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1 Introduction 

 The U.S. Army Corps of Engineers has been tasked with designing, building, 
and maintaining numerous structures located on or within bodies of water 
including rivers, lakes, waterways, and coastal areas. Each of these structures has 
a geotechnical foundation system that enables the structure to perform a useful 
service or function throughout its design life. Each foundation is uniquely 
designed to match the structure�’s function and engineering requirements 
constrained by the underwater geological site conditions. 
 
 
Background 
 Underwater foundations have been constructed throughout history. The 
earliest type of underwater foundation appears to have been driven stakes or piles 
around the edges of water bodies. Ancient settlements built on piles around lakes 
in present-day Scotland, Switzerland, Italy, and Ireland have been dated to about 
4,000 years ago. The ancient Phoenicians built docks and ports (such as Tyre) 
using underwater construction methods. The Greeks and Romans used piles for 
shore works along the Mediterranean and many other locations (Fleming et al. 
1992, D�’Appolonia 1972). Herodotus, a Greek writer who lived in the 4th 
century B.C., wrote about African dwellings erected on piles driven into a lake. 
In Britain, evidence of bridge timber piles about 9 ft (3 m) long was found in the 
Tyne River. Vitruvius, a Roman architect, wrote the treatise De Architectura, 
which describes using sheet piles for dams and other water structures. The 
Roman engineers also developed concrete and used it for placement of bridge 
piers. During the Middle Ages, cities such as Venice and Amsterdam were built 
upon timber piles (Fleming et al. 1992).  
 
 Not until the 19th century did soil engineering principles become 
incorporated into the foundation construction process. Changes in materials and 
installation technology began to take place. Pile-driving by man or horse power 
was replaced by a steam engine that raised a cast-iron ram and released it to 
impact the timber pile. Metal piles became available in the mid-1830s. In 1824 
Joseph Aspdin patented his hydraulic cement, which became known as portland 
cement, and the French introduced reinforced concrete. Driven piles could be 
replaced by bored shafts since the hydraulic cement could be placed underwater 
(Fleming et al. 1992).  
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 Modern soil mechanics, which offered an explanation for the behavior of soil 
foundations, was not advanced until the early 20th century. Since that time, 
numerous foundation types, materials, and installation technologies have been 
developed for onshore applications (Parkhill 1998). Underwater foundation 
technology initially lagged behind onshore technology, especially in soil 
sampling and testing (Focht and Kraft 1977). In other areas such as site 
assessment, foundation material selection, installation methods, and equipment, 
the offshore technology has been uniquely developed. For example, the offshore 
industry almost exclusively used pile foundations without benefit of preliminary 
site investigations until the 1940s (Focht and Kraft 1977). Design guidelines for 
some types of underwater foundations have evolved separately from onshore 
guidelines (American Petroleum Institute 1993), while site assessment methods 
and installation equipment have been specifically developed for underwater 
foundations. 
 
 Deepwater site exploration and foundation construction techniques have been 
used for scientific research and military purposes, but the offshore industry has a 
profit motive to build functional foundations (Brown 1972). Although the 
underwater foundation projects designed and constructed by the U.S. Army 
Corps of Engineers may not be located beyond the Continental Shelf, the use of 
state-of-the-art offshore foundation applications will likely be influential. 
 
 
Objectives 
 Underwater foundation selection and design choices have generally been 
based on foundation construction in the dry, that is, within a pre-installed 
cofferdam that isolates the construction from the surrounding body of water, or 
on dry land with water diversion. Construction on dry land is normally the fastest 
and least expensive method (American Society of Civil Engineers (ASCE) 1998). 
However, the dry land method may not be an option unless the body of water can 
be feasibly diverted. Cofferdam design and construction efforts require additional 
time and expense to be budgeted for project completion. The benefits of faster 
paced and more economical construction within the water (in the wet) without 
cofferdams have been demonstrated in many case histories, and the Corps has 
begun exploring the feasibility of in-the-wet technology, as illustrated in 
Figure 1. The Corps�’ first major in-the-wet project (Monongahela River 
Braddock Dam) is currently under construction and is expected to save $5 to 
$15 million while reducing contract duration by 1 year (ASCE 1999a). 
 
 To obtain a technical project database of in-the-wet foundation design and 
construction requires time and experience, and some Corps Districts are 
compiling individual project information at specific sites. No written Corps-wide 
guidance for underwater foundation design and construction is currently 
available. Most of the technical expertise is held by specialist design firms and 
contractors. The information contained in this report cannot be found in a concise 
form or single document elsewhere in the literature. 
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Scope 

Figure 1. In-the-wet foundation concept for the 
Corps of Engineers�’ lift-in Olmsted 
Dam structure (after Gerwick News 
1999) 

 The purpose of this report is to provide 
an overview of underwater geotechnical 
foundation design and construction and 
preliminary guidance based on past and 
current technology applications. Most of 
the state-of-the-art technology comes from 
the marine offshore industry, because of its 
complex foundation engineering challenges 
in the deep-ocean frontier. 
 
 Direct applications may or may not be 
made to underwater foundations based in 
shallower rivers and inland waterways, but 
most of the principles, techniques, and 
equipment are related. 
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2 Selected Case Histories 

 In-the-dry foundation construction requires diversion of the existing water 
body or isolation of the construction from the water body. In-the-wet foundation 
construction may not adversely impact the navigation system and is relatively 
unaffected by flood stages or tidal fluctuations when compared with in-the-dry 
construction. Also called �“float-in�” or �“lift-in�” construction, in-the-wet 
construction requires underwater preparation of the foundation prior to placement 
of the superstructure (ASCE 1998). Several types of structures have been 
constructed using in-the-wet techniques, and selected case histories illustrate 
aspects of those techniques. 
 
 
Navigation, Flood Control, and Dam Structures 
 In-the-wet construction methods are rare for these types of structures in 
inland (shallow) waterways. This construction method is recognized (ASCE 
1998) but definitely plays a lesser role than the cofferdam (in-the-dry) 
construction method.  
 
 
Thames River flood barrier 

 This project combined in-the-wet foundation preparation and initial 
construction followed by in-the-dry construction of the superstructure within a 
cofferdam. The purpose of the project was to prevent tidal floods in the London 
area. Over the past several centuries, the Thames River has slowly been rising 
due to land settlement in southeast England and London and the increase in the 
river estuary tidal range. In addition to these changes, the North Sea surge tides 
always present a flood threat to the London area. 
 
 After the disastrous 1953 tidal surge floods, the Government appointed a 
committee to make recommendations, and a flood barrier was proposed. By 
1970, after approximately 14 design ideas were analyzed, the structure�’s location 
and design concepts were agreed upon. Construction commenced in 1973 
(Gilbert and Horner 1984) and was completed in 1982. The completed project is 
shown in Figure 2. 
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Figure 2. Thames River flood barrier gates (after Gilbert and Horner 1984) 

 
 The foundation project consisted of constructing four piers in sequence from 
the south side of the river, followed by construction of five piers in sequence 
from the north side. Access to the piers was provided by a jetty constructed from 
the south side. Bottom sills connected each pier. The riverbed consisted of chalk 
overlain with alluvial deposits of gravel, sand, and clay up to 50 ft (16 m) thick. 
Six pier foundations were sited on the chalk, and three pier foundations were 
sited on sand deposits. Underwater excavations and concrete placements were 
required (Figure 3). Prior to excavation, sheet piles forming a future cofferdam 
were driven into the chalk at each pier location. The distance from the tops of the 
sheet piles to the base of the excavation was about 90 ft (27 m).  
 
 Special problems were encountered during the underwater foundation 
preparation. Leveling and cleaning up the bottom of the excavation in the chalk 
posed a challenge due to redeposition of river silt during each tide. Explosives 
were used to remove chalk wedged in the sheet-pile troughs. Special air-lift 
pumps were developed to scour the excavation bottom. 
 

Figure 3. Underwater foundation construction sequence (after Gilbert and 
Horner 1984) 
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 Underwater concrete placement for each pier base was accomplished using 
12-in. (30-cm)-diam tremie pipes transporting approximately 7,000 tons of 
concrete around the clock for 5 days. Each concrete base thickness was 15 ft 
(5 m). Coring confirmed optimal jointing with the undisturbed chalk surface. The 
cofferdams were dewatered, and pier construction proceeded. By 1982 the 
project was essentially completed. 
 
 
Eastern Scheldt storm surge barrier 

 On the eastern side of the English Channel, the Netherlands are also 
subjected to the whims of the North Sea. The 1953 floods provided an impetus 
for the Government to launch the Delta Project, which was designed to protect 
the Netherlands at the confluence of the Rhine, Maas, and Scheldt Rivers. After 
construction of seven dams and flood barriers, the Eastern Scheldt storm surge 
barrier and two auxiliary lock and dam structures (which comprised the final part 
of the project) were completed in 1986 (DOSBOUW 1987). 
 
 The storm surge barrier spans the mouth of the Eastern Scheldt, and was the 
most complex portion of the entire Delta Project. The typical current is about 
5 fps (1.5 m/sec) and bottom slope is 1 in 7 (Heijnen and Vermeiden 1979). 
Three tidal channels with depths up to 99 ft (30 m) were crossed with a structure 
whose foundations consisted of piers and connecting sills. Each pier was 
prefabricated using prestressed concrete and weighed up to 18,000 tons. Figure 4 
shows the barrier layout with a typical pier detail. The piers were built inside a 
dry ring dike with a bottom approximately 49 ft (15 m) below sea level. To move 
the piers, the dike was flooded, and each pier developed a buoyant weight of 
about 9,000 tons. A lifting vessel capable of hoisting 10,000 tons lifted and 
transported each pier to its final site. Once at the site, each pier was lowered to 
the prepared seabed, internally ballasted, and grouted at the prepared foundation 
contact. 
 
 The seabed floor consisted of young Holocene fine to medium sands and silt. 
It was modified to accept the piers. No piling or concrete foundations were used. 
Site investigation using a specially designed geotechnical platform yielded cone 
resistances ranging from 14.5 to 145 psf (0.7 to 70 kPa ) (Heijnen and Vermeiden 
1979). Since these resistances were below those required for adequate bearing 
capacity, special preparations were required to enable adequate bearing 
capacities. 
 
 First, the seabed was excavated (a �“cunette�” excavation), and unsuitable 
material (silt) was replaced with sand where necessary. The sand was compacted 
over a distance of 263 ft (80 m) around each pier by a specially built floating 
compacting rig. The rig drove four large vibrating rods into the subsurface and 
compacted layers up to 59 ft (18 m) thick. The compaction process took 3 years 
to complete. The quality control system included another specially built craft 
equipped with a conventional drill rig and a diving bell that conducted soil 
sampling and density measurements during the compaction process. 
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b. Storm surge barrier float-in pier detail a. Storm surge barrier 

Figure 4. Eastern Scheldt storm surge barrier (after DOSBOUW 1987) 
 
 The compacted seabed was then dredged, leveled to the designed depth, and 
covered with 658  138  1.2 ft (200  42 m  36 cm) prefabricated foundation 
mattresses. The mattresses were fabricated offsite and transported to each 
location, where they were unrolled onto the seabed by specialized floating 
equipment. Each mattress consisted of graded aggregates sandwiched between 
reinforced support fabric. After the upper mattress was placed, a block mattress 
(containing concrete blocks of varying thicknesses) for leveling purposes was 
positioned. Each pier was then placed directly on its respective block mattress. 
 
 A graded stone aggregate sill was placed between each pier to stabilize the 
piers and prevent bottom scouring in the event a gate failed to close. A stone-
depositing barge crane placed the rocks weighing up to 11 tons (10 metric tons) 
with densities up to 2.5 tons/cu yd (3 metric tons/m3 ) into their underwater 
locations. About 5.5 million tons of stone were placed into position over a period 
of about 2 years. After completion of the underwater sill, precast concrete sill 
beams were lowered into place to rest on the underwater sill. The remaining 
superstructure elements were then positioned and placed between the piers. 
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Mississippi River Lock and Dam 26 guidewall 

 The upstream guidewall at the Corps�’ Lock and Dam 26 replacement on the 
Mississippi River is founded on 118 caissons. Each caisson consists of a 6-ft 
(1.8-m)-diam open-ended pipe pile driven 51 ft (15.5 m) into sands and gravels 
in the river bottom, which is about 40 ft (12.2 m) below the river surface. After 
vibratory driving was completed, the piles were internally excavated under a 
positive pressure head to prevent blowout and then filled with concrete. A load 
test using eight 3-ft (0.9-m)-diam reaction piles driven to bedrock validated 
design assumptions (Demsky and Moore 1989). 
 
 
Monongahela River gated dam 

 A recently contracted $107 million �“in-the-wet�” project is the Pittsburgh 
District�’s new gated dam next to the existing Braddock Locks and Dam 2 on the 
Monongahela River in Pennsylvania (U.S. Army Corps of Engineers 1998). The 
underwater foundation system will consist of a dredged area with sheet-pile 
cutoff walls in the riverbed alluvium and concrete drilled shafts socketed into 
bedrock, upon which will rest two float-in precast concrete dam elements 
(Figure 5).  

 
 Besides the novel features of the 
concrete float-in elements, the 
predominant work feature for the 
underwater foundation will be drilled 
shafts. These provide the deep 
foundation support for the precast 
concrete elements, and also function 
as anchor piles for positioning the 
precast concrete elements. The drilled 
shaft (similar to a caisson or pier) is 
basically a pinned foundation system 
consisting of a 78-in. (1.9-m)-diam 
by 30-ft (9-m)-long open steel pipe 
pile (casing) driven with a vibratory 
hammer to bedrock, then rotary-
drilled through the bottom end and 

further drilled without casing about 17 ft (5 m) into the bedrock. Steel 
reinforcement and instrumentation tubes for later sonic testing will be inserted to 
bedrock and tremie-concreted. Steel shear pin connectors provide the attachments 
for the subsequently positioned precast concrete dam elements.  

Figure 5. Monongahela River gated dam and 
foundation (after Gerwick News 1998) 

 
 The two 300-ft (91-m)-long, 103-ft (31-m)-wide, and 21-ft (6-m)-deep 
precast segments will be internally tremie-grouted. Once finished, the dam height 
will be about 81 ft (25 m) and about halfway submerged. Construction is 
expected to be completed in 2002 (ASCE 1999a). 
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Olmsted Dam 

 Another innovative Corps of Engineers project is being designed to replace 
and update navigation and flood control capabilities on the lower Ohio River, 
15 miles from its confluence with the Mississippi River. The Olmsted Dam 
project has been designed as float-in (in-the-wet) construction and will be the 
only wicket dam in the United States when completed. Currently under contract 
are $224-million twin locks being constructed within $55-million in-the-dry 
cofferdams (ENR 1996). 
 
 
Lake Mead intake structure 

 Lake Mead serves as the main source of drinking water for southern Nevada, 
including Las Vegas. The lake is impounded by the Hoover Dam. As part of a 
water supply improvement program, a water-intake shaft and tunnel system is 
being constructed. The intake shaft was installed in the wet and will eventually 
be connected to an underground tunnel and distribution system. 
 
 The intake structure was floated in and placed in 240-ft (73-m)-deep water 
onto a specially prepared underwater foundation on a steep underwater slope. A 
bench was excavated, and a pile-drilling template was positioned on the level 
excavation. Downhole hammer-drill equipment was used to drill anchor piles that 
were subsequently grouted. A second template was keyed into the first template, 
and a 20-ft (6.5-m)-diam shaft was drilled an average length of 100 ft (30 m) into 
stable rock. The first 30 ft (9 m) was steel-cased. The shaft was then grouted after 
the float-in steel riser intake structure was placed into position. Personnel dives 
were minimized during construction by using remotely operated vehicles 
(ROVs), a high-resolution positioning system, and sonar equipment (Norwesco 
Marine 1999). 
 
 
Adriatic Sea piled breakwater structure 

 Approximately 1.25 miles (2 km) off the Italian coast near Manfredonia on 
the Adriatic Sea, a breakwater structure was constructed to protect new offshore 
docking facilities (Toppler, Harris, and Maaten 1971). The breakwater design 
was basically a heavy concrete slab resting on battered piles in 36 ft (11 m) of 
water. The 4-ft (1.2-m)-diam steel pipe piles are battered at a 3:1 incline to resist 
the design load of 3.3 tons/sq ft (30 tons/m2). A two-dimensional pile-driving 
template made of precast concrete was designed as a permanent addition to the 
breakwater structure, and extended above the waterline to serve as a driving 
guide. Model testing was conducted during the design phase. 
 
 
Argentina piled jetty 

 The foundation of an offshore jetty installed at Puerto Deseado, Argentina, 
was constructed in the rhyolite bedrock (Nakayama 1992). Each of the 147 piers 
(diameter 4 ft (1.2 m)) was socketed 13 ft (4 m) into the rock using a 
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MACH-120R rock drill. The bedrock inclined approximately 30 deg, and drilling 
was conducted on a self-elevating (jack-up) platform in a water depth of 60 ft 
(18 m). The chosen rock drill operated by down-the-hole suspension hammering 
with 720 blows per minute, which helped eliminate slippage down the steep 
incline.  
 
 
Offshore lighthouses 

 One of the first permanent offshore gravity-based structures is the Kish Bank 
Lighthouse located off the coast of Ireland (Young, Kraft, and Focht 1975). This 
structure was built in 1965 in the protected Dun Laoghaire harbor, floated 8 miles 
(13 km) off the entrance to Dublin Bay, and lowered 67 ft (20 m) to the seabed 
(Figure 6). Another gravity-based lighthouse is the Royal Sovereign Lighthouse, 
floated off the coast of Eastbourne, England, in 1968 and sunk in 47-ft (14-m) 
water depth (Antonakis 1972). 
 

 

Figure 6. Kish Bank lighthouse gravity-based structure 
(after Young, Kraft, and Focht 1975) 

Hydroelectric dam 

 British Columbia�’s Hugh Keenleyside earth dam foundation was constructed 
in the wet on the Columbia River between 1965 and 1969 (Bazett and Foxall 
1972). No seepage cutoff wall was designed since the bedrock is located about 
450 ft (137 m) below the sand-gravel riverbed in 90 ft (27 m) of water. To 
control seepage, an impervious glacial till blanket was constructed beneath the 
future dam extending upstream 2,200 ft (669 m) from the future dam upstream 
toe. The as-designed maximum final slope of the blanket was 1:10. 
 
 The foundation was installed by free-fall dumping till, sand, and gravel 
materials into the river using bottom-opening barges and above-water bulldozers. 
The till blanket overlies sand and gravel backfilled in water depths to 55 ft 
(17 m). 
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 Extensive survey control was established to define the boundaries and depth 
of the underwater foundation. An echo-sounding vessel defined the water depth 
and bottom topography. Shoreline-surveyed grid lines established the vessel�’s 
survey patterns using shore-based transits and hand-held radio communication. 
Current and turbidity meters were used to monitor the river�’s velocity and water 
quality. Turbidity exceeding 5 ppm was not allowed during construction because 
of adjacent industrial water-supply intakes.  
 
 Underwater inspection and sampling tasks were accomplished primarily by 
scuba divers wearing wetsuits. The divers monitored preliminary hydraulic 
dredging and subsequent construction operations for silt sediment control, which 
had a prominent influence on the project�’s schedule. Another major problem was 
segregation and loss of fines during dumping. Quality control measures included 
density determinations using standard penetration tests, gradation analysis 
sampling, large-scale testing experiments, and piezometer instrumentation. 
 
 
Other dams 

 The High Aswan Dam in Egypt was partially constructed underwater in a 
maximum water depth of 131 ft (40 m). The underwater portion of the core 
consists of coarse sand that was grouted after placement. Vibrator-compacted 
dune sands form adjacent underwater zones. The dam height is 364 ft (111 m). 
Hong Kong�’s Plover Cove Main Dam was partially constructed underwater after 
soft foundation materials were removed. Other projects listed by Johnson, 
Compton, and Ling (1972) include the Mississippi River�’s Chain of Rocks rock-
fill dam, Columbia River�’s Dalles Closure and Wanapum Dam, and Ghana�’s 
Akosombo Dam. 
 
 The first dam project built across a major U.S. river without channel 
diversion was the Chain of Rocks rock-fill dam across the Mississippi River near 
St. Louis, MO. This $4.5-million Corps of Engineers (St. Louis District) project 
avoided the time and expense of diverting the river, building cofferdams, or 
dewatering the site in order to build this navigation improvement. Although the 
rock-filled section was about 56 percent of the total dam�’s length, the rock-filled 
length of 1,800 ft (547 m) was constructed to be 210 ft (64 m) wide at the bottom 
and 30 ft (9 m) wide at the top. Four rock sizes (6 tons to 8 in.) were placed in 
water depths to 30 ft (9 m) using barge-mounted rock grapple cranes and a 
specially designed tremie pipe (fall-pipe). Rock was placed in 5-ft (1.5-m) lifts in 
a sequential fashion described by Smith (1962). 
 
 Another hydroelectric dam (Wanapum Dam) built on the Columbia River 
was completed in 1963. Instead of constructing an impervious bottom blanket as 
done at Hugh Keenleyside, the river was diverted, a cutoff was constructed, and 
an embankment dam was completed with an impervious core over a grouted 
slurry trench. Underwater backfilling of pervious sand and gravel was 
accomplished between upstream and downstream rock-fill dikes. Underwater 
consolidation of the pervious fill (maximum depth of 50 ft or 15 m) was 
performed using vibroflotation equipment. After consolidation was completed, 
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the slurry trench was constructed, and the remaining dam was constructed as 
detailed by Engstrom (1963). 
 
 
Bridges 

 Underwater foundations have been constructed in the wet for numerous 
bridge structures crossing rivers, bays, and nearshore locations. 
 
 
Brooklyn Bridge 

 It took 13 years to construct this bridge over New York�’s East River. Work 
began in 1870 on a unique and labor-intensive method of constructing 
underwater foundations. Two wooden caissons were sunk on either side of the 
river upon which the bridge superstructure rests. The unique features included the 
size of the caissons and the use of compressed air beneath the caissons, which 
allowed the workers (sandhogs) to muck out the soil. As the soil was removed, 
the weighted caissons eventually settled to the bedrock layer and were filled with 
concrete. Compressed air had been used before during construction of the 
Mississippi River bridge at St. Louis, but not to the extent used at the Brooklyn 
Bridge. 
 
 The caisson on the Brooklyn side of the East River was a 168-ft-long by 
102-ft-wide by 15-ft-deep (51  31  5 m) inverted box. It was constructed 
upriver in the dry using wood timbers, and weighed 16 million pounds (7.2 Gg). 
It was floated downriver, set within a frame, and weighted down with stones until 
it penetrated the river bottom. Compressed air was pumped in, which expelled 
the water and allowed entrance by the sandhogs (Figure 7). Many lives were lost 
before the caisson foundation was excavated down to the bedrock layer, and 
compression sickness (caisson disease or the �“bends�”) injured many of the 
sandhogs (Delaney 1983). 
 

 
Figure 7. Sketch of Brooklyn Bridge underwater caisson (after Delaney 1983) 

12 Chapter 2   Selected Case Histories 



Tappan Zee Bridge 

 The 6-mile-long (9.6 km) Governor Malcolm Wilson Tappan Zee Bridge, 
which crosses the Hudson River about 13 miles north of New York City, is one 
of the largest bridges in the United States. The bridge is named from the local 
Tappan Indian tribe and the word �“zee�” is Dutch for �“sea.�” The bridge is the key 
structure on the 641-mile New York Thruway System and was rededicated in 
1994 in honor of the former Governor Malcolm Wilson. Construction began in 
1952, and the bridge became operational in 1955. More than 40 million vehicles 
presently use the bridge each year (New York State Thruway 1999). 
 
 The central span over the main channel is supported by eight concrete 
caissons on steel H-piles driven to bedrock (Figure 8). The concrete caissons are 
basically hollow concrete boxes that were built on shore, then towed into the 
channel and sunk onto prepared 5-ft-thick (1.5-m) sand and gravel blankets on 
the river bottom. Steel sheet piles surround each concrete caisson. The steel H-
piles were then driven through the box to depths of 270 ft (82 m) to the bedrock 
layer. As the upper bridge supports were constructed, the water inside the boxes 
was pumped out to provide a buoyant platform. Approximately 70 percent of the 
structure�’s dead weight is supported by these eight buoyant caissons, and this 
design saved millions of dollars during the construction phase. 
 
 
Newport, RI, bridge 

 New England�’s largest suspension bridge (the 
Claiborne Pell bridge) crosses Narragansett Bay 
with a water depth of 160 ft (49 m) and bottom 
current velocity to 4.5 fps (1.4 m/sec). The 
$17 million foundation system was constructed 
beginning in 1965 and is composed of steel H-piles 
and drilled shafts supporting tremie-concreted 
footings resting on backfilled sand (Hedefine and 
Silano 1968). 
 
 Dredging to remove 20 ft (6 m) of silt and 
unsuitable material was accomplished at each bridge 
pier. Next, 512 steel piles (14BP102) 70 ft (21 m) 
long were driven to refusal in shale and dense sand 
formations at spacings of 4 ft (1.2 m) on center. A 
special pile-driving lead with retractable spuds at 
the lower end was built to accommodate piles 
driven by a McKiernan-Terry S14 hammer. Lateral 
deviation of 6 in. (15.2 cm) was permitted. Divers in 
a diving bell made the underwater cutoffs using an 
electric oxygen arc. After the piles were cut, a 
sand/gravel fill (40 to 80 percent passing the 3/8-in. sieve with less than 5 percent 
passing the No. 200 sieve) was placed on the bottom. Template guide pipe piles 
(casings) were then driven to assist with placement of the bottom footing form. 

Figure 8. Tappan Zee Bridge 
foundation (after New York 
State Thruway 1999)
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 Each steel footing form, including the attached steel reinforcement bars, 
weighed over 400 tons and required a heavy-lift crane vessel to sink it onto the 
pile template. After the footing form was rested on the bottom, a steel hollow-
shaft caisson form was lowered onto it. Both forms were tremie-concreted in a 
continuous operation. Graded riprap (50 to 100 percent passing the 12-in. mesh, 
20 to 50 percent passing the 5-in. mesh, and 0 to 20 percent passing the 1.5-in. 
mesh) was placed around the completed foundation to prevent 4-ft (1.2-m) depth 
maximum design scouring. 
 
 
Confederation Bridge 

 The world�’s longest continuous crossing over water subject to ice floes was 
constructed during a 4-year period and spans the Northumberland Strait between 
Canada�’s Prince Edward Island and New Brunswick. 
 
 The bridge was built on precast concrete piers and base foundations 
(Figure 9). Each base weighed almost 6,000 tons and was lowered into place on 
the seabed. Each base underside had three pedestals that were set at different 
elevations to keep the base elevated at the correct grade on the sloping seabed. 
To ensure uniform stress transfer between the concrete structure and seabed, 
concrete was tremied between the base underside and the foundation rock. 
Tremied concrete was selected instead of compacted gravel because it was 
believed that better placement accuracy and better settlement resistance would be 
achieved with concrete (Carter 1998). 
 

 
Great Belt eastern bridge 

Figure 9. Confederation Bridge foundation (after 
Carter 1998) 

 This bridge spanning the shipping 
channel between the Baltic Sea and 
the North Sea is the last part of 
Denmark�’s Great Belt transportation 
link, which opened in 1998. 
Unsuitable material with low bearing 
capacity was discovered after 
construction began, requiring 
additional excavation dredging. 
Although caisson construction took 
place offsite, the foundation 
preparation was done prior to towing 
and positioning the caissons. Some of 
the methods used to construct the 
improved-site foundation included 
dredging with a bucket dredge to 
minimize disturbance of boulder clay, 
clearing sediment siltation with 
suction equipment, placing crushed 
stone material in layers with a side-
dumping vessel, performing vibration 
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compaction with powerful plate vibration units, and screeding the foundation top 
layer level to a 2-in. (50-mm) tolerance (Gerwick News 1992). 
 
 
Akashi Kaikyo Bridge 

 The world�’s longest suspension bridge (1.9-km center span) crosses the 
Akashi Strait in Japan (Figure 10). Completed in 1998, the bridge construction 
took 10 years. Foundation preparation required dredging to a consolidated gravel 
layer 46 ft (14 m) below the seabed. Steel caisson foundations were floated in 
and sunk into position in water currents up to 13 fps (4 m/sec). During placement 
of the foundations, a wave-breaking apparatus was used to allow accurate 
positioning and placement of the caissons. High-performance concrete was then 
placed by tremie pipe (Yao, Berner, and Gerwick 1999). After the caissons were 
in place, graded aggregate was placed based on hydraulic laboratory scour 
protection testing results conducted by the Honshu-Shikoku Bridge Authority 
(1996). In 1995, during construction, the Kobe earthquake epicentered 2.5 miles 
(4 km) from the bridge and shook the foundations. Although the span distance 
was increased (less than 3.2 ft (1 m)), it was concluded that the foundations and 
anchorages had not been damaged (Kajima Corporation 1998).  
 

 
Figure 10. Akashi Bridge (after Kajima Corporation 1998)

 
New Benicia-Martinez Bridge 

 A parallel crossing of the Carquinez Strait near San Francisco is currently 
under construction and will be completed by 2003 (ASCE 1999b). The new 
bridge (I-680) is designed to withstand a 1,000-year-return earthquake (the 
maximum credible earthquake) and will be constructed in water currents of 7 fps 
(2 m/sec). The bridge ductility requirements called for unusually deep drilled 
shafts into the underlying weathered sandstone bedrock. The bedrock layers are 
uneven, and dip at angles up to 70 deg. The water depth ranges to 60 ft (18 m), 
underlain by mud deposits to 85 ft (26 m) deep. Severely weathered bedrock 
underlies the mud. 
 
 During feasibility and design studies, the scouring effects of additional piers 
next to existing bridge piers were considered. Six types of candidate foundations 
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were analyzed (Gerwick News 1990), and final design selection was 7.2-ft 
(2.2-m)-diam steel casings drilled 60 to 100 ft (18 to 30 m) into the bedrock. 
Steel reinforcing will be placed in the shafts and filled with tremied concrete. The 
rock socket depths were chosen based on the seismic design bending moments 
and overturning forces. 
 
Pocomoke River Bridge rehabilitation 

 A bascule pier drawbridge originally built in 1921 over the Pocomoke River 
in Maryland rests on wood piles that became severely exposed due to riverbed 
scour. To stabilize and support the bridge, grouted pinpiles were installed (Bruce 
1992). Each of the 24 piles was drilled from the bridge deck approximately 60 ft 
(18 m) through the soft mud bottom into a dense sand layer. Each pile consists of 
a 7-in. (18-cm)-diam steel casing into which epoxy-coated rebar and wire 
tendons were placed and grouted (Figure 11). The wire tendons were prestressed 

to 82 kips (365 kN) and released about a week 
later to allow the design pinpile load of 82 kips to 
be mobilized without allowing bridge deck 
settlement. An on-land validation of the design 
was conducted using test piles driven through an 
8-in. (20-cm)-diam outer casing to simulate 
underwater conditions. After driving, the test piles 
were loaded to 200 kips (889 kN) after having 
been prestressed to 82 kips to obtain 
load/deflection data. Permanent displacement was 
less than 0.1 in. (0.25 cm). 
 
