVALUATE GEOMETRIC STIFFNESS TERMS - 
L 

IF(NLAPS.LT.2) GO TO 85 
CALL GEOMST (CARTD,DVOW,ESTIF,KGAUS,NDOFN,NNODE, 

STRSG, SHAPE, NTfPE,GPCOD,KGASP) 
C 
c*** CALCULATE THE ELEMENT STIFFNESSES 
C 

85 KCUNT=O ... . . . 
DO 30 IEVAB=l, NEVAB 
DO 30 JEVAB=IEVAB,NEVAB 
KOUNT:KOUNT+l 
DO 30 ISTRE=l.NSTRE 

30 ESTIF(KOUNT)=ESTIF(KOUNT)+BMATX( ISTRE, IEVAB) * 
DBMAT(ISTRE,JEVAB)*DVOLU 

50' CONTINUE 
C 
C *** GENERATES GLOBAL STIFFNSS MATRIX IN COMPACTED COLUMN FORM 
C 

IF(INTGR(IELEMl.EQ.2) GO TO 210 
CALL ADDBAN ( STIFI , MAXAI, ESTIF, LEQNS( 1 , IELEM) , NEVAB) 

210 CALL ADDBAN (STIFF,MAXAJ, ESTIF,LEQNS( 1 ,IELEM) ,NEVAB) 
70 CONTINUE 

C WRITE(6,gOO) (STIFI(I),I:l ,N%'MTL) 
900 FORMAT(lOEl2.4) 

RETURN 
END 

11.5.10 Subroutine IMPEXP 
This routine generates the partial effective load vector for 

integration. 

SUBROUTINE IMPEXP (AALFA ,ACCEH ,ACCEI ,ACCEJ ,ACCEK ,ACCU. , 
ACCEV ,AFACT ,AZERO ,BEETA ,BZERO ,CONSD , 
CONSF .DAMPI .DAMPG ,DELTA ,DISPI ,DISPL , 

L 
C *** GENERATES PARTIAL EFFECTIVE LOAD VECTOR 
C 

STIF 99 
STIF 100 
STIF 101 
STIF 102 
STIF 103 
STIF 104 
STIF 105 
STIF 1% 
STIF 107 
STIF 108 
STIF 109 
STIF 110 
STIF 11 1 
STIF 112 
STIF 113 
STIF 114 
STIF 115 
STIF 116 
STIF 117 
STIF 1 18 
STIF 119 
STIF 120 
STIF 121 
STIF 122 
STIF 123 
STIF 124 
STIF 125 
STIF 126 

direct time 

mx 1 
IMEX 2 
IMEX 3 
IMEX 4 
IMEX 5 
IMEX 6 
IMEX 7 
IMEX 8 
IHM 9 
IMU( 10 
IMEX 11 
IMEX 12 
IMEX 13 
IMEX 14 
IMEX 15 
IMEX 16 
IMEX 17 
IMEX 18 
IMEX 19 
IMEX 20 
IMEX 21 
IMEX 22 
IMEX 23 
IMEX 24 
IMEX 25 
IMEX 26 
IMEX 27 
IHEX 28 
IMEX 29 
IMEX 30 
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DO 550 IPOIN:l,NPOIN 
DO 550 IDOFN=l,NDOFN 
ISIZE=IFPRE( IDOFN , IPOIN) 
IF(ISIZE.EQ.0) GO TO 550 
ACCEI(IS1ZE):l.O 
.ACCEL(ISIZE)=O.O 

550 CONTINUE 
DO 590 ISIZE=l,NSIZE 
IHAXA=MAXAI(ISIZE) 

c *** CALCULATES VECTORS FOR HORIZONTAL AND VERTICAL EXCITATION - 
L 

CALL MULTPY (ACCEK, XMASS,ACCEL, MAXAI, NSIZE, W L )  
CALL MULTPY ( ACCW , XMASS, ACCEI, MAXAI, NSIZE, NWMTL) 
CALL MULTPY (DISPL,STIFF,DISPI,MAXAJ,NSIZE,NWKTL) 

C 
C *** CALCULATES DANPING MATRIX (AALFA*M+BEETAsK) - 

JMAXA=MAXAJ( ISIZE) 

DO 560 IWKTL:l ,NWKTL 
560 DAMPI( IWKTL) =DAMPI( IWKTL)+BEETA*STIFF( IWKTL) 

C 
C *** CALCULATES INITIAL ACCELERATION 
C 

CALL MULTPY (VELOL,DAMPI,VELOI,MAXAJ,NSIZE,N6IKTL) 
DO 600 IWMTL=l,WL 

600 DWC( IWMTL)=XMASS(ML) 
DO 51 0 ISIZE = 1, NSIZE 

510 ACCEI(IS1ZE) =RLOAD( ISIZEI-DISPL( 1SIZE)-VELOL( ISSZE) 
CALL DECOMP (DAMPG, MAXAI , NSIZE, ISHOT) 
CALL REDBAK (DAMPG, ACCEI., MAXAI , NSIZE) 
WRITE (6,900) 
WRITE (6,910) (ACCEI(ISIZE), ISIZE=l ,NSIZE) 

900 FORMAT(/' INITIAL ACCELERATION I/) 

910 FORMAT(lX,IOE12.5) 
1000 CONTINUE 

IF(IITER.GT.I) GO M 650 
[: ' 

DO 540 ISIZE=l,NSIZE 
IF(IPRED.EQ.1) GO TO 210 
DISPT( ISIZE) rDISPI (ISIZE 
VELDT( ISIZE) =VELOI(ISIZE) 

210 DISPI( ISIZE)=DISPI(ISIZE) +DTIME*VELOI( ISIZE)+CONSA*ACCEI( IS 
VELOI(ISIZE) =VELOI(ISIZE)+CONSB*ACCEI(ISIZE) 
LF(1PRW. EQ.2) GO TO 220 
DISPT(IS1ZE) =DISPI(ISIZE) 
VELOT(1SIZE) =VELOI (ISIZE) 

220 ACCEI(ISIZE) =CONSF*(DISP~( ISIZE) -DISPI( ISIZE) 
540 CONTINUE 

C 

IMEX 31 
IMEX 32 
IMEX 33 
IMEX 74 

IMEX 38 
39 

IMEX 40 
mix 4i 
IMEX 42 
IMEX 43 
IMEX 44 
IMEX 45 
IMEX 46 
IMEX 47 
IMEX 48 
IMEX 49 
IMEX 50 
IMEX 51 
IMEX 52 
IMEX 53 
IMEX 54 
IMEX 55 
IMEX 56 
IMEX 57 
IMEX j8 
IMEX 59 
IMEX 60 
IMEX 61 
IMEX 62 
IMEX 63 
IMEX 64 
IMEX 65 
IMEX 66 
IMEX 67 
IMEX 68 
IMEX 69 
IMEX 70 
IMEX 71 

IMEX 73 
IMEX 74 
IMEX 75 
IMEX 76 
IMEX 77 
IMEx 78 
IMEX 79 
IMEX 80 
IMEX 81 
IMEX 82 
IMEX 83 

IMEX 85 
IMEX 86 
IMEX 87 
IMEX 88 
IMEX 89 
IMEX 90 
IMEX 91 
IMEX 92 
IMEX 93 
IMEX 94 C*** CALCULATES LOAD VECTORS 
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C 
FACTS = N N C T S  ( AZERO, BZERO, DTEND .DTIME, IFUNC, ISTEP,  CMEGA) 
FACTH =NNCTA (ACCEH,AFACT,DTEND,DTIME,IFUNC,ISTEP) 
FACTV :NNCTA (ACCEV,AFACT,DTEND,DTIME,IFUNC,ISTEP) 

-6.- WRITE( 6. W 0 )  FACTS. FACTH . FACW 

L 
c n* CALCULATES DAMPING AND K-STAR MATRICES 
C 

DO 530 I S I Z E r 1 , N S I Z E  
IMAXA=MAXAI( I S I Z E )  
KMAXA:MAXAI( I S I Z E + l )  -1 
JMAXA=MAXAJ( ISIZE) 
DO 530 LMAXA=IMAXA,KMAXA 
DAMPI( JMAXA)=AALFA*XMASS(LMAXA) 

530 JMAXA=JMAXA+l 
DO 580 IWKTL= 1 ,  NWKTL 

580 DAMPIC IWKTL):DAMPI(IWKTL) +BEETANSTIFF( IWKTL) 
CALL MULTPY (VELOL ,DAMPI ,VELOT ,MAXAJ ,NSIZE ,NklKTL 1 
KOUNTz (ISTEP/KSTEP)*KSTEP 
IF(KOUNT.NE. ISTEP)  GO TO 6 6 0  

640 DO 610 IWMTL=l , W L  
610 DAMPC( ML)=CONSE*XMASS( IWMTL) 

DO 620 ISIZE:l,NSIZE 
IMAXA=MAXAI( I S I Z E )  

620 DAMPG(IMAXA)=DAMPC(IMAXA)-CONSH*Y'YMASS(ISIZE) 
DO 630 M L : 1 .  NWKL 
DAMPC(ML)=DAMPG(ML)+CONSG*STIFI(~L) 

630 S T I F S (  ML)=STIFI(IWMTL)+DAMPC( IWMTL)*CONSF 
6- WITEf6,geO) f T I F S ( i )  , I = ?  ,=) 

m 
CALL DECOMP ( S T I F S  ,W ,NSIZE , ISHOT 

L 

C *** CALCULATES PARTIAL EFFECTIVE LOAD VECTOR 
C 

660 DO 520 ISIZE:l,NSIZE 
IF( INNC.NE.0)  M TO 570 
IF(IFIXD.EQ.2)  DISPL(ISIZE):-VELOL( IS1ZE)-FACTH*ACCEJ(ISIZE) 

+RLOAD(ISIZE) 
IF(IFIXD.EQ. 1) DISPL(ISIZE)=-VELOL(ISIZE1-FACTV'ACCEK(IS1ZE) 

+RLOAD( I S I Z E )  
'F(IFIXD.EQ.O~ DISPL( ISIZE)=-vELoL(ISIZE)-FACTH*ACCEJ( I S I Z E )  

+RLOAD( I S I Z E )  -FACTVNACCEK( I S I Z E )  

W R N  
END 

45 1 

IMEX 95 
IMEX 9 6  
IMEX 97 
IMEX 9 8  
IMEX 99 
IMEX 100 
IMEX 101 
IMEX 102 
IMEX 1 0 3  
IMEX 1 0 4  
IMEX 1 0 5  
IMEX 106 
IMEX 107 
IMEX 1 0 8  
IMEX 1 0 9  
IMEX 1 1 0  
IMEX 1 1 1  
IMEX 112 
IMEX 113 
IMEX 1 1 4  
IMEX 1 1 5  
IMEX 116 
IMEX 1 1 7  
IMEX 1 1 8  
IMEX 1 1 9  
IMEX 1 2 0  
IMEX 1 2 1  
IMEX 1 2 2  
IMEX 1 2 3  
IMEX 1 2 4  
IMEX 125 
IMEX 126 
IMEX 127 
IMEX 1 2 8  
IMEX 129 
IMEX 1 3 0  
IMEX 1 3 1  
IMEX 1 3 2  
IMEX 1 3 3  
IMW: 1 3 4  
IMEX 1 3 5  
IMEX 1 3 6  
IMEX 137 
IMEX 138 
IMEX 139 
IMEX 1 4 0  
IMEX 1 4 1  
IMEX 1 4 2  

11.5.11 Subroutine ITRATE 
This routine generates the total effective load vector and solves for the 

incremental displacements. It then checks for convergence. 
SUBROUTINE ITRATE (ACCEI ,ACCEL ,CONSD ,CONSF ,XMASS , D I S P I  , ITER 1 

DISPL ,DISPT ,MAXAI ,NCHEK ,NSIZE , & W L  , ITER 2 
R E I D  , S T I F S  ,TOLER ,VELOI ,VEL€JL ,VELOT , ITER 3 
I I T E R  ,MITER ) ITER 4 

C * N N N * Z * N * ~ N N C I N ~ N + N * ~ ~ I ( ~ ~ I ) N ~ N ~ * ~ C N ( ~ * ~ ~ ~ * * N N N N * * *  ITER 5 
C ITER 6 
C *** CALCULATES INCREMENT IN DISPLACEMENT AND APPLIES CONVERGENCE 
C EE i; 
C * * I * N N N Z N C I N N * ~ I * X * N X X Y . I * * C C ~ ~ * * ~ * * C N ~ C * * * * * N * * * * * *  ITER g 

DIMENSION DISPIC 1 )  ,VELOI( 1 )  ,ACCEI( 1 )  , RESIDC 1 ) ,MAXAI( 1 )  , ITER 1 0  
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NCHEKzO 
CALL MULTPY (ACCEL ,XMAS ,ACCEI ,MAXAI ,NSIZE ,NWmL ) 

L 
C *I' CALCULATES TOTAL EFFECTIVE LOAD VECTOR 
r: 

C 
C *** CALCULATES DELTA DISPUCEMENT 
C 

,. 210 CALL REDBAK (STIFS,ACCEL,MAXAI, NSIZE) 
L 
C *** APPLIES CONVERGENCE 

DO 670 ISIZE=l,NSIZE 
DISPPrACCEL( ISIZE) 
DISPO=DISFT(ISIZE)+DISPP - ~ . 

DISPT( ISIZE) =DISPQ 
SUMPP:SUMPP+DISPP*DISPP 
SUMPQ=SUMPQ+DISPQ*DISPQ 

670 CONTINUE 
DO 530 ISIZE=l, NSIZE 
ACCEI (ISIZE):CONSF*(DISR( ISIZE) -DISPI( ISIZE) ) 

NCHEK: 1 
GO TO 240 

550 IF(IITER.LT.MITER1 GO TO 230 
240 DO 540 ISIZE.1 ,NSIZE 

VELOI( ISIZE) =VELOT( ISIZE) 
540 DISPI(ISIZE)=DISPT(ISIZE) 
230 CONTINUE 

RETURN 
END 

ITER 11 
ITER 12 
ITER 13 
ITER 14 
ITER 15 
ITER 16 
ITER 17 
ITER 18 
ITER 19 
ITER 20 
ITER 21 
ITER 22 
ITER 23 
ITER 24 
ITER 25 
ITER 26 

ITER 28 
ITER 29 
ITER 30 
ITER 31 
ITER 32 
ITER 33 
ITER 34 
ITER 35 
ITER 36 
ITER 37 
ITER 38 
ITER 39 
ITER 40 
ITER 41 
ITER 42 
ITER 43 
ITER 44 
ITER 45 
ITER 46 
ITER 47 
ITER 48 
ITER 49 
ITER 50 
ITER 51 

ITER 2@21 Calculates total effective load vector. 
ITER 25 Solves for incremental displacements. 
ITER 28-37 Calculates norm of displacement increments. 
ITER 38-40 Calculates new and total displacement, velocities and accel- 

erations. 
ITER 4142 Applies convergence check. 
ITER 46-49 Stores the final velocities and displacements in vectors VELOI 

and DISPI respectively. 

11.5.12 Subroutine LINKIN 
This routine calculates the equation number from the array IFPRE which 

stores the information about the restrained degrees of freedom. 
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SUBROUTINE LINKIN (FORCE ,IFPRE ,INTGR ,LEQNS ,WODS ,MAXAI , 
MAXAJ ,MHIGH ,NDOFN ,NELEM ,NEQNS ,NNODE , 
NWIN , H T L  , W L  ,XMAS ,YMASSl 

Cff*ffff*ff******ff***ffffff**ffff*ffff**ff****ffffffffff***ff****ff*ff*ff******ff***ff**** 

C 
C *** LINKS WITH PROFILE SOLVER 
C 
Cff*ffffffff**ffff**ffff*ffff*ffff**ffff*ff*ff**ff*****ff*ffff~ffffff******ffffff*ff****ffffffff**ff 

DIMENSION LNODS(NELEM,l) ,XMASS( 1) ,MAXAI(l) ,INTGR( 1 ) , 
IFPRE(NDOFN,I) ,YMASS(I) ,MAXAJ(I) ,MHIGH(I) , 
LEQNS( 18,l) ,FORCE(l) ,EMASS(171) 

IMASSz 1 
REWIND 3 
NEVAB:NNODE'NDOFN 

NUMBER OF UNKNNS 

NEQNSrO 
DO 100 IPOIN=l,NPOIN 
W 150 IDOFN:l,NDOFN 
IF(IFPRE(IDOFN,IPOIN)) 110,120,110 
NEQNS=NEQNS+l 
IFPREC IDOFN, IPOIN) :NEQNS 
GO TO 150 
IFPRE( IDOFN, IWIN) -0 
CONTINUE 
WRITE(6.7) IPOIN, (IFPRE(ID0FN. IPOIN) , IDOFN=l ,NDOFN) 

CONNECTIVITY ARRAY LEQNS 

DO 70 IEVAB: 1 ; NEVAB 
LEQNS( IEVAB, 1ELM):O 
DO 50 1ELEM:l ,NELEM 

DO 80 IDOFN=l ,WFN 
LEQNS( INAB, IELEM)=IFPRE( IDOFN, IDENT) 
IEVAB=IEVAB+l 
WRITE(6.6) IELEM, (LEQNS(IEVAF3, IELEM) , IEVABr 1 ,NEVAB) 
CONTINUE 
FORMAT(I10,2413) 
FOREIAT(4110) 
FORMAT(8E12.4) 

LOOP OVER ALL ELEMENTS 

250 DO 190 IELEM=l, NELEM 
IF(INTGR(1ELD.I) .NE. IMASS) GO TO 190 
CALL COLMHT (MHIGH, NEVAB, LEQNS( 1, IELEM) 

190 CONTINUE 
C 
C4** ADDRESES OF DIAGONAL ELEMENTS - MAXA ARRAY 
L 

CALL ADDRES( W , MHIGH, NEQNS, NWKTL , MKOUN l 
IF(IMASS.W.2) GO TO 205 
DD 580 IEQNS:l, MEQNS 

580 HAXAI(IEQNS)=W( IEQNS) 
MASS22 
NWNTL=MJKTL 

453 

LINK 1 
LINK 2 
LINK 3 
LINK 4 
LINK 5 
LINK 6 
LINK 7 
LINK 8 
LINK 9 
LINK 10 
LINK 11 
LINK 12 
LINK 13 
LINK 14 
LINK 15 
LINK 16 
LINK 17 
LINK 18 
LINK 19 
LINK 20 
LINK 21 
LINK 22 
LINK 23 
LINK 24 
LINK 25 
LINK 26 
LINK n 
LINK 28 
LINK 29 
LINK 30 
LINK 31 
LINK 32 
LINK 33 
LINK 34 
LINK 35 
LINK 36 
LINK 37 
LINK 38 
LINK 39 
LINK 40 
LINK 41 
LINK 42 
LINK 43 
LINK 44 
LINK 45 
LINK 46 
LINK 47 
LINK 48 
LINK 49 
LINK 50 
LINK 51 
LINK 52 
LINK 53 
LINK 54 
LINK 55 
LINK 56 
LINK 57 
LINK 58 
LINK 59 
LINK 60 
LINK 61 
LINK 62 
LINK 63 
LINK 64 
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GO TO 250 
205 CONTINUE 

WRITE(6,920) NEQNS, NWMTL, NWKTL 
WRITE(6,930) (MAXAI(I),I=l ,MEQNS) 
WRITE(6,930) (MAXAJ(1) ,I=1 ,MEQNS) 

930 FORMAT( 5X, 2015 ) 
920 FORMAT(/5X,'NEQNS=',I5,5X,'~L:',I5,5X,'NWKTL~',I5/) 

IF(NWKTL.GT.6000) GO TO 210 
w TO 220 

210 WRITE(6,glO) 
STOP 

220 CONTINUE 
910 FORMAT (/ 'SET DIMENSION EXCEEDED - CHECK LINKIN '1)  

C 
C*** GLOBAL MASS MATRIX 
C 

DO 500 IELEk1, NELEM 
IMASS=INTCR( IELEM) 
IF(IMASS.EQ.2) GO TO 500 
READ (3)  EMASS 
CALL ADDBAN (XMAS, MAXAI, EMASS, LEQNS( 1, IELM) , NEVAB) 

500 CONTINUE 

GLOBAL MASS VECTOR 

NPOSM-0 
DO 510 IPOIN :l,NPOIN 
DO 510 IDOFN -1,NDOFN 
NWSM=NPOSM+l 
NPOSN=IFPRE(IDOFN, IPOIN) 
P(NPOSN.EQ.0) GO TO 510 

FORCE( NPOSN) =FORCE( NPOSM) 
510 CONTINUE 

RETURN 
END 

LINK 18-29 

LINK 3 4 4 5  

LINK 52-55 
LINK 59-62 
LINK 80-85 

LINK 65 
LINK 66 
LINK 67 
LINK 68 
LINK 69 
LINK 70 
LINK 71 
LINK 72 
LINK 73 
LINK 74 
LINK 75 
LINK 76 
LINK 77 
LINK 78 
LINK 79 
LINK 80 
LINK 81 
LINK 82 
LINK 83 
LINK 84 
LINK 85 
LINK 86 
LINK 87 
LINK 88 
LINK 89 
LINK 90 
LINK 91 
LINK 92 
LINK 93 
LINK 94 
LINK 95 
LINK 96 
LINK 97 
LINK 98 
LINK 99 
LINK 100 

Reassigns IFPRE vector with equation numbers. If IFPRE 
is not zero than IFPRE is reassigned as zero. 
Evaluates the vector LEQNS on element level for assigning 
equation number corresponding to each node in an element. 
Calculates column height above the diagonal in global matrix. 
Assigns location for diagonal elements in global matrix. 
IMASS = 1 calculates stiffness matrix for only implicit 
elements. 
IMASS = 2 calculates stiffness matrix for complete mesh. 

11.5.13 Subroutine MULTPY 
This routine(g) evaluates the product of square matrix AMATX and an 

array START and stores the result in FINAL. 
SUBROUTINE MULTPY (FINAL ,AMATX ,START ,MAXAI ,NEQNS , W L  ) MULT 1 

C t * f * ~ f * ~ ~ i + * * i i i t ~ 1 i i ( I ~ i Z I . i f * X t * + i ~ ~ ~ 4 ~ 4 * * U f f f  MULT 2 
C WLT 3 
C *** TO EVALUATE PRODUCT OF B TIMES RR AND STORE RESULT IN TT MULT 4 
C MULT 5 
C f * ~ * * i i * l l * * * i ~ * * i i * f + * f C I i i i * f i i i f ~ ~ I I ~ ~ * * * * * i 4 9 i I ~ I i i t f f f * * 1 ) * * *  MULT 6 

DIMENSION FINAL( 1 ) ,AMATX( 1 ) ,START( 1 ) , M I (  1 ) 
C 

MULT 7 
MULT 8 
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IF(NWMTL.GT.NEQNS) GO TO 20 
DO 10 IEQNS=l,NEQNS 
FINAL(1EQNS) =AMATX( IEQNS)*START( IEQNS) 
RETURN 

JEQNSzJEQNS-1 
1 FINAL(JEQNS)=FINAL(JEQNS)+AMATX(ICOLM)*TERMI 
IF(NEQNS. EQ. 1 ) RETURN 

JEQNS-JEQNS-1 
220 SUMAAzSUMAA+AMATX(ICOLM)*START(JEQNS) 

FINAL( IEQNS) =FINAL( IEQNS)+SUMAA 
200 CONTINUE 

RETURN 
END 

MULT 9 
MULT 10 
NULT 11 
MULT 12 
MULT 13 
MULT 14 
MULT 15 
MULT 16 
MULT 17 
MULT 18 
MULT 19 
MULT 20 
MULT 21 
MULT 22 
MULT 23 
MULT 24 
MULT 25 
MULT 26 
MULT n 
MULT 28 
MULT 29 
MULT 30 
MULT 31 
MULT 32 
MULT 33 
MULT 34 
MULT 35 
MULT 36 
MULT 37 

11.5.14 Subroutine REDBAK 
This routine@) solves the equations after the matrix is decomposed (into 

the form LDLT) using forward and backward substitution. 

c **** TO REDUCE AND BACK-SUBSTITUTE ITERRATION VECTORS 
C 
.................................................................... 

DIMENSION STIFF( 1 ) ,FORCE( 1) ,MAXAI( 1 ) 
C - 

DO 400 IEQNS-1, NEQNS 
UklER =MAXAI( IEQNS)+l 
KUPER=MAXAI( IEQNS+l)-1 

420 SUMCC=SUMCC+STIFF( ICOLM) *FORCE( JEQNS) 
FORCE( IEQNS) =FORCE( IEQNS) -SUMCC 

400 CONTINUE 
C 

KEW(A=MAXAI ( IEQNS) 
480 FORCE( IEQNS) =FORCE(IEQNS)/STIFF(KMAXA) 

IF(NEQNS.EQ. 1) RETURN 

RBAK 1 
RBAK 2 
RBAK 3 
RBAK 4 
RBAK 5 
RBAK 6 
RBAK 7 
RBAK 8 
RBAK 9 
RBAK 10 
RBAK 11 
RBAK 12 
RBAK 13 
RBAK 14 
RBAK 15 
RBAK 16 
RBAK 17 
RBAK 18 
RBAK 19 
RBAK 20 
RBAK 21 
RBAK 22 
RBAK 23 
RBAK 24 
RBAK 25 
RBAK 26 
RBAK 27 
RBAK 28 
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F(KUPER-LCMER) 500,510,510 
510 KEQNS=JEQNS 

DJ 520 ICDLM=L(XJER,KUPER 
KEQNS-KEQNS-1 

520 FORCE(KEQNS) =FORCE(KEQNS) -STIFF( ICOLM) *FORCE( JEQNS) 
500 JEQNSzJEQNS-1 

RETURN 
END 

RBAK 29 
RBAK 30 
RBAK 31 
RBAK 32 
RBAK 33 
RBAK 34 
RBAK 35 
RBAK 36 

11.5.15 Subroutine RESEPL 
This routine evaluates the internal force vector for elasto-plastic materials. 

(See Section 7.8.7.) 

