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1 Introduction

The U.S. Army Corps of Engineers has been tasked with designing, building,
and maintaining numerous structures located on or within bodies of water
including rivers, lakes, waterways, and coastal areas. Each of these structures has
a geotechnical foundation system that enables the structure to perform a useful
service or function throughout its design life. Each foundation is uniquely
designed to match the structure’s function and engineering requirements
constrained by the underwater geological site conditions.

Background

Underwater foundations have been constructed throughout history. The
earliest type of underwater foundation appears to have been driven stakes or piles
around the edges of water bodies. Ancient settlements built on piles around lakes
in present-day Scotland, Switzerland, Italy, and Ireland have been dated to about
4,000 years ago. The ancient Phoenicians built docks and ports (such as Tyre)
using underwater construction methods. The Greeks and Romans used piles for
shore works along the Mediterranean and many other locations (Fleming et al.
1992, D’ Appolonia 1972). Herodotus, a Greek writer who lived in the 4th
century B.C., wrote about African dwellings erected on piles driven into a lake.
In Britain, evidence of bridge timber piles about 9 ft (3 m) long was found in the
Tyne River. Vitruvius, a Roman architect, wrote the treatise De Architectura,
which describes using sheet piles for dams and other water structures. The
Roman engineers also developed concrete and used it for placement of bridge
piers. During the Middle Ages, cities such as Venice and Amsterdam were built
upon timber piles (Fleming et al. 1992).

Not until the 19th century did soil engineering principles become
incorporated into the foundation construction process. Changes in materials and
installation technology began to take place. Pile-driving by man or horse power
was replaced by a steam engine that raised a cast-iron ram and released it to
impact the timber pile. Metal piles became available in the mid-1830s. In 1824
Joseph Aspdin patented his hydraulic cement, which became known as portland
cement, and the French introduced reinforced concrete. Driven piles could be
replaced by bored shafts since the hydraulic cement could be placed underwater
(Fleming et al. 1992).
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Modern soil mechanics, which offered an explanation for the behavior of soil
foundations, was not advanced until the early 20th century. Since that time,
numerous foundation types, materials, and installation technologies have been
developed for onshore applications (Parkhill 1998). Underwater foundation
technology initially lagged behind onshore technology, especially in soil
sampling and testing (Focht and Kraft 1977). In other areas such as site
assessment, foundation material selection, installation methods, and equipment,
the offshore technology has been uniquely developed. For example, the offshore
industry almost exclusively used pile foundations without benefit of preliminary
site investigations until the 1940s (Focht and Kraft 1977). Design guidelines for
some types of underwater foundations have evolved separately from onshore
guidelines (American Petroleum Institute 1993), while site assessment methods
and installation equipment have been specifically developed for underwater
foundations.

Deepwater site exploration and foundation construction techniques have been
used for scientific research and military purposes, but the offshore industry has a
profit motive to build functional foundations (Brown 1972). Although the
underwater foundation projects designed and constructed by the U.S. Army
Corps of Engineers may not be located beyond the Continental Shelf, the use of
state-of-the-art offshore foundation applications will likely be influential.

Objectives

Underwater foundation selection and design choices have generally been
based on foundation construction in the dry, that is, within a pre-installed
cofferdam that isolates the construction from the surrounding body of water, or
on dry land with water diversion. Construction on dry land is normally the fastest
and least expensive method (American Society of Civil Engineers (ASCE) 1998).
However, the dry land method may not be an option unless the body of water can
be feasibly diverted. Cofferdam design and construction efforts require additional
time and expense to be budgeted for project completion. The benefits of faster
paced and more economical construction within the water (in the wet) without
cofferdams have been demonstrated in many case histories, and the Corps has
begun exploring the feasibility of in-the-wet technology, as illustrated in
Figure 1. The Corps’ first major in-the-wet project (Monongahela River
Braddock Dam) is currently under construction and is expected to save $5 to
$15 million while reducing contract duration by 1 year (ASCE 1999a).

To obtain a technical project database of in-the-wet foundation design and
construction requires time and experience, and some Corps Districts are
compiling individual project information at specific sites. No written Corps-wide
guidance for underwater foundation design and construction is currently
available. Most of the technical expertise is held by specialist design firms and
contractors. The information contained in this report cannot be found in a concise
form or single document elsewhere in the literature.
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Chapter 1

Scope

The purpose of this report is to provide
an overview of underwater geotechnical
foundation design and construction and
preliminary guidance based on past and
current technology applications. Most of
the state-of-the-art technology comes from
the marine offshore industry, because of its
complex foundation engineering challenges
in the deep-ocean frontier.

Direct applications may or may not be
made to underwater foundations based in
shallower rivers and inland waterways, but
most of the principles, techniques, and
equipment are related.

Figure 1. In-the-wet foundation concept for the
Corps of Engineers’ lift-in Olmsted
Dam structure (after Gerwick News
1999)
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2 Selected Case Histories

In-the-dry foundation construction requires diversion of the existing water
body or isolation of the construction from the water body. In-the-wet foundation
construction may not adversely impact the navigation system and is relatively
unaffected by flood stages or tidal fluctuations when compared with in-the-dry
construction. Also called “float-in” or “lift-in” construction, in-the-wet
construction requires underwater preparation of the foundation prior to placement
of the superstructure (ASCE 1998). Several types of structures have been
constructed using in-the-wet techniques, and selected case histories illustrate
aspects of those techniques.

Navigation, Flood Control, and Dam Structures

In-the-wet construction methods are rare for these types of structures in
inland (shallow) waterways. This construction method is recognized (ASCE
1998) but definitely plays a lesser role than the cofferdam (in-the-dry)
construction method.

Thames River flood barrier

This project combined in-the-wet foundation preparation and initial
construction followed by in-the-dry construction of the superstructure within a
cofferdam. The purpose of the project was to prevent tidal floods in the London
area. Over the past several centuries, the Thames River has slowly been rising
due to land settlement in southeast England and London and the increase in the
river estuary tidal range. In addition to these changes, the North Sea surge tides
always present a flood threat to the London area.

After the disastrous 1953 tidal surge floods, the Government appointed a
committee to make recommendations, and a flood barrier was proposed. By
1970, after approximately 14 design ideas were analyzed, the structure’s location
and design concepts were agreed upon. Construction commenced in 1973
(Gilbert and Horner 1984) and was completed in 1982. The completed project is
shown in Figure 2.
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Figure 2. Thames River flood barrier gates (after Gilbert and Horner 1984)

The foundation project consisted of constructing four piers in sequence from
the south side of the river, followed by construction of five piers in sequence
from the north side. Access to the piers was provided by a jetty constructed from
the south side. Bottom sills connected each pier. The riverbed consisted of chalk
overlain with alluvial deposits of gravel, sand, and clay up to 50 ft (16 m) thick.
Six pier foundations were sited on the chalk, and three pier foundations were
sited on sand deposits. Underwater excavations and concrete placements were
required (Figure 3). Prior to excavation, sheet piles forming a future cofferdam
were driven into the chalk at each pier location. The distance from the tops of the
sheet piles to the base of the excavation was about 90 ft (27 m).

Special problems were encountered during the underwater foundation
preparation. Leveling and cleaning up the bottom of the excavation in the chalk
posed a challenge due to redeposition of river silt during each tide. Explosives
were used to remove chalk wedged in the sheet-pile troughs. Special air-lift
pumps were developed to scour the excavation bottom.

Excavation Tremie concrete Dewatered

0 meters 25

Figure 3. Underwater foundation construction sequence (after Gilbert and
Horner 1984)
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Underwater concrete placement for each pier base was accomplished using
12-in. (30-cm)-diam tremie pipes transporting approximately 7,000 tons of
concrete around the clock for 5 days. Each concrete base thickness was 15 ft
(5 m). Coring confirmed optimal jointing with the undisturbed chalk surface. The
cofferdams were dewatered, and pier construction proceeded. By 1982 the
project was essentially completed.

Eastern Scheldt storm surge barrier

On the eastern side of the English Channel, the Netherlands are also
subjected to the whims of the North Sea. The 1953 floods provided an impetus
for the Government to launch the Delta Project, which was designed to protect
the Netherlands at the confluence of the Rhine, Maas, and Scheldt Rivers. After
construction of seven dams and flood barriers, the Eastern Scheldt storm surge
barrier and two auxiliary lock and dam structures (which comprised the final part
of the project) were completed in 1986 (DOSBOUW 1987).

The storm surge barrier spans the mouth of the Eastern Scheldt, and was the
most complex portion of the entire Delta Project. The typical current is about
5 fps (1.5 m/sec) and bottom slope is 1 in 7 (Heijnen and Vermeiden 1979).
Three tidal channels with depths up to 99 ft (30 m) were crossed with a structure
whose foundations consisted of piers and connecting sills. Each pier was
prefabricated using prestressed concrete and weighed up to 18,000 tons. Figure 4
shows the barrier layout with a typical pier detail. The piers were built inside a
dry ring dike with a bottom approximately 49 ft (15 m) below sea level. To move
the piers, the dike was flooded, and each pier developed a buoyant weight of
about 9,000 tons. A lifting vessel capable of hoisting 10,000 tons lifted and
transported each pier to its final site. Once at the site, each pier was lowered to
the prepared seabed, internally ballasted, and grouted at the prepared foundation
contact.

The seabed floor consisted of young Holocene fine to medium sands and silt.
It was modified to accept the piers. No piling or concrete foundations were used.
Site investigation using a specially designed geotechnical platform yielded cone
resistances ranging from 14.5 to 145 psf (0.7 to 70 kPa) (Heijnen and Vermeiden
1979). Since these resistances were below those required for adequate bearing
capacity, special preparations were required to enable adequate bearing
capacities.

First, the seabed was excavated (a “cunette” excavation), and unsuitable
material (silt) was replaced with sand where necessary. The sand was compacted
over a distance of 263 ft (80 m) around each pier by a specially built floating
compacting rig. The rig drove four large vibrating rods into the subsurface and
compacted layers up to 59 ft (18 m) thick. The compaction process took 3 years
to complete. The quality control system included another specially built craft
equipped with a conventional drill rig and a diving bell that conducted soil
sampling and density measurements during the compaction process.
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a. Storm surge barrier b. Storm surge barrier float-in pier detail

Figure 4. Eastern Scheldt storm surge barrier (after DOSBOUW 1987)

The compacted seabed was then dredged, leveled to the designed depth, and
covered with 658 x 138 x 1.2 ft (200 x 42 m x 36 c¢cm) prefabricated foundation
mattresses. The mattresses were fabricated offsite and transported to each
location, where they were unrolled onto the seabed by specialized floating
equipment. Each mattress consisted of graded aggregates sandwiched between
reinforced support fabric. After the upper mattress was placed, a block mattress
(containing concrete blocks of varying thicknesses) for leveling purposes was
positioned. Each pier was then placed directly on its respective block mattress.

A graded stone aggregate sill was placed between each pier to stabilize the
piers and prevent bottom scouring in the event a gate failed to close. A stone-
depositing barge crane placed the rocks weighing up to 11 tons (10 metric tons)
with densities up to 2.5 tons/cu yd (3 metric tons/m”) into their underwater
locations. About 5.5 million tons of stone were placed into position over a period
of about 2 years. After completion of the underwater sill, precast concrete sill
beams were lowered into place to rest on the underwater sill. The remaining
superstructure elements were then positioned and placed between the piers.
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Mississippi River Lock and Dam 26 guidewall

The upstream guidewall at the Corps’ Lock and Dam 26 replacement on the
Mississippi River is founded on 118 caissons. Each caisson consists of a 6-ft
(1.8-m)-diam open-ended pipe pile driven 51 ft (15.5 m) into sands and gravels
in the river bottom, which is about 40 ft (12.2 m) below the river surface. After
vibratory driving was completed, the piles were internally excavated under a
positive pressure head to prevent blowout and then filled with concrete. A load
test using eight 3-ft (0.9-m)-diam reaction piles driven to bedrock validated
design assumptions (Demsky and Moore 1989).

Monongahela River gated dam

A recently contracted $107 million “in-the-wet” project is the Pittsburgh
District’s new gated dam next to the existing Braddock Locks and Dam 2 on the
Monongahela River in Pennsylvania (U.S. Army Corps of Engineers 1998). The
underwater foundation system will consist of a dredged area with sheet-pile
cutoff walls in the riverbed alluvium and concrete drilled shafts socketed into
bedrock, upon which will rest two float-in precast concrete dam elements
(Figure 5).

Besides the novel features of the
Drilled shafts " 3 concrete float-in elements, the
\ ; predominant work feature for the
underwater foundation will be drilled
shafts. These provide the deep
foundation support for the precast
concrete elements, and also function
as anchor piles for positioning the
precast concrete elements. The drilled
shaft (similar to a caisson or pier) is
basically a pinned foundation system
consisting of a 78-in. (1.9-m)-diam
by 30-ft (9-m)-long open steel pipe
Figure 5. Monongahela River gated dam and pile (casing) driven with a vibratory
foundation (after Gerwick News 1998) hammer to bedrock, then rotary-
drilled through the bottom end and
further drilled without casing about 17 ft (5 m) into the bedrock. Steel
reinforcement and instrumentation tubes for later sonic testing will be inserted to
bedrock and tremie-concreted. Steel shear pin connectors provide the attachments
for the subsequently positioned precast concrete dam elements.

The two 300-ft (91-m)-long, 103-ft (31-m)-wide, and 21-ft (6-m)-deep
precast segments will be internally tremie-grouted. Once finished, the dam height
will be about 81 ft (25 m) and about halfway submerged. Construction is
expected to be completed in 2002 (ASCE 1999a).
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Olmsted Dam

Another innovative Corps of Engineers project is being designed to replace
and update navigation and flood control capabilities on the lower Ohio River,
15 miles from its confluence with the Mississippi River. The Olmsted Dam
project has been designed as float-in (in-the-wet) construction and will be the
only wicket dam in the United States when completed. Currently under contract
are $224-million twin locks being constructed within $55-million in-the-dry
cofferdams (ENR 1996).

Lake Mead intake structure

Lake Mead serves as the main source of drinking water for southern Nevada,
including Las Vegas. The lake is impounded by the Hoover Dam. As part of a
water supply improvement program, a water-intake shaft and tunnel system is
being constructed. The intake shaft was installed in the wet and will eventually
be connected to an underground tunnel and distribution system.

The intake structure was floated in and placed in 240-ft (73-m)-deep water
onto a specially prepared underwater foundation on a steep underwater slope. A
bench was excavated, and a pile-drilling template was positioned on the level
excavation. Downhole hammer-drill equipment was used to drill anchor piles that
were subsequently grouted. A second template was keyed into the first template,
and a 20-ft (6.5-m)-diam shaft was drilled an average length of 100 ft (30 m) into
stable rock. The first 30 ft (9 m) was steel-cased. The shaft was then grouted after
the float-in steel riser intake structure was placed into position. Personnel dives
were minimized during construction by using remotely operated vehicles
(ROVs), a high-resolution positioning system, and sonar equipment (Norwesco
Marine 1999).

Adriatic Sea piled breakwater structure

Approximately 1.25 miles (2 km) off the Italian coast near Manfredonia on
the Adriatic Sea, a breakwater structure was constructed to protect new offshore
docking facilities (Toppler, Harris, and Maaten 1971). The breakwater design
was basically a heavy concrete slab resting on battered piles in 36 ft (11 m) of
water. The 4-ft (1.2-m)-diam steel pipe piles are battered at a 3:1 incline to resist
the design load of 3.3 tons/sq ft (30 tons/m”). A two-dimensional pile-driving
template made of precast concrete was designed as a permanent addition to the
breakwater structure, and extended above the waterline to serve as a driving
guide. Model testing was conducted during the design phase.

Argentina piled jetty
The foundation of an offshore jetty installed at Puerto Deseado, Argentina,

was constructed in the rhyolite bedrock (Nakayama 1992). Each of the 147 piers
(diameter 4 ft (1.2 m)) was socketed 13 ft (4 m) into the rock using a
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MACH-120R rock drill. The bedrock inclined approximately 30 deg, and drilling
was conducted on a self-elevating (jack-up) platform in a water depth of 60 ft
(18 m). The chosen rock drill operated by down-the-hole suspension hammering
with 720 blows per minute, which helped eliminate slippage down the steep
incline.

Offshore lighthouses

One of the first permanent offshore gravity-based structures is the Kish Bank
Lighthouse located off the coast of Ireland (Young, Kraft, and Focht 1975). This
structure was built in 1965 in the protected Dun Laoghaire harbor, floated 8 miles
(13 km) off the entrance to Dublin Bay, and lowered 67 ft (20 m) to the seabed
(Figure 6). Another gravity-based lighthouse is the Royal Sovereign Lighthouse,
floated off the coast of Eastbourne, England, in 1968 and sunk in 47-ft (14-m)
water depth (Antonakis 1972).

Figure 6. Kish Bank lighthouse gravity-based structure
(after Young, Kraft, and Focht 1975)

Hydroelectric dam

British Columbia’s Hugh Keenleyside earth dam foundation was constructed
in the wet on the Columbia River between 1965 and 1969 (Bazett and Foxall
1972). No seepage cutoff wall was designed since the bedrock is located about
450 ft (137 m) below the sand-gravel riverbed in 90 ft (27 m) of water. To
control seepage, an impervious glacial till blanket was constructed beneath the
future dam extending upstream 2,200 ft (669 m) from the future dam upstream
toe. The as-designed maximum final slope of the blanket was 1:10.

The foundation was installed by free-fall dumping till, sand, and gravel
materials into the river using bottom-opening barges and above-water bulldozers.
The till blanket overlies sand and gravel backfilled in water depths to 55 ft
(17 m).
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Extensive survey control was established to define the boundaries and depth
of the underwater foundation. An echo-sounding vessel defined the water depth
and bottom topography. Shoreline-surveyed grid lines established the vessel’s
survey patterns using shore-based transits and hand-held radio communication.
Current and turbidity meters were used to monitor the river’s velocity and water
quality. Turbidity exceeding 5 ppm was not allowed during construction because
of adjacent industrial water-supply intakes.

Underwater inspection and sampling tasks were accomplished primarily by
scuba divers wearing wetsuits. The divers monitored preliminary hydraulic
dredging and subsequent construction operations for silt sediment control, which
had a prominent influence on the project’s schedule. Another major problem was
segregation and loss of fines during dumping. Quality control measures included
density determinations using standard penetration tests, gradation analysis
sampling, large-scale testing experiments, and piezometer instrumentation.

Other dams

The High Aswan Dam in Egypt was partially constructed underwater in a
maximum water depth of 131 ft (40 m). The underwater portion of the core
consists of coarse sand that was grouted after placement. Vibrator-compacted
dune sands form adjacent underwater zones. The dam height is 364 ft (111 m).
Hong Kong’s Plover Cove Main Dam was partially constructed underwater after
soft foundation materials were removed. Other projects listed by Johnson,
Compton, and Ling (1972) include the Mississippi River’s Chain of Rocks rock-
fill dam, Columbia River’s Dalles Closure and Wanapum Dam, and Ghana’s
Akosombo Dam.

The first dam project built across a major U.S. river without channel
diversion was the Chain of Rocks rock-fill dam across the Mississippi River near
St. Louis, MO. This $4.5-million Corps of Engineers (St. Louis District) project
avoided the time and expense of diverting the river, building cofferdams, or
dewatering the site in order to build this navigation improvement. Although the
rock-filled section was about 56 percent of the total dam’s length, the rock-filled
length of 1,800 ft (547 m) was constructed to be 210 ft (64 m) wide at the bottom
and 30 ft (9 m) wide at the top. Four rock sizes (6 tons to 8 in.) were placed in
water depths to 30 ft (9 m) using barge-mounted rock grapple cranes and a
specially designed tremie pipe (fall-pipe). Rock was placed in 5-ft (1.5-m) lifts in
a sequential fashion described by Smith (1962).

Another hydroelectric dam (Wanapum Dam) built on the Columbia River
was completed in 1963. Instead of constructing an impervious bottom blanket as
done at Hugh Keenleyside, the river was diverted, a cutoff was constructed, and
an embankment dam was completed with an impervious core over a grouted
slurry trench. Underwater backfilling of pervious sand and gravel was
accomplished between upstream and downstream rock-fill dikes. Underwater
consolidation of the pervious fill (maximum depth of 50 ft or 15 m) was
performed using vibroflotation equipment. After consolidation was completed,
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the slurry trench was constructed, and the remaining dam was constructed as
detailed by Engstrom (1963).

Bridges

Underwater foundations have been constructed in the wet for numerous
bridge structures crossing rivers, bays, and nearshore locations.

Brooklyn Bridge

It took 13 years to construct this bridge over New York’s East River. Work
began in 1870 on a unique and labor-intensive method of constructing
underwater foundations. Two wooden caissons were sunk on either side of the
river upon which the bridge superstructure rests. The unique features included the
size of the caissons and the use of compressed air beneath the caissons, which
allowed the workers (sandhogs) to muck out the soil. As the soil was removed,
the weighted caissons eventually settled to the bedrock layer and were filled with
concrete. Compressed air had been used before during construction of the
Mississippi River bridge at St. Louis, but not to the extent used at the Brooklyn
Bridge.

The caisson on the Brooklyn side of the East River was a 168-ft-long by
102-ft-wide by 15-ft-deep (51 x 31 x 5 m) inverted box. It was constructed
upriver in the dry using wood timbers, and weighed 16 million pounds (7.2 Gg).
It was floated downriver, set within a frame, and weighted down with stones until
it penetrated the river bottom. Compressed air was pumped in, which expelled
the water and allowed entrance by the sandhogs (Figure 7). Many lives were lost
before the caisson foundation was excavated down to the bedrock layer, and
compression sickness (caisson disease or the “bends”) injured many of the
sandhogs (Delaney 1983).
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Figure 7. Sketch of Brooklyn Bridge underwater caisson (after Delaney 1983)
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Tappan Zee Bridge

The 6-mile-long (9.6 km) Governor Malcolm Wilson Tappan Zee Bridge,
which crosses the Hudson River about 13 miles north of New York City, is one
of the largest bridges in the United States. The bridge is named from the local
Tappan Indian tribe and the word “zee” is Dutch for “sea.” The bridge is the key
structure on the 641-mile New York Thruway System and was rededicated in
1994 in honor of the former Governor Malcolm Wilson. Construction began in
1952, and the bridge became operational in 1955. More than 40 million vehicles
presently use the bridge each year (New York State Thruway 1999).

The central span over the main channel is supported by eight concrete
caissons on steel H-piles driven to bedrock (Figure 8). The concrete caissons are
basically hollow concrete boxes that were built on shore, then towed into the
channel and sunk onto prepared 5-ft-thick (1.5-m) sand and gravel blankets on
the river bottom. Steel sheet piles surround each concrete caisson. The steel H-
piles were then driven through the box to depths of 270 ft (82 m) to the bedrock
layer. As the upper bridge supports were constructed, the water inside the boxes
was pumped out to provide a buoyant platform. Approximately 70 percent of the
structure’s dead weight is supported by these eight buoyant caissons, and this
design saved millions of dollars during the construction phase.

Newport, R, bridge

New England’s largest suspension bridge (the
Claiborne Pell bridge) crosses Narragansett Bay
with a water depth of 160 ft (49 m) and bottom
current velocity to 4.5 fps (1.4 m/sec). The
$17 million foundation system was constructed
beginning in 1965 and is composed of steel H-piles
and drilled shafts supporting tremie-concreted
footings resting on backfilled sand (Hedefine and
Silano 1968).

Dredging to remove 20 ft (6 m) of silt and ey ~HHE 10 : . ..
unsuitable material was accomplished at each bridge g1 '{ e
pier. Next, 512 steel piles (14BP102) 70 ft (21 m) | 1 ' : o
long were driven to refusal in shale and dense sand  |. N4 N
formations at spacings of 4 ft (1.2 m) on center. A § _ﬂj_ | s
special pile-driving lead with retractable spuds at T AR T el s e b T B
the lower end was built to accommodate piles
driven by a McKiernan-Terry S14 hammer. Lateral  Figure 8. Tappan Zee Bridge
deviation of 6 in. (15.2 cm) was permitted. Divers in foundation (after New York
a diving bell made the underwater cutoffs using an State Thruway 1999)
electric oxygen arc. After the piles were cut, a
sand/gravel fill (40 to 80 percent passing the 3/8-in. sieve with less than 5 percent
passing the No. 200 sieve) was placed on the bottom. Template guide pipe piles
(casings) were then driven to assist with placement of the bottom footing form.
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Each steel footing form, including the attached steel reinforcement bars,
weighed over 400 tons and required a heavy-lift crane vessel to sink it onto the
pile template. After the footing form was rested on the bottom, a steel hollow-
shaft caisson form was lowered onto it. Both forms were tremie-concreted in a
continuous operation. Graded riprap (50 to 100 percent passing the 12-in. mesh,
20 to 50 percent passing the 5-in. mesh, and 0 to 20 percent passing the 1.5-in.
mesh) was placed around the completed foundation to prevent 4-ft (1.2-m) depth
maximum design scouring.

Confederation Bridge

The world’s longest continuous crossing over water subject to ice floes was
constructed during a 4-year period and spans the Northumberland Strait between
Canada’s Prince Edward Island and New Brunswick.

The bridge was built on precast concrete piers and base foundations
(Figure 9). Each base weighed almost 6,000 tons and was lowered into place on
the seabed. Each base underside had three pedestals that were set at different
elevations to keep the base elevated at the correct grade on the sloping seabed.
To ensure uniform stress transfer between the concrete structure and seabed,
concrete was tremied between the base underside and the foundation rock.
Tremied concrete was selected instead of compacted gravel because it was
believed that better placement accuracy and better settlement resistance would be
achieved with concrete (Carter 1998).

Great Belt eastern bridge

This bridge spanning the shipping
channel between the Baltic Sea and
i the North Sea is the last part of

- Denmark’s Great Belt transportation

link, which opened in 1998.
Sup Unsuitable material with low bearing
capacity was discovered after
construction began, requiring
additional excavation dredging.
Although caisson construction took
place offsite, the foundation
<106 preparation was done prior to towing
and positioning the caissons. Some of

Pier base.___

Tremie mat the methods used to construct the
\ P improved-site foundation included
dredging with a bucket dredge to
L‘ 67' .__I minimize disturbance of boulder clay,

clearing sediment siltation with

suction equipment, placing crushed
stone material in layers with a side-

Figure 9. Confederation Bridge foundation (after dumping vessel, performing vibration

Carter 1998)
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compaction with powerful plate vibration units, and screeding the foundation top
layer level to a 2-in. (50-mm) tolerance (Gerwick News 1992).

Akashi Kaikyo Bridge

The world’s longest suspension bridge (1.9-km center span) crosses the
Akashi Strait in Japan (Figure 10). Completed in 1998, the bridge construction
took 10 years. Foundation preparation required dredging to a consolidated gravel
layer 46 ft (14 m) below the seabed. Steel caisson foundations were floated in
and sunk into position in water currents up to 13 fps (4 m/sec). During placement
of the foundations, a wave-breaking apparatus was used to allow accurate
positioning and placement of the caissons. High-performance concrete was then
placed by tremie pipe (Yao, Berner, and Gerwick 1999). After the caissons were
in place, graded aggregate was placed based on hydraulic laboratory scour
protection testing results conducted by the Honshu-Shikoku Bridge Authority
(1996). In 1995, during construction, the Kobe earthquake epicentered 2.5 miles
(4 km) from the bridge and shook the foundations. Although the span distance
was increased (less than 3.2 ft (1 m)), it was concluded that the foundations and
anchorages had not been damaged (Kajima Corporation 1998).

e B8 B570 ft ’

_~Min tower

Figure 10. Akashi Bridge (after Kajima Corporation 1998)

New Benicia-Martinez Bridge

A parallel crossing of the Carquinez Strait near San Francisco is currently
under construction and will be completed by 2003 (ASCE 1999b). The new
bridge (I-680) is designed to withstand a 1,000-year-return earthquake (the
maximum credible earthquake) and will be constructed in water currents of 7 fps
(2 m/sec). The bridge ductility requirements called for unusually deep drilled
shafts into the underlying weathered sandstone bedrock. The bedrock layers are
uneven, and dip at angles up to 70 deg. The water depth ranges to 60 ft (18 m),
underlain by mud deposits to 85 ft (26 m) deep. Severely weathered bedrock
underlies the mud.

During feasibility and design studies, the scouring effects of additional piers
next to existing bridge piers were considered. Six types of candidate foundations
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were analyzed (Gerwick News 1990), and final design selection was 7.2-ft
(2.2-m)-diam steel casings drilled 60 to 100 ft (18 to 30 m) into the bedrock.
Steel reinforcing will be placed in the shafts and filled with tremied concrete. The
rock socket depths were chosen based on the seismic design bending moments
and overturning forces.