 
Immersed Tube Tunnels and 
Pipelines 

 The basic concept of the immersed tunnel 
sunk in an underwater trench dates back to the 
ancient Babylonians (Palmer and Roberts 1975). 
Numerous tunnels, sewer lines, pipes, and other 
subaqueous structures have been constructed using 
the immersed tunnel concept, where the structure 
is ballasted and sunk onto a prepared bottom or 
trench and then may be deballasted after coupling. 
Various types of foundations support these 

structures, including tremied/backfilled sand bases, compacted sand and gravel 
bases, grout/concrete pads, adjustable jacks, and caissons. 

Figure 11. Pocomoke River Bridge in-
the-wet foundation 
rehabilitation with pinpiles 
(after Bruce 1992) 

 
 Immersed tube tunnels include the Detroit River tunnel, the Detroit-Windsor 
tunnel, Mobile�’s Bankhead and I-10 tunnels, the Texas Baytown tunnel, 
Virginia�’s Hampton Roads and Chesapeake Bay tunnels, Baltimore�’s Fort 
McHenry tunnel, and the Netherlands�’ Maas River tunnel (Palmer and Roberts 
1975). Others include Tokyo�’s Dainikoro tunnel (Paulson 1980) and Greece�’s 
Aktion-Preveza tunnel (Geotronics 1997). 
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Bay Area Rapid Transit (BART) Tunnel 

 Completion of the Trans-Bay Tube segment of the San Francisco BART in 
1969 was considered a major civil engineering feat. Constructed in 58 sections 
and reposing on the bay floor at depths to 135 feet (41 m), the $180-million 
project took 6 years to design and 3 years to contract and build (Brugge 1974). 
Watertight composite steel and concrete sections were fabricated in a dry dock, 
launched, and towed to the site. Each section was ballasted and sunk into a pre-
excavated trench (Figure 12).  
 
 The sections were then connected and welded into one continuous structure. 
Instead of excavating to bedrock, the structure lies on a layer of softer deposits 
for the purpose of damping possible seismic shocks (Kassel 1986).  
 

Figure 12. BART Tunnel (after Kassel 1986) 

 
Boston Tunnel 

 The Boston Central Artery/Tunnel project is expected to cost $10.8 billion. It 
will replace elevated highway structures with underground tunnels linking 
interstate highways and the airport upon final completion in the year 2004. Six 
concrete immersed tube sections provide the crossing under the Fort Point 
Channel. Each 48,000-ton tube section was precast on shore, winched and 
positioned using global positioning system surveying technology, and sunk into a 
20-ft (6-m)-deep dredged excavation (Green 1996, Angelo 2000). Unlike other 
immersed tunnels, each tube section rests on caissons drilled into the subsurface 
below the dredged excavation (Figure 13). The additional foundation supports 
were needed to prevent damage to an underlying subway tunnel. Should the 
immersed tube sections accidentally fill with water, they could cause the 
underlying tunnel to fail (Brudno and Lancelloti 1992). 
 
 
Chek Lap Kok Airport transportation links 

 Hong Kong�’s new airport construction involved multiple contracts providing 
transportation linkages, including highways, railroads, and ocean terminals. The 
final link to Hong Kong�’s central district and the third underwater crossing of 
Victoria Harbor is a 1.25-mile (2-km)-long submersed highway tube connecting 
Hong Kong and West Kowloon. The tube segments were precast on land and 
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Figure 13. Boston Tunnel foundation (after Brudno and Lancelloti 1992) 

towed into the harbor, where they were sunk across its main channel. A trench 
was dredged across the harbor bottom to receive the tube segments. Horizontal 
jacks were used to draw the segments together to create a seal. Sand was pumped 
below the sections to create permanent foundations, and backfilled rock provided 
protection from scouring erosion and anchor drags. The submerged highway is 
performing successfully as the final stage of the Airport Core Program 
(Kosowatz 1995). 
 
 
Oresund Link 

 The rail and tunnel connection between Copenhagen, Denmark, and Malmo, 
Sweden, allows an unprecedented direct link between those two countries. The 
western end of the link is the world�’s longest immersed tube tunnel (2.5 miles, or 
4 km) carrying both a railroad and highway. It is composed of 20 precast 
concrete segments (55 kt each) floated into place and positioned onto a prepared 
gravel base within a dredged trench (Oresundskonsortiet 1999). 
 
 
Puget Sound gas pipeline 

 Dual 8-in. (20-cm)-diam pipelines were placed in 600-ft (182-m)-deep water 
in Washington�’s Puget Sound in 1969 (Bomba and Seeds 1970). At the time, this 
was the world�’s deepest pipeline project. Geotechnical information was gathered 
using geophysical subbottom profiling. Sediments obtained by core barrel 
sampling ranged from boulders to silty clays. Although no deep trenching was 
performed, 4-ft (1.2-m) layered rock placement around and over the pipe was 
accomplished using a barge-mounted clamshell bucket and a tremie (fall-pipe) 
hopper. Inspection by divers (to 150-ft depth) and video cameras verified the 
effectiveness of the placement techniques. 
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North Sea gas pipeline 

 The Ekofisk oil and gas production complex in the middle of the North Sea 
began development in the 1970s. Many �“firsts�” were accomplished at this site, 
including the first major offshore gravity-based foundation for a concrete 
underwater oil storage tank (Focht and Kraft 1977). 
 
 Major underwater pipelines were constructed to transport the oil and gas to 
the shores of Norway, Denmark, England, and Germany. The longest pipeline 
carries gas to Emden, Germany, for a distance of 275 miles (440 km). This 3-ft 
(1-m)-diam pipeline is laid to a maximum seabed depth of 230 ft (70 m) in a 
backfilled trench. Trenching operations to approximately 10 ft (3 m) below the 
seabed were conducted using a �“jet sled�” method and were backfilled with 
natural (sand) material. Minimum cover requirements of 20 in. (50 cm) were 
regulated to minimize accidental ship anchor and trawler damage to the pipeline. 
Postconstruction surveys indicated that approximately 10 percent of the pipeline 
had backfill less than 20 in. (0.5 m), so engineered backfill operations were 
conducted after the pipeline was operational. 
 
 Two backfill systems were designed and implemented. The first was trailing 
suction hopper dredges that dredged and transported fine sand and gravel, 
respectively, to a drill ship. The drill ship conveyed the respective materials to 
the pipeline via a fall-pipe system. The second system was a bulk-carrier ship 
converted to haul the respective materials to the pipeline site, then convey them 
to the pipeline using a fall-pipe system with attached electrohydraulic thruster 
units for precise backfill acoustic positioning over the pipeline. To backfill the 
approximate length of 23 miles (37 km) with these two systems took about 
2 years and cost twice as much as the original pipeline laying and trenching 
operation (Loeken 1980). 
 
 
Los Angeles sewage sludge outfall 

 In 1957, a steel 22-in. (56-cm)-diam pipeline was pulled 7 miles (11.2 km) 
offshore and sunk in 300-ft (91-m)-deep water within a 7-day period. Specially 
designed equipment made this feat possible. After the pulling operation was 
completed, a unique submarine pipeline trencher with jet nozzles straddled the 
pipe as it laid on the seabed and trenched about 6,000 ft (1,824 m) from the 
shoreline into the ocean. As high-pressure water and air jetted through the 
nozzles, the bottom material was cut away, allowing the pipe to settle into the 
trench. The deepest trenching (about 15 ft or 5 m deep) was performed in the surf 
zone, where sheet piles were used to protect the trench excavation. Other unique 
equipment and installation techniques are discussed in Construction Methods and 
Equipment (1957) and Narver and Graham (1958).  
 

Puerto Rico sewage outfall 

 The world�’s deepest ocean sewage outfall was recently constructed off the 
coast of Ponce. The 3.5-mile (5.6 km)-long, 4-ft (1.2-m) pipeline lies at a 
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maximum depth of 450 ft (137 m) on the seafloor. The pipe sections were towed 
into position and lowered from barges to the seabed. Deep anchors consist of 
grout-filled bags lowered from the surface. Shallow mud deposits required an 
excavated trench into which the pipe was placed to achieve neutral buoyancy 
(Powers 1997). 
 
 
Offshore Oil Platform Structures 

 Perhaps the best examples of underwater foundation in-the-wet construction 
are found in the offshore industry�’s structures, due to their unparalleled sizes, 
costs, complexity, and remote locations around the world. Offshore (outside 
sheltered waters) oil exploration and production began after World War II off the 
Louisiana coast. The first offshore steel-piled platform was fabricated in Morgan 
City, LA. Seven years later, the first jack-up drilling rig was placed offshore. 
Since that time, more than 5,500 platforms have been installed in the Gulf of 
Mexico (Hunt and Gary 2000). 
 
 Water depths of 20 to 50 ft (6 to 15 m) were typical for the first fixed 
platforms erected on steel pipe pile foundations. The 1- to 2-ft (0.3- to 0.6-m)-
diam piles were typically driven to refusal to support loads of 200 to 400 kips 
(890 to 1,780 kN). Gradually, the fixed platforms were built in water depths to 
200 ft (61 m), and significant advances were being made in marine geotechnical 
engineering. 
 
 Proprietary research programs were being conducted by the oil companies 
for the purpose of reducing design uncertainties since the test and performance 
databases were incomplete. For instance, land-based pile load tests ranged to 
only 300 tons (1,320,000 kg), whereas the typical offshore pile load was about 
2,000 tons (8,800,000 kg) (Focht and Kraft 1977). 
 
 Progress was also made in other aspects of marine geotechnical engineering, 
including tension-loaded piles, laterally loaded piles, earthquake and hurricane 
hazards, and new types of foundations (e.g., suction caissons). Mobile drilling 
platforms consisting of pile-and-mat supported jack-up platforms and tension-leg 
platforms (TLP) supported by tension pile foundations were being built in the 
Gulf of Mexico. In the North Sea, the typically encountered clay seabed dictated 
that other foundation systems be designed, including drilled pile foundations and 
gravity-based foundations. Technology for gravity-based structures (GBS) has 
since been applied in the Gulf of Mexico (Hunteman, Anastasio, and Deshazer 
1979). Suction caissons were first installed in the North Sea (Senpere and 
Auvergne 1982), and they have since been used in the Gulf of Mexico. 
Adaptations of the suction caisson technology have been applied to jacket 
platforms, jack-up platforms, TLPs, and �“skirted�” GBS foundations. 
 
 In general, offshore structures are attached to the seabed either rigidly (fixed 
structures) or flexibly (floating structures). Those rigidly attached to the seabed 
may be either fixed or mobile. Structures that are not attached to the seabed are 
mobile and may be production platforms, storage facilities, off-loading facilities, 
or exploratory drill platforms. The mobile nonattached structures are not 
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discussed here since they are dynamically positioned and do not require 
foundation preparations. Most oil production platforms are attached to the seabed 
either rigidly (jackets, jack-ups, gravity-based, and compliant structures) or 
flexibly (floating TLP, mini-TLP, and spar structures). The foundation systems 
for the platforms are either pinned (driven, drilled, or suction-induced) or 
gravity-based, or combinations of the two.  
 
 
Jacket and jack-up structures 

 Offshore oil production platforms are commonly built on a fixed �“jacket�” 
structure that is a tubular steel frame that is either floated or lifted in, positioned 
on the seabed, and pinned with pilings (Figure 14). 

 
A �“jack-up�” structure is intended to 

be mobile and has a modified foundation 
including a spud can  arrangement that 
is stabbed into the seabed floor 
(Figure 15).  
 
 The first mobile offshore platform 
designed for use in 100-ft (30-m) depths 
with a soft soil foundation was a pile-and-
mat supported jack-up platform (Focht 
and Kraft 1977). It consisted of six 4-ft 
(1.3-m)-diam pipe piles supporting an 80- 
by 100-ft (24- by 30-m) steel mat (Figure 
16). The bearing pressure on the mat base 
ranged between 200 and 400 psf (9.6 to 
19.2 kPa) depending on the deck load. 
This foundation system is a combination 
gravity base underpinned by driven piles 
and was installed in the Gulf of Mexico. 
 
 Most jacket platforms have pinned 
foundations with driven piles, and are the 
most common type of offshore oil 
platform (Lacasse 1999). They are located 
worldwide, including the Gulf of Mexico, North Sea, Atlantic, and Pacific 
Oceans. For example, Exxon decided to use a jacket platform for its Hondo 
structure in California�’s Santa Barbara Channel. The Hondo platform�’s steel pipe 
piles (54-in. diam H 375-ft length) were driven using nonsubmersible Vulcan and 
Menck hammers above the 850-ft (258-m)-deep ocean floor (Bardgette and Irick 
1977). 

Figure 14. Fixed jacket structure (after White and 
Drake 1994) 

 
 The Alba Northern jacket structure installed in the North Sea has four steel 
mudmats to which pipe pile templates are attached. The single-launched jacket 
was floated in and installed in 414-ft (138-m) water. Each footing was pinned by 
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Figure 15. Jack-up structure installation (after Kobus and Whittington 1978) 

 
four 96-in. (2.4-m)-diam piles that were driven 264 ft (88 m) with hydraulic-
powered underwater hammers (White and Drake 1994). An innovative 
antifouling coating of cupro-nickel sheeting bonded to neoprene was applied to 
the steel structure to prevent marine growth. 
 
 An alternative to single-launched jacket designs for water depths in the 
500- to 700-ft (167- to 233-m) range is Shell�’s two-piece grouted Enchilada 
platform in the Gulf of Mexico (Dorgant et al. 1998). After setting the base 
section, eight 84-in. (2.33-m)-diam steel pipe piles were driven to 385 ft (128 m) 
using the free-riding IHC S-400 underwater hydraulic hammer without any 
supporting guides. The jacket top section was lifted into position and grout-
sealed. 
 
 Shell�’s Cognac jacket platform was installed 1,025 ft (342 m) below the Gulf 
of Mexico surface and was the world�’s first three-segment jacket (Sterling et al. 
1979). The pinned foundation consists of 24 pipe piles, 7 ft (2.3 m) in diameter 
and 625 ft (208 m) long, driven through outrigger-type skirt pile sleeves. Each 
pile penetrated 450 ft (150 m) into the seabed. 
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Figure 16. Jack-up platform on soft soil (after Focht and Kraft 1977)  

 The world�’s largest installed jacket structure is the Bullwinkle, at a Gulf of 
Mexico water depth of 1,350 ft (400 m) (Offshore Technology 1999). 
 
 Combining driven piles with drilled insert piles was required for the 
construction of the Goodwyn �“A�” steel jacket platform off Australia. Calcareous 
soil caused difficulty driving 8.7-ft (2.65-m)-diam piles past 382 ft (116 m) 
below the mudline. Therefore, 6.5-ft (2-m)-diam insert piles were drilled to a 
depth of 595 ft (181 m) below the mudline. The annulus between the piles was 
grouted with a specially designed grout mix (Gerwick News 1993). 
 
 Suction-pinned foundations replaced traditional piled foundations on 
Statoil�’s innovative Europipe jacket platform in the North Sea. The circular 
(�“bucket�”) foundations with skirts increase the vertical compression and shear 
load capacity and provide substantial tensile load capacity (Baerheim, Hoberg, 
and Tjelta 1995). 
 
 The Europipe four-leg jacket (Figure 17) stands in 210 ft (70 m) water. Each 
bucket has a diameter of 36 ft (12 m), weighs 192 tons (215 tonnes), and 
penetrates about 18 ft (6 m) below the seabed. The jacket was lifted in, 
positioned on the seabed, and the buckets were suction-pumped to achieve 
penetration. The void between the seabed and the bucket top was then grouted to 
ensure an even support.  
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Figure 17. North Sea fixed jacket with bucket foundation (after Baerheim, 
Hoberg, and Tjelta 1995) 

 
 

Figure 18.  Complaint tower 
platform (after 
Will 1999) 

Compliant tower structures 

 The compliant tower (CT) is a modified steel jacket 
structure (Figure 18) that occupies a much smaller footprint on 
the seabed (Figure 19). It is designed for sway periods of about 
30 sec instead of typical platform sway periods of about 3 sec. 
As a result, resonance is reduced and wave forces do not 
amplify the natural vibration frequency of the structure. 
Maximum design displacement (100-year hurricane event) is 
1.5 to 2 percent of the water depth. In contrast, floating systems 
(TLP and Spars) may have lateral movements of up to 
10 percent of the water depth. 
 
 The idea of the CT concept was initially used in the Bay of 
Biscay in 300-ft (91-m) water depth (Appert and Burger 1997). 
The most recent deepest CT installations are Amerada Hess�’ 
Baldplate installed off Texas in 1,650-ft (550-m) water depth 
and Texaco�’s Petronius installed in 1,754-ft (583-m) depth in 
the Gulf of Mexico, although Petronius  production wells are 
not scheduled to be on-line until 2001 (Will 1999). 
 
 The Baldplate is the first freestanding, nonguyed CT and 
was the tallest free-standing structure in the world when 
constructed. Its 12 pipe piles (diameter 7 ft (2.1 m); length 
428 ft (130 m)) each have an ultimate capacity of 8,400 tons 
(74.7 MN) (Will et al. 1999). 

 
 The TLP foundation resists tensile and lateral forces imposed by semi-
submersible structures (Figure 20). Many design variations have been used for 
offshore platforms, but the principle is the same (providing an anchoring system 
for floating platforms).
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Tension-leg platform structures 

Conoco�’s North Sea Hutton TLP was installed in 
1984 and is the world�’s first TLP oil production platform 
(Stock, Jardine, and McIntosh 1993). The site, 475 ft 
(145 m) below water surface, is underlain by stiff 
glaciomarine tills and dense sands. Each of the four 
pinned foundations has eight 6-ft (1.8-m)-diam pipe piles 
driven 200 ft (60 m) below the mudline, and each pile 
group normally resists a tensile load of 1,100 tons 
(1,000 metric tons) and a surface platform lateral offset 
of 66 ft (20 m). 

 
The largest TLP in the Gulf of Mexico (and the 

deepest TLP in the world) is Conoco�’s Ursa located in 
3,800-ft (1,267-m)-deep water (Digre, Kipp, and Hunt 
1999). Sixteen 96-in. (2.4-m)-diam pipe piles, 417 ft 
(139 m) long, provide the pinned foundation. Each pile 
self-penetrated 125 ft (42 m) into the seabed prior to 
underwater driving.  

Figure 19. Compliant tower 
foundation footprint 
(after Will 1999) 

 
The majority of TLP foundations are pinned 

with driven piles, but gravity-based foundations 
are also used. For example, Conoco�’s North Sea 
Heidrun TLP is tethered to four concrete gravity-
based foundations (Mitcha, Morrison, and 
Oliveira 1997). 
 
 For �“marginal�” oil production sites, more 
economical �“mini-TLP�” platforms are 
constructed, which are typically smaller and 
faster to install. British Borneo�’s Morpeth 
platform (Figure 21) is a mini-TLP installed to a 
depth of 1,670 ft (557 m) in the Gulf of Mexico. 
Six pipe piles, each 84 in. (2.3 m) in diameter by 
340 ft (113 m) long were driven into the seabed. 
Each 214-ton (195,000-kg) pile self-penetrated to 
130 ft (43 m) prior to driving (Redfern, Calkins, 
and Matten 1999). 
 
 Other variations of the TLP concept include 
the Spar and Deep Draft Caisson Vessel (DDCV). Examples of each are the Gulf 
of Mexico�’s Neptune production Spar platform and the Hoover Diana DDCV 
(Offshore Technology 1999).  

Figure 20.  Typical TLP 

 
 The Snorre platform in the North Sea became the first TLP to use suction 
caissons instead of driven piles (Figure 22). Concrete gravity cells with perimeter 
skirts (suction caissons) of 66-ft (20-m)-diam were installed in very soft clays at 
a water depth of 1,050 ft (320 m). Piles were determined to be unacceptable 
because of extremely low clay soil friction (bearing) capacity. 
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 Each cell group (out of four total groups) has a 
total submerged weight of 6,250 tons (7,000 metric 
tons) after being ballasted with 3,125 tons 
(3,500 metric tons) of iron ore and olivine. The 
100-year design storm maximum tension load for 
each cell group is 12,678 tons (14,200 metric tons), 
and the average tension load is balanced with the 
cell group weight. Accounting for the cell group 
weight, the average long-term load experienced by 
the soft clay soil is zero (Christophersen 1993).  

Figure 21. Mini-TLP structure (after 
Redfern, Calkins, and 
Matten 1999)

 
 
Gravity-based structures 

 The advantage of gravity-based over pinned 
structures is their shorter installation duration, 
which is a big factor in reducing exposure to hostile 
storms in the North Sea and North Atlantic. The 
structures are constructed onshore or in protected 
waters, towed into position, and sunk to the sea 
floor. Installation can be accomplished during good 
weather windows (Young, Kraft, and Focht 1975). 
 

 The first major offshore gravity foundation was placed in the North Sea in 
1973 (Focht and Kraft 1977). It was a 305-ft (93-m)-diam concrete oil storage 
tank in the Ekofisk Complex weighing 490,000 tons (444 million kg) that was a 

float-in structure installed in 230-ft (70-m) water 
depth. No piles were used to support the structure. 
 
 Another offshore foundation �“first�” occurred on 
another Ekofisk Complex structure. Drilled and 
underreamed shafts were constructed in the hard 
clay seabed instead of driven piles. The land-based 
practice of installing drilled shafts instead of driven 
piles at stiff or hard clay sites was common, but had 
not been used offshore, especially in water depths 
to 350 ft (107 m) (Focht and Kraft 1977). 
 
 In 1978 the first concrete gravity production 
platform was installed in the Gulf of Mexico 
(Hunteman, Anastasio, and Deshazer 1979). 
Although it was actually a combination gravity and 
pinned foundation structure, it holds a place in 
offshore foundation history. The offshore site was 

located in only 12-ft (4-m) water depth. Foundation preparation of the seabed 
was required to prevent scouring. The seabed was dredged 7 ft (2.3 m) deep, and 
a 2-ft (0.7-m)-thick oyster shell mat was placed in the excavation. The platform 
was towed to the site, ballasted, sunk onto the prepared foundation, and pinned 
with perimeter piles. Limestone rock riprap was then installed around the 
perimeter to prevent scour. 

Figure 22.  TLP suction pile foundation 
(after Christophersen 1993) 
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 At the time of its installation, the North Sea�’s Draugen GBS was the tallest 
concrete structure ever constructed (Alm, Bye, and Egeland 1995). It is located in 
approximately 750 ft (250 m) of water on a 
very hard clay seabed with embedded boulders. 
Although the upper material had a fairly low 
undrained shear strength of 312 psf (15 kPa), it 
increased to 20,800 psf (1,000 kPa) at 18 ft 
(6 m) of depth. Concrete skirts at the base of 
the structure penetrated an average of 24 ft 
(8 m) into the seabed as a maximum suction 
pressure of approximately 51 psi (350 kPa) was 
applied.  
 
 The North Sea Troll I GBS has skirts that 
penetrate 108 ft (36 m) into the stiff clay with 
undrained shear strength of approximately 
5.2 tsf (500 kPa). The platform rests in 1,000-ft 
(303-m) water depth (Andenaes, Skomedal, and 
Lindseth 1996). 
 
 The first offshore gravity-based platform to 
use suction caissons was Statoil�’s Gullfaks C 
(Figure 23) in the North Sea, installed in 1989 
(Tjelta 1992). This $2-billion GBS platform 
was placed on normally consolidated soft clay 
at a water depth of 720 ft (220 m). A soil drain 
system was designed and preinstalled into the 
caissons. This drainage system allowed faster 
consolidation of the foundation soil, which 
resulted in increased strength of the material. 
Another GBS example is the Hibernia structure 
installed in the Grand Banks off Newfoundland in 
1990 (Offshore Technology 1999). 

Figure 23.  Statoil�’s Gullfaks C platform 
(after Tjelta 1992) 

 
 It is a 495,000-ton (450,000-metric ton) 
concrete caisson 321 ft (106 m) tall with a 27-ft 
(108-m)-diam base (Figure 24) ballasted with 
452,000 tons (411,000 metric tons) of iron ore 
(magnetite) and placed in 242-ft (80-m) water 
depth. The seabed was prepared by �“sweeping�” 
with a deep-sea hopper dredger. The caisson has 
16 �“fingers�” to resist icebergs, and was designed 
to withstand a 500-year event collision with a 
1 million metric ton iceberg and a 10,000-year 
event collision with a 6.6 million ton (6 million 
metric ton) iceberg. 

Figure 24. Hibernia gravity-based 
foundation (after Offshore 
Technology 1999) 
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Other Underwater-Founded Structures 
Wharf off-loading system 

 A large-capacity (2,000-ton) transport barge was designed for use at a marine 
fabrication industrial yard to off-load and deliver equipment at two existing 
wharfs in Connecticut (Abbott and George 1989). The barge was designed to 
jack up to the wharf elevation, thus eliminating the need for heavy lifting cranes 
on the wharf. For each separate wharf, a special underwater foundation was 
constructed to prevent the spuds from punching through the soft clay (1,000-psf 
or 49-kPa shear strength), 35 ft (10.7 m) below the water surface. Since the 
1,200-ton (10,676-kN) leg design could not be supported by the soft clay, and 
due to the site conditions at each wharf, two separate foundations were designed 
and constructed. 
 
 At one wharf, bedrock was located 35 ft (10.7 m) below the mudline. 
Prefabricated steel cofferdam cylinders (diameter 28 ft or 8.5 m) were driven 
75 ft (23 m) into the bedrock, excavated, and filled with crushed stone. Precast 
concrete pads, 20 ft (6.1 m) in diameter and 5 ft (1.5 m) thick, were placed on top 
of the crushed stone cofferdams to support the barge�’s spud legs. Placement 
tolerance of 9 in. (230 mm) for caisson installation was met. 
 
 At the other wharf, bedrock was located 50 ft (15.2 m) below the mudline, so 
other foundation alternatives were considered. The design load for each leg 
foundation was 2,000 tons (17,794 kN). A reinforced earth pad overlain by a 
precast concrete base was installed with minimal dredging. Three 10-ft (3-m)-
thick compacted pads of crushed stone, sandwiched between mats of steel strips, 
were placed in a 15-ft (4.6-m)-deep excavated hole. Special procedures were 
devised to construct the underwater reinforced earth pad. Precast concrete pads, 
25 ft (7.6 m) in diameter and 5 ft (1.5 m) thick, were placed on top to support the 
barge s spud legs (Abbott and George 1989). 
 
 
Ship dry docks 

 During the World War II era, the U.S. Navy undertook a massive construc-
tion effort to build dry docks for shipbuilding and repair at its numerous naval 
facilities. Construction took place at Pearl Harbor, Norfolk, Philadelphia, Mare 
Island, Brooklyn, San Diego, and other locations. Dry docks are classified as 
graving (basin excluding water) or floating (buoyancy principle). In general, one 
of two construction methods was used, with the basic difference being the 
concrete placement method (above-water or tremied). These methods were 
 
 a. Underwater excavation and tremied concrete construction, followed by 

dewatering. 
 
 b. Underwater excavation concurrently with deep well-point dewatering 

prior to concrete placement. 
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 Sheet pile installation and dredging operations typically began the 
construction effort, followed by underwater H-pile installation. The piles were 
designed to resist uplift during reduction of hydrostatic pressure as the dock was 
dewatered, and also to carry dock operation compressive loads through any 
underlying soft layers into a firm stratum below. Construction methods, 
especially for tremie concrete, were discussed by Harris (1942) and Johnson, 
Compton, and Ling (1972). 
 
 Tate (1961) detailed construction of a Puget Sound floating dry dock with 
dimensions of 1,180 by 180 ft (359 by 55 m) built to overhaul Pacific Fleet 
aircraft carriers. Design, construction, and subsequent operation depended on an 
elaborate network of continuously operating dewatering pumps. After dredging 
to 40 ft (12 m), the underwater site was backfilled (hydraulic jetting from deck 
scows) with a sand/gravel mix consisting of 3-in. maximum size with less than 
10 percent passing the 100-mesh screen. Sheet-pile bulkheads were installed, the 
site was dewatered, and in-the-dry construction proceeded. Prior to concrete 
placement, vibroflotation equipment was used to increase the foundation�’s 
bearing capacity (by increasing its relative density). 
 
 Millard and Hassani (1971) detailed the construction of Bethlehem Steel�’s 
graving dry dock for shipbuilding near Baltimore. The dimensions of the dock 
were 1,200 by 200 ft (365 by 61 m). This dry dock depended on continuously 
operated dewatering pumps during shipbuilding operations to reduce hydrostatic 
pressure against the relatively thin walls and floors. During construction, up to 
70 ft (21 m) of soft materials was dredged to expose underlying sand with 
adequate bearing capacity. Sand was also used as backfill and was placed by 
bottom-dumping scows (barges). An underwater embankment was also needed as 
a construction dike. After the site was enclosed by dikes and sheet-pile cells and 
dewatered, the sand fill was compacted using vibratory pile-driving equipment. 
 
 
Berlin�’s Potsdamer Platz 

 Beginning in 1995, construction began in Germany�’s new capital to support 
the government�’s office move from Bohn to Berlin. The high-rise buildings have 
basements to depths of 56 ft (17 m) below ground. Artificial lakes and city 
regulations curtailed dewatering schemes during construction, which required 
foundations to be built underwater. Pontoon-mounted excavators dug the 
foundation pits, and divers manually cleaned the bases and positioned sheet piles. 
Steel pilings were vibrated into the subsurface to resist buoyancy of the concrete 
base slabs. The base slabs (up to 5 ft (1.5 m) thick) were placed underwater. 
After dewatering the sheet-pile enclosure, the structural slab was cast in place, 
and the structure was constructed in the dry (Reina 1996). 
 
 
Baltic Sea wind turbines 

 The first offshore pilot projects demonstrating the electrical-generating 
potential of wind turbines were constructed at locations off the Denmark and 
Sweden coasts in the Baltic Sea (Danish Wind Turbine Manufacturers 
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Association 1998). Studies have been conducted not only for the electrical 
aspects of wind power, but also for the types and costs of underwater 
foundations. 
 
 Four types of wind turbine foundations have been constructed in the wet: 
concrete (float-in), combination concrete gravity footing with a steel pedestal, 
steel pile, and steel tripod (jacket) with 3-ft (1-m)-diam steel pile anchors. 
Installation costs as a function of water depths for each type of foundation were 
analyzed. In water depths to about 30 ft (9 m), the concrete gravity platforms 
were the most expensive. The simplest foundation is the single steel pile with 
diameter between 11 and 14 ft (3.5 and 4.5 m), driven 30 to 60 ft (20 to 30 m) 
into the seabed. The jacket was the least expensive, but was found to be 
unsuitable for depths less than 18 ft (6 m) due to tripod interference with 
approaching service vessels. 
 
 
Offshore military tracking platforms 

 In 1978, the U.S. Navy contracted design and construction of four aircraft-
tracking tower structures to be built in the Atlantic Ocean 30 miles (48 km) off 
North Carolina in water depths to 105 ft (32 m). Each tripod tower is supported 
by underwater 42-in. (107-cm)-diam steel pipe piles driven through a template 
with penetrations to 270 ft (82 m) below the mudline into dense sands and stiff 
clays. Rigid design requirements (20-year operational life, excursion limitations 
of 1 ft lateral and 1 deg rotational in 60-mph winds and sea state 7) dictated 
applied pile loads up to 1,005 tons in tension and 1,479 tons in compression. The 
design penetration depths were based on a safety factor of 1.5. Several above-
water Vulcan diesel hammers were used to achieve the design penetrations 
without jetting or predrilling. As an interesting note, predriving analysis using the 
wave equation predicted that design penetrations could not be achieved 
(Ling 1978). 
 