SUBROUTINE RESEPL (COORD ,DISPL ,EFFST ,ELOAD ,EPSTN ,IITER , RESD 1 
INTCR ,LEQNS ,MODS ,MATNO ,NCRIT ,NDIME , RESD 2 
NDOFN .NELEM .NGAUS ,NLAPS ,NMATS .NNODE , RESD 3 
NWIN ;NSTRE ;NTYPE ;POSGP ;PROPS &SID RESD 4 
STRAG ,STRIN ,STRSG ,WEIGP ,IPRU) ,ISTEP RESD 5 

~ N N ~ N N N N * * * C N ~ ~ N N * ~ N N ~ ( L ~ ~ ~ N N N N N N N ~ ~ N N ~ N ~ ~ ~ N * N * * N N N * ~ I * * ~ * ~ * * * * * * * * * * C ~ ~ * ~ D  6 
L 
C *** EVALUATES RESIDUAL FORCES 
P 

RESD 7 
RESD 8 
RESD 9 

NSTRlz4 
W 530 IELEM=l NELEM 
IF(INTGR(IELEM! .EQ.Z.AND.IITER.GT.I .AND.IPRED.EQ. 1) GO TO 530 
DO 540 IEVAk1,NEVAB 

540 ELOAD( IELEH , IEVAB) z0.0 
530 CONTINUE 

DO 510 ITOTV:l,NTOTV 
510 RESID(ITOm)=O.O 

KCAUS-0 

C 
C*** COMPUTE COORDINATE AND INCREMENTAL DISPLACEMENTS OF THE 
C NODAL POINTS 
C 

RESD 19 
RESD 20 
RESD 21 
RESD 22 
RESD 23 
RESD 24 
RESD 25 
RESD 26 
RESD n 
RESD 28 
RESD 29 
RESD 30 
RESD 31 
RESD 32 
RESD 33 
RESD 34 
RESD 35 
RESD 36 
RESD 37 
RESD 38 
RESD 39 
RESD 40 
RESD 41 
RESD 42 
RESD 43 
RESD 44 
RESD 45 
RESD 46 
RESD 47 
RESD 48 
RESD 49 
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NPOSN=LEQNS(IPOSN, IELEM) 
IF(NWSN.EQ.0) DISPT.0. 
IF(NPOSN.NE.0) DISPT=DISPL(NPOSN) 
DLCOD( DIME, INODE) :COORD(LNODE, DIME )+DISPT 

ETASP:WSCP( JGAUS) 
KCAUS=KCAUS+l 
KGASP:KGASP+l 
CALL SFR2 (DERIV, NNODE, SHAPE, WISP, ETASP) 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,CPCOD, 

1ELEM.KGASP.NNODE.SHAPE) 
CALL JACOBD (CARTD;DLCOD ; DJACM ; NDIME LAPS, NNODE) 
DVOLU=DJACB*WEIGP( IGAUS 1 *WEIGP( JCAUS~ 
IF(NTYPE .EQ. 3) DVOLU=DVOLU*TWOPI*GPCOD( 1 ,KCASP) 
IF(NTYPE. EQ. 1 1 DVOLU=DVOLU*THICK 
CALL BLAKE (BMATX.CAFXD.DJACM.DLC0D.GPCOD. 

CALL LINGNL (CARTD,DJACM,DMATX,ELDIS,GPCOD,KCASP, 
KGAUS,NDOFN,NLAPS,NNODE,NSTRE,NTYPE, 
POISS . W E .  STRAN. STRES. STRAG) 

170 STRES(ISTRI )=S~RES(ISTRI )+STRIN(ISTR~ ,KGAUS) 
160 CONTINUE 

PREYS=UNIM+EPSTN(KGAUS)*HARDS 
DO 150 ISTRl=l,NSTRl 
DESIG( ISTR1 )=STRES( ISTR1) 

150 SIGMA( ISTR1) zSTRSG(ISTR1, KCAUS) +STRES( ISTRI ) 
IF(NLAPS.EQ.2.0R.NLAPS.EQ.O) GO TO 60 
CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF, 

SIGMA ,THETA,VARJZ ,YIELD) 

70 MSTEP=ESCUR*8.O/UNIAX+l. 0 
IF(MSTEP.CT. 10) MSTEP=10 
ASTEPEMSTEP 
REDUC=l.O-EACT 
DO 80 ISTR~.I,NSTRI 
%TOT( ISTR1) =STRSC( ISTR1 ,KGAUS)+REDUC*STRES( ISTR1) 

80 STRES( ISTR1 )=RFACT*STRES(ISTAl )/ASTEP 
DO 90 JSTEP=l,MSTEP 
CALL INVAR (DEVIA,LPROP,NCRIT,NMATS PROPS,SINT3,STEFF, SCTOT,THETA,VARJZ,YIELDI 
CALL YI@F ( AVECT , DEVIA, FRICT , NCRIT, SIEIT3, STEFF, 

THETA,VARJ2) 
CALL FLWPL (AVECT,ABETA,DVECT,HARDS,WPE,POISS,YWNG) 

RESD 50 
RESD 51 
RESD 52 
RESD 53 
RESD 54 
RESD 55 
RESD 56 
RESD 57 
RESD 58 
RESD 59 
RESD 60 
RESD 61 
RESD 62 
RESD 63 
RESD 64 
RESD 65 
RESD 66 
RESD 67 
RESD 68 
RESD 69 
RESD 70 
RESD 71 
RESD 72 
RESD 73 
RESD 74 
RESD 75 
RESD 76 
RESD 77 
RESD 78 
RESD 79 
RESD 80 
RESD 81 
RESD 82 
RESD 83 
RESD 84 
RESD 85 
RESD 86 
RESD 87 
RESD 88 
RESD 89 
RESD 90 
RESD 91 
RESD 92 
RESD 93 
RESD 94 
RESD 95 
RESD 96 
RESD 97 
RESD 98 
RESD 99 
RESD 100 
RESD 101 
RESD 102 
RESD 103 
RESD 104 
RESD 105 
RESD 106 
RESD 107 
RESD 108 
RESD 109 
RESD 110 
RESD 111 
RESD 112 
RESD 113 
RESD 114 
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BGASH=ffiASH+AVECT( ISTR1) *SWOT( ISTR 1 ) 
110 ~CT~T(ISTR~)=SCTOT(ISTR~)+STRES(ISTRI)-DLAMD*DVECT(ISTR~) 

EPSTN(KCAUS) =EPSTN(KGAUS)+DLAMD*BGASH/YIELD 
90 CONTINUE 

CALL INVAR (DEVIA,LPROP,NCRIT,NMATS,PROPS,SINT3,STEFF, 
SGTOT,THETA,VARJ2,YIELD) 

CURYS=UNIAX+EPSTN(KGAUS) WARDS 
BRING= 1 .0 
IF(YIELD.GT.CURYS) BRINGXURYS/YIELD 
DO 130 ISTRl:l,NSTRl 

130 STRSC(ISTRl,KGAUS)=BRING*SCTOT(ISTRl) 
EFFST(KCAUS):BRINC*YIELD 

C*** ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD 
C 90 CONTINUE c*** 

GO TO 190 
60 DO 180 ISTRl=l,NSTRl 
180 STRSG( ISTR1 ,KGAUS =STRSG( ISTR1 ,KGAUS)+DESIG( ISTR1) 

EFFST( KGAUS) :YIELD 
C 
c'** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELEMENT NODES 
190 MGASH=O 

M) 140 INODE=I,NNODE 
DO 140 IDOFNs1,NDOFN 
MGASH=MCASH+l 
DO 140 ISTRE=l.NSTRE 

140 ELOAM IELEM, M G ~ H  =ELOAD ( IELEM, MGASH +BMATX ( ISTRE , MGASH * 
.STRSG(ISTRE,KGAUS)*DVOLU 

40 CONTINUE 
20 CONTINUE 

DO 500 IELEMz1,NELEM 
DO 500 IEVAB=l,NEVAB 

IF(LMVEB.EQ.0) GO'TO 550 
RESID( LMVEB) =RESID(LMVW) +ELOAD( IELEM, IEVAB) 

550 CONTINUE 

RETURN 
END 

RESD 115 
RESD 116 
RESD 117 
RESD 118 
RESD 119 
RESD 120 
RESD 121 
RESD 122 
RESD 123 
RESD 124 
RESD 125 
RESD 126 
RESD 127 
RESD 128 
RESD 129 
RESD 130 
RESD 131 
RESD 132 
RESD 133 
RESD 134 
RESD 135 
RESD 136 
RESD 137 
RESD 138 
RESD 139 
RESD 140 
RESD 141 
RESD 142 
RESD 143 
RESD 144 
RESD 145 
RESD 146 
RESD 147 
RESD 148 
RESD 149 
RESD 150 
RESD 151 
RESD 152 
RESD 153 
RESD 154 
RESD 155 
RESD 156 
RESD 157 
RESD 158 
RESD 159 
RESD 160 
RESD 161 

11.6 Examples 

11.6.1 Spherical shell example 
Some of the capabilities(l0) of the program MIXDYN are explained by 

analysing some simple problems. The spherical shell problem described(11,12' 
in Chapter 10 is again solved for the following cases: 

(i) Elastic small deformation (all implicit elements) 
(ii) Elastic geometrically nonlinear (all implicit elements) 
(iii) Elasto-plastic small deformation (all implicit elements) 
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(iv) Elastic small deformation (all explicit elements) 
(v) Elastic geometrically nonlinear (all explicit elements) 
(vi) Elasto-plastic small deformation (all explicit elements) 

Fig. 11.4 Modified spherical shell example with stiff elements. 

T o  demonstrate the capabilities of program MIXDYN we also solve a 
slightly modified version of the spherical shell example. Two stiff and dense 
elements are added to  the finite element mesh at the crown as shown in 
Fig. 11.4. The stiff elements have the following properties: 

Elastic modulus E = 0.105 x 109 lb/in2 
poisson's ratio v = 0.3 
mass density p = 0.780 x 10-3 lb.sec2/in* 
yield stress 00 = 0.5 x 105 lb/in2 

The following modified shell examples are also analysed : 

(vii) Elasto-plastic small deformations (all implicit elements) 
(viii) Elasto-plastic small deformations (all explicit elements) 
(ix) Elasto-plastic small deformations (stiff elements are implicit elements, 

the remaining elements are explicit). 

The highest and lowest eigenvalues are evaluated for both the original 
and the modified spherical shells. For the original spherical shell the funda- 
mental period is 0.547 x sec and the smallest time period is 1.380 x lop6 
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sec. For the modified spherical shell the fundamental period Tf is 0.592 x 10-3 
sec and the smallest time period Ti, is 0.776 x 10-6 sec. Thus the addition of 
the stiff elements does not significantly change the largest period but it does 
change the smallest period quite dramatically. For an accurate solution based 
on implicit time integration the time step length A t  is taken as  Tf/100r0.6 x 
10-5 sec for both the original and the modified spherical shell. For a stable 
and accurate solution based on explicit time integration the time step length 
At Q Th/w which is 0.25 x 10-6 sec for the modified spherical shell or 0.40 x 
10-6 sec for the original spherical shell. Thus the addition of two stiff 
elements reduces the critical time step length to 111.6 of the original critical 
time step length. Hence the explicit analysis becomes more expensive. 
However, if the stiff elements are taken as implicit elements in case (ix) for 
implicit-explicit analysis, then the critical time step is governed by the 
remaining explicit elements so that the time step must be less than or equal to 
0.40 x 10-6 sec. 

Linear small displacement formulation 
Linear large displacement formulation 

y = 0.50 
f l =  0.25 

~t = 0.5 x l(r  sec 

Fig. 11.5(a) Spherical shell results. Cases (i), (ii), (iv) and (v). 

Figure 11.5(a) compares the response of the elastic analyses with small 
and large deformations.* The results are similar to the results obtained 
using DYNPAK. The response with the large deformation gives a time 
period which is elongated. 

* Note that the implicit and explicit results overlap. 
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2 4 6 8 
0.M I x 10.. secs 

C .- 
Small displacement .- 

3 0.06 

8 0.08 

0.10 

Fig. 11,5(b) Spherical shell results. Cases (iii) and (vi). 

Figure 11.5(b) illustrates the elasto-plastic small deformation response. 
The time periods are elongated with the inclusion of plasticity effects. 

In Fig. 11.5(c) the results for the problem with the stiff element are pre- 
sented with explicit, implicit and mixed explicit-implicit analysis (cases (vii)- 
(ix)). The execution times and results are compared. The relative computer 
times are: 

(i) all elements considered as explicit - 120.0 sec 
(ii) stiff elements as implicit and rest explicit - 80.8 sec 
(iii) all elements considered as implicit - 16.4 sec 

Implicit-Explicit and ~ x ~ l i c i t  
analyses (solutions overlap) 

----- Implicit analysis 

y = 0.55 
8 = 0.276 

At = 0.25 x ICY6 sec 
lmplicitexplicit At = 0.40 x 10"' sec 
Implicit At = 0 . 6 0 ~  1W5 sec 

(a) Comparison of explicit, implicit-explicit 
and implicit time integration schemes 

Fig. 11.5(c) Spherical shell results. Cases (vii)-(ix). 



462 FINITE ELEMENTS I N  PLASTICITY 

This shows that by representing the stiff elements implicitly computer time 
can be saved. The analysis in which all elements are treated implicitly gives 
the lowest execution time for this small problem. However, with increasing 
problem size (and band width) the solution time for an implicit solution 
increases very rapidly because of the large core requirement and the increased 
number of computer operations. 

Finally it should be noted that Hughes has recently shown how the implicit- 
explicit schemes may be used in a more general context where there are, for 
example, nonsymmetric stiffness matrices involved or an implicit-explicit 
dynamic relaxation solution is required.(13) 

11.7 Problems 
11.1  Repeat Problems 10.1-10.4 using program MIXDYN. Use fully 

explicit, fully implicit and mixed implicit/explicit meshes. 
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Chapter 12 
Alternative formulations and 

further applications 

12.1 Introduction 
Throughout this text we have considered several specific elasto-plastic 

material problems and, apart from Chapter 3, treatment has been limited to 
the use of elasto-plastic quasi-static incremental theory or an elasto-visco- 
plastic formulation. These theories and the application areas of solids and 
plates form, undoubtedly, the area of most interest and importance in non- 
linear material analysis and it is for this reason that they have been chosen for 
study in this text. However, other topics and applications of possibly equal 
importance have had to be omitted for reasons of space and it is the aim of 
this chapter to  indicate to  the reader some areas for future studies. The 
developments which will be discussed can be categorised into the following 
classes : 

Further applications. The elasto-plastic and elasto-viscoplastic theories 
described earlier in this text can be extended to cover some alternative 
structural forms. Of prime importance in this area is the analysis of 
both thick and thin three-dimensional shell structures and the main 
changes necessary to  the corresponding linear elastic finite element 
process relate to expressing the yield criterion in terms of the appropri- 
ate stress resultants. 
Alternative material models. The behaviour of some engineering 
materials may not be adequately described by the yield criteria presented 
in Chapter 7. This is particularly true of soils, rocks and concrete, since 
these materials, for example, have a limited tensile strength which is not 
accurately reflected in either the Mohr-Coulomb or Drucker-Prager 
failure laws. For such materials appropriate failure criteria must be 
developed. Additionally for soils the assumption of associated plas- 
ticity leads to  excessive dilatency necessitating alternative formu- 
lations for accurate material modelling. 
Furtherproblem classes. Many physical situations exist which are 
governed by nonlinear equation systems which are not suitable for 
solution by the techniques described so far in the text. One such 



FINITE ELEMENTS IN PLASTICITY 

example is the time dependent deformations which take place during a 
metal forming process. In this application the elastic strains are 
negligible compared with the plastic components and therefore the 
stress increments can no longer be expressed by use of (8.15). 

For dynamic situations, coupled media problems irequently have to 
be solved. This may involve a fluid/structure interaction problem of the 
seismic analysis of water retaining structures or the impulsive loading 
of a nuclear containment vessel together with the coolant fluid. All the 
above problems may be complicated by further nonlinear behaviour 
due to gross geometrical deformations. 
Improved numerical techniques. Since nonlinear solution processes are 
necessarily expensive with regard to computational time, any savings 
which can be made in this area are of prime importance. Developments 
in this area include improved nonlinear equation solution techniques 
and self-adaptive schemes for optirnisation of the finite element mesh 
and load incrementation. A further enhancement is the use of sub- 
structuring techniques to separate elastic and elasto-plastic regions 
leading ultimately to coupled boundary integral/finite element solutions. 

In this chapter we explore the above developments (and others) in more 
detail and provide the reader with references for future study. Many of the 
subroutines presented earlier in the text can be employed (possibly in a 
modified form) in the development of computer codes for these further 
applications. Therefore the role of each subroutine presented is summarised 
and its location in the text also listed. 

12.2 List of subroutines 
In this section we record details of each subroutine that has been presented 

in this text. This library of subroutines can be employed to develop computer 
codes for the further applications discussed later in this chapter. The section 
of the chapter in which the subroutine is presented is recorded and the codes 
in which it is used are also indicated, employing the following program names: 

One-dimensional applications 
QUITER Solution of quasiharmonic problems by direct iteration 

(Chapter 3). 
QUNEWT Solution of quasiharmonic problems by the Newton-Raphson 

process (Chapter 3). 
NONLAS Solution of nonlinear elastic problems (Chapter 3), 
ELPLAS Solution of elasto-plastic problems (Chapter 3). 
UNVIS Solution of elasto-viscoplastic problems (Chapter 4). 
TIMOSH Solution of elasto-plastic nodayered Timoshenko beams 

(Chapter 5). 
TIMLAY Solution of elasto-plastic layered Timoshenko beams (Chap- 

ter 5). 
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Two-dimensional applica/ioris 

PLANET Elasto-plastic analysis of plane stress, plane strain and axi- 
symmetric solids (Chapter 7). 

VISCOUNT Elasto-viscoplastic analysis of plane stress, plane strain and 
axisymmetric solids (Chapter 8). 

MINDLIN Elasto-plasticanalysisof nonlayered Mindlin plates (Chaptcr9). 
MINDLAY Elasto-plastic analysis of layered Mindlin plates (Chapter 9). 
DYNPAK Elasto-plast~c transient dynamic analysis of two dimensional 

solids (Chapter 10). 
MIXDYN Implicit-explicit elasto-viscoplastic transient dynamic analysis 

of two dimensional solids (Chapter I I). 

12.2.1 Subroutines for one-dimensional applications 

ASSEMB 

ASTIFI 

BAKSUB 

BEAM 

BEML 

CONUND 

CONVP 

DATA 

Section 3.4.2 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIM LAY) 
Assembles the element contributions to form the global stiffness 
matrix and global load vector. (Simple equation solver). 
Section 3.10.1 (QUNEWT) 
Formulates the stiffness matrix for each element according to 
(2.25) and (2.29) for the solution of one dimensional quasi- 
harmonic problems by the Newton Raphson method. 
Section 3.4.4 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIM LAY) 
Performs the backsubstitution phase of the Gaussian rcduction 
process. (Simple equation solver). 
Section 5.4.5 (TIMOSH) 
The master routine for elasto-plastic nonlayered Timoshenko 
beam program TIMOSH. 
Section 5.5.5 (TIMLAY) 
The master routine for elasto-plastic layered Timoshenko 
beam program TIMLAY. 
Section 3.10.3 (QUNEWT, NONLAS, ELPLAS, TIMOSH, 
TIMLAY) 
Monitors convergence of the nonlinear solution process based 
on the residual forces according to (3.27). 
Section 4.9 (UNVIS) 
Monitors convergence to steady state conditions according to 
(4.41) for one-dimensional elasto-viscoplastic problems. 
Section 3.2 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Data input subroutine for one-dimensional applications. 
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GREDUC 

INCLOD 

INCVP 

INITAL 

MONITR 

NONAL 

REFOR2 

REFOR3 

REFORB 

RFORBL 

RESOLV 

Section 3.4.3 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Undertakes equation elimination by Gaussian reduction. 
(Simple equation solver). 
Section 3.7 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Controls the incrementing of the applied loads for one- 
dimensional applications (modified for viscoplastic problems in 
Section 4.10). 
Section 4.8 (UNVIS) 
Evaluates quantities at the end of the time step and the 
equilibrium correction terms for one-dimensional elasto- 
viscoplastic problems. 
Section 3.6 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Initialises to zero some arrays used by other subroutines for 
one-dimensional applications. 
Section 3.9.2 (QUITER) 
Monitors convergence of the direct iteration process for one- 
dimensional quasiharmonic problems. 
Section 3.3 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Controls the nonlinear solution process according to the value 
of NALGO specified, for one-dimensional applications. 
Section 3.10.2 (QUNEWT) 
Evaluates the 'equivalent nodal forces' according to (3.26) for 
one-dimensional quasiharmonic problems. (Newton Raphson 
solution). 
Section 3.1 1.2 (NONLAS) 
Evaluates the equivalent nodal forces according to (3.32) for 
one-dimensional nonlinear elastic problems. 
Section 3.12.2 (ELPLAS) 
Evaluates the equivalent nodal forces for one-dimensional 
elasto-plastic problems. 
Section 5.4.5 (TIMOSH) 
Evaluates the residual forces for a nonlayered elasto-plastic 
Timoshenko beam. 
Section 5.5.5 (TIMLAY) 
Evaluates the residual forces for a layered elasto-plastic 
Timoshenko beam. 
Section 3.4.5 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Undertakes reduction of the R.H.S. terms for equation 
resolution (Simple equation solver). 
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RESULT 

ST1 F F  1 

STIFBL 

STIFFB 

STIFF2 

STIFF3 

STUNVP 

UNDIM 

UNVISC 

Section 3.5 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Outputs the results for one-dimensional applications. 
Section 3.9.1 (QUITER) 
Formulates the stiffness matrix for each element according to  
(2.25) for the solution of one-dimensional quasiharmonic 
problems by direct iteration. 
Section 5.5.5 (TIMLAY) 
Evaluates the elasto-plastic stiffness matrix for each element 
for the solution of layered Timoshenko beams. 
Section 5.4.5 (TIMOSH) 
Formulates the elasto-plastic stiffness matrix for each element 
for the solution of nonlayered Timoshenko beams. 
Section 3.1 l .l (NONLAS) 
Fornlulates the stiffness matrix for each element according to  
(2.33) for nonlinear elastic one-dimensional problems. 
Section 3.12.1 (ELPLAS) 
Formulates the stiffness matrix for each element according to 
either (2.38) or (2.43) for one-dimensional elasto-plastic 
problems. 
Section 4.7 (UNVIS) 
Formulates the stiffness matrix for each element in turn for 
one-dimensional elasto-viscoplastic applications. 
Section 3.8 (QUITER, QUNEWT, NONLAS, ELPLAS) 
The main or master segment for one-dimensional nonlinear 
problems. Sec Fig. 3.1 for the smalI changes in the different 
applications. 
Section 4.1 1 (UNVIS) 
The main or master segment for one-dimensional visco-plastic 
problems. 

12.2.2 Subroutines for two-dimensional applications 
ADDBAN 

ADDRES 

ALGOR 

BLARGE 

BMATPB 

Section 11.5.3 (MIXDYN) 
Generates the global matrix from the element stiffness matrices. 
Section 11.5.4 (MIXDYN) 
Addresses the diagonal term of a matrix. 
Section 6.5.2 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY) 
Controls the nonlinear solution process according to the value 
of NALGO specified, for two-dimensional applications. 
Section 10.6.3 (DYNPAK, MIXDYN) 
Evaluates the strain matrix B for small and large deformation. 
Section 6.4.8 (MINDLIN) 
Evaluates the strain matrix, B, for plate bending problems. 
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BMATPS 

CHECK l 

COLMHT 

CONTOL 

CONVER 

CONVMP 

DBE 

DECOMP 

DEPMPA 

DINTOB 

DYNPAK 

ECHO 

Section 6.4.7 (PLANET, VISCOUNT) 
Evaluates the strain matrix, B, for plane and axisymmetric 
situations. 
Section 6.4.13 (PLANET, VISCOUNT, MINDLIN, 
MINDLAY) 
Scrutinises the problem control parameters for possible errors 
(two-dimensional applications). 
Section 6.4.15 (PLANET, VISCOUNT, MINDLIN, 
MINDLAY) 
Checks the geometric data, boundary conditions and material 
properties for possible errors (two-dimensional applications). 
Section 11.5.5 (MIXDYN) 
Evaluates the height of column above the diagonal of a matrix 
from the known addresses of diagonal terms. 
Section 10.6.4 (DYNPAK, MIXDYN) 
Reads control data for dynamic dimensioning and also checks 
the dimension limits. 
Section 6.5.4 (PLANET) 
Monitors convergence of the nonlinear solution iteration 
process for two-dimensional applications. 
Section 9.5.3 (MINDLIN, MINDLAY) 
Checks for convergence of solution of elasto-plastic layered 
and nonlayered Mindlin plates. 
Section 6.4.1 1 (PLANET, VISCOUNT) 
Forms the matrix product DB. 
Section I 1 S.6 (MIXDY N) 
Decomposes positive definite matrix into LDLT. 
Section 9.6.4 (MINDLAY) 
Sets up the layered discretisation for the layered elasto-plastic 
Mindlin plate. 
Section 7.8.1 (PLANET, VISCOUNT) 
Presets the value of variables associated with dynamic dimen- 
sioning. 
Section 9.5.4 (MINDLIN, MINDLAY) 
Sets up dynamic dimensions in programs MINDLlN and 
MINDLAY for the elasto-plastic analysis of layered and 
nonlayered plates. 
Section 1 1 S .7  (MIXDYN) 
Multiplies the modulus and strain matrices to give DB. 
Section 10.6.2 (DYNPAK) 
Organises the explicit viscoplastic transient dynamic analysis. 
Section 6.4.14 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY) 
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EXPLIT 

FEAM 

FEMP 

FIXITY 

FLOWMP 

FLOWPL 

FLOWVP 

FRONT 

FUNCTA 

FUNCTS 

GAUSSQ 

GEOMST 

GRADMP 

GSTIFF 

IMPEXP 

Echoes the remaining data after input data errors have been 
diagnosed. 
Section 10.6.5 (DYNPAK) 
Carries out explicit time integration. 
Section 9.6.2 (MINDLAY) 
Organising routine for the elasto-plastic analysis of layered 
Mindlin plates. 
Section 9.5.2 (MINDLIN) 
Organising routine for the elasto-plastic analysis of nonlayered 
Mindlin plates. 
Section 10.6.6 (DYNPAK) 
Boundary conditions are inserted. 
Section 9.5.5 (MINDLIN, MINDLAY) 
Determines 2F/2af (i.e. yield function derivatives) for elasto- 
plastic layered and nonlayered Mindlin plates. 
Section 7.8.4.2 (PLANET, MIXDYN) 
Determines the vector do for elasto-plastic analysis. 
Section 8.9 (VISCOUNT, DYNPAK) 
Determines the viscoplastic strain rate for each Gauss point 
according to (8.7). 
Section 6.4.12 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY) 
Performs element assembly and equation solution by the 
frontal method. Contains a facility for efficient resolution of 
equations. 
Section 10.6.8 (DYNPAK, MIXDYN) 
Interpolates acceleration ordinate at At intervals. 
Section 10.6.9 (DYNPAK, MIXDYN) 
Evaluates factor for Heaviside and Harmonic time function at  
At apart. 
Section 6.4.2 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY, DYNPAK, MIXDYN) 
Evaluates the sampling point positions and weighing factors 
for numerical integration by Gauss quadrature. 
Section 11.5.8 (MIXDY N) 
Evaluates the stress stiffness matrix. 
Section 9.5.6 (MINDLIN) 
Evaluates the total displacement and rotation derivatives 
(awlax, awlay, ao,jax, ae,liy, ae,jax, ao,jay). 
Section 1 1.5.9 (MIXDYN) 
Evaluates the global stiffness matrix in compacted profile form. 
Section 11.5.10 (MIXDYN) 
Sets the constants of integration and evaluates partial effective 
load vector. 
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INCREM 

INPUT 

INPUTD 

INTIME 

INVAR 

INVERT 

INVMP 

JACOBD 

JACOB2 

LAY MPA 

LINEAR 

LINGNL 

LINKIN 

LOADPB 

Section 6.5.3 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY) 
Controls the incrementing of the applied loads for two- 
dimensional applications. 
Section 6.5.1 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY) 
Data input subroutine for two-dimensional applications. 
Section 10.6.10 (DYNPAK, MIXDYN) 
Data input subroutine. Reads the mesh data, properties etc 
Section 10.6.11 (DYNPAK, MIXDYN) 
Reads the data necessary for time integration. 
Section 7.8.3 (PLANET, VISCOUNT, DYNPAK, MIXDYN) 
Evaluates the effective stress level at a given point for moni- 
toring plastic yielding. 
Section 8.7.3 (VISCOUNT) 
This subroutine determines the inverse of any arbitrary square 
matrix. 
Section 9.5.7 (MINDLIN) 
Evaluates the Mindlin plate stress resultant invariants for 
nonlayered plates. 
Section 11.5.1 1 (MIXDYN) 
Evaluates the total effective load and iterates until con- 
vergence is reached. 
Section 10.6.13 (DYNPAK, MIXDYN) 
Evaluates the deformation Jacobian matrix. 
Section 6.4.4 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY, DYNPAK, MIXDYN) 
Evaluates the Jacobian matrix, its inverse and the Cartesian 
derivatives of the element shape functions for two-dimensional 
applications. 
Section 9.6.5 (MINDLAY) 
Evaluates the matrix of flexural rigidities and the matrix of 
shear rigidities for the layered elastoplastic Mindlin plate. 
Section 7.8.6 (PLANET, MIXDYN) 
Determines the stresses from given displacements assuming 
linear elastic behaviour. 
Section 10.6.14 (DYNPAK, MIXDYN) 
Evaluates the linear stresses for small and large deformation 
analysis. 
Section 11.5.12 (MIXDYN) 
This routine links with the profile solver. 
Section 6.4.6 (MINDLIN, MINDLAY) 
Evaluates the consistent nodal forces for plate bending 
problems. 
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LOADPL 

LOADPS 

LUMASS 

MDMPA 

MINDPB 

MlXDYN 

MODPB 

MODPS 

MULTPY 

NODEXY 

NODXYR 

OUTDYN 

OUTMP 

OUTMPA 

Section 10.6.15 (DYNPAK, MIXDYN) 
Generates the load vector. 
Section 6.4.5 (PLANET, VISCOUNT) 
Evaluates the consistent nodal forces due to gravity and 
distributed edge loads for two-dimensional problems. 