Pocomoke River Bridge rehabilitation

A bascule pier drawbridge originally built in 1921 over the Pocomoke River
in Maryland rests on wood piles that became severely exposed due to riverbed
scour. To stabilize and support the bridge, grouted pinpiles were installed (Bruce
1992). Each of the 24 piles was drilled from the bridge deck approximately 60 ft
(18 m) through the soft mud bottom into a dense sand layer. Each pile consists of
a 7-in. (18-cm)-diam steel casing into which epoxy-coated rebar and wire
tendons were placed and grouted (Figure 11). The wire tendons were prestressed

to 82 kips (365 kN) and released about a week

Bridge later to allow the design pinpile load of 82 kips to

be mobilized without allowing bridge deck
settlement. An on-land validation of the design

mudline

was conducted using test piles driven through an
8-in. (20-cm)-diam outer casing to simulate

- ———— | underwater conditions. After driving, the test piles
Prestressed were loaded to 200 kips (889 kN) after having
fendlon been prestressed to 82 kips to obtain
load/deflection data. Permanent displacement was

7" dia pipe pile
"

cumdnawgan

.--.-.n-n‘---- msammapae
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777 PZZANNY less than 0.1 in. (0.25 cm).
Immersed Tube Tunnels and
Pipelines
Grout bulb The basic concept of the immersed tunnel
sunk in an underwater trench dates back to the
ancient Babylonians (Palmer and Roberts 1975).
Numerous tunnels, sewer lines, pipes, and other
Figure 11. Pocomoke River Bridge in-  subaqueous structures have been constructed using
the-wet foundation the immersed tunnel concept, where the structure
rehabilitation with pinpiles is ballasted and sunk onto a prepared bottom or
(after Bruce 1992) trench and then may be deballasted after coupling.
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Various types of foundations support these
structures, including tremied/backfilled sand bases, compacted sand and gravel
bases, grout/concrete pads, adjustable jacks, and caissons.

Immersed tube tunnels include the Detroit River tunnel, the Detroit-Windsor
tunnel, Mobile’s Bankhead and I-10 tunnels, the Texas Baytown tunnel,
Virginia’s Hampton Roads and Chesapeake Bay tunnels, Baltimore’s Fort
McHenry tunnel, and the Netherlands’ Maas River tunnel (Palmer and Roberts
1975). Others include Tokyo’s Dainikoro tunnel (Paulson 1980) and Greece’s
Aktion-Preveza tunnel (Geotronics 1997).
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Bay Area Rapid Transit (BART) Tunnel

Completion of the Trans-Bay Tube segment of the San Francisco BART in
1969 was considered a major civil engineering feat. Constructed in 58 sections
and reposing on the bay floor at depths to 135 feet (41 m), the $180-million
project took 6 years to design and 3 years to contract and build (Brugge 1974).
Watertight composite steel and concrete sections were fabricated in a dry dock,
launched, and towed to the site. Each section was ballasted and sunk into a pre-
excavated trench (Figure 12).

The sections were then connected and welded into one continuous structure.
Instead of excavating to bedrock, the structure lies on a layer of softer deposits
for the purpose of damping possible seismic shocks (Kassel 1986).

scour protection

select
backfill

selec

site-improved foundation

Figure 12. BART Tunnel (after Kassel 1986)

Boston Tunnel

The Boston Central Artery/Tunnel project is expected to cost $10.8 billion. It
will replace elevated highway structures with underground tunnels linking
interstate highways and the airport upon final completion in the year 2004. Six
concrete immersed tube sections provide the crossing under the Fort Point
Channel. Each 48,000-ton tube section was precast on shore, winched and
positioned using global positioning system surveying technology, and sunk into a
20-ft (6-m)-deep dredged excavation (Green 1996, Angelo 2000). Unlike other
immersed tunnels, each tube section rests on caissons drilled into the subsurface
below the dredged excavation (Figure 13). The additional foundation supports
were needed to prevent damage to an underlying subway tunnel. Should the
immersed tube sections accidentally fill with water, they could cause the
underlying tunnel to fail (Brudno and Lancelloti 1992).

Chek Lap Kok Airport transportation links

Hong Kong’s new airport construction involved multiple contracts providing
transportation linkages, including highways, railroads, and ocean terminals. The
final link to Hong Kong’s central district and the third underwater crossing of
Victoria Harbor is a 1.25-mile (2-km)-long submersed highway tube connecting
Hong Kong and West Kowloon. The tube segments were precast on land and
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Figure 13. Boston Tunnel foundation (after Brudno and Lancelloti 1992)

towed into the harbor, where they were sunk across its main channel. A trench
was dredged across the harbor bottom to receive the tube segments. Horizontal
jacks were used to draw the segments together to create a seal. Sand was pumped
below the sections to create permanent foundations, and backfilled rock provided
protection from scouring erosion and anchor drags. The submerged highway is
performing successfully as the final stage of the Airport Core Program
(Kosowatz 1995).

Oresund Link

The rail and tunnel connection between Copenhagen, Denmark, and Malmo,
Sweden, allows an unprecedented direct link between those two countries. The
western end of the link is the world’s longest immersed tube tunnel (2.5 miles, or
4 km) carrying both a railroad and highway. It is composed of 20 precast
concrete segments (55 kt each) floated into place and positioned onto a prepared
gravel base within a dredged trench (Oresundskonsortiet 1999).

Puget Sound gas pipeline

Dual 8-in. (20-cm)-diam pipelines were placed in 600-ft (182-m)-deep water
in Washington’s Puget Sound in 1969 (Bomba and Seeds 1970). At the time, this
was the world’s deepest pipeline project. Geotechnical information was gathered
using geophysical subbottom profiling. Sediments obtained by core barrel
sampling ranged from boulders to silty clays. Although no deep trenching was
performed, 4-ft (1.2-m) layered rock placement around and over the pipe was
accomplished using a barge-mounted clamshell bucket and a tremie (fall-pipe)
hopper. Inspection by divers (to 150-ft depth) and video cameras verified the
effectiveness of the placement techniques.
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North Sea gas pipeline

The Ekofisk oil and gas production complex in the middle of the North Sea
began development in the 1970s. Many “firsts” were accomplished at this site,
including the first major offshore gravity-based foundation for a concrete
underwater oil storage tank (Focht and Kraft 1977).

Major underwater pipelines were constructed to transport the oil and gas to
the shores of Norway, Denmark, England, and Germany. The longest pipeline
carries gas to Emden, Germany, for a distance of 275 miles (440 km). This 3-ft
(1-m)-diam pipeline is laid to a maximum seabed depth of 230 ft (70 m) in a
backfilled trench. Trenching operations to approximately 10 ft (3 m) below the
seabed were conducted using a “jet sled” method and were backfilled with
natural (sand) material. Minimum cover requirements of 20 in. (50 cm) were
regulated to minimize accidental ship anchor and trawler damage to the pipeline.
Postconstruction surveys indicated that approximately 10 percent of the pipeline
had backfill less than 20 in. (0.5 m), so engineered backfill operations were
conducted after the pipeline was operational.

Two backfill systems were designed and implemented. The first was trailing
suction hopper dredges that dredged and transported fine sand and gravel,
respectively, to a drill ship. The drill ship conveyed the respective materials to
the pipeline via a fall-pipe system. The second system was a bulk-carrier ship
converted to haul the respective materials to the pipeline site, then convey them
to the pipeline using a fall-pipe system with attached electrohydraulic thruster
units for precise backfill acoustic positioning over the pipeline. To backfill the
approximate length of 23 miles (37 km) with these two systems took about
2 years and cost twice as much as the original pipeline laying and trenching
operation (Loeken 1980).

Los Angeles sewage sludge outfall

In 1957, a steel 22-in. (56-cm)-diam pipeline was pulled 7 miles (11.2 km)
offshore and sunk in 300-ft (91-m)-deep water within a 7-day period. Specially
designed equipment made this feat possible. After the pulling operation was
completed, a unique submarine pipeline trencher with jet nozzles straddled the
pipe as it laid on the seabed and trenched about 6,000 ft (1,824 m) from the
shoreline into the ocean. As high-pressure water and air jetted through the
nozzles, the bottom material was cut away, allowing the pipe to settle into the
trench. The deepest trenching (about 15 ft or 5 m deep) was performed in the surf
zone, where sheet piles were used to protect the trench excavation. Other unique
equipment and installation techniques are discussed in Construction Methods and
Equipment (1957) and Narver and Graham (1958).

Puerto Rico sewage outfall

The world’s deepest ocean sewage outfall was recently constructed off the
coast of Ponce. The 3.5-mile (5.6 km)-long, 4-ft (1.2-m) pipeline lies at a
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maximum depth of 450 ft (137 m) on the seafloor. The pipe sections were towed
into position and lowered from barges to the seabed. Deep anchors consist of
grout-filled bags lowered from the surface. Shallow mud deposits required an
excavated trench into which the pipe was placed to achieve neutral buoyancy
(Powers 1997).

Offshore Oil Platform Structures

Perhaps the best examples of underwater foundation in-the-wet construction
are found in the offshore industry’s structures, due to their unparalleled sizes,
costs, complexity, and remote locations around the world. Offshore (outside
sheltered waters) oil exploration and production began after World War II off the
Louisiana coast. The first offshore steel-piled platform was fabricated in Morgan
City, LA. Seven years later, the first jack-up drilling rig was placed offshore.
Since that time, more than 5,500 platforms have been installed in the Gulf of
Mexico (Hunt and Gary 2000).

Water depths of 20 to 50 ft (6 to 15 m) were typical for the first fixed
platforms erected on steel pipe pile foundations. The 1- to 2-ft (0.3- to 0.6-m)-
diam piles were typically driven to refusal to support loads of 200 to 400 kips
(890 to 1,780 kN). Gradually, the fixed platforms were built in water depths to
200 ft (61 m), and significant advances were being made in marine geotechnical
engineering.

Proprietary research programs were being conducted by the oil companies
for the purpose of reducing design uncertainties since the test and performance
databases were incomplete. For instance, land-based pile load tests ranged to
only 300 tons (1,320,000 kg), whereas the typical offshore pile load was about
2,000 tons (8,800,000 kg) (Focht and Kraft 1977).

Progress was also made in other aspects of marine geotechnical engineering,
including tension-loaded piles, laterally loaded piles, earthquake and hurricane
hazards, and new types of foundations (e.g., suction caissons). Mobile drilling
platforms consisting of pile-and-mat supported jack-up platforms and tension-leg
platforms (TLP) supported by tension pile foundations were being built in the
Gulf of Mexico. In the North Sea, the typically encountered clay seabed dictated
that other foundation systems be designed, including drilled pile foundations and
gravity-based foundations. Technology for gravity-based structures (GBS) has
since been applied in the Gulf of Mexico (Hunteman, Anastasio, and Deshazer
1979). Suction caissons were first installed in the North Sea (Senpere and
Auvergne 1982), and they have since been used in the Gulf of Mexico.
Adaptations of the suction caisson technology have been applied to jacket
platforms, jack-up platforms, TLPs, and “skirted” GBS foundations.

In general, offshore structures are attached to the seabed either rigidly (fixed
structures) or flexibly (floating structures). Those rigidly attached to the seabed
may be either fixed or mobile. Structures that are not attached to the seabed are
mobile and may be production platforms, storage facilities, off-loading facilities,
or exploratory drill platforms. The mobile nonattached structures are not
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discussed here since they are dynamically positioned and do not require
foundation preparations. Most oil production platforms are attached to the seabed
either rigidly (jackets, jack-ups, gravity-based, and compliant structures) or
flexibly (floating TLP, mini-TLP, and spar structures). The foundation systems
for the platforms are either pinned (driven, drilled, or suction-induced) or
gravity-based, or combinations of the two.

Jacket and jack-up structures
Offshore oil production platforms are commonly built on a fixed “jacket”

structure that is a tubular steel frame that is either floated or lifted in, positioned
on the seabed, and pinned with pilings (Figure 14).

A “jack-up” structure is intended to
be mobile and has a modified foundation
including a spud can arrangement that
is stabbed into the seabed floor
(Figure 15).

The first mobile offshore platform
designed for use in 100-ft (30-m) depths
with a soft soil foundation was a pile-and-
mat supported jack-up platform (Focht
and Kraft 1977). It consisted of six 4-ft
(1.3-m)-diam pipe piles supporting an 80-
by 100-ft (24- by 30-m) steel mat (Figure
16). The bearing pressure on the mat base
ranged between 200 and 400 psf (9.6 to
19.2 kPa) depending on the deck load.
This foundation system is a combination
gravity base underpinned by driven piles
and was installed in the Gulf of Mexico.

MO,StJaCk?t pla‘Fforms. have pinned Figure 14. Fixed jacket structure (after White and
foundations with driven piles, and are the Drake 1994)

most common type of offshore oil

platform (Lacasse 1999). They are located

worldwide, including the Gulf of Mexico, North Sea, Atlantic, and Pacific
Oceans. For example, Exxon decided to use a jacket platform for its Hondo
structure in California’s Santa Barbara Channel. The Hondo platform’s steel pipe
piles (54-in. diam x 375-ft length) were driven using nonsubmersible Vulcan and
Menck hammers above the 850-ft (258-m)-deep ocean floor (Bardgette and Irick
1977).

The Alba Northern jacket structure installed in the North Sea has four steel

mudmats to which pipe pile templates are attached. The single-launched jacket
was floated in and installed in 414-ft (138-m) water. Each footing was pinned by
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Figure 15. Jack-up structure installation (after Kobus and Whittington 1978)

four 96-in. (2.4-m)-diam piles that were driven 264 ft (88 m) with hydraulic-
powered underwater hammers (White and Drake 1994). An innovative
antifouling coating of cupro-nickel sheeting bonded to neoprene was applied to
the steel structure to prevent marine growth.

An alternative to single-launched jacket designs for water depths in the
500- to 700-ft (167- to 233-m) range is Shell’s two-piece grouted Enchilada
platform in the Gulf of Mexico (Dorgant et al. 1998). After setting the base
section, eight 84-in. (2.33-m)-diam steel pipe piles were driven to 385 ft (128 m)
using the free-riding IHC S-400 underwater hydraulic hammer without any
supporting guides. The jacket top section was lifted into position and grout-
sealed.

Shell’s Cognac jacket platform was installed 1,025 ft (342 m) below the Gulf
of Mexico surface and was the world’s first three-segment jacket (Sterling et al.
1979). The pinned foundation consists of 24 pipe piles, 7 ft (2.3 m) in diameter
and 625 ft (208 m) long, driven through outrigger-type skirt pile sleeves. Each
pile penetrated 450 ft (150 m) into the seabed.
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Figure 16. Jack-up platform on soft soil (after Focht and Kraft 1977)

The world’s largest installed jacket structure is the Bullwinkle, at a Gulf of
Mexico water depth of 1,350 ft (400 m) (Offshore Technology 1999).

Combining driven piles with drilled insert piles was required for the
construction of the Goodwyn “A” steel jacket platform off Australia. Calcareous
soil caused difficulty driving 8.7-ft (2.65-m)-diam piles past 382 ft (116 m)
below the mudline. Therefore, 6.5-ft (2-m)-diam insert piles were drilled to a
depth of 595 ft (181 m) below the mudline. The annulus between the piles was
grouted with a specially designed grout mix (Gerwick News 1993).

Suction-pinned foundations replaced traditional piled foundations on
Statoil’s innovative Europipe jacket platform in the North Sea. The circular
(“bucket”) foundations with skirts increase the vertical compression and shear
load capacity and provide substantial tensile load capacity (Baerheim, Hoberg,
and Tjelta 1995).

The Europipe four-leg jacket (Figure 17) stands in 210 ft (70 m) water. Each
bucket has a diameter of 36 ft (12 m), weighs 192 tons (215 tonnes), and
penetrates about 18 ft (6 m) below the seabed. The jacket was lifted in,
positioned on the seabed, and the buckets were suction-pumped to achieve
penetration. The void between the seabed and the bucket top was then grouted to
ensure an even support.
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Figure 17. North Sea fixed jacket with bucket foundation (after Baerheim,
Hoberg, and Tjelta 1995)

Figure 18. Complaint tower
platform (after
Will 1999)

Compliant tower structures

The compliant tower (CT) is a modified steel jacket
structure (Figure 18) that occupies a much smaller footprint on
the seabed (Figure 19). It is designed for sway periods of about
30 sec instead of typical platform sway periods of about 3 sec.
As a result, resonance is reduced and wave forces do not
amplify the natural vibration frequency of the structure.
Maximum design displacement (100-year hurricane event) is
1.5 to 2 percent of the water depth. In contrast, floating systems
(TLP and Spars) may have lateral movements of up to
10 percent of the water depth.

The idea of the CT concept was initially used in the Bay of
Biscay in 300-ft (91-m) water depth (Appert and Burger 1997).
The most recent deepest CT installations are Amerada Hess’
Baldplate installed off Texas in 1,650-ft (550-m) water depth
and Texaco’s Petronius installed in 1,754-ft (583-m) depth in
the Gulf of Mexico, although Petronius production wells are
not scheduled to be on-line until 2001 (Will 1999).

The Baldplate is the first freestanding, nonguyed CT and
was the tallest free-standing structure in the world when
constructed. Its 12 pipe piles (diameter 7 ft (2.1 m); length
428 ft (130 m)) each have an ultimate capacity of 8,400 tons
(74.7 MN) (Will et al. 1999).

The TLP foundation resists tensile and lateral forces imposed by semi-
submersible structures (Figure 20). Many design variations have been used for
offshore platforms, but the principle is the same (providing an anchoring system
for floating platforms).

24

Chapter 2 Selected Case Histories



Tension-leg platform structures

Conoco’s North Sea Hutton TLP was installed in
1984 and is the world’s first TLP oil production platform
(Stock, Jardine, and Mclntosh 1993). The site, 475 ft
(145 m) below water surface, is underlain by stiff
glaciomarine tills and dense sands. Each of the four
pinned foundations has eight 6-ft (1.8-m)-diam pipe piles
driven 200 ft (60 m) below the mudline, and each pile
group normally resists a tensile load of 1,100 tons
(1,000 metric tons) and a surface platform lateral offset
of 66 ft (20 m).

The largest TLP in the Gulf of Mexico (and the
deepest TLP in the world) is Conoco’s Ursa located in
3,800-ft (1,267-m)-deep water (Digre, Kipp, and Hunt
1999). Sixteen 96-in. (2.4-m)-diam pipe piles, 417 ft
(139 m) long, provide the pinned foundation. Each pile
self-penetrated 125 ft (42 m) into the seabed prior to
underwater driving.

IS

400' x 400" base

/)

Compliant tower, 1750 water

4
110'x 110' base

Figure 19. Compliant tower

foundation footprint
(after Will 1999)

The majority of TLP foundations are pinned
with driven piles, but gravity-based foundations
are also used. For example, Conoco’s North Sea
Heidrun TLP is tethered to four concrete gravity-
based foundations (Mitcha, Morrison, and
Oliveira 1997).

—_—

—

For “marginal” oil production sites, more
economical “mini-TLP” platforms are
constructed, which are typically smaller and
faster to install. British Borneo’s Morpeth
platform (Figure 21) is a mini-TLP installed to a
depth of 1,670 ft (557 m) in the Gulf of Mexico.
Six pipe piles, each 84 in. (2.3 m) in diameter by
340 ft (113 m) long were driven into the seabed.
Each 214-ton (195,000-kg) pile self-penetrated to
130 ft (43 m) prior to driving (Redfern, Calkins,

e
-

emi-submerged platform

I
1T

——

N

Tension tethers

Drill stem

Pinned or gravity foundations

50 to 100 ft dia

2 to 4 million Ib
submerged weight

and Matten 1999).

Figure 20. Typical TLP

Other variations of the TLP concept include

the Spar and Deep Draft Caisson Vessel (DDCV). Examples of each are the Gulf
of Mexico’s Neptune production Spar platform and the Hoover Diana DDCV

(Offshore Technology 1999).

The Snorre platform in the North Sea became the first TLP to use suction
caissons instead of driven piles (Figure 22). Concrete gravity cells with perimeter
skirts (suction caissons) of 66-ft (20-m)-diam were installed in very soft clays at
a water depth of 1,050 ft (320 m). Piles were determined to be unacceptable
because of extremely low clay soil friction (bearing) capacity.
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Each cell group (out of four total groups) has a
total submerged weight of 6,250 tons (7,000 metric
tons) after being ballasted with 3,125 tons
(3,500 metric tons) of iron ore and olivine. The
100-year design storm maximum tension load for
each cell group is 12,678 tons (14,200 metric tons),
< and the average tension load is balanced with the
' cell group weight. Accounting for the cell group
weight, the average long-term load experienced by
the soft clay soil is zero (Christophersen 1993).

Gravity-based structures
The advantage of gravity-based over pinned

structures is their shorter installation duration,
which is a big factor in reducing exposure to hostile

Single piles —__
24 84" dia x 340 ft

214 tons ea storms in the North Sea and North Atlantic. The
structures are constructed onshore or in protected
Figure 21. Mini-TLP structure (after waters, towed into position, and sunk to the sea
Redfern, Calkins, and floor. Installation can be accomplished during good
Matten 1999) weather windows (Young, Kraft, and Focht 1975).

The first major offshore gravity foundation was placed in the North Sea in
1973 (Focht and Kraft 1977). It was a 305-ft (93-m)-diam concrete oil storage
tank in the Ekofisk Complex weighing 490,000 tons (444 million kg) that was a

float-in structure installed in 230-ft (70-m) water
depth. No piles were used to support the structure.

Tethers

Another offshore foundation “first” occurred on
another Ekofisk Complex structure. Drilled and
underreamed shafts were constructed in the hard
clay seabed instead of driven piles. The land-based
practice of installing drilled shafts instead of driven
piles at stiff or hard clay sites was common, but had
not been used offshore, especially in water depths
to 350 ft (107 m) (Focht and Kraft 1977).

In 1978 the first concrete gravity production
platform was installed in the Gulf of Mexico
(Hunteman, Anastasio, and Deshazer 1979).

Figure 22. TLP suction pile foundation ~ Although it was actually a combination gravity and

(after Christophersen 1993) pinned foundation structure, it holds a place in
offshore foundation history. The offshore site was

located in only 12-ft (4-m) water depth. Foundation preparation of the seabed
was required to prevent scouring. The seabed was dredged 7 ft (2.3 m) deep, and
a 2-ft (0.7-m)-thick oyster shell mat was placed in the excavation. The platform
was towed to the site, ballasted, sunk onto the prepared foundation, and pinned
with perimeter piles. Limestone rock riprap was then installed around the
perimeter to prevent scour.
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At the time of its installation, the North Sea’s Draugen GBS was the tallest
concrete structure ever constructed (Alm, Bye, and Egeland 1995). It is located in
approximately 750 ft (250 m) of water on a

very hard clay seabed with embedded boulders.
Although the upper material had a fairly low
undrained shear strength of 312 psf (15 kPa), it
increased to 20,800 psf (1,000 kPa) at 18 ft

(6 m) of depth. Concrete skirts at the base of
the structure penetrated an average of 24 ft

(8 m) into the seabed as a maximum suction
pressure of approximately 51 psi (350 kPa) was
applied.

The North Sea Troll I GBS has skirts that
penetrate 108 ft (36 m) into the stiff clay with
undrained shear strength of approximately
5.2 tsf (500 kPa). The platform rests in 1,000-ft
(303-m) water depth (Andenaes, Skomedal, and

Lindseth 1996). Concrete
The first offshore gravity-based platform to bases

use suction caissons was Statoil’s Gullfaks C

(Figure 23) in the North Sea, installed in 1989 T T T T T . Skirts

(Tjelta 1992). This $2-billion GBS platform

was placed on normally consolidated soft clay
at a water depth of 720 ft (220 m). A soil drain  Figyre 23. Statoil's Gullfaks C platform
system was designed and preinstalled into the (after Tielta 1992)

caissons. This drainage system allowed faster
consolidation of the foundation soil, which

resulted in increased strength of the material.
Another GBS example is the Hibernia structure
installed in the Grand Banks off Newfoundland in
1990 (Offshore Technology 1999).

It is a 495,000-ton (450,000-metric ton)
concrete caisson 321 ft (106 m) tall with a 27-ft
(108-m)-diam base (Figure 24) ballasted with
452,000 tons (411,000 metric tons) of iron ore
(magnetite) and placed in 242-ft (80-m) water
depth. The seabed was prepared by “sweeping”
with a deep-sea hopper dredger. The caisson has
16 “fingers” to resist icebergs, and was designed

to withstand a 500-year event collision with a
1 million metric ton iceberg and a 10,000-year
event collision with a 6.6 million ton (6 million

Figure 24. Hibernia gravity-based
. . foundation (after Offshore
metric ton) iceberg. Technology 1999)
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Other Underwater-Founded Structures

Wharf off-loading system

A large-capacity (2,000-ton) transport barge was designed for use at a marine
fabrication industrial yard to off-load and deliver equipment at two existing
wharfs in Connecticut (Abbott and George 1989). The barge was designed to
jack up to the wharf elevation, thus eliminating the need for heavy lifting cranes
on the wharf. For each separate wharf, a special underwater foundation was
constructed to prevent the spuds from punching through the soft clay (1,000-psf
or 49-kPa shear strength), 35 ft (10.7 m) below the water surface. Since the
1,200-ton (10,676-kN) leg design could not be supported by the soft clay, and
due to the site conditions at each wharf, two separate foundations were designed
and constructed.

At one wharf, bedrock was located 35 ft (10.7 m) below the mudline.
Prefabricated steel cofferdam cylinders (diameter 28 ft or 8.5 m) were driven
75 ft (23 m) into the bedrock, excavated, and filled with crushed stone. Precast
concrete pads, 20 ft (6.1 m) in diameter and 5 ft (1.5 m) thick, were placed on top
of the crushed stone cofferdams to support the barge’s spud legs. Placement
tolerance of 9 in. (230 mm) for caisson installation was met.

At the other wharf, bedrock was located 50 ft (15.2 m) below the mudline, so
other foundation alternatives were considered. The design load for each leg
foundation was 2,000 tons (17,794 kN). A reinforced earth pad overlain by a
precast concrete base was installed with minimal dredging. Three 10-ft (3-m)-
thick compacted pads of crushed stone, sandwiched between mats of steel strips,
were placed in a 15-ft (4.6-m)-deep excavated hole. Special procedures were
devised to construct the underwater reinforced earth pad. Precast concrete pads,
25 ft (7.6 m) in diameter and 5 ft (1.5 m) thick, were placed on top to support the
barge s spud legs (Abbott and George 1989).

Ship dry docks

During the World War II era, the U.S. Navy undertook a massive construc-
tion effort to build dry docks for shipbuilding and repair at its numerous naval
facilities. Construction took place at Pearl Harbor, Norfolk, Philadelphia, Mare
Island, Brooklyn, San Diego, and other locations. Dry docks are classified as
graving (basin excluding water) or floating (buoyancy principle). In general, one
of two construction methods was used, with the basic difference being the
concrete placement method (above-water or tremied). These methods were

a. Underwater excavation and tremied concrete construction, followed by
dewatering.

b. Underwater excavation concurrently with deep well-point dewatering
prior to concrete placement.
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Sheet pile installation and dredging operations typically began the
construction effort, followed by underwater H-pile installation. The piles were
designed to resist uplift during reduction of hydrostatic pressure as the dock was
dewatered, and also to carry dock operation compressive loads through any
underlying soft layers into a firm stratum below. Construction methods,
especially for tremie concrete, were discussed by Harris (1942) and Johnson,
Compton, and Ling (1972).

Tate (1961) detailed construction of a Puget Sound floating dry dock with
dimensions of 1,180 by 180 ft (359 by 55 m) built to overhaul Pacific Fleet
aircraft carriers. Design, construction, and subsequent operation depended on an
elaborate network of continuously operating dewatering pumps. After dredging
to 40 ft (12 m), the underwater site was backfilled (hydraulic jetting from deck
scows) with a sand/gravel mix consisting of 3-in. maximum size with less than
10 percent passing the 100-mesh screen. Sheet-pile bulkheads were installed, the
site was dewatered, and in-the-dry construction proceeded. Prior to concrete
placement, vibroflotation equipment was used to increase the foundation’s
bearing capacity (by increasing its relative density).

Millard and Hassani (1971) detailed the construction of Bethlehem Steel’s
graving dry dock for shipbuilding near Baltimore. The dimensions of the dock
were 1,200 by 200 ft (365 by 61 m). This dry dock depended on continuously
operated dewatering pumps during shipbuilding operations to reduce hydrostatic
pressure against the relatively thin walls and floors. During construction, up to
70 ft (21 m) of soft materials was dredged to expose underlying sand with
adequate bearing capacity. Sand was also used as backfill and was placed by
bottom-dumping scows (barges). An underwater embankment was also needed as
a construction dike. After the site was enclosed by dikes and sheet-pile cells and
dewatered, the sand fill was compacted using vibratory pile-driving equipment.

Berlin’s Potsdamer Platz

Beginning in 1995, construction began in Germany’s new capital to support
the government’s office move from Bohn to Berlin. The high-rise buildings have
basements to depths of 56 ft (17 m) below ground. Artificial lakes and city
regulations curtailed dewatering schemes during construction, which required
foundations to be built underwater. Pontoon-mounted excavators dug the
foundation pits, and divers manually cleaned the bases and positioned sheet piles.
Steel pilings were vibrated into the subsurface to resist buoyancy of the concrete
base slabs. The base slabs (up to 5 ft (1.5 m) thick) were placed underwater.
After dewatering the sheet-pile enclosure, the structural slab was cast in place,
and the structure was constructed in the dry (Reina 1996).