 
Bantry Bay tanker terminal 

 This deepwater crude oil terminal is located 1,100 ft (334 m) off Ireland�’s 
southwestern coast and is founded on battered 40-in. (102-cm)-diam steel pipe 
piles in 100-ft (30-m) water depth. The piles are 220 ft (67 m) long and were 
driven through boulder clays and silts to bedrock. A 20-ft (6-m) portion of the 
tips was rock-socketed by drilling. Initial driving efforts were difficult due to the 
waves and lack of any driving template. Driven piles left unbraced due to the 
short winter work schedule envelope failed at weld connections due to the wave 
action. Larger work platforms, bigger pile hammers, and spud-mounted pile 
templates corrected this situation. Boulder inclusions in the drilled sockets were 
reduced by increasing the bit diameter and using powerful airlift ejectors. 
Reinforcing bars and concrete were then placed in each pile (Fox 1970). 
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Submerged oil storage tank 

 The Khazzan Dubai I is a 500,000-barrel oil steel storage tank located 
60 miles (96 km) off Dubai in 154-ft (47-m) water depth (Chamberlin 1970). 
This unique structure has no enclosed bottom (it holds oil by water 
displacement), and its circular sides are connected to the seafloor by 3-ft (1-m)-
diam pipe piles. The structure was towed to its site, ballasted by air displacement, 
and sunk onto a level (1:100) unimproved seafloor. For each pile, a 42-in. 
(107-cm)-diam hole was rotary-drilled 100 ft (30 m) into the layered clay, silt, 
sand, and weathered limestone subsurface, using a tricone bit and underreamer. 
The pile was lowered into the hole and cemented to both the formation and the 
structure with expansion grout having 28-day compressive strength of 3,000 psi 
(21 MPa). Full-scale tests of grouted structure connections were conducted.  
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3 Foundation Site 
Assessment 

Site and Foundation Selection Process 

 Site investigations are an essential part of the underwater site selection, 
foundation design, and foundation installation elements. Adequately planning 
and executing a site investigation is especially critical for determining the 
geotechnical influences prior to foundation selection and design (American 
Petroleum Institute 1989; James 1987; Hitchings, Bradshaw, and Labiosa 1976). 
Preliminary design efforts require that site surveying and assessment efforts be 
under way, and the completed site characterization should be finalized prior to 
final design. Special consideration must be given to the possibility of 
construction contract problems if a complete site characterization is not 
conducted prior to final design. 
 
 The site conditions (including topography, bottom current, sediment loading 
and scour, and other environmental conditions) and engineering properties 
(including soil/rock lithology and stratigraphy, strength, durability, 
compressibility, and seismic concerns) must be explored and characterized prior 
to foundation final selection and design (Herrmann, Raecke, and Albertsen 
1972). 
 
 Topics that need to addressed during the general site and foundation selection 
process are outlined below. 
 
 Site assessment. Geologic, topographic, and geographic influences are 
important within the given project�’s political boundary and should be studied 
extensively during the site selection process. Nearby industrial or urban 
situations may impose unique restrictions. In addition to the surrounding land 
assessment, the seabed/riverbed physical qualities (such as depth, slope, and 
underwater obstructions) are important. Underwater obstructions include 
deadfalls, snags, cable crossings, and other sunken objects. The water body�’s 
physical, chemical, and environmental characteristics are also vitally important 
and include the following: 
 
  Tidal variation 
  Current profile and hydraulic characteristics 
  Hydrographic data 
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  Icing traits 
  Seasonal underwater visibility 
  Sedimentation and scouring potential 
  Salinity and/or temperature variations, and water chemistry 
  Environmental quality considerations and regulations 
  Aquatic characteristics (expected problematic species) 
 
 Soil and rock engineering properties. A subsurface investigation is vitally 
important in the foundation selection and design process since it helps the 
designer understand the soil/rock response to the imposed structural loads. An 
adequate evaluation of the engineering properties of the seabed or river bottom 
requires a time-consuming and often costly site investigation, including in situ 
testing and sampling, laboratory testing, and data analysis. The adequacy of this 
program may be difficult to assess, given the uncertainties involved for an 
investigation to be conducted for a remote underwater site. The presence of the 
water barrier above the site demands innovative or modified utilization of land-
based techniques and equipment to achieve reliable and accurate results. 
 
 Structure function. The structure�’s intended function must be properly 
identified. Two aspects of the structure�’s foundation function that must be 
addressed are its intended design life and its degree of confidence requirements 
(factors of safety, risk analysis, and design uncertainty).  
 
 Structure characteristics. Physical size, configuration, submerged weight, 
load distribution, installation sequence, and dynamic load resistance are 
important variables to be considered in the foundation selection process. For 
instance, both land- and water-based structures may be designed to resist wind 
loads, but the water-based structure must also resist hydrodynamic current drag 
and wave and ice loads that ultimately are fed into the foundation design 
requirements.  
 
 Installation requirements. Inherent in the foundation selection and design 
process are the questions of installation equipment and labor, procedures, and 
quality control. Composition, size, and weight of the foundation components 
dictate the equipment and methods for transporting, positioning, and installing on 
the seabed or river bottom. Coordination with above-foundation structural 
elements�’ installation requirements will guide foundation selection. Maintaining 
quality control and verifying quality assurance are important considerations that 
have to be addressed during the foundation selection process since they will be 
matched to the specified foundation system. 
 
 Contract cost. Balancing the requirement for a reasonable degree of 
confidence in the foundation�’s utility with the goal of achieving the lowest 
project cost is another important variable in the foundation selection process. 
Reduced competition due to a smaller number of foundation contractors with 
experience in a given foundation system is not a cost deterrent. As foundation 
contractors gain more experience and the number of competitors increase, lower 
bids will result. Consideration must be given to the potential contractors�’ and 
subcontractors�’ capabilities and experience records when selecting a foundation 
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type, not only to obtain a higher probability for successful installation, but to 
potentially lower the contract bid amounts. 
 
 
Site Assessment and Characterization 

 Noninvasive assessment/characterization techniques, including bathymetric 
and hydrographic surveys, are conducted to determine the depth and bottom 
topography. Visual site assessments may be accomplished using remotely 
operated vehicles outfitted with video cameras. Geophysical surveys such as 
side-scan sonar are conducted to determine subbottom profiles of debris, 
sediments, soil, and rock.  
 
 
Preliminary assessment 

 Preliminary information-gathering consists of building a site-specific 
database detailing site location and configuration, water conditions (water depth, 
density and salinity profiles, temperature variations, current profile from the 
water surface to the foundation bed, tidal variations), and sediment conditions.  
 
 Marine charts typically show navigation aids, water depths, and navigation 
obstructions including underwater cables and pipelines. Marine charts in digital 
format are available from the U.S. Department of Commerce�’s National Oceanic 
and Atmospheric Administration (NOAA) for coastal areas and the Great Lakes; 
the Department of Defense�’s National Imagery and Mapping Agency (NIMA) for 
open ocean and foreign waters; the U.S. Army Corps of Engineers for inland 
rivers, lakes, and canal systems; and the U.S. Geological Survey for land-based 
topography. Georeferenced digital maps with aerial and satellite photography are 
available from various commercial vendors. The NIMA has recently established 
a vector-based digital maritime chart database named the Digital Nautical Chart, 
available freely to U.S. Government agencies with data-sharing agreements and 
by commercial agreement to public commercial vendors. Comprehensive inland 
waterways information is available on Internet sites maintained by the National 
Weather Service and NOAA (http://www.riverwatch.noaa.gov) and the Corps of 
Engineers (http://water.mvr.usace.army.mil). 
 
 
Hydrographic surveying and environmental data collection 

 Underwater site surveys are required to map bottom topography and 
cartographic features. Site surveying is conducted from either a surface-based 
platform or a submersible platform. Surface-based platforms are operated from 
ships, pontoons, or barges and generally operate on principles of reflected 
acoustic signal-processing using compression wave energy to determine water 
depths referenced to mean sea level. Surface position is determined using global 
positioning system (GPS) receivers that are operated either in a stand-alone mode 
or referenced to known latitude-longitude-elevation stations for increased 
accuracy (differential positioning). GPS navigation and surveying principles and 
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equipment were state of the art in the early 1990s, and are supplanting long-range 
radio navigation and radio beacon survey-positioning systems. GPS equipment 
development has focused on miniaturizing the receivers and providing a �“total 
station�” package to enable faster and more accurate survey results.  
 
 Having a highly accurate above-water reference datum provided by GPS 
technology allows for better positional accuracy beneath the surface. Echo-
sounding (sonic) technology provides positioning data between the water surface 
and the bottom. Single-beam technology is being replaced by newer single-head 
multibeam (SHMB) technology and equipment. Several equipment 
manufacturers provide state-of-the-art equipment, and the Corps of Engineers is 
using those capabilities. For example, the Los Angeles District has acquired and 
used SHMB technology since the early 1990s for navigation works such as the 
Pier 400 harbor project (USACE 1999b). 
 
 The new International Hydrographic Office �“Standards for Hydrographic 
Surveys�” describe four orders of surveys, with Order 1 being the most stringent. 
Horizontal and vertical accuracy and maximum sounding line spacing for 
hydrographic surveys are established using formulas depending on average depth 
of investigation. For example, at a 99-ft (30-m)-depth coastal site, survey results 
should be accurate to at least 21 ft (6.5 m) horizontally with depth accuracy of 
2 ft (0.63 m) (Harris 1999). 
  
 Submersible platforms consisting of remotely operated vehicles (ROV) or 
autonomous underwater vehicles (AUV) enable site surveying and topographic 
mapping in deeper water. The AUV systems do not have tethers, which 
eliminates tether hydrodynamic drag and results in faster survey operations. A 
downside of AUV technology is the lack of consistent and reliable energy 
sources for propulsion and onboard instrumentation. Development of acceptable 
sources (including batteries, fuel cells, and engines) is being undertaken by 
commercial and academic endeavors. An ideal AUV would have little or no input 
from an operator (i.e., would be preprogrammable) and would be capable of 
running its survey grid pattern at speeds of 1 to 2 m/sec while avoiding 
underwater obstacles. AUVs specifically designed for surveying operations have 
been developed which are capable of acoustically transmitting relatively accurate 
survey data but are not yet completely autonomous. Operator input is still 
required to adjust the survey instruments to match shifting seabed conditions and 
perform diagnostic functions for quality control (Bjerrum and Krogh 1998). 
 
 Environmental data collection is conducted to measure water quality data 
such as current velocity, density, temperature, and water chemistry profiles. 
Numerous equipment is available to obtain such data. To reduce the effect that 
the instrument itself has on the measured variable, new devices have been 
developed and are being used. For example, instead of using a standard current 
meter to obtain a velocity profile, electromagnetic current meters (EMCM) were 
developed based on the principle that a conductor (water) flowing through a 
magnetic field (current meter probe) produces a voltage proportional to its 
velocity. To further reduce the instrumentation effects, EMCM technology is 
being supplemented by newer noninvasive sensors based on acoustic emission 
principles. Acoustic current meters, side-scan sonar, and secscan sonar devices 
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allow current measurements to be taken at a single point or over a broad area. 
ROV and AUV platforms are also being packaged to provide multiple sensor 
instrumentation for bathymetric and environmental data collection (Sonsub 1999, 
Reson 1999, ORE 1999, Ultra Electronics 1999).  
 
 
Geophysical investigations 

 Geophysical methods have evolved as major investigative tools for 
underwater site assessment and geotechnical exploration purposes. They are 
useful for detecting and delineating geological deformational features, including 
bottom and subbottom faults, scarps, rock and mud slides; for obstacle detection 
(Figure 25); landscape mapping (Figure 26); and for mapping other features 
critical to underwater foundation location and design. 
 

Figure 25. WidescanTM digital side-scan sonar image (after Ultra Electronics 
1999) enables underwater obstacle detection 

 
 Offshore exploration technology relies on geophysical investigations to 
determine potential reservoir locations and to estimate potential yields. Near-
surface geophysics accomplishes different functions at much shallower depths, 
but the principles are the same. Sound waves (acoustic and seismic), electrical 
resistance, electromagnetic signals, gravimetry, and radar principles and 
procedures are used in near-surface geophysical investigations, and each method 
is chosen for suitability depending on the intended function of the investigation 
(Beasley et al. 1997a, b). 
 
 Underwater acoustic and seismic methods are typically used for underwater 
site investigations; the required depth of investigation usually dictates which 
method is employed. Acoustic methods (subbottom profiling, side-scan sonar, 
and echo-sounding) exploit compression wave propagation techniques and 
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 Rivers and canals provide special challenges to geophysical investigations 
due to navigation restrictions and changing currents during the course of an 
investigation, as well as data interpretation of multiple mode reflection geometry 
caused by changes in river bottom and bank slopes (Toth, Vida, and Horwath 
1997). As the available computer equipment and processing software becomes 
more adapted to shallow-water surveys, transition to high-resolution 3-D 
methods will likely become more commonplace in shallow-waterway project 
investigations.  
 
 
Soil and Rock Engineering Properties  

 To obtain detailed subbottom information, geotechnical investigations are 
needed. Subsurface in situ testing and drilling and sampling techniques are 
required to determine or verify site geology, depth to bedrock, soil stratigraphy, 
etc. Preliminary assessment of the engineering properties of the soil or rock can 
be developed from the analyzed exploration data. 
 
 The soil/rock strength profile with depth is predicted from the interpreted 
soil/rock parameters (friction angle, apparent cohesion, etc.) resulting from the 
in situ and lab testing programs.  
 
 Recent trends suggest that in situ testing is strongly recommended to 
complement sampling (Reese and Isenhower 2000). Samples are retrieved and 
tested to establish correlations to the in situ tests. The resulting soil/rock 
parameter selections and prediction of the strength and deformation profile with 
depth are input into the final engineering criteria for foundation design. Some 
discussions of the underwater geotechnical site investigation process are found in 
Heijnen and Vermeiden (1980) for an improved site foundation; Hitchings, 
Bradshaw, and Labiosa (1976) for a gravity-based foundation; and Angemeer 
(1972) and Audibert and Hamilton (1998) for a pinned foundation. Lunne and 
Powell (1993) provide details for offshore in situ testing applicability when 
evaluating engineering soil parameters for various soil and foundation types. 
 
 
In situ methods 

 In situ testing allows evaluation of engineering properties without physically 
retrieving samples, often without requiring a predrilled borehole. Geophysical 
techniques and equipment may be used to acquire geotechnical engineering 
properties. Geotechnical devices frequently used for underwater in situ testing 
are the remote vane shear device, the cone penetrometer, and the pressuremeter. 
These methods were initially developed for land-based applications but have 
been adapted for underwater site characterizations. The remote vane was the first 
in situ tool to be routinely used in the early 1970s, followed by the cone 
penetrometer and the pressuremeter (Briaud, Riner, and Ohya 1984). 
 
 Geophysical methods. Geophysical investigations can provide overall 
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information regarding engineering properties at the foundation site such as 
anticipated sediment type, stratigraphy, depth to bedrock, and dynamic 
properties. Preliminary soil index properties may also be inferred, and studies 
have shown correlation between geophysical measurements and engineering 
properties of the subbottom (Mahmood and Hough 1978; Kutter, Arulanandan, 
and Dafalias 1979; Fountain 1979; Haynes et al. 1993; Nauroy and Meunier 
1993; Stokoe and Rosenblad 1999). 
 
 Acoustic methods (sonar and subbottom profilers) provide no direct 
engineering properties information. Shear wave methods furnish the shear 
modulus, G, of the subsurface material whether it be soft mud or solid rock. The 
shear wave geophysical method is matched to the site and its required 
investigation depths. For example, intrusive methods include seismic cone 
penetration (SCPT) and borehole (crosshole, downhole, and suspension) logging 
techniques. Nonintrusive methods include refraction surveys and surface wave 
profiling (Stokoe and Rosenblad 1999). Other marine geophysical methods to 
obtain engineering properties include gamma logging for bulk density 
measurements (Perlow and Richards 1972) and electrical resistivity to measure 
index properties of soils (Kutter, Arulanandan, and Dafalias 1979). 
 
 Vane shear device. Shear strength less than about 2 tsf (200 kPa) in 
cohesive sediments is measured using a vane shear testing system in which the 
unit is either deployed over the side of a surface vessel or lowered through a drill 
string (wireline technique) (Lunne and Powell 1993). As the unit settles onto the 
bottom on its attached template or reaches the borehole bottom, a vane penetrates 
undisturbed soil. The vane is then rotated, and the soil�’s shearing resistance 
(measured by a rotational strain gauge transducer) is correlated to its undrained 
shear strength. 
 
 Deep-sea vane shear strength measurements were made in the early 1960s 
from manned research submersibles such as the U.S. Navy�’s Trieste and 
Deepstar 4000, Woods Hole�’s Alvin, and Lockheed�’s Deep Quest (Perlow and 
Richards 1972; Inderbitzen and Simpson 1972; Hirst, Richards, and Inderbitzen 
1972). Their operational depths ranged to about 20,000 ft (6,080 m), but 
sampling depths were limited to about 5 ft (1.5 m) below the sea bottom 
(Noorany 1972). Tethered testing platforms placed directly on the ocean floor 
were developed by the late 1960s and early 1970s (Richards et al. 1972). The 
RUM was an unmanned tethered tracked bottom crawler that was instrumented 
with a vane shear device and other sampling tools and had an operational depth 
of 6,000 ft (1,824 m) (Anderson et al. 1972). The Navy�’s DOTIPOS tethered 
platform vane could penetrate 10 ft (3 m) below the mudline (Noorany 1972). 
 
 The offshore industry began using vanes located on tethered submersibles 
that were operated remotely from surface drilling ships using the wireline 
technique (Perlow and Richards 1972; Doyle, McClelland, and Ferguson 1971). 
Deploying the vane device from a platform resting on the ocean bottom later 
became more common (Dutt et al. 1997). 
  
 New-generation remote vane shear devices such as the Halibut II (Figure 27) 
have been developed to reduce testing setup time, to increase the incremental 
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penetration depth, and to perform cyclic testing (Dutt et al. 1997). Cyclic in situ 
vane tests are conducted to observe the effects of fully reversed, two-way 
loading. The vanes are torqued for 5 to 11 cycles, and the plotted results are 
useful for design calculations required for structures undergoing dynamic loading 
such as wave impact. Remote memory units attached to the vane allow for better-
quality data collection. 
 

Cone penetrometer. Cone penetrometer technology, which has seen many 
successful land-based applications during the past decades, has also been adapted 
to underwater site characterization. This technology is applicable to both 
cohesive and cohesionless soils. The penetrometer delineates stratigraphy, 
provides penetration resistance data that can be empirically correlated to soil 
strength and deformation parameters, measures pore-water pressure, and is 

adaptable for applications requiring 
specialized sensors, such as resistivity 
and seismic geophysical investigations. 
Soil sample retrieval may also be 
achieved using modified cone 
penetrometer equipment. Particularly 
useful is the pore-water pressure 
measurement capability (piezocone or 
PCPT). Determining subsurface pore-
water pressures and indirectly assessing 
in situ permeability is important in 
understanding the presence or absence 
of pore-water gradients in the 
subsurface soil layers, which may cause 
problems with the future foundation�’s 
static and dynamic stability. Lunne and 
Powell (1993) state that the piezocone 
is the most important in situ tool for 
offshore use. 
 
 The cone penetrometer test (CPT) 
has been used worldwide during the 
20th century as an onshore site 
investigation method that is relatively 
fast and economical and produces 
consistent data (FHWA 1978, ASTM 
1991). Various changes and technical 
improvements have been made, but the 

CPT remains particularly useful in assessing soil classification and strength while 
probing on-the-fly. Offshore CPT provides more accurate soils data than just 
sampling alone (Marr and Endley 1982).

Figure 27. Remote vane shear device (after Dutt 
et al. 1997) 
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 Underwater CPT for deep-ocean exploration was conducted in the early 
1970s on tethered submersibles such as the Deep Quest (Hirst, Richards, and 
Inderbitzen 1972), the Alvin (Perlow and Richards 1972), and the DOTIPOS 
(Noorany 1972). Penetration depths were limited to about 10 ft (3 m). A specially 
designed manned submersible (Mission) for geotechnical site investigation was 
used for the Eastern Scheldt project in the late 1970s. The Mission held two men 
breathing supplied surface air in a submerged steel capsule that was lowered to 
the seafloor. A hydraulic ram inside the capsule pushed the CPT and soil 
sampling rods 100 ft (30 m) below the mudline (Heijnen and Vermeiden 1980).  
 
 From the 1970s, the CPT has been conducted either from seafloor-based 
systems (similar to the one shown in Figure 28) or down-the-hole (wireline) 
systems. Some of the seafloor systems included McClelland�’s Seacalf and 
Stingray (Ferguson, McClelland, and Bell 1977); Fugro-McClelland�’s Seasprite 
(Lunne and Powell 1993); the U.S. Navy�’s XSP-40 (Beard and Lee 1982); 
European systems by A.P. van den Berg (ROSON) and the Danish Geotechnical 
Institute�’s SCORE (Lunne and Powell 1993); and TSP (Humphrey and Adams 
1995). The TSP system was designed to operate in water depths to 9,900 ft 
(3,000 m) while probing to soil depths of 230 ft (70 m). 
 

Figure 28. Remote CPT operation from a surface vessel (after 
James 1987) 

 
 The wireline technique allows multiple downhole tools and samplers to be 
used in the same borehole. One example of a wireline system using multiple 
downhole tools is McClelland�’s Swordfish, in which the CPT probe is advanced 
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10 ft (3 m) below the borehole base (Meyer, Harman, and King 1982). 
McClelland�’s Dolphin system stores all data in its memory module and does not 
have an umbilical cable (Focht, Johnson, and Rivette 1986; Lunne and Powell 
1993). The Dolphin system also includes a piezometer probe to measure pore-
pressure dissipation. The remote memory module stores up to 135 min of pore-
water pressure dissipation data. After the tool is retrieved, the data are 
downloaded and analyzed (Preslan and Babb 1979, Dutt et al. 1997). Fugro-
McClelland�’s WISON and Geocean�’s MASCOT systems operate in the shallower 
North Sea environment (Lunne and Powell 1993). 
 
 The U.S. Navy recently developed a dynamic penetrometer system that is 
dropped over the side of a surface vessel, falls through the water column, and 
surficially penetrates the seafloor while simultaneously measuring probe 
deceleration using Doppler sound imaging. Correlations between deceleration 
time and relative density of cohesionless soils have been made (Orenberg et al. 
1996).  
 
 The seismic cone penetration test has been performed from seafloor-based 
and surface platforms since the late 1980s (Lunne and Powell 1993). Penetration 
depths on the order of 200 ft (60 m) have been achieved (Stokoe and Rosenblad 
1999). 
 
 Pressuremeter. Another in situ testing tool is the pressuremeter, which was 
introduced (onshore) by Kogler and Scheidig in the 1920s (Parkhill 1998) and 
was further developed by Menard in the 1950s. The pressuremeter operates on 
the principle of expanding a vertical cylinder horizontally into the surrounding 
soil while measuring the volumetric strain and applied pressure. Correlations are 
made to determine the soil�’s in situ horizontal stress and shear strength. The 
pressuremeter test (PMT) is particularly suited for determining resistance to 
induced static and cyclic lateral loads on piles and drilled shafts (Bowles 1988; 
Briaud, Smith, and Meyer 1983; Briaud, Riner, and Ohya 1984). The major 
limitation of obtaining quality data from the PMT is the requirement for a 
carefully prepared borehole (Bowles 1988). To overcome borehole preparation 
problems, the self-boring pressuremeter test was developed. 
 
 Offshore pressuremeters have been developed by various companies (Reid et 
al. 1982; Suyama, Ohya, and Imai 1982; Lunne and Powell 1993) and are 
generally wireline self-boring. 
 
 
Drilling and sampling 

 Geotechnical drilling and sampling operations are typically required to 
supplement the in situ test data and to extract samples. Often a boring is 
advanced for purposes of obtaining information, such as soil and rock 
classification from visual inspection or blow counts from the standard penetration 
test. However, the primary advantage of the drilling and sampling operations is to 
retrieve undisturbed or disturbed samples from the subbottom for subsequent 
laboratory testing. Before, during, or after the samples are retrieved, various 
types of devices may be advanced in a cased or an uncased borehole for purposes 
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of obtaining in situ geotechnical information about the subbottom. For example, 
smaller diameter wireline piezocone penetrometers have been developed 
specifically for use inside boreholes. The PCPT is mechanically extended past 
the borehole opening to probe virgin soil for the purposes of obtaining pore-
water pressure, which has been correlated empirically to in situ permeability as 
well as the standard data obtained by the CPT ahead of the advancing drilled 
borehole (Dutt et al. 1997). 
 
 Underwater soil sampling techniques and equipment development have 
generally followed those of land-based methods. Prior to the 1940s, the offshore 
industry did not conduct preliminary site investigations. The first marine 
foundation site investigation for an offshore structure was drilled from a fixed 
platform in 30-ft (9-m) water depth in the Gulf of Mexico in 1947. As the oil 
platform water depths increased, so did the capacities of the exploratory drill 
platforms, and they evolved from fixed platforms to mobile drill rigs on barges. 
Perhaps the most challenging location was the Bay of Fundy, where fixed-piston 
samples of soft marine clays were recovered from depths of 326 ft (99 m) while 
coping with 25-ft (8-m) tides and currents up to 8 fps (2.4 m/sec). This type of 
exploration method using conventional land-based sampling techniques was used 
for most subsea locations at water depths to about 200 ft (60 m) until the year 
1962 (Focht and Kraft 1977). 
  
 In 1962, an oil company conducted a program to gather geotechnical data 
along the outer Continental Shelf to depths of 600 ft (180 m). Instead of a 
floating barge, a purpose-built boat was outfitted with a large drilling rig. Special 
lightweight 3-in.-diam drill pipe and wireline sampling tools were developed to 
penetrate 300 ft (90 m) below the seabed. The wireline samplers enabled sample 
retrieval without bringing the drill pipe sections back to the drill rig (Focht and 
Kraft 1977). 
 
 In the 1970s and 1980s the offshore industry moved into deeper waters in the 
Gulf of Mexico, and geotechnical site investigation techniques and equipment 
were developed to meet those challenges. Investigations at seafloor depths of 
2,900 ft (880 m) were conducted. The Shell �“Mensa�” project required 
investigations at a seafloor depth of 5,315 ft (1,616 m). Up to the mid-1990s, 
total penetration (water and soil column) of geotechnical drilling and sampling 
for the majority of the Gulf of Mexico projects had been limited to about 6,600 ft 
(2,010 m) based on available surface vessels. In 1997, a converted dynamically 
positioned diving support semisubmersible was mobilized to provide site 
investigation capabilities for deeper sites. It allowed drilling to water depths of 
9,900 ft (3,000 m) and had a total drillstring capability of 11,840 ft (3,600 m) 
(Dutt et al. 1997). 
 
 A recent Gulf of Mexico program sponsored by several oil companies and 
the National Science Foundation collected geotechnical data in water depths to 
7,700 ft (2,340 m). A series of in situ vane shear tests, pore-pressure 
measurements, deepwater coring, sample retrieval, and laboratory tests were 
conducted (Sea Technology 1999).  
 
 The methods of underwater sampling and selection of equipment are 
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arbitrarily divided into two general categories depending on the water depth and 
sampling depth: shallow sampling depths to 100 ft (30 m) below the mudline, 
and deeper sampling depths. Most geotechnical sampling has been done from the 
water surface using a fixed or mobile platform (Noorany 1972). Numerous 
systems employed for soil sampling from submersible seabed platforms in deeper 
water were described by Tirey (1972) and Hironaka and Green (1971). Most of 
the platforms had submersible hydraulic rotary drills, but some had submersible 
hydraulic vibratory hammer-type drills predating submersible vibratory pile 
hammers by almost 2 decades. 
 
 Sampling tools specifically used for underwater sampling include diver-held 
samplers, the Boomerang corer, box corer, gravity corers, vibratory corer, 
wireline samplers, and dredging grab samplers (U.S. Army Corps of Engineers 
1996). In general, the diver-held samplers, corers, and grab samplers are used for 
shallow sampling penetrations. For deeper penetrations, wireline samplers are 

used (Noorany 1972). An illustration 
of one type of wireline sampling 
configuration is shown in Figure 29. 
Tirey (1972) discussed a range of 
types of submersible, remote, and 
diver-operated sampling equipment, 
including rotary and vibratory 
drilling tools. A noteworthy 
comment was that regardless of the 
sampling tool, no feasible sampling 
method completely eliminates sample 
disturbance. Furthermore, the 
disturbance of samples obtained at 
nearshore and offshore sites was 
generally greater that the disturbance 
of samples obtained on land because 
of the greater difficulty of obtaining 
quality samples. Reese and 
Isenhower (2000) reported that 
wireline sampling techniques caused 
more disturbance than the worst 
onshore sampling methods when 
applied to the offshore environment. 

Figure 29. Offshore wireline sampling technique 
(after CLAROM 1994) 

 
The popular onshore ASTM 

D 1586 standard penetration test 
(SPT) consists of dropping a 140-lb 
(308-kg) weight 30 in. (0.76 m) onto 
a drill string with a 2-in. (51-mm)-
diam sampling tube attached at the 
bottom. 
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 The number of blows required to penetrate the sampler 12 in. (300 mm) into 
the borehole bottom is correlated to the soil�’s classification and strength. The 
recovered sample may be used for laboratory testing purposes (Acker 1974). 
 
 The SPT may be used for nearshore and river locations where the wave 
heights are minimal, but the offshore industry does not traditionally use the test 
because the fall height of the hammer cannot be accurately controlled unless the 
ship heave is compensated (Hitchings, Bradshaw, and Labiosa 1976). Bazett and 
Foxall (1972) compared and discussed SPT blow counts from a natural riverbed 
and subsequent underwater-placed fill from a spud-barge platform. Babcock and 
Miller (1972) compared vibracore sampling to SPT data and found good 
correlations in low blow count soil deposits.  
 
 Offshore rotary core sampling is generally used only for identification 
purposes, but wireline tube sampling is generally used for the full range of soil 
types and strengths (Hight 1993). The two most common types of tube sampling 
methods are push sampling and piston sampling. Most push sampling uses 3-in. 
(76-mm)-diam thin-walled Shelby tubes for undrained soil strengths up to about 
6 tsf (600 kPa). Thicker walled tubes are used to recover dense sands and hard 
clays. Tube liners are used for upper sediments with little or no shear resistance. 
Piston samplers are used in soft and firm clays when sample retention would be a 
problem (Hight 1993), but piston sampling is not commonly used offshore in the 
Gulf of Mexico (Jeanjean, Andersen, and Kalsnes 1998). McCoy (1972) 
discussed piston sampling characteristics in the North Atlantic.  
 
 Another offshore sampling method uses large-diameter borehole technology 
to obtain bulk samples with techniques and equipment similar to those used 
onshore. Larger boreholes (diameter between 1 and 10 ft, 0.3 and 3 m) enable 
larger sample sizes for better quality classification and testing. Unlike dredging 
samples that are obtained from shallow depths, large-diameter boreholes allow 
sampling at depths approaching 400 ft (120 m) (Schwank 1997). 
 