Section 10.6.16 (DYNPAK, MIXDYN) 
Generates the consistent mass matrix for implicit elements and 
special lumped mass matrix for explicit elements. 
Section 9.6.6 (MINDLAY) 
Evaluates the constitutive matrices for use in layered Mindlin 
plate analysis. 

Section 9.5.8 (MINDLIN, MINDLAY) 
Reads additional input data for elasto-plastic, layered and 
nonlayered Mindlin plates. 
Section 11.5.2 (MIXDYN) 
Organises implicit/explicit transient dynamic program. 

Section 6.4.10 (MINDLIN) 
Evaluates the D matrix for plate bending applications. 
Section 6.4.9 (PLANET, VISCOUNT, DYNPAK, MIXDYN) 
Evaluates the D matrix for plane and axisymmetric situations. 

Section 11.5.13 (MIXDYN) 
Multiplies square matrix to a vector or vector to a vector. 

Section 6.4.1 (PLANET, VISCOUNT, MINDLIN, MIND- 
LAY) 
Interpolates the coordinates of midside nodes for elements 
with straight sides. This routine is modified in MlNDLlN and 
MINDLAY where a hierarchical formulation is adopted for 
the ninth node. (See Section 9.5). 
Section 10.6.18 (DY NPAK, MIXDYN) 
Evaluates the midside node of elements. In case of axi- 
symmetric problems if (R, O) coordinates are read r ,  z co- 
ordinates are evaluated within it. 
Section 10.6.19 (DYNPAK, MIXDYN) 
Writes the output on output file and stress and displacement 
histories of required Gauss points and nodes respectively on 
specified tapes. 
Section 9.5.10 (MINDLIN) 
Outputs displacements, reactions and Gauss point stress 
resultants for elasto-plastic nonlayered Mindlin plates. 
Section 9.6.7 (MINDLAY) 
Outputs displacements, reactions and Gauss point layer 
stresses for elasto-plastic layered Mindlin plates. 
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OUTPUT 

PLAST 

PREVOS 

REDBAK 

RESEPL 

RESMP 

RESMPA 

RESIDU 

RESVPL 

SFR2 

STEADY 

STEPVP 

STIFFP 

Section 7.8.8 (PLANET, VISCOUNT) 
Outputs the results for two-dimensional problems at specified 
intervals. 
Section 7.8.9 (PLANET) 
The main or master segment for two-dimensional elasto- 
plastic applications. 
Section 10.6.20 (DYNPAK, MIXDYN) 
Reads the initial force and stresses. 
Section 11.5.14 (MIXDYN) 
Solves equations after matrix decomposition, using forward 
and backward substitution. 
Section 1 1.5.15 (MIXDYN) 
Evaluates the internal force for different yield criteria in the 
implicit explicit program. 
Section 9.5.1 1 (MINDLIN) 
Evaluates the internal nodal forces 

for the stress resultants of and us for elasto-plastic, non- 
layered Mindlin plates. 
Section 9.6.8 (MINDLAY) 
Evaluates the residual force vector for layered elasto-plastic 
Mindlin plates. 
Section 7.8.7 (PLANET) 
Evaluates the nodal forces which are statically equivalent to 
the stress field satisfying elasto-plastic conditions. 
Section 10.6.21 (DY NPAK) 
Evaluates the internal forces for different yield criteria in the 
explicit transient dynamic program. 
Section 6.4.3 (PLANET/ VISCOUNT, MINDLIN, MIND- 
LAY, DYNPAK, MIXDYN) 
Evaluates the element shape functions and their local deriva- 
tives for 4, 8 and 9 node isoparametric quadrilateral elements. 
SFR2 is modified in MINDLIN and MINDLAY to allow for 
a hierarchical representation for the 9th ce'ntral node. 
Section 8.12 (VISCOUNT) 
Monitors convergence to steady state conditions for two- 
dimensional elasto-viscoplastic problems. 
Section 8.8 (VISCOUNT) 
Evaluates quantities, such as stresses and viscoplastil: strains, 
at the end of each time step of a viscoplastic solution: 
Section 7.8.5 (PLANET) 
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STIFMP 

STIFVP 

ST1 M PA 

STRESS 

STRMP 

STRMPA 

SUBMP 

TANGVP 

VISCO 

VZERO 

YIELDF 

ZERO 

ZEROMP 

Evaluates the stiffness matrix for each element for elasto- 
plastic problems employing either D or Dep as appropriate. 
Section 9.5.13 (MINDLIN) 
Evaluates the stiffness matrices for nonlayered elasto-plastic 
Mindlin plate elements. 
Section 8.7.1 (VISCOUNT) 
Evaluates the stiffness matrix for each element in turn for two- 
dimensional elasto-viscoplastic applications. 
Section 9.6.9 (MINDLAY) 
Evaluates the stiffness matrices for layered elasto-plastic 
Mindlin plate elements. 
Section 8.10 (VISCOUNT) 
Evaluates the increment in stress occurring during a timestep 
of a viscoplastic analysis according to (8.20). 
Section 9.5.14 (MINDLIN) 
Evaluates stress resultants [M,, Mu, M s y ,  Q,, QUIT for 
elasto-plastic nonlayered Mindlin plates. 
Section 9.6.10 (MINDLAY) 
Evaluates the stresses [a,, a,, T,,, T , ~ ,  T ~ , ] T  for elasto-plastic 
layered Mindlin plates at each layer and each Gauss point. 
Section 9.5.15 (MINDLIN, MINDLAY) 
Carries out matrix multiplications in elasto-plastic layered and 
nonlayered Mindlin plates. 
Section 8.7.2 (VISCOUNT) 
Evaluates the Dl-atrix for viscoplastic analysis by implicit 
time stepping schemes. 
Section 8.13 (VISCOUNT) 
The main or master segment for two-dimensional elasto- 
viscoplastic applications. 
Section 9.5.16 (MINDLIN, MINDLAY) 
Zeroes a vector in elasto-plastic layered and nonlayered 
Mindlin plates. 
Section 7.8.4.1 (PLANET, VISCOUNT, MIXDYN, DYN- 
PAK) 
Determines the flow vector a for plastic and viscoplastic 
applications. (Amended in Section 10.6.22 for dynamic 
transient problems). 
Section 7.8.2 (PLANET, VISCOUNT) 
Sets to zero the contents of several arrays employed in the 
programs. (Modified for viscoplastic applications in Section 
8.1 1). 
Section 9.5.16 (MINDLIN, MINDLAY) 
Zeroes various arrays in elasto-plastic layered and nonlayered 
Mindlin plate programs. 
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12.3 Alternative material models 
The plastic behaviour of most solids is adequately described by the four 

yield criteria presented in Chapter 7; namely the Tresca, Von Mises, Mohr- 
Coulomb and Drucker-Prager yield surfaces. However, for some engineering 
materials, notably concrete, rocks and soils, some modifications must be 
made to the above criteria or new yield surfaces postulated if an accurate 
prediction of the material response is required. 

For soils, the Mohr-Coulomb and Drucker-Prager criteria suffer from 
two deficiencies. Firstly, the assumption of an associated flow rule leads to 
excessive dilatency and secondly it is seen from Fig. 7.4 that both models 
imply that the material can support an unlimited hydrostatic compression. 
These deficiencies can be removed by use of the so-called critical state model, 
which assumes that the yield surface comprises two distinct p a r t ~ . ( l - ~ '  The 
surface is shown plotted in terms of deviatoric oa and hydrostatic stress, us, 
in Fig. 12.1. In the subcritical region yielding is stable due to strain hardening 
of the material whilst the supercritical region exhibits strain softening so that 
this portion of the yield surface forms a failure criterion. 

supercritical subcritical 
4 m 4  

region / region 

"on-associated 
now L associated 

now rule 

I (elliptical wrion) \ 

A A ' O  a. 

Fig. 12.1 Critical state model for the behaviour of soil, [ad = Iu , -o3~,  as 

= 8(.,+ %)I. I 

A nonassociative flow rule is adopted in the supercritical region and the 
conical yield surface implied in Fig. 12.1 may be circular or hexagonal in 
form corresponding to a Mohr-Coulomb behaviour. In the subcritical 
region, the two most common shapes for the so-called cap is a log spiral or an 
ellipse and an associated flow rule is assumed to be obeyed. The yield surface 
can be expressed in the form 
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in which Scs is the slope of the critical state line. 
In the tensile zone, various options are open for modelling the limited 

tensile strength of the soil. The curved line BA' can be employed or, more 
simply the vertical intercept OB (implying zero tensile strength) may be 
assumed. Complete details of the critical state model for soils can be found 
in Refs. 1-3 including its application to the numerical solution of practical 
problems. 

The Mohr-Coulomb and Drucker-Prager criteria exhibit the same 
deficiencies for modelling concrete behaviour as occur in the case of soils. In 
particular they overestimate the tensile strength of the material and also 
allow the material to support an unlimited hydrostatic compression. Many 
models have been proposed to more accurately predict the behaviour of 
concrete; a review of which can be found in Ref.4. 

The most common method of predicting the tensile behaviour of concrete 
(and rocks) is by use of the no-tet~siorz model (or limited tension model).(5' 
In this, the tensile principal stresses are monitored throughout the structure 
and  as soon as the value at any point excceds the specified limiting tensile 
strength of the concrete, the material is assumed to crack in a plane normal 
to the principal direction. The tensile stress must then be reduced to zero by 
evaluating its nodal force equivalent and regarding these as residual forces 
to be applied and redistributed in an iterative process. Should the crack close 
on load reversal a frictional behaviour between the surfaces or  the crack can 
be modelled. It is worth recording that the numerical stability of such 
solution processes is relatively poor since on initiation of tensile cracking the 
existing stress must be eliminated by redistribution, whereas for elasto-plastic 
problems, yielding merely necessitates that the existing stress level be main- 
tained. 

An example of this type of analysis is illustrated in Fig. 12.2 where a 
cylindrical prestressed concrete reactor vessel is shown. The geometry of the 
vessel, together with the location of the prestressing system is indicakd and 
the finite element mesh employed in solution is also shown. The concrete is 
assumed to behave as a limited tension material and the steel components as 
a Von Mises elasto-plastic solid. The effects of prestressing are included as an 
initial stress system and the vessel is incrementally loaded by a progressively 
increasing internal pressure. Figure 12.3 shows the vertical deflection of the 
centre point of the end slab with increasing load and good agreement is 
observed with both the experimental results and numerical analysis of Ref. 6. 
The zones of tensile cracking are shown in Fig. 12.4 for various applied 
pressure values and again good agreement with the results of Ref. 6 is evident. 
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circumferential longitudinal prcslrcrsing 
prestrcsring I load 

Fig. 12.2 Finite element idealisation of a prestressed concrete reactor vessel by 
quadratic isoparam&ic elements. 