Baltic Sea wind turbines
The first offshore pilot projects demonstrating the electrical-generating

potential of wind turbines were constructed at locations off the Denmark and
Sweden coasts in the Baltic Sea (Danish Wind Turbine Manufacturers
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Association 1998). Studies have been conducted not only for the electrical
aspects of wind power, but also for the types and costs of underwater
foundations.

Four types of wind turbine foundations have been constructed in the wet:
concrete (float-in), combination concrete gravity footing with a steel pedestal,
steel pile, and steel tripod (jacket) with 3-ft (1-m)-diam steel pile anchors.
Installation costs as a function of water depths for each type of foundation were
analyzed. In water depths to about 30 ft (9 m), the concrete gravity platforms
were the most expensive. The simplest foundation is the single steel pile with
diameter between 11 and 14 ft (3.5 and 4.5 m), driven 30 to 60 ft (20 to 30 m)
into the seabed. The jacket was the least expensive, but was found to be
unsuitable for depths less than 18 ft (6 m) due to tripod interference with
approaching service vessels.

Offshore military tracking platforms

In 1978, the U.S. Navy contracted design and construction of four aircraft-
tracking tower structures to be built in the Atlantic Ocean 30 miles (48 km) off
North Carolina in water depths to 105 ft (32 m). Each tripod tower is supported
by underwater 42-in. (107-cm)-diam steel pipe piles driven through a template
with penetrations to 270 ft (82 m) below the mudline into dense sands and stiff
clays. Rigid design requirements (20-year operational life, excursion limitations
of 1 ft lateral and 1 deg rotational in 60-mph winds and sea state 7) dictated
applied pile loads up to 1,005 tons in tension and 1,479 tons in compression. The
design penetration depths were based on a safety factor of 1.5. Several above-
water Vulcan diesel hammers were used to achieve the design penetrations
without jetting or predrilling. As an interesting note, predriving analysis using the
wave equation predicted that design penetrations could not be achieved
(Ling 1978).

Bantry Bay tanker terminal

This deepwater crude oil terminal is located 1,100 ft (334 m) off Ireland’s
southwestern coast and is founded on battered 40-in. (102-cm)-diam steel pipe
piles in 100-ft (30-m) water depth. The piles are 220 ft (67 m) long and were
driven through boulder clays and silts to bedrock. A 20-ft (6-m) portion of the
tips was rock-socketed by drilling. Initial driving efforts were difficult due to the
waves and lack of any driving template. Driven piles left unbraced due to the
short winter work schedule envelope failed at weld connections due to the wave
action. Larger work platforms, bigger pile hammers, and spud-mounted pile
templates corrected this situation. Boulder inclusions in the drilled sockets were
reduced by increasing the bit diameter and using powerful airlift ejectors.
Reinforcing bars and concrete were then placed in each pile (Fox 1970).
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Submerged oil storage tank

The Khazzan Dubai I is a 500,000-barrel oil steel storage tank located
60 miles (96 km) off Dubai in 154-ft (47-m) water depth (Chamberlin 1970).
This unique structure has no enclosed bottom (it holds oil by water
displacement), and its circular sides are connected to the seafloor by 3-ft (1-m)-
diam pipe piles. The structure was towed to its site, ballasted by air displacement,
and sunk onto a level (1:100) unimproved seafloor. For each pile, a 42-in.
(107-cm)-diam hole was rotary-drilled 100 ft (30 m) into the layered clay, silt,
sand, and weathered limestone subsurface, using a tricone bit and underreamer.
The pile was lowered into the hole and cemented to both the formation and the
structure with expansion grout having 28-day compressive strength of 3,000 psi
(21 MPa). Full-scale tests of grouted structure connections were conducted.
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3 Foundation Site
Assessment

Site and Foundation Selection Process

Site investigations are an essential part of the underwater site selection,
foundation design, and foundation installation elements. Adequately planning
and executing a site investigation is especially critical for determining the
geotechnical influences prior to foundation selection and design (American
Petroleum Institute 1989; James 1987; Hitchings, Bradshaw, and Labiosa 1976).
Preliminary design efforts require that site surveying and assessment efforts be
under way, and the completed site characterization should be finalized prior to
final design. Special consideration must be given to the possibility of
construction contract problems if a complete site characterization is not
conducted prior to final design.

The site conditions (including topography, bottom current, sediment loading
and scour, and other environmental conditions) and engineering properties
(including soil/rock lithology and stratigraphy, strength, durability,
compressibility, and seismic concerns) must be explored and characterized prior
to foundation final selection and design (Herrmann, Raecke, and Albertsen
1972).

Topics that need to addressed during the general site and foundation selection
process are outlined below.

Site assessment. Geologic, topographic, and geographic influences are
important within the given project’s political boundary and should be studied
extensively during the site selection process. Nearby industrial or urban
situations may impose unique restrictions. In addition to the surrounding land
assessment, the seabed/riverbed physical qualities (such as depth, slope, and
underwater obstructions) are important. Underwater obstructions include
deadfalls, snags, cable crossings, and other sunken objects. The water body’s
physical, chemical, and environmental characteristics are also vitally important
and include the following:

Tidal variation

Current profile and hydraulic characteristics
Hydrographic data
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Icing traits

Seasonal underwater visibility

Sedimentation and scouring potential

Salinity and/or temperature variations, and water chemistry
Environmental quality considerations and regulations
Aquatic characteristics (expected problematic species)

Soil and rock engineering properties. A subsurface investigation is vitally
important in the foundation selection and design process since it helps the
designer understand the soil/rock response to the imposed structural loads. An
adequate evaluation of the engineering properties of the seabed or river bottom
requires a time-consuming and often costly site investigation, including in situ
testing and sampling, laboratory testing, and data analysis. The adequacy of this
program may be difficult to assess, given the uncertainties involved for an
investigation to be conducted for a remote underwater site. The presence of the
water barrier above the site demands innovative or modified utilization of land-
based techniques and equipment to achieve reliable and accurate results.

Structure function. The structure’s intended function must be properly
identified. Two aspects of the structure’s foundation function that must be
addressed are its intended design life and its degree of confidence requirements
(factors of safety, risk analysis, and design uncertainty).

Structure characteristics. Physical size, configuration, submerged weight,
load distribution, installation sequence, and dynamic load resistance are
important variables to be considered in the foundation selection process. For
instance, both land- and water-based structures may be designed to resist wind
loads, but the water-based structure must also resist hydrodynamic current drag
and wave and ice loads that ultimately are fed into the foundation design
requirements.

Installation requirements. Inherent in the foundation selection and design
process are the questions of installation equipment and labor, procedures, and
quality control. Composition, size, and weight of the foundation components
dictate the equipment and methods for transporting, positioning, and installing on
the seabed or river bottom. Coordination with above-foundation structural
elements’ installation requirements will guide foundation selection. Maintaining
quality control and verifying quality assurance are important considerations that
have to be addressed during the foundation selection process since they will be
matched to the specified foundation system.

Contract cost. Balancing the requirement for a reasonable degree of
confidence in the foundation’s utility with the goal of achieving the lowest
project cost is another important variable in the foundation selection process.
Reduced competition due to a smaller number of foundation contractors with
experience in a given foundation system is not a cost deterrent. As foundation
contractors gain more experience and the number of competitors increase, lower
bids will result. Consideration must be given to the potential contractors’ and
subcontractors’ capabilities and experience records when selecting a foundation
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type, not only to obtain a higher probability for successful installation, but to
potentially lower the contract bid amounts.

Site Assessment and Characterization

Noninvasive assessment/characterization techniques, including bathymetric
and hydrographic surveys, are conducted to determine the depth and bottom
topography. Visual site assessments may be accomplished using remotely
operated vehicles outfitted with video cameras. Geophysical surveys such as
side-scan sonar are conducted to determine subbottom profiles of debris,
sediments, soil, and rock.

Preliminary assessment

Preliminary information-gathering consists of building a site-specific
database detailing site location and configuration, water conditions (water depth,
density and salinity profiles, temperature variations, current profile from the
water surface to the foundation bed, tidal variations), and sediment conditions.

Marine charts typically show navigation aids, water depths, and navigation
obstructions including underwater cables and pipelines. Marine charts in digital
format are available from the U.S. Department of Commerce’s National Oceanic
and Atmospheric Administration (NOAA) for coastal areas and the Great Lakes;
the Department of Defense’s National Imagery and Mapping Agency (NIMA) for
open ocean and foreign waters; the U.S. Army Corps of Engineers for inland
rivers, lakes, and canal systems; and the U.S. Geological Survey for land-based
topography. Georeferenced digital maps with aerial and satellite photography are
available from various commercial vendors. The NIMA has recently established
a vector-based digital maritime chart database named the Digital Nautical Chart,
available freely to U.S. Government agencies with data-sharing agreements and
by commercial agreement to public commercial vendors. Comprehensive inland
waterways information is available on Internet sites maintained by the National
Weather Service and NOAA (http://www.riverwatch.noaa.gov) and the Corps of
Engineers (http://water.mvr.usace.army.mil).

Hydrographic surveying and environmental data collection

Underwater site surveys are required to map bottom topography and
cartographic features. Site surveying is conducted from either a surface-based
platform or a submersible platform. Surface-based platforms are operated from
ships, pontoons, or barges and generally operate on principles of reflected
acoustic signal-processing using compression wave energy to determine water
depths referenced to mean sea level. Surface position is determined using global
positioning system (GPS) receivers that are operated either in a stand-alone mode
or referenced to known latitude-longitude-elevation stations for increased
accuracy (differential positioning). GPS navigation and surveying principles and
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equipment were state of the art in the early 1990s, and are supplanting long-range
radio navigation and radio beacon survey-positioning systems. GPS equipment
development has focused on miniaturizing the receivers and providing a “total
station” package to enable faster and more accurate survey results.

Having a highly accurate above-water reference datum provided by GPS
technology allows for better positional accuracy beneath the surface. Echo-
sounding (sonic) technology provides positioning data between the water surface
and the bottom. Single-beam technology is being replaced by newer single-head
multibeam (SHMB) technology and equipment. Several equipment
manufacturers provide state-of-the-art equipment, and the Corps of Engineers is
using those capabilities. For example, the Los Angeles District has acquired and
used SHMB technology since the early 1990s for navigation works such as the
Pier 400 harbor project (USACE 1999b).

The new International Hydrographic Office “Standards for Hydrographic
Surveys” describe four orders of surveys, with Order 1 being the most stringent.
Horizontal and vertical accuracy and maximum sounding line spacing for
hydrographic surveys are established using formulas depending on average depth
of investigation. For example, at a 99-ft (30-m)-depth coastal site, survey results
should be accurate to at least 21 ft (6.5 m) horizontally with depth accuracy of
2 ft (0.63 m) (Harris 1999).

Submersible platforms consisting of remotely operated vehicles (ROV) or
autonomous underwater vehicles (AUV) enable site surveying and topographic
mapping in deeper water. The AUV systems do not have tethers, which
eliminates tether hydrodynamic drag and results in faster survey operations. A
downside of AUV technology is the lack of consistent and reliable energy
sources for propulsion and onboard instrumentation. Development of acceptable
sources (including batteries, fuel cells, and engines) is being undertaken by
commercial and academic endeavors. An ideal AUV would have little or no input
from an operator (i.e., would be preprogrammable) and would be capable of
running its survey grid pattern at speeds of 1 to 2 m/sec while avoiding
underwater obstacles. AUVs specifically designed for surveying operations have
been developed which are capable of acoustically transmitting relatively accurate
survey data but are not yet completely autonomous. Operator input is still
required to adjust the survey instruments to match shifting seabed conditions and
perform diagnostic functions for quality control (Bjerrum and Krogh 1998).

Environmental data collection is conducted to measure water quality data
such as current velocity, density, temperature, and water chemistry profiles.
Numerous equipment is available to obtain such data. To reduce the effect that
the instrument itself has on the measured variable, new devices have been
developed and are being used. For example, instead of using a standard current
meter to obtain a velocity profile, electromagnetic current meters (EMCM) were
developed based on the principle that a conductor (water) flowing through a
magnetic field (current meter probe) produces a voltage proportional to its
velocity. To further reduce the instrumentation effects, EMCM technology is
being supplemented by newer noninvasive sensors based on acoustic emission
principles. Acoustic current meters, side-scan sonar, and secscan sonar devices
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allow current measurements to be taken at a single point or over a broad area.
ROV and AUV platforms are also being packaged to provide multiple sensor
instrumentation for bathymetric and environmental data collection (Sonsub 1999,
Reson 1999, ORE 1999, Ultra Electronics 1999).

Geophysical investigations

Geophysical methods have evolved as major investigative tools for
underwater site assessment and geotechnical exploration purposes. They are
useful for detecting and delineating geological deformational features, including
bottom and subbottom faults, scarps, rock and mud slides; for obstacle detection
(Figure 25); landscape mapping (Figure 26); and for mapping other features
critical to underwater foundation location and design.

Figure 25. Widescan™ digital side-scan sonar image (after Ultra Electronics
1999) enables underwater obstacle detection

Offshore exploration technology relies on geophysical investigations to
determine potential reservoir locations and to estimate potential yields. Near-
surface geophysics accomplishes different functions at much shallower depths,
but the principles are the same. Sound waves (acoustic and seismic), electrical
resistance, electromagnetic signals, gravimetry, and radar principles and
procedures are used in near-surface geophysical investigations, and each method
is chosen for suitability depending on the intended function of the investigation
(Beasley et al. 1997a, b).

Underwater acoustic and seismic methods are typically used for underwater
site investigations; the required depth of investigation usually dictates which
method is employed. Acoustic methods (subbottom profiling, side-scan sonar,
and echo-sounding) exploit compression wave propagation techniques and
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Rivers and canals provide special challenges to geophysical investigations
due to navigation restrictions and changing currents during the course of an
investigation, as well as data interpretation of multiple mode reflection geometry
caused by changes in river bottom and bank slopes (Toth, Vida, and Horwath
1997). As the available computer equipment and processing software becomes
more adapted to shallow-water surveys, transition to high-resolution 3-D
methods will likely become more commonplace in shallow-waterway project
investigations.

Soil and Rock Engineering Properties

To obtain detailed subbottom information, geotechnical investigations are
needed. Subsurface in situ testing and drilling and sampling techniques are
required to determine or verify site geology, depth to bedrock, soil stratigraphy,
etc. Preliminary assessment of the engineering properties of the soil or rock can
be developed from the analyzed exploration data.

The soil/rock strength profile with depth is predicted from the interpreted
soil/rock parameters (friction angle, apparent cohesion, etc.) resulting from the
in situ and lab testing programs.

Recent trends suggest that in situ testing is strongly recommended to
complement sampling (Reese and Isenhower 2000). Samples are retrieved and
tested to establish correlations to the in situ tests. The resulting soil/rock
parameter selections and prediction of the strength and deformation profile with
depth are input into the final engineering criteria for foundation design. Some
discussions of the underwater geotechnical site investigation process are found in
Heijnen and Vermeiden (1980) for an improved site foundation; Hitchings,
Bradshaw, and Labiosa (1976) for a gravity-based foundation; and Angemeer
(1972) and Audibert and Hamilton (1998) for a pinned foundation. Lunne and
Powell (1993) provide details for offshore in situ testing applicability when
evaluating engineering soil parameters for various soil and foundation types.

In situ methods

In situ testing allows evaluation of engineering properties without physically
retrieving samples, often without requiring a predrilled borehole. Geophysical
techniques and equipment may be used to acquire geotechnical engineering
properties. Geotechnical devices frequently used for underwater in situ testing
are the remote vane shear device, the cone penetrometer, and the pressuremeter.
These methods were initially developed for land-based applications but have
been adapted for underwater site characterizations. The remote vane was the first
in situ tool to be routinely used in the early 1970s, followed by the cone
penetrometer and the pressuremeter (Briaud, Riner, and Ohya 1984).

Geophysical methods. Geophysical investigations can provide overall
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information regarding engineering properties at the foundation site such as
anticipated sediment type, stratigraphy, depth to bedrock, and dynamic
properties. Preliminary soil index properties may also be inferred, and studies
have shown correlation between geophysical measurements and engineering
properties of the subbottom (Mahmood and Hough 1978; Kutter, Arulanandan,
and Dafalias 1979; Fountain 1979; Haynes et al. 1993; Nauroy and Meunier
1993; Stokoe and Rosenblad 1999).

Acoustic methods (sonar and subbottom profilers) provide no direct
engineering properties information. Shear wave methods furnish the shear
modulus, G, of the subsurface material whether it be soft mud or solid rock. The
shear wave geophysical method is matched to the site and its required
investigation depths. For example, intrusive methods include seismic cone
penetration (SCPT) and borehole (crosshole, downhole, and suspension) logging
techniques. Nonintrusive methods include refraction surveys and surface wave
profiling (Stokoe and Rosenblad 1999). Other marine geophysical methods to
obtain engineering properties include gamma logging for bulk density
measurements (Perlow and Richards 1972) and electrical resistivity to measure
index properties of soils (Kutter, Arulanandan, and Dafalias 1979).

Vane shear device. Shear strength less than about 2 tsf (200 kPa) in
cohesive sediments is measured using a vane shear testing system in which the
unit is either deployed over the side of a surface vessel or lowered through a drill
string (wireline technique) (Lunne and Powell 1993). As the unit settles onto the
bottom on its attached template or reaches the borehole bottom, a vane penetrates
undisturbed soil. The vane is then rotated, and the soil’s shearing resistance
(measured by a rotational strain gauge transducer) is correlated to its undrained
shear strength.

Deep-sea vane shear strength measurements were made in the early 1960s
from manned research submersibles such as the U.S. Navy’s Trieste and
Deepstar 4000, Woods Hole’s Alvin, and Lockheed’s Deep Quest (Perlow and
Richards 1972; Inderbitzen and Simpson 1972; Hirst, Richards, and Inderbitzen
1972). Their operational depths ranged to about 20,000 ft (6,080 m), but
sampling depths were limited to about 5 ft (1.5 m) below the sea bottom
(Noorany 1972). Tethered testing platforms placed directly on the ocean floor
were developed by the late 1960s and early 1970s (Richards et al. 1972). The
RUM was an unmanned tethered tracked bottom crawler that was instrumented
with a vane shear device and other sampling tools and had an operational depth
of 6,000 ft (1,824 m) (Anderson et al. 1972). The Navy’s DOTIPOS tethered
platform vane could penetrate 10 ft (3 m) below the mudline (Noorany 1972).

The offshore industry began using vanes located on tethered submersibles
that were operated remotely from surface drilling ships using the wireline
technique (Perlow and Richards 1972; Doyle, McClelland, and Ferguson 1971).
Deploying the vane device from a platform resting on the ocean bottom later
became more common (Dutt et al. 1997).

New-generation remote vane shear devices such as the Halibut II (Figure 27)
have been developed to reduce testing setup time, to increase the incremental
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penetration depth, and to perform cyclic testing (Dutt et al. 1997). Cyclic in situ
vane tests are conducted to observe the effects of fully reversed, two-way
loading. The vanes are torqued for 5 to 11 cycles, and the plotted results are
useful for design calculations required for structures undergoing dynamic loading
such as wave impact. Remote memory units attached to the vane allow for better-
quality data collection.

Cone penetrometer. Cone penetrometer technology, which has seen many
successful land-based applications during the past decades, has also been adapted
to underwater site characterization. This technology is applicable to both
cohesive and cohesionless soils. The penetrometer delineates stratigraphy,
provides penetration resistance data that can be empirically correlated to soil
strength and deformation parameters, measures pore-water pressure, and is

adaptable for applications requiring

specialized sensors, such as resistivity
and seismic geophysical investigations.
Soil sample retrieval may also be

to vessel achieved using modified cone
penetrometer equipment. Particularly
useful is the pore-water pressure
measurement capability (piezocone or
PCPT). Determining subsurface pore-
water pressures and indirectly assessing
in situ permeability is important in
understanding the presence or absence
of pore-water gradients in the
subsurface soil layers, which may cause
problems with the future foundation’s
static and dynamic stability. Lunne and
Powell (1993) state that the piezocone
is the most important in situ tool for
offshore use.

The cone penetrometer test (CPT)
has been used worldwide during the
20th century as an onshore site
investigation method that is relatively

fast and economical and produces

Figure 27. Remote vane shear device (after Dultt consistent data (FHWA 1978, ASTM
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etal. 1997) 1991). Various changes and technical

improvements have been made, but the
CPT remains particularly useful in assessing soil classification and strength while
probing on-the-fly. Offshore CPT provides more accurate soils data than just
sampling alone (Marr and Endley 1982).
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Underwater CPT for deep-ocean exploration was conducted in the early
1970s on tethered submersibles such as the Deep Quest (Hirst, Richards, and
Inderbitzen 1972), the Alvin (Perlow and Richards 1972), and the DOTIPOS
(Noorany 1972). Penetration depths were limited to about 10 ft (3 m). A specially
designed manned submersible (Mission) for geotechnical site investigation was
used for the Eastern Scheldt project in the late 1970s. The Mission held two men
breathing supplied surface air in a submerged steel capsule that was lowered to
the seafloor. A hydraulic ram inside the capsule pushed the CPT and soil
sampling rods 100 ft (30 m) below the mudline (Heijnen and Vermeiden 1980).

From the 1970s, the CPT has been conducted either from seafloor-based
systems (similar to the one shown in Figure 28) or down-the-hole (wireline)
systems. Some of the seafloor systems included McClelland’s Seacalf and
Stingray (Ferguson, McClelland, and Bell 1977); Fugro-McClelland’s Seasprite
(Lunne and Powell 1993); the U.S. Navy’s XSP-40 (Beard and Lee 1982);
European systems by A.P. van den Berg (ROSON) and the Danish Geotechnical
Institute’s SCORE (Lunne and Powell 1993); and 7SP (Humphrey and Adams
1995). The TSP system was designed to operate in water depths to 9,900 ft
(3,000 m) while probing to soil depths of 230 ft (70 m).

NG
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Figure 28. Remote CPT operation from a surface vessel (after
James 1987)

The wireline technique allows multiple downhole tools and samplers to be
used in the same borehole. One example of a wireline system using multiple
downhole tools is McClelland’s Swordfish, in which the CPT probe is advanced
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10 ft (3 m) below the borehole base (Meyer, Harman, and King 1982).
McClelland’s Dolphin system stores all data in its memory module and does not
have an umbilical cable (Focht, Johnson, and Rivette 1986; Lunne and Powell
1993). The Dolphin system also includes a piezometer probe to measure pore-
pressure dissipation. The remote memory module stores up to 135 min of pore-
water pressure dissipation data. After the tool is retrieved, the data are
downloaded and analyzed (Preslan and Babb 1979, Dutt et al. 1997). Fugro-
McClelland’s WISON and Geocean’s MASCOT systems operate in the shallower
North Sea environment (Lunne and Powell 1993).

The U.S. Navy recently developed a dynamic penetrometer system that is
dropped over the side of a surface vessel, falls through the water column, and
surficially penetrates the seafloor while simultaneously measuring probe
deceleration using Doppler sound imaging. Correlations between deceleration
time and relative density of cohesionless soils have been made (Orenberg et al.
1996).

The seismic cone penetration test has been performed from seafloor-based
and surface platforms since the late 1980s (Lunne and Powell 1993). Penetration
depths on the order of 200 ft (60 m) have been achieved (Stokoe and Rosenblad
1999).

Pressuremeter. Another in situ testing tool is the pressuremeter, which was
introduced (onshore) by Kogler and Scheidig in the 1920s (Parkhill 1998) and
was further developed by Menard in the 1950s. The pressuremeter operates on
the principle of expanding a vertical cylinder horizontally into the surrounding
soil while measuring the volumetric strain and applied pressure. Correlations are
made to determine the soil’s in situ horizontal stress and shear strength. The
pressuremeter test (PMT) is particularly suited for determining resistance to
induced static and cyclic lateral loads on piles and drilled shafts (Bowles 1988;
Briaud, Smith, and Meyer 1983; Briaud, Riner, and Ohya 1984). The major
limitation of obtaining quality data from the PMT is the requirement for a
carefully prepared borehole (Bowles 1988). To overcome borehole preparation
problems, the self-boring pressuremeter test was developed.

Offshore pressuremeters have been developed by various companies (Reid et
al. 1982; Suyama, Ohya, and Imai 1982; Lunne and Powell 1993) and are
generally wireline self-boring.

Drilling and sampling

Geotechnical drilling and sampling operations are typically required to
supplement the in situ test data and to extract samples. Often a boring is
advanced for purposes of obtaining information, such as soil and rock
classification from visual inspection or blow counts from the standard penetration
test. However, the primary advantage of the drilling and sampling operations is to
retrieve undisturbed or disturbed samples from the subbottom for subsequent
laboratory testing. Before, during, or after the samples are retrieved, various
types of devices may be advanced in a cased or an uncased borehole for purposes
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of obtaining in situ geotechnical information about the subbottom. For example,
smaller diameter wireline piezocone penetrometers have been developed
specifically for use inside boreholes. The PCPT is mechanically extended past
the borehole opening to probe virgin soil for the purposes of obtaining pore-
water pressure, which has been correlated empirically to in situ permeability as
well as the standard data obtained by the CPT ahead of the advancing drilled
borehole (Dutt et al. 1997).

Underwater soil sampling techniques and equipment development have
generally followed those of land-based methods. Prior to the 1940s, the offshore
industry did not conduct preliminary site investigations. The first marine
foundation site investigation for an offshore structure was drilled from a fixed
platform in 30-ft (9-m) water depth in the Gulf of Mexico in 1947. As the oil
platform water depths increased, so did the capacities of the exploratory drill
platforms, and they evolved from fixed platforms to mobile drill rigs on barges.
Perhaps the most challenging location was the Bay of Fundy, where fixed-piston
samples of soft marine clays were recovered from depths of 326 ft (99 m) while
coping with 25-ft (8-m) tides and currents up to 8 fps (2.4 m/sec). This type of
exploration method using conventional land-based sampling techniques was used
for most subsea locations at water depths to about 200 ft (60 m) until the year
1962 (Focht and Kraft 1977).

In 1962, an oil company conducted a program to gather geotechnical data
along the outer Continental Shelf to depths of 600 ft (180 m). Instead of a
floating barge, a purpose-built boat was outfitted with a large drilling rig. Special
lightweight 3-in.-diam drill pipe and wireline sampling tools were developed to
penetrate 300 ft (90 m) below the seabed. The wireline samplers enabled sample
retrieval without bringing the drill pipe sections back to the drill rig (Focht and
Kraft 1977).

In the 1970s and 1980s the offshore industry moved into deeper waters in the
Gulf of Mexico, and geotechnical site investigation techniques and equipment
were developed to meet those challenges. Investigations at seafloor depths of
2,900 ft (880 m) were conducted. The Shell “Mensa” project required
investigations at a seafloor depth of 5,315 ft (1,616 m). Up to the mid-1990s,
total penetration (water and soil column) of geotechnical drilling and sampling
for the majority of the Gulf of Mexico projects had been limited to about 6,600 ft
(2,010 m) based on available surface vessels. In 1997, a converted dynamically
positioned diving support semisubmersible was mobilized to provide site
investigation capabilities for deeper sites. It allowed drilling to water depths of
9,900 ft (3,000 m) and had a total drillstring capability of 11,840 ft (3,600 m)
(Dutt et al. 1997).

A recent Gulf of Mexico program sponsored by several oil companies and
the National Science Foundation collected geotechnical data in water depths to
7,700 ft (2,340 m). A series of in situ vane shear tests, pore-pressure
measurements, deepwater coring, sample retrieval, and laboratory tests were
conducted (Sea Technology 1999).

The methods of underwater sampling and selection of equipment are

Chapter 3 Foundation Site Assessment 43



arbitrarily divided into two general categories depending on the water depth and
sampling depth: shallow sampling depths to 100 ft (30 m) below the mudline,
and deeper sampling depths. Most geotechnical sampling has been done from the
water surface using a fixed or mobile platform (Noorany 1972). Numerous
systems employed for soil sampling from submersible seabed platforms in deeper
water were described by Tirey (1972) and Hironaka and Green (1971). Most of
the platforms had submersible hydraulic rotary drills, but some had submersible
hydraulic vibratory hammer-type drills predating submersible vibratory pile

hammers by almost 2 decades.

Sampling tools specifically used for underwater sampling include diver-held
samplers, the Boomerang corer, box corer, gravity corers, vibratory corer,
wireline samplers, and dredging grab samplers (U.S. Army Corps of Engineers
1996). In general, the diver-held samplers, corers, and grab samplers are used for
shallow sampling penetrations. For deeper penetrations, wireline samplers are
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used (Noorany 1972). An illustration
of one type of wireline sampling
configuration is shown in Figure 29.
Tirey (1972) discussed a range of
types of submersible, remote, and
diver-operated sampling equipment,
including rotary and vibratory
drilling tools. A noteworthy
comment was that regardless of the
sampling tool, no feasible sampling
method completely eliminates sample
disturbance. Furthermore, the
disturbance of samples obtained at
nearshore and offshore sites was
generally greater that the disturbance
of samples obtained on land because
of the greater difficulty of obtaining
quality samples. Reese and
Isenhower (2000) reported that
wireline sampling techniques caused
more disturbance than the worst
onshore sampling methods when
applied to the offshore environment.