 
Laboratory testing 

 To the extent that site assessment is not complete until all engineering design 
parameters are obtained, many of the retrieved soil/rock samples undergo 
laboratory testing. The laboratory testing program should be tailored to obtain 
engineering parameters for preliminary design of the intended foundation system. 
For example, both monotonic and cyclic shear strength profiles are needed for 
determining the holding capacity of suction caissons (Jeanjean, Andersen, and 
Kalsnes 1998). Sangrey, Clukey, and Molnia (1972) discussed methods to obtain 
strength profiles from disturbed or remolded samples.  
 
 The types of soil (and/or rock) laboratory tests conducted for underwater 
foundations should accomplish the following objectives (Sullivan, Wright, and 
Senner 1980): (a) material identification and classification, (b) behavior under 
anticipated field levels of stress and strain, (c) compressibility characteristics 
under sustained loading, and (d) stress-strain characteristics and pore-pressure 
response under cyclic loading. 
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 The tests on soil materials should include index properties (submerged unit 
weight, Atterberg limits, mineralogy, grain-size analysis, moisture content, 
chemical composition, and specific gravity). Strength tests should be conducted 
using either �“undisturbed�” or remolded sample specimens. Unconsolidated-
undrained (UU) tests can be conducted to assess short-term behavior, whereas 
consolidated-drained (CD) or consolidated-undrained (CU-bar) tests with pore-
pressure measurements are needed to assess the long-term behavior. 
 
 Conventional soil strength tests imply static (monotonic) loading conditions 
and include direct simple shear tests, unconfined compression triaxial tests, 
UU triaxial tests, miniature shear vane, Torvane, fall cone, and hand 
penetrometer, among others. Computed strength and stiffness parameters (cu,  u, 
Eu) from these test data establish the undrained shear strengths of the soil 
specimens. 
 
 To determine normalized and effective stress strength parameters, CD (direct 
shear) tests or isotropically consolidated (CIU-bar) and anisotropically 
consolidated (CkoU-bar) consolidated-undrained monotonic triaxial compression 
tests are conducted (Sullivan, Wright, and Senner 1980). For the triaxial tests, 
pore-pressure measurements are required to determine the effective stress states 
(Audibert and Hamilton 1998). The CD test, by definition, yields effective stress 
strength and stiffness parameters (cu�’,  u�’, Eu�’). 
 
 Less conventional tests are often required as an attempt to replicate 
anticipated dynamic and cyclic loading conditions, such as the loading conditions 
caused by wind, wave, and seismic loads. Cyclic anisotropically consolidated-
undrained (CyCKoU) triaxial compression and cyclic direct simple shear tests are 
typically performed to define the cyclic stress-strain behavior of soils. A 
laboratory test to determine the shear wave velocity and maximum shear modulus 
is conducted using a resonant column device (Jeanjean, Andersen, and Kalsnes 
1998). 
 
 To determine stress history of cohesive soils, consolidation tests are routinely 
conducted. The overconsolidation ratio can be determined using the constant 
strain and incremental loading oedometer tests. Consolidation test data are used 
to determine the time-settlement curve and void ratio-effective stress 
relationships (Sullivan, Wright, and Senner 1980). 
 
 Uncertainty in laboratory test data interpretation arises from the effects of 
soil heterogeneity, sample disturbance, in situ stress history and loading 
conditions, and testing accuracy. For example, in a layered soil subjected to 
loading condition imposed by a structure (see Figure 30), a triaxial compression 
test would best simulate the failure conditions immediately under the structural 
footing, whereas the direct shear test would better simulate the loading conditions 
at the deeper portion of the failure plane as it is passing through the layered soil. 
Likewise, as the slip surface daylights at some distance from the footing, the 
triaxial extension  
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Figure 30. Sketch of idealized model of in situ stresses (after Sullivan, Wright, 
and Senner 1980) 

 
test would better replicate the loading conditions due to the reversal of principal 
stresses. 
 
 One method for assessing the reliability of laboratory data uses soil 
parameter empirical correlations. Sullivan, Wright, and Senner (1980) discussed 
these uncertainties and suggested correlations for comparison. For example, an 
estimate of the remolded shear strength for an overconsolidated clay can be made 
from its liquidity index. The ratio of normally consolidated clay shear strength to 
effective overburden stress is related to its plasticity index. Fine sand�’s friction 
angle is related to its relative density and voids ratio. However, it should be 
emphasized that these empirical correlations should not be substituted for a 
detailed laboratory investigation. 
 
 In addition to the strength and deformation characteristic for rock, the rock 
material properties should include porosity, density, sonic velocity, permeability, 
ductility, strength, slake durability, hardness, and thermal properties. Rock mass 
strengths are rated by either the RMR or Q systems (Goodman 1989). 
 
 Offshore foundation material (soil and rock) databases are available that can 
be used for planning the laboratory investigation and interpreting the test results. 
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These databases are especially useful for planning cyclic loading test programs, 
such as suggesting methods to reduce the number of site-specific cyclic tests. 
Andersen and Jostad (1999) list references for available databases of North Sea 
and Gulf of Mexico clay soils. Numerous other references to site-specific 
soil/rock characteristics related to geotechnical foundations are available in the 
literature and include the following: 
 
  Sabine River delta (Grosch and Reese 1980) 
  Offshore Florida calcareous sands (Dutt et al. 1986)  
  Offshore Southern California (Mahmood and Reifel 1978) 
  Mississippi Delta (Gulf of Mexico) weak sediments (Shephard, 
   Bryant, and Dunlap 1978; Booth and Garrison 1978) 
  Gulf of Mexico underconsolidated clays to dense sands 
   (Stockard 1979) 
  Alaska coastal waters (Sangrey, Clukey, and Molnia 1979) 
  Hawaii calcareous sands (Lu 1986) 
  Offshore Cuba coral sands (Puech, Bustamante, and Auperin 1990) 
  Offshore Brazil calcareous soils (Ping et al. 1984) 
  Offshore Australia calcareous sands and sandy silts (Parkin et al. 
   1990; Tan, Parkin, and Yee 1990; Randolph et al. 1996) 
  Borneo marine clays (Gemeinhardt and Yan 1978) 
  Offshore India (Stockard 1986) 
  Offshore China dense sands (Tsien 1986) 
  Arabian Gulf hard clays, dense sands, rocks, and coral (Tagaya  
   et al. 1979; Settgast 1980; Stevens, Wiltsie, and Turton 1982;  
   Vines and Hong 1984) 
  Gulf of Suez calcareous sands and silts (Dutt and Cheng 1984,  
   Dutt and Teferra 1986) 
  North Sea stiff clays (Heerema 1979) 
  North Sea soft clays (Karlsrud and Nadim 1990) 
  North Sea dense sands (Jardine and Overy 1996, Zuidberg and  
   Vergobbi 1996) 
  North Sea boulder clays (Fox, Parker, and Sutton 1970) 
  North Sea chalk (Vijayvergiya, Cheng, and Kolk 1977; Davie, 
   Ehlers, and Antes 1978) 
 
 



4 Design Considerations 

Foundation Types 

 Numerous foundation types are constructed onshore (as land-based 
construction), and they broadly fall into either the �“shallow�” or �“deep�” 
foundation category. By definition, the shallow foundation embedment depth is 
less than its minimum lateral dimension and includes spread footings and mats. 
The deep foundation embedment depth is much greater than its minimum lateral 
dimension. Examples include piles and shafts (Herrmann, Raecke, and Albertsen 
1972). Since the terms shallow and deep may be confusing when applied to 
underwater foundations, those terms will not be used for the remainder of this 
document. 
 
 Underwater foundations may be classified into one or more of the following 
general categories: improved-site, gravity-based, and pinned. Improved-site 
foundations include those that are dredged, excavated, backfilled, leveled, and/or 
site-modified. Gravity (or gravity-based) foundations include those that distribute 
the structure�’s loads over a soil/rock area wide enough to adequately resist the 
imposed loads. Pinned foundations distribute the structure�’s loads deeper into the 
soil/rock materials. Table 1 provides a generalized description of foundation 
types for selected case histories and includes prominent foundation 
preparation/construction features. 
 
 Certain structures are generally associated with a given foundation type. For 
example, most immersed tube tunnels depend on site-improved foundations. 
Likewise, the vast majority of offshore oil production platforms in the Gulf of 
Mexico depend on pinned (driven-pile) foundations. However, foundation types 
may also be combined for certain structures. For example, some gravity-based 
foundations such as concrete bridge piers require site improvements prior to 
float-in or lift-in placement of the piers. Likewise, some gravity-based 
foundations include piles. Some suction-pile foundations imitate both gravity-
based and pinned foundations in that they may be designed to distribute their 
ballasted weight over a large lateral area during vertical penetration. 
 
 For gravity and pinned foundations, an improved-site foundation may or may 
not be needed. Based on published case histories, typical deep offshore practice 
does not include improving the site prior to installing either gravity or pinned 
foundations. However, for shallow-water gravity foundations, some type of site 
improvement is usually provided. Two examples of Corps projects that will use 
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site improvement in conjunction with pinned foundations are the Corps�’ 
Braddock and Olmsted Dams. At Braddock Dam, the float-in precast elements 
will be ballasted and attached to pinned foundation (drilled shafts). Softer 
sediments will be dredged prior to and during construction (as needed). At 
Olmsted Dam, the lift-in precast elements will be placed on pinned foundation 
(driven-pipe piles). Site improvement will include dredging, sand 
vibrocompaction, and articulated mat placement (Personal Communication, 
2 March 2001, Dale E. Berner, consulting engineer, Ben C. Gerwick, Inc., 
San Francisco, CA). 
 
 
Improved-site foundations 

 An improved-site foundation modifies the existing soil (or rock) in the 
seabed or riverbed. Methods include preloading, dredging, backfill, leveling, 
consolidation, or other engineered modifications. Figure 31 illustrates one 
example of an improved-site foundation. In the case of immersed tunnels, 
pipelines, breakwalls, dry docks, and some float-in/lift-in structures, an improved 
site may be the only foundation system needed. 
 
 Dowse (1979) described an 
innovative improved-site methodology 
employing self-supporting (hydrostatic 
pressure) sand islands for foundations for 
oil platforms in water up to 200 ft (61 m) 
deep. Basically, an impervious membrane 
is filled with dredged sand, and the water 
is then pumped out. Such hydrostatically 
supported confined-pressure sand islands 
are capable of supporting surface loads 
that are proportional to the drained shear 
strength of the sand. Each island can be 
built within a 2-week period depending 
on the specific design. Disadvantages are 
the amount of dredging required to 
supply the sand fill, the limitations of a 
soft soil underbase, and the construction 
handling and placement of the 
impervious membrane. 
 
 Numerous other examples of 
improved-site foundations are noted in 
this report. Dredging, fill placement, consolidation, soil improvement, and mat 
reinforcing are some of the methods used during construction of an improved-site 
foundation. 
 

Figure 31. Example of an improved-site 
foundation (after Abbott and George 
1989) 
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Gravity-based foundations 

 Gravity-based foundations are broadly classified because the load-carrying 
capacity is primarily determined by the size and weight. These foundations are 
similar in function and design to the land-based foundations that are classified as 
�“shallow,�” since their embedment depths are generally less than their lateral 
dimensions. Typical gravity foundations are constructed of precast concrete 
elements that are either floated or lifted in and allowed to sink into the mudline 
or onto an improved-site foundation. Once installed, the underbases may be filled 
with cast-in-place concrete or grout via underwater tremie tubes or other type of 
ballasting materials. For example, the main pier bases supporting the 
Confederation Bridge in Canada are lift-in precast concrete elements resting on a 
tremied concrete bed over mudstone and siltstone layers. Each of the forty-four 
6,000-ton pier bases rests on a ring footing of tremied concrete having an 
approximate diameter of 67 ft (20 m) and an approximate thickness of 6 ft 
(1.8 m). 
 
 Smaller gravity-based foundations have been constructed of steel instead of 
concrete. For example, offshore foundations for wind turbines have been 
constructed of steel gravity foundations that are basically steel boxes sunk to the 
seabed and filled with olivine (DWTMA 1998). The steel box size was designed 
to be 42 by 42 ft (14 by 14 m) with a weight of about 90 tons (100 metric tonnes) 
for a water depth to 30 ft (9 m). 
 
 Wooden timbers form the gravity base of the Brooklyn Bridge, which was 
completed in 1883. Two wooden box structures, one on each side of the river, 
were weighted with stones to enable contact with the underlying bedrock 
(Delaney 1983). Each box weighed about 16 million pounds (7.3 Mg) with a 
footprint of about 17,000 sq ft (1,579 sq m). Examples of present-day wooden 
gravity-based foundations are rare, since the preferred materials are either 
concrete or steel. 
 
 For offshore structures, submerged gravity-based foundation weights may 
approach 1 million tons. A modification of the gravity base concept is the 
addition of suction skirts around the foundation perimeter to help resist lateral, 
tensile, and cyclic loads imposed on the gravity foundation.  
 
 
Pinned foundations 

 Pinned foundation embedment depths are greater than the minimum lateral 
dimension, and include piles and drilled shafts. They are installed to achieve 
greater lateral stability, to provide greater uplift resistance, to provide greater 
resistance to scouring compared with gravity-based foundations, and to minimize 
the potential for differential settlement of certain critical structures. The two 
general types of pinned foundations are those that displaced soil (that is, piles) 
and those in which soil was removed (drilled shafts). Pinned foundations are 
constructed of wood, steel, concrete, grout, stones, or polymer materials that are 
pinned into the seabed or river bottom by application of driven or drilled-energy 
sources. Techniques and equipment for deep-water (typically more than 300-ft) 
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shaft, pile, and caisson construction are generally found within the offshore oil-
drilling industry. 
 
 Displaced soil. These methods include driving piles into the soil or weak 
rock by impact, vibratory oscillation, hydraulic pushing or jacking methods, 
rotating, jetting, or suction techniques and equipment. Hydraulic pile-driving is 
virtually noiseless and vibration-free, while pile jetting is a time-saving pile-
driving method (Tsinker 1988). A brief discussion of several types of displaced-
soil piles follows. 
 
  Driven preformed piles. Examples of driven preformed piles include 
tubular steel (open or closed end pipe) piles, solid steel (H-, X-, A-, or sheet) 
piles, timber piles, precast (prestressed and/or reinforced) concrete piles, and 
polymer piles. Figure 32 illustrates an underwater impact-driven pile installation 
procedure. The advantages of driven preformed piles include the following: 
 

a. The pile materials are preformed and 
subject to fabrication and site (quality 
control/quality assurance) inspection. 

b. The pile materials can withstand high 
bending and tensile stresses. 

c. Numerous choices for pile materials, 
equipment, and installation procedures are 
available. 

d. Onsite fabrication permits very long lengths 
of piles for site-specific conditions. 

 
        The disadvantages of driven preformed piles 
include: 
 

a. Above-water noise and vibration may be 
excessive. 

b. Soil disturbance may affect surrounding 
structures. 

  Cast in situ piles. Examples of cast in situ 
piles include stone columns (Cemcol), compacted 
concrete pile (Vibro-Franki, not commonly placed 
underwater), Atlas screw pile (not yet commonly 
used underwater according to Reese and Isenhower 2000), and micropiles (which 
are grouted minipiles or pinpiles installed without drilling). 

Figure 32. Underwater impact-driven 
pipe pile installation without a 
template (after Jansz and 
Brockhoff 1979) 

 
 Figure 33 illustrates an onshore Atlas screw pile installation procedure. The  
advantages of cast in situ piles are: 
 

a. No need for permanent casing.

Chapter 4   Design Considerations 53 



b. May be more economical for specific sites. 

c. No cuttings and, hence, no disposal of cuttings required. 

 The disadvantages of cast in situ piles include: 
 

a. Limited experience in underwater environments and (for certain 
proprietary systems, such as Cemcol, Atlas, Vibro, Franki, Vibrex, and 
Fundex) extremely limited specialized contractor experience. 

 
b. Cannot be extended above riverbed without casing and special 

procedures. 
 

 A special case of the cast in situ pile is 
represented by the soil and grout cast in situ 
foundation, which is generally designed as an 
improved-site foundation instead of pinned. This 
type of foundation improvement is used primarily 
for onshore applications, although deep cement 
mixing has been used offshore (although primarily 
outside the United States). 
 
 Two examples of the soil and grout cast in situ 
foundation improvement include jet-grouted 
columns (grout injected into soil from high-
pressure jets) and mixed soil columns (grout 
mixed with soil, also called deep cement mixing). 
The advantages and disadvantages mirror those for 
cast in situ, as previously noted. 
 
  Driven cast in situ piles. An example of 
the driven cast in situ pile includes an open- or 
closed-ended steel casing or pipe pile that is driven 
and then backfilled with concrete. The advantages 

of this type of pile are as follows: 

Figure 33. Cast in situ onshore pinned 
foundation (Atlas screw pile 
method) (after Hollingsworth 
and Imbo-Burg 1992) 

 
a. The length can be easily adjusted to match the bearing stratum. 

b. Site-specific modifications, such as an enlarged base or bells, are possible. 

c. Noise and vibration during driving may be reduced. 

d. The internal pile material, such as concrete or grout, will not be affected 
by handling or driving stresses. 

 The disadvantages of driven cast in situ piles include these: 
 

a. Mixing and placement of the concrete or grout may require special 
equipment and inspection considerations. 

b. The inspection and placement of the reinforcing bar cage may require 
special considerations or techniques.
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  Self-penetrating (suction) piles. The placement of suction piles (also 
called buckets, skirts, suction caissons, anchor piles, or suction anchors) operates 
on the principle of foundation underpressure (see Figure 34). The suction pile is 
placed on the sea bottom, and the 
entrapped water is pumped out to create an 
underpressure relative to the surrounding 
water pressure, which causes the pile or 
caisson foundation to penetrate into the 
seabed (Senpere and Auvergne 1982). 
These are commonly called �“skirts�” in the 
offshore industry literature if they are 
attached to gravity-based foundations, 
especially tension leg platforms. (It should 
be noted, however, that the offshore 
literature also refers to �“skirt�” piles on 
jacket platforms, which are driven piles 
instead of suction piles.)   

Figure 34. Suction pile foundation (after 
Andersen and Jostad 1999)

 
 The advantages of self-penetrating 
(with suction) pile may include one or 
more of the following: 
 

a. Less equipment required for 
installation. 

b. Shorter installation time. 

c. May be fairly easily removed or relocated. 

 
 The disadvantages of self-penetrating (with suction) pile include: 
 

a. Highly dependent on soil conditions (technology somewhat limited on 
predicting penetration depth). 

b. Excessive differential pressure (underpressure) may cause internal soil 
heave. 

c. Relatively limited/unproven technology outside the offshore industry. 

 
    Other types of piles. Piles may also be modified to increase their 
performance, design life, and function. One such variation is the spin-fin pile, 
which screws itself into the subsurface as it is driven. It has been reported that it 
could provide twice the tensile load resistance as that of similar size conventional 
piles (ASCE 1992). It should be noted, however, that some of these pile 
foundation types were designed for onshore applications and are not normally 
installed in the underwater environment. 
 
 Excavated soil (caissons, drilled shafts, and pin piles). These methods 
include installing the pile, caisson, or drilled shaft during or after excavation of 
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the soil and/or rock, as illustrated in Figure 35. The advantages of the excavated 
pile include the following: 
 

a. Lengths are easily adjusted to match the 
bearing stratum. 

Figure 35. Excavating a cased borehole

b. Cuttings supplement or verify site 
investigation borings. 

c. Very large diameters are possible for 
extraordinary loads, compared with pile 
groups. 

d. Suitable for sites that preclude driven 
foundations, such as cases in which large 
rocks and boulders are encountered. 

e. The material used to construct the pile is 
not subject to handling or driving stress. 

f. Very long piles are possible. 

g. Construction noise and vibration are 
reduced. 

h. Less influence on adjacent structures due 
to ground heave or disturbance. 

 
Typical disadvantages of excavated piles include: 
 

a. Concrete and grout require special equipment and inspection 
considerations. 

b. Placement and inspection of the reinforcing bar cage may require special 
techniques/considerations. 

c. Cannot be extended above riverbed without casing and special 
procedures. 

d. Possible end-bearing reduction in sandy stratum. 

 
A brief discussion of several types of (excavated soil) piles follows: 
 
        Augered cast-in-place. The augered cast-in-place pile system has been 
used onshore since the 1940s. Two methods are available. One method consists 
of drilling a hollow-stem auger to depth and then pumping grout or concrete into 
the hollow stem as the auger is withdrawn. Reinforcing rods may be inserted into 
the concrete through the hollow-stem auger (Neate 1989). The excavated soil is 
brought to the surface as cuttings. For use of this system under water, external 
casing would be required if the concrete extends above the mudline. The second 
method uses continuous-flight auger equipment to excavate soil inside a driven 
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casing. Numerous equipment manufacturers and 
techniques are available for this popular (onshore) method. 
 
   Rotary drilled. Rotary drilling methods are used to 
create a borehole in soil or rock. Basically, the drill string 
(drill pipe or casing) is rotated into the subsurface while a 
vertical load or pressure is applied (Figure 36). The cutting 
tool rips into the soil or rock, and the cuttings are flushed 
to the surface by drilling fluid. Several techniques are 
available to remove the cuttings from the borehole, 
including positive circulation, reverse circulation, duplex 
drilling (inner and outer drill strings), percussive rotary, 
and compressed air. Case histories of in-the-wet 
foundation installation using rotary drilling methods are 
more common for rock foundations (Norwesco 1999, 
Nakayama 1992, Santiago et al. 1986, Burt and Harris 
1980, Steinke and Strasser 1978, Chamberlin 1970). 
However, rotary drilling methods are also used in stiff 
clays such as those found in the North Sea (Focht and 
Kraft 1977).  
 
  Pin piles. The use of pin piles has increased in 
recent years, especially in situations with difficult access 
or restricted vertical clearance. For example, bridge 
foundation rehabilitation has become a major market for 
these piles (Pearlman et al. 1997). Pin piles are small-diameter drilled and 
grouted piles. Their diameters range from 5 to 12 in. (127 to 305 mm), and their 
axial compression and tension capacities range from 50 to 200 tons (445 to 
1780 kN). The most common installation technique is to rotary-drill an open-
ended steel pipe into the subsurface. A reinforcing bar cage is then installed 
inside the casing, and pressurized grout (or tremied grout in rock formations) is 
pumped into the casing to extend the �“bond zone�” below the open end of the pile. 

Figure 36. Casing and pile 
assembly for an 
offshore drilled shaft 
foundation (after 
Steinke and Strasser
1978) 

 
 
Foundation Selection Criteria and Design Issues 

 The foundation must be selected, designed, and constructed to achieve 
acceptable performance during its anticipated lifetime. Selection and design 
criteria for onshore (land-based) foundations are listed in numerous publications, 
but published criteria for selection and design of underwater foundations are, in 
general, somewhat limited. Although the offshore industry has published 
guidelines for foundation design, installation, behavior, and testing (American 
Petroleum Institute 1993), the selection guidelines covering all possible types of 
underwater foundations are not commonly found in the literature. As foundation 
costs increase and different foundation types become more available to designers 
and constructors, Reese and Isenhower (2000) suggested that greater emphasis 
will be placed on selecting the best foundation for a particular application. 
 
 The selection procedures for underwater foundations do not differ 
significantly from those for onshore procedures, as the design requirements for 
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both types of foundations are similar. The design criteria are dependent upon the 
appropriate soil/rock properties (that is, shear strength or bearing capacity, 
settlement, differential settlement, etc.). The major difference in the selection 
process for underwater foundations stems from unique installation problems and 
environmental conditions, such as wind, wave, and ice loadings to which many 
onshore foundations are not subjected. Table 2 addresses some of the general 
selection considerations. 
 
 Underwater foundation selection and design may be somewhat more 
complicated than for onshore foundations because of the unique loading 
configurations, installation requirements, and greater uncertainties in site 
investigation and selection of appropriate soil parameters. However, the offshore 
industry has greatly advanced geotechnical practices in the last 25 years, and 
application of those practices will eventually merge into the general foundation 
selection process. For example, suction piles have become competitive 
alternatives to driven piles and gravity-based foundations. Risk analysis and 
partial safety factor design are becoming more commonplace in offshore 
foundation design and analysis, as is model testing using the centrifuge (Lacasse 
1999). 
 
 
Selection criteria 

 Engineering and economic analyses are necessary to select the proper 
foundation system. The traditional choices for selection of onshore foundations 
are deep foundations or spread footings. Each foundation type is generally 
associated with given structures. For example, traditional U.S. engineering 
practice is to specify piles for bridge foundations. It has been reported that 
66 percent of U.S. bridge foundations are founded on piles, 25 percent are placed 
on spread footings, and the remainder are drilled shafts (DiMillio 1999). In 
contrast, England�’s highway bridges rely almost extensively on spread footings, 
even in coal mine subsidence areas where piles could reduce settlement. 
Likewise, the U.S. building industry almost exclusively uses spread footings, 
even though some building items, such as doors, windows, and utilities, are much 
more sensitive to settlement than are piled highway bridges. Thus, foundation 
selection may be based on industry and local practice, which may not necessarily 
be the best choice. General selection criteria for underwater foundation systems, 
which have been compiled from case histories and published information for 
both onshore and offshore foundations, are discussed below. 
 
 
Design considerations 

 Improved-site foundations. An improved-site foundation may be the least 
complex of all foundations because the foundation itself is not �“connected�” to the 
superstructure. An improved-site foundation is usually composed of a leveled 
surface (excavated or backfilled) overlying either modified or natural soil and/or 
rock material. Modification of the soil or rock implies that those materials have 
been physically or chemically altered to be able to transmit the loading imposed 
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by the superstructure into deeper material without failure due to bearing capacity, 
settlement, or differential settlement. 
 
 

Table 2 
Underwater Foundation General Selection Considerations 
Site Conditions Foundation Types Remarks 

Cohesionless soils 
 
Silica sands  

 Common in the southern  
North Sea, Gulf of Mexico, 
inland U.S. waterways 

 Fine-grained 
 
 Medium/coarse 
 
Calcareous sands 

IS, GB, P/driven, suction 
P/bored with casing 
IS, GB, P/driven, suction  
P/bored with casing  
P/bored 
P/driven with grout 

 
 
 
 
Carbonate-containing sands 
founds in Florida, Hawaii, and 
the Tropics 

Cohesive soils 
Dense silts 
 
Clays 

 
P/driven 

 
High penetration resistance 
without high bearing capacity 

 Soft 
 Normally consolidated 
 Stiff to hard 
 Overconsolidated 

IS, P/driven, suction 
GB, P/driven, bored, suction 
GB, P/driven, bored, suction 
GB, P/bored 
 

 

Rock 
 Weak 
 Intact 

 
GB, P/bored or driven 
GB, P/bored 
 

 

Other site conditions 
Presence of boulders 
Corrosive soils 
Contaminated soils 
 
Underwater cables 
Tunnels, buried pipe 
Potential scour 

 
IS, GB, P/bored 
IS 
IS, GB, P/driven 
 
IS, GB 
IS, GB 
IS, P/driven 

 
 
 
Minimize exposure or remediate 
 
Dredging hazard 
Penetration hazard 
Pipe piles offer less resistance 

to swift currents; provide 
scour protection 

Design and construction requirements 
Minimal settlement 
Maximum lateral loading resistance 
Maximum cyclic loading resistance 
Maximum uplift resistance 
Noise/vibration restrictions 
 
Minimal site QA testing efforts 

 
P/driven 
P/driven, bored, suction 
P/driven, bored 
P/driven, suction 
IS, GB, P/bored, suction 
 
GB 

 
 
 
 
 
P/driven with quiet above-water 

hammer 
 
 

Legend: 
 IS = improved-site 
 GB = gravity-based 
 P = pinned 
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 Alternatively, the prepared surface may underlie man-made materials such as 
geotextiles or bridging mats. The superstructure itself is designed to transmit the 
imposed loading to the underlying foundation material through its footprint 
(foundation), which has been designed (sized) to minimize the settlement and 
movement of the structure. Figure 37 illustrates an improved-site foundation with 
numerous features, including excavation dredging, backfilling, and mechanical 
modification by vibratory compaction. Figure 38 illustrates usage of man-made 
bridging mats and geotextiles combined with dredging excavation and vibratory 
compaction. 
 
 An underwater embankment foundation must be designed for stability and 
minimal settlement similar to an onshore design. The onshore methods for 
computing slope stability may be applied with the caveat that spatial variation 
will be analyzed. Since the underwater variability will likely be greater than for 
onshore slopes, solutions yielding the single critical shear surface and minimum 
factor of safety should be expanded to include spatially variable factors of safety. 
Liedtke and Wright (1999) analyzed this approach using the UTEXAS3 software 
package. 
 
 Dredging, excavation, and (back)fill placement design principles are similar 
to those used onshore. Namely, unsuitable materials are removed and replaced 
with more suitable material. Disadvantages of dredging and backfilling include 
environmental concerns in sensitive marine or riverine environments, 
contaminated dredged material issues, and possible scarcity of nearby suitable fill 
materials. 
 
 In addition to excavation and replacement, in situ modifications may also be 
required to increase the soil/rock strength, reduce settlement, or to improve 
stability. In sands, the primary goal is to increase the relative density. In clays 
and weak rocks, the primary goal is to increase the undrained shear strength. 
Three techniques available to achieve those goals are mechanical, hydraulic, and 
chemical modifications. Mechanical modifications include physical 
rearrangements of the soil matrix and include modifications by inclusions and/or 
confinement. Hydraulic modifications include dewatering schemes. Chemical 
modifications include grouting and soil mixing schemes (Hausmann 1990). 
 
 Mechanical modifications using reinforcing mats, steel mats, prefab rock 
blankets, or geotextile fabrics have the effect of creating dense layers with 
improved strength characteristics, as well as serving as filters to minimize 
erosion or scour. The foundation bearing capacity and settlement design then 
becomes a multiple-layer subgrade analysis with stiffer and more competent 
layers overlying softer strata. For example, Abbot and George (1989) determined 
that steel reinforcement meshes overlaid with granular layers would reduce 
potential settlement by 66 percent and increase shear strength by a factor of 800 
as compared to the unimproved site.  
 
 Mechanical modification using vibrocompaction is sometimes referred to as 
vibroflotation if water jetting accompanies the vibration. Vibrocompaction 
mechanically rearranges soil particles into a denser configuration by the use of 
vibrating shafts and is used exclusively for cohesionless soils. Vibrating shaft  
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Figure 37. Improved-site foundation under Bethlehem Steel�’s graving dock near 
Baltimore (after Millard and Hassani 1971) 

Figure 38. Eastern Scheldt improved site foundation sequence for gravity-based 
piers (after DOSBOUW 1987) 
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equipment may be specially designed or may simply be a vibratory hammer 
attached to a pipe pile. The effectiveness of vibrocompaction in silty sands is 
marginal to good but in silts and clays is poor (Hayward Baker 1999a). The 
design process for vibrocompaction consists of first calculating the predicted 
settlement (knowing soil gradation and relative density) and then designing 
sufficient densification using vibrocompaction to reduce the expected settlement 
to a desired value. The final density is determined by acceptance testing using 
standard penetration, cone penetrometer, pressuremeter, or actual load tests. 
Several case histories document the use of vibrocompaction techniques to densify 
cohesionless soils. Tate (1961) reported that vibroflotation performed on drained 
sands achieved a relative density increase up to 90 percent from the original 
50 percent; Millard and Hassani (1971) disclosed that use of a vibratory 
hammer/pipe pile to densify a cohesionless soil increased the bearing capacity by 
100 percent and reduced design settlement by 50 percent; and Jonker (1987) cited 
similar results using underwater vibrocompaction of the cohesionless materials in 
the Eastern Scheldt project. 
 