31 parabolic elemenrs, u=O 
hoop pressurc = 620 psi 

~~~~. 
u =O.lS, hoop pressure /.- 

enpcrimental ref (6) 

rcf(6). v=O.I5 
hoop pressure= 510 psi 

31 parabolic clcmentr. v =O.IS 
hoop pressurc = 510 psi 

Y-poismns ratio 

displacemcntr (in) 

Fig. 12.3 Load/deflection curves for the vessel of Fig. 12.2 failing in slab flexural 
mode. 
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500 psi 575 psi 

625 psi 675 psi 

/ trace of circumferential 
cracks 

zones of radial 
cracking 

from ref (6) 

Fig. 12.4 Zones of tensile cracking for the vessel of Fig. 12.2 failing in slab flexural 
mode. 

For predicting the compressive behaviour of concrete as well as the tensile 
response many failure surfaces have been proposed and a typical model is 
illustrated in Fig. 12.5. In addition to a brittle behaviour in tension, the 
model allows a viscoplastic range of behaviour before material failure. For 
further details the reader is directed to Ref. 4. 

A final approach to concrete behaviour which is worthy of mention is 
afforded by the so-called endochronic theory pioneered by Valanis(7,8) and 
generalised to concrete structures by Bazant.(sJO' To account for the strain 
history dependence of materials (in addition to their strain rate dependence) 
the concept of intrinsic time z is introduced which is related to the Newtonian 
time scale, t according to 

where d5 is effectively a measure of the deformation path length, /3 is a 
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material parameter and a depends on (. Bazant has generalised the endo- 
chronic model to account for inelastic dilatancy, hydrostatic and shear 
compaction and fracture behaviour.(lO) 

brittle failure 
- surface 

plastic yield 
surface 

elasto-viscoplastic 
region 

Fig. 12.5 Typical yield and failure surfaces for concrete. 

12.4 Further applications 

12.4.1 Flow problems 
In this class of problem we are concerned with the continuing viscous flow 

of materials under steady state conditions. Typical examples include the 
extrusion of material through a die and flow of lubricating muds in oil 
drilling applications. I n  each case the problem is characterized by the fact 
that the elastic strains are negligible in comparison to the plastic components. 
For this reason, the viscoplastic numerical process described in Chapter 8 is 
unsuitable, since the increment of stress occurring during a timestep was 
based on the elastic strain increment accor ing to (8.15). Thus an alternative 
formulation is clearly necessary and in fa i t  a considerable simplification is 
achieved if the elastic components of strain are neglected in solution.~ll) 

The plastic strain rate, I,,, which is now assumed to be the total strain 
rate, €, is given from (8.7) to be 

and we recall that a is the flow vector defined by (7.42), 0 is an appropriate 
flow function (given for example by (8.8) or (8.9)) and y is a fluidity parameter. 
For the particular case of a Von Mises yield surface we have from (7.1 1) that 

where Jz' is the second deviatoric stress invariant and oy is the uniaxial yield 
stress of the material which may be a function of the strain hardening 
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parameter K .  Substituting from (12.4) into (12.3), and using (7.42) to express 
a, results in 

in which a' are the deviatoric stresses and r(d) is a symmetric viscoplastic 
compliance matrix whose form can be explicitly determined on prescription 
of the appropriate flow function (D. Thus a relationship has been established 
between the total strain rate and the deviatoric stresses. 

The strain rate can be expressed in terms of the displacement velocities v 
by taking the differential form of the standard strain/displacement relation- 
ship, to give 

i = Bv. 

We assume, as for the viscoplastic case of Chapter 8, that the flow velocities 
are sufficiently slow to neglect inertia effects and that the following standard 
static equilibrium equations therefore hold. 

in which f are the applied forces comprising body forces b and boundary 
tractions, t. Thus a complete analogy exists between the above problem and 
the case of an elastic material in which the relationship between stress and 
strain is nonlinear according to 

Table 12.1 Correspondence between small strain nonlinear elastic problems and 
viscoplastic flow situations 

Small strain nonlinear elasticity Flow problem 

Displacements, d Velocities, o 
Stresses, a Stresses, a 
Strains, E Strain rates, i 
Applied forces, f Applied forces, f 
Nonlinear elastic compliance matrix, Viscoplastic compliance matrix, 

[D(a)l-l r(a) 

This analogy is indicated in Table 12.1. Therefore flow problems, in which 
the elastic components of deformation are negligible, can be solved by use of 
a linear elastic computer code which includes a facility for dealing with a 
stress dependent D matrix. Obviously the steady state solution to the flow 
problem must be arrived at  in an iterative manner and a similar procedure 
must be employed in the corresponding elastic solution. The simplest approach 
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is to  proceed by the method of direct iteration, as described in Chapters 2 and 
3, and to base the value of the compliance matrix I' on the current value of a. 
This solution procedure can be summarised as follows: 

From the stresses an at iteration n evaluate the viscoplastic compliance 
matrix I'(an) = rn. 
Compute the element stiffness matrix of each element as 

and also the consistent nodal applied forces,p'. 
Assemble and solve the stiffness equations to give the improved velocity 
estimate, vn+l.  
Compute the strain rates, en+' = Bun+'. 
Compute the stresses, anfl = [m]-ltintl. 
Return to Step 1 and repeat the process until convergence takes place 
(i.e. vnc1 % vn). 

The procedure described above is most suitable when boundary and body 
forces produce the forcing action. For the case when the problem is defined 
in terms of prescribed boundary velocities the compliance matrix I' must be 
expressed in terms of the current strain rate, t.(12) 

For metal forming problems, the situation is complicated by the fact that 
the geometry of the deforming solid is continually varying throughout the 
process. For such problems the transient form of the flow equations must be 
used and an incremental procedure can be adopted by which the coordinates 
of the finite element mesh are sequentially updated during solution.(l3) 

I t  should be noted that no volumetric strain rate exists for some visco- 
plastic flow laws, as generally defined by (12.3), and this is indeed the case for 
the Von Mises criterion employed in (12.5). Consequently the viscoplastic 
compliance matrix I' cannot be inverted as required by Step 2 above and the 
same numerical difficulties that exist in incompressible elastic problems are 
encountered. However these can be readily overcome by the use of selective 
integration techniques whereby the element stiffness matrix is separated into 
volumetric and deviatoric components.(14) The near singularity arising in the 
former term as incompressible behaviour is approached is then numerically 
removed by employing a low order Gaussian integration rule: 

An important application of the above solution process is to the flow of 
non-Newtonian fluids, in which the material viscosity depends nonlinearly 
on the shear strain rate. Practical examples of such flow can be found in 
Refs. 15 and 16. Deviations from Newton's law of viscosity are best illus- 
trated by means of flow curves and some of the most important cases are 
shown in Fig. 12.6. The effective stress, 6, and effective strain rate, F, are 
defined by (7.12) and (7.22) respectively. 
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Fig. 12.6 Various flow curves for nowNewtonian fluids. 

The Bingham fluid is seen to be a particular form of viscoplastic relation 
(12.3) or (12.5). Writing in terms of the effective stress and strain rate, (12.5) 
can be expressed as 

ci =pi ,  (12.9) 

where the apparent viscosity p is given by 

For the Bingham plastic we can write from the expression given in Fig. 12.6 
and using (12.9) that 

As y+w, ideal plasticity behaviour is approached resulting in 

Similarly for a Power Law pseudoplastic we have from Fig. 12.6 
- 
i M-1 

p=-. (12.13) 
Y 

Thus for each case the problem again reduces to an elastic problem in which 
the shear modulus is dependent on the current strain rate and can be solved 
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by use of the analogy indicated in Table 12.1. Solution can be achieved by 
use of the method of direct iteration or by the Newton-Raphson process 
described in Chapters 2 and 3. 

As an example of viscous flow analysis(l7' the problem of the flow of a 
Bingham fluid in a cylindrical annulus is illustrated in Fig. 12.7, where the 
geometry and finite element mesh employed are also indicated. Steady state 
flow is induced parallel to the axis of the cylinder by the application of an 
axial pressure gradient. The finite element velocity distributions obtained by a 
direct iteration solution scheme are shown in Fig. 12.8 for different values of 
the pressure gradient. The flow velocities are in good agreement with the 
theoretical solution of Ref. 18. 

I 

, 
\ L 

8 

. i 
section shown below 

finite element 
mesh 

10 parabolic elements with 2 x 2 gauss 
integration 

Fig. 12.7 Flow of Bingham fluid in an annulus under an axial pressure gradient 
showing finite element mesh idealisation. 

12.4.2 Nonlinear fracture mechanics 
A class of elasto-plastic problems which require special attention is that of 

crack propagation in ductile materials. Figure 12.9 illustrates the types of 
problem which demand solution and it is seen that a geometrical singularity 
exists at  the crack tip. The numerical techniques presented in Chapter 7 
allows the elasto-plastic stress field to be determined in the vicinity of the 
crack tip (for Modes I and I1 at  least) but a criterion for propagation of the 
crack must be established in some way. 
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Fig. 12.8 Steady state velocity profile for the problem of Fig. 12.7 for various 
applied pressure gradients. 

For linear elastic fracture problems crack advance can be monitored by 
specifying a critical value of a quantity, K,  termed the stress intensity factor* 
which characterises the stress field in the vicinity of the crack tip according 
to(20' 

u = Kf(O)/d(2,rrr) + terms of order rO. (12.14) 

A separate K parameter exists for each fracture mode, designated by K I ,  
Kr1 and K I I I  respectively and they are functions only of geometry and 
loading conditions. A crack in any mode is then assumed to propagate when 
Kattains a critical value Kc which is treated as a material parameter. 

We now seek a similar criterion for elasto-plastic material behaviour. The 
most widely accepted principle in present use is the so-called J contour 
integral attributed to Rice(21) and which was originally formulated for non- 
linear elastic applications. The J integral is defined to be 

for a crack aligned in the x direction. Here r is any contour from the lower 
crack face leading anticlockwise around the crack tip to the upper face, 
S is the path length around this contour and Ttdui is the work contribution 

* An excellent introduction to fracture mechanics is provided in Refs. 19 and 24. 
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mode 11 

mode 111 

mode I 

Fig. 12.9 Basic modes of fracture. 

of traction components Tg on I' moving through displacements dui. The 
term w is the strain energy density defined as 

The J integral is independent of the choice of path I? provided that the 
faces of the crack are stress free. 

For Mode I opening in a strain-hardening nonlinear elastic material the 
near tip solution for the stress, strain and displacement can be shown to be 
of the form(22-241 

where 
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The term N is a constant which measures the strain hardening of the material, 
E the elastic modulus, cry the stress denoting the limit of linearity and I is a 
tabulated constant whose value depends on N. 

For loading situations, nonlinear elastic behaviour is identical to  that of a 
material obeying the laws of 'deformation' plasticity(25) in which the current 
stiffness is a function only of the current state of deformation and not of the 
loading path by which this condition has been reached. Furthermore for 
monotonic loading, experience indicates that there is no significant difference 
between solutions obtained by use of 'deformation' theories and the incremen- 
tal theory adopted in Chapter 7. By this argument it is concluded that 
expressions (12.17) and (12.18) are applicable to elasto-plastic solids. Conse- 
quently crack propagation in elasto-plastic materials is governed by a critical 
value of the J integral. 

One of the difficulties of numerical fracture studies is that a reasonably 
accurate prediction of the stress field in the vicinity of the crack tip is required. 
This is a computationally expensive process for elasto-plastic problems and 
in some instances economies can be made by use of special crack tip elements. 
For example, in Mode I1 deformation under plastic conditions, a shear strain 
singularity of order l l r  develops, which has been modelled by Levy et 
by coalescing two nodes of a linear quadrilateral isoparametric element and 
treating their displacements independently. This approach has also been 
employed by Rice et aI.(27' 

12.4.3 Coupled-field problems 
The transient analysis of many engineering systems involves the formu- 

lation of the semi-discrete coupled-field equations of motion which are then 
solved by a time-stepping procedure.(28) Coupled-field equations involving 
plasticity arise in the modelling of structure-fluid interaction, soil-fluid 
interaction, structure-structure interaction, etc. There are two main sources of 
difficulty in solving such problems: 

(i) The isolated fields may display quite different response characteristics 
which may only 'be analysed efficiently by different time integration 
algorithms and/or different time steps. 

(ii) Most engineering software has been developed for the treatment of 
single-field problems. The term 'partitioned transient analysis pro- 
cedures' has been used to  describe methods which allow the direct time 
integration of the entire equations to be performed by either sequential 
or parallel execution of single-field analyzers. 

We have discussed partitioned procedures for structural dynamic problems 
in Chapter 11. We described an implicit+xplicit partition through which 
meshes that exhibit high (low) frequency response charactcristics are treated 
by implicit (explicit) integration formulae. Park("' has recently extended the 
approach described in Chapter 11. 
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Park et a1.(30' have studied implicit-implicit partitions in certain types of 
fluid-structure interaction problems. The solution of these coupled-field 
equations was obtained by a sequential execution of fluid and structural 
analyzers which gave rise to the term 'staggered solution procedures.' 

Hughes(31) has summarised recent work on transient fluid-structure 
interaction problems. In particular he mentions work on procedures known 
as mixed, or arbitrary, Lagrangian-Eulerian methods. 

In recent work on soil liquefaction problems, Zienkiewicz et a7.(32) have 
devised a model which couples the soil and pore-fluid behaviour during earth- 
quakes. Pore pressure build up and pore water migration are both accurately 
modelled. - 

Many other coupled-field problems involving elasto-plastic behaviour have 
been reported in the literature. It  should however be emphasised that care 
should be taken in considering the stability of such schemes. 

12.4.4 Elasto-plastic and geometrically nonlinear analyses of plates and 
shells 

The linear and nonlinear finite element analysis of plates and shells has 
attracted much attention in the last decade. Two basic approaches have been 
adopted : 

(i) The classical procedure 
Here a plate or shell theory is used as a basis for the finite element 
formulation. Let us briefly summarise such an approach. We begin 
with the field equations of the three-dimensional theory and make 
various assumptions which lead to the plate or shell theory. In the 
reduction from three to two dimensions we include an analytical 
integration over the thickness. We then base our finite element dis- 
cretisation process on the plate or shell theory. The surface geometry 
(in the case of shells) and the field variables are approximated using 
discrete nodal values and suitable interpolation functions. Integration 
of the various element stiffness and force terms is carried out over the 
reference surface. Stresses may then be obtained from the stress 
resultants. Examples of such an approach include the simple facet 
element and the many elements derived from classical'thin plate theory, 
Mindlin/Reissner plate theory, shallow shell theory or even higher order 
shell theorie~.(333~~) There are very many examples of the application of 
the classical procedures in nonlinear finite element analysis of plates 
and shells. We include a brief sample in the list of references to this 
~ h a p t e r . ( ~ ~ - ~ ~ )  For elasto-plastic problems many research workers 
express the yield function in terms of the stress resultants (cf. the non- 
layered approach in Chapter 9). For example, Crisfield(39-44) uses a 
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modified Ilyushin yield criterion expressed in terms of the bending 
moments [M,, M,, M,,]T and the membrane forces [N,, N,,  N&. 
To allow for the gradual spread of plasticity over the plate or shell 
thickness, a modified classical procedure may be adopted in which 
integration through the thickness is performed numerically during the 
finite element stiffness and force evaluation rather than analytically 
prior to the finite element discretisation. Gauss-Legendre, Lobatto 
and the mid-ordinate rules are frequently used for this purpose. To  
allow for geometrically nonlinear effects, total or updated Lagrangian 
approaches are ad0pted.(~5-55] 

(ii) Ahmad and related elements 
Here isoparametric elements with independent rotational and dis- 
placement degrees of freedom are used. This concept originally intro- 
duced by Ahmad et al.(56) was later extended to allow for the linear 
analysis of thin as well as moderately thick shells by Zienkiewicz 
et a1.(57) by the use of the reduced integration technique.* 

Ahmad elements were originally developed because of the computational 
difficulties encountered in the use of the usual three-dimensional elements 
for the analysis of plates and shells. In the three-dimensional elements the 
stiffness coefficients corresponding to the transverse displacement degrees of 
freedom are very much larger than those corresponding to the longitudinal 
displacements. Erroneous strain energy corresponding to the normal stresses 
in the thickness direction are also introduced. Both of these difficulties are 
overcome in Ahmad elements. Normals to the plate or shell reference surface 
before deformation are assumed to remain straight but not necessarily 
normal to the reference surface after deformation. Furthermore, the normal 
stresses in the direction of the shell thickness are ignored and suitably 
modified constitutive equations are adopted. 

Various nonlinear problems have been solved using Ahmad shell elements 
by Ramm(671, Krakeland(68), Bathe and Bolourchi(691 and others(70-7". As 
in the modified classical procedures, to allow for the gradual spread of 
plasticity over the plate or shell thickness, numerical integration techniques 
are adopted. For geometrically nonlinear behaviour both total and updated 

The Mindlin plate elements described in Chapters 6 and 9 are simply plate versions 
of the Ahmad elements in which integration has been carried out analytically through 
the plate thickness. Much work on reduced and selective integration techniquescj8-"jr 
eventually led to the recognition that the use of selective integration techniques is 
equivalent to the use of a special type of mixed f o r m ~ l a t i o n . ~ ~ ~ ]  Defects in the Ahmad 
elements have now been widely acknowledged and the use of the 9-node heterosis Mind- 
[in plate element and the 16-node cubic Ahmad element are usually recommended. 
Other Ahmad/Mindlin C(0) elements should be used with caution as they are known to 
give overstiff solutions for thin plates and shells and to develop mechanisms (zero 
energy modes) or near mechanisms (artificially low energy modes) when reduced or  
selective integration is used. 
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Lagrangian schemes have been used. Special techniques have been incorpor- 
ated to allow for large rotations in the total Lagrangian formulations.("-69) 

The Ahmad shell concept has been developed further by its originator 
Irons with the introduction of the Semiloof element.(gO' Irons adopted a 
convenient nodal configuration involving rotational degrees of freedom at  
'Loof' nodes on the curved boundaries of the element. By imposing a series 
of constraints to  eliminate transverse shear effects (reminiscent of the discrete 
Kirchhoff hypothesis), a highly effective thin shell element is obtained. 
Various research workers(74-7" have successfully extended this work into the 
nonlinear range. 

Both classical and Ahmad procedures may be used as a basis for the 
nonlinear analysis of reinforced concrete plates and shells using the layering 
concept described in Chapter 9. Special constitutive relationships are required 
to  represent the concrete and steel reinforcing bars are treated as a 'smeared' 
layer with uni-directional elasto-plastic properties. Much work has been 
completed in this area.(77-85' 

Elasto-viscoplastic plates and shells are easily developed using the concepts 
described in Chapters 8 and 9.(8"-87) 

12.5 Equation solving techniques 

12.5.1 Standard and modified Newton method 
Before considering some alternative nonlinear solution procedures which 

may be used in elastoplastic finite element analysis we review the techniques 
described earlier. 

As we have already seen, most elasto-plastic finite element programs are 
simply extensions of elastic finite element programs with linearised load 
increments. Some form of iterative procedure is usually adopted to dissipate 
the out-of-balance nodal forces. 

The standard and variety of modiied Newton methods were described 
earlier in Part I. Recall that the standard Newton method involves iterations 
in which 

K(d,[d(t'l) - d(d) 1 = y(dc"), (12.19)* 

where d is the vector of nodal displacements and the equations ~ ( d )  = 0 
express a force balance (internal forces = external forces; either for an 
increment of loading or for the whole applied load). The matrix K in the 
standard Newton method is the Jacobian of v; which is the tangential 
stiffness matrix KT = [+(d(t))/ad] evaluated at the displacements described 
by d(0. 

The modified Newton method works with a variety of approximations to 
K, the most simple of which is the initial elastic stiffness matrix KO evaluated 
at  the first iteration of the first load increment. 

* The superscripts denote the iteration number. 
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We have adopted standard and modified Newton methods throughout 
this text as they are the most widely used approaches. Though they work 
well they do  have certain disadvantages. The initial stiffness method is slow 
t o  converge in cases in which there is a high degree of nonlinearity. The 
modified Newton methods provide better convergence properties but they 
diverge during elastic unloading and they can lead to ill-conditioned or  
singular Jacobian matrices K near the limit load. 

Newton methods are sometimes employed with a slight modification 
during an iteration in which 

and in which the new displacement vector is given as 

where we could take act) as much less than 1 for safety or more than 1 for more 
rapid convergence. Nayak(B8) introduced an acceleration technique in which 
a(() is replaced by a diagonal matrix. Basu(89) later simplified this technique. 

Although the modified Newton methods with fixed values of a(" is em- 
ployed by certain analysts, it has been suggested(g0) that we should reject it 
in favour of a modified Newton with a line search which involves iinding a 
value of a({' which minimises the total potential energy rr(d(ff1)) or the 

12.5.2 Quasi-Newton method 