The popular onshore ASTM
D 1586 standard penetration test
(SPT) consists of dropping a 140-1b
(308-kg) weight 30 in. (0.76 m) onto
a drill string with a 2-in. (51-mm)-
diam sampling tube attached at the
bottom.
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The number of blows required to penetrate the sampler 12 in. (300 mm) into
the borehole bottom is correlated to the soil’s classification and strength. The
recovered sample may be used for laboratory testing purposes (Acker 1974).

The SPT may be used for nearshore and river locations where the wave
heights are minimal, but the offshore industry does not traditionally use the test
because the fall height of the hammer cannot be accurately controlled unless the
ship heave is compensated (Hitchings, Bradshaw, and Labiosa 1976). Bazett and
Foxall (1972) compared and discussed SPT blow counts from a natural riverbed
and subsequent underwater-placed fill from a spud-barge platform. Babcock and
Miller (1972) compared vibracore sampling to SPT data and found good
correlations in low blow count soil deposits.

Offshore rotary core sampling is generally used only for identification
purposes, but wireline tube sampling is generally used for the full range of soil
types and strengths (Hight 1993). The two most common types of tube sampling
methods are push sampling and piston sampling. Most push sampling uses 3-in.
(76-mm)-diam thin-walled Shelby tubes for undrained soil strengths up to about
6 tsf (600 kPa). Thicker walled tubes are used to recover dense sands and hard
clays. Tube liners are used for upper sediments with little or no shear resistance.
Piston samplers are used in soft and firm clays when sample retention would be a
problem (Hight 1993), but piston sampling is not commonly used offshore in the
Gulf of Mexico (Jeanjean, Andersen, and Kalsnes 1998). McCoy (1972)
discussed piston sampling characteristics in the North Atlantic.

Another offshore sampling method uses large-diameter borehole technology
to obtain bulk samples with techniques and equipment similar to those used
onshore. Larger boreholes (diameter between 1 and 10 ft, 0.3 and 3 m) enable
larger sample sizes for better quality classification and testing. Unlike dredging
samples that are obtained from shallow depths, large-diameter boreholes allow
sampling at depths approaching 400 ft (120 m) (Schwank 1997).

Laboratory testing
To the extent that site assessment is not complete until all engineering design

parameters are obtained, many of the retrieved soil/rock samples undergo
laboratory testing. The laboratory testing program should be tailored to obtain

engineering parameters for preliminary design of the intended foundation system.

For example, both monotonic and cyclic shear strength profiles are needed for
determining the holding capacity of suction caissons (Jeanjean, Andersen, and
Kalsnes 1998). Sangrey, Clukey, and Molnia (1972) discussed methods to obtain
strength profiles from disturbed or remolded samples.

The types of soil (and/or rock) laboratory tests conducted for underwater
foundations should accomplish the following objectives (Sullivan, Wright, and
Senner 1980): (a) material identification and classification, (b) behavior under
anticipated field levels of stress and strain, (¢) compressibility characteristics
under sustained loading, and (d) stress-strain characteristics and pore-pressure
response under cyclic loading.
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The tests on soil materials should include index properties (submerged unit
weight, Atterberg limits, mineralogy, grain-size analysis, moisture content,
chemical composition, and specific gravity). Strength tests should be conducted
using either “undisturbed” or remolded sample specimens. Unconsolidated-
undrained (UU) tests can be conducted to assess short-term behavior, whereas
consolidated-drained (CD) or consolidated-undrained (CU-bar) tests with pore-
pressure measurements are needed to assess the long-term behavior.

Conventional soil strength tests imply static (monotonic) loading conditions
and include direct simple shear tests, unconfined compression triaxial tests,
UU triaxial tests, miniature shear vane, Torvane, fall cone, and hand
penetrometer, among others. Computed strength and stiffness parameters (cy, ¢ y,
E,) from these test data establish the undrained shear strengths of the soil
specimens.

To determine normalized and effective stress strength parameters, CD (direct
shear) tests or isotropically consolidated (CIU-bar) and anisotropically
consolidated (Ck,U-bar) consolidated-undrained monotonic triaxial compression
tests are conducted (Sullivan, Wright, and Senner 1980). For the triaxial tests,
pore-pressure measurements are required to determine the effective stress states
(Audibert and Hamilton 1998). The CD test, by definition, yields effective stress
strength and stiffness parameters (c,’, ¢ ,’, E,’).

Less conventional tests are often required as an attempt to replicate
anticipated dynamic and cyclic loading conditions, such as the loading conditions
caused by wind, wave, and seismic loads. Cyclic anisotropically consolidated-
undrained (CyCK,U) triaxial compression and cyclic direct simple shear tests are
typically performed to define the cyclic stress-strain behavior of soils. A
laboratory test to determine the shear wave velocity and maximum shear modulus
is conducted using a resonant column device (Jeanjean, Andersen, and Kalsnes
1998).

To determine stress history of cohesive soils, consolidation tests are routinely
conducted. The overconsolidation ratio can be determined using the constant
strain and incremental loading oedometer tests. Consolidation test data are used
to determine the time-settlement curve and void ratio-effective stress
relationships (Sullivan, Wright, and Senner 1980).

Uncertainty in laboratory test data interpretation arises from the effects of
soil heterogeneity, sample disturbance, in situ stress history and loading
conditions, and testing accuracy. For example, in a layered soil subjected to
loading condition imposed by a structure (see Figure 30), a triaxial compression
test would best simulate the failure conditions immediately under the structural
footing, whereas the direct shear test would better simulate the loading conditions
at the deeper portion of the failure plane as it is passing through the layered soil.
Likewise, as the slip surface daylights at some distance from the footing, the
triaxial extension
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Figure 30. Sketch of idealized model of in situ stresses (after Sullivan, Wright,
and Senner 1980)

test would better replicate the loading conditions due to the reversal of principal
stresses.

One method for assessing the reliability of laboratory data uses soil
parameter empirical correlations. Sullivan, Wright, and Senner (1980) discussed
these uncertainties and suggested correlations for comparison. For example, an
estimate of the remolded shear strength for an overconsolidated clay can be made
from its liquidity index. The ratio of normally consolidated clay shear strength to
effective overburden stress is related to its plasticity index. Fine sand’s friction
angle is related to its relative density and voids ratio. However, it should be
emphasized that these empirical correlations should not be substituted for a
detailed laboratory investigation.

In addition to the strength and deformation characteristic for rock, the rock
material properties should include porosity, density, sonic velocity, permeability,
ductility, strength, slake durability, hardness, and thermal properties. Rock mass
strengths are rated by either the RMR or Q systems (Goodman 1989).

Offshore foundation material (soil and rock) databases are available that can
be used for planning the laboratory investigation and interpreting the test results.
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These databases are especially useful for planning cyclic loading test programs,
such as suggesting methods to reduce the number of site-specific cyclic tests.
Andersen and Jostad (1999) list references for available databases of North Sea
and Gulf of Mexico clay soils. Numerous other references to site-specific
soil/rock characteristics related to geotechnical foundations are available in the
literature and include the following:

Sabine River delta (Grosch and Reese 1980)

Offshore Florida calcareous sands (Dutt et al. 1986)

Offshore Southern California (Mahmood and Reifel 1978)

Mississippi Delta (Gulf of Mexico) weak sediments (Shephard,
Bryant, and Dunlap 1978; Booth and Garrison 1978)

Gulf of Mexico underconsolidated clays to dense sands
(Stockard 1979)

Alaska coastal waters (Sangrey, Clukey, and Molnia 1979)

Hawaii calcareous sands (Lu 1986)

Offshore Cuba coral sands (Puech, Bustamante, and Auperin 1990)

Offshore Brazil calcareous soils (Ping et al. 1984)

Offshore Australia calcareous sands and sandy silts (Parkin et al.
1990; Tan, Parkin, and Yee 1990; Randolph et al. 1996)

Borneo marine clays (Gemeinhardt and Yan 1978)

Offshore India (Stockard 1986)

Offshore China dense sands (Tsien 1986)

Arabian Gulf hard clays, dense sands, rocks, and coral (Tagaya
et al. 1979; Settgast 1980; Stevens, Wiltsie, and Turton 1982;
Vines and Hong 1984)

Gulf of Suez calcareous sands and silts (Dutt and Cheng 1984,
Dutt and Teferra 1986)

North Sea stiff clays (Heerema 1979)

North Sea soft clays (Karlsrud and Nadim 1990)

North Sea dense sands (Jardine and Overy 1996, Zuidberg and
Vergobbi 1996)

North Sea boulder clays (Fox, Parker, and Sutton 1970)

North Sea chalk (Vijayvergiya, Cheng, and Kolk 1977; Davie,
Ehlers, and Antes 1978)
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4 Design Considerations

Foundation Types

Numerous foundation types are constructed onshore (as land-based
construction), and they broadly fall into either the “shallow” or “deep”
foundation category. By definition, the shallow foundation embedment depth is
less than its minimum lateral dimension and includes spread footings and mats.
The deep foundation embedment depth is much greater than its minimum lateral
dimension. Examples include piles and shafts (Herrmann, Raecke, and Albertsen
1972). Since the terms shallow and deep may be confusing when applied to
underwater foundations, those terms will not be used for the remainder of this
document.

Underwater foundations may be classified into one or more of the following
general categories: improved-site, gravity-based, and pinned. Improved-site
foundations include those that are dredged, excavated, backfilled, leveled, and/or
site-modified. Gravity (or gravity-based) foundations include those that distribute
the structure’s loads over a soil/rock area wide enough to adequately resist the
imposed loads. Pinned foundations distribute the structure’s loads deeper into the
soil/rock materials. Table 1 provides a generalized description of foundation
types for selected case histories and includes prominent foundation
preparation/construction features.

Certain structures are generally associated with a given foundation type. For
example, most immersed tube tunnels depend on site-improved foundations.
Likewise, the vast majority of offshore oil production platforms in the Gulf of
Mexico depend on pinned (driven-pile) foundations. However, foundation types
may also be combined for certain structures. For example, some gravity-based
foundations such as concrete bridge piers require site improvements prior to
float-in or lift-in placement of the piers. Likewise, some gravity-based
foundations include piles. Some suction-pile foundations imitate both gravity-
based and pinned foundations in that they may be designed to distribute their
ballasted weight over a large lateral area during vertical penetration.

For gravity and pinned foundations, an improved-site foundation may or may
not be needed. Based on published case histories, typical deep offshore practice
does not include improving the site prior to installing either gravity or pinned
foundations. However, for shallow-water gravity foundations, some type of site
improvement is usually provided. Two examples of Corps projects that will use
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site improvement in conjunction with pinned foundations are the Corps’
Braddock and Olmsted Dams. At Braddock Dam, the float-in precast elements
will be ballasted and attached to pinned foundation (drilled shafts). Softer
sediments will be dredged prior to and during construction (as needed). At
Olmsted Dam, the lift-in precast elements will be placed on pinned foundation
(driven-pipe piles). Site improvement will include dredging, sand
vibrocompaction, and articulated mat placement (Personal Communication,

2 March 2001, Dale E. Berner, consulting engineer, Ben C. Gerwick, Inc.,
San Francisco, CA).

Improved-site foundations

An improved-site foundation modifies the existing soil (or rock) in the
seabed or riverbed. Methods include preloading, dredging, backfill, leveling,
consolidation, or other engineered modifications. Figure 31 illustrates one
example of an improved-site foundation. In the case of immersed tunnels,
pipelines, breakwalls, dry docks, and some float-in/lift-in structures, an improved
site may be the only foundation system needed.

Dowse (1979) described an
innovative improved-site methodology
employing self-supporting (hydrostatic TN~
pressure) sand islands for foundations for
oil platforms in water up to 200 ft (61 m)
deep. Basically, an impervious membrane
is filled with dredged sand, and the water
is then pumped out. Such hydrostatically
supported confined-pressure sand islands
are capable of supporting surface loads
that are proportional to the drained shear
strength of the sand. Each island can be
built within a 2-week period depending
on the specific design. Disadvantages are
the amount of dredging required to fonss,
supply the sand fill, the limitations of a e =
soft soil underbase, and the construction
handling and placement of the

Barge Leg
! Crushed stone

F'{é_pnfb_fced earth mats

impervious membrane. Figure 31. Example of an improved-site
foundation (after Abbott and George
Numerous other examples of 1989)

improved-site foundations are noted in

this report. Dredging, fill placement, consolidation, soil improvement, and mat
reinforcing are some of the methods used during construction of an improved-site
foundation.
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Gravity-based foundations

Gravity-based foundations are broadly classified because the load-carrying
capacity is primarily determined by the size and weight. These foundations are
similar in function and design to the land-based foundations that are classified as
“shallow,” since their embedment depths are generally less than their lateral
dimensions. Typical gravity foundations are constructed of precast concrete
elements that are either floated or lifted in and allowed to sink into the mudline
or onto an improved-site foundation. Once installed, the underbases may be filled
with cast-in-place concrete or grout via underwater tremie tubes or other type of
ballasting materials. For example, the main pier bases supporting the
Confederation Bridge in Canada are lift-in precast concrete elements resting on a
tremied concrete bed over mudstone and siltstone layers. Each of the forty-four
6,000-ton pier bases rests on a ring footing of tremied concrete having an
approximate diameter of 67 ft (20 m) and an approximate thickness of 6 ft
(1.8 m).

Smaller gravity-based foundations have been constructed of steel instead of
concrete. For example, offshore foundations for wind turbines have been
constructed of steel gravity foundations that are basically steel boxes sunk to the
seabed and filled with olivine (DWTMA 1998). The steel box size was designed
to be 42 by 42 ft (14 by 14 m) with a weight of about 90 tons (100 metric tonnes)
for a water depth to 30 ft (9 m).

Wooden timbers form the gravity base of the Brooklyn Bridge, which was
completed in 1883. Two wooden box structures, one on each side of the river,
were weighted with stones to enable contact with the underlying bedrock
(Delaney 1983). Each box weighed about 16 million pounds (7.3 Mg) with a
footprint of about 17,000 sq ft (1,579 sq m). Examples of present-day wooden
gravity-based foundations are rare, since the preferred materials are either
concrete or steel.

For offshore structures, submerged gravity-based foundation weights may
approach 1 million tons. A modification of the gravity base concept is the
addition of suction skirts around the foundation perimeter to help resist lateral,
tensile, and cyclic loads imposed on the gravity foundation.

Pinned foundations

Pinned foundation embedment depths are greater than the minimum lateral
dimension, and include piles and drilled shafts. They are installed to achieve
greater lateral stability, to provide greater uplift resistance, to provide greater
resistance to scouring compared with gravity-based foundations, and to minimize
the potential for differential settlement of certain critical structures. The two
general types of pinned foundations are those that displaced soil (that is, piles)
and those in which soil was removed (drilled shafts). Pinned foundations are
constructed of wood, steel, concrete, grout, stones, or polymer materials that are
pinned into the seabed or river bottom by application of driven or drilled-energy
sources. Techniques and equipment for deep-water (typically more than 300-ft)
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shaft, pile, and caisson construction are generally found within the offshore oil-
drilling industry.

Displaced soil. These methods include driving piles into the soil or weak
rock by impact, vibratory oscillation, hydraulic pushing or jacking methods,
rotating, jetting, or suction techniques and equipment. Hydraulic pile-driving is
virtually noiseless and vibration-free, while pile jetting is a time-saving pile-
driving method (Tsinker 1988). A brief discussion of several types of displaced-
soil piles follows.

o Driven preformed piles. Examples of driven preformed piles include
tubular steel (open or closed end pipe) piles, solid steel (H-, X-, A-, or sheet)
piles, timber piles, precast (prestressed and/or reinforced) concrete piles, and
polymer piles. Figure 32 illustrates an underwater impact-driven pile installation
procedure. The advantages of driven preformed piles include the following:

a. The pile materials are preformed and
subject to fabrication and site (quality
control/quality assurance) inspection.

b. The pile materials can withstand high R
bending and tensile stresses.

¢.  Numerous choices for pile materials,
equipment, and installation procedures are

| slack hoist

available.
d. Onsite fabrication permits very long lengths
of piles for site-specific conditions. Current
\

The disadvantages of driven preformed piles Initial Final
include: " ina
metude position position

. r after
a. Above-water noise and vibration may be self-
excessive. penetration
N7
b. Soil disturbance may affect surrounding U

structures.

L L Figure 32. Underwater impact-driven
o Cast in situ piles. Examples of cast in situ pipe pile installation without a

piles include stone columns (Cemcol), compacted template (after Jansz and
concrete pile (Vibro-Franki, not commonly placed Brockhoff 1979)
underwater), Atlas screw pile (not yet commonly

used underwater according to Reese and Isenhower 2000), and micropiles (which

are grouted minipiles or pinpiles installed without drilling).

Figure 33 illustrates an onshore Atlas screw pile installation procedure. The
advantages of cast in situ piles are:

a. No need for permanent casing.
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b.

C.

May be more economical for specific sites.

No cuttings and, hence, no disposal of cuttings required.

The disadvantages of cast in situ piles include:

a.

Limited experience in underwater environments and (for certain
proprietary systems, such as Cemcol, Atlas, Vibro, Franki, Vibrex, and
Fundex) extremely limited specialized contractor experience.

Cannot be extended above riverbed without casing and special
procedures.

‘| concrete

A special case of the cast in situ pile is
represented by the soil and grout cast in situ
foundation, which is generally designed as an
Add improved-site foundation instead of pinned. This
type of foundation improvement is used primarily
withdraw | for onshore applications, although deep cement
mixing has been used offshore (although primarily
outside the United States).

> L

Two examples of the soil and grout cast in situ
foundation improvement include jet-grouted
columns (grout injected into soil from high-
pressure jets) and mixed soil columns (grout
mixed with soil, also called deep cement mixing).
The advantages and disadvantages mirror those for

cast in situ, as previously noted.

Figure 33. Cast in situ onshore pinned

54

a.

foundation (Atlas screw pile e Driven cast in situ piles. An example of
method) (after Hollingsworth  the driven cast in situ pile includes an open- or
and Imbo-Burg 1992) closed-ended steel casing or pipe pile that is driven

and then backfilled with concrete. The advantages

of this type of pile are as follows:

The length can be easily adjusted to match the bearing stratum.
Site-specific modifications, such as an enlarged base or bells, are possible.
Noise and vibration during driving may be reduced.

The internal pile material, such as concrete or grout, will not be affected
by handling or driving stresses.

The disadvantages of driven cast in situ piles include these:

a.

Mixing and placement of the concrete or grout may require special
equipment and inspection considerations.

The inspection and placement of the reinforcing bar cage may require
special considerations or techniques.
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o Self-penetrating (suction) piles. The placement of suction piles (also
called buckets, skirts, suction caissons, anchor piles, or suction anchors) operates
on the principle of foundation underpressure (see Figure 34). The suction pile is
placed on the sea bottom, and the

entrapped water is pumped out to create an
underpressure relative to the surrounding
water pressure, which causes the pile or
caisson foundation to penetrate into the
seabed (Senpere and Auvergne 1982).
These are commonly called “skirts” in the
offshore industry literature if they are
attached to gravity-based foundations,
especially tension leg platforms. (It should
be noted, however, that the offshore
literature also refers to “skirt” piles on
jacket platforms, which are driven piles
instead of suction piles.)

The advantages of self-penetrating Weightj—'((f
T

(with suction) pile may include one or Ip resistance

Suctioned water

Side friction

*

more of the following:

Figure 34. Suction pile foundation (after
a. Less equipment required for Andersen and Jostad 1999)
installation.

b. Shorter installation time.

¢. May be fairly easily removed or relocated.

The disadvantages of self-penetrating (with suction) pile include:

a. Highly dependent on soil conditions (technology somewhat limited on
predicting penetration depth).

b. Excessive differential pressure (underpressure) may cause internal soil
heave.

c. Relatively limited/unproven technology outside the offshore industry.

e Other types of piles. Piles may also be modified to increase their
performance, design life, and function. One such variation is the spin-fin pile,
which screws itself into the subsurface as it is driven. It has been reported that it
could provide twice the tensile load resistance as that of similar size conventional
piles (ASCE 1992). It should be noted, however, that some of these pile
foundation types were designed for onshore applications and are not normally
installed in the underwater environment.

Excavated soil (caissons, drilled shafts, and pin piles). These methods
include installing the pile, caisson, or drilled shaft during or after excavation of
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the soil and/or rock, as illustrated in Figure 35. The advantages of the excavated

pile include the following:

— | Casing

|||<1

drill bit

Figure 35. Excavating a cased borehole

Lengths are easily adjusted to match the
bearing stratum.

Cuttings supplement or verify site
investigation borings.

Very large diameters are possible for
extraordinary loads, compared with pile
groups.

Suitable for sites that preclude driven
foundations, such as cases in which large
rocks and boulders are encountered.

The material used to construct the pile is
not subject to handling or driving stress.

Very long piles are possible.

Construction noise and vibration are
reduced.

Less influence on adjacent structures due
to ground heave or disturbance.

Typical disadvantages of excavated piles include:

a. Concrete and grout require special equipment and inspection

considerations.

b. Placement and inspection of the reinforcing bar cage may require special

techniques/considerations.

c. Cannot be extended above riverbed without casing and special

procedures.

d. Possible end-bearing reduction in sandy stratum.

A brief discussion of several types of (excavated soil) piles follows:

o Augered cast-in-place. The augered cast-in-place pile system has been
used onshore since the 1940s. Two methods are available. One method consists
of drilling a hollow-stem auger to depth and then pumping grout or concrete into
the hollow stem as the auger is withdrawn. Reinforcing rods may be inserted into
the concrete through the hollow-stem auger (Neate 1989). The excavated soil is
brought to the surface as cuttings. For use of this system under water, external
casing would be required if the concrete extends above the mudline. The second
method uses continuous-flight auger equipment to excavate soil inside a driven
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casing. Numerous equipment manufacturers and
techniques are available for this popular (onshore) method.

® Rotary drilled. Rotary drilling methods are used to
create a borehole in soil or rock. Basically, the drill string
(drill pipe or casing) is rotated into the subsurface while a
vertical load or pressure is applied (Figure 36). The cutting
tool rips into the soil or rock, and the cuttings are flushed
to the surface by drilling fluid. Several techniques are
available to remove the cuttings from the borehole,
including positive circulation, reverse circulation, duplex
drilling (inner and outer drill strings), percussive rotary,
and compressed air. Case histories of in-the-wet
foundation installation using rotary drilling methods are
more common for rock foundations (Norwesco 1999,
Nakayama 1992, Santiago et al. 1986, Burt and Harris
1980, Steinke and Strasser 1978, Chamberlin 1970).

Overburden

Grouted
annulus

Pipe pile

AR A AN

However, rotary drilling methods are also used in stiff

clays such as those found in the North Sea (Focht and Figure 36. Casing and pile

Kraft 1977). assembly for an

offshore drilled shaft

e Pin piles. The use of pin piles has increased in foundation (after

recent years, especially in situations with difficult access Steinke and Strasser

or restricted vertical clearance. For example, bridge 1978)

foundation rehabilitation has become a major market for

these piles (Pearlman et al. 1997). Pin piles are small-diameter drilled and

grouted piles. Their diameters range from 5 to 12 in. (127 to 305 mm), and their

axial compression and tension capacities range from 50 to 200 tons (445 to

1780 kN). The most common installation technique is to rotary-drill an open-

ended steel pipe into the subsurface. A reinforcing bar cage is then installed

inside the casing, and pressurized grout (or tremied grout in rock formations) is

pumped into the casing to extend the “bond zone” below the open end of the pile.

Foundation Selection Criteria and Design Issues

The foundation must be selected, designed, and constructed to achieve
acceptable performance during its anticipated lifetime. Selection and design
criteria for onshore (land-based) foundations are listed in numerous publications,
but published criteria for selection and design of underwater foundations are, in
general, somewhat limited. Although the offshore industry has published
guidelines for foundation design, installation, behavior, and testing (American
Petroleum Institute 1993), the selection guidelines covering all possible types of
underwater foundations are not commonly found in the literature. As foundation
costs increase and different foundation types become more available to designers
and constructors, Reese and Isenhower (2000) suggested that greater emphasis
will be placed on selecting the best foundation for a particular application.

The selection procedures for underwater foundations do not differ
significantly from those for onshore procedures, as the design requirements for
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both types of foundations are similar. The design criteria are dependent upon the
appropriate soil/rock properties (that is, shear strength or bearing capacity,
settlement, differential settlement, etc.). The major difference in the selection
process for underwater foundations stems from unique installation problems and
environmental conditions, such as wind, wave, and ice loadings to which many
onshore foundations are not subjected. Table 2 addresses some of the general
selection considerations.

Underwater foundation selection and design may be somewhat more
complicated than for onshore foundations because of the unique loading
configurations, installation requirements, and greater uncertainties in site
investigation and selection of appropriate soil parameters. However, the offshore
industry has greatly advanced geotechnical practices in the last 25 years, and
application of those practices will eventually merge into the general foundation
selection process. For example, suction piles have become competitive
alternatives to driven piles and gravity-based foundations. Risk analysis and
partial safety factor design are becoming more commonplace in offshore
foundation design and analysis, as is model testing using the centrifuge (Lacasse
1999).

Selection criteria

Engineering and economic analyses are necessary to select the proper
foundation system. The traditional choices for selection of onshore foundations
are deep foundations or spread footings. Each foundation type is generally
associated with given structures. For example, traditional U.S. engineering
practice is to specify piles for bridge foundations. It has been reported that
66 percent of U.S. bridge foundations are founded on piles, 25 percent are placed
on spread footings, and the remainder are drilled shafts (DiMillio 1999). In
contrast, England’s highway bridges rely almost extensively on spread footings,
even in coal mine subsidence areas where piles could reduce settlement.
Likewise, the U.S. building industry almost exclusively uses spread footings,
even though some building items, such as doors, windows, and utilities, are much
more sensitive to settlement than are piled highway bridges. Thus, foundation
selection may be based on industry and local practice, which may not necessarily
be the best choice. General selection criteria for underwater foundation systems,
which have been compiled from case histories and published information for
both onshore and offshore foundations, are discussed below.

Design considerations

Improved-site foundations. An improved-site foundation may be the least
complex of all foundations because the foundation itself is not “connected” to the
superstructure. An improved-site foundation is usually composed of a leveled
surface (excavated or backfilled) overlying either modified or natural soil and/or
rock material. Modification of the soil or rock implies that those materials have
been physically or chemically altered to be able to transmit the loading imposed
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by the superstructure into deeper material without failure due to bearing capacity,
settlement, or differential settlement.

Table 2

Underwater Foundation—General Selection Considerations

Site Conditions

Foundation Types

Remarks

Cohesionless soils

Silica sands
Fine-grained

Medium/coarse

Calcareous sands

Cohesive soils

Dense silts

Clays
Soft
Normally consolidated
Stiff to hard

Overconsolidated

Rock
Weak
Intact

Other site conditions
Presence of boulders
Corrosive soils
Contaminated soils

Underwater cables
Tunnels, buried pipe
Potential scour

Design and construction requirements
Minimal settlement

Maximum lateral loading resistance
Maximum cyclic loading resistance
Maximum uplift resistance
Noise/vibration restrictions

Minimal site QA testing efforts

IS, GB, P/driven, suction
P/bored with casing

IS, GB, P/driven, suction
P/bored with casing
P/bored

P/driven with grout

P/driven

IS, P/driven, suction

GB, P/driven, bored, suction
GB, P/driven, bored, suction
GB, P/bored

GB, P/bored or driven
GB, P/bored

IS, GB, P/bored
IS
IS, GB, P/driven

IS, GB
IS, GB
IS, P/driven

P/driven

P/driven, bored, suction
P/driven, bored
P/driven, suction

IS, GB, P/bored, suction

GB

Common in the southern
North Sea, Gulf of Mexico,
inland U.S. waterways

Carbonate-containing sands
founds in Florida, Hawaii, and
the Tropics

High penetration resistance
without high bearing capacity

Minimize exposure or remediate

Dredging hazard

Penetration hazard

Pipe piles offer less resistance
to swift currents; provide
scour protection

P/driven with quiet above-water
hammer

Legend:
IS = improved-site
GB = gravity-based
P = pinned

Chapter 4 Design Considerations

59



60

Alternatively, the prepared surface may underlie man-made materials such as
geotextiles or bridging mats. The superstructure itself is designed to transmit the
imposed loading to the underlying foundation material through its footprint
(foundation), which has been designed (sized) to minimize the settlement and
movement of the structure. Figure 37 illustrates an improved-site foundation with
numerous features, including excavation dredging, backfilling, and mechanical
modification by vibratory compaction. Figure 38 illustrates usage of man-made
bridging mats and geotextiles combined with dredging excavation and vibratory
compaction.