 Hydraulic modification to consolidate cohesive soils involves drainage 
techniques. Both vertical and horizontal drains have been successfully used 
underwater. The first documented underwater installation of vertical drainage 
wicks in North America was performed during site improvement prior to 
construction of the Pascagoula (Mississippi) Naval Base. More than 4,000 wicks 
were placed underwater to consolidate the underlying soft bottom silts at the site 
of a new berthing pier. A 20-ft (6-m) sand surcharge was used to cause the 
consolidation (Munn 1989). Disadvantages of wick drains include the need for 
specialized equipment, the requirement to provide consolidation surcharge, and 
the time required for consolidation to achieve significant gains in soil strength.  
 
 Horizontal drainage to dewater silt layers at underwater depths of 64 ft 
(20 m) has been accomplished using a vacuum pumping system, as illustrated in 
Figure 39. The purpose of dewatering was to allow larger volumes of dredged 

material to be placed in an 
underwater disposal area. Collector 
pipes were installed as successive silt 
layers were added to the disposal 
area.  

Figure 39. Suction dewatering in an underwater silt 
layer (after Aerts, Devlieger, and 
Vandycke 1999) 

 
 Storage capacity of the 986- by 
1,300- by 16-ft (300- by 400- by 
5-m) underwater disposal area was 
increased about 20 percent by 
dewatering the silt. Density after 
dewatering was increased by about 
5 percent (Aerts, Devlieger, and 
Vandycke 1999). 
 
 Chemical modification 
techniques have been used for 
relatively shallow soft soil seabeds 
for bottom-founded offshore oil 
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structures in the Arctic and for harbor areas of Japan. In the Alaskan Beaufort 
Sea, man-made islands have been constructed in the relatively shallow water 
depths of 10 ft (3 m) to support drilling platforms. Halebsky and Wetmore (1986) 
discussed several methods of soil modification and concluded that, of the 
methods proposed (dredging/backfilling, soil wick drains, soil freezing, and deep 
cement mixing), deep cement mixing offered an economical advantage. The 
dredging/backfilling and soil wick drains methods were assumed to increase the 
original soil strength by a factor of 2 whereas the deep cement mixing method (in 
situ soil strengthening using cement, or DCM) was found to increase the original 
soil strength by a factor of 70. In many locations, especially in Arctic regions, 
soils with shear strengths as low as 500 psf (24 kPa) are found. Since exploratory 
oil-drilling structures require soil shear strengths of 1,000 to 2,500 psf (50 to 
20 kPa) and permanent structures require greater shear strengths, increasing the 
soil shear strengths by a factor of 10 to 20 would make most weak soils 
acceptable.  
 
 The major disadvantages of the DCM technology include the specialized 
equipment that is required and the required time for curing. This technology for 
underwater applications is more commonly used in Japan than in the United 
States. Japanese DCM barges operate in water depths to 230 ft (70 m) and 
modify the soil to depths of 165 ft (51 m) beneath the seafloor. Typical curing 
times to achieve maximum design strengths are 2 to 3 months. 
 
 Gravity-based foundations. For gravity-based foundations, the 
superstructure is �“connected�” to the foundation (footprint), and the foundation is 
designed to resist the imposed compression, tension, overturning, lateral, and 
dynamic forces. Design should include the following considerations (as 
illustrated in Figure 40): 
 

a. Stability against overturning, bearing capacity failure, sliding, or 
combinations thereof. 

b. Static deformation (settlement and differential settlement). 

c. Dynamic loading and response. 

d. Hydraulic instability from scour or wave pressure piping. 

e. Construction/installation effects, such as excessive pore-pressure buildup 
during base installation. 

 In general, onshore shallow foundation design procedures are used 
(American Petroleum Institute 1993). The bearing capacity of the soil is 
calculated using the undrained strength parameters (  = 0) for clays or the 
drained strength parameters for sands. The shear strength of the soil/rock is 
converted into resisting values for the imposed loading conditions by the 
selection of appropriate bearing capacity factor(s). Applicable soil parameters are 
inserted into standardized equations, and the failure load is calculated.  
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Figure 40.  Possible failure modes of a gravity-based foundation 

 
 Dividing the failure load by the effective foundation area yields the ultimate 
bearing capacity (qu). The ultimate bearing capacity is then divided by the 
required (or chosen) safety factor. 
 
  The American Petroleum Institute (API 1989) recommends (with caveats) a 
safety factor of 2 for underwater foundations, while the Department of the 
Army (1983) recommends a safety factor from 1.5 to 3 for nonhydraulic 
structures, depending upon the values of the dead and live loads. Sliding stability 
calculations take horizontal and inclined loads into account. The maximum 
horizontal load at soil failure is calculated for either a drained or an undrained 
condition. API�’s recommended safety factor is 1.5. 
 
 A more comprehensive approach to design is to couple the limit states design 
(LSD) concept with probabilistic assessment. This concept considers two limit 
states: ultimate limit states (ULS) and serviceability limit states (SLS). ULS 
involves soil strength, ultimate bearing capacity, overturning, sliding, and other 
structural safety conditions. The ULS methodology incorporates the load and 
resistance factor design (LRFD) concept, which uses partial factors accounting 
for uncertainties and variability. The SLS methodology involves conditions such 
as differential settlements from construction and service loads. Becker (1996) 
provides an overview of the LSD process for gravity-based foundation design. 
 
 Layered soils require additional considerations to prevent �“punch through�” 
(bearing capacity failure). The majority of jack-up drilling rig accidents are 
caused by foundation problems, and the majority of foundation problems are 
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caused by punch-through on layered soils (Sharples, Bennett, and Trickey 1989). 
Senner and Cathie (1993) discuss methods to design and assess likelihood of 
bearing capacity failures on layered soils, including (a) strong clay overlying 
weak clay, (b) sand overlying clay, (c) strong soil overlying weak soil, and 
(d) thin weak layers. 
 
 Calcareous (carbonate) sands require special attention. They may exhibit 
high friction angles in laboratory testing, which leads to overestimating actual 
bearing capacity. However, the load-carrying capacity of carbonate sands may be 
somewhat lower because of their highly compressible behavior (Dutt and Ingram 
1988, LeTirant and Nauroy 1994).  
 
 Static deformation considerations include both short- and long-term effects. 
The compression index and the coefficient of consolidation are obtained from 
laboratory (or other suitable type test) consolidation test data. The vertical stress 
distribution for the before- and after-loading conditions can be calculated using 
elastic theory. Using these criteria, the total and differential settlements can be 
calculated and compared with the allowable displacements. 
 
 Considerations of dynamic behavior include cyclic loading from wind, 
current, waves, ice, and earthquakes. Soil-structure interactions must be 
examined for each anticipated loading situation. Failure during cyclic loading 
may be associated with large horizontal or rotational cyclic displacements, large 
settlements, or combinations thereof. The undrained bearing capacity of certain 
clayey soils may be significantly lower during cyclic loading than monotonic 
loading. To analyze the static bearing capacity after cyclic loading, the postcyclic 
static shear strength must be known (Andersen, Kleven, and Heien 1988). 
Andersen and Lauritzsen (1988) describe procedures for determining the cyclic 
and postcyclic bearing capacity of gravity-based foundations on undrained clay. 
Typical characteristic cyclic loads imposed on a North Sea gravity-based 
foundation are these: (a) a horizontal wave load of 67,443 tons (600 MN), (b) a 
wave moment of 3,417,096 ton-ft (100,000 MNm), and (c) a vertical wave load 
of 44,962 tons (400 MN). These cyclic loads are based on the typical design 
storm with a 100-year return period (Andersen, Kleven, and Heien 1988). 
 
 Scour skirts, riprap, or other scour protection methods are designed to 
prevent soil erosion and undercutting. Excessive hydraulic gradients during and 
after foundation installation may cause piping and excessive disturbance to the 
supporting soil. 
 
 Designs of gravity-based foundations sited on rock generally follow the same 
approach as for soils, but use slightly different methods. The failure methods are 
the same as for soils, but the mechanisms are different. The geotechnical 
parameters are also different. Rock strength classification is typically based on 
either the RMR system (Bieniawski 1974) or the Q system, also called the NGI 
system (Barton, Lien, and Lunde 1974). Appropriate rock strength parameters are 
input, and allowable resistance values for bearing and sliding are calculated using 
safety factors or probabilistic methods. Becker et al. (1998) discussed design 
methods for underwater bridge piers founded on weak rock.  
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 Pinned foundations.  Pinned foundations are typically employed to provide 
end-bearing and/or frictional resistance to imposed compression, tension, lateral, 
and dynamic loads. Pinned or pile foundations are installed into the subsurface 
soil and/or rock either by displacement or excavation. Impact-driven piles 
displace (dislocate) the soil. Drilled caissons or shafts require borehole 
excavation. Most of the offshore structures use pinned foundations consisting of 
driven piles. Lacasse (1999) reported that there are an estimated 6,000 offshore 
piled structures around the world. 
 
 As a very general rule, bored piles are selected where there is a relatively 
shallow bedrock stratum to develop end-bearing resistance, whereas driven piles 
are selected for soils in which a high friction resistance can be used. However, 
this dividing line is not distinct, and the pile type selection is usually governed by 
installation economics and environmental conditions such as noise and vibration 
(Thornton 1992). The most common offshore foundation type is a driven tubular 
open-ended (pipe) pile designed for axial loading with minimum lateral loading 
in granular and cohesive soils (ARGEMA 1992). An offshore pipe pile typically 
has a diameter of about 7 ft (2.1 m), a wall thickness of about 2 in. (5 cm), and 
penetration length of 300 to 400 ft (90 to 120 m). The pile�’s size and length are 
commonly determined by the required bending moment and by the penetration 
depth to develop the necessary resistance to compressive and tensile loads. As a 
rule of thumb for design purposes, Gerwick (1971) suggested that the maximum 
compressive load was approximately twice that of the maximum tensile load. In 
the event that excessive soil resistance to driving (refusal) is reached prior to the 
designed tip penetration, several techniques are available to achieve design 
penetration and include combinations of driving and drilling methods.  
 
 After the type of pinned foundation has been selected, the designer must then 
determine the number, length, and size of the piles or drilled shafts. Several 
design guides for piles and shafts are available, including API RP2A (1993); 
Federal Highway Administration guides for bridge foundations, piles, and drilled 
shafts (Hannigan et al. 1997; Armour and Groneck 1998; Raushe, Goble, and 
Moses 1997; Bruce and Juran 1997; Baker et al. 1993; Barksdale and Bachus 
1983; Lam and Martin 1986; O�’Neill 1988; and Reese 1984); U.S. Army Corps 
of Engineers 1991 and 1994 (Engineer Manuals 1110-2-2906 and 1110-1-2908); 
American Society of Civil Engineers (1981, 1984, and 1993); Construction 
Industry Research and Information Association (1993); and other publications 
(Whitaker 1976, ARGEMA 1992). 
 
 The offshore industry has used the recommended empirical design methods 
of the American Petroleum Institute, since its API RP2A was first published in 
1969, primarily for Gulf of Mexico fixed platforms founded on open-ended steel 
pipe piles. Several iterations over the years have produced the latest design 
recommendations (API 1993). The design guidelines are based on extensive 
research and load tests, extrapolated to the actual loads imposed on offshore 
structures. It is interesting to note that although the largest pile capacity in the 
API database is about 4,000 kips (18 MN), typical axial capacities (loads) for 
offshore piles range from 10,000 to 15,000 kips (44 to 67 MN) per pile. For 
compliant towers, the pile capacities are about 30,000 kips (133 MN) per pile. 
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Although the design guidelines have been vigorously extrapolated, the field 
results have remained acceptable (Pelletier, Murff, and Young 1993). 
 
 API�’s design format uses both the Working Stress Design and the Load and 
Resistance Factor Design methods. In deference to the European Community 
process of developing international offshore platform design standards through 
the International Standards Organization (which has a reliability-based format), 
the LRFD method will likely predominate (Pelletier, Murff, and Young 1993; 
Toolan and Horsnell 1993). The LRFD method includes partial safety factors 
(reduction factors for soil parameters and multiplication factors for loads) instead 
of lumped safety factors. 
 
 Other international offshore pile design codes are regulated by Det Norske 
Veritas (DNV 1989) and the Department of Energy, U.K. (1986). Both these 
design codes and the API recommendations include procedures for designing in 
cohesive and cohesionless siliceous soils. The ARGEMA (1992) and CLAROM 
(1994) design guides provide specific guidance for calcareous (carbonate) soils. 
 
 Recommended design parameters for cohesionless siliceous soil are given in 
API (1989, 1993) for both driven and drilled/grouted piles. The limiting unit end-
bearing values and limiting skin friction values range from 40 to 250 ksf (2 to 
12 MPa) and 1 to 2.4 ksf (50 to 115 kPa), respectively, as the soil density 
increases from very loose to very dense. In calcareous sands (containing calcium 
carbonate), driven piles may have substantially lower design strength parameters 
than drilled and grouted piles. 
 
 The design methodology for both driven and drilled piles is similar. It 
consists of comparing the applied loads to the soil�’s internal capacity and 
adjusting these values using applicable safety limits. The ultimate load-carrying 
capacity is the sum of the pile end-bearing capacity (soil�’s resistance to bearing) 
and the pile skin friction capacity (soil�’s frictional resistance): 
 
  Q  fp Q  Q  
 
where 
 
  Q  = load-carrying capacity of the pile 

  Qp = end-bearing load 

  Qf  = friction load 
 
and Qp = qAp 
 
where  
 
  q   = soil�’s end-bearing capacity 

  Ap  = pile end area 
 
and Qf  = fAs  
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where 
 
  f   = soil�’s skin friction capacity 

  As = side surface area 
 
 The required diameter and length (penetration depth) of the pile are 
calculated using Ap and As. For given soil values of q and f, the ultimate load-
carrying capacity Q increases as pile diameter or penetration depth increases. 
Ultimate-capacity design uncertainties are usually related to installation 
uncertainties (plugging and drivability) and soil-capacity uncertainties (q and f 
values). 
 
 Alternatives for situations in which design objectives cannot be obtained 
during the installation of the pile should be identified and defined in the design 
process (API 1989). For example, in the event sufficient penetration cannot be 
achieved, removal of all or part of the soil plug is an option that can be used to 
permit driving of the pile to the design depth. Care must also be taken when 
basing pile design on load test correlations using soil properties determined from 
both in situ tests and the laboratory test results. For example, if the in situ test 
results yield shear strengths that are higher than those obtained from laboratory 
samples and the load test correlations were made based upon the laboratory data, 
using the higher values of shear strengths from in situ tests may lead to an unsafe 
design (Reese and Isenhower 2000). 
 
 Besides designing for ultimate-capacity loading, the pile material must be 
able to withstand handling and transportation stresses. Wall thicknesses may be 
governed by the loads developed during installation procedures, especially if the 
contractor opts to provide single-piece installation instead of making field 
connections (Will et al. 1999). Column buckling due to unsupported lifting from 
the horizontal to a vertical orientation or the dead weight of an underwater 
hammer clamped to the top of a tilted pile undergoing self-penetration is an 
important design consideration (Doyle 1999). Steel fatigue due to hammer 
driving is another material design consideration, especially when a large number 
of blow counts are anticipated in the soil resistance to impact driving analysis. 
 
 Varying wall thicknesses along very long offshore pipe pile lengths is a 
commonly noted design consideration, as some piles extend to about 400 ft 
(122 m) in length. Typically, the pile walls are thicker at the mudline due to 
higher axial and bending stresses in that area (Davies and Srivareerat 1999). 
Cunningham and Naughton (1977) discussed design aspects for a 1,255-ft 
(382-m)-long, 4-ft (1.2-m)-diameter, 50-ksi (345-MPa) yield stress pipe pile 
driven to 375 ft (114 m) penetration. Wall thickness at the mudline was 3 in. 
(7.6 cm), decreasing to 1 in. (2.5 cm) above the mudline depth.  
 
 Pile-driving studies are required to determine the soil�’s resistance to impact 
driving (SRD) or vibratory driving (SRV). For example, if the pile cannot be 
driven to the design penetration depth, the pile�’s designed ultimate capacity may 
not be achieved. SRD or SRV must be studied as part of the design process since 
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these values determine the likelihood of achieving a successful pile installation 
during the construction phase. 
 
 Two aspects of the pile-driving study that should be addressed are 
(a) selecting the proper pile and hammer and (b) establishing criteria to define a 
successful installation. Hammer selection may be the most important aspect of 
pile installation (ASCE 1993). Numerous resources are available for pile-driving 
equipment selection (Department of the Army 1982). The wave equation analysis 
provides guidance for items (a) and (b) above and is discussed in detail in 
Chapter 5. Proof load testing prior to finalizing the design specifications also 
provides valuable guidance in establishing criteria defining a successful 
installation. Load testing is also discussed in Chapter 5 of this report. 
 
 Self-weight penetration (prior to hammering) as the pile is lowered into the 
mudline is a design consideration. Self-weight penetration may be calculated by 
assuming that the penetration resistance is provided by outer circumference skin 
friction, end bearing at the pile base, and inside skin friction provided by the 
shoe. The buoyant weight of the pile and attached lifting tools provides the 
penetration (driving) force. Doyle (1999) noted that unconsolidated-undrained 
remolded soil strength values were used for skin friction, and undisturbed soil 
strength values were used for end-bearing resistance in self-weight pile 
penetration calculations at clay sites in the Gulf of Mexico. At those sites, self-
weight penetration was roughly 25 percent of the total pile lengths. 
 
 Designing drilled shafts socketed into bedrock generally relies on shaft 
resistance instead of end bearing, since shaft resistance is fully mobilized at 
much lower deformation as compared with end-bearing resistance (Becker et al. 
1998). For example, the design of the underwater approach piers for the 
Confederation Bridge was initially based on unit shaft resistance values of 7.5 to 
14.1 ksf (360 to 680 kPa) developing in the mudstone, siltstone, and sandstone 
layers. Drilled shaft lengths averaging 44 ft (13.5 m) with 6.5-ft (2-m) diameter 
were then calculated based on factored design loads up to 6,745 tons (60 MN) 
vertical, 73,953 ft-tons (200 MN-m) bending, and 2,135 tons (19 MN) horizontal. 
Design shaft lengths were later reduced to 25 ft (7.5 m) based on actual (onshore) 
load tests that indicated much higher shaft resistance values in the rock layers. 
 
 Full-scale load tests of drilled shafts using the Osterberg cell method have 
typically shown that the maximum applied test load is much larger than the 
design load, including the factor of safety. According to Osterberg (1998), 
relatively few designers have taken advantage of these results by performing 
economical redesign efforts. One extreme overdesign example revealed that 
when a test shaft was loaded to 3,000 tons (26.5 MN) with no sign of failure, the 
design firm was pleased that the design load of 500 tons (4.4 MN) was validated. 
No efforts were made to redesign the shaft to a more economical, smaller size. 
 
 The effects of scour around pinned foundations requires reducing the 
effective shaft length to account for reduction in side shear (friction resistance). 
For example, drilled shaft designs for the Ohio River Bridge (Osterberg 1998) 
took into account only the bottom 19 ft (6 m) of shale. The load capacity of the 
overlying 63 ft (19 m) of sand and gravel was not considered because of the 
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possibility of deep scour. Full-scale load testing (using the Osterberg cell) was 
tailored to reduce the overburden�’s load-carrying contribution. 
 
 The design criteria for a suction pile is similar to the gravity-based and 
pinned foundation design methodologies. For the suction pile, the penetration 
resistance is a function of the soil�’s resistance to bearing and friction and is 
calculated as the sum of the shear along the walls and the bearing capacity at the 
tip. The penetration analysis includes calculation of the underpressure (the 
difference between the hydrostatic water pressure outside the pile and the water 
pressure inside the pile cavity). The safety margin against soil heave inside the 
cavity must be determined to calculate the allowable underpressure (Andersen 
and Jostad 1999). The calculation of self-weight penetration of the suction pile is 
a critical design aspect that must be addressed due to its effect on the pile cavity 
volume. 
 
 The bearing capacity and holding (tension) capacity of suction piles are 
calculated by limit equilibrium methods. The critical failure surface depends on 
the combination of vertical, horizontal, and moment loads acting on the pile. 
Andersen and Jostad (1999) provide comments on design concepts and 
procedures for suction pile (skirted foundations and anchor) design. The 
following design aspects need to be analyzed for suction piles: 
 
  Penetration 
  - resistance 
  - necessary and allowable underpressure 
  - soil heave inside cavity 
  - maximum penetration depth 
  - factor of safety 
  - removal analysis if needed 
  Capacity 
  - limiting equilibrium modeling 
  - shear strengths 
  - soil crack effects 
  Displacements 
  - consolidation 
  - cyclic and permanent displacements due to cyclic loads 
  Soil spring stiffnesses (dynamic analysis) 
  Soil-structure interaction 
 
 
Analysis and verification testing 

 Design analysis is conducted during the design phase, and may include 
numerical and physical modeling. Numerical modeling techniques (such as finite 
element analysis) and physical modeling techniques (such as model tests) can be 
used during this phase. 
 
 Model tests are geotechnical investigative tools that best document the 
failure mechanism, deformation patterns, reliability of numerical models, and 
soundness of the calculated design (Lacasse 1999). Model tests can range from 
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full scale to small-scale prototypes and may include the use of centrifuge testing. 
Figure 41 illustrates model scaling relationships for centrifuge tests. 
 

Figure 41. Scaling relationships for 1-g and centrifuge models (after Murff 1996) 

 
 
 When properly designed and conducted, centrifuge testing offers significant 
advantages compared with 1-g model testing. Centrifuge testing of undrained, 
partially, or fully drained soils with simplified profiles offers an advantage. The 
disadvantages include the use of miniature instrumentation, the effects of time 
scale, and relatively high costs. Murff (1996) presents a discussion of centrifuge 
testing aspects related to offshore foundation design and analysis that was 
supplemented with several case histories. 
 
 Published examples of centrifuge testing for offshore foundations are not as 
common as those for onshore applications, perhaps due to the proprietary nature 
of some tests. Nicola and Randolph (1999) discussed model pile test results 
compared with current guidelines for offshore pile design. Hu, Randolph, and 
Watson (1999) discussed centrifuge testing and finite element analysis of 
offshore skirted gravity-based foundations. Becker et al. (1998) discussed 
centrifuge testing and finite element analysis of an underwater gravity-based 
foundation for a bridge pier.  
 
 
Quality Control and Assurance Issues 

 Quality control and quality assurance (QA/QC) are essential in engineering 
design and construction. Quality control and assurance elements are especially 
important for in-the-wet construction projects where the foundations are 
prepared, installed, and tested in an underwater remote location, often from a 
floating platform on the river or marine surface. Visual inspection of the 
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foundation before, during, and after construction is generally not possible, as 
compared with the onshore process where the aboveground portion of the 
foundation is easily viewed and accessible. Specialized techniques and 
equipment are needed to install quality foundations underwater, and adequate 
QA/QC procedures must be specified and followed to achieve and ensure 
successful installation. 
 
 Quality control and quality assurance are not the same functions, and are 
more than an inspection process. Quality control refers to setting up and 
maintaining a system that provides a means to control and measure specified 
characteristics (of the underwater foundations). Quality assurance verifies that the 
quality control system is performing adequately. Quality control and assurance 
operate hand-in-hand to enable the underwater foundation to be constructed in 
strict accordance with the engineering design and specifications by monitoring, 
recording, and certifying the entire process. Adequate QA/QC is the collective 
responsibility of all parties concerned with designing, specifying, manufacturing, 
purchasing, and installing the various project components (Batten 1987). 
Although the QA/QC system applies to the planning, conceptual design, and 
engineering design phases of a project, its most common and better defined 
application is in project construction. Constructing the underwater foundation 
according to the design plans and specifications requires a high degree of QA/QC 
due to the complexities and variables involved in contractual construction 
projects. Preventing the introduction of defective materials or poor workmanship 
in a construction project before these problems occur constitutes an effective 
quality control and inspection scheme (API 1989).  
 
 
Engineering design phase 

 Design quality is the responsibility of everyone involved in the development 
of a project (Department of the Army 1994). Several QA steps are involved in 
the design of Corps projects before plans and specifications are inked, as outlined 
in Engineer Regulation (ER) 1110-2-1150. Appendix F of the ER is an internal 
management control checklist to ensure that all engineering functions are 
conducted in a cost-efficient manner. Adequate coordination, communication, 
and lessons-learned applications are stressed in order to achieve a high standard 
of technical quality during the design phase.  
 
 Appendix E of ER 1110-2-1150 includes instructions for writing a �“report on 
engineering considerations and instructions for field personnel�” who will be 
responsible for the oversight of the contractors�’ quality control program. It is 
stressed that this report should be distributed to appropriate construction field 
personnel for their suggestions and input prior to completion of the design phase. 
Field personnel may have a more intimate knowledge of site conditions and 
potential site-specific design problems than do the engineering design personnel. 
Hence, the field comments and suggestions should be incorporated early on, 
especially during the design phase.  
 
 The Corps of Engineers has published engineer manuals, technical manuals, 
and other guidance to ensure consistent criteria and requirements for developing 
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design and engineering documents for civil and military projects. ER 1110-345-
700 covers military and hazardous waste projects. Other regulations are 
applicable and will not be listed here. 
 
 A comprehensive listing of U.S. government standards, design guides, 
engineer manuals, national standards, building codes, and trade organization 
standards can be found at http://www.hnd.usace.army.mil. 
 
 
Specifications and contract document phase 

 Specifications delineate the project requirements and establish exactly how 
the designer intends the project drawings to be applied. Specifications form a 
primary tool for setting up the QA/QC system and must provide enough detail for 
the construction to proceed in a timely, efficient manner. Specifications also 
provide a basis for estimating the project costs, which impacts contractor 
selection during the bidding process. 
 
 ER 1110-1-8155 (Department of the Army 1998) prescribes specifications 
policy for the Corps. The Corps of Engineers Guide Specifications (CEGS) are a 
system of master guide specifications that define the qualitative requirements for 
products, materials, and workmanship for repetitive work features occurring on 
Corps construction projects. The Internet site http://www.hnd.usace.army.mil 
contains the CEGS library and additional specification database links. Although 
usage of the CEGS system is not mandatory within the Corps, the system is 
updated and maintained to include lessons learned during design and 
construction, and thus constitutes a valuable source for technical specifications. 
 
 No CEGS documents currently exist for underwater foundation design and 
construction. Various elements of land-based foundation construction that may 
be applicable to underwater foundation construction, which are covered in the 
February 1999 CEGS database, are listed follow: 
 
 01270 Measurement and Payment 
 01451 Contractor Quality Control  
 02210 Subsurface Drilling, Sampling, and Testing 
 02217 Foundation Preparation 
 02251 Foundation Drilling and Grouting 
 02300 Earthwork 
 02315 Excavation, Filling, and Backfilling for Buildings 
 02316 Excavation, Filling, and Backfilling for Utilities 
 02375 Geogrid Soil Reinforcement 
 02378 Geotextiles Used as Filters 
 02453 Prestressed Concrete Piles for Civil Works 
 02454 Precast Concrete Piling 
 02455 Cast-In-Place Concrete Piles, Steel Casing 
 02456 Steel H-Piles 
 02457 Round Timber Piles 
 02458 Prestressed Concrete Piling 
 02459 Piling: Composite, Wood, and Cast-In-Place Concrete 
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 02461 Round Timber Piles for Hydraulic Structures 
 02463 Steel H-Piles for Civil Works 
 02464 Metal Sheet Piling 
 02465 Auger-Placed Concrete Piles 
 02466 Drilled Foundation Caissons 
 02722 Graded, Crushed Aggregate Base 
 
 Corps Divisions and Districts are given the flexibility to add non-CEGS 
specifications within a specific construction project package, but inclusion of 
those specifications within the CEGS system requires proper submission and 
Headquarters approval. The specification sections must be properly formatted in 
accordance with ER 1110-1-8155. The CEGS layout for a construction 
specification (Construction Specifications Institute 1996) follows: 
 
 Part 1 General 
     1.1 References 
   1.2 Measurement and payment 
   1.3 System description 
    1.3.1 Design requirements 
    1.3.2 Performance requirements 
   1.4 Submittals 
   1.5 Qualifications 
   1.6 Regulatory requirements 
   1.7 Field examples 
   1.8 Mock-ups 
   1.9 Pre-installation conference 
   1.10 Delivery, storage, and handling 
   1.11 Project/site conditions 
    1.11.1 Environmental requirements 
    1.11.2 Existing conditions 
    1.11.3 Field measurement 
   1.12 Sequencing and scheduling 
   1.13 Warranty 
   1.14 Maintenance 
    1.14.1 Maintenance service 
    1.14.2 Extra materials 
 Part 2 Products 
   2.1 Materials 
   2.2 Manufactured units 
   2.3 Equipment 
   2.4 Components 
   2.5 Accessories 
   2.6 Mixes 
   2.7 Fabrication 
    2.7.1 Shop assembly 
    2.7.2 Shop/factory finishing 
    2.7.3 Tolerances 
   2.8 Tests, inspections, and verifications 
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 Part 3 Execution 
   3.1 Examination 
   3.2 Preparation 
    3.2.1 Protection 
    3.2.2 Surface preparation 
   3.3 Erection 
   3.4 Installation 
   3.5 Application 
    3.5.1 Special techniques 
    3.5.2 Interface with other products 
    3.5.3 Tolerances 
   3.6 Field quality control 
    3.6.1 Tests 
    3.6.2 Inspection 
    3.6.3 Manufacturers field service 
   3.7 Adjusting/Cleaning 
   3.8 Demonstration 
   3.9 Protection 
   3.10 Schedules 
 
 Once the project specifications are sufficiently detailed and written, they are 
reviewed and approved for inclusion in the project contract documents. During 
the bidding process and after contract award, conflicts may arise because of 
problems with the specifications. Based upon one legal firm�’s breakdown of 
construction specification conflicts, the following specification problem areas are 
listed in order of occurrence (Nielsen and Nielsen 1981): 
 
  �“Or equal�” clauses: These statements lead to the highest occurrence of 
specification problems (claims and litigation) because of disputes over what is 
�“equal�” in a particular situation. This situation occurs mainly in public works 
contracts in which the specifier wants a particular brand name product but also 
must comply with Federal contract law to not limit competition. 
 
   Constructibility (defective specifications and tolerances): Constructibililty 
problems arise when the item cannot be built, installed, or will not perform as 
specified. Holding the contractor to tighter tolerances than normal industry 
standards may also lead to conflict. 
 
   Ambiguities (phrasing and typographical errors): These problems refer to 
interpretation issues. 
 
   Conflicts between plans and specifications (and typographical errors): 
These conflicts arise from lack of adequate QA/QC during the engineering 
design phase. 
 
   Inaccurate technical data: This category includes errors and omissions 
such as specifying subsurface information that does not match the actual 
conditions (differing site conditions), specifying inadequate quality control 
standards, and specifying owner-furnished plant and equipment that is not 
suitable. 
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   Product performance deficiencies: These may cause problems when new 
and relatively untried products are specified. This type of problem has direct 
applicability to underwater foundations contracted by the Corps because the 
Corps does not have an extensive experience database gained from in-the-wet 
construction projects. Special emphasis must be given to prebidding 
demonstrations of products and equipment and postaward presence of 
knowledgeable field representatives responsible for implementation of new 
products, procedures, or equipment to be used for in-the-wet projects. 
 