Over the past twenty years there has been a rapid development of com- 

puter-oriented, sequential search methods in the fields of optimisation and 
mathematical programming. Of these techniques, the variable metric (Quasi- 
Newton) method and the method of conjugate gradients show the greatest 
potential in nonlinear finite element analysis. 

The Quasi-Newton method was introduced to finite element computations 
by Matthies and Strang.@l) The main idea is to update the matrix K in a 
simple way after each iteration, rather than to recompute it entirely as in the 
standard Newton method or leave it unchanged as in the modified Newton 
method. Here we consider the update, known as the Broyden-Fletcher- 
GoldfarbShanno (BFGS). It  is most conveniently written in terms of Kc"+" 
rather than K(t) and has the form 

The indicated matrix multiplications are never carried out in the computer 
implementation; instead n(i) and wcf) are stored and used only in computing 
the new search direction 
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A line search of the form given in (12.21) is adopted. The BFGS formulae 
for v(" and w(t) are 

and 

The method has been successfully implemented and used by Matthies and 
Strangcgl and Geradin and H ~ g g e ( ~ ~ )  for both static and transient dynamic 
nonlinear problems. The stability of BFGS with respect to unloading has 
been emphasised by Matthies and Strang.(gl) A related method by Crisfield(93) 
also shows much promise. 

Rather than work with the inverse of Kci) as given in (12.23), Geradin and 
Hogge(S2) work with the update formula 

and use a frontal solution scheme. 

12.5.3 Conjugate gradient methods 
In the conjugate gradient(94) algorithm we take 

where 

in which a(f) is chosen using a line search with the criterion that the total 
potential energy ~ ( d ( ~ + l ) )  should be minimised. 

Initially, P ( O )  is set to zero. We list two possible values for /3(" : 

(i) The He~tenes-Stiefel(~*) (Fletcher-Reeves(95)) algorithm 

(ii) The Polak-Ribiere(96) algorithm 
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The method, which requires modest computer core requirements, has been 
improved by scaling and other techniques.rg7-99) The Conjugate-Newton 
method of Irons(100' is also a development of the basic conjugate gradient 
algorithm. 

12.5.4 Other useful solution techniques 
Among the remaining solution procedures, dynamic relaxation (DR) 

methods are quite popular. The main idea in DR originated from the obser- 
vation that with about 90% of critical damping, an equivalent transient 
dynamic analysis rapidly converges to  the steady state, static solution. Recent 
modifications(l01-103' of the method have concentrated on finding improved 
replacements for the mass matrix M and the damping matrix C which are 
used in DR. Although DR methods are generally not as powerful as the 
various Newton and conjugate gradient methods, they require very little 
computer core storage and explicit transient dynamic programs such as 
DYNPAK, described in Chapter 10, can be rapidly modified to  be used as 
D R  solvers for ad hoc .static problems when no other static program is 
available and results are urgently required. 

It  is usually difficult to decide on the form of load incrementation to  adopt 
for elasto-plastic problems and exploratory analyses are often required. 
The work of Bergan and Soreide(l04) in this area appears to be quite promising. 

Schemes which work with local and global modes, several meshes or 
hierarchical representations(l05-111' for the displacements may also prove to  
be of prime importance in nonlinear finite element equation solving. 

12.6 Other enhancements in elasto-plastic analysis 

12.6.1 Substructuring and boundary element methods 
Economies can be made in the numerical solution of elasto-plastic problems 

by the use of substructuring techniques. A substructure analysis generally 
comprises the following steps.("Z1 

Separate groups of elements within the solid are collectively identified 
as substructures as indicated in Fig. 12.10. 
For each substructure, the element stiffness matrices are assembled to 
give the global stiffness matrix of the substructure. 
The equations relating to the internal nodal points (i.e. nodes not on 
the boundary) are eliminated. This process is known as condensarion. 
Solution of the system of resulting simultaneous equations is obtained 
by assembling all the individual substructures and any remaining 
elements which have not been associated with a substructure. This 
gives the nodal displacements and reactions for all nodal points on 
interfaces between substructures and for nodes of elements which are 
not related to any substructure. 
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Return to the individual substructures to evaluate the displacements at 
interior nodes and finally obtain the element stresses. 

Fig. 12.10 Substructure analysis of elasto-plastic problems. 

substructure 1 

The very nature of the frontal equation solution process described in Section 
6.4.12 makes the use of substructure techniques a simple affair, since, when 
the front has advanced into a structure to a certain position, the reduced 
frontal equations are essentially the condensed equations for a substructure 
corresponding to the part of the structure already considered. 

For elasto-plastic problems, the part of the structure which (by physical 
considerations or experience!) is known to remain elastic during the defor- 
mation process can be defined as one substructure and the remaining elements 
considered individually. Thus during incremental/iterative solution the sub- 
structure stiffness will remain unaltered, for solution by the tangential 
stiffness method, and the substructure assembly and condensation process 
described above need be performed only once with an equation resolution 
process, necessitating only reduction of the R.H.S. terms being followed 
thereafter. The individual elements not associated with the substructure 
(and which model the elasto-plastic behaviour) are treated in the normal way 
as  described in Chapter 7. 

This approach can result in considerable computational economies, 
particularly if the mesh subdivision within the substructure is a fine one. It 
can be argued that a fine mesh subdivision is not warranted for regions where 
elastic behaviour is anticipated, but for structures which are to be subjected 
to  more than one type of loading such an optimal mesh grading may not be 
possible. For example, with reference to Fig. 12.10, two sCparate loadings 
may cause plastic yielding in substructures I1 and 111 respectively and 
consequently a fine mesh grading within each of these regions cannot be 
avoided. 

An extension of the above process is afforded by the use of the boundary 
integral rnethod.(113-115' The boundary integral procedure requires. trial 
functions which satisfy the governing equations directly and then attempt to 
satisfy the boundary conditions by a collocation, least-squares or Galerkin 

11 - 
Ill 



ALTERNATIVE FORMULATIONS 495 

procedure. In order to find trial functions which satisfy the governing 
equations we are, at present, generally confined to linear elastic situations. 
Thus for the solution of elasto-plastic problems a coupled approach can be 
employed(ll3Jl5) with the elastic region of the structure being modelled by 
boundary elements and conventional finite elements employed to treat the 
elasto-plastic zones. Such direct coupling leads to nonsymmetric matrices 
which is acceptable if the equation set is dominated by the boundary integral 
equations. 

This approach promises efficient numerical solutions particularly for cases 
of limited yielding in three-dimensional solid5 where the surface area/volume 
ratio is relatively small. The process can also be used to advantage in infinite 
domain structures such as rock mass problems or soil/structure interaction 
problems with boundary elements being employed to model the exterior 
domain. 

12.6.2 Interactive computing 
The solution of elasto-plastic problems inevitably requires some degree of 

insight into the structural behaviour before choice of solution parameters, 
such as load increment sizes, can be made. Even then it is difficult, if not 
impossible, to specify the most suitable values of load increments, tolerance 
factors for each load case and also choice of the optimal solution process 
(e.g. initial stiffness, tangential stiffness or some combined algorithm) is 
equally difficult to arrive at. 

To this end, the developments which are currently taking place in inter- 
active computing will become increasingly important. Here we envisage the 
situation where the results for a particular load increment are held in core 
while the solution is scrutinized. Depending on the convergence character- 
istics, etc., the load increment size and convergence tolerance factor are then 
input and solution continued for a further increment. If required the non- 
linear solution process can be redefined at this stage changing, for example, 
from a tangential stiffness to an initial stiffness algorithm if collapse con- 
ditions are being approached. Furthermore if the numerical process did not 
converge in the previous increment, the calculations could be repeated for 
a smaller load increment size or a different solution algorithm. 

12.6.3 Computational techniques 
Many new and improved programming strategies are developing in 

connection with finite element software and the interested reader is directed 
to the work of S ~ h r e r n ~ l l " ~ ~ ~ ~  and othersrlls) who are active in this area. 

12.7 Concluding remarks 
Throughout this text we have described numerical techniques and com- 

puter codes for a variety of engineering applications. Treatment has been 
limited to situations where the finite element method can be used to provide 
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nonlinear solutions with a measure of confidence. In  this final chapter we 
have attempted t o  indicate some areas of further study and here the applica- 
bility to design problems is not so clear. Fo r  example, for soils and concrete 
some divergence of opinion still exists as t o  selection of a n  appropriate 
material model. Indeed a t  the present time it is true to  say that numerical 
solution capabilities are in advance of the knowledge of fundamental material 
behaviour. This is particularly true for dynamic problems where there is a 
scarcity of information on material response under transient conditions. 
In this respect it would appear that nonlinear finite element methods offer the 
possibility of conducting 'numerical experiments' t o  provide insight o n  
material behaviour which could not be obtained by experiment alone. 
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Appendix I 

Instructions for preparing input data for 
one-dimensional problems 

In Part I of this text computer codes have been presented for the nonlinear 
analysis of several classes of one-dimensional problems. In Chapter 3 the 
data structure for the following applications was discussed: 

Direct iteration solution of nonlinear quasiharmonic problems. 
Use of the Newton-Raphson process for the solution of nonlinear 
quasiharmonic problems. 
Nonlinear elastic applications. 
Elasto-plastic material behaviour. 

In Chapter 4 the time transient phenomenon of one-dimensionaI visco- 
plasticity was discussed. In Chapter 5 solution techniques were presented 
for elasto-plastic beam bending problems. In this appendix user instructions 
for preparing input data for each of these applications are provided. 

kl.1 Program QUITER for the solution of nonlinear one-dimensional 
quasiharmonic problems by direct iteration 

CARD SET 1 TITLE CARD (12A6bOne card 

Cols. 1-72 Title of the problem-limited to 72 alphanumeric characters. 

CARD SET 2 CONTROL CARD (915)-One card 

Cols. 1-5 NPOIN Total number of nodal points. 
6-10 NELEM Total number of elements. 

11-15 NBGUN Total number of restrained boundary 
points-nodes at which the value of the 
unknown (e.g. temperature) is prescribed. 

16-20 NMATS Total number of different materials. 
21-25 NPROP Number of independent properties per 

material ( = 1). 
26-30 NNODE Number of nodes per element (= 2). 
31-35 NINCS Number of increments in which the total 

'loading' is to be applied. 
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3 6 4 0  NALGO Nonlinear solution process indicator 
(= 1, for solution by direct iteration). 

4145  NDOFN Number of degrees of freedom per node 
(= 1). 

CARD SET 3 MATERIAL CARDS (15, F15.5)-One card for each 
different material. Total of NMATS cards (See Card Set 2). 

Cols. 1-5 JMATS Material identification number. 
6-20 PROPS(JMATS,l) The material coefficient, KO in (2.27). 

CARD SET 4 ELEMENT CARDS (415)--One card for each element. 
Total of NELEM cards (See Card Set 2). 

Cols. 1-5 JELEM Element number. 
6-10 LNODS(JELEM,l) 1st nodal connection number. 

11-15 LNODS(JELEM,2) 2nd nodal connection number. 
16-20 MATNO(JELEM) Material property number. 

NOTE: The two nodal connection numbers for an element can be taken in 
any order. 

CARD SET 5 NODAL COORDINATE CARDS (IlO,F15.5)-One card 
for each node. Total of NPOIN cards (See Card Set 2). 

Cols. 1-10 JPOIN Node number. 
11-25 COORD(JP0IN) The x coordinate of the node. 

Note: The origin of the coordinate system may be arbitrarily located. 

CARD SET 6 RESTRAINED NODE CARDS (IlO,I5,F10.5)-One card 
for each restrained node. Total of NBOUN cards (See Card Set 2). 

Cols. 1-10 NODFX Restrained node number. 
11-1 5 ICODE(1) Condition of restraint(= 1). 
16-25 PRESC(1) The prescribed value of the nodal 

variable. 

CARD SET 7 APPLIED 'LOAD' CARDS (110,2F15.5)--One card for 
each loaded element. 

Cols. 1-10 IELEM The element .number. 
11-25 RLOAD(IELEM,I) The applied load at  the 1st node of the 

element. 
26-40 RLOAD(IELEM,2) The applied load at  the 2nd node of the 

element. 

Notes: 1) The 1st and 2nd nodes must be taken in the order listed in Card 
Set 4. 

2) This card set must terminate with data for the highest numbered 
element whether it is loaded or not. 
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CARD SET 8 LOAD INCREMENT CONTROL CARDS (215,2F15.5t 
One card for each load increment. Total of NINCS cards (See Card Set 2). 

Cols. 1-5 NITER Maximum number of iterations allowed 
for the 'load' increment. 

6-10 NOUTP Output control parameter: 
1-Results output only after the first 

iteration and after convergence, 
2-Results output after each iteration. 

11-25 FACT0 Applied 'load' factor for the increment- 
specified as a factor of the loading input 
in Card Set 7. 

26-40 TOLER Convergence tolerance factor.-The term 
TOLER in (3.21). 

Note: The applied loading factors are accumulative. If FACTO is specified 
as 0.6, 0.3, 0.3 for the first three 'load' increments, then the total 
loading acting during the third increment is 1.2 times that specified 
in Card Set 7. 

If the form of the material nonlinearity is to be changed, then FUNCTION 
VARIA must be modified in accordance with the process described in 
Section 3.9.1. 

A.1.2 Program QUNEWT for the solution of nonlinear onedimensional 
quasiharmonic problems by the NewtomRaphson process 

Data input for this application is identical to that described in Section A.l.l 
above with the following exceptions: 

CARD SET 2 CONTROL CARD 

Cols. 21-25 NPROP Number of independent properties per 
material ( = 2). 

3&40 NALGO Nonlinear solution process parameter 
(= 2, for Newton-Raphson solution 
technique). 

CARD SET 3 MATERIAL CARDS (I5,2F15.5)-One card for each 
different material. 

Cols. 1-5 JMATS Material identification number. 
6-20 PROPS(JMATS,l) The material coefficient KO in (2.27). 

21-35 PROPS(JMATS,2) The term b in (2.27). 
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A.1.3 Program NONLAS for the solution of one-dimensional nonlinear 
elastic problems 

The input data for this application is again identical to that described in 
Section A. 1.1 with the following exceptions. The basic nodal variable is now 
the axial displacement. 

CARD SET 2 CONTROL CARD 

Cols. 21-25 NPROP Number of independent properties per 
material(= 2). 

36-40 NALGO Nonlinear solution process indicator: 
1 or 2 Tangential stifSness algorithm. The 

element stiffnesses are recalculated 
for each iteration of the solution 
process. 

3 Initial st~ffness method. The stiff- 
nesses are calculated at the begin- 
ning of the solution process and 
maintained constant thereafter. 

4 Combined algorithm (Version I ) .  
The element stiffnesses are recom- 
puted for the first iteration of each 
load increment. 

5 Combined algorithm ( Version 11). 
The element stiffnesses are recom- 
puted for the second iteration of 
each load increment. 

CARD SET 3 MATERIAL CARDS (I5,2F15,5)-One card for each 
different material. 

Cols. 1-10 JMATS Material identification number. 
6-20 PROPS(JMATS,l) Elastic modulus, E. 

21-35 PROPS(JMATS,2) Cross-sectional area, A. 

A.1.4 Program ELPLAS for the solution of one-dimensional elastoplastic 
problems 

The input data for this application is again identical to that described in 
Section A.1.1 with the following exceptions. The basic nodal variable is the 
axial displacement. 

CARD SET 2 CONTROL CARD (915) 

Cols. 21-25 NPROP Number of independent properties per 
material ( = 4). 

3 M 0  NALGO Nonlinear solution process indicator: 
1 or 2 Tangential stiffness algorithm. 



APPENDIX I 507 

3 Initial stiffness method. 
4 Combined algorithm with stiff- 

nesses recomputed for the 1st 
iteration. 

5 Combined algorithm with stiff- 
nesses recomputed for the 2nd 
iteration. 

CARD SET 3 MATERIAL CARDS (15,4F15.5)-One card for each 
different material. 

Cols. 1-5 JMATS Material identification number. 
6-20 PROPS(JMATS,I) Elastic modulus, E. 

21-35 PROPS(JMATS,2) Cross-sectional area, A. 
36-50 PROPS(JMATS,3) Uniaxial yield stress, uy. 
5 1-65 PROPS(JMATS,4) Linear strain-hardening parameter, H '. 

A.1.5 Program UNVIS for the solution of one-dimensional elasto- 
viscoplastic problems 

The input data for this application is once again identical to that described 
in Section A.l.l with the following exceptions. The basic nodal variable is the 
axial displacement. 

CARD SET 2 CONTROL CARD 

Cols. 21-25 NPROP Number of independent properties per 
material ( = 5). 

36-40 NALGO Nonlinear solution process indicator 
(= I, for Euler time stepping scheme). 

CARD SET 3 MATERIAL CARDS (15,5F15.5)-One card for each 
different material. 

Cols. 1-5 JMATS Material identification number. 
6-20 PROPS(JMATS,I) Elastic modulus, E. 

21-35 PROPS(JMATS,2) Cross-sectional area, A. 
36-50 PROPS(JMATS,3) Uniaxial yield stress, cry. 

51-65 PROPS(JMATS,4) Linear strain-hardening parameter, H '. 
66-80 PROPS(JMATS,S) Fluidity parameter, y. 

CARD SET 8 TIMESTEPPING PARAMETER CARD (3F15.5)-One 
card. 

Cols. 1-15 TAUFT The factor 7 employed to limit the time- 
step length according to (4.38). 

16-30 DTINT The initial time step length (required to 
initiate the time stepping process. 

3145  FTIME The factor k in (4.39). 



508 FINITE ELEMENTS IN PLASTICITY 

CARD SET 9 LOAD INCREMENT CONTROL CARDS 

This card set is identical to Card Set 8, Section A.1.1 where the term 
'iteration' is now replaced by 'timestep'. 

A.1.6 Program TIMOSH for the nodayered elasto-plastic analysis of 
Timoshenko beams 

The input data for this application is identical to that described in Section 
A.l.l with the following exceptions. 

CARD SET 2 CONTROL CARD (915) 

Cols. 21-25 NPROP Number of independent properties per 
material (=4) 

3&40 NALGO Nonlinear solution process indicator: 
1 or 2 Tangential stiffness algorithm. 
3 Initial stiffness method. 
4 Combined algorithm with stiffnesses 

recomputed for the 1st iteration. 
5 Combined algorithm with stiffnesses 

recomputed for the 2nd iteration. 
41-45 NDOFN Number of degrees of freedom per node 

( = 2). 

CARD SET 3 MATERIAL CARDS (IS, 4F15.StOne card for each 
different material, 

Cols. 6-20 PROPS(JMATS, 1) Flexural rigidity, EI. 
21-35 PROPS(JMATS,2) Shear constant, GA/I.S. 
36-50 PROPS(JMATS, 3) Yield moment, Mo. 
5145 PROPS(JMATS, 4) Strain hardening parameter, H' 

CARD SET 6 RESTRAINED NODE CARDS (110, 2(15, F10.5)tOne 
card for each restrained node. Total of NBOUN cards. 

Cols. 11-1 5 ICODE(1) Condition of restraint on nodal displace- 
ment, 1r. 

&No displacement restraint. 
I-Nodal displacement restrained. 

16-25 VALUE(1) The prescribed value of nodal displace- 
ment, w. 

26-30 ICODE(2) Condition of restraint on nodal rotation, 8. 

{ 
&No rotation restraint. 
1 N o d a l  rotation restrained. 

31-40 VALUE(2) The prescribed value of nodal rotation, 8. 
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CARD SET 7 APPLIED LOAD CARDS (110, 4FI5.5)-One card for 
each loaded element. 

Cols. 1-10 JELEM Element number. 
11-25 RLOAD(JELEM,l) Transverse load applied at the first node. 
26-40 RLOAD(JELEM,2) Couple applied at  the first node. 
41-55 RLOAD(JELEM,3) Transverse load applied at the second 

node. 
56-70 RLOAD(JELEM,4) Couple applied at the second node. 

Note: The last card should be that for the highest numbered element 
whether it is loaded or not. 

A.1.7 Program TIMLAY for the layered elastwplastic analysis of 
Timoshenko beams 

The input data for this application is identical to that described in Section 
A.1.6 with the following exceptions. 

CARD SET 2 CONTROL CARD (1015) 

Cols. 21-25 NPROP Number of independent properties per ma- 
terial ( = 4 + 2  xTotal number of layers). 

46-50 NLAYR Total number of layers. 

CARD SET 3 MATERIAL CARDS 

1st Card (IS, 4F15.5) 

Cols. 1-5 NUMAT Material identification number. 
6-20 PROPS(NUMAT,l)Young's modulus, E. 

21-35 PROPS(NUMAT,2)Modified shear modulus, G11.5. 
36-50 PROPS(NUMAT,3)Yield stress, uy. 

51-65 PROPS(NUMAT,4)Strain hardening parameter, H' 

2nd and subsequent cards (4F15.5) 

Cols. 1-15 BRDTH(1) Breadth of the 1st layer. 
16-30 THICK(1) Thickness of the 1st layer. 
3 1 4 5  BRDTH(2) Breadth of the 2nd layer. 

. BRDTH(NLAYR) Breadth of the last layer. 

. THICK(NLAYR) Thickness of the last layer. 





Appendix II 

Instructions for preparing input data for 
plane, axisymmetric and plate bending 

problems 

In this appendix user instructions are provided for the computer programs 
developed in Part I1 of this text. Chapter 7 dealt with elasto-plastic prablems 
in two dimensions and in Chapter 8 the corresponding time-dependent 
situation of elasto-viscoplasticity was discussed. The elasto-plastic behaviour 
of plates in bending was considered in Chapter 9. 

A.2.1 Program PLANET for the elasto-plastic analysis of plane and 
axisymmetric solids 

CARD SET 1 TlTLE CARD (12A6)-One card. 

Cols. 1-72 Title of the problem-limited to 72 alphanumeric characters. 

CARD SET 2 CONTROL CARD (1 115)-One card. 

Cols. 1-5 NPOlN Total number of nodal points. 
6-10 NELEM Total number of elements. 

11-15 NVFlX Total number of restrained boundary 
point+where one or more degrees of 
freedom are restrained. 

16-20 NTYPE Problem type parameter: 
I-Plane stress, 
2-Plane strain, 
3-Axial symmetry. 
Number of nodes per element: 
4-Linear quadrilateral element, 
8-Quadratic Serendipity element, 
9-Quadratic Lagrangian element. 
Total number of different materials. 
Order of integration formula for numeri- 
cal integration : 
2--Two point Gauss quadrature rule, 
3-Three point Gauss quadrature rule. 

21-25 NNODE 

26-30 NMATS 
31-35 NGAUS 
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3 6 4 0  NALGO Nonlinear solution parameter : 

46-50 NINCS 

51-55 NSTRE 

Initial stiflness method. The element 
stiffnesses are calculated at the begin- 
ning of the solution process and 
remain unchanged thereafter. 
Tangential st~flness method. The 
element stiffnesses are recalculated for 
every iteration of each load increment. 
Combined algorithm (Version I). The 
element stiffnesses are recalculated for 
the Jirst iteration of each load in- 
crement only. 
Combined algorithm (Version II). The 
element stiffnesses are recalculated for 
the second iteration of each load 
increment only. 

Yield criterion parameter: 
1-Tresca, 
2-Von Mises, 
3-Mohr-Coulomb, 
4-Drucker-Prager. 
Number of increments in which the total 
loading is to be applied. 
Number of stress components at a point: 
3-Plane stress or plane strain, 
&Axial symmetry. 

CARD SET 3 ELEMENT CARDS (1115)-One card for each element. 
Total of NELEM cards (See Card Set 2). 

Cols. 1-5 NUMEL Element number. 
6-10 MATNO(NUMEL) Material property number. 

11-15 LNODS(NUMEL,l) 1st Nodal connection number. 
16-20 LNODS(NUMEL,2) 2nd Nodal connection number. 