An underwater embankment foundation must be designed for stability and
minimal settlement similar to an onshore design. The onshore methods for
computing slope stability may be applied with the caveat that spatial variation
will be analyzed. Since the underwater variability will likely be greater than for
onshore slopes, solutions yielding the single critical shear surface and minimum
factor of safety should be expanded to include spatially variable factors of safety.
Liedtke and Wright (1999) analyzed this approach using the UTEXAS3 software
package.

Dredging, excavation, and (back)fill placement design principles are similar
to those used onshore. Namely, unsuitable materials are removed and replaced
with more suitable material. Disadvantages of dredging and backfilling include
environmental concerns in sensitive marine or riverine environments,
contaminated dredged material issues, and possible scarcity of nearby suitable fill
materials.

In addition to excavation and replacement, in situ modifications may also be
required to increase the soil/rock strength, reduce settlement, or to improve
stability. In sands, the primary goal is to increase the relative density. In clays
and weak rocks, the primary goal is to increase the undrained shear strength.
Three techniques available to achieve those goals are mechanical, hydraulic, and
chemical modifications. Mechanical modifications include physical
rearrangements of the soil matrix and include modifications by inclusions and/or
confinement. Hydraulic modifications include dewatering schemes. Chemical
modifications include grouting and soil mixing schemes (Hausmann 1990).

Mechanical modifications using reinforcing mats, steel mats, prefab rock
blankets, or geotextile fabrics have the effect of creating dense layers with
improved strength characteristics, as well as serving as filters to minimize
erosion or scour. The foundation bearing capacity and settlement design then
becomes a multiple-layer subgrade analysis with stiffer and more competent
layers overlying softer strata. For example, Abbot and George (1989) determined
that steel reinforcement meshes overlaid with granular layers would reduce
potential settlement by 66 percent and increase shear strength by a factor of 800
as compared to the unimproved site.

Mechanical modification using vibrocompaction is sometimes referred to as
vibroflotation if water jetting accompanies the vibration. Vibrocompaction
mechanically rearranges soil particles into a denser configuration by the use of
vibrating shafts and is used exclusively for cohesionless soils. Vibrating shaft
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Figure 37. Improved-site foundation under Bethlehem Steel’s graving dock near
Baltimore (after Millard and Hassani 1971)
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Figure 38. Eastern Scheldt improved site foundation sequence for gravity-based
piers (after DOSBOUW 1987)
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equipment may be specially designed or may simply be a vibratory hammer
attached to a pipe pile. The effectiveness of vibrocompaction in silty sands is
marginal to good but in silts and clays is poor (Hayward Baker 1999a). The
design process for vibrocompaction consists of first calculating the predicted
settlement (knowing soil gradation and relative density) and then designing
sufficient densification using vibrocompaction to reduce the expected settlement
to a desired value. The final density is determined by acceptance testing using
standard penetration, cone penetrometer, pressuremeter, or actual load tests.
Several case histories document the use of vibrocompaction techniques to densify
cohesionless soils. Tate (1961) reported that vibroflotation performed on drained
sands achieved a relative density increase up to 90 percent from the original

50 percent; Millard and Hassani (1971) disclosed that use of a vibratory
hammer/pipe pile to densify a cohesionless soil increased the bearing capacity by
100 percent and reduced design settlement by 50 percent; and Jonker (1987) cited
similar results using underwater vibrocompaction of the cohesionless materials in
the Eastern Scheldt project.

Hydraulic modification to consolidate cohesive soils involves drainage
techniques. Both vertical and horizontal drains have been successfully used
underwater. The first documented underwater installation of vertical drainage
wicks in North America was performed during site improvement prior to
construction of the Pascagoula (Mississippi) Naval Base. More than 4,000 wicks
were placed underwater to consolidate the underlying soft bottom silts at the site
of a new berthing pier. A 20-ft (6-m) sand surcharge was used to cause the
consolidation (Munn 1989). Disadvantages of wick drains include the need for
specialized equipment, the requirement to provide consolidation surcharge, and
the time required for consolidation to achieve significant gains in soil strength.

Horizontal drainage to dewater silt layers at underwater depths of 64 ft
(20 m) has been accomplished using a vacuum pumping system, as illustrated in
Figure 39. The purpose of dewatering was to allow larger volumes of dredged
material to be placed in an

Water level”

002 1 underwater disposal area. Collector

' Pressure (bar) —=

pipes were installed as successive silt
layers were added to the disposal
area.

vacuum .
pressure Storage capacity of the 986- by

{otal Stress 1,300- by 16-ft (300- by 400- by

Silttop

Silt bottom -

5-m) underwater disposal area was
increased about 20 percent by
dewatering the silt. Density after
dewatering was increased by about
5 percent (Aerts, Devlieger, and

Depth

Vandycke 1999).

Chemical modification

Figure 39. Suction dewatering in an underwater silt techniques have been used for
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layer (after Aerts, Devlieger, and relatively shallow soft soil seabeds
Vandycke 1999) for bottom-founded offshore oil
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structures in the Arctic and for harbor areas of Japan. In the Alaskan Beaufort
Sea, man-made islands have been constructed in the relatively shallow water
depths of 10 ft (3 m) to support drilling platforms. Halebsky and Wetmore (1986)
discussed several methods of soil modification and concluded that, of the
methods proposed (dredging/backfilling, soil wick drains, soil freezing, and deep
cement mixing), deep cement mixing offered an economical advantage. The
dredging/backfilling and soil wick drains methods were assumed to increase the
original soil strength by a factor of 2 whereas the deep cement mixing method (in
situ soil strengthening using cement, or DCM) was found to increase the original
soil strength by a factor of 70. In many locations, especially in Arctic regions,
soils with shear strengths as low as 500 psf (24 kPa) are found. Since exploratory
oil-drilling structures require soil shear strengths of 1,000 to 2,500 psf (50 to

20 kPa) and permanent structures require greater shear strengths, increasing the
soil shear strengths by a factor of 10 to 20 would make most weak soils
acceptable.

The major disadvantages of the DCM technology include the specialized
equipment that is required and the required time for curing. This technology for
underwater applications is more commonly used in Japan than in the United
States. Japanese DCM barges operate in water depths to 230 ft (70 m) and
modify the soil to depths of 165 ft (51 m) beneath the seafloor. Typical curing
times to achieve maximum design strengths are 2 to 3 months.

Gravity-based foundations. For gravity-based foundations, the
superstructure is “connected” to the foundation (footprint), and the foundation is
designed to resist the imposed compression, tension, overturning, lateral, and
dynamic forces. Design should include the following considerations (as
illustrated in Figure 40):

a. Stability against overturning, bearing capacity failure, sliding, or
combinations thereof.

b. Static deformation (settlement and differential settlement).
¢. Dynamic loading and response.
d. Hydraulic instability from scour or wave pressure piping.

e. Construction/installation effects, such as excessive pore-pressure buildup
during base installation.

In general, onshore shallow foundation design procedures are used
(American Petroleum Institute 1993). The bearing capacity of the soil is
calculated using the undrained strength parameters (¢ = 0) for clays or the
drained strength parameters for sands. The shear strength of the soil/rock is
converted into resisting values for the imposed loading conditions by the
selection of appropriate bearing capacity factor(s). Applicable soil parameters are
inserted into standardized equations, and the failure load is calculated.
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Figure 40. Possible failure modes of a gravity-based foundation

Dividing the failure load by the effective foundation area yields the ultimate
bearing capacity (¢q,). The ultimate bearing capacity is then divided by the
required (or chosen) safety factor.

The American Petroleum Institute (API 1989) recommends (with caveats) a
safety factor of 2 for underwater foundations, while the Department of the
Army (1983) recommends a safety factor from 1.5 to 3 for nonhydraulic
structures, depending upon the values of the dead and live loads. Sliding stability
calculations take horizontal and inclined loads into account. The maximum
horizontal load at soil failure is calculated for either a drained or an undrained
condition. API’s recommended safety factor is 1.5.

A more comprehensive approach to design is to couple the limit states design
(LSD) concept with probabilistic assessment. This concept considers two limit
states: ultimate limit states (ULS) and serviceability limit states (SLS). ULS
involves soil strength, ultimate bearing capacity, overturning, sliding, and other
structural safety conditions. The ULS methodology incorporates the load and
resistance factor design (LRFD) concept, which uses partial factors accounting
for uncertainties and variability. The SLS methodology involves conditions such
as differential settlements from construction and service loads. Becker (1996)
provides an overview of the LSD process for gravity-based foundation design.

Layered soils require additional considerations to prevent “punch through”

(bearing capacity failure). The majority of jack-up drilling rig accidents are
caused by foundation problems, and the majority of foundation problems are
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caused by punch-through on layered soils (Sharples, Bennett, and Trickey 1989).
Senner and Cathie (1993) discuss methods to design and assess likelihood of
bearing capacity failures on layered soils, including (a) strong clay overlying
weak clay, (b) sand overlying clay, (¢) strong soil overlying weak soil, and

(d) thin weak layers.

Calcareous (carbonate) sands require special attention. They may exhibit
high friction angles in laboratory testing, which leads to overestimating actual
bearing capacity. However, the load-carrying capacity of carbonate sands may be
somewhat lower because of their highly compressible behavior (Dutt and Ingram
1988, LeTirant and Nauroy 1994).

Static deformation considerations include both short- and long-term effects.
The compression index and the coefficient of consolidation are obtained from
laboratory (or other suitable type test) consolidation test data. The vertical stress
distribution for the before- and after-loading conditions can be calculated using
elastic theory. Using these criteria, the total and differential settlements can be
calculated and compared with the allowable displacements.

Considerations of dynamic behavior include cyclic loading from wind,
current, waves, ice, and earthquakes. Soil-structure interactions must be
examined for each anticipated loading situation. Failure during cyclic loading
may be associated with large horizontal or rotational cyclic displacements, large
settlements, or combinations thereof. The undrained bearing capacity of certain
clayey soils may be significantly lower during cyclic loading than monotonic
loading. To analyze the static bearing capacity after cyclic loading, the postcyclic
static shear strength must be known (Andersen, Kleven, and Heien 1988).
Andersen and Lauritzsen (1988) describe procedures for determining the cyclic
and postcyclic bearing capacity of gravity-based foundations on undrained clay.
Typical characteristic cyclic loads imposed on a North Sea gravity-based
foundation are these: (a) a horizontal wave load of 67,443 tons (600 MN), (b) a
wave moment of 3,417,096 ton-ft (100,000 MNm), and (c) a vertical wave load
of 44,962 tons (400 MN). These cyclic loads are based on the typical design
storm with a 100-year return period (Andersen, Kleven, and Heien 1988).

Scour skirts, riprap, or other scour protection methods are designed to
prevent soil erosion and undercutting. Excessive hydraulic gradients during and
after foundation installation may cause piping and excessive disturbance to the
supporting soil.

Designs of gravity-based foundations sited on rock generally follow the same
approach as for soils, but use slightly different methods. The failure methods are
the same as for soils, but the mechanisms are different. The geotechnical
parameters are also different. Rock strength classification is typically based on
either the RMR system (Bieniawski 1974) or the Q system, also called the NGI
system (Barton, Lien, and Lunde 1974). Appropriate rock strength parameters are
input, and allowable resistance values for bearing and sliding are calculated using
safety factors or probabilistic methods. Becker et al. (1998) discussed design
methods for underwater bridge piers founded on weak rock.
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Pinned foundations. Pinned foundations are typically employed to provide
end-bearing and/or frictional resistance to imposed compression, tension, lateral,
and dynamic loads. Pinned or pile foundations are installed into the subsurface
soil and/or rock either by displacement or excavation. Impact-driven piles
displace (dislocate) the soil. Drilled caissons or shafts require borehole
excavation. Most of the offshore structures use pinned foundations consisting of
driven piles. Lacasse (1999) reported that there are an estimated 6,000 offshore
piled structures around the world.

As a very general rule, bored piles are selected where there is a relatively
shallow bedrock stratum to develop end-bearing resistance, whereas driven piles
are selected for soils in which a high friction resistance can be used. However,
this dividing line is not distinct, and the pile type selection is usually governed by
installation economics and environmental conditions such as noise and vibration
(Thornton 1992). The most common offshore foundation type is a driven tubular
open-ended (pipe) pile designed for axial loading with minimum lateral loading
in granular and cohesive soils (ARGEMA 1992). An offshore pipe pile typically
has a diameter of about 7 ft (2.1 m), a wall thickness of about 2 in. (5 cm), and
penetration length of 300 to 400 ft (90 to 120 m). The pile’s size and length are
commonly determined by the required bending moment and by the penetration
depth to develop the necessary resistance to compressive and tensile loads. As a
rule of thumb for design purposes, Gerwick (1971) suggested that the maximum
compressive load was approximately twice that of the maximum tensile load. In
the event that excessive soil resistance to driving (refusal) is reached prior to the
designed tip penetration, several techniques are available to achieve design
penetration and include combinations of driving and drilling methods.

After the type of pinned foundation has been selected, the designer must then
determine the number, length, and size of the piles or drilled shafts. Several
design guides for piles and shafts are available, including API RP2A (1993);
Federal Highway Administration guides for bridge foundations, piles, and drilled
shafts (Hannigan et al. 1997; Armour and Groneck 1998; Raushe, Goble, and
Moses 1997; Bruce and Juran 1997; Baker et al. 1993; Barksdale and Bachus
1983; Lam and Martin 1986; O’Neill 1988; and Reese 1984); U.S. Army Corps
of Engineers 1991 and 1994 (Engineer Manuals 1110-2-2906 and 1110-1-2908);
American Society of Civil Engineers (1981, 1984, and 1993); Construction
Industry Research and Information Association (1993); and other publications
(Whitaker 1976, ARGEMA 1992).

The offshore industry has used the recommended empirical design methods
of the American Petroleum Institute, since its API RP2A was first published in
1969, primarily for Gulf of Mexico fixed platforms founded on open-ended steel
pipe piles. Several iterations over the years have produced the latest design
recommendations (API 1993). The design guidelines are based on extensive
research and load tests, extrapolated to the actual loads imposed on offshore
structures. It is interesting to note that although the largest pile capacity in the
API database is about 4,000 kips (18 MN), typical axial capacities (loads) for
offshore piles range from 10,000 to 15,000 kips (44 to 67 MN) per pile. For
compliant towers, the pile capacities are about 30,000 kips (133 MN) per pile.
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Although the design guidelines have been vigorously extrapolated, the field
results have remained acceptable (Pelletier, Murff, and Young 1993).

API’s design format uses both the Working Stress Design and the Load and
Resistance Factor Design methods. In deference to the European Community
process of developing international offshore platform design standards through
the International Standards Organization (which has a reliability-based format),
the LRFD method will likely predominate (Pelletier, Murff, and Young 1993;
Toolan and Horsnell 1993). The LRFD method includes partial safety factors
(reduction factors for soil parameters and multiplication factors for loads) instead
of lumped safety factors.

Other international offshore pile design codes are regulated by Det Norske
Veritas (DNV 1989) and the Department of Energy, U.K. (1986). Both these
design codes and the API recommendations include procedures for designing in
cohesive and cohesionless siliceous soils. The ARGEMA (1992) and CLAROM
(1994) design guides provide specific guidance for calcareous (carbonate) soils.

Recommended design parameters for cohesionless siliceous soil are given in
API (1989, 1993) for both driven and drilled/grouted piles. The limiting unit end-
bearing values and limiting skin friction values range from 40 to 250 ksf (2 to
12 MPa) and 1 to 2.4 ksf (50 to 115 kPa), respectively, as the soil density
increases from very loose to very dense. In calcareous sands (containing calcium
carbonate), driven piles may have substantially lower design strength parameters
than drilled and grouted piles.

The design methodology for both driven and drilled piles is similar. It
consists of comparing the applied loads to the soil’s internal capacity and
adjusting these values using applicable safety limits. The ultimate load-carrying
capacity is the sum of the pile end-bearing capacity (soil’s resistance to bearing)
and the pile skin friction capacity (soil’s frictional resistance):

0=0,+0;
where

O = load-carrying capacity of the pile
0, = end-bearing load

Oy = friction load
and O, =qA,
where

q = soil’s end-bearing capacity

A, = pile end area

and Oy = f4,
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where

f = soil’s skin friction capacity

A,= side surface area

The required diameter and length (penetration depth) of the pile are
calculated using A, and A,. For given soil values of ¢ and f; the ultimate load-
carrying capacity Q increases as pile diameter or penetration depth increases.
Ultimate-capacity design uncertainties are usually related to installation
uncertainties (plugging and drivability) and soil-capacity uncertainties (g and f
values).

Alternatives—for situations in which design objectives cannot be obtained
during the installation of the pile—should be identified and defined in the design
process (API 1989). For example, in the event sufficient penetration cannot be
achieved, removal of all or part of the soil plug is an option that can be used to
permit driving of the pile to the design depth. Care must also be taken when
basing pile design on load test correlations using soil properties determined from
both in situ tests and the laboratory test results. For example, if the in situ test
results yield shear strengths that are higher than those obtained from laboratory
samples and the load test correlations were made based upon the laboratory data,
using the higher values of shear strengths from in situ tests may lead to an unsafe
design (Reese and Isenhower 2000).

Besides designing for ultimate-capacity loading, the pile material must be
able to withstand handling and transportation stresses. Wall thicknesses may be
governed by the loads developed during installation procedures, especially if the
contractor opts to provide single-piece installation instead of making field
connections (Will et al. 1999). Column buckling due to unsupported lifting from
the horizontal to a vertical orientation or the dead weight of an underwater
hammer clamped to the top of a tilted pile undergoing self-penetration is an
important design consideration (Doyle 1999). Steel fatigue due to hammer
driving is another material design consideration, especially when a large number
of blow counts are anticipated in the soil resistance to impact driving analysis.

Varying wall thicknesses along very long offshore pipe pile lengths is a
commonly noted design consideration, as some piles extend to about 400 ft
(122 m) in length. Typically, the pile walls are thicker at the mudline due to
higher axial and bending stresses in that area (Davies and Srivareerat 1999).
Cunningham and Naughton (1977) discussed design aspects for a 1,255-ft
(382-m)-long, 4-ft (1.2-m)-diameter, 50-ksi (345-MPa) yield stress pipe pile
driven to 375 ft (114 m) penetration. Wall thickness at the mudline was 3 in.
(7.6 cm), decreasing to 1 in. (2.5 cm) above the mudline depth.

Pile-driving studies are required to determine the soil’s resistance to impact
driving (SRD) or vibratory driving (SRV). For example, if the pile cannot be
driven to the design penetration depth, the pile’s designed ultimate capacity may
not be achieved. SRD or SRV must be studied as part of the design process since
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these values determine the likelihood of achieving a successful pile installation
during the construction phase.

Two aspects of the pile-driving study that should be addressed are
(a) selecting the proper pile and hammer and (b) establishing criteria to define a
successful installation. Hammer selection may be the most important aspect of
pile installation (ASCE 1993). Numerous resources are available for pile-driving
equipment selection (Department of the Army 1982). The wave equation analysis
provides guidance for items (a) and (b) above and is discussed in detail in
Chapter 5. Proof load testing prior to finalizing the design specifications also
provides valuable guidance in establishing criteria defining a successful
installation. Load testing is also discussed in Chapter 5 of this report.

Self-weight penetration (prior to hammering) as the pile is lowered into the
mudline is a design consideration. Self-weight penetration may be calculated by
assuming that the penetration resistance is provided by outer circumference skin
friction, end bearing at the pile base, and inside skin friction provided by the
shoe. The buoyant weight of the pile and attached lifting tools provides the
penetration (driving) force. Doyle (1999) noted that unconsolidated-undrained
remolded soil strength values were used for skin friction, and undisturbed soil
strength values were used for end-bearing resistance in self-weight pile
penetration calculations at clay sites in the Gulf of Mexico. At those sites, self-
weight penetration was roughly 25 percent of the total pile lengths.

Designing drilled shafts socketed into bedrock generally relies on shaft
resistance instead of end bearing, since shaft resistance is fully mobilized at
much lower deformation as compared with end-bearing resistance (Becker et al.
1998). For example, the design of the underwater approach piers for the
Confederation Bridge was initially based on unit shaft resistance values of 7.5 to
14.1 ksf (360 to 680 kPa) developing in the mudstone, siltstone, and sandstone
layers. Drilled shaft lengths averaging 44 ft (13.5 m) with 6.5-ft (2-m) diameter
were then calculated based on factored design loads up to 6,745 tons (60 MN)
vertical, 73,953 ft-tons (200 MN-m) bending, and 2,135 tons (19 MN) horizontal.
Design shaft lengths were later reduced to 25 ft (7.5 m) based on actual (onshore)
load tests that indicated much higher shaft resistance values in the rock layers.

Full-scale load tests of drilled shafts using the Osterberg cell method have
typically shown that the maximum applied test load is much larger than the
design load, including the factor of safety. According to Osterberg (1998),
relatively few designers have taken advantage of these results by performing
economical redesign efforts. One extreme overdesign example revealed that
when a test shaft was loaded to 3,000 tons (26.5 MN) with no sign of failure, the
design firm was pleased that the design load of 500 tons (4.4 MN) was validated.
No efforts were made to redesign the shaft to a more economical, smaller size.

The effects of scour around pinned foundations requires reducing the
effective shaft length to account for reduction in side shear (friction resistance).
For example, drilled shaft designs for the Ohio River Bridge (Osterberg 1998)
took into account only the bottom 19 ft (6 m) of shale. The load capacity of the
overlying 63 ft (19 m) of sand and gravel was not considered because of the
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possibility of deep scour. Full-scale load testing (using the Osterberg cell) was
tailored to reduce the overburden’s load-carrying contribution.

The design criteria for a suction pile is similar to the gravity-based and
pinned foundation design methodologies. For the suction pile, the penetration
resistance is a function of the soil’s resistance to bearing and friction and is
calculated as the sum of the shear along the walls and the bearing capacity at the
tip. The penetration analysis includes calculation of the underpressure (the
difference between the hydrostatic water pressure outside the pile and the water
pressure inside the pile cavity). The safety margin against soil heave inside the
cavity must be determined to calculate the allowable underpressure (Andersen
and Jostad 1999). The calculation of self-weight penetration of the suction pile is
a critical design aspect that must be addressed due to its effect on the pile cavity
volume.

The bearing capacity and holding (tension) capacity of suction piles are
calculated by limit equilibrium methods. The critical failure surface depends on
the combination of vertical, horizontal, and moment loads acting on the pile.
Andersen and Jostad (1999) provide comments on design concepts and
procedures for suction pile (skirted foundations and anchor) design. The
following design aspects need to be analyzed for suction piles:

o Penetration
- resistance
- necessary and allowable underpressure
- soil heave inside cavity
- maximum penetration depth
- factor of safety
- removal analysis if needed
e Capacity
- limiting equilibrium modeling
- shear strengths
- soil crack effects
¢ Displacements
- consolidation
- cyclic and permanent displacements due to cyclic loads
o Soil spring stiffnesses (dynamic analysis)
e Soil-structure interaction

Analysis and verification testing

Design analysis is conducted during the design phase, and may include
numerical and physical modeling. Numerical modeling techniques (such as finite
element analysis) and physical modeling techniques (such as model tests) can be
used during this phase.

Model tests are geotechnical investigative tools that best document the

failure mechanism, deformation patterns, reliability of numerical models, and
soundness of the calculated design (Lacasse 1999). Model tests can range from
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full scale to small-scale prototypes and may include the use of centrifuge testing.
Figure 41 illustrates model scaling relationships for centrifuge tests.
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Figure 41. Scaling relationships for 1-g and centrifuge models (after Murff 1996)

When properly designed and conducted, centrifuge testing offers significant
advantages compared with 1-g model testing. Centrifuge testing of undrained,
partially, or fully drained soils with simplified profiles offers an advantage. The
disadvantages include the use of miniature instrumentation, the effects of time
scale, and relatively high costs. Murff (1996) presents a discussion of centrifuge
testing aspects related to offshore foundation design and analysis that was
supplemented with several case histories.

Published examples of centrifuge testing for offshore foundations are not as
common as those for onshore applications, perhaps due to the proprietary nature
of some tests. Nicola and Randolph (1999) discussed model pile test results
compared with current guidelines for offshore pile design. Hu, Randolph, and
Watson (1999) discussed centrifuge testing and finite element analysis of
offshore skirted gravity-based foundations. Becker et al. (1998) discussed
centrifuge testing and finite element analysis of an underwater gravity-based
foundation for a bridge pier.

Quality Control and Assurance Issues

Quality control and quality assurance (QA/QC) are essential in engineering
design and construction. Quality control and assurance elements are especially
important for in-the-wet construction projects where the foundations are
prepared, installed, and tested in an underwater remote location, often from a
floating platform on the river or marine surface. Visual inspection of the
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foundation before, during, and after construction is generally not possible, as
compared with the onshore process where the aboveground portion of the
foundation is easily viewed and accessible. Specialized techniques and
equipment are needed to install quality foundations underwater, and adequate
QA/QC procedures must be specified and followed to achieve and ensure
successful installation.

Quality control and quality assurance are not the same functions, and are
more than an inspection process. Quality control refers to setting up and
maintaining a system that provides a means to control and measure specified
characteristics (of the underwater foundations). Quality assurance verifies that the
quality control system is performing adequately. Quality control and assurance
operate hand-in-hand to enable the underwater foundation to be constructed in
strict accordance with the engineering design and specifications by monitoring,
recording, and certifying the entire process. Adequate QA/QC is the collective
responsibility of all parties concerned with designing, specifying, manufacturing,
purchasing, and installing the various project components (Batten 1987).
Although the QA/QC system applies to the planning, conceptual design, and
engineering design phases of a project, its most common and better defined
application is in project construction. Constructing the underwater foundation
according to the design plans and specifications requires a high degree of QA/QC
due to the complexities and variables involved in contractual construction
projects. Preventing the introduction of defective materials or poor workmanship
in a construction project before these problems occur constitutes an effective
quality control and inspection scheme (API 1989).

Engineering design phase

Design quality is the responsibility of everyone involved in the development
of a project (Department of the Army 1994). Several QA steps are involved in
the design of Corps projects before plans and specifications are inked, as outlined
in Engineer Regulation (ER) 1110-2-1150. Appendix F of the ER is an internal
management control checklist to ensure that all engineering functions are
conducted in a cost-efficient manner. Adequate coordination, communication,
and lessons-learned applications are stressed in order to achieve a high standard
of technical quality during the design phase.

Appendix E of ER 1110-2-1150 includes instructions for writing a “report on
engineering considerations and instructions for field personnel” who will be
responsible for the oversight of the contractors’ quality control program. It is
stressed that this report should be distributed to appropriate construction field
personnel for their suggestions and input prior to completion of the design phase.
Field personnel may have a more intimate knowledge of site conditions and
potential site-specific design problems than do the engineering design personnel.
Hence, the field comments and suggestions should be incorporated early on,
especially during the design phase.

The Corps of Engineers has published engineer manuals, technical manuals,
and other guidance to ensure consistent criteria and requirements for developing
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design and engineering documents for civil and military projects. ER 1110-345-
700 covers military and hazardous waste projects. Other regulations are
applicable and will not be listed here.

A comprehensive listing of U.S. government standards, design guides,
engineer manuals, national standards, building codes, and trade organization
standards can be found at http.//www.hnd.usace.army.mil.

Specifications and contract document phase

Specifications delineate the project requirements and establish exactly how
the designer intends the project drawings to be applied. Specifications form a
primary tool for setting up the QA/QC system and must provide enough detail for
the construction to proceed in a timely, efficient manner. Specifications also
provide a basis for estimating the project costs, which impacts contractor
selection during the bidding process.

ER 1110-1-8155 (Department of the Army 1998) prescribes specifications
policy for the Corps. The Corps of Engineers Guide Specifications (CEGS) are a
system of master guide specifications that define the qualitative requirements for
products, materials, and workmanship for repetitive work features occurring on
Corps construction projects. The Internet site http./www.hnd.usace.army.mil
contains the CEGS library and additional specification database links. Although
usage of the CEGS system is not mandatory within the Corps, the system is
updated and maintained to include lessons learned during design and
construction, and thus constitutes a valuable source for technical specifications.