   Inspection and excessive testing: Overzealous inspection and testing may 
also cause specification problems and contract conflicts.  
 
 
Recent Corps of Engineers underwater foundation contracts 

 Pittsburgh District. Plans and specifications have been finalized and 
construction has begun for an innovative Corps in-the-wet float-in construction 
project. A new gated dam will be constructed at Pittsburgh District�’s existing 
Braddock Locks and Dam 2 on the Monongahela River in Pennsylvania 
(U.S. Army Corps of Engineers 1998). The underwater foundation system 
consists of a dredged area with sheet-pile cutoff walls in the riverbed alluvium 
and concrete drilled shafts socketed into bedrock. The precast concrete dam 
elements will be floated in and ballasted upon and anchored to the drilled shafts. 
The foundation specifications were custom-written for this unique project and 
contain numerous non-CEGS specifications. Specifications relating directly to 
the underwater foundation system include: 
 
 01025 Measurement and Payment 
 01450 Survey and Alignment Control 
 01451 Contractor Quality Control 
 02012 Exploratory Drilling 
 02013 Exploratory Pile Driving 
 02164 Rock Anchors 
 02273 Scour Protection 
 02314 Seepage Cutoff Walls 
 02316 Steel Pipe Piles 
 02315 Steel H-Piles 
 02383 Drilled Shafts 
 02411 Metal Sheet Piling 
 02482 Dredging 
 02722 Graded Gravel Base 
 03900 Concrete: Drilled Shafts 
 13530 Instrumentation 
 
 The predominant work feature for the underwater foundation system is 
drilled shafts, which provide the deep-foundation support for the concrete float-in 
elements and function as anchor piles for positioning the float-in elements. The 
drilled shafts (similar to caissons or piers) consist of steel pipe piles (casing) 
driven with a vibratory hammer to bedrock. Upon completion of the driving of 
the casing, rotary drilling was conducted through the pile beyond its open bottom 
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end and into bedrock (without casing). After the borehole had been advanced to 
the specified depth in the bedrock, steel reinforcement cages (illustrated in 
Figure 42) with attached instrumentation tubes (for sonic testing) were to 
lowered into the casing and through the bedrock to the bottom of the borehole. 
The borehole and casing were then backfilled with tremie concrete. Foundation 
details are presented in Figure 43. 
 
 Section 01451, Contractor Quality Control, established the baseline 
requirements for the quality control system to be implemented by the successful 
bidder. Some of the novel features of this specification section include: 
 

a. Requirement for completion of the �“Construction Quality Management 
for Contractors�” training course. 

b. Requirement for project management staff to have specialized      
experience: 

(1) Project Engineer:  minimum 3 years marine construction experience 

(2) Concrete Superintendent:  experience in mass concrete operations 

(3) Marine Superintendent:  minimum 15 years marine project 
experience  

(4) Diving Superintendent:  minimum 5 years diving supervision 

(5) Chief Surveyor:  minimum 5 years marine surveying experience 

(6) Project Safety Engineer:  minimum 3 years marine construction 
experience 

 

Figure 42.  Reinforcing cage for the drilled shaft load test 
prior to project construction at Braddock Locks 
and Dam 2 

 
 Two additional underwater foundation construction specification sections 
were added to address specific technical requirements to ensure quality: 
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Figure 43. Pinned foundation details, Braddock Locks and Dam 2 

 
 Pinned foundation:  Exploratory drilling was specified to establish final tip 
elevations for the bedrock drilled shafts. Exploratory pile-driving served to 
specify final tip elevations for the alluvium cutoff wall (H-piles, pipe piles, and 
sheet piles) and to finalize vibratory pile-driving equipment selection for both the 
cutoff wall piles and the drilled shaft casings. It was specified that these work 
items were to be completed first, so the contractor would be able to order the 
correct amount of production piling materials. After the improved-site foundation 
preparation was completed (i.e., dredging, graded gravel base, and scour 
protection), a Drilled Shaft Installation Plan was approved. After its approval, a 
drilled shaft demonstration was conducted to assess and select the equipment and 
procedures for constructing the production shafts. Previous tests by Pittsburgh 
District at the site (sheet piles and caissons) provided quality assurance 
comparisons for both design and construction. Other QC features included the 
requirement for a fixed-guide pipe pile and casing template and specifying 
diverless (remote) pipe pile and casing cutoff operations. 
 
 Improved-site foundation:  Prior to production piling and shaft (caisson) 
construction, the riverbed was prepared by dredging. Several dredging stages and 
a graded 12-in. (30-cm) gravel base were specified. Quality control features 
included surveying specifications and requirements, using a flat-bottom dredging 
bucket to prevent gouging below final elevation, using a low-velocity suction 
pump to remove siltation without disturbing the gravel, and diver inspections to 
ensure siltation removal. Scour protection using specially graded limestone rocks 
was specified for given areas. Quality control features included laboratory 
materials testing, diver inspection prior to placement, and disallowing free-fall 
placement of stones. 
 
 New Orleans District. The Inner Harbor Navigation Canal (IHNC) Lock 
Replacement project will consist of float-in precast concrete elements resting on 
underwater pinned foundations. Prior to design and construction, a pile load test 
and installation study contract was awarded. The contract study included 
installation of nine 48-in. (1.2-m)-diam open-ended steel pipe piles driven to a 
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maximum depth of 190 ft (58 m) below ground surface. Several innovative 
features for underwater foundation installation were addressed in this contract. 
 
 The technical specifications (U.S. Army Corps of Engineers 1999a) included 
these sections: 
 
 02355   Pile Load Test 
 02451   Steel Pipe Piles 
 02497   Dynamic Pile Testing 
 
 Contractor QC plans were required to address material delivery, storage, 
handling, installation, testing, and removal procedures. In addition to material 
specifications meeting American Society for Testing and Materials requirements, 
the API (1989) RP-2A-LRFD requirements were specified, and only one splice 
per pile was allowed. Provisions 
to monitor horizontal and vertical 
alignments and plumbness during 
underwater installation were 
included, with underwater 
alignment tolerances of 6 in. 
(15 cm) vertical, 6 in. (15 cm) 
horizontal, and within 1.5 percent 
of length (plumbness). 
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 Only two of the nine pipe 
piles were specified to be driven 
underwater in the navigation 
channel, which is approximately 
30 ft (9 m) deep. The remaining 
seven (onshore) piles were driven 
inside 6-ft (1.8-m)-diam steel 
casings in which the soil had been 
excavated and then backfilled with 
water to simulate underwater pile 
driving. All piles and casing were 
driven with submersible impact 
hydraulic hammers and/or 
submersible vibratory (electric or 
hydraulic) hammers (Figure 44). 
The piles were instrumented and 
analyzed using the Pile Driving 
Analyzer and CAPWAP dynamic load capacity packages. 

Figure 44. Pile driving with a submersible vibratory 
hammer, New Orleans IHNC pile test project

 
 Restriking and compression load tests were conducted on five of the onshore 
piles to determine ultimate pile capacity. Noise and vibration measurements 
(decibels and inches/second) were specified and taken at two locations during 
driving of the test piles onshore and underwater for comparison with background 
readings. Upon completion of the driving and testing, it was specified that the 
piles and casings were to be removed and the voids filled with a tremied cement-
bentonite-sand mixture. 



5 Foundation Preparation 
and Construction 

Quality Control and Quality Assurance Issues 

 Quality assurance and verification on a Corps construction project is a 
Governmental function that consists primarily of maintaining assurance that the 
contractor has established and is properly executing the project Quality Control 
Plan. Verification comes from observing the contractor�’s adherence to the 
contract plans and specifications, and includes the contract submittal process, 
preconstruction meetings, visual inspections, and laboratory testing. The most 
functional quality assurance program is a reflection of a robust quality control 
program staffed by competent and experienced contractor personnel. 
 
 Numerous training courses are available to help field project personnel fulfill 
their quality assurance responsibilities. No Governmental training is currently 
available specifically for underwater foundation construction, but modifications 
to current training topics may be accomplished. Quality assurance 
representative�’s guides such as Engineer Pamphlet 415-1-261 (U.S. Army Corps 
of Engineers 1992) may also be modified to include underwater construction. 
 
 Until the Corps acquires a larger database of underwater construction 
projects, a successful quality assurance program will depend heavily on the 
constraints in the quality control clauses of the contractual plans and 
specifications and the degree to which the specialized contractors execute the 
quality assurance issues. 
 
 Inspection and testing requirements and procedures are highly dependent on 
the type of underwater foundation being constructed. The contract documents 
and specifications should cover the inspection and testing requirements during all 
four phases of underwater foundation construction, as described in the following 
paragraphs.  
 
 
Preconstruction phase 

 After contract award, the preconstruction phase includes specific topics that 
should be satisfactorily specified, such as preconstruction conferences to 
establish details of the quality control system, project schedules, and methods for 
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resolution of potential problems for each phase of the underwater foundation 
construction. Discussion of the specified and approved Installation Plan is 
conducted at this time. Topics that should be addressed include potential site-
specific problems, such as river (or water body) conditions, concurrent work by 
others, owner-furnished facilities, owner-furnished horizontal and vertical survey 
control markers, and coordination, sequencing, and safety issues. Inspection and 
testing topics should be discussed and understood by all parties to minimize 
misunderstandings and to reduce potential contract conflicts during construction. 
 
 
Construction phase 

 Regardless of the foundation preparation method or the foundation type, a 
survey positioning system must be established and used throughout the 
underwater foundation construction phase. 
 
 Positional accuracy is required during all phases of the project, from riverbed 
improvement (including snag removal, dredging, backfill, compaction, leveling, 
and scour protection activities) to final acceptance. At all locations and during all 
phases of the construction, three-dimensional (3-D) boundary locations and 
tolerances must be verified. Floating platforms and supporting items such as drill 
rigs, pile-driving rigs, and batch plants must be accurately positioned over the 
foundation site. Mooring with anchor lines or dynamic positioning (propeller-
controlled) methods are required to position floating plants and control their 
locations. The foundation system must be three-dimensionally located and 
positioned within specified tolerances. Cutoffs, top of surface, and final tip 
elevations of each foundation element must be accurately measured and 
recorded. Adequate control measures are required to monitor and control element 
alignment and plumbness. 
 
 Drilled foundations (piles and caissons), especially those that require cast-in-
place concrete, require a higher degree of inspection and monitoring because of 
the high potential for development of unforeseen problems. For drilled 
foundations, a number of inspection and testing items are important (Greer and 
Gardner 1986). Items to be considered are listed below and discussed in the 
following paragraphs. 
 
 Cuttings control and disposal 
 Hole bottom cleanout and stabilization 
 Subterranean water 
 Borehole integrity 
 Proof testing 
 Reinforcing cage placement 
 Concrete placement 
 Load testing 
 
 Although the objectives are similar, the inspection and testing of underwater 
drilled foundations require modification of in-the-dry techniques. Once the 
uncased borehole has been drilled and cuttings have been properly disposed, a 
cleanout inspection must be conducted to ensure that the bearing stratum is sound 
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and that the hole is stable. A determination and location of subterranean water 
such as artesian aquifers must be determined during the site investigation phase 
as their presence may cause stability problems within the boreholes, which may 
preclude any uncased cast-in-place concrete. 
 
 Remote video monitoring for inspecting the finished borehole is possible if 
the water is not turbid, or divers may be required to monitor the borehole 
integrity if allowed in the safety plan. If the borehole is in irregularly weathered 
rock formations, extra attention should be given to proof testing. Proof testing 
can be performed by drilling a small-diameter exploratory hole through the 
bottom of the borehole and noting the advance rate for the purpose of detecting 
subbottom voids. A probe rod may be jiggled in the exploratory hole to allow 
detection of sidewall fissures and voids. 
 
 The reinforcing cage must be placed with proper alignment and plumbness. 
Concrete placement requires detailed inspection and testing procedures. Load 
testing of the completed foundation allows for a comparison of the design and 
actual strength capacities. Although full-scale load testing is time consuming and 
expensive, the use of an Osterberg cell may be a less expensive option and would 
permit the drilled shaft to be placed into service upon completion of the testing 
(Osterberg 1998).  
 
 For driven-pile foundations, Fleming et al. (1992) identified a number of 
inspection and testing items. A discussion of each is presented in the following 
paragraphs. 
 
 Quality of pile materials and connectors 
 Damage during driving 
 Pile heave  
 Ground vibration and movement 
 Subterranean water 
 Workmanship and materials during installation 
 Load testing 
 
 Although quality control during fabrication is a separate issue, the piling 
must be inspected for material defects upon arriving at the jobsite. The piling and 
associated connectors must also be protected from damage from the time they are 
offloaded onto the jobsite until they have been installed in the ground. Selection 
of the proper hammer not only involves matching the required load capacity, soil 
conditions, and piling properties to the hammer, but also includes a requirement 
to minimize excessive stresses during driving, to prevent damage to the piling by 
overdriving. 
 
 Driving through saturated clays or dense sands may cause pile heave, which 
is usually of more concern than ground heave, which is caused by soil 
compaction and consolidation during driving. The potential effects of ground 
movement on adjacent structures should be considered and addressed during the 
design phase. Subterranean water such as artesian aquifers may cause problems 
due to high pore-water pressures if the aquifer is not discovered during the site 
investigation phase. 
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 All materials, methods, and workmanship on piles requiring additions or 
modifications during installation, such as grouting, concrete, and welding, must 
be properly inspected and tested according to applicable codes and standards. 
Pile load testing during construction may be conducted to permit an assessment 
of the actual factors of safety (designed capacity/actual capacity). Complete and 
comprehensive records of the testing setup, procedures, calibrations, adjustments, 
results, and interpretations are required. 
 
 
Acceptance phase 

 Once the foundation system has been constructed, additional inspection and 
testing should be performed to confirm its acceptance as a finished product. The 
acceptance phase may be separate or may be conducted during the construction 
phase, depending on the foundation system. Materials testing conducted during 
the construction phase may not be finalized until construction is complete (that 
is, concrete strength tests). 
 
 Integrity testing of the completed or installed foundation should be required, 
and is discussed later in this chapter (see section �“Underwater Foundation 
Testing�”). Improved-site integrity testing typically consists of conducting a 
postconstruction site investigation, which has essentially the same purpose as the 
preconstruction site investigation. 
 
 Gravity-based and pinned foundation integrity testing requires evaluation of 
the foundation elements (concrete, grout, steel piles, reinforcing, etc.) using 
standardized material testing methods. The most common integrity testing 
methods use nondestructive techniques (NDT). For nearly all NDT small-strain 
integrity testing methods, low-energy ultrasonic pulses or acoustic (sonic) waves 
are transmitted through the pile materials (concrete, wood, steel, etc.) (Davis and 
Hertlein 1991). 
 
 
Postconstruction monitoring phase 

 After construction has been completed, ongoing inspection and monitoring 
activities may be continued. These functions may or may not be regulated, 
depending on the needs of the owner or operator. The Corps requires periodic 
inspection activities of its civil works structures during their operation and 
maintenance phase (Department of the Army 1995). Offshore U.S. structure 
inspections are regulated by the U.S. Geological Survey and the U.S. Coast 
Guard. 
 
 Rules and guidance are also given by the American Petroleum Institute (API) 
and the American Bureau of Shipping. European agencies such as the U.K. 
Department of Energy, Det Norske Veritas, and Lloyd�’s regulate offshore 
structure inspections outside the United States (Stern and Alia 1980). 
 
 The rules and regulations do not place emphasis solely on the structure�’s 
foundation. Focus is instead directed to detecting any changes in the overall 
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structural integrity. To the extent that any loss of structural integrity is due to 
foundation problems, foundation monitoring may then become a critical 
component of the inspection process. An important aspect of foundation 
monitoring is evaluating the foundation material integrity, including steel 
corrosion, steel weld quality, concrete cracks, concrete spalling, soil scouring, 
etc. It may also be important to evaluate the foundation performance in terms of 
settlement, inclination, stability, etc. Unique foundations such as suction 
caissons, which depend on active pore pressure monitoring, may require a special 
instrumentation and evaluation process (Tjelta 1993; Stock, Jardine, and 
McIntosh 1993). 
 
 Various tools and equipment are available for conducting foundation 
inspections. Remote visual monitoring may be accomplished with remotely 
operated vehicle systems (ROVs) or autonomous underwater vehicles similar to 
those used for underwater site investigations. Diver-equipped tools are also 
available for material integrity evaluations, including high-pressure waterjets for 
cleaning steel and concrete and hand-held equipment for inspecting concrete and 
steel components (Smith 1987). 
 
 
Foundation Installation and Testing 

 A variety of installation procedures and equipment exists for installation of 
underwater foundations. Testing procedures and equipment are required to 
validate the foundation design and to ensure foundation integrity. 
 
 
Improved-site foundations

 Improved-site foundations include those that are modified to increase 
strength, reduce settlement, and improve stability of the soil or rock. Physical, 
mechanical, hydraulic, and chemical methods are available to achieve these 
modification objectives (Hausmann 1990). Physical modification includes 
excavation, backfilling, and leveling operations. Mechanical methods generally 
include vibratory compaction, confinement, inclusions, and geotextile 
reinforcement. Hydraulic methods include the use of vertical and horizontal 
drainage systems. Chemical modification involves deep cement mixing. 
 
 
 Physical modification. 
 
 Excavation and dredging. Both terms relate to the removal of undesirable 
soil or rock materials and are often used interchangeably. Excavation generally 
implies a smaller operation, such as removing soil inside a cofferdam. Dredging 
implies a larger area operation and is usually required during installation of 
improved-site foundations and gravity-based foundations. Reasons for excavation 
and dredging include removing unsuitable materials such as loose/weathered 
rock or mud overburden, cutting specified depths and slopes in competent 
materials, retrieving bulk samples, and cleaning (removing) soft bottom 
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(sediment) materials after dredging or backfilling operations have been 
completed (Johnson, Compton, and Ling 1972). 
 
 Dredging to remove overlying soft materials may be accomplished using 
airlifts, suction (hydraulic) dredges, or specialized trenching equipment. 
Dredging firmer materials may be accomplished using clamshell (orange-peel) 
draglines (Figure 45) or bucket (dipper) dredges in shallower water. Deepwater 
dredging is done with continuous dragline, cable with attached cutters, ocean 
dredging vessels (suction hydraulic or 
hopper with cutterheads), or ROVs. 
Explosives are used to remove pinnacles 
and boulders, and drilling/blasting 
operations are performed in rocky areas 
(Gerwick 1974). Harris (1942), Tate 
(1961), Millard and Hassani (1971), 
Johnson, Compton, and Ling (1972), and 
Loeken (1980) describe dredging 
operations on numerous projects, 
including the Navy�’s drydock projects, 
New York�’s Yonkers sewage treatment 
plant, San Francisco�’s marine terminal, 
Hong Kong�’s Plover Cove Dam, Ghana�’s 
Akosombo Dam, and offshore borrow 
areas. 
 
 Large-scale dredging and backfilling 
operations may use oceangoing vessels. 
Large ocean going trailing suction hopper 
dredges have been specially designed for 
removing and backfilling bottom materials 
at depths to 430 ft (130 m). These dredges pump slurried bottom material into 
vessel hoppers via suction pipes connecting the bottom-trailing dragheads to the 
vessel�’s main dredge pumps. The dredge then transports the material to the 
disposal location, where the hopper load is discharged for placement of 
underwater fill or is wasted. Currently, the world�’s largest trailing suction hopper 
dredger is Belgian Jan De Nul�’s with 39,200-cu ft (30,000-cu m) hopper capacity 
(Dredging and Port Construction 1999). Smaller dredges are available for 
dredging near-offshore and inland rivers to depths necessary for maintaining 
navigation, usually less than 50 ft (15 m). Submerged dredging platforms allow 
access to deeper locations, and are typically used offshore. One Netherlands 
company has developed an ROV capable of dredging to depths of 3,300 ft 
(1,000 m), as illustrated in Figure 46 (Van Oord 1999). Specialized subsea ROV 
trenchers for pipeline burial are also available (Rushfeldt 1981, Dansette and 
Robertson 1994). 

Figure 45. Clamshell excavation and soil 
sampling in the Columbia River (after 
Bazett and Foxall 1972) 

 
 Positional accuracy for dredging operations has been improving thanks to 
modern sensor technology and global positioning system (GPS). One example is 
Prolec�’s �“Digmaster�” indication system from the United Kingdom. With its 
sensors mounted on a bucket (dipper) dredge, the operator can visually monitor 
in real time where the bucket is, and dredging tolerances to 2 in. (5 cm) are 
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possible when dredging at depths to 60 ft (18 m). Tidal and 
current fluctuations are automatically taken into account. 
Prior to the development of this technology, the dredging 
operator relied on boom markers and hand soundings 
(World Dredging, Mining, and Construction 1999). 
 
 Small quantities of material are removed by 
mechanical ejectors operated locally by divers or remotely 
from a work barge. Mechanical ejectors (also called �“air 
lifts�”) operate using compressed air and water (Figure 47). 
They work by loosening the material at the base of the 
excavated area, mixing it with the lighter air bubbles, and 
discharging it to the surface. 
 
 Ejectors do not work well in soft clays or clayey silts 
as they merely form a hole at the base of the excavated 
area and extra work is required to slump these materials 
toward the ejector (Tomlinson 1994). Air lift methods were 
used on the Thames River flood barrier caissons to remove 
sediments and excavate chalk that adhered to the 
cofferdam sheet piles and walers. 
 

Explosives were placed by divers to dislodge the chalk 
deposits prior to excavation (Gilbert and Horner 1984). A 
10-in. (25-cm)-diam airlift operated with a 1,000-cfm 
(30-cu m/min) air compressor successfully cleared boulder 
intrusions in rock sockets 100 ft (30 m) underwater at 
Bantry Bay (Fox 1970).  
 
 Underwater air bubblers were used during underwater 
backfill operations to prevent �“density currents�” of 
suspended fines that flowed upstream and downstream on 
the river bottom during construction of the submerged 
foundation for a dam in British Columbia (Bazett and 
Foxall 1972). 
 
 Fill placement. After the unsuitable material has been 
removed, the site may be further improved by backfilling, 
leveling, and in situ densification (e.g., soil strengthening).  
 
 There are numerous case histories and examples of 
underwater improved-site foundations using various 
equipment and methods that can be obtained for additional 
details. 
 
 Underwater fill placement (also called backfill 
placement if previously dredged or excavated) can be 
accomplished using several methods (Johnson, Compton, 

and Ling 1972; Bazett and Foxall 1972; Loeken 1980; Mitchell and McRae 1985; 
DOSBOUW 1987), as described below.

Figure 46. Deep-sea dredging 
operation 
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Methods for underwater fill 
placement include: 

Figure 47. Two types of underwater ejectors (after 
Tomlinson 1994)

 
a.  Land-edge dumping by 

bulldozer, backhoe, or 
clamshell bucket 

b. Placement from deck scow 
(barge) with buckets or 
dozer 

c. Hydraulic slurry mix 
pumping or jetting 

d. Dumping by bottom-dump 
scow or vessel 

e. Fall-pipe placement 

 
When selecting the optimal 

method, numerous variables must 
be considered, including project 
size, water depth, material type 
(gradation), final slope 
requirements, current velocity, 
environmental considerations, 
borrow material location, and 
economic costs. 

 
Figure 48 shows an example of 

the backfill material gradation 
curves selected for an underwater 
pipeline project. 

 
Bottom-dumping scows 

require a minimum depth of about 
15 ft (5 m) because of scow and 
tug drafts and propeller 
disturbance. Material placement is 
relatively fast, and flat slopes are 
usually obtained (unless retained). 
At the Southern Pacific Railroad 
crossing of the Great Salt Lake, 
bottom-scow placement of a well-
graded silty sand achieved slopes 
inversely proportional to the water depth. Maximum slopes (1:2) were achieved 
at shallower depths but tapered off to 1:10 slopes at 40-ft (12-m) depths 
(Johnson, Compton, and Ling 1972). Bottom-scow placement of glacial till 
material at the Hugh Keenleyside Dam project caused segregation and loss of 
fines, requiring design changes. Initially, dumping was restricted to river currents 

Figure 48. Graduation curve for underwater pipeline 
stable backfill material 
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less than 2 ft/sec (0.6 m/sec) to avoid loss of fines. However, it was determined 
that suspended fines flowed upstream along the riverbed bottom, and turbidity 
increased at this low velocity. To help alleviate the problem, dumping in river 
currents up to 4 ft/sec (1.2 m/sec) was allowed, and underwater dykes were 
installed (Bazett and Foxall 1972). Materials containing entrapped air and 
dumped suddenly from bottom-dump scows appear to liquefy as the material hits 
the bottom. For example, Johnson, Compton, and Ling (1972) observed a rapid 
bottom-dumped sand spreading horizontally at a rate of 20 ft/sec (6 m/sec). 
 
 Deck scows are usable in shallower water and enable steeper backfilled side 
slopes. Tate (1961) reported that slopes of 1:2 were obtained by hydraulic jetting 
of well-graded material (3 in. down to a maximum of 10 percent finer than the 
No. 100 sieve) from a deck scow. Johnson, Compton, and Ling (1972) reported 
the placement of rock by clamshell bucket off a deck scow at the Hong Kong 
Plover Dam site. The bucket was opened just above the bottom to minimize 
segregation. Pore-pressure measurements were monitored and indicated a period 
of 2 months was required for dissipation of pore pressures in the fill materials. 
 
 Underwater hydraulic fill placement may cause coarser materials to drop out 
first, which could lead to unstable slopes. Experiments by Mitchell and McRae 
(1985) determined that slurry-pipeline placement of sand obtained lower 
densities that those achieved with bottom-dumping hopper dredge systems. 
Placing the sand in �“layers�” and compacting with a special air gun achieved 
relative density increases up to 80 percent. Without underwater compaction 
efforts, the relative densities of the sand ranged erratically from about 10 to 
70 percent (Johnson, Compton, and Ling 1972). Stewart, Jefferies, and Goldby 
(1983) reported that the average relative density (without compaction) for a 
uniform sand (D50 approximately 0.28 mm and fines less than 5 percent) placed 
underwater was about 40 percent.  
 
 Underfilling of structures such as immersed tube tunnels and offshore 
gravity-based structures has been accomplished using hydraulic fill variations. 
Typically, a mixture of sand and water is pumped between the structure bottom 
and its supports to (a) provide a good structure/seabed contact and (b) to create a 
uniform distribution of contact stresses. For offshore structures, a grout mixture 
is typically used instead of a sand slurry, although a sand slurry underfill enables 
easier remobilization of the structure. Sand slurry underfill has been used 
frequently in the Beaufort Sea mobile oil drilling platforms (Buslov et al. 1984). 
 
 The fall-pipe placement method generally allows precision placement of 
coarse materials to deeper depths with minimum segregation. Offshore precision 
fill placement equipment currently consists of the fall-pipe method used by 
offshore dredging companies such as Tideway BV, HAM, Ballast Needam, and 
Boskalis. One earlier project (during the 1970s) that used two types of fall-pipe 
systems was a North Sea pipeline backfilling operation. A fine sand layer was 
covered by a gravel layer (4-in. or 10-cm maximum particle size). The materials 
were placed in water with bottom currents up to 8 ft/sec (2.5 m/sec) at depths up 
to 230 ft (70 m). One fall-pipe system had remotely controlled electrohydraulic 
thruster units attached for accurate placement of the conveyed gravel. The other 
system pumped hydraulic fill (sand and gravel) through the fall-pipe. The 
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positioning of the fall-pipe was accomplished using an underwater acoustic 
referencing system (Loeken 1980). Stewart, Jefferies, and Goldby (1983) 
reported another project in which a modified drag arm on a trailing suction 
hopper dredge was used to discharge a sand slurry 8 ft (2.5 m) past the arm end 
to the deposition point. Average slopes of 1:5 were placed in 100-ft (30-m) water 
depths. Smith (1962) reported that a 2-ft (0.6-m)-diam steel fall-pipe was used to 
place gravel (8-in. or 20-cm maximum size) at the base of a Mississippi River 
dam. 
 
 Leveling. If the superstructure is founded on an improved-site or gravity-
based foundation, the bottom must be leveled to specified tolerances after 
dredging and/or backfilling. Typical out-of-level tolerances were described by 
Gerwick (1974) as being about 2 in. (5 cm) on hard bottoms to 12 in. (30 cm) on 
softer bottoms (sand and silt). Gerwick also stated that most leveling sequences 
include the following steps: 
 

a. Placement of a crushed rock base (similar to the fill placement noted 
above). A well-graded crushed (not natural gravel) rock base course can 
be placed by barge bottom-dumping (effective only to about 100-ft 
(30-m) depths), through a fall-pipe, or lowered in buckets. Natural gravel 
is not desirable due to its tendency to displace laterally (slide) under 
load. Typical rock base courses use a maximum aggregate size of about 
6 in. (15 cm).  

b. Placement of a �“screed course�” on top of the rock base. If desired, a 
smaller layer up to 40-in. (1-m) thickness with maximum aggregate size 
of 3 in. (7.5 cm) can be placed on top of the rock base to enable more 
accurate screeding (of the smaller particle sizes). Typically, the screed 
course is placed using a tremie pipe (fall-pipe). 

c. Level (screed) the aggregate. Many types of screeding devices have been 
used on various underwater projects. All are designed to provide stable 
methods for leveling within the specified tolerances. The historical 
method employed for shallow-water depths used a heavy steel beam that 
was dragged across the bottom from a surface platform. Other devices 
are manually operated underwater and require divers. Self-leveling 
frames with remotely controlled positioning devices are used in deeper 
water.  

 
 Dredging equipment has also been used to provide leveling and trimming of 
the base course. Boskalis (1999) developed a multipurpose pontoon system 
(�“Scradeway�”), which allowed multimillimeter accuracy for placing, leveling, 
and trimming the gravel bed prior to sinking the Oresund�’s immersed tube tunnel 
elements. 
 
 Mechanical modification. Mechanical modification by vibrocompaction 
increases the relative density of granular deposits. To accomplish this increase in 
density, the vibrating energy is used to rearrange (and density) the soil structure. 
The vibrating energy is transferred to the soil via a shaft attached to a floating 
platform system. Typically, inside the shaft is a hydraulic motor driving an 
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eccentric (off-centered) mechanism that vibrates due to its eccentricity. The 
remainder of the shaft is isolated to prevent vibrations beyond the shaft tip. Water 
may be jetted through the shaft tip to enhance soil consolidation and shaft 
penetration (vibroflotation). Vibroflotation has been successfully used for 
increasing the bearing capacity of previously submerged cohesionless materials. 

Examples include the underwater placement (but 
subsequently dewatered) fills such as Wanapum Dam 
(Engstrom 1963) and Bremerton drydocks (Tate 1961). 
Vibratory compaction using pipe piles was performed 
on dewatered fill near Baltimore (Millard and Hassani 
1971). Figure 49 shows a vibratory compaction probe. 
Figure 50 shows a specialty pontoon containing four 
similar vibratory compaction probes. 
 

Several worldwide contractors use specialized 
equipment for mechanical modification. 
Vibrocompaction equipment may be specified simply to 
achieve vibratory compaction, or it may be combined 
with other proprietary systems to construct pinned 
foundations without soil excavation. 
 