51-55 LNODS(NUMEL,9) 9th Nodal connection number. 

Notes: 1) Columns 31-55 remain blank for linear 4-noded elements. 
2) Columns 51-55 remain blank for 8-noded elements. 
3) The nodal connection numbers must be listed in an anti-clockwise 

sequence, starting from any corner node. 

CARD SET 4 NODE CARDS (15,2F10.5)-One card for each node whose 
coordinates are to be input. 
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Cols. 1-5 IPOlN Nodal point number. 
6-15 COORD(IPOIN,l) x (or r) coordinate of the node. 

16-25 COORD(IPOIN,2) y (or z) coordinate of the node. 

Notes: 1) The total number of cards in this set will generally differ from 
NPOlN (see Card Set 2) since for quadratic elements whose sides 
are linear, it is only necessary to specify data for corner nodes, 
intermediate nodal coordinates being automatically interpolated 
if on a straight line. 

2) For Lagrangian elements the coordinates of the 9th (central) node 
are never input. 

3) The coordinates of the highest numbered node must be input 
regardless of whether it is a midside node or not. 

CARD SET 5 RESTRAINED NODE CARDS (lX,I4,5X,I5,5X,2F10.5)- 
One card for each restrained node. Total of NVFlX cards (See Card Set 2). 

Cols. 2-5 NOFIX(IVF1X) Restrained node number. 
11-15 IFPRE Restraint code : 

01 Nodal displacement restrained in the 
x (or r) direction, 

10 Nodal displacement restrained in the 
y (or z) direction, 

11 Nodal displacement restrained in both 
coordinate directions. 

21-30 PRESC(IVFIX,I) The prescribed value of the x (or r) 
component of nodal displacement. 

3 1 4  PRESC(IVFIX,2) The prescribed value of the y (or z )  
component of nodal displacement. 

CARD SET 6 MATERIAL CARDS 
6(a) CONTROL CARD (15)-One card. 

Cols. 1-5 NUMAT Material identification number. 

6(b) PROPERTIES CARDS (7F10.5&0ne card for each different material. 

Cols. 1-10 PROPS(NUMAT,I) Elastic modulus, E. 
11-20 PROPS(NUMAT,2) Poisson's ratio, v .  

21-30 PROPS(NUMAT,3) Material thickness, t (leave blank for plane 
strain and axisymmetric problems). 

3 1 4 0  PROPS(NUMAT,4) Mass density, p. 
41-50 PROPS(NUMAT,S) Uniaxial yield stress, oy (or cohesion c 

for Mohr-Coulomb or Drucker-Prager 
materials). 

5140  PROPS(NUMAT,6) Strain hardening parameter, H'. 
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61-70 PROPS(NUMAT,7) Friction angle + (measured in degrees) for 
Mohr-Coulomb and Drucker-Prager 
materials only). 

Note: This card set to be repeated for each different material. Total of 
NMATS card sets (See Card Set 2). 

CARD SET 7 LOAD CASE TITLE CARD (12A6)-One card. 

Cols. 1-72 TITLE Title of the load case-limited to 72 
alphanumeric characters. 

CARD SET 8 LOAD CONTROL CARD (315tOne card. 
Cols. 1-5 IPLOD Applied point load control parameter: 

0 No applied nodal loads to be input, 
1 Applied nodal loads to be input. 

6-10 IGRAV Gravity loading control parameter: 
0 No gravity loads to be considered, 
1 Gravity loading to be considered. 

11-15 IEDGE Distributed edge load control parameter: 
0 No distributed edge loads to be input, 
1 Distributed edge loads to be input. 

CARD SET 9 APPLIED LOAD CARDS (15,2F10.3)-One card for each 
loaded nodal point. 

Cols. 1-5 LODPT Node number. 
6-15 POINT(1) Load component in x (or r )  direction. 

1 6-25 POINT(2) Load component in y (or z) direction. 

Notes: 1)The last card should be that for the highest numbered node 
whether it is loaded or not. 

2) For axisymmetric problems, the loads input should be the total 
loading on the circumferential ring passing through the nodal 
point concerned. 

3) If IPLOD = 0 in Card Set 8, omit this set. 

CARD SET 10 GRAVITY LOADING CARD (2F10.3hOne card. 

Cols. 1-10 THETA Angle of gravity axis measured from the 
positive y axis (see Fig. 6.7). 

11-20 GRAVY Gravity constant-specified as a multiple 
of the gravitational acceleration, g. 

Note: If IGRAV = 0 in Card Set 8, omit this set. 

CARD SET 11 DISTRIBUTED EDGE LOAD CARDS 
1 l(a) CONTROL CARD ( I 5 W n e  card. 

Cols. 1-5 NEDGE Number of element edges on which 
distributed loads are to be applied. 
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1 l(b) ELEMENT FACE TOPOLOGY CARD (415) 

Cols. 1-5 NEASS The element number with which the 
element edge is associated. 

6-10 NOPRS(1) 1 List of nodal points, in an anticlockwise 
11-1 5 NOPRS(2) sequence, of the nodes forming the 
16-20 NOPRS(3) J element face on which the distributed load 

acts. 

Note: For linear 4-noded elements, Cols. 16-20 remain blank. 

11(c) DISTRIBUTED LOAD CARDS (6F10.3) 

Cols. 1-10 PRESS(I,l) Value of normal component of distri- 
buted load at node NOPRS(1). 

11-20 PRESS(1,2) Value of tangential component of distri- 
buted load at node NOPRS(1). 

21-30 PRESS(2,l) Value of normal component of distri- 
buted load at node NOPRS(2). 

3 1 4 0  PRESS(2,2) Value of tangential component of distri- 
buted load at node NOPRS(2). 

41-50 PRESS(3,l) Value of normal component of distri- 
buted load at node NOPRS(3). 

51-60 PRESS(3,2) Value of tangential component of distri- 
buted load at node NOPRS(3). 

Notes: 1) For linear 4-noded elements, Cols. 41-60 remain blank. 
2) Subsets I l(b) and 1 l(c) must be repeated in turn for every 

element edge on which a distributed load acts. The element edges 
can be considered in any order. 

3) If IEDGE = 0 in Card Set 8, omit this card set. 

CARD SET 12 LOAD INCREMENT CONTROL CARDS (2F10.5,315)- 
One card for each load increment. Total of NINCS cards (see Card Set 2). 

Cols. 1-10 FACT0 Applied load factor for this increment- 
specified as a factor of the loading input 
in Card Sets 8 to 1 1. 

11-20 TOLER Convergence tolerance factor.-The term 
TOLER in (3.27). 

21-25 MITER Maximum number of iterations allowed 
for the load increment. 

26-30 NOUTP(1) Parameter controlling output of results 
after I st iteration: 
@-No output, 
I-Output displacements, 
2-Output displacements and reactions, 
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3-Output displacements, reactions and 
stresses. 

31-35 NOUTP(2) Parameter controlling output of the 
converged results: 
&No output, 
I-Output displacements, 
2-Output displacements and reactions, 
3-Output displacements, reactions and 

stresses. 

Note: The applied loading factors are accumulative. If FACT0 is specified 
as 0.6, 0.3, 0.2 for the first three load increments, then the total 
loading acting during the third increment is 1.1 times that specified 
in Card Sets 8 to 11. 

A.2.2 Program VISCOUNT for tbe elast~viscoplastic analysis of plane 
and axisymmetric solids 

The input data for this application is identical to that described in Section 
A.2.1, for elasto-plastic problems, with the following exceptions. 

CARD SET 2 CONTROL CARD ( I  115) 

Cols. 3-0 NALGO Equation solution parameter: 
1 Explicit time stepping scheme (i.e. 

TIMEX = &See Card Set 12), 
2 Implicit or Semi-implicit schemes 

(TIMEX # 0). 

CARD SET 6(b) PROPERTIES CARDS (8F10.5)-Two cards for each 
different material. 

1st Card 
Cols. 1-70 Identical to Card Set 6(b), Section A.2.1. 

71-80 PROPS(NUMAT,8) Fluidity parameter, y. 

2nd Card 
Cols. 1-10 PROPS(NUMAT,9) The constant M in (8.8) or constant N in 

(8.9). 
11-20 PROPS(NUMAT,IO)Parameter controlling choice of the flow 

function: 
0 Expression (8.8) to be used, 
1 Expression (8.9) to be used. 

CARD SET 12 TIMESTEPPlNG PARAMETER CARD (4F10.3bOne 
card. 

Cols. 1-10 TIMEX Timestepping algorithm parameter, @ in 
(8.10). 
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1 1-20 TAUFT The factor 7 employed to limit the time 
step length according to (8.29). 

21-30 DTINT The initial time step length (required to 
initiate the time stepping process). 

31-40 FTIME The factor k in (8.32). 

CARD SET 13 LOAD INCREMENT CONTROL CARDS 

This card set is identical to Card Set 12, Section A.2.1 where the term 
'iteration' is now replaced by 'timestep'. . 
A.2.3 Programs MINDLIN and MINDLAY for the nonlayered and 

layered elasto-plastic analysis of Mindli plates 
The input data for this application is identical to that described in Section 

A.2.1, for elasto-plastic plane and axisymmetric solids, with the following 
exceptions. 

CARD SET 2 (1 115)--One card 

Cols.16-20 NTYPE Problem type parameter: 
5-for Heterosis element, 
0-for 4- or 8-node elements. 

21-25 NNODE Number of nodes per element: 
4-Linear 4-node quadrilateral element. 
8-Quadratic 8-node Serendipity element. 
!%-Quadratic 9-node Lagrangian element 

31-35 NGAUS 

41-45 NCRIT 

51-55 NLAPS 

or Heterosis element. 
2 for 4-node element, 
3 for 8-, 9-node and Heterosis element. 
(N.E. This is the integration rule to  evalu- 
ate the flexural contribution to the element 
stiffness matrix. Since selective integration 
is adopted a (NGAUS-1) integration is 
automatically used to evaluate the trans- 
verse shear contribution to the element 
stiffness matrix.) 
Yield criterion parameter : 
1-Tresca, 
2-Von-Mises. 
(Mohr-Coulomb and Drucker-Prager 
yield criteria are not included.) 
Total number of layers. 
(for program MINDLAY only-in pro- 
gram MTNDLIN leave blank.) 
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CARD SET 5 RESTRAINED NODE CARDS (IX, 14, 5X, 15, 5X, 3F10.5) 
One card for each restrained node. Total of NVFIX cards. 

Cols.11-15 IFPRE Restraint code: 
100 Lateral displacement w restrained. 
010 Rotation Oz restrained. 
001 Rotation 8, restrained. 
110 Lateral displacement w and rotation 

8, restrained, etc. 
21-30 PRESC(IVFIX,I) The prescribed value of the lateral nodal 

displacement w. 
31-40 PRESC(IVFIX,2) The prescribed value of the nodal 

rotation 0,. 
41-50 PRESC(IVFIX.3) The prescribed value of the nodal 

rotation 0,. 

CARD SET 6 MATERIAL CARDS 
6(b) PROPERTIES CARDS (7F10.5tOne card for each different material. 

Cols.3140 PROPS(NUMAT,4) Uniform distributed loading value. 
41-50 PROPS(NUMAT,S) Blank. 
5 1 4 0  PROPS(NUMAT,6) Uniaxial yield stress, UO. 

61-70 PROPS(NUMAT,7) Strain hardening parameter H'. 

CARD SET 6X CONVERGENCE CHECK CARDS 
6X(a) DISPLACEMENT CHECK CARD (511)-One card. 

Cols. 1 IFDIS 1 The displacement check is to be 
employed. 

2 NCDIS(1) 1 Check based on norm involving w. 
3 NCDIS(2) 1 Check based on norm involving 0,. 
4 NCDIS(3) 1 Check based on norm involving 0,. 
5 NCDIS(4) 1 Check based on w, 0, and 8,. 

6X(b) RESIDUAL FORCE CHECK CARD (511)-One card. 
Cols. 1 IFRES 1 The residual force check is to be 

employed. 
2 NCRES(1) 1 Check based on norm involving re- 

sidual forces associated' with u!. 
3 NCRES(2) 1 Check based on norm involving re- 

sidual forces associated with &. 
4 NCRES(3) 1 Check based on norm involving re- 

sidual forces associated with 8,. 
5 NCRES(4) 1 Check based on norm involving re- 

sidual forces associated with w, & 
and 8,. 

Note: A zero value for any item implies that the check is not being used. 
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CARD SET 8 LOAD CONTROL CARD (15)-One card. 

Cols. 1-5 IPLOD Applied point load control parameter: 
0 No applied nodal loads to be input. 
1 Applied nodal loads to be input. 

6-15 Blank. 

CARD SET 9 APPLIED LOAD CARDS (15, 3F10.3)-One card for each 
loaded nodal point. 

Cols. 1-5 LODPT Node number. 
6 1 5  POlNT(1) Lateral nodal load. 

16-25 POINT(2) Nodal couple in xz plane. 
2635  POINT(3) Nodal couple in yz plane. 

Omit CARD SETS 10, I l(a), I l(b) and 1 l(c). 
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Instructions for preparing input data for 
dynamic transient problems 

The program DYNPAK has been described in Section 10.6 and MIXDYN 
in Section 11.5. These programs perform large displacement or viscoplastic 
or elasto-plastic, transient dynamic analysis of plane stress/strain or axi- 
symmetric problems respectively. The format of the input data is identical 
for both programs. In this appendix user instructions for preparing input 
data are provided. 

CARD SET 1 DYNAMIC DIMENSIONING (415)-One card. 

Cols. 1-5 NPOIN Total number of nodal points. 
6-10 NELEM Total number of elements. 

11-15 NDOFN Number of degrees of freedom per node 
(= 2). 

16-20 NMATS Number of different material sets. 

CARD SET 2 TITLE CARD (lOA4)-One card. 

Cols. 1 4  Title of the problem-limited to 40 
alphanumeric characters. 

CARD SET 3 CONTROL CARD (1315 )-One card. 

Cols. 1-5 NVFIX Total number of nodal points with fixed 
degrees of freedom. 

6-10 NTYPE Type of problem : 
= 1 ,  Plane stress, 
= 2, Plane strain, 
= 3, Axisymmetric problem. 

11-15 NNODE Number of nodes per element. 
1620 NPROP Number of material properties (= 11). 
21-25 NGAUS Integration rule for stiffness matrix. 
26-30 NDIME Number of coordinate dimensions (=2). 
31-35 NSTRE Number of stress components (= 3 for 

plane stresslstrain, = 4 for axisymmetric). 
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41-45 NPREV 

46-50 NCONM 

51-55 NLAPS 

56-60 NGAUM 
61-65 NRADS 

36-40 NCRlT Yield criterion : 
= 1 - Tresca, 
= 2 - Von Mises, 
= 3 - Mohr-Coulomb, 
= 4 - Drucker-Prager. 
Indicator for the previous state to be 
read (= 1 for previous state, otherwise, 
= 0). 
Number of concentrated masses (2 1 if 
concentrated mass present, otherwise, 
= 0). 
Indicator for large displacement analysis: 
= &Elastic analysis, 
= 1-Elasto-plastic small displacement 

analysis, 
= 2-Elastic large displacement analysis, 
Integration rule for mass matrix. 
= 0, Read (r, z) coordinates for nodes, 
= 1, Read (R, O) coordinates for nodes 

for axisymmetric analysis. 

CARD SET 4 ELEMENT CARDS (1115)-One card for each element, 
total of NELEM cards. The node numbers are read in anticlockwise sequence. 
The number of nodes depends upon the type of element. For four and eight 
noded elements read only four and eight nodes respectively. 

Cols. 1-5 IELEM Element number. 
6-10 MATNO Material identification number. 

1 1-1 5 LNODS(IELEM, 1) 
16-20 LNODS(IELEM,2) 
21-25 LNODS(IELEM,3) 
2630  LNODS(IELEM,4) 
31-35 LNODS(IELEM,5) Nodal connection numbers. 
36-40 LNODS(IELEM,6) 
41-45 LNODS(IELEM,7) 
46-50 LNODS(IELEM,8) 
51-55 LNODS(IELEM,9) 

CARD SET 5 NODAL COORDINATE CARDS (I5,2F10.5)-One card 
for each node. Last nodal point (IPOIN =NPOIN) must be read at the end. 
Only corner and central nodes need to be specified. Midside nodes are inter- 
polated if not specified. Por axisymmetric cases, (R, @) values are read for 
NRADS = 1, and (r, z )  coordinates are calculated in the program. 
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Cols. 1-5 IPOIN Current nodal point. 
6-15 COORD(lPOlN,l) x-coordinate.* 

16-25 COORD(IPOlN,2) y-coordinate. 

CARD SET 6 RESTRAINED NODE CARDS (IX,I4,3X,211)-One card 
for each restrained node. Total of NVFlX cards. 

Cols. 2-5 IPOlN Restrained node number. 
9 IFPRE(IVFIX,I) Fixity in x-direction (= 0, Free; = 1, 

Fixed). 
10 IFPRE(IVFIX,2) Fixity in y-direction (= 0, Free; = 1, 

Fixed). 

CARD SET 7 MATERIAL CARDS-Three cards for each different 
material, a total of NMATS*3 cards. 

1st Card MATERIAL IDENTIFICATION CARD (IS) 

Cols. 1-5 NUMAT Material identification number. 

2nd Card MATERIAL PROPERTIES CARD--(a) (8E10.4) 
Cols. 1-10 PROPS(NUMAT,l) Young's Modulus, E. 

11-20 PROPS(NUMAT,2) Poisson's ratio, v .  

21-30 PROPS(NUMAT,3) Thickness for plane stress problem, t .  
3140  PROPS(NUMAT,4) Mass density per unit volume, p. 

41-50 PROPS(NUMAT,S) Temperature coefficient, at. 
51-60 PROPS(NUMAT,6) Reference yield value 'Fo' : 

Von Mises, Fo = UY, 

Tresca, Fo = UY, 
Mohr-Coulomb, Fa = c cos +, 
Drucker-Prager, Fo = 6c cos $1 

( 4 3 ( 3  -sin +)). 
61-70 PROPS(NUMAT,7) Hardening parameter, H' : 

where ET is the hardening tangent modu- 
lus, 

E is the tangent modulus, 
oy is the yield stress, 
c is the cohesion, 
+ is the friction angle. 

71-80 PROPS(NUMAT,8) Friction angle 'f. 

* For axisymmetric problems x and y are replaced by r and z respectively (or R and Q 
if NRADS = 1). 
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3rd Card MATERIAL PROPERTIES CARD-(b) (3E10.4) 

Cols. 1-10 PROPS(NUMAT,9) Fluidity parameter, y. 
11-20 PROPS(NUMAT,lO) Exponent, 6. 
21-30 PROPS(NUMAT,l 1) NFLOW code 

(NFLOW = 1-Power law, 
NFLOW # 1-Exponential law). 

CARD SET 8 TIME INTEGRATION CONTROL CARD (1115)-One 
card. 

36-40 IFIXD 

4145  MITER 

Cols. 1-5 NSTEP Total number of time steps. 
6-10 NOUTD Writes displacement and stress history of 

required points on tapes 10 and 11 
respectively at NOUTD timesteps. 

11-15 NOUTP Output for displacements and stresses at 
every NOUTP step (NOUTP < 500). 

16-20 NREQD Number of nodes for selective output of 
displacements at NOUTD steps. 

21-25 NREQS Number of integration points for selective 
output of stresses at every NOUTP step. 

26-30 NACCE Number* of acceleration ordinates (If 
IFUNC # 0, NACCE is not used, then 
leave. blank). 

31-35 IFUNC Time function code: 
IFUNC = 0 Acceleration time history, 
IFUNC = 1 Heaviside function, f(t) = 

1 .o, 
IFUNC = 2 Harmonic excitation, At) 

= a,+ bo sinwt. 
Indicator for excitation: 
IFIXD = 0, Horizontal acceleration read 

from tape 7, 
Vertical acceleration read 
from tape 12. 

IFIXD = 1, Vertical acceleration read 
from tape 12, 

IFIXD = 2, Horizontal acceleration read 
from tape 7. (If IFUNC # 0 
IFIXD is not used, then 
leave blank.) 

Maximum number of iterations. 'This 
variable is not used in DYNPAK, SO 

leave blank. 
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46-50 KSTEP Number of steps after which the stiffness 
matrix is reformed. Not used in DYN- 
PAK, leave blank. 

51-55 IPRED = 1 Standard algorithm, 
= 2 Modified algorithm. 

CARD SET 9 TIME 1NTEGRATlON PARAMETERS CARD (8F10.3)- 
Two cards. 

1st Card 

Cols. 1-10 DTIME 
11-20 DTEND 
21-30 DTREC 
31-40 AALFA 

41-50 BEETA 

51-60 DELTA 

61-70 GAAMA 

71-80 AZERO 

Time step length. 
Time at the end of the excitation force. 
Time step of acceleration records. 
a = Damping parameter, C = uM, 
" = 2t iw i -  
/3 = Damping parameter, C = PK. 
(u+ Pwi2 = 2wi 5 ,  not used in DYNPAK) 
Newmark's integration parameter 
(6 = 0.25 (y+0.5)a, not used in DYN- 
PAK). 
Newmark's integration parameter (y 2 0.5 
for stable solution, not used in DYN- 
PAK). 

2nd Card Constants for harmonic excitation 

1-10 BZERO 
f(t) = a,+ b, sinwt. 

11-20 OMEGA 
21-30 TOLER Speciiied tolerance (Not used in DYN- 

PAK). 

CARD SET 10 CARD FOR NODAL POINTS FOR WHICH DIS- 
PLACEMENT HISTORY IS REQUIRED (1 6ISFTotal of NREQD nodes. 

Cols. 1-5 NPRQD(1) First nodal point at which displacement 
history is required. 

6 1 0  NPRQD(2) Second nodal point at which displacement 
history is required. 

11-15 . 
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CARD SET 11  CARD FOR INTEGRATION POINTS FOR WHICH 
STRESS HISTORY IS REQUIRED (1615tTotal of NREQS integration 
points. 

Cols. 1-5 NGRQS(1) First integration point at which stress 
history is required. 

6-10 NGRQS(2) Second integration point at which stress 
history is required. 

11-15 . 

CARD SET 12 IMPLICIT-EXPLICIT ELEMENT INDICATOR CARDS 
(1615). Number of cards depends on number of elements. For each 16 
elements one card is needed. In DYNPAK, INTGR(1ELEM) is 2 for every 
element. 

INTGR(1ELEM) = 1, Implicit element. 
INTGR(1ELEM) = 2, Explicit element. 

CARD SET 13 INITIAL DISPLACEMENT CARDS (15,2F10.5)-One 
card for each node. If all displacements are zero, read data for last node. 

Cols. 1-5 NGASH Nodal point. 
6-15 XGASH Initial x-displacement. 

16-25 YGASH Initial y-displacement. 

CARD SET 14 INITIAL VELOCITY CARDS (15,2F10.5)-One card for 
each node. If all velocities are zero, read data for last node. 

Cols. 1-5 NGASH Nodal point. 
6-15 XGASH Initial x-velocity. 

16-25 YGASH Initial y-velocity. 

CARD SET 15 PREVIOUS LOAD STATE CARDS (I5,2F10.3)-One 
card for one node, a total of NNODE cards. Data for the last nodal point 
should always be read even when it is not loaded. If NPREV = 0 then 
omit this set of data. 

Cols. 1-5 NGASH Nodal point. 
6-15 XGASH Equivalent nodal load in x direction. 

16-25 YGASH Equivalent nodal load in y direction. 

CARD SET 16 PREVIOUS STRESS STATE CARD (15,4F10.3)10ne 
card for one integration point. Total of (NELEM*NGAUS*NGAUS) cards. 
If NPREV = 0 omit this set of data. 
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Cols. 1-5 KGAUS Integration point. 
6-15 STRESS(1) Initial stress, o, or a,. 

1625  STRESS(2) Initial stress, o, or 0,. 
26-35 STRESS(3) Initial stress, y,, or yrr 
36-45 STRESS(4) Initial stress, a, or 0,. 

CARD SET 17 LOAD TITLE CARD (10A4)-One card. 

Cols. 1 4 0  Title of load applied-limited to 40 alphanumeric characters. 

CARD SET 18 LOAD INDICATOR CARD (415)-One card. 

Cols. 1-5 IPLOD Point load indicator. 
6-10 IGRAV Gravity load indicator. 

11-15 IEDGE Edge load indicator. 
16-20 ITEMP Temperature load indicator. 

CARD SET 19 POINT LOAD CARD (I5,2F10.3)-One card for each 
node. Data for the last node must be specified at the end. If IPLOD = 0 then 
omit this set of data. 

Cols. 1-5 LODPT Node number. 
6-1 5 POINT(1) Load in x-direction. 

1625  POINT(2) Load in y-direction. 

CARD SET 20 GRAVITY LOAD CARD (2F10.3)-One card only. If 
IGRAV = 0 then omit this set of data. 

Cols. 1-10 THETA Angle of gravity axis to the positive y 
axis. 

11-20 GRAVY Gravity constant. 

CARD SET 21 NUMBER OF PRESSURE EDGE CARD (15)-One 
card. If ]EDGE = 0, then omit card sets 21 and 22. 

Cols. 1-5 NEDGE Number of loaded edges. 

CARD SET 22 PRESSURE CARDS-Two cards for each pressure loaded 
edge. 

1st Card PRESSURE NODES CARD (415)-One card for each edge. 
Total of NEDGE cards. 

Cols. 1-5 NEASS Element number with edge load. 
Cols. 6-10 NOPRS(1) 

I 1-1 5 NOPRS(2) Edge nodes read in anticlockwise sequence. 
1620 NOPRS(3) J 
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2nd Card PRESSURE CARD (6F10.3hOne card for each edge. Total of 
NEDGE cards. A pressure normal to a face is assumed to be positive if it 
acts in a direction into the element. A tangential load is assumed to be 
positive if it acts in an anticlockwise direction with respect to the loauedWW 
positive if it acts in an anticlockwise direction with respect to the loaded 
element. 

Cols. 1-10 PRESS(1,l) 
11-20 PRESS(2,l) 

Normal component of edge load for each 

21-30 PRESS(3,l) 
node. 

31-40 PRESS(1,2) 
41-50 PRESS(2,2) 

Tangential component of edge load for 

51-60 PRESS(3,2) 
each node. 

CARD SET 24 TEMPERATURE CARDS (15, F10.3)-One card for each 
node. The last card must be for the highest numbered node. If ITEMP = 0, 
omit this set of data. 

Cols. 1-5 NODPT Node number. 
6-15 TEMPE Nodal temperature. 

CARD SET 25 CONCENTRATED MASSES (I5,2F10.3)-One card for 
each node. Total of NCONM cards. If NCONM = 0, omit this set of data. 

Cols. 1-5 IPOIN Current nodal point with concentrated 
mass. 

6-15 XCMAS Concentrated mass associated with the 
x-direction. 

16-25 YCMAS Concentrated mass associated with the 
y-direction. 
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Sample input data and line printer output 
for one - and two-dimensional applications 

In this appendix input data and line printer output are provided for a 
selection of the numerical examples presented in the text. This information 
will be of assistance to readers who wish to implement the programs con- 
tained in the book on their own computer. For economy of space, presen- 
tation is limited to one example from each area of application. Also in some 
cases the line printer output is edited for the same reason. 

A.4.1 Solution of ondimensional quasihamonk problem by direct 
iteration. Example of Section 3.9.3, Fig. 3.3 

Input data 

1-D QUASIHARMONIC W P L E  , SECTION 3.9.3 , FIG. 3.3 
1 1 1 0 2 1 1 2 1  1 1  

1 
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Line printer output 
1-D QUASIHARMONIC EXAMPLE , SECTION 3.9.3 , FIG. 3.3 

NPOIN = 11 NELEM = 10 NBOUN = 2 NMATS = 1 
NPROP : 1 NNODE : 2 NINCS : 1 NALGO : 1 
NDOFN = 1 

MATERIAL PROPERTIES 
1 10.00000 

EL NODES MAT. 
1 1 2 1  

- - 
4 4 5 1  
5 5 6 1  
6 6 7 1  
7 7 8 1  
8 8 9 1  
9 9 1 0  1 

10 10 11 1 
NODE COORD. 

1 0.00000 
2 1 .00000 
3 2.00000 
4 3. 00000 
5 4.00000 
6 5.00000 
7 6.00000 
8 7.00000 
9 8.00000 

10 9.00000 
11 10.00000 

RES. NODE CODE PRES. VALUES 
1 1  0.00000 

11 1 1 .00000 
ELEMENT NODAL LOADS 

1 0.00000 0.00000 
2 0.00000 0.00000 
3 0.00000 0.00000 
4 0.00000 0.00000 
5 0.00000 0.00000 
6 0.00000 0.00000 
7 0.00000 0.00000 
8 0.00000 0.00000 
9 0.00000 0.00000 

10 0.00000 0.00000 
IINCS = 1 NITER = 20 NOUTP = 1 FACT0 : 0.100000E 01 TOLER - 0.500000E 00 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.000000E 00 
NODE DISPL. REACTIONS 

10 0.g00000E 00 0.000000E 00 
11 0.100000E 01 0.1000OOE 01 

ELEMENT STRESSES PL. STRAIN 
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CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = . .-- 

CONVERGENCE CODE : 
CONVERGENCE CODE = 
CONVERGENCE CODE : 