No CEGS documents currently exist for underwater foundation design and
construction. Various elements of land-based foundation construction that may
be applicable to underwater foundation construction, which are covered in the
February 1999 CEGS database, are listed follow:

01270 Measurement and Payment

01451 Contractor Quality Control

02210 Subsurface Drilling, Sampling, and Testing
02217 Foundation Preparation

02251 Foundation Drilling and Grouting

02300 Earthwork

02315 Excavation, Filling, and Backfilling for Buildings
02316 Excavation, Filling, and Backfilling for Utilities
02375 Geogrid Soil Reinforcement

02378 Geotextiles Used as Filters

02453 Prestressed Concrete Piles for Civil Works

02454 Precast Concrete Piling

02455 Cast-In-Place Concrete Piles, Steel Casing

02456 Steel H-Piles

02457 Round Timber Piles

02458 Prestressed Concrete Piling

02459 Piling: Composite, Wood, and Cast-In-Place Concrete
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02461 Round Timber Piles for Hydraulic Structures
02463 Steel H-Piles for Civil Works

02464 Metal Sheet Piling

02465 Auger-Placed Concrete Piles

02466 Drilled Foundation Caissons

02722 Graded, Crushed Aggregate Base

Corps Divisions and Districts are given the flexibility to add non-CEGS
specifications within a specific construction project package, but inclusion of
those specifications within the CEGS system requires proper submission and
Headquarters approval. The specification sections must be properly formatted in
accordance with ER 1110-1-8155. The CEGS layout for a construction
specification (Construction Specifications Institute 1996) follows:

Part 1 General
1.1 References
1.2 Measurement and payment
1.3 System description
1.3.1 Design requirements
1.3.2 Performance requirements
1.4 Submittals
1.5 Qualifications
1.6 Regulatory requirements
1.7 Field examples
1.8 Mock-ups
1.9 Pre-installation conference
1.10 Delivery, storage, and handling
1.11 Project/site conditions
1.11.1 Environmental requirements
1.11.2 Existing conditions
1.11.3 Field measurement
1.12 Sequencing and scheduling
1.13 Warranty
1.14 Maintenance
1.14.1 Maintenance service
1.14.2 Extra materials
Part 2 Products
2.1 Materials
2.2 Manufactured units
2.3 Equipment
2.4 Components
2.5 Accessories
2.6 Mixes
2.7 Fabrication
2.7.1 Shop assembly
2.7.2 Shop/factory finishing
2.7.3 Tolerances
2.8 Tests, inspections, and verifications
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Part 3 Execution
3.1 Examination
3.2 Preparation
3.2.1 Protection
3.2.2 Surface preparation
3.3 Erection
3.4 Installation
3.5 Application
3.5.1 Special techniques
3.5.2 Interface with other products
3.5.3 Tolerances
3.6 Field quality control
3.6.1 Tests
3.6.2 Inspection
3.6.3 Manufacturers field service
3.7 Adjusting/Cleaning
3.8 Demonstration
3.9 Protection
3.10 Schedules

Once the project specifications are sufficiently detailed and written, they are
reviewed and approved for inclusion in the project contract documents. During
the bidding process and after contract award, conflicts may arise because of
problems with the specifications. Based upon one legal firm’s breakdown of
construction specification conflicts, the following specification problem areas are
listed in order of occurrence (Nielsen and Nielsen 1981):

e “Or equal” clauses: These statements lead to the highest occurrence of
specification problems (claims and litigation) because of disputes over what is
“equal” in a particular situation. This situation occurs mainly in public works
contracts in which the specifier wants a particular brand name product but also
must comply with Federal contract law to not limit competition.

o Constructibility (defective specifications and tolerances): Constructibililty
problems arise when the item cannot be built, installed, or will not perform as
specified. Holding the contractor to tighter tolerances than normal industry
standards may also lead to conflict.

o Ambiguities (phrasing and typographical errors): These problems refer to
interpretation issues.

o Conflicts between plans and specifications (and typographical errors):
These conflicts arise from lack of adequate QA/QC during the engineering
design phase.

o Inaccurate technical data: This category includes errors and omissions
such as specifying subsurface information that does not match the actual
conditions (differing site conditions), specifying inadequate quality control
standards, and specifying owner-furnished plant and equipment that is not
suitable.

Chapter 4 Design Considerations

75



76

o Product performance deficiencies: These may cause problems when new
and relatively untried products are specified. This type of problem has direct
applicability to underwater foundations contracted by the Corps because the
Corps does not have an extensive experience database gained from in-the-wet
construction projects. Special emphasis must be given to prebidding
demonstrations of products and equipment and postaward presence of
knowledgeable field representatives responsible for implementation of new
products, procedures, or equipment to be used for in-the-wet projects.

o Inspection and excessive testing: Overzealous inspection and testing may
also cause specification problems and contract conflicts.

Recent Corps of Engineers underwater foundation contracts

Pittsburgh District. Plans and specifications have been finalized and
construction has begun for an innovative Corps in-the-wet float-in construction
project. A new gated dam will be constructed at Pittsburgh District’s existing
Braddock Locks and Dam 2 on the Monongahela River in Pennsylvania
(U.S. Army Corps of Engineers 1998). The underwater foundation system
consists of a dredged area with sheet-pile cutoff walls in the riverbed alluvium
and concrete drilled shafts socketed into bedrock. The precast concrete dam
elements will be floated in and ballasted upon and anchored to the drilled shafts.
The foundation specifications were custom-written for this unique project and
contain numerous non-CEGS specifications. Specifications relating directly to
the underwater foundation system include:

01025 Measurement and Payment
01450 Survey and Alignment Control
01451 Contractor Quality Control
02012 Exploratory Drilling

02013 Exploratory Pile Driving
02164 Rock Anchors

02273 Scour Protection

02314 Seepage Cutoff Walls
02316 Steel Pipe Piles

02315 Steel H-Piles

02383 Drilled Shafts

02411 Metal Sheet Piling

02482 Dredging

02722 Graded Gravel Base

03900 Concrete: Drilled Shafts
13530 Instrumentation

The predominant work feature for the underwater foundation system is
drilled shafts, which provide the deep-foundation support for the concrete float-in
elements and function as anchor piles for positioning the float-in elements. The
drilled shafts (similar to caissons or piers) consist of steel pipe piles (casing)
driven with a vibratory hammer to bedrock. Upon completion of the driving of
the casing, rotary drilling was conducted through the pile beyond its open bottom
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end and into bedrock (without casing). After the borehole had been advanced to
the specified depth in the bedrock, steel reinforcement cages (illustrated in
Figure 42) with attached instrumentation tubes (for sonic testing) were to
lowered into the casing and through the bedrock to the bottom of the borehole.
The borehole and casing were then backfilled with tremie concrete. Foundation
details are presented in Figure 43.

Section 01451, Contractor Quality Control, established the baseline
requirements for the quality control system to be implemented by the successful
bidder. Some of the novel features of this specification section include:

a. Requirement for completion of the “Construction Quality Management
for Contractors” training course.

b. Requirement for project management staff to have specialized
experience:

(1) Project Engineer: minimum 3 years marine construction experience
(2) Concrete Superintendent: experience in mass concrete operations

(3) Marine Superintendent: minimum 15 years marine project
experience

(4) Diving Superintendent: minimum 5 years diving supervision
(5) Chief Surveyor: minimum 5 years marine surveying experience

(6) Project Safety Engineer: minimum 3 years marine construction
experience

Figure 42. Reinforcing cage for the drilled shaft load test
prior to project construction at Braddock Locks
and Dam 2

Two additional underwater foundation construction specification sections
were added to address specific technical requirements to ensure quality:
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Figure 43. Pinned foundation details, Braddock Locks and Dam 2

Pinned foundation: Exploratory drilling was specified to establish final tip
elevations for the bedrock drilled shafts. Exploratory pile-driving served to
specify final tip elevations for the alluvium cutoff wall (H-piles, pipe piles, and
sheet piles) and to finalize vibratory pile-driving equipment selection for both the
cutoff wall piles and the drilled shaft casings. It was specified that these work
items were to be completed first, so the contractor would be able to order the
correct amount of production piling materials. After the improved-site foundation
preparation was completed (i.e., dredging, graded gravel base, and scour
protection), a Drilled Shaft Installation Plan was approved. After its approval, a
drilled shaft demonstration was conducted to assess and select the equipment and
procedures for constructing the production shafts. Previous tests by Pittsburgh
District at the site (sheet piles and caissons) provided quality assurance
comparisons for both design and construction. Other QC features included the
requirement for a fixed-guide pipe pile and casing template and specifying
diverless (remote) pipe pile and casing cutoff operations.

Improved-site foundation: Prior to production piling and shaft (caisson)
construction, the riverbed was prepared by dredging. Several dredging stages and
a graded 12-in. (30-cm) gravel base were specified. Quality control features
included surveying specifications and requirements, using a flat-bottom dredging
bucket to prevent gouging below final elevation, using a low-velocity suction
pump to remove siltation without disturbing the gravel, and diver inspections to
ensure siltation removal. Scour protection using specially graded limestone rocks
was specified for given areas. Quality control features included laboratory
materials testing, diver inspection prior to placement, and disallowing free-fall
placement of stones.

New Orleans District. The Inner Harbor Navigation Canal (IHNC) Lock
Replacement project will consist of float-in precast concrete elements resting on
underwater pinned foundations. Prior to design and construction, a pile load test
and installation study contract was awarded. The contract study included
installation of nine 48-in. (1.2-m)-diam open-ended steel pipe piles driven to a
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maximum depth of 190 ft (58 m) below ground surface. Several innovative
features for underwater foundation installation were addressed in this contract.

The technical specifications (U.S. Army Corps of Engineers 1999a) included
these sections:

02355 Pile Load Test
02451 Steel Pipe Piles
02497 Dynamic Pile Testing

Contractor QC plans were required to address material delivery, storage,
handling, installation, testing, and removal procedures. In addition to material
specifications meeting American Society for Testing and Materials requirements,
the API (1989) RP-2A-LRFD requirements were specified, and only one splice
per pile was allowed. Provisions
to monitor horizontal and vertical
alignments and plumbness during
underwater installation were
included, with underwater
alignment tolerances of 6 in.

(15 cm) vertical, 6 in. (15 cm)
horizontal, and within 1.5 percent
of length (plumbness).

Only two of the nine pipe
piles were specified to be driven
underwater in the navigation
channel, which is approximately
30 ft (9 m) deep. The remaining
seven (onshore) piles were driven
inside 6-ft (1.8-m)-diam steel
casings in which the soil had been
excavated and then backfilled with
water to simulate underwater pile
driving. All piles and casing were
driven with submersible impact
hydraulic hammers and/or
submersible vibratory (electric or

hydraulic) hammers (Figure 44). Figure 44. Pile driving with a submersible vibratory

The piles were instrumented and hammer, New Orleans IHNC pile test project
analyzed using the Pile Driving

Analyzer and CAPWAP dynamic load capacity packages.

Restriking and compression load tests were conducted on five of the onshore
piles to determine ultimate pile capacity. Noise and vibration measurements
(decibels and inches/second) were specified and taken at two locations during
driving of the test piles onshore and underwater for comparison with background
readings. Upon completion of the driving and testing, it was specified that the
piles and casings were to be removed and the voids filled with a tremied cement-
bentonite-sand mixture.
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5 Foundation Preparation
and Construction

Quality Control and Quality Assurance Issues

Quality assurance and verification on a Corps construction project is a
Governmental function that consists primarily of maintaining assurance that the
contractor has established and is properly executing the project Quality Control
Plan. Verification comes from observing the contractor’s adherence to the
contract plans and specifications, and includes the contract submittal process,
preconstruction meetings, visual inspections, and laboratory testing. The most
functional quality assurance program is a reflection of a robust quality control
program staffed by competent and experienced contractor personnel.

Numerous training courses are available to help field project personnel fulfill
their quality assurance responsibilities. No Governmental training is currently
available specifically for underwater foundation construction, but modifications
to current training topics may be accomplished. Quality assurance
representative’s guides such as Engineer Pamphlet 415-1-261 (U.S. Army Corps
of Engineers 1992) may also be modified to include underwater construction.

Until the Corps acquires a larger database of underwater construction
projects, a successful quality assurance program will depend heavily on the
constraints in the quality control clauses of the contractual plans and
specifications and the degree to which the specialized contractors execute the
quality assurance issues.

Inspection and testing requirements and procedures are highly dependent on
the type of underwater foundation being constructed. The contract documents
and specifications should cover the inspection and testing requirements during all
four phases of underwater foundation construction, as described in the following
paragraphs.

Preconstruction phase
After contract award, the preconstruction phase includes specific topics that

should be satisfactorily specified, such as preconstruction conferences to
establish details of the quality control system, project schedules, and methods for
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resolution of potential problems for each phase of the underwater foundation
construction. Discussion of the specified and approved Installation Plan is
conducted at this time. Topics that should be addressed include potential site-
specific problems, such as river (or water body) conditions, concurrent work by
others, owner-furnished facilities, owner-furnished horizontal and vertical survey
control markers, and coordination, sequencing, and safety issues. Inspection and
testing topics should be discussed and understood by all parties to minimize
misunderstandings and to reduce potential contract conflicts during construction.

Construction phase

Regardless of the foundation preparation method or the foundation type, a
survey positioning system must be established and used throughout the
underwater foundation construction phase.

Positional accuracy is required during all phases of the project, from riverbed
improvement (including snag removal, dredging, backfill, compaction, leveling,
and scour protection activities) to final acceptance. At all locations and during all
phases of the construction, three-dimensional (3-D) boundary locations and
tolerances must be verified. Floating platforms and supporting items such as drill
rigs, pile-driving rigs, and batch plants must be accurately positioned over the
foundation site. Mooring with anchor lines or dynamic positioning (propeller-
controlled) methods are required to position floating plants and control their
locations. The foundation system must be three-dimensionally located and
positioned within specified tolerances. Cutoffs, top of surface, and final tip
elevations of each foundation element must be accurately measured and
recorded. Adequate control measures are required to monitor and control element
alignment and plumbness.

Drilled foundations (piles and caissons), especially those that require cast-in-
place concrete, require a higher degree of inspection and monitoring because of
the high potential for development of unforeseen problems. For drilled
foundations, a number of inspection and testing items are important (Greer and
Gardner 1986). Items to be considered are listed below and discussed in the
following paragraphs.

Cuttings control and disposal

Hole bottom cleanout and stabilization
Subterranean water

Borehole integrity

Proof testing

Reinforcing cage placement

Concrete placement

Load testing

Although the objectives are similar, the inspection and testing of underwater
drilled foundations require modification of in-the-dry techniques. Once the
uncased borehole has been drilled and cuttings have been properly disposed, a
cleanout inspection must be conducted to ensure that the bearing stratum is sound
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and that the hole is stable. A determination and location of subterranean water
such as artesian aquifers must be determined during the site investigation phase
as their presence may cause stability problems within the boreholes, which may
preclude any uncased cast-in-place concrete.

Remote video monitoring for inspecting the finished borehole is possible if
the water is not turbid, or divers may be required to monitor the borehole
integrity if allowed in the safety plan. If the borehole is in irregularly weathered
rock formations, extra attention should be given to proof testing. Proof testing
can be performed by drilling a small-diameter exploratory hole through the
bottom of the borehole and noting the advance rate for the purpose of detecting
subbottom voids. A probe rod may be jiggled in the exploratory hole to allow
detection of sidewall fissures and voids.

The reinforcing cage must be placed with proper alignment and plumbness.
Concrete placement requires detailed inspection and testing procedures. Load
testing of the completed foundation allows for a comparison of the design and
actual strength capacities. Although full-scale load testing is time consuming and
expensive, the use of an Osterberg cell may be a less expensive option and would
permit the drilled shaft to be placed into service upon completion of the testing
(Osterberg 1998).

For driven-pile foundations, Fleming et al. (1992) identified a number of
inspection and testing items. A discussion of each is presented in the following
paragraphs.

Quality of pile materials and connectors
Damage during driving

Pile heave

Ground vibration and movement

Subterranean water

Workmanship and materials during installation
Load testing

Although quality control during fabrication is a separate issue, the piling
must be inspected for material defects upon arriving at the jobsite. The piling and
associated connectors must also be protected from damage from the time they are
offloaded onto the jobsite until they have been installed in the ground. Selection
of the proper hammer not only involves matching the required load capacity, soil
conditions, and piling properties to the hammer, but also includes a requirement
to minimize excessive stresses during driving, to prevent damage to the piling by
overdriving.

Driving through saturated clays or dense sands may cause pile heave, which
is usually of more concern than ground heave, which is caused by soil
compaction and consolidation during driving. The potential effects of ground
movement on adjacent structures should be considered and addressed during the
design phase. Subterranean water such as artesian aquifers may cause problems
due to high pore-water pressures if the aquifer is not discovered during the site
investigation phase.
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All materials, methods, and workmanship on piles requiring additions or
modifications during installation, such as grouting, concrete, and welding, must
be properly inspected and tested according to applicable codes and standards.
Pile load testing during construction may be conducted to permit an assessment
of the actual factors of safety (designed capacity/actual capacity). Complete and
comprehensive records of the testing setup, procedures, calibrations, adjustments,
results, and interpretations are required.

Acceptance phase

Once the foundation system has been constructed, additional inspection and
testing should be performed to confirm its acceptance as a finished product. The
acceptance phase may be separate or may be conducted during the construction
phase, depending on the foundation system. Materials testing conducted during
the construction phase may not be finalized until construction is complete (that
is, concrete strength tests).

Integrity testing of the completed or installed foundation should be required,
and is discussed later in this chapter (see section “Underwater Foundation
Testing”). Improved-site integrity testing typically consists of conducting a
postconstruction site investigation, which has essentially the same purpose as the
preconstruction site investigation.

Gravity-based and pinned foundation integrity testing requires evaluation of
the foundation elements (concrete, grout, steel piles, reinforcing, etc.) using
standardized material testing methods. The most common integrity testing
methods use nondestructive techniques (NDT). For nearly all NDT small-strain
integrity testing methods, low-energy ultrasonic pulses or acoustic (sonic) waves
are transmitted through the pile materials (concrete, wood, steel, etc.) (Davis and
Hertlein 1991).

Postconstruction monitoring phase

After construction has been completed, ongoing inspection and monitoring
activities may be continued. These functions may or may not be regulated,
depending on the needs of the owner or operator. The Corps requires periodic
inspection activities of its civil works structures during their operation and
maintenance phase (Department of the Army 1995). Offshore U.S. structure
inspections are regulated by the U.S. Geological Survey and the U.S. Coast
Guard.

Rules and guidance are also given by the American Petroleum Institute (API)
and the American Bureau of Shipping. European agencies such as the U.K.
Department of Energy, Det Norske Veritas, and Lloyd’s regulate offshore
structure inspections outside the United States (Stern and Alia 1980).

The rules and regulations do not place emphasis solely on the structure’s
foundation. Focus is instead directed to detecting any changes in the overall
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structural integrity. To the extent that any loss of structural integrity is due to
foundation problems, foundation monitoring may then become a critical
component of the inspection process. An important aspect of foundation
monitoring is evaluating the foundation material integrity, including steel
corrosion, steel weld quality, concrete cracks, concrete spalling, soil scouring,
etc. It may also be important to evaluate the foundation performance in terms of
settlement, inclination, stability, etc. Unique foundations such as suction
caissons, which depend on active pore pressure monitoring, may require a special
instrumentation and evaluation process (Tjelta 1993; Stock, Jardine, and
Mclntosh 1993).

Various tools and equipment are available for conducting foundation
inspections. Remote visual monitoring may be accomplished with remotely
operated vehicle systems (ROVs) or autonomous underwater vehicles similar to
those used for underwater site investigations. Diver-equipped tools are also
available for material integrity evaluations, including high-pressure waterjets for
cleaning steel and concrete and hand-held equipment for inspecting concrete and
steel components (Smith 1987).

Foundation Installation and Testing

A variety of installation procedures and equipment exists for installation of
underwater foundations. Testing procedures and equipment are required to
validate the foundation design and to ensure foundation integrity.

Improved-site foundations

Improved-site foundations include those that are modified to increase
strength, reduce settlement, and improve stability of the soil or rock. Physical,
mechanical, hydraulic, and chemical methods are available to achieve these
modification objectives (Hausmann 1990). Physical modification includes
excavation, backfilling, and leveling operations. Mechanical methods generally
include vibratory compaction, confinement, inclusions, and geotextile
reinforcement. Hydraulic methods include the use of vertical and horizontal
drainage systems. Chemical modification involves deep cement mixing.

Physical modification.

Excavation and dredging. Both terms relate to the removal of undesirable
soil or rock materials and are often used interchangeably. Excavation generally
implies a smaller operation, such as removing soil inside a cofferdam. Dredging
implies a larger area operation and is usually required during installation of
improved-site foundations and gravity-based foundations. Reasons for excavation
and dredging include removing unsuitable materials such as loose/weathered
rock or mud overburden, cutting specified depths and slopes in competent
materials, retrieving bulk samples, and cleaning (removing) soft bottom
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(sediment) materials after dredging or backfilling operations have been
completed (Johnson, Compton, and Ling 1972).

Dredging to remove overlying soft materials may be accomplished using
airlifts, suction (hydraulic) dredges, or specialized trenching equipment.
Dredging firmer materials may be accomplished using clamshell (orange-peel)
draglines (Figure 45) or bucket (dipper) dredges in shallower water. Deepwater
dredging is done with continuous dragline, cable with attached cutters, ocean
dredging vessels (suction hydraulic or
hopper with cutterheads), or ROVs.

Explosives are used to remove pinnacles

and boulders, and drilling/blasting

operations are performed in rocky areas

(Gerwick 1974). Harris (1942), Tate

(1961), Millard and Hassani (1971),

Johnson, Compton, and Ling (1972), and

Loeken (1980) describe dredging

operations on numerous projects,

including the Navy’s drydock projects,

New York’s Yonkers sewage treatment TN

plant, San Francisco’s marine terminal, \ AM‘%V/ W
Hong Kong’s Plover Cove Dam, Ghana’s Orange peel bucket
Akosombo Dam, and offshore borrow e A O
areas.

Large-scale dredging and backfilling

operations may use oceangoing vessels. Figure 45. Clamshell excavation and soil
Large ocean going trailing suction hopper sampling in the Columbia River (after
dredges have been specially designed for Bazett and Foxall 1972)

removing and backfilling bottom materials

at depths to 430 ft (130 m). These dredges pump slurried bottom material into
vessel hoppers via suction pipes connecting the bottom-trailing dragheads to the
vessel’s main dredge pumps. The dredge then transports the material to the
disposal location, where the hopper load is discharged for placement of
underwater fill or is wasted. Currently, the world’s largest trailing suction hopper
dredger is Belgian Jan De Nul’s with 39,200-cu ft (30,000-cu m) hopper capacity
(Dredging and Port Construction 1999). Smaller dredges are available for
dredging near-offshore and inland rivers to depths necessary for maintaining
navigation, usually less than 50 ft (15 m). Submerged dredging platforms allow
access to deeper locations, and are typically used offshore. One Netherlands
company has developed an ROV capable of dredging to depths of 3,300 ft

(1,000 m), as illustrated in Figure 46 (Van Oord 1999). Specialized subsea ROV
trenchers for pipeline burial are also available (Rushfeldt 1981, Dansette and
Robertson 1994).

Positional accuracy for dredging operations has been improving thanks to
modern sensor technology and global positioning system (GPS). One example is
Prolec’s “Digmaster” indication system from the United Kingdom. With its
sensors mounted on a bucket (dipper) dredge, the operator can visually monitor
in real time where the bucket is, and dredging tolerances to 2 in. (5 cm) are
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possible when dredging at depths to 60 ft (18 m). Tidal and
current fluctuations are automatically taken into account.
Prior to the development of this technology, the dredging
operator relied on boom markers and hand soundings
(World Dredging, Mining, and Construction 1999).

Small quantities of material are removed by
mechanical ejectors operated locally by divers or remotely
from a work barge. Mechanical ejectors (also called “air
lifts”) operate using compressed air and water (Figure 47).
They work by loosening the material at the base of the
excavated area, mixing it with the lighter air bubbles, and
discharging it to the surface.

Ejectors do not work well in soft clays or clayey silts
as they merely form a hole at the base of the excavated
area and extra work is required to slump these materials
toward the ejector (Tomlinson 1994). Air lift methods were
used on the Thames River flood barrier caissons to remove
sediments and excavate chalk that adhered to the
cofferdam sheet piles and walers.

Explosives were placed by divers to dislodge the chalk
deposits prior to excavation (Gilbert and Horner 1984). A
10-in. (25-cm)-diam airlift operated with a 1,000-cfm
(30-cu m/min) air compressor successfully cleared boulder
intrusions in rock sockets 100 ft (30 m) underwater at
Bantry Bay (Fox 1970).

Underwater air bubblers were used during underwater
backfill operations to prevent “density currents” of
suspended fines that flowed upstream and downstream on
the river bottom during construction of the submerged
foundation for a dam in British Columbia (Bazett and
Foxall 1972).

Fill placement. After the unsuitable material has been
removed, the site may be further improved by backfilling,
leveling, and in situ densification (e.g., soil strengthening).

There are numerous case histories and examples of
underwater improved-site foundations using various
equipment and methods that can be obtained for additional
details.

Underwater fill placement (also called backfill
placement if previously dredged or excavated) can be
accomplished using several methods (Johnson, Compton,
and Ling 1972; Bazett and Foxall 1972; Loeken 1980; Mitchell and McRae 1985;
DOSBOUW 1987), as described below.

Figure 46. Deep-sea dredging
operation
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Methods for underwater fill

placement include: Riser
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bulldozer, backhoe, or
clamshell bucket
Air supply —
b. Placement from deck scow PRY
(barge) with buckets or poqyo
dozer | |
¢. Hydraulic slurry mix

pumping or jetting

&

Dumping by bottom-dump Nozzle \

scow or vessel B
!
Fall-pipe placement V

®

When selecting the optimal
rnethod,. fiumerous va-rlables ‘must Figure 47. Two types of underwater ejectors (after
be considered, including project Tomlinson 1994)
size, water depth, material type
(gradation), final slope

requirements, current velocity, Diameter (in)
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Figure 48 shows an example of
the backfill material gradation
curves selected for an underwater
pipeline project.

Bottom-dumping scows
require a minimum depth of about
15 ft (5 m) because of scow and 80 >
tug drafts and propeller \Q\@@\
disturbance. Material placement is N .
relatively fast, and flat slopes are I 2 4 6 10 20 40 60 100 200
usually obtained (unless retained). DIAMETER (mm)~d

&
v

WEIGHT PERCENT COARSER THAN d
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At the Southern Pacific Railroad
crossing of the Great Salt Lake, Figure 48. Graduation curve for underwater pipeline
bottom-scow placement of a well- stable backfill material

graded silty sand achieved slopes

inversely proportional to the water depth. Maximum slopes (1:2) were achieved

at shallower depths but tapered off to 1:10 slopes at 40-ft (12-m) depths

(Johnson, Compton, and Ling 1972). Bottom-scow placement of glacial till

material at the Hugh Keenleyside Dam project caused segregation and loss of

fines, requiring design changes. Initially, dumping was restricted to river currents
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less than 2 ft/sec (0.6 m/sec) to avoid loss of fines. However, it was determined
that suspended fines flowed upstream along the riverbed bottom, and turbidity
increased at this low velocity. To help alleviate the problem, dumping in river
currents up to 4 ft/sec (1.2 m/sec) was allowed, and underwater dykes were
installed (Bazett and Foxall 1972). Materials containing entrapped air and
dumped suddenly from bottom-dump scows appear to liquefy as the material hits
the bottom. For example, Johnson, Compton, and Ling (1972) observed a rapid
bottom-dumped sand spreading horizontally at a rate of 20 ft/sec (6 m/sec).

Deck scows are usable in shallower water and enable steeper backfilled side
slopes. Tate (1961) reported that slopes of 1:2 were obtained by hydraulic jetting
of well-graded material (3 in. down to a maximum of 10 percent finer than the
No. 100 sieve) from a deck scow. Johnson, Compton, and Ling (1972) reported
the placement of rock by clamshell bucket off a deck scow at the Hong Kong
Plover Dam site. The bucket was opened just above the bottom to minimize
segregation. Pore-pressure measurements were monitored and indicated a period
of 2 months was required for dissipation of pore pressures in the fill materials.

Underwater hydraulic fill placement may cause coarser materials to drop out
first, which could lead to unstable slopes. Experiments by Mitchell and McRae
(1985) determined that slurry-pipeline placement of sand obtained lower
densities that those achieved with bottom-dumping hopper dredge systems.
Placing the sand in “layers” and compacting with a special air gun achieved
relative density increases up to 80 percent. Without underwater compaction
efforts, the relative densities of the sand ranged erratically from about 10 to
70 percent (Johnson, Compton, and Ling 1972). Stewart, Jefferies, and Goldby
(1983) reported that the average relative density (without compaction) for a
uniform sand (Dsy approximately 0.28 mm and fines less than 5 percent) placed
underwater was about 40 percent.

Underfilling of structures such as immersed tube tunnels and offshore
gravity-based structures has been accomplished using hydraulic fill variations.
Typically, a mixture of sand and water is pumped between the structure bottom
and its supports to (a) provide a good structure/seabed contact and (b) to create a
uniform distribution of contact stresses. For offshore structures, a grout mixture
is typically used instead of a sand slurry, although a sand slurry underfill enables
easier remobilization of the structure. Sand slurry underfill has been used
frequently in the Beaufort Sea mobile oil drilling platforms (Buslov et al. 1984).