 Underwater stone columns have been placed for the 
purpose of increasing the soil�’s shear strength and bulk 
modulus. Pennine, Ltd., (1998) reported the installation 
of 2.6-ft (0.8-m)-diam by 66-ft (20-m)-long stone 
columns in water depths up to 108 ft (33 m) from a 
floating barge using vibrocompaction, as illustrated in 

Figure 51. The productivity rate was greater than one column per hour, including 
barge positioning. 

Figure 49. Vibratory compactor 
(after Bauer, Inc. 
1994)  

 

Figure 50. Vibratory compaction pontoon Mytilus 
used in the Eastern Scheldt project 
(after DOSBOUW 1987) 

 Hayward Baker (1999b) reported 
the installation of 270 stone columns 
(3-ft (1-m)-diam) using a 
vibroreplacement method through 
water depths up to 40 ft (12 m) to 
prevent liquefaction damage to 
existing underwater piles at a 
Vancouver port facility. 
 
 According to Stewart, Jefferies, 
and Goldby (1983), underwater self-
consolidation of cohesive material 
(natural or backfilled) is not typically 
used because of (a) monitoring 
instrumentation limitations, 
(b) insufficient experience, especially 
with hydraulic fill/clay separation, and 
(c) limited large-scale experience 
relying on consolidation for strength 
gain. 
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Figure 51. Vibratory stone column installation (after 
Pennine, Ltd., 1998) 

 Another mechanical modification 
technique consists of overlying the 
soil with prefabricated blankets, mats, 
or geotextile reinforcement. 
Typically, the overlays are 
constructed of steel, concrete, graded 
soil materials (sand, fine gravel, and 
coarse gravel), or synthetic fabrics. 
The purpose of the blankets is to 
reduce the induced bearing pressure 
on the subsoil and to prevent erosion 
of the subsoil beneath the mat. 
Prefabricated mats were used 
extensively in the Eastern Scheldt 
project (DOSBOUW 1987). 
Specialized mat-sinking equipment 
barges (Figure 52) were required 
during this operation. Immediately 
prior to placing the mats, the sand 
bottom was redredged to remove any 
silt sedimentation. Bottom 
compaction was then accomplished 
with four ICE-815 underwater 
vibratory hammers each mounted on 
a perforated 13- by 13-ft (4- by 4-m) 
steel plate and dragged in tandem 
fashion across the dredged surface 
(Jonker 1987). The prefabricated 
mats were then placed over the 
vibrocompacted sand. 

 
 Abbott and George (1989) selected steel reinforcement meshes for their 
improved-site foundation. Flat galvanized steel strips were placed 9 in. (23 cm) 
on center and covered with granular backfill. Specialized methods were required 
for the underwater placement of the reinforcement. Onshore reinforced earth 
applications allowed the reinforcement mesh steel strips to be singularly placed, 
but underwater installation required a mat arrangement that was constructed 
onshore and then lowered into the water as a complete mesh mat. Granular 
backfill (angular coarse to medium sand and gravel) was placed on the mat 
arrangement.  
 
 Steel mudmats have been used offshore to increase the bearing capacity of 
soft bottom materials and are frequently attached to the base of jacket structures. 
The thin (typically less than 0.5-in. or 1.5-cm) mudmats provide stability and tip-
over resistance after jacket setdown and prior to pinned foundation installation. 
Improvements to resist lateral sliding include perimeter skirts and interior ribs. 
Digre et al. (1989) discussed design details for the Bullwinkle platform skirted 
mudmats. Lieng and Bjorgen (1995) discussed a release system for mudmats on a 
Heidrun platform subsea structure. 
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Figure 52.  Eastern Scheldt mat-sinking pontoon (after DOSBOUW 1987) 

 
Hydraulic modification. Hydraulic methods use vertical or horizontal 

drainage systems to remove excess pore fluid from the soil matrix. Vertical 
drainage systems (wick drains) require a surcharge or overpressure method for 
generating excess pore-water pressure. Several proprietary wick drain systems 
are available, including those from the Bauer, Geotechnics America, and 
American Wick Drain Corporations. Horizontal drains require a vacuum 
(underpressure) source to remove excess pore-water pressure. For horizontal 
drains, it is critical that leakage from the overlying water body not be permitted. 
Water drained as a result of the underpressure method is pumped away from the 
site (Aerts, Devlieger, and Vandycke 1999). 

 
Chemical modification. Offshore chemical soil modification with deep 

cement mixing has been successfully used in Japan and the Arctic oil region for 
several years. It was developed in the United States in 1951 by the U.S. Navy, 
but was discontinued in the United States for economic reasons (Halebsky and 
Wetmore 1986). It has been demonstrated to improve soft soil unconfined 
compressive strengths by up to 700 percent.  

 
 Deep cement mixing barge-mounted systems (similar to a system illustrated 
in Figure 53) have been operated in water depths to 230 ft (70 m) for mixing soil 
165 ft (50 m) below the mudline. The process consists of pumping cement slurry 
under pressure into the seabed followed by in situ soil mixing. Each mixer can 
improve a soil area up to 62 sq ft (6 sq m) per penetration. Normal slurry mix is a 
0.6 water-cement ratio. Typical cement concentration is about 10 to 20 percent, 
which is approximately 10 to 20 lb of cement per 100 lb of dry soil (Halebsky 
and Wetmore 1986). 
 

92 Chapter 5   Foundation Preparation and Construction 



 Underwater grouting using a 
barge-mounted drill was 
described by Hayward Baker 
(1999b). A 3-in. (7-cm)-diam 
grout pipe was advanced below a 
sanitary sewer tunnel under a 
pond. Compaction grouting 
strengthened the soft organic 
soil, allowing tunneling to be 
completed using a tunnel boring 
machine. 
 

Quality control. Quality 
control and quality assurance 
(QC/QC) testing is conducted to 
determine the adherence to 
design requirements, as stated in 
the contract specifications. For 
the improved-site foundation, the 
testing basically consists of 
comparing the before, during, 
and after construction conditions 
to determine if the specified improvements were achieved.  

Figure 53.  Deep cement mixing system (after Halebsky 
and Wetmore 1986)

 
 Quality control during dredging for improved-site foundations includes 
(a) material inspections, (b) surveying for depth, distance, and volume 
measurements, and (c) postdredging cleanup of any remaining soft sediments 
(Johnson, Compton, and Ling 1972). Material inspections include bottom 
examinations by divers or remote monitoring, visual observations of the dredged 
materials, sampling of the bottom materials and/or the dredged materials, and 
testing. Site positional control is accomplished by hydrographic surveying 
methods and is a prerequisite for foundation construction. Ensuring that 
dimensional tolerances for volumetric quantities, areal extent, and cut slopes are 
not exceeded is one function of the QC/QA process. It is economically important 
that accurate surveys are conducted to establish the lateral dredging boundaries 
and that material inspections are conducted to define the depth of cut, when 
unsuitable materials are being removed (Johnson, Compton, and Ling 1972). 
Stewart, Jefferies, and Goldby (1983) discuss quality control methods for 
dredging operations conducted to remove unsuitable material, including core 
sampling of the dredged material inside the hoppers. 
 
 Postdredging cleanup of remaining soft sediments is a critical element that 
should always be expected and performed. Inspection by divers or sampling 
should be conducted to determine the presence and extent of remaining or 
redeposited sediments (Johnson, Compton, and Ling 1972).  
 
 Quality control considerations during fill placement and leveling operations 
are similar to those for dredging operations. Material inspections and surveying 
are required to ensure that the proper materials are being deposited at the correct 
location and are being placed according to specified thickness and side slopes. 
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The unforeseen presence of fines (namely, silts) in cohesionless fill materials 
causes quality control problems and was discussed by Johnson, Compton, and 
Ling (1972), Bazett and Foxall (1972), Stewart, Jefferies, and Goldby (1983), 
Buslov et al. (1984), Mitchell and McRae (1985), and Jonker (1987). The loss of  
fines in cohesive fill materials and corrective measures to control it was 
discussed by Bazett and Foxall (1972). 
 
 Integrity and/or performance tests are necessary to ensure that specified 
engineering properties such as shear strength and relative density have been met. 
These should be conducted during and after the fill placement or site 
modifications, and may include in situ tests and sampling operations. In situ tests 
include SPT, CPT, PMT, vane shear, and geophysical techniques. Sampling can 
be accomplished by bucket, probe, cores, or other equipment. Bazett and Foxall 
(1972), Stewart, Jefferies, and Goldby (1983), Mitchell and McRae (1985), and 
Jonkers (1987) discussed density measurements and control. Bazett and Foxall 
(1972), Johnson, Compton, and Ling (1972), and Buslov et al. (1984) discussed 
aspects of sampling and testing cohesive materials. Figure 54 illustrates the use 
of the CPT as a measure of in situ density for quality control during construction 
of the Eastern Scheldt project.  
 

 

Figure 54.  Eastern Scheldt, CPT results�—before 
and after vibrocompaction (after Jonker 
1987) 

Gravity-based foundations 

 Since most gravity-based 
foundations are floated or lifted in, 
the installation procedures include 
towing and positioning concerns 
(heavy-lifting equipment availability, 
weather, positioning accuracy, etc.). 
Once the foundation or structure is 
positioned for placement, the 
following concerns become critical 
(Hove and Foss 1974): 
 

a. Wind, wave, and current 
limitations. 

b. Installation sequence. 

c. Touch-down load 
concentrations. 

d. Leveling and/or base 
grouting. 

e. Installation mating procedure 
with superstructure elements. 

 Numerous case histories are cited in the offshore industry literature which 
detail installation considerations for float-in and lift-in gravity-based foundations 
and structures (Gerwick 1974; Hove and Foss 1974; Alloni, D�’Agostino, and 
Priarone 1976; Collipp and Johnson 1979; Noblanc and Schnader 1983; 
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Berthin et al. 1985; Tateishi and Watanabe 1986; Tanaka et al. 1987; Broughton 
and den Hertog 1990; Christophersen 1993; Alm, Bye, and Egeland 1995; 
Andenaes, Skomedal, and Lindseth 1996; Waddell 1997). 
 
 Gravity-based foundations that are cast in situ (using tremied concrete or 
grout) also require special installation considerations for the formwork, rebar, 
and concrete placement. References and case histories for formwork placement 
and tremie concrete techniques include those from Harris (1942), Tate (1961), 
Hedefine and Silano (1968), Johnson, Compton, and Ling (1972), Gerwick 
(1974), Becker et al. (1998), and Yao, Berner, and Gerwick (1999). 
 
 
Pinned foundations 

 Driven piles. Pile foundations are installed using impact-driven, vibration-
driven, jacking, jetting, suction, or drilling techniques, or combinations of these. 
The most common method of installing onshore piles is dynamic impact from a 
variety of hammer types. Pile-driving hammers include the simple drop hammer, 
single-acting hammer, double-acting hammer, differential hammer, and the diesel 
hammer (ASCE 1984). Hammer energy is supplied by air, steam, hydraulic 
pressure, diesel, or electricity. Vibratory hammers produce dynamic forces by 
internal counter-rotating masses using air, steam, electric, or hydraulic energy 
sources. Jetting, jacking, and screwing methods are specialized, and their usage 
in underwater piles has not been widely found in the literature. The majority of 
underwater piles have been installed using impact-driven methods, although 
vibratory-driven methods are gaining in popularity for offshore operations. The 
principal reason that offshore vibratory hammers are not as popular as impact 
hammers is due to the larger offshore pile weights, which require greater 
vibration energy (Jonker 1987). 
 
 Impact hammers. Offshore piles driven with above-water steam-impact 
hammers dominated through the 1970s. Pipe piles ranging from 30 to 48 in. 
(75 to 120 cm) in diameter with nonsliced lengths from 200 to 350 ft (60 to 
110 m) were routinely driven (total spliced pile lengths) up to 800 ft (240 m) 
below the mudline in the Gulf of Mexico. Offshore pile hammers (typically 
single-acting steam-driven) with rated energies from 60,000 to 300,000 ft-lb 
(80 to 400 kNm) were used to drive these piles to their design penetrations. The 
resulting ultimate pile load capacities were up to 3,500 tons in compression and 
2,000 tons tension (Sullivan and Ehlers 1972). Pile-driving experience in the hard 
clays of the North Sea caused overestimation of pile hammer capabilities and 
underestimation of the pile bearing capacities (Fox, Parker, and Sutton 1970). 
Offshore (above-water) pile hammer manufacturers included Vulcan (Figure 55), 
MKT, Delmag, and Menck. Steam hammer energy capacities increased to 
600,000 ft-lb (810 kNm) by the mid-1970s. 
 
 Development of the submersible hammer in the mid-1970s opened up new 
frontiers in pile-driving history. Pile followers, steam lines, and costly anchored 
derrick ships were no longer needed. The Hydroblok hydraulic hammer (by 
HBM, Hollandsche Beton Groep N.V.) operated an internal piston using nitrogen 
gas supplied through an umbilical cord to the underwater cage attached to the 
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pile top. The rated energy of the 
HBM 3,000 was 800,000 ft-lb 
(1,080 kNm). It could be used to 
drive an 84-in. (2.1-m)-diam pipe pile 
(Jansz et al. 1976). Cox and Christy 
(1976) and Jansz (1977) reported that 
this underwater hydraulic hammer 
successfully drove piles in the Gulf of 
Mexico and the North Sea. In hard 
clay locations, a method to vertically 
align piles topped with the HBM 
hammer was devised. 
 

Alignment and lateral support 
problems of submerged pile hammers 
were addressed (Jansz and Brockhoff 
1979). For the Eastern Scheldt 
project, an HBM 1500 hammer was 
used for driving mooring anchor 
piles. Sitter (1980) reported the 
development of an underwater 
hammer (HBM 4000) with rated 
capacity of over 1 million ft-lb 
(1,350 kN-m) of energy. The Menck 
company, which previously had made 
steam hammers, began making 
underwater hammers (such as the 

model shown in Figure 56). Heerema (1980) 
reported that a patent conflict developed in the 
late 1970s between HBM and Menck. 

Figure 55. Vulcan steam hammer advertisement 
from 1957 Civil Engineering magazine 

 
 Another submersible hammer was 
manufactured by the Raymond Company 
(RU-300). Its rated energy was 300,000 ft-lb 
(404 kNm). Its first offshore assignment was 
off the coast of New Zealand on the Maui 
jacket platforms that have 48-in. (1.2-m)-diam 
open-ended pipe piles driven 230 ft (70 m) 
below the mudline (Gendron, Holland, and 
Ranft 1978; Rennie and Fried 1979). 
 
 Several other innovative pile-driving 
methods were introduced during the late 
1970s. These developments include the 
submerged water hammer pile driver, which 
used seawater pressure to create a cyclic water-
driven impact mechanism to drive the pile 
(Wisotsky 1978), and electro-osmosis, which 
used direct current and achieved considerable 
pile-driving resistance reduction in clay 

Figure 56.  Menck 500T underwater 
hammer (after Menck 1999)
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deposits due to the soil chemistry bond force reduction 
(Rose and Grubbs 1979). 

Figure 57.  Underwater hydraulic 
slender hammer 
(after Van Zandwijk 
1986) 

 
 Slender hydraulic underwater hammers (Figure 57) 
were introduced in 1980 by Menck, Inc. By 1983, the 
hammers were instrumented with an adequate internal 
monitoring system comparable to the above-water hammers 
(Van Zandwijk 1986). Slender hammers proved to be much 
more versatile for offshore jacket pinning than were the 
larger diameter first generation of underwater hammers. 
Currently, underwater hammers manufactured by Menck 
GmbH (Germany) and IHC Hydrohammer BV 
(Netherlands) are used for offshore applications. 
 
 Both manufacturers build hydraulic hammers for 
underwater applications. Menck�’s largest hydraulic hammer 
(MHU 3000T) has a rated energy of 2.4 million ft-lb 
(3,300 kNm) and weighs 400 tons. IHC�’s largest hydraulic 
hammer (the S-2300, shown in Figure 58) has a rated 
energy of 1.7 million ft-lb (2,300 kNm) and weighs 
260 tons. Piles up to 102 in. (2.5 m) outside diameter may 
be driven with these hammers (Menck 1999, IHC 1999). 
 
 Soil resistance to impact-driven piles. Driving piles to 
their designed penetration lengths may not always be 
possible due to the inadequacy of the pile-driving 
equipment in overcoming soil resistance. The analyses of 

Figure 58.  IHC underwater hammers (after IHC 1999) 
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pile drivability evolved from simply pounding the pile to refusal using the 
biggest available hammer to using mathematical models depicting the real-time 
pile-driving resistance. 
 
 The mathematical model concept is based upon the solution of the 1-D wave 
propagation equation. It allows the determination of the pile-driver adequacy and 
the soil�’s resistance to driving. The original development of the model wave 
equation concept began in the 1950s. In the 1960s, computer solutions to the 1-D 
wave equation were further detailed and refined. Applications to offshore piles 
(using above-water hammers) commenced in the 1960s (Bender et al. 1969) and 
led toward the analyses of different elements of the pile-driving process. Besides 
the hammer and the pile, accessories were analyzed during the actual pile-driving 
process. The contributions of pile leads (cradle), cushions, anvil, follow block 
(helmet or pile cap), and followers (chasers) to driving resistance were analyzed. 
The application of the wave equation to long piles unsupported through the water 
column was analyzed and found to accurately predict the behavior on several 
projects (Lowery, Edwards, and Finley 1969; Engeling 1974; Cunningham and 
Naughton 1977). 
 
 By incorporating the wave equation analysis during the early stages of the 
pile design process, preliminary selection of the pile hammer can be ascertained. 
During the pile-driving process, the wave equation analysis can be used to 
predict the pile�’s ultimate axial capacity (Hirsch, Koehler, and Sutton 1975; 
Porter and Ingram 1989). The wave propagation method was further refined to 
include computerized instrumentation, data acquisition, and data analysis thanks 
to electronic technology developments (Rausche, Goble, and Moses 1971). 
 
 Other wave propagation numerical solution techniques have also been 
proposed (Fischer 1975; Foo, Matlock, and Meyer 1977). During the 1980s, 
many case histories of pile-drivability analyses were conducted by the offshore 
industry, including hammer types (steam versus hydraulic) (Heerema 1980); 
hammer location (above-water versus submerged) (Aurora 1984); soil conditions 
(sands, clays, carbonate soils, weak rocks, layer conditions, etc.) (Agarwal, 
Rawat, and Paintal 1978; Tagaya et al. 1979; Aurora 1980; Stevens, Wiltsie, and 
Turton 1982; Stockard 1979, 1986); pile size (Lang 1980); and analysis methods 
(Holloway, Audibert, and Dover 1978; Van Zandwijk, van Dijk, and Heerema 
1983). Additional computer codes that perform numerical integration of the wave 
equation were developed by offshore companies and universities. The university-
developed codes include TTI, OCEANWAVE, TIDYWAVE, DIESEL1, WEAP, 
CAPWAP, DUKFOR, and PSI. The latest version of the WEAP series is 
GRLWEAP (Holloway, Audibert, and Dover 1978; Porter and Ingram 1989). 
Recent literature suggests that GRLWEAP accurately predicts pile drivability 
(Dutt et al. 1995, Doyle 1999).  
 
 Vibratory hammers. An alternate method of installing piles is pile 
advancement (driving) using vibratory methods. Vibratory hammer technology 
was developed by the Russians for onshore applications in the 1960s. The 
Japanese foundation industry quickly embraced this technology and developed an 
extensive array of vibratory hammers. The Americans became interested in 
vibratory hammers in the early 1970s.
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 Vibratory hammer power is supplied by electricity or hydraulics. The 
vibratory hammers that use hydraulic power normally use a diesel engine to drive 
the hydraulic pump, which in turn drives the excitation motor on the vibratory 
hammer. In the United States, hydraulic vibratory hammer systems have become 
dominant. The major manufacturers, including Vulcan, ICE, and MKT, offer 
hydraulic systems exclusively (Warrington 1989). 
 
 The vibratory hammer (one model shown in Figure 59) does not 
incrementally impart energy to the pile-soil system as does an impact hammer, 
but instead provides a rapidly alternating dynamic force to the pile. The hammers 
are designed to impart this dynamic force to the pile at a range of frequencies, 
i.e., from approximately 300 to about 7,200 rpm (5 to 120 Hz), depending on the 
type of pile to be driven. Frequencies above 30 Hz are considered to be �“high 
frequency.�” These hammers generally provide for lowered transmission of 
ground excitation to neighboring structures. Hammers weighing greater than 
12 tons with the capability of transferring dynamic force greater than 200 tons to 
the pile are available. Pile Buck, Inc., (1999) maintains a comprehensive list of 
manufacturers and equipment capabilities.  
 
 Case histories of offshore vibratory-driven piles are 
not as numerous as those for impact-driven piles, 
especially before the late 1980s. The evolution from 
above-water to underwater vibratory hammer usage 
occurred much faster than did the impact hammer 
evolution. It was soon realized that the benefits of 
underwater vibratory hammers outweighed the above-
water benefits. Use of the underwater hammers began at 
offshore locations in the North Sea and Adriatic (Jonker 
1987, 1988; Ligterink, Van Zandwijk, and Middendorp 
1990; Ligterink and Martin 1992). 
 
 Pile drivability using a vibratory hammer is analyzed 
using the same 1-D wave propagation concept as for 
impact hammers. The model is somewhat different for 
vibratory hammers as compared to impact hammers, 
including modifications to wave equation computer 
programs. Chua, Gardner, and Lowery (1987) showed 
the applicability of the wave equation approach to 
vibratory hammer driving by modifying the TTI program 
(VIBEWAVE). Jonker (1988) adapted the TNOWAVE 
program to vibratory driving. Ligterink, Van Zandwijk, and Middendorp (1990) 
used the adapted TNOWAVE program to analyze the soil�’s resistance to 
vibratory driving during installation of 42-in. (1.07-m) piles. The vibratory pile-
driving analyzer (VPDA) finite difference model was developed by Moulai-
Khatir, O�’Neill, and Vipulanandan (1994). The Wisconsin Vibratory Pile Driving 
Analyzer (WiscVPDA) was developed by Bosscher et al. (1998). 

Figure 59.  ICE 1412 hydraulic 
vibratory pile hammer 
(after Jonker 1987) 

 
 A list of considerations for selecting impact versus vibratory underwater 
hammers follows: 
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a. No pile followers (chasers) are needed for underwater driving with either 
hammer. 

b. The vibratory hammer and pile are clamped together and are handled as one unit. 

c. The vibratory hammer can be activated prior to the pile tip touching the 
seabed. The methodology avoids the need for a temporary guide template 
(illustrated in Figure 60). 

d. The use of impact hammers is more common for offshore applications. 
Consequently, they have been used for a larger variety of soil types and 
pile sizes. 

e. Soil frictional resistance may be overestimated when using vibratory 
hammers. 

f. Vibratory hammers are used with piles requiring a minimum vertical 
tolerance, which allows easier realignment during penetration. 

g. A combination of hammers allows faster installation of a pile. The 
vibratory hammer can be used for initial positioning followed by limited 
driving to achieve lateral support, whereas the impact hammer can be 
used for the remainder of penetration. 

h. Above-water impact hammers generally have higher vibration and noise 
levels than vibratory hammers. Hydraulic impact hammers generally 
have lower vibration levels than diesel hammers. 

 

Figure 60. Vibratory-driven pipe pile without an 
underwater template (after Jonker 1988) 

Technology is now available to 
reduce noise levels during above-
water impact driving. Numerous 
manufacturers offer protective 
shields or encapsulation modules 
as noise mufflers. For example, 
one onshore contractor designed 
and built a hydraulic impact pile-
driver that was about 12 db quieter 
than an equivalent system for 
driving concrete precast piles near 
an urban development. Totally 
enclosing all moving parts and 
eliminating all metal-to-metal 
contact reduced the noise level to 
the point at which the ropes 
flapping against the rig�’s mast was 
the only appreciable noise (Ground 
Engineering 1999). For driving 
tubular and standard steel sheet 
piles, a Japanese company has 
recently demonstrated in the 
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United States a hydraulic pile-driving system that operates at less than 60 db of 
noise and is virtually vibration free (Phair 2000). 
 

Drilled shafts. Drilled shafts (also called drilled piers, drilled caissons, large-
diameter bored piles, or rock sockets) can be installed by a variety of onshore 
drilling rigs. Offshore equipment is generally the same with the exception of 
being mounted on a barge or other floating platform. Casing is driven or drilled 
past the mudline. If the casing can be sealed into an impervious stratum, it can 
then be dewatered and drilled. Otherwise, drilling is conducted through casing 
using the mud-drilling technique. Cuttings are removed using air or water 
ejectors or by mud circulation techniques. After cleanout and inspection, steel 
reinforcing and concrete are then placed into the casing to form the shaft (Greer 
and Gardner 1986). 
 
 A more common offshore method that does not use reinforced concrete is 
typically used on steel jacket platforms sited on rock regardless of whether soil 
overburden is present. Instead, a steel pipe pile is lowered into the bored or cased 
opening, and then the annulus is grouted to provide a �“pinned�” pile system. 
When casing is used, it is advanced by spinning the casing with a drill bit 
attached at its lower end or by guiding a smaller diameter casing through a jacket 
pipe sleeve or spud pile and then advancing the casing by use of a pilot drill bit. 
Grouting of the casing may or may not be conducted prior to insertion of the 
inner pipe pile. Final grouting is accomplished after 
the inner pipe pile is advanced to its target depth. 
The drill rig may be operated from a support barge or 
may operate directly on top of the outer casing. 
 
 Steinke and Strasser (1978) discussed drilling 
techniques for the Valdez terminal where piles up to 
3.5 ft (1.1 m) in diameter were placed in 43-ft 
(13-m)-deep boreholes located up to 1,500 ft (456 m) 
from shore, on steep 60-deg underwater rock slopes. 
Fox (1970) discussed rotary drilling through driven 
40-in. (101-cm)-diam steel pipe piles with an 18-in. 
(46-cm) tri-cone bit on a 7-in. (18-cm)-diam drill 
stem to clear out boulder clay overburden prior to 
rock drilling. Drill water pumped at 2,100 gpm 
(8,400 L/m) helped to clean the soil cuttings as the 
bit advanced into the rock, although boulder 
inclusions caused problems during the drilling 
operations. After achieving the design depth, each 
pile was then filled with reinforcing bars and 
concrete. Chamberlin (1970) discussed drilling 
42-in. (107-cm)-diam holes in layered limestone 
using a 24-in. (61-cm) tri-cone bit, a 32-in. (81-cm) 
hole opener, and a 42-in. (107-cm) underreamer 
(shown in Figure 61). A 36-in. (91-cm)-diam pipe 
pile was then lowered into each socket during 
drilling and was grouted inside and out. Santiago 
et al. (1986) discussed drilling techniques used at an offshore platform in 350-ft 

Figure 61.  Offshore rotary drilling 
operation for grouted pipe 
piles in limestone (after 
Chamberlin 1970) 
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(106-m) water depth to install 4.5-ft (1.37-m)-diam pipe piles 82 ft (25 m) into 
claystone and gravel deposits. 
 
 Suction caissons. Suction caissons (also called suction piles, buckets, skirts, 
skirted foundations, or anchors) are installed by self penetration into the seabed, 
similar to the illustration shown in Figure 62. 

 
 The initial phase is self-weight 
penetration as the caisson is lowered onto 
the seabed and allowed to �“sink�” under its 
own weight into the mudline. Further 
penetration requires an underpressure in 
the cavity of the suction caisson, which 
creates an additional driving force. As 
underpressure is applied (usually by a 
skid-mounted pump on top of the caisson, 
shown in Figure 63), the caisson tends to 
penetrate the soil until the pressure inside 
the skirt walls tends to equalize with the 
external pressures. The rate at which the 
pore pressures tend to equalize and 
mechanisms by which the underlying soil 
tends to fail are due to the material and 
strength properties of the soil. Set-up 
effects (time-dependent properties) are 
similar to those found in pile driving 
(Andersen and Jostad 1999).  Figure 62.  Suction caisson (pile) installation 

(after Senpere and Auvergne 1982)  
Placement positioning. Proper 3-D 

positioning of the foundation is required 
during the installation process. The 
installation procedures must be consistent 
with the design criteria, and advance 
planning for alternate or supplemental 
procedures should be made prior to 
mobilization of the marine construction 
equipment (Sullivan and Ehlers 1972). 
Tanaka et al. (1987) studied the 
installation procedures for placing a 
gravity-based foundation on an offshore 
Japan seabed. Model testing and 
numerical simulation confirmed the 
technical feasibility and provided 
recommendations prior to actual 
installation. 

Figure 63.  Pile-mounted suction pump skid (after 
Suction Pile Technology, Inc. 1999) 

 
 For typical offshore oil and gas 
structures, foundation positioning is 
intricately linked to the exploration and 
drilling process. Elaborate computerized 
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positioning procedures are followed, which have been discussed in the offshore 
literature for the largest, most complex, or deepest structures from subsea risers 
to surface platforms.  
 

For example, positioning and installation procedures for Shell�’s Cognac 
jacket platform are detailed by Collipp and Johnson (1979), Simpson (1979), 
Mayfield, Strohbeck, and Wilkins (1979), and Sterling et al. (1979). Since the 
foundation pile-driving guide or �“template�” was integral to the jacket structure, 
no positioning of a separate pile-driving template was required. During the 
positioning and placement of the 84-in. (2.1-m)-diam by 615-ft (187-m) pipe 
piles, an acoustic positioning system composed of multiple transponders 
(beacons and hydrophones) communicated with a computerized referencing 
system. Hydrophones were mounted on the pile-lowering system, which received 
sequenced pulses from oceanfloor and surface-barge beacons. Three-dimensional 
computer-assisted pile-maneuvering was performed to guide the platform jacket 
stab guides onto the piles. A pile-mounted TV camera system and a video ROV 
provided video monitoring capabilities. After pile positioning and stabbing were 
completed, the pile hammer monitoring and control system was implemented. 
Three operators were positioned at separate computer/TV consoles to control and 
monitor the pile elevator depth, the hammer depth, and the hammer operation. 
Although the installation schedule allowed 3 days per pile, the installation of the 
final 18 piles (out of 24 total) required a total of only 22 days. 
 
 Pile-driving templates that are not preattached to the structure require 
separate positioning and placement efforts. Ulbricht et al. (1994) discuss 
positioning efforts for Shell�’s Auger Tension Leg Platform (TLP) foundation 
template, which is shown in Figure 64. The foundation template was placed at a 
depth of 2,860-ft (870 m) in the Gulf of Mexico to within tolerances of 2 ft radial 
offset, 2 deg heading offset, and 2 deg horizontal offset. 
 

Figure 64. Pile template positioning for Shell�’s Auger TLP (after Ulbricht et al. 
1994) 
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 The installation vessel (a semisubmersible crane vessel) experienced low-
frequency surface excursions between 15 and 35 ft (5 and 11 m) while setting the 
60- by 60- by 48-ft (18- by 18- by 15-m), 611-ton steel template on a slightly 
sloping, soft clay site. Specially designed �“clump weights�” were acoustically 
positioned on the seabed prior to lowering the template. Near- and far-field 
acoustic transponder arrays on the seabed provided positional references to the 
template-mounted Sonardyne MicroNav acoustic monitoring system. A dual-axis 
inclinometer was attached to the template and was acoustically monitored during 
lowering. Template position, heading, inclination, and water depths were 
monitored relative to the crane vessel�’s position. As the template neared the 
seabed, ROV-connected slings attached to the �“clump weights�” corrected and 
stabilized its position prior to setdown. Pile stabbing and hammer operations 
were monitored using acoustic positioning equipment. 
 