CONVERGENCE CODE = 
CONVERGENCE CODE : 
CONVERGENCE CODE = 
NODE DISPL. 

1 0.000000E 00 
2 0.260555E 00 
3 0.399999E 00 
4 0.508276E 00 
5 0.599999E 00 
6 0.681025E 00 
7 0.754400E 00 
8 0.821954E 00 
9 0.884886E 00 

10 0.944031E 00 
1 1 0.100000E 01 

ELEMENT STRESSES 
1 0.000000E 00 

NORM OF RESIDUAL S U M  RATIO = 0.706275E 02 
NORM OF RESIDUAL S U M  RATIO : 0.393376E 02 
NORM OF RESIDUAL S U M  RATIO = 0.983804E 01 
NORM OF RESIDUAL SUM RATIO = 0.80i219~ 01 
NORM OF RESIDUAL S U M  RATIO = 0.472308E 01 
NORM OF RESIDUAL S U M  RATIO : 0.127390E 01 
NORM OF RESIDUAL SUM RATIO = 0.974302E 00 
NORM OF RESIDUAL S U M  RATIO : 0.574815E 00 
NORM OF RESIDUAL S U M  RATIO = 0.153335E 00 
REACTIONS 

-0.600000E 01 
0.000000E 00 
0.000000E 00 
0.000000E 00 
0.000000E 00 
0.000000E 00 
0.000000E 00 
0.000OOOE 00 
0.000000E 00 
0.000000E 00 
0.600000E 01 

PL . STRAIN 
0.000000E 00 

A.4.2 Solution of one-dimensional elasto-plastic problem. Example of 
Section 3.12.3, Fig. 3.9 

Input data 

1-D ELASTO-PLASTIC EXAMPLE , SECTION 3.12.3 ,FIG. 3.9 
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Line printer output 

1-D WTO-PLASTIC EXAMPLE , SECTION 3.12.3 ,FIG.  3.9 
N W I N  = 11 NELEM = 10 NBOUN : 2 NMATS 2 2 
NPROP = 4 NNODE = 2 NINCS = 16 N A W  = 3 
W N  .: 1 

MATERIAL PROPERTIES 
1 10000.00000 1.00000 5.00000 1000.00000 
2 10000.00000 2.00000 7.50000 2000.00000 

EL NODES HAT. 
1 1 2 1  
2 2 3 1  

7 7 
8 8 
9 9 

10 10 
NODE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

RES . NODE 
1 

11 

11 2 
COORD . 

0. 00000 
1 .moo 
2.00000 
3. WOO0 
4. 00000 
5. 00000 
4.00000 
3.00000 
2.00000 
1 .00000 
0.00000 

CODE PRFS.VALllES 
1 0.00000 
1 0.00000 



ELEMENT NODAL LOADS 
1 0.00000 0.00000 
2 0.00000 0.00000 

IINCS : 1 NITER = 30 NOUTP = 2 FACTO : 0.125000E 01 TOLER = 0.500000E 00 
ITERATION NUMBER : 1 
CONVERGENCE CODE : 0 NORM OF RESIDUAL SUM RATIO : 0.629197E-08 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.416667E 01 
2 0.416667E-03 0.000000E 00 

ELEMENT STRESSES PL . STRAIN 
1 0.416667E 01 0.000000E 00 
2 0.416667E 01 0.0OOOOOE 00 

IINCS = 3 NITER = 30 NOUTP : 2 FACTO = 0.250000E 00 TOLER = 0.500000E 00 
ITERATION NUMBER = 1 
CONVERGENCE CODE = 1 NORFI OF RESIDUAL SUM RATIO : 0.490863E 01 
NODE OISPL. REACTIONS 

11 0.000000~ 00 -0.116667E 02 
ELEMENT STRESSES PL.STPATN 
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5 0.507576E 01 
6 0.583333E 01 
7 0.583333E 01 
8 0.583333E 01 
9 0.583333E 01 
10 0.583333E 01 

ITERATION NUMBER = 
CONVERGENCE CODE = 
NODE DISPL. 

1 O.M)O000E 00 
2 O.608586~-03 

ELEMENT STRESSES 
1 0.509871E 01 
2 0.509871E 01 

1 0  0.608586E 01 
ITERATION NUMBER : 
CONVERGENCE CODE = 

1 0.000000E 00 
2 0.616238E-03 
3 0.123248E-02 
4 0.184871E-02 
5 0.246495E-02 
6 0.3081 19E-02 
7 0.246495E-02 
8 0.184871 E-02 
9 0.123248E-02 
10 0.61 6238E-03 
11 0.000000E 00 

ELEMENT STRESSES 
1 0.510567E 01 

L 
1 NORM OF RESIDUAL SUM RATIO r 0.147757E 01 

REACTIONS 
-0.512828E 01 

PL . STRAIN 
0.987144E-04 
0.9871 44E-04 
0.9871 44E-04 
0.9871 44E-04 

3 
0 NORM OF RESIDUAL SUM RATIO : 0.446758E 00 

REACTIONS 

etc. 
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A.4.3 Solution of one-dimensional elaslo-viscoplastic problem. Example 
of Section 4.12, Fig. 4.6 

Input du/u 

1-D ELASTO VISCO-PLASTIC EXAMPLE . SECTION 4.12 , FIG. 4.6 

Line printcr output 

1-D ELASTO VISCO-PLASTIC EXAMPLE , SECTION 4.12 , FIG. 4.6 
NPOIN = 2 NELEM = 1 NBOUN = 1 NMATS = 1 
NPROP = 5 NNODE = 2 NINCS = 1 NALGO = ? - 
NDOFN: 1 

MATERIAL PROPERTIES 
1 10000.00000 1 .OOOOO 10.00000 5000.00000 0.00100 
EL NODES MAT. 
1 1 2 1  

NODE COORD . 
~ ~~~~~ 

RES.NODE CODE PRES-VALUES 
1 1  0.00000 

ELEMENT NODAL LOADS 

TAUn = 0.500000E-01 DTINT = 0.250000E-01 FTIME = 0.150000E 01 
IINCS = 1 NSTEP : 90 NOUTP : 2 FACT0 : 0.100000E 01 TOLER = 0.100000E 00 
TOTAL TIME = 0.000000E 00 
CONVERGENCE CODE z 999 NORM OF RESIDUAL SUM RATIO = 0.1000OOE 03 
NODE DISPL. REACTIONS 

2 0.150000E-01 0.000000E 00 
ELEMENT STRESSES PL . STRAIN 

1 0.150000E 02 0.000000E 00 
TOTAL TIME = 0.250000E-01 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO : 0.650000E 02 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.150000E 02 
2 0.162500E-01 0.000000E 00 

ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 0.125000E-03 

TOTAL TIME = 0.4357146-01 
CONVERGENCE CODE : 999 NORM OF RESIDUAL SUM RATIO = 0.682500E 02 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.150000E 02 
2 0.170625E-01 0.000000E 00 

ELEMENT STRESSES PL . STRAIN 
1 0.150000E 02 0.206250E-03 

TOTAL TIME = 0.650675E-01 
COWERGENCE CODE = 999 NORM OF RESIDUAL S U M  RATIO = 0.716625E 02 
NODE DISPL. REACTIONS 
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E L E W  STRESSES PL. STRAIN 
1 0.15OOOOE 02 0.291562E-03 

TOTAL TIME : 0.903564E-01 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 
NODE DISPL. REACTIONS 

ELEHENT STRESSES PL.STRAIN 
1 0.150000E 02 0.381141E-03 

TWTAL TIME : 0.12W53E 00 - - 

~ ~ ~ ~ E R G E N C E  CODE = 999 NORM OF REsmuAL SUM RATIO = 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.150000E 02 
2 0.19752OE-01 0.000000E 00 

ELEMENT STRESSES PL . STRAIN 
1 0.15OOOOE 02 0.475198E-03 

TOTAL TIME = 0.158390E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO : 
NODE DISPL. REACTIONS 

2 0.207396E-01 0.000000E 00 
ELEMENT STRESSES PL . STRAIN 

1 0.15OOOOE 02 0.573958E-03 
TOTAL TIME = 0.207070E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO : 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.150000E 02 
2 0.217766E-01 0.000000E 00 - 

ELEMENT sTREss~s PL. STRAIN 
1 0.150000E 02 0.677655E-03 

TOTAL TIME = O.274627E 00 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO : 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.150000E 02 
2 0.228654E-01 0.000000E 00 

ELEMENT STRESSES PL.STRAIN 
1 0.150000E 02 0.786538E-03 

TOTAL TIME : 0.375962E 00 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 
NODE DISPL. REACTIONS 

1 0.00OOOOE 00 -0.150000E 02 
2 0.239469E-01 0.000000E 00 

ELEMENT STRESSES %.STRAIN 
1 0.15OOOOE 02 0.894694E-03 

TOTAL TIME = 0.527964E 00 
CONVERGENCE CODE : 1 NORM OF RESIDUAL SUM RATIO = 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.150000E 02 
2 0.247473E-01 0.060000~ 00 

ELEMENT STRESSES PL.STRAIN 
1 0.150000E 02 0.974728E-03 

TOTAL TIME = 0.755969E 00 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 
NODE DISPL. REACTIONS 

1 0.000000E 00 -0.150000E 02 
2 0.250354E-01 0.000000E 00 

ELEMENT STRESSES PL .STRAIN 
1 0.150000E 02 0.100354E-02 
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A.4.4 Solution of elast~plastic layered Tioshenko beam. Example of 
Section 5.5.6, Fig. 5.11 

Input data 

EP TIMOSHENKO LAYERED BEAM EXAMPLE , SECTION 5.5.6 , FIG. 5.11 
10 2  1 1 7  2 1 4  2  2  6 
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Line printrr oulput 

1-0 EP TIMOSHENKO LAYERED BEAM EXAMPLE , SECTION 5.5.6 , FIG. 5.11 

NPOIN = 11 NELEM = 10 NBOUN = 2 NMATS = 1 

NPROP = 17 NNODE = 2 NINCS : 14 NALGO 7 2 

NDOFN = 2 NLAYR = 6 
MATERIAL PROPERTIES 

1 

40.00000 10.00000 40.00000 10.00000 
40.00000 10.00000 40 .OOOOO 200.00000 
20.00000 

EL NODES MAT. 

7 7 8 1  
8 8 9 1  
9 9 1 0  1 

10 10 11 1 
NODE COORD. 

RES. NODE CODE PRES. V A L U E  CODE PRES .VALUES 

ELEMENT NODAL LOADS 

10 68.85000 0.00000 68.85000 0.00000 
IINCS = 1 NITER = 100 NOUTP : 2 FACT0 = 0. jOO0OOE 00 TOUR = 0.500000E O0 
ITERATION NUMBER = 1 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 0.1 116 1 1 E-07 . 
NODE DISPLACEMENTS REACTIONS 

1 0.000000E 00 -0.206550E 03 0.OOOOOOE 00 -0.ln??4?E 06 
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IINCS = 6 NITER = 100 NOUTP = 2 FACT0 : 0.500000E-01 TOLER r 0.500000E 00 -- - 
ITERATION NUMBER-: 1 
CONVERGENCE CODE = 1 NORM OF RESIDUAL S O M  RATIO : 0.464588E 01 
NODE DISPLACENENTS REACTIONS 

1 0.000000E 00 -0.550800E 03 0.000000E 00 -0.272646E 06 
2 0.912561E 00 0.000000E 00 0.416571E-02 0.000000E 00 

4 0 .43 i63 i~  01 O.OOOOOOE 00 0.486000~-02 O.OOOOOOE 00 
5 0.5557781 01 0.000000E 00 0.277714E-02 0.000000E 00 
6 0.600632E 01 0.000000E 00 -0.6452588-13 0.000000E 00 
7 0-555778E 01 0.000000E 00 -0 .n7714E-02 0.000000E 00 
8 0.431631E 01 0.000000E 00 -0.486000E-02 0.000000E 00 
9 0.259433E 01 0.000000E 00 -0.555429E-02 0.000000E 00 

10 0.912561E 00 0.000000E 00 -0.416571 E-02 0.000000E 00 
11 0.000000E 00 -0.550800E 03 0.000000E 00 0.272646E 06 

ELEMENT STRESSES 

8 0.330480~ 05 -0.275400E 03 
9 -0.660960E 05 -0.385560E 03 

10 -0.189331E 06 -0.495720E 03 
ITERATION NUMBER : 2 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO : 0.210144E-08 
NODE DISPLACEMENTS REACTIONS 

1 0.000000E 00 -0.550800E 03 0.000000~ 00 -0.265108E 06 
2 0.100758E 01 0.000000E 00 0.479915E-02 0.000000E 00 
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10 0.100758E 01 0.000000E 00 -0.479915E-02 0.000000E 00 
11 0.000000E 00 -0.550800E 03 0.000000E 00 0.265108E 06 

ELEMENT STRESSES 

IINCS = 11 NITER = 100 NOUTP = 2 FACT0 = 0.MOOOOE-01 TOLER = 0.500000E 00 
ITERATION NUMBER = 1 
&~VERGENCE CODE : 1 NORM OF RESIDUAL SUM RATIO : 0.149229E 01 
NODE DISPLACEMENTS REACTIONS 

1 O.O~OOOOE 00 -0.660960E 03 0.000000E 00 -0.287981E 06 
2 0.486620E 01 0.000000E 00 0.301397E-01 0.000000E 00 - ~~ ~ 

3 0.143031E 02 0 .OOOOOOE 00 0.309826~-01 
4 0.235411E 02 0.000000E 00 0.293260E-01 
5 0.319556E 02 0.000000E 00 0.260032E-01 
6 0.358944E 02 0.000000E 00 0.210285E-09 
7 0.319556E 02 0.000000E 00 -0.260032E-01 
8 0.235411E 02 0.00OOOOE 00 -0.293260E-01 
9 0.143031E 02 0.0000OOE 00 -0.309826E-01 

10 0.486620E 01 0.000000E 00 -0.301397E-01 
11 0.000000E 00 -0.660960E 03 0.000000E 00 

ELEMENT STRESSES 
1 -0.196000E 06 0.594864E 03 

ITERATION- NUMBER = 2 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO r 0.562938E 10 
NODE DISPLACEMENTS REACTIONS 

11 0.000000E 00 -0.656351E 03 0.000000E 00 0.284576~ 06 
ELMENT STRESSES 

1 0.719122E 13 0.589934E 03 
2 -0.390314E 05 0.457742E 03 
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10 0.573122~ 13 -0.5904%~ 03 
ITERATION NUMBER = 3 
CONVERGENCE CODE = 999 NORM OF RESIDUAL S U M  RATIO : 0.247769E 12 
NODE DISPLACEMENTS REACTIONS 

6 -0.707142~ 18 0.000000E 00 0.897579E 16 0.000000E 00 
7 0.559323E 18 0.000000E 00 -0.532688E 15 0.000000E 00 
8 0.399516E 18 0.000000E 00 -0.532688E 15 0.000000E 00 
9 0.239710E 18 0.000000E 00 -0.532688E 15 0.000000E 00 

10 0.799033E 17 0.000000E 00 -0.532688E 15 0.000000E 00 
11 0.000000E 00 0.316249E 09 0.000000E 00 -0.594731E 13 

ELEMENT STRESSES 
1 0.719122E 13 -0.381105E 11 
2 -0.195980E 06 -0.169380E 11 

9 0.195971E 06 0.635174E 10 
10 -0.253560E 23 0.211725E 10 

ITERATION NUMBER = 4 -.- - 

CONVERGENCE CODE = 999 NORM OF RESIDUAL S U M  RATIO = 0.576146E 14 
NODE DISPLACEMENTS REACTIONS 

5 -0.i16832~ 25 0.000000E 00 0.125402E 27 
6 0.6797531 25 0.000000~ 00 -0.125349~ 27 
7 -0.395493E 26 0.000000E 00 0.125040E 27 
8 0.230105E 27 0.000000~ 00 -0.123243~ a 
9 -0.133880E 28 0.000000~ 00 0.112783~ 2-7 

10 0.778935E 28 0.000000E 00 -0.519290E 26 
11 0.000000E 00 -0.198094E 21 0.000000E 00 

ELEMENT STRESSES 
1 -0.255902E 33 -0.381105E 11 
2 -0.195980E 06 0.241990E 18 
3 -0.l95887E 06 -0.290992E 21 
4 -0.195820E 06 O.lg7302E 03 
5 O.ll9358E 35 -0.124894~ 21 
6 -0.119186E 35 -0.254618E 21 



542 FINITE E L E M E N T S  I N  PLASTICITY 

A.4.5 Solution of two-dimensional elasto-plastic problem. Example of 
Section 7.9, Fig. 7.12 

Input data 

2-D ELASTO-PLASTIC EXAMPI 
51 12 18 2 8 
1 1  1 8 1 2  
2 1 3  9 1 4  
3 1 5 10 16 
4 1 12 19 23 

SECTION 7.9 , 
2 2 2 
14 9 3 
16 10 5 
18 1 1  7 

FIG 7.12 
1 3  
2 
4 
6 



APPENDIX IV 

1 
i210MT E.3~ 0.0 0.0 24.0 0.0 

~ N A L  PRESSURE, 
-0. 0 1 

- ; - 2 1 
20.0 0.0 20.0 0.0 20.0 0.0 
2 5 4 3  

20.0 0.0 20.0 0.0 20.0 0.0 

Line printer output 

2-D ELASTO-PLASTIC EXAMPLE , SECTION 7.9 , FIG 7.12 
NPOIN z 51 NELEM = 12 NVFIX = 18 NTYPE 2 NNODE = 8 
NMATS = 1 NCAUS = 2 NEVAB = 16 NALCO = 2 
NCRIT = 2 NINCS : 1 NSTRE = 3 
ELEMENT PROPERTY NODE NUMBERS 

1 1 1 8 12 

7 1 
8 1 
9 1 

10 1 
11 1 
12 1 

NODE X 
1 100.000 



NODE CODE FIXED VALUES 
1 1 0.000000 0.000000 
7 10 0.000000 0.000000 
8 1 0.000000 0.000000 

11 10 0.000000 0.000000 
12 1 0.000000 0.000000 
18 10 0.000000 0.000000 
19 1 0.000000 0.000000 
22 10 0.000000 0.000000 
23 1 0.000000 0.000000 
29 10 0.000000 0.000000 

NO. OF LOADED EDGES = 3 
LIST OF LOADED EDGES AND APPLIED LOADS 

1 7 2 1  

TOTAL NODAL FORCES FOR EACH ELEMENT 
1 0.1784E 03 0.7800~ 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 

0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.1549E 03 0.8854E 02 0.6667E 03 0.1786E 03 



INCREMENT NUMBER 1 
LOAD FACTOR = ' 0.70000 CONVERGENCE TOLERANCE : 1.00000 MAX. NO. OF ITERATIONS = 30 

INITIAL OUTPUT PARAMETER r 3 FINAL OUTPUT PARAMETER = 3 
1 NORM OF RESIDUAL SUM RATIO = 0.336960E 02 MAXIMUM RESIDUAL = 0.155988E 03 

- - -  

CONVERGENCE CODE s 
: DISPLACEMENTS 

NODE X-DISP. 
1 0.127198E 00 
2 0.122734E 00 

Y-DISP. 



REACTIONS 
NODE X-REAC . 

1 0.000000E 00 
7 -0.761999E 02 
8 0.000000E 00 

11 -0.2699211 03 

Y-REAC . 
-0.761999E 02 
0.000000E 00 

G.P. XX-STRESS YY-STRESS XY-STRESS ZZ-STRESS MAX P.S. MIN P . S. ANGLE E.P.S. 
ELEMENT NO. = 1 

1 -0.893805E 01 0.180284E 02 -0.307422E 01 0.304329E 01 0.183744E 02 -0.928408E 01 6.422 
2 -0.485865E 01 O.139487E 02 -0.101400E 02 0.304318E 01 0.183743~ 02 -0.928420E 01 23.579 
3 -0.880961E 01 0.181337E 02 -0.306125E 01 0.280970E 01 0.184771E 02 -0.915305E 01 6.401 
4 -0.472518E 01 0.140487E 02 -0.lOl362E 02 0.280953E 01 O.184768E 02 -0.915334E 01 23.599 
ELEMENT NO. = 

1 0.465341E 00 
2 0.862795E 01 

1 0.139487E 02 
2 0.180284E 02 
3 0.140487E02 
4 0.181337E 02 
ELEMENT NO. = 

1 -0.713097E 01 
2 -0.355180E 01 
3 -0.520488E 01 



ELEMENT NO. r 5 
1 0.108723E01 0.824570E01-0.115562E02 
2 0.824570E 01 0.108723E 01 -0.115562E 02 
3 0.167670~ 01 0.765648E 01 -0.967249E 01 
4 0.765648E01 0.167670E01 -0.967249E01 
ELEMENT NO. = 6 

1 0.12885lE02-0.355180E01 -0.887785E01 
2 0.164644E02-0.713097E01 -0.267828E01 

4 0.14G8j~ 02 -0.520488~ 01 -0.224680~ 01 
ELEMENT NO. = 7 

1 -0.383616E 01 0.131694E 02 -0.193148E 01 
2 -0.125760E 01 0.105909E 02 -0.639778E 01 
3 -0.212632~01 0.114596~02-0.154577E01 
4 -0.686952E-01 0.940184E 01 -0.510990E 01 
ELEMENT NO. = 8 

1 0.208787E 01 0.724522E 01 -0.832942E 01 

ELEMENT NO. = O 
. 

? 0.13i69il~02-0.383616~01-0.193148EOl 0.279998~01 0.133861~02-0.405278601 -6.399 0.000000E00 
3 0.940184E 01 -0.686952E-01 -0.510990E 01 0.279994E 01 0.116332E 02 -0.230005E 01 -23.590 0.000000E 00 
4 0.114596E 02 -0.212632E 01 -0.154577E 01 0.279997E 01 0.116332E 02 -0.229997E 01 -6.410 0.000000E 00 
ELEMENT NO. = 10 

1 -0.118841E 01 0.105216E 02 -0.132981E 01 0.279995E 01 0.106707E 02 -0.133753E 01 6.398 0.000000E 00 
2 0.587478E 00 0.874580E 01 -0.440564E 01 0.279998E 01 0.106707E 02 -0.133746E 01 23.602 0.000000E 00 
3 -0.186150E 00 0.951929E 01 -0.110110E 01 0.279994E 01 0.964264E 01 -0.309504E 00 6.392 0.000000E 00 
4 0.12866lE 01 0.804648E 01 -0.365206E 01 0.279993E 01 0.964263E 01 -0.309548E 00 23.608 0.000000E 00 
ELEMENT NO. :: 1 1  

1 0.289070E 01 0.644254E 01 -0.573552E 01 0.279997E 01 0.106708E 02 -0.133755E 01 36.398 0.000000E 00 
2 0.644254E 01 0.289070E 01 -0.573552E 01 0.279997E 01 O.lO67O8E 02 -0.133755E 01 -36.398 O.0OOOOOE 00 
3 0.319390E 01 0.613950E 01 -0.475323E 01 0.280002E 01 0.964288E 01 -0.309476E 00 36.392 0.000000E 00 
4 0.613950E 01 0.319390E 01 -0.4753236 01 0.280002E 01 0.9642888 01 -0.309476E 00 -36.392 0.000000E 00 



4 0.951929E 01 -0.18615OE 00 -0.1101 10E 01 0.279994E 01 0.964264E 01 -0.309504E 00 -6.392 0.000000E 00 
CONVERCENCE CODE : 1 NORM OF RESIDUAL SUM RATIO = 0.118830E 02 MAXIMUM RESIDUAL = 0.416687E 02 
CONVERCENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERCENCE CODE = 

1 NORM OF RESIDUAL SUM RATIO = 0.556571E 01 KAXIMUM RESIDUAL = 0.222848E 02 
1 NORM OF RESIDUAL SUM RATIO : 0.297375E 01 MAXIMUM RESIDUAL = 0.127533E 02 
1 NORM OF RESIDUAL SUM RATIO : 0.165985E 01 MAXINUM RESIDUAL = 0.728796E 01 . ~~~ .. ~~ ~ - ~ 

0 NORM OF RESIDUAL SUM RATIO : 0I939223~ 00 MAXIMUM = 0.415713~ 01 

Y-DISP. NODE X-DISP. 
1 0.139121E 00 
2 0.134201E 00 
3 O.120482E 00 
4 0.982428E-01 
5 0.695626E-0 1 
6 0.359609E-01 
7 0.000000E 00 

48 0.614439E-01 0.614439~-01 
49 0.434542E-01 0.75%57E-01 
50 0.224896E-01 0.839328E-01 
51 0.000000E 00 0.869080E-01 

REACTIONS 
NODE X-REAC . Y-REAC . 

1 0.000000E 00 -0.464276~ 02 
7 -0.464276E 02 0.00000OE 00 



0.993465E-01 44 -0.21 8290E 03 0.000000E 00 
0.000000E 00 45 0.000000E 00 -0.499673E 02 
0.243581E-01 51 -0.499673E 02 0.OOOOOOE 00 
0.470796E-01 
YY-STRESS XY-STRESS ZZ-STRESS MAX P.S. M I N  P.S. ANGLE E.P.S. G.P. XX-STRESS 

ELEMENT NO. : 1 
1 -0.123717E 02 0.146473E 02 -0.308107E 01 
2 -0.828491E 01 0.105605E 02 -0.101593E 02 

ELEMENT NO. = 2 
1 -0.294888E 01 0.522409E 01 -0.172401E 02 

3 -0.825393~-01 0.809511~ 01 -0.132134~ 02 
4 0.809511E01 -0.825394E-01 -0.132134E02 

ELEMENT NO. = 3 

ELEMENT NO. = 4 
I -0.766058E 01 0.176878E 02 -0.287878E 01 
2 -0.381672E 01 O.138438E 02 -0.953667E 01 
3 -0.559170E 01 0.156189E 02 -0.241350E 01 
4 -0.237967E 01 0.1240636 02 -0.797755E 01 

ELEMENT NO. = 5 
1 0.116933E 01 0.885683E 01 -0.124153E 02 

- ~ 

ELEMENT NO. = 6 - 

ELEMENT NO. = 7 



ELEMENT NO. = 8 
1 0.224272E 01 0.778385E 01 -0.894834E 01 
2 0.778385E 01 0.224272E 01 -0.894834E 01 
3 0.280277E 01 0.722406E 01 -0.715043E 01 

ELEMENT NO. = 10 
1 -0.127671E 01 0.113035E 02 -0.142867E 01 
2 0.631079~ 00 0.935580~ 01 -0.473299~ 01 
3 -0.199987~ 00 O.lO2267E 02 -0.1 l829OE 01 
4 0.138223E 01 0.864445E 01 -0.392346E 01 
ELEMENT NO. I; 1 1  

A.4.6 Solution of two-dimensional klasto-viscoplastic problem. Example 
of Section 8.16, Fig. 8.10 

Input data 

2-D ELASTO - VISCOPLASTIC W P L E  , SECTION 8.16 , FIG. 8.10 
5 1 1 2 1 8 2 8  1 2 2 2 1  3 





FINITE ELEMENTS IN PLASTICITY 



NODE 

NODE 
1 

CODE FIXED VALUES 
1 0.000000 0.000000 
10 0.000000 0.000000 
1 0.000000 0.000000 
10 0.000000 0.000000 

I)) 
I)) 
W 



FINITE ELEMENTS IN PLASTICITY 

o m o  m o m o o o o o o o  
000 0000000000 

o m o m o m o o o o o o o  
000 0000000000  

ONO m o m o o o o o o o  
0000000000000  

W W W W W W W W W W W W W  
~ m ~ m ~ ~ o o o o o ~ ~  
0=0ca000000000 
0 m 0 ' . n 0 w 0 0 0 0 0 0 0  o - q r n o + o ? ? ~ q ? ?  
ddoddddoooooo  

0 0 0  
0 8 8 o o o o o o o o o o o o o o  6 d 6 0000000000000  

W W W W W W W W W W W W W  
0000000000000  
0000000000000  
0000000000000  

0 0 0  q? 00 0 q? q ?q 9 8 8 8 000dddo000000 

5 W W W W W W W W  W W W W  

0 C 0 0 0 0 0 0 0 0 ~ 0 0 0 0  Z O O 0  0000000000 
2 0 0 O W O O O O O O O O O O O O O  
0 8 8 8 ~ 9 ? ? 9 ° 9 ? ? ? ? 9 9 9  . -4 0 00 0d 0 00 0 00 0 0 d o o w  
-1 
!a 
Q 

Z O O N O ~ O O O O O O O O  
U0000000000000 

m e  i 2 W U W w W W W W W W W ~ W  

a- Omom'a oomomoooooooo  8 8 8~g8gOgggOO0008 
11 o - r t - q y S 7 ? ? S ~ ~ 8 8 0  

K 3 ~ R = R a ~ m o o o o o o o o o o o o d  
W  
U 
[LmomoNoooooooo 
00000000000000  

f w w e w  8 m o m o  t- o r  
0 W W W W W W W W W W W W W  

WOOCIL Q q  8 8 ed = rO-OJOOOOOOOo z 00 m o = r o  ~ o o ~ o o ~ ~  
W o o a s  0 0 0 0aP-omos- 0 ~ 0 0 0 0 0 0  - 0- 0 -0 - 0- 0 -0 4 00 m- 0 a 

7 - - - F - w - o S W  4 g,?'?caqOqo?q?? 
- z L Z  !& 
O R  L O  O O O O d O d O d O O O O  

o o a  
O w - o N o m o  d r a o  ., 0 0 s x z  o w  q q * 2 ,  ,a 8 c 

0 0 0  
m ~ m m 0 m =  O - = t t n - w -  HgO N C U N N r Q = r m W b  - w w ~ m r n m = r r ~ f m 2  

2 3~ 



- - -  - -  ~~ ~ . . . . ~  

TIME STEPPING PARAMETER = 0.000 TIME STEP STABILITY FACTOR : 0.05000 
INITIAL TIME STEP LENGTH = 0.10000 TIME STEP INCREMENT PARAMETER = 1.50000 
INCREMENT NUMBER 1 
LOAD FACTOR = 0.70000 CONVERGENCE TOLERANCE = 0.10000 MAX. NO. OF ITERATIONS : 50 

INITIAL OUTPUT PARAMETER : 10 FINAL OUTPUT PARAMETER : 10 
TOTAL TIME : 0.000000E 00 

CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.100000E 03 M A X I M U M  RESIDUAL : 0.000000E 00 
TOTAL TIME : 0.100000E 00 

CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.148250E 03 MAXIMUM RESIDUAL : 0.000000E 00 
TOTAL TIME : 0.250000E 00 

CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.207778E 03 MAXIMUM RESIDUAL = 0.000000E 00 
TOTAL TIME = 0.475000E 00 

CONVERGENCE CODE : 999 NORM OF RESIDUAL SUM RATIO 0.280997E 03 M A X I M U M  RESIDUAL : 0.000000E 00 
TOTAL TIME : 0.812500E 00 

CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO : 0.313019E 03 MAXIMUM RESIDUAL = 0.000000E 00 
TOTAL TIME : 0.125353E 01 

CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO 0.340506E 03 MAXIMUM RESIDUAL = O.OOOOOOE 00 
TOTAL TIME = 0.184786E 01 

CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO r 0.377261E 03 MAXIMUM RESIDUAL : 0.000OOOE 00 
TOTAL TIME : 0.273772E 01 

CONVERGENCE CODE : 1 NORM OF RESIDUAL SUM RATIO : 0.345160E 03 MAXIMUM RESIDUAL = 0.000000E 00 
TOTAL TIME = 0.407250E 01 

CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.213414E 03 M A X I M U M  RESIDUAL I 0.000000E 00 
TOTAL TIME : 0.607467E 01 

CONVERGENCE CODE : 0 NORM OF RESIDUAL SUM RATIO z 0.000000E 00 M A X I M U M  RESIDUAL : 0.000000E 00 
DISPLACEMENTS 

NODE X-DISP. Y-DISP. 
1 0.139590E 00 0.000000E 00 3 0.120888E 00 0.697974E-01 
2 0.134655E 00 0.360826E-01 4 0.985748E-01 0.985748E-01 



5 0.697974E-01 0.120888E 00 39 0.244471E-01 0.912376E-01 
6 0.360826E-01 O.134655E 00 40 0.000000E 00 0,94501 6E-01 
7 0.000000E 00 0.139590E 00 41 0.904075E-01 0.000000E 00 
8 0.127595E 00 0.000000E 00 42 0.782963E-01 0.452042E-01 
9 0.110501E 00 0.637993E-01 43 0.452042E-01 0.782963E-01 
10 0.637993E-01 0.110501E 00 44 0.000000E 00 0.904075E-01 
11 0.000000E 00 0.1275958 00 45 0.872253E-01 0.000000E 00 
12 0.118811E 00 0.000000E 00 46 0.842393E-01 0.225717E-01 
13 0.114717E 00 0.307387E-01 47 0.755406E-01 0.436128E-01 
14 0.1028946 00 0.594071E-01 48 0.616684E-01 0.616684E-01 
15 0.839794E-01 0.839794E-01 49 0.436128E-01 0.755406E-01 
16 0.59407lE-01 0.102894E 00 50 0.225717E-01 0.842393E-01 
17 0.307387E-01 0.114717E 00 51 0.000000E 00 0.872253E-01 
18 0.000000E 00 0.118811E 00 REACTIONS 
19 0.1 12058~ 00 0.000000E 00 NODE X-REAC. Y-WAC. 
20 0.970459E-01 0.5603031-01 1 0.000000E 00 -0.456968E 02 
21 0.560303E-01 0.97045 E 01 7 -0.456968E 02 0.000000E 00 
22 0.000000E 00 0.11 205%E-00 8 0.000000E 00 -0.217851E 03 
23 0.106472E 00 0.000000E 00 11 -0.217851E 03 0.000000E 00 
24 0.1027 6E 00 0.275438E-01 12 0.000000E 00 -0.125513E 03 
25 0.922085E-01 0.532372E-01 18 -0.125513E 03 0.000000E 00 
26 0.752527E-01 0.752527E-01 19 0.000000E 00 -0.226754E 03 
27 0.532372E-01 0.922085E-01 22 -0.226754E 03 0.000000E 00 
28 0.275438E-01 0.102796E 00 2 0.000000E 00 -0.1263198 03 
29 0.000000E 00 0.106472E 00 29 -0.126319E 03 0.00OOOOE 00 
30 0. 970928-01 0.000000E 00 30 0.000000E 00 -0.269717E 03 
31 0.863519E-01 0.498555E-01 33 -0.269717E 03 0.000000E 00 
32 0.498555E-01 0.863519E-01 34 0.000000E 00 -0.118912E 03 
33 0.000000E 00 0.997092E-01 40 -0.118912E 03 0.000000E 00 
34 0.945016E-01 0.0000OOE 00 41 0.OOOOOOE 00 -0.219087E 03 
35 0.912376E-01 0.244471E-01 44 -0.219087E 03 0.000000E 00 
36 0.818419E-01 0.472516E-01 45 0.000000E 00 -0.501497E 02 
37 0.6 791CE-01 0.667916E-01 51 -0.501497E 02 0.000000E 00 
38 0.42516E-01 0.818419E-01 

C.P. XX-STRESS W-STRESS XY-STRESS ZZ-STRESS MAX P.S. MIN P.S. ANGLE E.P.S. 
ELEMENT NO. = 1 

1 -0:125015~ 02 0.145585E 02 -0.308575~ 01 0.617103E 00 0.149059E 02 -0.128489E 02 6.424 0.45290lE-03 
2 -0.840843E 01 0.104656E 02 -0.101747E 02 0.617146E 00 0.149060E 02 -0.128488E 02 23.577 0.452852E-03 



ELEMENT NO. = 2 
1 -0.306428E 01 0.512105E 01 -0.132601E 02 
2 0.512105E 01 -0.306428E 01 -0.132601E 02 
3 -0.187011E 00 0.799786E 01 -0.132254E 02 
4 0.799786~ 01 -0.18701 l~ 00 -0.132254~ 02 

ELEMENT NO. = 3 
1 0.104656E 02 -0.8408436 01 -0.101747E 02 
2 0.145585E 02 -0.125015E 02 -0.308575E 01 
3 0.133124E 02 -0.550191E 01 -0.101570E 02 
4 0.174053E 02 -0.959430E 01 -0.306854E 01 

ELEMENT NO. = 4 
1 -0.768855E 01 0.177524~ 02 -0.288931E 01 
2 -0.383066E 01 0.138944E 02 -0.957149E 01 
3 -0.561211E 01 0.156759E 02 -0.242231E 01 
4 -0.2388366 01 0.124516E 02 -0.800669E 01 

ELEMENT NO. = 5 

ELEMENT NO. = 6 
1 0.138944E02-0.783066E01 -0.957149E01 

ELEMENT NO. = 7 
1 -0.413632E01 0.141999E02-0.208235E01 
2 -0.135581E 01 0.114194E 02 -0.689847E 01 
3 -0.229264E 01 0.123561E 02 -0.166675E 01 
4 -0.7413706-01 O.lOl375E 02 -0.550962E 01 

ELEMENT NO. = 8 
1 0.225090E 01 0.781227E 01 -0.898102E 01 
2 0.781227E 01 0.225090E 01 -0.898102E 01 
3 0.281300E 01 0.725044E 01 -0.717655E 01 
4 0.725044~ 01 0.281300~ 01 -0.717655E 01 

ELEMENT NO. = 9 
1 0.114194E02-0.175581E01-0.689847E01 



ELEMENT NO. = 10 
1 -0.1?8137E01 0.113448E02-0.143389E01 0.301902E01 0.115056E02-0.144216E01 6.398 0.000000E00 
2 0.633380E 00 0.943011E 01 -0.475028E 01 0.301905E 01 0.115056E 02 -0.144210E 01 23.601 0.000000E 00 