The fall-pipe placement method generally allows precision placement of
coarse materials to deeper depths with minimum segregation. Offshore precision
fill placement equipment currently consists of the fall-pipe method used by
offshore dredging companies such as Tideway BV, HAM, Ballast Needam, and
Boskalis. One earlier project (during the 1970s) that used two types of fall-pipe
systems was a North Sea pipeline backfilling operation. A fine sand layer was
covered by a gravel layer (4-in. or 10-cm maximum particle size). The materials
were placed in water with bottom currents up to 8 ft/sec (2.5 m/sec) at depths up
to 230 ft (70 m). One fall-pipe system had remotely controlled electrohydraulic
thruster units attached for accurate placement of the conveyed gravel. The other
system pumped hydraulic fill (sand and gravel) through the fall-pipe. The
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positioning of the fall-pipe was accomplished using an underwater acoustic
referencing system (Loeken 1980). Stewart, Jefferies, and Goldby (1983)
reported another project in which a modified drag arm on a trailing suction
hopper dredge was used to discharge a sand slurry 8 ft (2.5 m) past the arm end
to the deposition point. Average slopes of 1:5 were placed in 100-ft (30-m) water
depths. Smith (1962) reported that a 2-ft (0.6-m)-diam steel fall-pipe was used to
place gravel (8-in. or 20-cm maximum size) at the base of a Mississippi River
dam.

Leveling. If the superstructure is founded on an improved-site or gravity-
based foundation, the bottom must be leveled to specified tolerances after
dredging and/or backfilling. Typical out-of-level tolerances were described by
Gerwick (1974) as being about 2 in. (5 cm) on hard bottoms to 12 in. (30 cm) on
softer bottoms (sand and silt). Gerwick also stated that most leveling sequences
include the following steps:

a. Placement of a crushed rock base (similar to the fill placement noted
above). A well-graded crushed (not natural gravel) rock base course can
be placed by barge bottom-dumping (effective only to about 100-ft
(30-m) depths), through a fall-pipe, or lowered in buckets. Natural gravel
is not desirable due to its tendency to displace laterally (slide) under
load. Typical rock base courses use a maximum aggregate size of about
6 in. (15 cm).

b. Placement of a “screed course” on top of the rock base. If desired, a
smaller layer up to 40-in. (1-m) thickness with maximum aggregate size
of 3 in. (7.5 cm) can be placed on top of the rock base to enable more
accurate screeding (of the smaller particle sizes). Typically, the screed
course is placed using a tremie pipe (fall-pipe).

c. Level (screed) the aggregate. Many types of screeding devices have been
used on various underwater projects. All are designed to provide stable
methods for leveling within the specified tolerances. The historical
method employed for shallow-water depths used a heavy steel beam that
was dragged across the bottom from a surface platform. Other devices
are manually operated underwater and require divers. Self-leveling
frames with remotely controlled positioning devices are used in deeper
water.

Dredging equipment has also been used to provide leveling and trimming of
the base course. Boskalis (1999) developed a multipurpose pontoon system
(“Scradeway”), which allowed multimillimeter accuracy for placing, leveling,
and trimming the gravel bed prior to sinking the Oresund’s immersed tube tunnel
elements.

Mechanical modification. Mechanical modification by vibrocompaction
increases the relative density of granular deposits. To accomplish this increase in
density, the vibrating energy is used to rearrange (and density) the soil structure.
The vibrating energy is transferred to the soil via a shaft attached to a floating
platform system. Typically, inside the shaft is a hydraulic motor driving an
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eccentric (off-centered) mechanism that vibrates due to its eccentricity. The
remainder of the shaft is isolated to prevent vibrations beyond the shaft tip. Water
may be jetted through the shaft tip to enhance soil consolidation and shaft
penetration (vibroflotation). Vibroflotation has been successfully used for
increasing the bearing capacity of previously submerged cohesionless materials.
Examples include the underwater placement (but
subsequently dewatered) fills such as Wanapum Dam
(Engstrom 1963) and Bremerton drydocks (Tate 1961).
Vibratory compaction using pipe piles was performed
on dewatered fill near Baltimore (Millard and Hassani
1971). Figure 49 shows a vibratory compaction probe.
Figure 50 shows a specialty pontoon containing four
similar vibratory compaction probes.

Isolator

Several worldwide contractors use specialized
equipment for mechanical modification.
Vibrocompaction equipment may be specified simply to
Vibrator achieve vibratory compaction, or it may be combined
with other proprietary systems to construct pinned
B foundations without soil excavation.

Underwater stone columns have been placed for the
purpose of increasing the soil’s shear strength and bulk
) . modulus. Pennine, Ltd., (1998) reported the installation
Figure 49. V|?tratoBry comlpactor of 2.6-ft (0.8-m)-diam by 66-ft (20-m)-long stone

(after Bauer, Inc. columns in water depths up to 108 ft (33 m) from a
1994) . . . . . .

floating barge using vibrocompaction, as illustrated in
Figure 51. The productivity rate was greater than one column per hour, including
barge positioning.

Hayward Baker (1999b) reported
% the installation of 270 stone columns
{ ST (3-ft (1-m)-diam) using a

. vibroreplacement method through
water depths up to 40 ft (12 m) to

T prevent liquefaction damage to
existing underwater piles at a
Vancouver port facility.

. i
' 08

According to Stewart, Jefferies,
and Goldby (1983), underwater self-
consolidation of cohesive material
(natural or backfilled) is not typically

Sand bottom h X used because of (a) monitoring
—‘ 1 ‘ ‘ ) instrumentation limitations,
Vibrators (b) insufficient experience, especially
with hydraulic fill/clay separation, and
Figure 50. Vibratory compaction pontoon Mytilus (c) limited large-scale experience
used in the Eastern Scheldt project relying on consolidation for strength
(after DOSBOUW 1987) gain.
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Another mechanical modification
technique consists of overlying the
soil with prefabricated blankets, mats,
or geotextile reinforcement.
Typically, the overlays are
constructed of steel, concrete, graded
soil materials (sand, fine gravel, and
coarse gravel), or synthetic fabrics. e e
The purpose of the blankets is to o DG
reduce the induced bearing pressure o
on the subsoil and to prevent erosion
of the subsoil beneath the mat.
Prefabricated mats were used
extensively in the Eastern Scheldt
project (DOSBOUW 1987).
Specialized mat-sinking equipment
barges (Figure 52) were required
during this operation. Immediately
prior to placing the mats, the sand
bottom was redredged to remove any !
silt sedimentation. Bottom ot NI e TN
compaction was then accomplished Al 1 l S
with four ICE-815 underwater
vibratory hammers each mounted on
a perforated 13- by 13-ft (4- by 4-m) and Vibro.compact
steel plate and dragged in tandem

fashion across the dredged surface Fi 51. Vibrat ; | installation (aft
nker 1 “Th fabri igure 51. Vibratory stone column installation (after
(Jonker 1987). The prefabricated Pennine, Ltd., 1998)

mats were then placed over the
vibrocompacted sand.

Abbott and George (1989) selected steel reinforcement meshes for their
improved-site foundation. Flat galvanized steel strips were placed 9 in. (23 cm)
on center and covered with granular backfill. Specialized methods were required
for the underwater placement of the reinforcement. Onshore reinforced earth
applications allowed the reinforcement mesh steel strips to be singularly placed,
but underwater installation required a mat arrangement that was constructed
onshore and then lowered into the water as a complete mesh mat. Granular
backfill (angular coarse to medium sand and gravel) was placed on the mat
arrangement.

Steel mudmats have been used offshore to increase the bearing capacity of
soft bottom materials and are frequently attached to the base of jacket structures.
The thin (typically less than 0.5-in. or 1.5-cm) mudmats provide stability and tip-
over resistance after jacket setdown and prior to pinned foundation installation.
Improvements to resist lateral sliding include perimeter skirts and interior ribs.
Digre et al. (1989) discussed design details for the Bullwinkle platform skirted
mudmats. Lieng and Bjorgen (1995) discussed a release system for mudmats on a
Heidrun platform subsea structure.
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Figure 52. Eastern Scheldt mat-sinking pontoon (after DOSBOUW 1987)

Hydraulic modification. Hydraulic methods use vertical or horizontal
drainage systems to remove excess pore fluid from the soil matrix. Vertical
drainage systems (wick drains) require a surcharge or overpressure method for
generating excess pore-water pressure. Several proprietary wick drain systems
are available, including those from the Bauer, Geotechnics America, and
American Wick Drain Corporations. Horizontal drains require a vacuum
(underpressure) source to remove excess pore-water pressure. For horizontal
drains, it is critical that leakage from the overlying water body not be permitted.
Water drained as a result of the underpressure method is pumped away from the
site (Aerts, Devlieger, and Vandycke 1999).

Chemical modification. Offshore chemical soil modification with deep
cement mixing has been successfully used in Japan and the Arctic oil region for
several years. It was developed in the United States in 1951 by the U.S. Navy,
but was discontinued in the United States for economic reasons (Halebsky and
Wetmore 1986). It has been demonstrated to improve soft soil unconfined
compressive strengths by up to 700 percent.

Deep cement mixing barge-mounted systems (similar to a system illustrated
in Figure 53) have been operated in water depths to 230 ft (70 m) for mixing soil
165 ft (50 m) below the mudline. The process consists of pumping cement slurry
under pressure into the seabed followed by in situ soil mixing. Each mixer can
improve a soil area up to 62 sq ft (6 sq m) per penetration. Normal slurry mix is a
0.6 water-cement ratio. Typical cement concentration is about 10 to 20 percent,
which is approximately 10 to 20 Ib of cement per 100 Ib of dry soil (Halebsky
and Wetmore 1986).
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Underwater grouting using a
barge-mounted drill was Cement slurry
described by Hayward Baker r j
(1999b). A 3-in. (7-cm)-diam
grout pipe was advanced below a
sanitary sewer tunnel under a
pond. Compaction grouting
strengthened the soft organic
soil, allowing tunneling to be
completed using a tunnel boring
machine.

Quality control. Quality
control and quality assurance
(QC/QC) testing is conducted to
determine the adherence to
design requirements, as stated in
the contract specifications. For

the improved-site foundation, the
testing basically consists of
comparing the before, during, and Wetmore 1986)
and after construction conditions

to determine if the specified improvements were achieved.

Quality control during dredging for improved-site foundations includes
(a) material inspections, (b) surveying for depth, distance, and volume
measurements, and (c) postdredging cleanup of any remaining soft sediments
(Johnson, Compton, and Ling 1972). Material inspections include bottom
examinations by divers or remote monitoring, visual observations of the dredged
materials, sampling of the bottom materials and/or the dredged materials, and
testing. Site positional control is accomplished by hydrographic surveying
methods and is a prerequisite for foundation construction. Ensuring that
dimensional tolerances for volumetric quantities, areal extent, and cut slopes are
not exceeded is one function of the QC/QA process. It is economically important
that accurate surveys are conducted to establish the lateral dredging boundaries
and that material inspections are conducted to define the depth of cut, when
unsuitable materials are being removed (Johnson, Compton, and Ling 1972).
Stewart, Jefferies, and Goldby (1983) discuss quality control methods for
dredging operations conducted to remove unsuitable material, including core
sampling of the dredged material inside the hoppers.

Postdredging cleanup of remaining soft sediments is a critical element that
should always be expected and performed. Inspection by divers or sampling
should be conducted to determine the presence and extent of remaining or
redeposited sediments (Johnson, Compton, and Ling 1972).

Quality control considerations during fill placement and leveling operations
are similar to those for dredging operations. Material inspections and surveying
are required to ensure that the proper materials are being deposited at the correct
location and are being placed according to specified thickness and side slopes.
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The unforeseen presence of fines (namely, silts) in cohesionless fill materials
causes quality control problems and was discussed by Johnson, Compton, and
Ling (1972), Bazett and Foxall (1972), Stewart, Jefferies, and Goldby (1983),
Buslov et al. (1984), Mitchell and McRae (1985), and Jonker (1987). The loss of
fines in cohesive fill materials and corrective measures to control it was
discussed by Bazett and Foxall (1972).

Integrity and/or performance tests are necessary to ensure that specified
engineering properties such as shear strength and relative density have been met.
These should be conducted during and after the fill placement or site
modifications, and may include in situ tests and sampling operations. In situ tests
include SPT, CPT, PMT, vane shear, and geophysical techniques. Sampling can
be accomplished by bucket, probe, cores, or other equipment. Bazett and Foxall
(1972), Stewart, Jefferies, and Goldby (1983), Mitchell and McRae (1985), and
Jonkers (1987) discussed density measurements and control. Bazett and Foxall
(1972), Johnson, Compton, and Ling (1972), and Buslov et al. (1984) discussed
aspects of sampling and testing cohesive materials. Figure 54 illustrates the use
of the CPT as a measure of in situ density for quality control during construction
of the Eastern Scheldt project.

Cane resistance, MPa ——»

0

Gravity-based foundations
1 20 30 40

Since most gravity-based
foundations are floated or lifted in,

the installation procedures include
towing and positioning concerns
BalTTOM (heavy-lifting equipment availability,

20

weather, positioning accuracy, etc.).
- E Once the foundation or structure is

positioned for placement, the
= following concerns become critical
(Hove and Foss 1974):

a. Wind, wave, and current
limitations.

b. Installation sequence.

40
- ——~ Before vibrocompaction C. TOuCh-dOWl’l load
After concentrations.
d. Leveling and/or base
Figure 54. Eastern Scheldt, CPT results—before grouting.
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and after vibrocompaction (after Jonker ) )
1987) e. Installation mating procedure

with superstructure elements.

Numerous case histories are cited in the offshore industry literature which
detail installation considerations for float-in and lift-in gravity-based foundations
and structures (Gerwick 1974; Hove and Foss 1974; Alloni, D’ Agostino, and
Priarone 1976; Collipp and Johnson 1979; Noblanc and Schnader 1983;

Chapter 5 Foundation Preparation and Construction



Berthin et al. 1985; Tateishi and Watanabe 1986; Tanaka et al. 1987; Broughton
and den Hertog 1990; Christophersen 1993; Alm, Bye, and Egeland 1995;
Andenaes, Skomedal, and Lindseth 1996; Waddell 1997).

Gravity-based foundations that are cast in situ (using tremied concrete or
grout) also require special installation considerations for the formwork, rebar,
and concrete placement. References and case histories for formwork placement
and tremie concrete techniques include those from Harris (1942), Tate (1961),
Hedefine and Silano (1968), Johnson, Compton, and Ling (1972), Gerwick
(1974), Becker et al. (1998), and Yao, Berner, and Gerwick (1999).

Pinned foundations

Driven piles. Pile foundations are installed using impact-driven, vibration-
driven, jacking, jetting, suction, or drilling techniques, or combinations of these.
The most common method of installing onshore piles is dynamic impact from a
variety of hammer types. Pile-driving hammers include the simple drop hammer,
single-acting hammer, double-acting hammer, differential hammer, and the diesel
hammer (ASCE 1984). Hammer energy is supplied by air, steam, hydraulic
pressure, diesel, or electricity. Vibratory hammers produce dynamic forces by
internal counter-rotating masses using air, steam, electric, or hydraulic energy
sources. Jetting, jacking, and screwing methods are specialized, and their usage
in underwater piles has not been widely found in the literature. The majority of
underwater piles have been installed using impact-driven methods, although
vibratory-driven methods are gaining in popularity for offshore operations. The
principal reason that offshore vibratory hammers are not as popular as impact
hammers is due to the larger offshore pile weights, which require greater
vibration energy (Jonker 1987).

Impact hammers. Offshore piles driven with above-water steam-impact
hammers dominated through the 1970s. Pipe piles ranging from 30 to 48 in.
(75 to 120 cm) in diameter with nonsliced lengths from 200 to 350 ft (60 to
110 m) were routinely driven (total spliced pile lengths) up to 800 ft (240 m)
below the mudline in the Gulf of Mexico. Offshore pile hammers (typically
single-acting steam-driven) with rated energies from 60,000 to 300,000 ft-1b
(80 to 400 kNm) were used to drive these piles to their design penetrations. The
resulting ultimate pile load capacities were up to 3,500 tons in compression and
2,000 tons tension (Sullivan and Ehlers 1972). Pile-driving experience in the hard
clays of the North Sea caused overestimation of pile hammer capabilities and
underestimation of the pile bearing capacities (Fox, Parker, and Sutton 1970).
Offshore (above-water) pile hammer manufacturers included Vulcan (Figure 55),
MKT, Delmag, and Menck. Steam hammer energy capacities increased to
600,000 ft-1b (810 kNm) by the mid-1970s.

Development of the submersible hammer in the mid-1970s opened up new
frontiers in pile-driving history. Pile followers, steam lines, and costly anchored
derrick ships were no longer needed. The Hydroblok hydraulic hammer (by
HBM, Hollandsche Beton Groep N.V.) operated an internal piston using nitrogen
gas supplied through an umbilical cord to the underwater cage attached to the
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pile top. The rated energy of the
HBM 3,000 was 800,000 ft-1b

(1,080 kNm). It could be used to
drive an 84-in. (2.1-m)-diam pipe pile
(Jansz et al. 1976). Cox and Christy
(1976) and Jansz (1977) reported that
this underwater hydraulic hammer
successfully drove piles in the Gulf of
Mexico and the North Sea. In hard
clay locations, a method to vertically
align piles topped with the HBM

World’s Largest Steam hammer was devised

PILE DRIVING HAMMER
Alignment and lateral support
Super V“ lnA " problems of submerged pile hammers
, Model 400-¢ were addressed (Jansz and Brockhoff
1979). For the Eastern Scheldt
project, an HBM 1500 hammer was
used for driving mooring anchor
piles. Sitter (1980) reported the
development of an underwater
hammer (HBM 4000) with rated

capacity of over 1 million ft-1b

(1,350 kN-m) of energy. The Menck
Figure 55. Vulcan steam hammer advertisement company, which previously had made

from 1957 Civil Engineering magazine steam hammers, began making

underwater hammers (such as the
model shown in Figure 56). Heerema (1980)
reported that a patent conflict developed in the
late 1970s between HBM and Menck.

Another submersible hammer was
manufactured by the Raymond Company
(RU-300). Its rated energy was 300,000 ft-1b
(404 kNm). Its first offshore assignment was
off the coast of New Zealand on the Maui
jacket platforms that have 48-in. (1.2-m)-diam
open-ended pipe piles driven 230 ft (70 m)
below the mudline (Gendron, Holland, and
Ranft 1978; Rennie and Fried 1979).

Several other innovative pile-driving
methods were introduced during the late
1970s. These developments include the
submerged water hammer pile driver, which
used seawater pressure to create a cyclic water-
driven impact mechanism to drive the pile
(Wisotsky 1978), and electro-osmosis, which
Figure 56. Menck 500T underwater used direct current and achieved considerable

hammer (after Menck 1999) pile-driving resistance reduction in clay
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deposits due to the soil chemistry bond force reduction

(Rose and Grubbs 1979).

= CASING
Slender hydraulic underwater hammers (Figure 57)

were introduced in 1980 by Menck, Inc. By 1983, the

hammers were instrumented with an adequate internal —— HYDRAULIC

monitoring system comparable to the above-water hammers

(Van Zandwijk 1986). Slender hammers proved to be much

more versatile for offshore jacket pinning than were the

larger diameter first generation of underwater hammers.

Currently, underwater hammers manufactured by Menck - R
GmbH (Germany) and IHC Hydrohammer BV
(Netherlands) are used for offshore applications.

Both manufacturers build hydraulic hammers for HEAD |
underwater applications. Menck’s largest hydraulic hammer ——ANVIL
(MHU 3000T) has a rated energy of 2.4 million ft-1b
(3,300 kNm) and weighs 400 tons. IHC’s largest hydraulic —]
hammer (the S-2300, shown in Figure 58) has a rated R

energy of 1.7 million ft-Ib (2,300 kNm) and weighs
260 tons. Piles up to 102 in. (2.5 m) outside diameter may
be driven with these hammers (Menck 1999, IHC 1999).

Soil resistance to impact-driven piles. Driving piles to Figure 57. Underwater hydraulic

their designed penetration lengths may not always be slender hammer
possible due to the inadequacy of the pile-driving (after Van Zandwijk
equipment in overcoming soil resistance. The analyses of 1986)

IHC S-2300

Figure 58. IHC underwater hammers (after IHC 1999)
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pile drivability evolved from simply pounding the pile to refusal using the
biggest available hammer to using mathematical models depicting the real-time
pile-driving resistance.

The mathematical model concept is based upon the solution of the 1-D wave
propagation equation. It allows the determination of the pile-driver adequacy and
the soil’s resistance to driving. The original development of the model wave
equation concept began in the 1950s. In the 1960s, computer solutions to the 1-D
wave equation were further detailed and refined. Applications to offshore piles
(using above-water hammers) commenced in the 1960s (Bender et al. 1969) and
led toward the analyses of different elements of the pile-driving process. Besides
the hammer and the pile, accessories were analyzed during the actual pile-driving
process. The contributions of pile leads (cradle), cushions, anvil, follow block
(helmet or pile cap), and followers (chasers) to driving resistance were analyzed.
The application of the wave equation to long piles unsupported through the water
column was analyzed and found to accurately predict the behavior on several
projects (Lowery, Edwards, and Finley 1969; Engeling 1974; Cunningham and
Naughton 1977).

By incorporating the wave equation analysis during the early stages of the
pile design process, preliminary selection of the pile hammer can be ascertained.
During the pile-driving process, the wave equation analysis can be used to
predict the pile’s ultimate axial capacity (Hirsch, Koehler, and Sutton 1975;
Porter and Ingram 1989). The wave propagation method was further refined to
include computerized instrumentation, data acquisition, and data analysis thanks
to electronic technology developments (Rausche, Goble, and Moses 1971).

Other wave propagation numerical solution techniques have also been
proposed (Fischer 1975; Foo, Matlock, and Meyer 1977). During the 1980s,
many case histories of pile-drivability analyses were conducted by the offshore
industry, including hammer types (steam versus hydraulic) (Heerema 1980);
hammer location (above-water versus submerged) (Aurora 1984); soil conditions
(sands, clays, carbonate soils, weak rocks, layer conditions, etc.) (Agarwal,
Rawat, and Paintal 1978; Tagaya et al. 1979; Aurora 1980; Stevens, Wiltsie, and
Turton 1982; Stockard 1979, 1986); pile size (Lang 1980); and analysis methods
(Holloway, Audibert, and Dover 1978; Van Zandwijk, van Dijk, and Heerema
1983). Additional computer codes that perform numerical integration of the wave
equation were developed by offshore companies and universities. The university-
developed codes include TTI, OCEANWAVE, TIDYWAVE, DIESEL1, WEAP,
CAPWAP, DUKFOR, and PSI. The latest version of the WEAP series is
GRLWEAP (Holloway, Audibert, and Dover 1978; Porter and Ingram 1989).
Recent literature suggests that GRLWEAP accurately predicts pile drivability
(Dutt et al. 1995, Doyle 1999).

Vibratory hammers. An alternate method of installing piles is pile
advancement (driving) using vibratory methods. Vibratory hammer technology
was developed by the Russians for onshore applications in the 1960s. The
Japanese foundation industry quickly embraced this technology and developed an
extensive array of vibratory hammers. The Americans became interested in
vibratory hammers in the early 1970s.
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Vibratory hammer power is supplied by electricity or hydraulics. The
vibratory hammers that use hydraulic power normally use a diesel engine to drive
the hydraulic pump, which in turn drives the excitation motor on the vibratory
hammer. In the United States, hydraulic vibratory hammer systems have become
dominant. The major manufacturers, including Vulcan, ICE, and MKT, offer
hydraulic systems exclusively (Warrington 1989).

The vibratory hammer (one model shown in Figure 59) does not
incrementally impart energy to the pile-soil system as does an impact hammer,
but instead provides a rapidly alternating dynamic force to the pile. The hammers
are designed to impart this dynamic force to the pile at a range of frequencies,
i.e., from approximately 300 to about 7,200 rpm (5 to 120 Hz), depending on the
type of pile to be driven. Frequencies above 30 Hz are considered to be “high
frequency.” These hammers generally provide for lowered transmission of
ground excitation to neighboring structures. Hammers weighing greater than
12 tons with the capability of transferring dynamic force greater than 200 tons to
the pile are available. Pile Buck, Inc., (1999) maintains a comprehensive list of
manufacturers and equipment capabilities.

To surface

Case histories of offshore vibratory-driven piles are
not as numerous as those for impact-driven piles,
especially before the late 1980s. The evolution from
above-water to underwater vibratory hammer usage
occurred much faster than did the impact hammer
evolution. It was soon realized that the benefits of
underwater vibratory hammers outweighed the above-
water benefits. Use of the underwater hammers began at
offshore locations in the North Sea and Adriatic (Jonker
1987, 1988; Ligterink, Van Zandwijk, and Middendorp
1990; Ligterink and Martin 1992).

Pile drivability using a vibratory hammer is analyzed
using the same 1-D wave propagation concept as for
impact hammers. The model is somewhat different for
vibratory hammers as compared to impact hammers,

including modifications to wave equation computer

programs. Chua, Gardner, and Lowery (1987) showed Figure 59. ICE 1412 hydraulic
the applicability of the wave equation approach to vibratory pile hammer
vibratory hammer driving by modifying the TTI program (after Jonker 1987)
(VIBEWAVE). Jonker (1988) adapted the TNOWAVE

program to vibratory driving. Ligterink, Van Zandwijk, and Middendorp (1990)

used the adapted TNOWAVE program to analyze the soil’s resistance to

vibratory driving during installation of 42-in. (1.07-m) piles. The vibratory pile-

driving analyzer (VPDA) finite difference model was developed by Moulai-

Khatir, O’Neill, and Vipulanandan (1994). The Wisconsin Vibratory Pile Driving
Analyzer (WiscVPDA) was developed by Bosscher et al. (1998).

A list of considerations for selecting impact versus vibratory underwater
hammers follows:
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a. No pile followers (chasers) are needed for underwater driving with either
hammer.

b. The vibratory hammer and pile are clamped together and are handled as one unit.

c¢. The vibratory hammer can be activated prior to the pile tip touching the
seabed. The methodology avoids the need for a temporary guide template
(illustrated in Figure 60).

d. The use of impact hammers is more common for offshore applications.
Consequently, they have been used for a larger variety of soil types and
pile sizes.

e. Soil frictional resistance may be overestimated when using vibratory
hammers.

f Vibratory hammers are used with piles requiring a minimum vertical
tolerance, which allows easier realignment during penetration.

g. A combination of hammers allows faster installation of a pile. The
vibratory hammer can be used for initial positioning followed by limited
driving to achieve lateral support, whereas the impact hammer can be
used for the remainder of penetration.

h. Above-water impact hammers generally have higher vibration and noise
levels than vibratory hammers. Hydraulic impact hammers generally
have lower vibration levels than diesel hammers.

Technology is now available to
reduce noise levels during above-
water impact driving. Numerous
manufacturers offer protective
shields or encapsulation modules
as noise mufflers. For example,
one onshore contractor designed
and built a hydraulic impact pile-

- driver that was about 12 db quieter
RJ | Crane barge than an equivalent system for

AV driving concrete precast piles near
T an urban development. Totally
enclosing all moving parts and
eliminating all metal-to-metal
contact reduced the noise level to
Vibratory hamrker the point at which the ropes
- \/' flapping against the rig’s mast was
Pipe pile .. the only appreciable noise (Ground
G Engineering 1999). For driving

tubular and standard steel sheet
piles, a Japanese company has

Figure 60. Vibratory-driven pipe pile without an recently demonstrated in the

underwater template (after Jonker 1988)
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United States a hydraulic pile-driving system that operates at less than 60 db of
noise and is virtually vibration free (Phair 2000).

Drilled shafts. Drilled shafts (also called drilled piers, drilled caissons, large-
diameter bored piles, or rock sockets) can be installed by a variety of onshore
drilling rigs. Offshore equipment is generally the same with the exception of
being mounted on a barge or other floating platform. Casing is driven or drilled
past the mudline. If the casing can be sealed into an impervious stratum, it can
then be dewatered and drilled. Otherwise, drilling is conducted through casing
using the mud-drilling technique. Cuttings are removed using air or water
ejectors or by mud circulation techniques. After cleanout and inspection, steel
reinforcing and concrete are then placed into the casing to form the shaft (Greer
and Gardner 1986).

A more common offshore method that does not use reinforced concrete is
typically used on steel jacket platforms sited on rock regardless of whether soil
overburden is present. Instead, a steel pipe pile is lowered into the bored or cased
opening, and then the annulus is grouted to provide a “pinned” pile system.
When casing is used, it is advanced by spinning the casing with a drill bit
attached at its lower end or by guiding a smaller diameter casing through a jacket
pipe sleeve or spud pile and then advancing the casing by use of a pilot drill bit.
Grouting of the casing may or may not be conducted prior to insertion of the
inner pipe pile. Final grouting is accomplished after
the inner pipe pile is advanced to its target depth.
The drill rig may be operated from a support barge or
may operate directly on top of the outer casing.