 Offshore pile-handling operations have improved as more experience has 
been gained in deepwater pile transporting, offloading, upending, and lowering. 
Converse et al. (1990) discussed a newer, more mechanized method for handling 
large, one-piece piles while reducing the requirement for specialized rigging. 
 
 With experience, positioning tolerances have also become tighter. In 1979, 
the accuracy using the computerized positioning system was within a radius of 
about 15 ft (4.5 m) at a depth of 1,000 ft (304 m) for Shell�’s Cognac platform. By 
1999, piles were positioned within 1 ft (0.3 m) of the target with less than 1 deg 
of final tilt in 3,800-ft (1,160-m)-deep water for the Shell Mars, Ram-Powell, and 
Ursa TLPs (Doyle 1999). 
 
 For positioning a drilled shaft casing, differential GPS (DGPS) surveying 
was demonstrated at the Corp�’s Lock and Dam 24 on the Mississippi River. 
Rotary-drilled casings were monitored for DGPS positional accuracy and 
compared to standard surveying methods (U.S. Army ERDC 1999). 
 
 
Foundation-structure connections 

 The design and installation of mating connections between an underwater 
foundation and its supported structure are not within the scope of this study and, 
hence, are not specifically addressed in this report. For the improved-site 
foundation, there usually is no distinct connection to the structure. Gravity-based 
and pinned foundations typically require connection to their structures, and their 
installation must be considered during the design phase.  
 
 Various connection configurations are available, including shear pins, 
stabbed or embedded mating connections, and grouted connections. Some 
connection details are included in offshore design guidance (American Petroleum 
Institute 1993). Several offshore examples include the discussion of mating 
details and installation procedures for jacket structures on piles by Allen et al. 
(1990); a procedure to mechanically connect piles to an underwater structure 
using hydraulic swaging equipment by Ulbricht et al. (1994); the use of pile 
stabbing guides by Birdwell and Jordan (1994); and a Smart Leg system by 
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LabbJ, Legras, and Standing (1999) for float-over installations on piles. Sele and 
Skjolde (1993) and Welham and Gilfrin (1993) discuss grouted connections. 
 
 
Underwater Foundation Testing 

 Underwater foundation tests may be of two types: integrity testing and 
performance testing. Integrity testing seeks to determine the quality of the 
constructed foundation material, i.e., to determine if the concrete in the drilled 
shaft is honeycombed. Performance testing seeks to determine the adequacy of 
the foundation to withstand the design loading (i.e., the expected range of 
deflections imposed by lateral loading on a drilled shaft) and the capacity of the 
soil to resist the shaft (or pile) loads. 
 
 The type and degree of testing usually depends upon the type of foundation 
and economics. The general trends for underwater foundation site testing are 
listed below. 
 

Foundation Integrity Tests Performance Tests 

Improved-site Material-dependent Intrusive (sampling, etc.) and NDT 

Gravity-based NDT Long-term monitoring  

Pinned NDT NDT, large-strain tests or load tests 

 
 
 Intrusive or destructive tests commonly refer to invasive techniques such as 
soil/rock coring, sample retrieval and laboratory tests, or in situ techniques such 
as cone penetrometer and shear vane tests. These are the same tests that are used 
in geotechnical site investigations to determine the soil/rock properties including 
shear strength, friction angle, relative density, RQD, etc. Intrusive testing may 
also be required in gravity-based and pinned foundations to determine strength of 
(cored) concrete specimens. 
 
 Nondestructive tests (NDT) cover a broad range of techniques. Integrity 
testing using NDT is primarily concerned with cast-in-place concrete or grout 
materials found in gravity-based and pinned foundations. Flaws in steel and 
timber piles may also be detected using NDT during or after pile-driving. 
Performance testing of driven piles to determine their drivability and ultimate 
capacity may also be accomplished with NDT methods. According to 
Chernauskas and Paikowsky (1999), the NDT methods of integrity testing are 
categorized as small-strain testing and large-strain testing. 
 
 
Small-strain integrity testing 

 Small-strain test methods generate stress waves that are interpreted to 
provide shaft or pile integrity information, such as concrete or grout integrity. 
Small-strain integrity testing includes direct transmission techniques, including 
crosshole sonic logging (CSL), single-hole sonic logging (SSL), and parallel 
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seismic logging, as well as surface reflection techniques, such as pulse echo 
method (or sonic echo), transient dynamic response (impulse response), and 
electromagnetic techniques (electromagnetic induction (EM), X-ray, radar, and 
magnometer). 

 
The most common integrity testing technique is 

the CSL, which is conducted within preinstalled 
tubes in cast-in-place piles or drilled shafts 
(illustrated in Figure 65). A transducer is lowered 
into one water-filled tube and emits an acoustic 
signal that is received by a hydrophone (geophone) 
transducer in a separate tube. The signal�’s 
compression (P-) wave is detected and compared to 
the transit time of a signal transmitted through 
intact material with a given modulus of elasticity. If 
material defects are present, the wave speed will be 
reduced relative to that of intact material. Accurate 
transducer positioning helps to pinpoint the 
location of a defect. For accurate P-wave 
transmission, the concrete material must be fully 
cured. Chernauskas and Paikowsky (1999) describe 
the first use of a portable personal computer-based 

CSL test on concrete drilled shafts in the United States with the Pile Integrity 
Sonic Analyzer software package. 

Figure 65. Crosshole sonic 
logging (CSL) integrity test 

 
 Single-hole sonic logging uses only one tube in the drilled shaft. This method 
is normally used after construction is completed and it has been determined that 
there is a need to check the shaft integrity by coring a single hole through the 
shaft.  
 
 Parallel seismic logging (as illustrated in Figure 66) is similar to geophysical 
cross-hole seismic testing in that holes are drilled into the surrounding soil. A 

PVC (polyvinyl chloride) casing is inserted into each 
hole, the annulus is grouted, and the casing is filled 
with water. Both SSL and parallel logging use 
equipment and interpretation procedures similar to 
those used in the CSL test. 
 
 The pulse echo method (PEM) requires an 
external hammer source and an accelerometer 
transducer mounted on the drilled shaft (or pile), as 
shown in Figure 67. The hammer impact causes small 
strains, which induce stress waves in the shaft that are 
transmitted to the accelerometer. The accelerations 
are integrated with respect to time, to obtain velocity 
profiled as a function of shaft length. The presence 
and location of defects are interpreted from the 
velocity record. The effectiveness of this technique is 
limited to depths up to 20 to 30 pile diameters. 

Figure 66. Parallel seismic integrity 
test 

106 Chapter 5   Foundation Preparation and Construction 



 The transient dynamic response (TDR) method 
(not to be confused with time domain reflectometry) 
requires an external instrumented hammer. The 
impact force of the hammer is recorded and 
combined with the acceleration record, similar to 
the PEM method. The shaft�’s velocity response due 
to the induced excitation force can be interpreted to 
indicate the presence and location of defects.  

Figure 67.  Pulse echo method integrity 
test 

 
 In general, electromagnetic techniques are not 
commonly applied in pile integrity testing. 
However, two manufacturers of equipment and 
software specifically designed for pile integrity 
testing using surface reflection methods (low strain) 
are PileTestCom (Israel) Ltd.�’s Pile Integrity Sonic 
Analyzer and Pile Dynamics (U.S.A.) Inc.�’s Pile 
Integrity Tester. 
 
 
Large-strain testing 

 Large-strain testing is typical of the integrity/performance testing conducted 
during pile driving. Large strains induced during pile driving generate large stress 
waves that mobilize the shaft or pile resistance against the surrounding soil. 
Large-strain methods (also referred to as �“dynamic testing�”) allow interpretation 
of both material integrity and performance. The ability to determine the shaft or 
pile performance allows one to evaluate drivability as well as load carrying 
capacity. One example of a large strain test is the surface reflection method, 
which is similar to the pulse echo and transient dynamic response methods. 
 
 Large-strain methods are primarily used for driven (impact and vibratory 
hammered) piles. When the hammer strikes (or vibrates) the pile head, a large 
strain wave is initiated and propagates down the pile. External soil resistance or 
changes in the pile�’s impedance (due to variations in the material or geometry of 
the pile) initiate reflection waves that are recorded.  
 
 Typical dynamic pile testing instrumentation requires two accelerometers 
and two strain transducers mounted on opposite sides near the pile top. The 
strains are converted to forces according to the theory of elasticity while the 
accelerations are converted to velocities. Although numerous interpretation 
methods are available to assess the pile�’s integrity and performance 
characteristics, all are generally based upon 1-D stress wave propagation theory. 
The U.S. standard for high-strain dynamic testing of piles is ASTM Standard 
D4945 (ASTM 1993). One of the most common wave equation software 
packages is GRLWEAP for Windows. A U.S. company that offers it, as well as 
other proprietary pile testing systems, is Pile Dynamics, Inc., of Cleveland, OH. 
The PDA (Pile Driving Analyzer) and the PIT (Pile Integrity Tester) systems are 
also sold by this company. 
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 The PDA systems (PAK and PAL) monitor acceleration and strain sensors 
attached to the impact-hammered pile and process these signals (using 
GRLWEAP) after each blow of the hammer during driving or restriking to 
investigate hammer performance, driving stresses, and pile integrity and to 
provide an estimate of static bearing capacity (Pile Dynamics, Inc. (PDI) 1999). 
 
 The PAK collects up to four channels of strain and four channels of 
acceleration (two piezoelectric and two piezoresistive). Compared with PAL, 
which is a smaller unit that can capture only two channels of data for each of 
strain and acceleration, PAK has superior data collection and processing 
capabilities. Remote data collection using a cell phone modem is also possible, 
and underwater transducers are available. Figure 68 illustrates a PDA test example. 
 

 Using the software program CAPWAP (CAse 
Pile Wave Analysis Program), which was 
developed by Goble Rausche Likins and 
Associates, Inc. (GRL), and marketed by PDI, 
Inc., the soil response is expressed in terms of 
total capacity and its distribution along the shaft 
and at the toe. Damping factors and quakes are 
also modeled. CAPWAP users are required to 
have approved training. GRL and PDI regularly 
offer seminars and workshops. 
 
 Performance testing of vibratory-driven piles 
is generally based upon the same principles as 
large-strain dynamic testing of impact-driven 
piles. The impact-hammer equations are modified 
to account for the dynamic properties of the 
vibrating energy source. Computer models based 
upon finite difference or finite element methods 
for solution of the wave equation have been 
proposed and are similar to those models 

previously developed for impact-driven piles. 

Figure 68. Pile dynamic analysis (PDA) 
test 

 
 The computer programs VIBEWAVE and TNOWAVE were developed to 
predict pile-driving performance and the soil�’s resistance to vibratory driving. 
TNOWAVE can also be used to analyze the performance of the vibratory 
hammer as well as to predict several parameters, including maximum stress in 
the pile, amplitude of vibration at different levels in the pile, penetration rate, and 
nearby building vibrations. TNOWAVE is especially useful for matching 
vibratory hammer size to the soil conditions and preventing pile damage due to 
overloading. The computer model VPDA was developed to predict the pile 
bearing capacity in addition to predicting the pile-driving performance (Moulai-
Khatir, O�’Neill, and Vipulanandan 1994). The predicted bearing capacity is input 
into the program and compared to the observed penetration rate. When model 
parameters match, the actual bearing capacity of the pile is calculated. 
 
 Bosscher et al. (1998) used VPDA and field (onshore) load tests to develop 
the computer model WiscVPDA, which estimates the ultimate bearing capacity 
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as the pile is being driven. WiscVPDA was developed and refined by comparing 
the predicted (VPDA) bearing capacity to the full-scale load test ultimate bearing  
capacity results (illustrated in Figure 69). Steel pipe piles and H-piles at one 
chosen site were vibratory driven and load tested for statistical correlations. 
Significant correlations were noted for pile parameters such as type, diameter, 
perimeter, and cross-sectional area. Significant vibratory hammer correlations, 
i.e., driver parameters such as driving frequency, eccentric acceleration, and 
delivered power, were noted and incorporated into the program. 
 
 
Load testing 

 Static load tests are conducted to 
determine the shaft (or pile) performance and 
the soil response in resisting applied axial and 
lateral loads. A load test is usually made for 
one or more of the following reasons 
(Whitaker 1976): (a) to obtain a load-
settlement or load-displacement relationship, 
(b) to obtain or validate the design safety 
factor against failure, and (c) to determine the 
true ultimate bearing capacity as a check on 
the design value. 
 
 Pile load test configurations are axial 
(compression, tension, and quick load), 
monotonic lateral, and cyclic lateral. These test 
configurations are detailed in ASTM Standard 
D 1143 (axial compression and quick load), 
ASTM Standard D 3689 (axial tension), and ASTM Standard D 3966 (lateral 
loading) (ASTM 1993). 

Figure 69. Comparison of actual pile load test 
results to WiscVPDA predictions 
(after Bosscher et al. 1998) 

 
 The quick load test is permitted as a faster alternative. Its two loading 
configurations are the constant-rate-of-penetration (CRP) and the quick 
maintained-load test (ASCE 1993). The CRP test was developed in the United 
Kingdom by Whitaker (1976) and is not as popular in the United States as is the 
maintained-load test (ASCE 1993). In the maintained-load test, the load is 
applied in increments of 10 percent of the proposed design load and is 
maintained for a constant time interval of a few minutes. In the CRP test, the load 
is applied to cause pile head settlement at a predetermined constant rate, usually 
0.01 to 0.1 in./minute. Several static bearing capacity determination methods 
(including the Corps of Engineers method) are listed in ASCE (1993). 
  
 Axial pile load tests conducted in the past used superimposed dead weights. 
Current practice includes the use of a hydraulic ram that is jacked against a 
loaded platform or against a test frame anchored by reaction piles (ASCE 1993).  
 
 Load tests conducted onshore are much more numerous and are relatively 
less costly than those conducted offshore. The offshore industry literature 
contains several references to offshore load tests, especially for research purposes 
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or in riskier environments such as calcareous soils. For example, load tests 
conducted from both a fixed offshore platform and a floating vessel are described 
by Angemeer, Carlson, and Klick (1973) and Angemeer et al. (1975) for offshore 
Australian sites containing calcareous soils. Dutt and Cheng (1984) conducted 
pullout load tests on 2-ft (0.66-m)-diam pipe piles in offshore carbonate sands. A 
research program described by Matlock, Bogard, and Chan (1998) conducted 
load tests on pipe piles from a fixed platform in the Gulf of Mexico. Jardine and 
Overy (1996) conducted load tests on 2-ft (0.66-m)-diam pipe piles in dense sand 
from a fixed platform in the North Sea. 
 
 The majority of referenced offshore load tests are performed under axial 
tension loading (monotonic pullout tests) to enable determination of skin friction 
capacity. An offshore load test for bending, tension, and compression of pipe 
piles driven into carbonate bedrock was detailed by Settgast (1980). Vines and 
Hong (1984) reported tests on large-diameter laterally loaded pipe piles in coral 
at an offshore port site in Saudi Arabia. 
 
 Load tests conducted onshore with the results applied to offshore structures 
have also been conducted. Tension and compression loading tests were 
conducted on 2-ft (0.66-m)-diam pipe piles in stiff clay in Belgium (Heerema 
1979). Grosch and Reese (1980) performed cyclic axial loading tests on small-
scale (1-in.-diam) piles pushed beyond the end of shallow boreholes in soft clay. 
Lu (1986) evaluated small-scale pile models in carbonate sands while Karlsrud 
and Nadim (1990) reported tests on small-scale (6-in.-diam) piles subjected to 
tension and compression loadings in clay. Zuidberg and Vergobbi (1996) 
discussed load tests on 30-in. (0.76-m)-diam pipe piles in dense silica sand for 

the European Initiative on Piles in Dense Sands 
(EURIPIDES) Project. Onshore testing of pipe piles driven 
and grouted in calcareous soils was performed by 
Randolph et al. (1996). Onshore axial load tests on 4-ft 
(1.2-m)-diam pipe piles in clay were conducted for the 
Corp�’s future in-the-wet IHNC project in New Orleans 
(U.S. Army Corps of Engineers 1999a). 
 

Load tests conducted on drilled shafts sometimes use 
the Osterberg load cell (Figure 70). As compared to 
conventional load tests conducted with a reaction load or 
hold-down shafts with a heavy reaction beam, the load test 
employing the Osterberg load cell is relatively easy and 
inexpensive (Greer and Gardner 1986).  
 
 The Osterberg method, which was developed in 1984, 
allows separate measurements of end-bearing and friction 
loads versus deflection for each load increment. 
 
 Typically, a flat pressure cell that covers the bottom of 
the shaft hole is hydraulically pressed simultaneously 
against both the bottom of the shaft hole and the bottom of 
the shaft. Depending upon the cell placement within the 

drilled shaft, gauges can be used to measure the cell�’s downward movement 

Figure 70.  Osterberg cell at the 
rebar cage bottom 
(after DiMillio 1999) 
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against the soil and its upward movement against the shaft. From these data, 
load-deflection curves are generated. The most common loading sequence is the 
ASTM Quick Test Method D 1143 (Osterberg 1998). After the testing is 
completed, the cell can be grouted in place, and the test shaft can be used as a 
production shaft. 
 
 Drilled shaft (caisson) load tests were conducted in 1998 at the Corp�’s 
Monongahela River Braddock Dam site to provide axial and lateral load data for 
design of the production shafts (Figure 71).  

 

Figure 71.  Braddock Locks and Dam 2 drilled shaft load test configuration (after 
Wahl 1999)

 Two 5-ft (1.5-m)-diam concrete-reinforced shafts were embedded 15 and 
25 ft (5.1 and 7.6 m), respectively, into the claystone/siltstone bedrock. To the 
rebar cages for each 70-ft (21-m)-long shaft, strain gauges, telltale tubes, CSL 
tubes, inclinometer tubes, and an Osterberg cell (at its bottom) were attached. 
The rebar cage was lowered through the casing, and then the casing was 
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backfilled with tremied concrete. After the concrete had cured, integrity and 
performance tests were conducted. Integrity testing was conducted using CSL. 
Performance testing was conducted using the Osterberg cell for application of 
axial loads and hydraulic jacks for application of lateral loads. Axial load-
deflection curves were generated to provide end-bearing and side-wall friction 
resistance design data, while bending moments were generated from the lateral 
load-deflection curves (Wahl 1999). 
 
 Full-scale load tests of underwater drilled shafts have also been conducted at 
the Ohio River (Kentucky), St. Mary�’s River (Georgia), and the Apalachicola 
River (Florida) bridges using the Osterberg cell (Osterberg 1998). Load tests on 
shafts up to 9 ft (2.7 m) in diameter were conducted in water depths to 27 ft 
(8 m). 
 
 Over 300 load tests using Osterberg cells have been conducted in over 
10 countries. Drilled shafts (bored piles or caissons), driven pipe piles, and 
driven precast concrete piles up to 10 ft (3 m) in diameter, driven to depths up to 
300 ft (90 m), have been tested. Loads up to 15,000 tons (135 MN) have been 
applied using Osterberg cells. Osterberg (1998) lists several installation methods 
and cell locations for determining side shear resistance and end-bearing values. 
As an example, Figure 72 shows the test configuration on a drilled shaft 
subjected to deep scouring. 

 

Figure 72.  Load test on an underwater drilled shaft showing a test configuration 
for scour design with load/deflection curve results (after Osterberg 
1998) 

 
Long-Term Considerations 

 Underwater foundations are designed and constructed for durability and 
long-term integrity during their service life. After construction is completed, 
important considerations should include protecting the foundation from scour, 
corrosion, and deleterious environmental effects and ensuring that the foundation 
performs as designed.
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Deleterious effects 

 Constructed foundations are exposed to swift currents, shifting mudline soils, 
corrosion, and other (harmful) environmental conditions. Each foundation type is 
susceptible to any of these conditions to a varying 
degree. 
 
 For example, an improved-site foundation is 
susceptible to scouring, but corrosion is generally not a 
consideration. A steel pipe pile foundation exposed 
above the mudline will be more susceptible to 
corrosion than a submerged concrete gravity-based 
foundation. A harmful effect that does not discriminate 
by foundation materials or foundation types is mudline 
erosion (scouring), as illustrated in Figure 73. 
 
 Scouring. Scouring or erosion is caused by 
unidirectional water currents, oscillatory waves, and 
tidal currents. Scouring is the result of the interaction 
between the water flow field, the obstruction to this 
flow field (the foundation), and the sediment bed 
(Machemehl and Abad 1975). The scouring 
phenomenon has been researched for different 
foundation types, and several technological advances 
have been developed to reduce scouring action.  
 
 Ninomiya, Tagaya, and Murase (1972) studied the 
scouring of gravity-based foundations (cylindrical 
shapes) placed on soft cohesive and sandy soils. Model 
testing using square foundation shapes resulted in formulas for scouring depth 
and pattern due to currents. Correlations with other foundation geometry shapes 
were also made. It was concluded that a skirted hemispheric shape was the most 
effective shape to resist scouring. Scouring characteristics were also quantified. 

Figure 73.  Scour development 
around a pinned 
foundation (after Abad and 
Machemehl 1974)

 
 For pile foundations, Abad and Machemehl (1974) and Machemehl and 
Abad (1975) researched the effects of scour caused by oscillatory wave motion 
and unidirectional currents in a laboratory wave flume. The parameter volumetric 
scour, rather than scour depth, was studied based upon the controlling factors, 
which included current velocity, water depth, wave characteristics, and pile 
diameter. These researchers were able to predict the scour patterns and the 
magnitude of the scour when the geometric and dynamic similarities of a given 
foundation were matched to the research results. 
 
 Chow and Herbich (1978) studied sand scour due to oscillatory wave 
motions around a pile group in a laboratory wave flume. Fifteen variables 
controlling the ultimate scour depth were analyzed. The variables were water 
depth, density, viscosity, and free stream velocity; wave height, period, and 
length; sand density, diameter, and friction angle; elapsed time and gravity 
acceleration; pile diameter and distance between piles; and ultimate scour depth. 
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 Maidl and Schiller (1979) conducted field research at a gravity-based 
platform in the North Sea to investigate scour phenomena and protection 
techniques. The protection techniques included (a) precast slabs hinged to the 
gravity-based foundation, (b) sandbags in nylon netting, (c) nylon mats filled 
with colcrete grout, and (d) mats studded with artificial seaweed. Costs, 
installation techniques, and recommendations were discussed for the first three 
techniques. It was concluded that the sandbags in nylon netting had the lowest 
service life and efficiency rating, while the nylon bags filled with colcrete rated 
the highest. 
 
 Sheppard, Niedoroda, and Karanumuni (1990) compiled all previously 
researched scour phenomena and synthesized the data. These researchers 
compiled 98 data sets from five investigations of steady flow around vertical 
cylinders in cohesionless granular soil. They proposed an equation to predict the 
erosion depth in a scour hole formed by a steady current passing a vertical 
cylinder. 
 
 Scour induced during pipeline installation was addressed by Bijker et al. 
(1991). Scour induced during cyclic lateral loading of piles was described by 
Reese, Wang, and Long (1989). 
 
 The installation of scour protection consists of side- or fall-pipe dumping, or 
individually placing selected fill material (rocks and gravel). The most common 
offshore methods are side-dumping and fall-pipe placement, largely due to the 
massive quantities of materials that are required around some of the platform 
foundations (Figure 74) and for seafloor trenched pipelines. For precision 
placement, the fall-pipe method is most frequently used.  
 

Specialized vessels are available to 
place offshore scour protection. For 
example, Tideway BV (Dredging 
International NV, Netherlands) has a 
dynamically positioned (no tug 
assistance needed) fall-pipe vessel 
capable of placing 12,000 tons of rock 
within a 1,644-ft (500-m) zone to a 
depth of 986 ft (300 m). Its survey 
system includes a multibeam 
echosounder and an ROV that is heave-
compensated to within 4 in. (10 cm) 
vertical movement. Other large 
offshore vessels with rock-dumping 
capabilities are owned by HAM 
(Hollandsche Beton Groep NV, 
Netherlands), Ballast Needam NV 
(Netherlands), and Boskalis Offshore 
BV (Netherlands). 

Figure 74.  Offshore fall-pipe rock dumping (after 
Tideway BV 1999) 

 
 Precision-placement may also be accomplished by individual rock 
placement. A specially adapted barge (pontoon) crane deposited rocks weighing  
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more than 1 ton on the Oosterschelde project (shown in Figure 75). Basalt rocks 
weighing 5 to 9 tons (6 to 10 metric tons) were placed as the top layer of scour 
protection on the submerged pier sills. Rocks weighing less than 1 ton were 
placed by side-dumping vessels (DOSBOUW 1987). 
 
 Corrosion. Corrosion is caused 
by numerous environmental factors. 
Its prevention is an important topic, 
especially to the metallurgical 
industry. Substantial research has 
been conducted regarding marine 
corrosion and fouling, and several 
organizations, including the 
National Association of Corrosion 
Engineers, American Society of 
Mechanical Engineers, and 
American Concrete Institute, and 
publications including Corrosion 
and Materials Performance have 
addressed these issues. Steel pilings 
are especially susceptible to 
corrosion. For example, the average 
general corrosion rate of marine 
structures in European countries is approximately 5 mils (0.125 mm) per year 
(Van Damme and Vrelust 1999). 

Figure 75.  Precision rock placement (after DOSBOUW 
1987) 

 
 As illustrated in Figure 76, the corrosion and 
biological fouling exposure zones on a typical pile 
include the lower erosion zone, the biological 
fouling zone, the splash zone, and the atmospheric 
zone (Escalante and Iverson 1978). 
 
Although each zone has a different corrosion 
profile, the highest corrosion rate occurs in a 
narrow band just below the splash zone and is 
aggravated by fluctuating water levels 
(Van Damme and Vrelust 1999). 
 
 Environmental factors influencing corrosion 
include dissolved oxygen, temperature, salinity, 
pH, currents, pressure, and biological fouling 
(Thomason and Fischer 1991). Corrosion 
prevention methods for steel piles include barrier 
type coatings, anodic coatings, cathodic protection, 
or combinations of these (Escalante and Iverson 
1978). 
 
 Escalante et al. (1977) evaluated a variety of 
coatings and cathodic protection systems on steel 
piles located off the Atlantic coast over a 15-year period. Van Damme and 

Figure 76.  Exposure zones for piling 
(after Escalante and Iverson 
1978) 
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Vrelust (1999) investigated the effects of a two-component coal tar and epoxy 
coating system over a 15-year period.  
 
 Cathodic protection is needed for long-term corrosion protection of subsea 
components. The offshore industry has successfully used cathodic protection 
measures over the last several decades, and reliable systems have been optimized 
for water depths less than 986 ft (300 m). For example, North Sea experience has 
shown that inducing a high current density (e.g., 320 mA/sq m) on steel piles 
immediately upon immersion promotes rapid cathodic polarization and formation 
of high-quality calcareous deposits. The calcareous deposits reduce the dissolved 
oxygen diffusion rate and thus reduce the long-term current density requirements 
for cathodic polarization (Thomason and Fischer 1991). 
 
 Combination cathodic protection and multicoat paint systems offer greater 
corrosion resistance. Shell�’s Gulf of Mexico Auger TLP pile template and piles 
have a three-coat paint system in addition to cathodic protection with 
aluminum/zinc/mercury-type anodes. The corrosion protection system was 
designed in accordance with National Association of Corrosion Engineers 
(NACE) RP-01-76 for a targeted fatigue life of 1,200 years (Ulbricht et al. 1994). 
 
 
Foundation behavior monitoring 

 Long-term monitoring is required to detect changes in the structure�’s 
foundation that may affect the structure�’s life cycle performance. Periodic 
inspections and permanent instrumentation are needed to achieve monitoring 
programs. Offshore regulations list permanent instrumentation requirements 

when (a) the foundation depends on an active 
operation such as drainage systems, (b) design 
conditions are different or unusual, and 
(c) foundation settlement, tilt, or penetration need 
to be monitored (Tjelta 1993). 

Figure 77.  Foundation monitoring 
sensors on the Gullfaks C 
platform (after Tjelta 1993) 

 
 The skirted gravity-based foundations have a 
special need for long-term monitoring due to 
their reliance on active drainage inside the 
suction skirts. Filters placed on the inside walls 
of the skirts allow pumping to reduce pore-water 
pressures. Pressure transducers, accelerometers, 
settlement gauges, inclinometers, and/or strain 
gauges are permanently mounted at various 
locations on the foundations. Tjelta (1993) details 
the long-term monitoring instrumentation 
program for the North Sea�’s Gullfaks platform, 
shown in Figure 77. 
 
 The foundation monitoring system of the 
North Sea�’s Hutton TLP includes unique 
settlement monitoring gauges. Basically, 
manometer tubes were connected to both the 
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piling structure and the adjacent seabed. It was reported by Stock, Jardine, and 
McIntosh (1993) that the tubes contained pressure transducers capable of 
detecting differential displacements within an accuracy of 0.1 mm. The 
transducer outputs were acoustically transmitted to the surface, where settlements 
were recorded and integrated into the performance monitoring system. 
 
 Long-term monitoring of a pile foundation for a jacket platform was detailed 
by Sharp and Kenley (1993). Strain gauges and accelerometers mounted on the 
piles and pressure transducers placed beneath the mudmat were monitored 
beginning with the installation of the platform. Loading variations were recorded 
as a function of short-term events (such as high wave loading) and long-term 
performance. 
 
 



6 Summary and Conclusions 

 This report provides a general overview and description of geotechnical 
foundations constructed in the wet (underwater). Case histories of selected 
(published) in-the-wet foundation projects were chosen. Since the largest 
quantity of in-the-wet foundations have been constructed offshore, most of the 
detailed information regarding foundation design and installation was taken from 
published offshore industry sources.  
 
 Three generalized underwater foundation types are described (improved-site, 
gravity-based, and pinned). Design, installation, and testing considerations are 
discussed for each foundation type. Site assessment principles remain the same as 
for onshore foundation sites, but the equipment technology for underwater site 
investigations may be more innovative and unique. For example, remotely 
controlled equipment is not commonly used for onshore site investigations. 
Sampling techniques and equipment may also differ from those used onshore. 
 
 Focus is placed on two of the most common pinned foundation types (pipe 
piles and drilled shafts) for design and installation considerations. The use of the 
suction pile, which has not been used for onshore applications, is also discussed. 
Foundation connections (interface between the foundation and structure) are not 
discussed since they are highly structure-specific. 
 
 Installation equipment and procedures are discussed, and differences between 
onshore and underwater foundation construction techniques are highlighted. 
Inspection and testing procedures are similar to those onshore, with the exception 
of pile load test frequency and configurations. 
 
 In conclusion, underwater foundations constructed in the wet may allow an 
alternative to expensive in-the-dry cofferdam construction. Underwater 
foundations have been used extensively offshore, since in-the-dry installations 
are not an option in deeper water and, consequently, much of the offshore 
expertise and technology developed over the last 50 years may be directly 
applied to the Corps of Engineers shallow (in-the-wet) sites. As the Corps and its 
contractors develop more experience regarding design and construction of in-the-
wet foundations (especially for navigation and flood control structures on inland 
waterways), the innovative in-the-wet construction approach may offer a 
significantly beneficial alternative to typical in-the-dry construction. 
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