3 -0.20071 E 00 0.102640E 02 -0.118721E 01 0.301899E 01 0.103970E 02 -0.333716E 00 6.392 0.000000E 00 i 4 0.13872 E 01 0.867602E 01 -0.393779E 01 0.301899E 01 0.103971E 02 -0.333762E 00 23.608 0.000000E 00 - ~ -  

ELEMENT NO. = 11 
1 0.31168E01 0.69468E01-0.618428E01 0.301904E01 0.115057E02-0.144222E01 36.398 0.000000E00 i 2 0.69465 E 01 0.3116 8 9E 01 -0.618428E 01 0.301904E 01 0.115057E 02 -0.144222E 01 -36.398 0.000000E 00 
3 0.344379E 01 0.661991E 01 -0.512514E 01 0.301911E 01 0.103974E 02 -0.333695E 00 36.392 0.000000E 00 
4 0.661991E 01 0.344379E 01 -0.512514E 01 0.301911E 01 0.103974E 02 -0.333695E 00 -36.392 0.000000E 00 

ELEMENT NO. = 12 
1 0.943011E 01 0.633380E 00 -0.475028E 01 0.301905E 01 0.115056E 02 -0.144210E 01 -23.601 0.000000E 00 
2 0.113448E 02 -0.12813 E 01 -0.143389E 01 0.301 02E 01 0.115056E 02 -0.144216E 01 -6.398 0.000000E 00 
3 0.8676026 01 0.13872 i E 01 -0.393779E 01 0.301 8 99E 01 0.103971E 02 -0.333762E 00 -23.608 0.000000E 00 
4 0.102640E 02 -0.200717E 00 -0.118721E 01 0.301899E 01 0.103970E 02 -0.333716E 00 -6.392 0.000000E 00 

A.4.7 Solution of a non-layered elasto-plastic Mindlin plate. Example of 
Section 9.7, Fig. 9.6 

Input data 

MINDLIN NON-LAYERED EXAMPLE, SECTION 9.7, FIG. 9.6 
2 5 4 1  5 9 1  3 2 1 3 9 0  

1 1  1 2  3 8 1 3 1 2 1 1  6 7 
2 1 3 4 5 -10 15 14 13 8 9 
3 1 11 12 13 18 23 22 21 16 17 



APPENDIX I V  

mmmmmmmmmmmmmmmmmmmmm 

L I  

2 
E mmmmmmmmmmmmmmmmmmmmm 

n 



Line printer output 

1 
2 
3 
4 

NODE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
17 
12 
13 
14 
15 
16 
17 
19 
19 
20 
21 
22 
23 
24 
25 

NODE 
1 
2 
3 

MINDLIN NON-LAYERED EXAMPLE, SECTION 9.7, FIG. 9.6 
NPOIN : 25 NELEM = 4 MIX : 16 NnPE = 5 NNODE . 9 
NMATS : 1 NGAUS = 3 NEVAB = 27 NALGO = 2 
NCRIT : 1 NINCS : 39 NLAPS = 0 NSWIT : 0 
ELEMENT PROPERTY NODE NUMBERS 

1 1 2 3 8 13 12 11 6 7 
1 3 4 5 10 15 14 13 8 9 
1 
1 

X 
0.00000 

.I2500 

.25000 

.37500 

.50000 
0.00000 
0 .ooooo 

.25000 
0 .ooooo 

.50000 
0.00000 

.I2500 

.25000 

.37 500 

.50000 
0 .ooooo 
0.00000 

.25000 
0.00000 

.50000 
0.00000 

.50000 
CODE 

111 
110 
110 

.50000 
FIXED VALUES 

0.000000 0.000000 0.000000 



22 1 0.000000 0.000000 0.000000 
23 1 0.000000 0.000000 0.000000 
24 1 0.000000 0.000000 0.000000 
25 11 0.000000 0.000000 0.000000 

NUMBER ELEMENT PROPERTIES 
3 .4472 .a528 .14846E-01 .14812E-01 -.67909E-02 0. 
4 .4472 .I972 .20658E-02 .21696E-02 -.51738E-02 0. 
5 .3750 .I250 .93182E-02 .10703E-01 -.45473E-02 0. 
6 .3750 .2218 .16282E-01 .I9151 E-01 -.37263E-02 0. 
7 .4718 .0282 .32303E-02 .51552E-02 -.17322E-02 0. 
8 .4718 ,1250 .10243E-01 .1167lE-01 -.53W3E-03 0. 
9 .4718 .2218 .16015E-01 .17815E-01 -.10205E-02 0. 

ELEMENT NO. 
1 .0528 

9 .2218 
ELEMENT NO. 



INCREMENT NUMBER 30 
LOAD FACTOR = .a5600 CONVERGENCE TOLERANCE : .I0000 MAX. NO. OF ITERATIONS = 60 

INITIAL OOTPUT PARAMETER = 0 FINAL OUTPUT PARAMETER : 3 
IN CONVER ITERATION NUMBER 1 
DISPLACEMENT CHANGE NORM 

TOTAL 
-.281 E+00 

RESIDUAL NORM 

TOTAL 
- .6O5E-O7 

CONVERGENCE CODE 1 - - 

IN CONVER ITERATION NUMBER 2 
DISPLACEMENT CHANGE NORM 

.293~-06 .294E-06 .294E-06 
TOTAL 

-.294E-06 
RESIDUAL NORM 

.183E-11 .266E-11 .245E-11 
TOTAL 

-.183E-11 
CONVERGENCE CODE 0 

DISPLACEMENTS 
NODE DISP. XZ-ROT. YZ-ROT. 



24 .325803~+04 .389260~+04 0. 
25 .349631E+04 0. 0. 

REACTIONS 
NODE FORCE XZ-MOMENT YZ-MDMENT 

1 .254174E-01 -.405413E-03 -.405413E-03 
2 -.704030E-01 -.474595E-02 0. 
3 .489298E-01 -.861086E-03 0. 
4 -. 130462E+M) -. 178824E-02 0. 
5 .322264E-01 -.228435E-02 0. 
6 -.704030E-01 0. -. 474595E-02 

10 0. -. 368943E-02 0. 
11 .489298E-01 0. -.861086E-03 
15 0. -.181699E-02 0. 
16 -.130462E+OO 0. -. 178824E-02 
20 0. -.720662E-02 0. 

211 0. 0. -.720662~-02 
25 0. -. 132398E-02 -. 132398E-02 

STRESSES 
G. P. X-CCORD. Y-CCORD. X-MOMENT Y-MOMENT XY-MOMENT EFF. PL-STRAIN 

ELEMENT NO. = 1 
1 .O528 .0528 -. 99908~-03 -. 99908~-03 - .23087~-01 .57698E+04 
2 .0528 .I972 .51873E-03 .14760E-02 -.23082E-01 .26193E+04 
7 .I972 .0528 .80061E-02 .59482E-02 -.20218~-01 0. 



ELEMENT NO. = 2 
1 .3028 .0528 .43677E-02 -77768E-02 -. 14262E-01 0. 
2 .7028 .I972 .14580E-01 .16625E-01 -. 14808E-01 0. 

9 .4718 .2218 
ELEMENT NO. = 3 

1 .0528 .TO28 

. - 

ELEMENT NO. = 4 

CONVERGENCE PARAMETERS - 
IFDIS = 1 pcD1s ~ 1 1 1 0  
IFRES = 1 NCRES =I110 



INCREMENT NUMBER 1 
LOAD FACTOR ; .SO000 CONVERGENCE TOLERANCE = .I0000 

INITIAL OUTPUT PARAMETER = 0 FINAL OUTPUT PARAMETER : 3 
IN COWER ITERATION NUMBER 1 
DISPLACEMENT CHANCE NORM 

.100E+03 .100E+03 1 0 0 E 4 3  
TOTAL 

-.100E+03 
RESIDUAL NORM 

.845E-08 .662E-08 .628E-08 
:TOTAL 
-.845E-08 

CONVERGENCE CODE 1 
I N  COWER ITERATION NUMBER 2 
DISPLACEMENT CHANGE NORM 

-91 8E-08 .908E-08 .897E-08 
TOTAL 

-.903E-08 
RESIDUAL NORM 

.265E-11 .20OE-11 .295E-11 
TOTAL - .265E-ll 

CONVERGENCE CODE 0 
DISPLACEMENTS 

NODE DISP. XZ-ROT. YZ-ROT. 

MAX. NO. OF ITERATIONS = 60 



21 0. 
22 .807234E+03 
23 .14613'4E+04 
24 . l884OOE+O4 
25 .202089E+04 

REACTIONS 
NODE FORCE 

1 -124667E-01 
2 -.399935E-01 

XZ-MOMENT 
-.357597E-03 

YZ-MOMENT 
-.357597E-03 
0. 
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ELEMENT PROPERTY NODE NUMBERS 
1 1 1 4 6 7 8  

12 13 
17 18 
22 23 
27 28 
32 33 
37 38 
42 43 
47 48 
52 53 

NODE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

- 23 
24 
25 
26 
n 
28 



NODE CODE 
1 10 
2 10 
3 10 
4 00 
5 00 
6 00 
7 00 
8 00 
9 00 

10 00 
11 00 
12 00 



MATERIAL PROPERTIES 
MATERIAL NO 1 
YCUNC MODULUS .1050E+08 
WIWN RATIO .3000 

MASS DENSITY -2450E-03 
ALPHA TEMPR 0. 
REFERENCE FO .2400E+05 
HARDENING PAR .2143E+06 
FRICT ANGLE 0. 
FLUIDITY PAR .1000E+05 
MP DELTA 1 .OOO 
N U  CODE 1.WO 

~ 

am STEPPING PARAMETERS 
NSTEP: 500 NOUTDz 1 0  NOUTP- 250 
NREPD: 1 NREQS: 1 NACCE: 1 
INNC: 1 IFIXDz 0 MITER: 0 

AALFA: 0. BEEA: O. DELTA- O .  
G M E  0. AZERO: 0. BZERO: 0. 
OMEGA= 0. TOLER: 0. 

SELECTIVE OUTPUT REQUESTED FOR FOLLOWING 
NODE? 1 
G.P. i 

TYPE OF ELEMENT, IMPLICIT~l,EXPLICIT:2 
2 2 2 2 2 2 2 2 2 2  

NODE INITIAL X-DISP. INITIAL Y-DISP. 
53 0. 0. 

NODE INITIAL X-VELO. INITIAL Y-VEL.0. 
53 0. 0. 

LOAD CASE TITLE - DISTRIBUTED STEP PRESSURE Ps600LWIN 
LOAD INPUT P)&AMETERS 
m1m LOADS 0 
GRAVITY 0 
W E  LQAD 1 
TEMPERATURE 0 

NO. OF LOADED EDGES = 10 
LIST OF LOADED EDGES AND APPLIED LOADS 
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40 -.78642E-02 -.21832E-01 41 -.31809E-02 -. 18638~-01 
43 -.71315E-02 -.16874E-01 44 -.13257E-02 -.13014E-01 
46 .15858E-03 -.72532E-02 47 -. 16481 E-02 - .63066E-02 
49 -71545E-03 -.26453E-02 50 -. 14109E-02 -. 1371 8~-02 
52 -47545E-33 .53008E-33 53 -.45643E-33 -.26357E-33 

STRESSES 
RZ-STRESS TI'-STRESS MAX P.S. M I N  P.S. ANGLE P.S. G. P. RR-STRESS ZZ-STRESS 

ELEMENT NO. : 1 

~ - <  

ELEMENT NO. = 
1 -. 152776E+05 

3 -. 139979E45 
4 -. 137 l54E+O5 

ELEMENT NO. : 

4 -.158138~+& 
ELEMENT NO. = 

1 -.133486E+05 
2 -. 133564E+05 
3 -.161873E+05 



ELEMENT NO. = 
1 -.168527E+05 
2 -.965035~44 
3 -. 157929E45 
4 -. lO9494E45 

ELEMENT NO. = 
1 -.136993E+05 
2 -. 130603E+05 
3 -.100891E+05 
4 -. l67170~+05 

ELEMENT NO. = 

ELEMENT NO. = 8 
1 -.421590E+04 -.332032E+03 .167829E+04 -. 101971 E+05 .292698~+03 -.484063E44 -20.417 0. 
2 -.203671 E+05 -.292740E+04 .739486E+04 -. 175571 E45 -.213976E+03 -.230805E+05 -20.150 0. 
3 -.579043E+04 -.191795E+04 
4 -. l79717E45 -.280583E+04 

ELEMENT NO. = 9 
i 1 -.808480E+04 -.179792E+04 

2 -. 138434E45 -.337445E+04 
3 -.126711E+05 -.779604E+04 
4 -.825151E44 -.490425E+04 

ELEMENT NO. . 10 
1 -. 175308E45 -.460688E+04 
2 -.149784E+04 -.237914E+04 
3 -.253662E+05 -.151577E+05 
4 .721668E+04 .453440E+04 

etc. 



A.4.9 Solution of dynamic transient elsstwplsstic problem by implicit/explicit 
approach. Example of Section 11.6.1, Fig. 11.4 

Input data 



53 0.0 
DISTRIBUTED STEP PRESSURE P=600LB/IN SQ. 
0 0 1 0  



FINITE ELEMENTS IN PLASTlCITY 

? ? ? 9 ? ? 9 ? ?  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
amaaa w ul m ul a ul m m m m m m  

- ~ ~ m m = r = r  



22 
27 

NODE 
1 



MATERIAL PROPERTIES 
MATERIAL .NO 1 
YOUNG MODULUS .1050E+08 
WISSON RATIO .3000 - 
THICKNESS 0. 



MASS DENSITY .2450M3 
ALPHA TDPR 0. 
REFERENCE FO .2400E+05 
HARDENING PAR .2143E+06 
FRICT ANGLE 0. 
FLUIDITY PAR . lOOOE+05 
EXP DELTA 1 .OQO 
NFLW CODE 1 .OOO 
TIME STEPPING PARAMETERS 

WTP= 20 
NACCE= 1 
MITER: 5 -- -~ - -- . 

KSTEPr 201 IPREDr 2 
DTIME= .5000E-05 DTEND- .1000E-02 DTREC= 0. 
AALFA= 0. BEETA= 0. DELTA= .2500 
GAAMA- .5000 AZEROz 0. BZERO- 0. 
CMEGA- 0. TOLER: .lOOOE-03 
SELECTIVE OUTPUT REQUESTED FOR FOLLOWING 
NODES 1 
G.P. 1 

TYPE OF ELEMENT, INPLICIT=l,EXPLICIT=2 
: 1 1 1 1 1 1 1 1 1  
' !NODE INITIAL X-DISP. INITIAL Y-DISP. 

53 0. 0. 
NODE INITIAL X-VELO. INITIAL Y-VELO. 

53 0. 0. 
LOAD CASE TITLE - DISTRIBUTED STEP PRESSURE P=600LB/IN 
LOAD INPUT PARAMETERS 
POINT LOWS 0 
GRAVITY 0 
EDGE LOAD 1 
TEMPERATURE 0 - - 

NO. OF LOADED EDGES = 10 
LIST OF LOADED EDGES AND APPLIED LOADS 



600 .000 600 .OOO 600 .GO0 0.000 0.000 0.000 
10 53 50 48 

600 .OOO 600 .OOO 600.000 0.000 0.000 0.000 
NEQNS: 97 W L =  1045 NWKTL: 1045 

852 866 881 897 904 912 921 931 942 954 9g7 
INITIAL ACCELERATION 
-.18236E+08 .9ll73E+07 -.54133E+08 -.35754E+06 -. 18247E48 

.91132E+07 -.23578E+07 -.54047E+08 -. 12424EM -. 18205E+08 

.90830E+07 -.49321 E+07 -.53867E+08 -.21006E+07 -. 18128E+08 

DISPLACEMENTS AT TIME STEP 
. 

20 TIME 10000000000E-03 
NNODE X-DISP Y-DISP NNODE X ~ D I S P  Y-DISP NNODE X-DISP Y-DISP 

1 0. -.24848E-01 2 0. -.24695E-01 3 0. -.24531E-01 
4 -.49085G03 -.24866E-01 5 - .47375E-03 - .24549E-01 6 -. 10248E-02 -.24900E-01 



25 -.39278~-02 -.24100~-01 26 -.55678~-02 -.%249~-01 27 -.50052~-02 -.El 94E-01 
28 -.44634E-02 -.25182E-01 29 -.63749E-02 -.26559E-01 30 -.52828E-02 -.26501E-01 
31 -.68507E-02 -.27577E-01 32 -.65811E-02 -.27518E-01 33 -.62954E-02 -.27401E-01 
34 -.68161E-02 -.27664E-01 35 -.72519E-02 -.27166E-01 36 -.61665E-02 -.26284E-01 
37 -.70370E-02 -.25898E-01 38 -.78691 E-02 -.25398E-01 39 - .49158E-O2 -.23247E-01 
40 -.78646E-02 -.21836E-01 41 -.31688E-02 -. 18623E-01 42 -.51687E-02 -. 17788~-01 
43 -.71196E-02 -.16855E-01 44 -.13242E-02 -.13015E-01 45 -.55782E-02 -.10963E-01 
46 .15487G03 -.72526E-02 47 -. 16405E-02 -.62975E-02 48 -.35098E-02 -.54896E-02 
49 .71525E-03 -.26446E-02 50 -. 14080E-02 -. 13752E-02 51 0. 0. 
52 0. 0. 53 0. 0. 54 0. 0. 

STRESSES 
G.P. RR-STRESS 22-STRESS RZ-STRESS IT-STRESS MAX P.S. MIN P.S. ANGLE 

ELEMENT NO. z 1 
1 -. 140401 b05 -.297607E+03 .102996E+02 -. 13951 8 ~ 4 5  -.297599Ec03 -,140401E+05 -.043 
2 -.137677E+05 -. 163963E+03 -.597302E+01 -.I38441 E+05 -. 163961E+03 -,137677E+05 .025 
3 -. 144323Et05 .442655E+03 .738033E+03 -. 141613E45 .479184Ec03 -, 144688E+05 -2.834 
4 -. 133330E+05 -.936998E43 .632685E+03 -. 136731E+05 -.904790E+03 -, 133652E+05 -2.914 
ELEMENT NO. s 2 

- - -  

4 -. 153434~+05 -.?05963~+04 .231258~+04 -. 149313~45 
ELEMENT NO. = 4 

1 -. 140507E+05 -.635684E+03 .272355E+04 -. 136079E+05 
2 -.129503E+05 -.771685E+03 .251263E+04 -.139120E+05 
3 -. 162765E45 -.534438E43 .331560E+04 -. 144035E45 
4 -. lO566lE+O5 -. lO708lE+O4 .217283E+04 -.128314E+05 
ELEMENT NO. 5 

1 -. l69374E+O5 -.616907E+03 .343220E44 -. 150478~+05 

P.S. 



ELEMENT NO. = 7 
1 -.722734E+04 .11.14@4E+03 
2 -.192763E+05 -.178155E+04 
3 -.478449~+04 -.226073~+03 
4 -.209663E+05 -. 258450E+04 

ELEMENT NO. r 8 
1 -.437572E+04 -. l5714lE+03 
2 -.205255E+05 -.290008E+04 
3 - .569987E+O'I -. l96356EcO4 
4 -. 178667E45 -.303932E+04 

ELEMENT NO. = 9 
1 -.820383E+04 - .168373E+04 
2 -. 140072E+05 -.338917E+04 
3 -.124091E+05 -.260385E+04 
4 -.832578E+04 -.512213E+04 

ELEMENT NO. = 10 
1 -. l75228E+O5 -.441212E+04 
2 -. 153824E44 -.224010E+04 
3 -.253810E+95 -. 152556E+05 
4 .708117E+04 .431688E44 

etc. 
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Accelerogram, 399,425,427 
Ahrnad elements, 489 
Alternative form of the yield criterion, 

229 
Alternative material models, 465 
Array initialisation, 238, 297 
Associated plasticity, 224, 273 
Axisymmetric Mindlin plates, 372 
Axisymmetric problems, one dimension, 

92 
Axisymmetric solids, elastic expressions, 

165 

Back substitution, 45, 48 
Backward diierence method, 274 
Banded equations, 45, 58 
Bauschinger effect, 90, 222, 309 
Beams on elastic foundations, 15 1 
Berg yield criterion, 265 
BFGS procedures, 491 
Bingham plastic, 483 
Body forces, 164 
Boundary data, 38, 206 
Boundary element methods, 493 
Boundary tractions, 164 
Buffer area, 195 

Central difference time stepping scheme, 
388 

Circular plate, elasto-plastic, 264 
Cohesion, 219 
Combined initial/tangential algorithm, 

21, 41, 206 
Computational techniques, 495 
Concrete nonlinearity, 477 
Conditional stability, 276, 302, 391, 437 
Conjugate gradient method, 492 
Consistent load vector, 173, 183, 188, 

214 

Constitutive matrix, D: 
Dynamic applications, 413 

~lasto-plastic, 227, 244 
Elasto-plastic Mindlin plates, 326 
Visco-plastic, 274, 286 

Convergence, 14, 21, 65, 72, 109, 212, 
267, 297, 336,451 

Coupled-field problems, 487 
Crack tip elements in plasticity, 487 
Creep buckling, 3 17 
Critical state model, 476 
Cylinder : 

Elasto-plastic, 262 
Elasto-viscoplastic, 3 10 

Damping forces, 379, 390 
Deformation Jacobian matrix, 382,404 
Diagonal mass matrix, 389, 392, 410 
Distortional strain energy, 219, 265 
Distributed edge loading, 184 
Drucker-Prager yield criterion, 220,230 
Dynamic dimensioning, 174, 238, 396 
Dynamic equilibrium equations, 378 
Dynamic relaxation, 493 
Dynamic transient analysis; 377 

Discretisation by isoparametric el- 
ements, 379 

Equilibrium equations, 378 
Geometric nonlinearity, 382 
Modelling of nonlinearities, 381 

Effective, generalised or equivalent plas- 
tic strain, 223 

Effective, generalised or equivalent 
stress, 218 

Effective stiffness matrix, implicit dy- 
namic, 435 

Ef i t ive  stress level, 239 
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Elasto-plastic general solution process, 
235 

Elasto-plastic one-dimensional prob- 
lems, 26 

Elasto-plastic stress/strain relation, 224 
Elasto-plasticity, matrix formulation, 

227 
Elasto-plasticity, two-dimensional, 232 
Element, one-dimensional, 24, 25, 100 
Element shape functions, 24, 158, 159, 

160, 179 
Endochronic theory, 479 
Equation assembly and solution, 42, 194 
Equation reduction or elimination, 45 
Equation resolution, 21, 57, 194 
Equation solution, numerical example, 

43 
Equilibrium correction, 101, 107, 276, 

289 
Equilibrium equations, 13,236,275,321 
Error diagnostics, 200, 202, 214, 360 
Euler-Bernoulli beam theory, 121 
Euler's rule, 99, 273 
Explicit time stepping, 273, 302, 377, 

378,431 

Failure criterion, 223 
Flow problems, 480 
Flow rule, 224 
Flow vector, 227, 233, 241, 338, 419 
Fluidity parameter, 97, 273 
Forward difference method, 273 
Fracture mechanics, 484 
Friction slider, 95 
Frontal equation solution, 194 
Further applications, 465 

Galerkin process, 23, 29 
Gas diffusion, 22, 68 
Gaussian direct elimination, 45 
Gaussian quadrature data, 179 
Geometric data, 36, 206 
Geometric nonlinearity, 274, 316, 382 
Global shape functions, 23 
Gravity dam, seismic example, 424 
Gravity loading, 163 
Green strains, 383 
Groundwater flow problems, 90 

Heat conduction, 22, 29, 66 
Heterosis element, 319, 325, 370 
Hierarchical formulation, 325 
Hyperelastic problems, 25 

Implicit/explicit time stepping, 377, 43 1, 
434 .. . 

lmplicit time stepping, 274,302, 377,431 
Implicit trapezoidal time stepping 

scheme, 274, 302 
Improved numerical techniques, 466, 

490 
Incrementation of load, 60, 110, 210 
Inertia forces, 379 
Initial stiffness method, 20, 29, 41, 206 
In-plane deformation in plates, 372 
Input data, 35, 205, 281, 399 
Instructions for preparing input data 

for dynamic transient problems: 
Programs DYNPAK and MTXDYN, 

52 1 
Instructions for preparing input data 

for one-dimensional problems: 
Program ELPLAS, 506 
Program NONLAS, 506 
Program QUITER, 503 
Program QUNEWT, 505 
Program TIMLAY, 509 
Program TIMOSH, 508 
Program UNVIS, 507 

Instructions for preparing input data 
for plane, axisymmetric and plate 
bending problems: 

Programs MTNDLIN and MIND- 
LAY, 517 

Program PLANET, 51 1 
Program VISCOUNT, 516 

Interactive computing, 495 
Internal friction angle, 21 9 
Isoparametric elements: 

Lagrangian 9-node, 5, 157 
Linear 4-node, 5, 157 
Serendipity, &node, 5, 157 

Isoparametric finite element represen- 
tation, 169 

Isotropic hardening, 222 

J contour integral, 485 
Jacobian matrix, 17, 24, 171, 181 

Kinematic hardening, 222, 309 
Kirchhoff thin plate theory, 319 

Lagrangian description, 382 
List of computer programs, 466 
List of subroutines: 

One-dimensional applications, 467 
Two-dimensional applications, 469 
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Load factor, 60, 210 
Load vector, 13, 24, 183, 188, 405 
Locking material, 30, 92 
Lumped mass matrix, 389, 392,410 

Material properties, 37, 207, 281 
Mathematical theory of plasticity, 215 
Matrix inversion, 288 
Maxwell model, 117, 302, 305 
Mechanical sublayer method, 304 
Metal forming problems, 482 
Method of direct iteration, 14, 24,40,63 
Method of successive approximations, 

14 
Midside nodal coordinate generation, 

178, 341,413 
Mindlin plates: 

Elastic expressions, 167 
Mindlin plates, elasto-plastic; 319 

Discretisation, 324 
Equilibrium equations, 321 

Mindlin plates, elasto-plastic layered ; 
326 

Nonli ear equilibrium equations, 327 
Pro d' am structure, 355 

Mindlin plates, elasto-plastic non- 
layered; 327 

Nonlinear equilibrium equations, 329 
Program structure, 33 1 

Mohr-Coulomb yield criterion, 219, 
230, 234 

Newmark time stepping scheme, 432 
Newton-Raphson method, 15,24,40,68 
No-tension model, 477 
Non-associated flow rule, 476 
Nonlinear elastic problems, 25, 74 
Non-Newtonian fluid flow, 482 
Normality condition, 224 
Notched bend specimen, 5 
Numerical integration, 174 

Octahedral shear stress, 218 
One-dimensional FORTRAN programs ; 

33 
Direct iteration of quasiharmonic 

problems, 63 
Elasto-plastic problems, 78 
Elasto-viscoplastic problems, 104 
Newton-Raphson solution of quasi- 

harmonic problems, 68 
Nonlinear elastic problems, 74 

One-dimensional nonlinear problems, 
13 

Output of results, 58, 21 I ,  258, 342, 363, 
414 

Overlay method, 90, 304, 316 
Overlay simulation of: 

Four parameter viscous model, 309 
Three element viscous model, 309 
Visco-elastic model, 308 
Viscoelastic-plastic four parameter 

model, 309 

Pi plane, 21 7 
Piecewise linear strain hardening rep- 

resentation, 266 
Piola-Kirchhoff stresses, 386 
Plane Strain, elastic expressions, 164 
Plane Stress, elastic expressions, 162 
Plastic multiplier, 224 
Plastic potential, 224, 273 
Power law pseudoplastic, 483 
Prandtl-Reuss equations, 225 
Predictor-corrector algorithm, 434, 436 
Prescribed displacements in equation 

solution, 46 
Principal stress evaluation, 258 
Profile equation solver, 436, 440 
Program structure, 8, 34, 104, 134, 235, 

281, 331, 355, 392, 440 
Programming notation, 10 
Pseudo-loads, viscoplastic, 100, 275 

Quasi-harmonic equation, 22, 63, 68 
Quasi-Newton method, 491 

Rayleigh damping, 391 
Residual forces, 15, 71, 76, 81, 102, 236, 

249, 344, 364 

Sample input data and line printer out- 
put: 

Dynamic transient elasto-plastic ex- 
plicit time integration example, 567 

Dynamic transient elasto-plastic im- 
plicit/explicit example, 578 

Elasto-plastic layered Timoshenko 
beam, 537 

Non-layered elasto-plastic Mindlin 
plate problem, 558 

One-dimensional direct iteration quasi 
harmonic example, 529 

One-dimensional elasto-plastic prob- 
lem, 531 
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Sample input data--contd. 
One-dimensional elasto-viscoplastic 

problem, 535 
Two-dimensional elasto-plastic prob- 

lem, 542 
Two-dimensional elasto-viscoplastic 

problem, 550 
Seismic analysis, 377, 399, 424 
Selective integration, 128, 325, 482 
Shape function derivatives: 

Cartesian, 171, 182 
Local, 171 

Shape function evaluation, 179, 346 
Shells, elasto-plastic and geometrically 

nonlinear, 488 
Singular points on the yield surface, 234 
Space diagonal, 21 7 
Sphere: 

Elasto-plastic, 267 
Elasto-viscoplastic, 31 5 

Spherical shell, dynamic example, 421, 
458 

Starting algorithm for central difference 
scheme, 390 

Steady state conditions, 104, 109, 279, 
297 

Stiffness matrix, 13, 24, 28, 100, 127, 
142, 173, 244, 283, 348, 367, 439, 
447 

Strain energy function, 25 
Strain hardening, 26, 222, 223 
Strain matrix, B, 172, 191 
Strain matrix, geometric nonlinear, 382, 

395 
Strain softening, 223 
Stress intensity factor, 485 
stress invariants, 216, 233 
Stress space, 2 1 7 
Subroutines, elasto-plastic (additional): 

DIMEN, 238 
FLOWPL, 243 
INVAR, 239 
LINEAR, 247 
Master segment, 260 
OUTPUT, 258 
RESIDU, 249 
STIFFP, 244 
YIELDF, 241 
ZERO, 238 

Subroutines, elasto-plastic layered Mind- 
lin plates (additional): 

CHECK1,360 
DEPMPA, 360 

Subroutines-contd. 
FEAM, 355 
LAYMPA, 360 
MDMPA, 362 
OUTMPA, 363 
RESMPA, 364 
STIMPA, 367 
STRMPA, 369 

Subroutines, elasto-plastic nonlayered 
Mindlin plates: 

CONVMP, 336 
DIMMP, 338 
FEMP, 334 
FLOWMP, 338 
GRADMP, 340 
INVMP, 340 
MINDPB, 341 
NODEXY, 341 
OUTMP, 342 
RESMP, 344 
SFR2, 346 
STTFMP, 348 
STRMP, 353 
SUBMP, 354 
VZERO, 354 
ZEROMP, 354 

Subroutines, elasto-plastic (standard): 
ALGOR, 209 
CONVER, 212 
INCREM, 210 
INPUT, 205 

Subroutines, elasto-viscoplastic (ad- 
ditional) : 

FLOWVP, 294 
INVERT, 288 
Master segment, 299 
STEADY, 297 
STEPVP, 289 
STIFVP, 283 
STRESS, 295 
TANGVP, 286 
ZERO, 297 

Subroutines, elasto-viscoplastic tran- 
sient dynamic analysis: 

BLARGE, 395 
CONTOL, 396 
DYNPAK, 392 
EXPLIT, 396 
FIXITY, 397 
FLOWVP, 398 
FUNCTA, 399 
FUNCTS, 399 
INPUTD, 399 
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Subroutines-ontd. 
INTIME, 401 
INVAR, 403 
JACOBD, 404 
LINGNL, 404 
LOADPL, 405 
LUMASS, 410 
MODPS, 413 
NODXYR, 413 
OUTDYN, 414 
PREVOS, 41 6 
RESVPL, 41 7 
YIELDF, 419 

Subroutines, implicit/explicit transient 
dynamic analysis (additional) : 

ADDBAN, 444 
ADDRES, 444 
COLMHT, 445 
DECOMP, 445 
DINTOB, 446 
GEOMST, 446 
GSTIFF, 447 
IMPEXP, 449 
ITRATE, 45 1 
LINKIN, 452 
MIXDYN, 442 
MULTPY, 454 
REDBAK, 455 
RESEPL, 456 

Subroutines, one-dimensional : 
ASSEMB, 49 
ASTIFI , 70 
BAKSUB, 54 

\ 
CONUND, 72 
CONVP, 109 
DATA, 35 
GREDUC, 5 1 
INCLOD, 60, 110 
INCVP, 107 
INITAL, 59 
Master segment, 61 
Master segment (viscoplasticity), 11 1 
MONITR, 65 
NONAL, 40 
REFORI, 71 
REFOR2, 76 
REFOR3,81 
RESOLV, 57 
RESULT, 58 
STIFF], 63 
STIFF2, 75 
STIFF3,78 
STUNVP, 106 

Subroutines, Timoshenko beam analy- 
sis : 

BEAM, 135 
BEAML, 144 
LAYER, 147 
REFORB, 137 
RFORBL, 146 
STIFBL, 145 
STIFFB, 136 

Subroutines, two-dimensional (elastic): 
BMATPB, 191 
BMATPS, 191 
CHECK 1,200 
CHECK2, 202 
DBE, 194 
ECHO, 201 
FRONT, 194 
GAUSSQ, 179 
JACOBZ, 181 
LOADPB, 188 
LOADPS, 183 
MODPB, 193 
MODPS, 192 
NODEXY, 178 
SFR2, 179 

Substructuring, 493 
Subterranean cavity, viscoplastic, 314 

Tangent modulus, 26,225 
Tangential stiffness, 20, 26,28,236,275, 

327, 329 
Tangential stiffness method, 20, 40, 206 
Theorem of minimum total potential 

energy, 44 
Time-step limitations: 

Dynamic transient, 391, 426, 437 
Elasto-viscoplastic, 102, 276 

Timoshenko beam analysis ; 1 21 
Basic assumptions, 122 
Element stress resultants, 128 
Finite element idealisation, 125 
Formulation of the stiffness matrix, 

127, 142 
Layered approach, 122, 141 
Non-layered approach, 121, 122 
Solution of nonlinear equations, 132, 

143 
Timoshenko layered beam program, 

TIMLAY, 144 
Timoshenko non-layered beam pro- 

gram, TI MOSH, 135 
Tderance value, 65, 72, 298 
Tresca yield criterion, 217, 230, 234 
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Unconditional stability, 276, 302,437 
Uniaxial yield stress, 26, 219 
Uniaxial tension test, 26, 225 

Virtual work, 124, 162 
Viscoelastic behaviour, 305, 308 
Viscoplastic : 

Strain increment, 273 
Stress increment, 274, 295 

Viscoplastic computatioaal procedure: 
One dimension, 103 
Two dimensions, 278 

Viscoplastic element stiffness formu- 
lation, 283 

Viscoplastic flow function, 273, 286 
Viscoplastic strain rate, 100, 272, 294, 

398 
Viscoplastic strain rate derivative 

matrix, 274, 279 

Viscoplasticity, basic theoretical re- 
sponse : 

Dynamic application, 38 1 
One dimension, 98 
Two dimensions, 272 

Viscoplasticity in two dimensions, 271 
Viscoplasticity in one dimension, 95 
Viscosity coefficient, 97 
Volume, elemental, 172 
Von Mises yield criterion, 218, 230 

Weighting functions, 23 
Winkler foundation, 15 1, 372 
Work hardening, 222, 223, 228 

Yield criterion, 26, 216, 272, 326, 328 
Yield function constants, 231, 234, 235 
Yield moment, 129 
Yield surface, 21 7 
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