Steinke and Strasser (1978) discussed drilling
techniques for the Valdez terminal where piles up to
3.5 ft (1.1 m) in diameter were placed in 43-ft
(13-m)-deep boreholes located up to 1,500 ft (456 m)
from shore, on steep 60-deg underwater rock slopes.
Fox (1970) discussed rotary drilling through driven
40-in. (101-cm)-diam steel pipe piles with an 18-in.
(46-cm) tri-cone bit on a 7-in. (18-cm)-diam drill
stem to clear out boulder clay overburden prior to
rock drilling. Drill water pumped at 2,100 gpm
(8,400 L/m) helped to clean the soil cuttings as the
bit advanced into the rock, although boulder
inclusions caused problems during the drilling .
operations. After achieving the design depth, each : 32" hole opener
pile was then filled with reinforcing bars and = {
concrete. Chamberlin (1970) discussed drilling
42-in. (107-cm)-diam holes in layered limestone
using a 24-in. (61-cm) tri-cone bit, a 32-in. (81-cm)  Figure 61. Offshore rotary drilling

42" underreamer

"% 124" tricone bit
S = —

hole opener, and a 42-in. (107-cm) underreamer Opera_tiop for grouted pipe
(shown in Figure 61). A 36-in. (91-cm)-diam pipe piles in I|rr_1estone (after
pile was then lowered into each socket during Chamberlin 1970)

drilling and was grouted inside and out. Santiago
et al. (1986) discussed drilling techniques used at an offshore platform in 350-ft
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(106-m) water depth to install 4.5-ft (1.37-m)-diam pipe piles 82 ft (25 m) into
claystone and gravel deposits.

Suction caissons. Suction caissons (also called suction piles, buckets, skirts,
skirted foundations, or anchors) are installed by self penetration into the seabed,
similar to the illustration shown in Figure 62.

The initial phase is self-weight
penetration as the caisson is lowered onto

i the seabed and allowed to “sink” under its
own weight into the mudline. Further
penetration requires an underpressure in

e = T

the cavity of the suction caisson, which
creates an additional driving force. As
underpressure is applied (usually by a
skid-mounted pump on top of the caisson,
shown in Figure 63), the caisson tends to
penetrate the soil until the pressure inside
the skirt walls tends to equalize with the
external pressures. The rate at which the
pore pressures tend to equalize and
mechanisms by which the underlying soil
tends to fail are due to the material and
strength properties of the soil. Set-up
effects (time-dependent properties) are
similar to those found in pile driving
Figure 62. Suction caisson (pile) installation (Andersen and Jostad 1999).

(after Senpere and Auvergne 1982)

———— e

Placement positioning. Proper 3-D
B TTERERImE positioning of the foundation is required
e ; # during the installation process. The
installation procedures must be consistent
with the design criteria, and advance
planning for alternate or supplemental
procedures should be made prior to
mobilization of the marine construction
equipment (Sullivan and Ehlers 1972).
Tanaka et al. (1987) studied the
installation procedures for placing a
gravity-based foundation on an offshore
Japan seabed. Model testing and
numerical simulation confirmed the
technical feasibility and provided
recommendations prior to actual
installation.

Wff,ﬂ““f’f;_S.-.uthio'n pile

For typical offshore oil and gas
structures, foundation positioning is

Figure 63. Pile-mounted suction pump skid (after intricately linked to the exploration and
Suction Pile Technology, Inc. 1999) drilling process. Elaborate computerized
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positioning procedures are followed, which have been discussed in the offshore
literature for the largest, most complex, or deepest structures from subsea risers
to surface platforms.

For example, positioning and installation procedures for Shell’s Cognac
jacket platform are detailed by Collipp and Johnson (1979), Simpson (1979),
Mayfield, Strohbeck, and Wilkins (1979), and Sterling et al. (1979). Since the
foundation pile-driving guide or “template” was integral to the jacket structure,
no positioning of a separate pile-driving template was required. During the
positioning and placement of the 84-in. (2.1-m)-diam by 615-ft (187-m) pipe
piles, an acoustic positioning system composed of multiple transponders
(beacons and hydrophones) communicated with a computerized referencing
system. Hydrophones were mounted on the pile-lowering system, which received
sequenced pulses from oceanfloor and surface-barge beacons. Three-dimensional
computer-assisted pile-maneuvering was performed to guide the platform jacket
stab guides onto the piles. A pile-mounted TV camera system and a video ROV
provided video monitoring capabilities. After pile positioning and stabbing were
completed, the pile hammer monitoring and control system was implemented.
Three operators were positioned at separate computer/TV consoles to control and
monitor the pile elevator depth, the hammer depth, and the hammer operation.
Although the installation schedule allowed 3 days per pile, the installation of the
final 18 piles (out of 24 total) required a total of only 22 days.

Pile-driving templates that are not preattached to the structure require
separate positioning and placement efforts. Ulbricht et al. (1994) discuss
positioning efforts for Shell’s Auger Tension Leg Platform (TLP) foundation
template, which is shown in Figure 64. The foundation template was placed at a
depth of 2,860-ft (870 m) in the Gulf of Mexico to within tolerances of 2 ft radial
offset, 2 deg heading offset, and 2 deg horizontal offset.

(«?
'5%\ >:,,<u}
N

Reference buoy

=

=1
ROV !‘ Template positioning control system
\w ‘

2l

o

\l..--—-"

Pile / tendon template setdown on seafloor

Figure 64. Pile template positioning for Shell’s Auger TLP (after Ulbricht et al.
1994)
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The installation vessel (a semisubmersible crane vessel) experienced low-
frequency surface excursions between 15 and 35 ft (5 and 11 m) while setting the
60- by 60- by 48-ft (18- by 18- by 15-m), 611-ton steel template on a slightly
sloping, soft clay site. Specially designed “clump weights” were acoustically
positioned on the seabed prior to lowering the template. Near- and far-field
acoustic transponder arrays on the seabed provided positional references to the
template-mounted Sonardyne MicroNav acoustic monitoring system. A dual-axis
inclinometer was attached to the template and was acoustically monitored during
lowering. Template position, heading, inclination, and water depths were
monitored relative to the crane vessel’s position. As the template neared the
seabed, ROV-connected slings attached to the “clump weights” corrected and
stabilized its position prior to setdown. Pile stabbing and hammer operations
were monitored using acoustic positioning equipment.

Offshore pile-handling operations have improved as more experience has
been gained in deepwater pile transporting, offloading, upending, and lowering.
Converse et al. (1990) discussed a newer, more mechanized method for handling
large, one-piece piles while reducing the requirement for specialized rigging.

With experience, positioning tolerances have also become tighter. In 1979,
the accuracy using the computerized positioning system was within a radius of
about 15 ft (4.5 m) at a depth of 1,000 ft (304 m) for Shell’s Cognac platform. By
1999, piles were positioned within 1 ft (0.3 m) of the target with less than 1 deg
of final tilt in 3,800-ft (1,160-m)-deep water for the Shell Mars, Ram-Powell, and
Ursa TLPs (Doyle 1999).

For positioning a drilled shaft casing, differential GPS (DGPS) surveying
was demonstrated at the Corp’s Lock and Dam 24 on the Mississippi River.
Rotary-drilled casings were monitored for DGPS positional accuracy and
compared to standard surveying methods (U.S. Army ERDC 1999).

Foundation-structure connections

The design and installation of mating connections between an underwater
foundation and its supported structure are not within the scope of this study and,
hence, are not specifically addressed in this report. For the improved-site
foundation, there usually is no distinct connection to the structure. Gravity-based
and pinned foundations typically require connection to their structures, and their
installation must be considered during the design phase.

Various connection configurations are available, including shear pins,
stabbed or embedded mating connections, and grouted connections. Some
connection details are included in offshore design guidance (American Petroleum
Institute 1993). Several offshore examples include the discussion of mating
details and installation procedures for jacket structures on piles by Allen et al.
(1990); a procedure to mechanically connect piles to an underwater structure
using hydraulic swaging equipment by Ulbricht et al. (1994); the use of pile
stabbing guides by Birdwell and Jordan (1994); and a Smart Leg system by
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Labbé, Legras, and Standing (1999) for float-over installations on piles. Sele and
Skjolde (1993) and Welham and Gilfrin (1993) discuss grouted connections.

Underwater Foundation Testing

Underwater foundation tests may be of two types: integrity testing and
performance testing. Integrity testing seeks to determine the quality of the
constructed foundation material, i.e., to determine if the concrete in the drilled
shaft is honeycombed. Performance testing seeks to determine the adequacy of
the foundation to withstand the design loading (i.e., the expected range of
deflections imposed by lateral loading on a drilled shaft) and the capacity of the
soil to resist the shaft (or pile) loads.

The type and degree of testing usually depends upon the type of foundation
and economics. The general trends for underwater foundation site testing are
listed below.

Foundation Integrity Tests Performance Tests

Improved-site Material-dependent Intrusive (sampling, etc.) and NDT
Gravity-based NDT Long-term monitoring

Pinned NDT NDT, large-strain tests or load tests

Intrusive or destructive tests commonly refer to invasive techniques such as
soil/rock coring, sample retrieval and laboratory tests, or in situ techniques such
as cone penetrometer and shear vane tests. These are the same tests that are used
in geotechnical site investigations to determine the soil/rock properties including
shear strength, friction angle, relative density, RQD, etc. Intrusive testing may
also be required in gravity-based and pinned foundations to determine strength of
(cored) concrete specimens.

Nondestructive tests (NDT) cover a broad range of techniques. Integrity
testing using NDT is primarily concerned with cast-in-place concrete or grout
materials found in gravity-based and pinned foundations. Flaws in steel and
timber piles may also be detected using NDT during or after pile-driving.
Performance testing of driven piles to determine their drivability and ultimate
capacity may also be accomplished with NDT methods. According to
Chernauskas and Paikowsky (1999), the NDT methods of integrity testing are
categorized as small-strain testing and large-strain testing.

Small-strain integrity testing
Small-strain test methods generate stress waves that are interpreted to
provide shaft or pile integrity information, such as concrete or grout integrity.

Small-strain integrity testing includes direct transmission techniques, including
crosshole sonic logging (CSL), single-hole sonic logging (SSL), and parallel
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seismic logging, as well as surface reflection techniques, such as pulse echo
method (or sonic echo), transient dynamic response (impulse response), and
electromagnetic techniques (electromagnetic induction (EM), X-ray, radar, and
magnometer).

Drilled shaft CSL Test The most common integrity testing technique is
the CSL, which is conducted within preinstalled
tubes in cast-in-place piles or drilled shafts
(illustrated in Figure 65). A transducer is lowered
into one water-filled tube and emits an acoustic
signal that is received by a hydrophone (geophone)
transducer in a separate tube. The signal’s
compression (P-) wave is detected and compared to
the transit time of a signal transmitted through
intact material with a given modulus of elasticity. If
LT, material defects are present, the wave speed will be
Slurry bottom _“m M reduced relative to that of intact material. Accurate

P-wave velocily — transducer positioning helps to pinpoint the
location of a defect. For accurate P-wave
Figure 65. Crosshole sonic transmission, the concrete material must be fully

logging (CSL) integrity test  cured. Chernauskas and Paikowsky (1999) describe
the first use of a portable personal computer-based
CSL test on concrete drilled shafts in the United States with the Pile Integrity
Sonic Analyzer software package.

Single-hole sonic logging uses only one tube in the drilled shaft. This method
is normally used after construction is completed and it has been determined that
there is a need to check the shaft integrity by coring a single hole through the
shaft.

Parallel seismic logging (as illustrated in Figure 66) is similar to geophysical
cross-hole seismic testing in that holes are drilled into the surrounding soil. A
PVC (polyvinyl chloride) casing is inserted into each
= hole, the annulus is grouted, and the casing is filled
= with water. Both SSL and parallel logging use
equipment and interpretation procedures similar to
those used in the CSL test.

Drilled shaft
The pulse echo method (PEM) requires an
external hammer source and an accelerometer
\)\D ﬁ transducer mounted on the drilled shaft (or pile), as
= shown in Figure 67. The hammer impact causes small

strains, which induce stress waves in the shaft that are
transmitted to the accelerometer. The accelerations
L ~P-wave velooty —»| are integrated with respect to time, to obtain velocity
profiled as a function of shaft length. The presence
Figure 66. Parallel seismic integrity ~ and location of defects are interpreted from the

test velocity record. The effectiveness of this technique is
limited to depths up to 20 to 30 pile diameters.

R v v
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The transient dynamic response (TDR) method
(not to be confused with time domain reflectometry)
requires an external instrumented hammer. The —
impact force of the hammer is recorded and -
combined with the acceleration record, similar to
the PEM method. The shaft’s velocity response due | Drilled shaft
to the induced excitation force can be interpreted to or pile
indicate the presence and location of defects.

7
)

)
[

In general, electromagnetic techniques are not
commonly applied in pile integrity testing.
However, two manufacturers of equipment and
software specifically designed for pile integrity bl el

velocity —»

testing using surface reflection methods (low strain)
are PileTestCom (Israel) Ltd.’s Pile Integrity Sonic
Analyzer and Pile Dynamics (U.S.A.) Inc.’s Pile Figure 67. Pulse echo method integrity
Integrity Tester. test

Large-strain testing

Large-strain testing is typical of the integrity/performance testing conducted
during pile driving. Large strains induced during pile driving generate large stress
waves that mobilize the shaft or pile resistance against the surrounding soil.
Large-strain methods (also referred to as “dynamic testing”) allow interpretation
of both material integrity and performance. The ability to determine the shaft or
pile performance allows one to evaluate drivability as well as load carrying
capacity. One example of a large strain test is the surface reflection method,
which is similar to the pulse echo and transient dynamic response methods.

Large-strain methods are primarily used for driven (impact and vibratory
hammered) piles. When the hammer strikes (or vibrates) the pile head, a large
strain wave is initiated and propagates down the pile. External soil resistance or
changes in the pile’s impedance (due to variations in the material or geometry of
the pile) initiate reflection waves that are recorded.

Typical dynamic pile testing instrumentation requires two accelerometers
and two strain transducers mounted on opposite sides near the pile top. The
strains are converted to forces according to the theory of elasticity while the
accelerations are converted to velocities. Although numerous interpretation
methods are available to assess the pile’s integrity and performance
characteristics, all are generally based upon 1-D stress wave propagation theory.
The U.S. standard for high-strain dynamic testing of piles is ASTM Standard
D4945 (ASTM 1993). One of the most common wave equation software
packages is GRLWEAP for Windows. A U.S. company that offers it, as well as
other proprietary pile testing systems, is Pile Dynamics, Inc., of Cleveland, OH.
The PDA (Pile Driving Analyzer) and the PIT (Pile Integrity Tester) systems are
also sold by this company.
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The PDA systems (PAK and PAL) monitor acceleration and strain sensors
attached to the impact-hammered pile and process these signals (using
GRLWEAP) after each blow of the hammer during driving or restriking to
investigate hammer performance, driving stresses, and pile integrity and to
provide an estimate of static bearing capacity (Pile Dynamics, Inc. (PDI) 1999).

The PAK collects up to four channels of strain and four channels of
acceleration (two piezoelectric and two piezoresistive). Compared with PAL,
which is a smaller unit that can capture only two channels of data for each of
strain and acceleration, PAK has superior data collection and processing
capabilities. Remote data collection using a cell phone modem is also possible,
and underwater transducers are available. Figure 68 illustrates a PDA test example.

Using the software program CAPWAP (CAse
Pile Wave Analysis Program), which was
developed by Goble Rausche Likins and
>\E’_2 Associates, Inc. (GRL), and marketed by PDI,
= Integrity and Inc., the soil response is expressed in terms of
N Performance total capacity and its distribution along the shaft
] — Qutpu and at the toe. Damping factors and quakes are
Driven pile also modeled. CAPWAP users are required to
have approved training. GRL and PDI regularly
offer seminars and workshops.

Hammer

Performance testing of vibratory-driven piles
is generally based upon the same principles as
large-strain dynamic testing of impact-driven
piles. The impact-hammer equations are modified
to account for the dynamic properties of the
vibrating energy source. Computer models based
Figure 68. Pile dynamic analysis (PDA)  upon finite difference or finite element methods

test for solution of the wave equation have been
proposed and are similar to those models
previously developed for impact-driven piles.

2

R v

The computer programs VIBEWAVE and TNOWAVE were developed to
predict pile-driving performance and the soil’s resistance to vibratory driving.
TNOWAVE can also be used to analyze the performance of the vibratory
hammer as well as to predict several parameters, including maximum stress in
the pile, amplitude of vibration at different levels in the pile, penetration rate, and
nearby building vibrations. TNOWAVE is especially useful for matching
vibratory hammer size to the soil conditions and preventing pile damage due to
overloading. The computer model VPDA was developed to predict the pile
bearing capacity in addition to predicting the pile-driving performance (Moulai-
Khatir, O’Neill, and Vipulanandan 1994). The predicted bearing capacity is input
into the program and compared to the observed penetration rate. When model
parameters match, the actual bearing capacity of the pile is calculated.

Bosscher et al. (1998) used VPDA and field (onshore) load tests to develop
the computer model WiscVPDA, which estimates the ultimate bearing capacity
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as the pile is being driven. WiscVPDA was developed and refined by comparing
the predicted (VPDA) bearing capacity to the full-scale load test ultimate bearing
capacity results (illustrated in Figure 69). Steel pipe piles and H-piles at one
chosen site were vibratory driven and load tested for statistical correlations.
Significant correlations were noted for pile parameters such as type, diameter,
perimeter, and cross-sectional area. Significant vibratory hammer correlations,
i.e., driver parameters such as driving frequency, eccentric acceleration, and
delivered power, were noted and incorporated into the program.

500
Load testing al
. > 400 | o7
Static load tests are conducted to = L/

determine the shaft (or pile) performance and |y § /

: Y . : % 8 300 o A0
the soil response in resisting applied axial and @ o o
lateral loads. A load test is usually made for 2 g e
one or more of the following reasons 55,200 g e
(Whitaker 1976): (a) to obtain a load- 3 // °
settlement or load-displacement relationship, C qoo L %
(b) to obtain or validate the design safety g
factor against failure, and (c¢) to determine the 0 e . . 1 1
true ultimate bearing capacity as a check on
the design value 0 100 200 300 400 500

’ QUpredicted, kN
WiscVPDA

Pile load test configurations are axial

(compression, tension, and quick load),
monotonic lateral, and cyclic lateral. These test
configurations are detailed in ASTM Standard

Figure 69. Comparison of actual pile load test
results to WiscVPDA predictions
(after Bosscher et al. 1998)

D 1143 (axial compression and quick load),
ASTM Standard D 3689 (axial tension), and ASTM Standard D 3966 (lateral
loading) (ASTM 1993).

The quick load test is permitted as a faster alternative. Its two loading
configurations are the constant-rate-of-penetration (CRP) and the quick
maintained-load test (ASCE 1993). The CRP test was developed in the United
Kingdom by Whitaker (1976) and is not as popular in the United States as is the
maintained-load test (ASCE 1993). In the maintained-load test, the load is
applied in increments of 10 percent of the proposed design load and is
maintained for a constant time interval of a few minutes. In the CRP test, the load
is applied to cause pile head settlement at a predetermined constant rate, usually
0.01 to 0.1 in./minute. Several static bearing capacity determination methods
(including the Corps of Engineers method) are listed in ASCE (1993).

Axial pile load tests conducted in the past used superimposed dead weights.
Current practice includes the use of a hydraulic ram that is jacked against a
loaded platform or against a test frame anchored by reaction piles (ASCE 1993).

Load tests conducted onshore are much more numerous and are relatively
less costly than those conducted offshore. The offshore industry literature
contains several references to offshore load tests, especially for research purposes
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or in riskier environments such as calcareous soils. For example, load tests
conducted from both a fixed offshore platform and a floating vessel are described
by Angemeer, Carlson, and Klick (1973) and Angemeer et al. (1975) for offshore
Australian sites containing calcareous soils. Dutt and Cheng (1984) conducted
pullout load tests on 2-ft (0.66-m)-diam pipe piles in offshore carbonate sands. A
research program described by Matlock, Bogard, and Chan (1998) conducted
load tests on pipe piles from a fixed platform in the Gulf of Mexico. Jardine and
Overy (1996) conducted load tests on 2-ft (0.66-m)-diam pipe piles in dense sand
from a fixed platform in the North Sea.

The majority of referenced offshore load tests are performed under axial
tension loading (monotonic pullout tests) to enable determination of skin friction
capacity. An offshore load test for bending, tension, and compression of pipe
piles driven into carbonate bedrock was detailed by Settgast (1980). Vines and
Hong (1984) reported tests on large-diameter laterally loaded pipe piles in coral
at an offshore port site in Saudi Arabia.

Load tests conducted onshore with the results applied to offshore structures
have also been conducted. Tension and compression loading tests were
conducted on 2-ft (0.66-m)-diam pipe piles in stiff clay in Belgium (Heerema
1979). Grosch and Reese (1980) performed cyclic axial loading tests on small-
scale (1-in.-diam) piles pushed beyond the end of shallow boreholes in soft clay.
Lu (1986) evaluated small-scale pile models in carbonate sands while Karlsrud
and Nadim (1990) reported tests on small-scale (6-in.-diam) piles subjected to
tension and compression loadings in clay. Zuidberg and Vergobbi (1996)
discussed load tests on 30-in. (0.76-m)-diam pipe piles in dense silica sand for

the European Initiative on Piles in Dense Sands
! (EURIPIDES) Project. Onshore testing of pipe piles driven
and grouted in calcareous soils was performed by
Randolph et al. (1996). Onshore axial load tests on 4-ft
(1.2-m)-diam pipe piles in clay were conducted for the
Corp’s future in-the-wet IHNC project in New Orleans
(U.S. Army Corps of Engineers 1999a).

_ Load tests conducted on drilled shafts sometimes use

" the Osterberg load cell (Figure 70). As compared to
conventional load tests conducted with a reaction load or
hold-down shafts with a heavy reaction beam, the load test
employing the Osterberg load cell is relatively easy and
inexpensive (Greer and Gardner 1986).

The Osterberg method, which was developed in 1984,
allows separate measurements of end-bearing and friction
loads versus deflection for each load increment.

Figure 70. Osterberg cell at the Typically, a flat pressure cell that covers the bottom of
rebar cage bottom the shaft hole is hydraulically pressed simultaneously
(after DiMillio 1999)  ;54inst both the bottom of the shaft hole and the bottom of
the shaft. Depending upon the cell placement within the
drilled shaft, gauges can be used to measure the cell’s downward movement
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against the soil and its upward movement against the shaft. From these data,
load-deflection curves are generated. The most common loading sequence is the
ASTM Quick Test Method D 1143 (Osterberg 1998). After the testing is
completed, the cell can be grouted in place, and the test shaft can be used as a
production shaft.

Drilled shaft (caisson) load tests were conducted in 1998 at the Corp’s
Monongahela River Braddock Dam site to provide axial and lateral load data for
design of the production shafts (Figure 71).

MONONGAHELA RIVER

DIRECTION OF FLOW SHIELD PIPE AND
-"‘"“_ REFERENCE PILE
i i

LOAD CELL— I}

%_'/HYDRAUUC JACK

™
%NFSETR C‘CAﬁl‘gg\IgN (E:AO',"R*' jj [TENS|ON BAR DS INNER CASING (FOR
L~ 1 TEST CAISSON 'BY

REFERENCE N
BEAM E@L OUTER CASING
Plan SUPPORT FRAME (ATTACHED

TO 4 SUPPORT PILES)

£

/40— TEST CAISSON 'A' TEST CAISSON 'B*
'%F #. REBAR CAGE
= 1 —66" 0.D. INNER
720 |— . Y L CASNG (To
y X X-TOP OF ROCK)
' OUTER CASING
_ | | b 120" 0.0
L B PRE-EXCAVATED
W 700 — RIVER BOTTOM
~ TENSION BAR EL BB3.7
N - EL 684.7 -
E \\\ ] \ ] ////\
<>( B | 2 . W— - _L,/
@ CELL- 5 = APPROX. TOP
OF ROCK
—m-*:‘—zzz&—— — EERe T T — e EL 668.0
660 L— —CLAY SHALE/CLAYSTONE APPROX. TOP
o :_‘_'”QOF FIRM ROCK
—EL. 653.0 - EL B58.0
OSTERBERG N SILTSTONE
4l | Elevation T H-fess
N _TL. )
a0 L_BOTTOM _clevation OSTERBERG CELL AT

BOTTOM OF CAISSON

NOTE: FOR CLARITY, INSTRUMENTATION, SUPPORT FRAME, SUPPORT PILES,
REFERENCE PILES, SHIELD PIPE AND REFERENCE BEAM ARE NOT SHOWN.

Figure 71. Braddock Locks and Dam 2 drilled shaft load test configuration (after
Wahl 1999)

Two 5-ft (1.5-m)-diam concrete-reinforced shafts were embedded 15 and
25 ft (5.1 and 7.6 m), respectively, into the claystone/siltstone bedrock. To the
rebar cages for each 70-ft (21-m)-long shaft, strain gauges, telltale tubes, CSL
tubes, inclinometer tubes, and an Osterberg cell (at its bottom) were attached.
The rebar cage was lowered through the casing, and then the casing was
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backfilled with tremied concrete. After the concrete had cured, integrity and
performance tests were conducted. Integrity testing was conducted using CSL.
Performance testing was conducted using the Osterberg cell for application of
axial loads and hydraulic jacks for application of lateral loads. Axial load-
deflection curves were generated to provide end-bearing and side-wall friction
resistance design data, while bending moments were generated from the lateral
load-deflection curves (Wahl 1999).

Full-scale load tests of underwater drilled shafts have also been conducted at
the Ohio River (Kentucky), St. Mary’s River (Georgia), and the Apalachicola
River (Florida) bridges using the Osterberg cell (Osterberg 1998). Load tests on
shafts up to 9 ft (2.7 m) in diameter were conducted in water depths to 27 ft
(8 m).

Over 300 load tests using Osterberg cells have been conducted in over
10 countries. Drilled shafts (bored piles or caissons), driven pipe piles, and
driven precast concrete piles up to 10 ft (3 m) in diameter, driven to depths up to
300 ft (90 m), have been tested. Loads up to 15,000 tons (135 MN) have been
applied using Osterberg cells. Osterberg (1998) lists several installation methods
and cell locations for determining side shear resistance and end-bearing values.
As an example, Figure 72 shows the test configuration on a drilled shaft
subjected to deep scouring.
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Figure 72. Load test on an underwater drilled shaft showing a test configuration
for scour design with load/deflection curve results (after Osterberg
1998)

Long-Term Considerations

Underwater foundations are designed and constructed for durability and
long-term integrity during their service life. After construction is completed,
important considerations should include protecting the foundation from scour,
corrosion, and deleterious environmental effects and ensuring that the foundation
performs as designed.
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Deleterious effects

Constructed foundations are exposed to swift currents, shifting mudline soils,
corrosion, and other (harmful) environmental conditions. Each foundation type is
susceptible to any of these conditions to a varying
degree.

Pier or pile

For example, an improved-site foundation is
susceptible to scouring, but corrosion is generally not a
consideration. A steel pipe pile foundation exposed Current //}!'
above the mudline will be more susceptible to /
corrosion than a submerged concrete gravity-based

foundation. A harmful effect that does not discriminate /
by foundation materials or foundation types is mudline %

erosion (scouring), as illustrated in Figure 73.

Scouring. Scouring or erosion is caused by
unidirectional water currents, oscillatory waves, and
tidal currents. Scouring is the result of the interaction
between the water flow field, the obstruction to this
flow field (the foundation), and the sediment bed
(Machemehl and Abad 1975). The scouring
phenomenon has been researched for different
foundation types, and several technological advances
have been developed to reduce scouring action.

Figure 73. Scour development
around a pinned
foundation (after Abad and

Ninomiya, Tagaya, and Murase (1972) studied the Machemehl 1974)

scouring of gravity-based foundations (cylindrical

shapes) placed on soft cohesive and sandy soils. Model

testing using square foundation shapes resulted in formulas for scouring depth
and pattern due to currents. Correlations with other foundation geometry shapes
were also made. It was concluded that a skirted hemispheric shape was the most
effective shape to resist scouring. Scouring characteristics were also quantified.

For pile foundations, Abad and Machemehl (1974) and Machemehl and
Abad (1975) researched the effects of scour caused by oscillatory wave motion
and unidirectional currents in a laboratory wave flume. The parameter volumetric
scour, rather than scour depth, was studied based upon the controlling factors,
which included current velocity, water depth, wave characteristics, and pile
diameter. These researchers were able to predict the scour patterns and the
magnitude of the scour when the geometric and dynamic similarities of a given
foundation were matched to the research results.

Chow and Herbich (1978) studied sand scour due to oscillatory wave
motions around a pile group in a laboratory wave flume. Fifteen variables
controlling the ultimate scour depth were analyzed. The variables were water
depth, density, viscosity, and free stream velocity; wave height, period, and
length; sand density, diameter, and friction angle; elapsed time and gravity
acceleration; pile diameter and distance between piles; and ultimate scour depth.
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Maidl and Schiller (1979) conducted field research at a gravity-based
platform in the North Sea to investigate scour phenomena and protection
techniques. The protection techniques included (a) precast slabs hinged to the
gravity-based foundation, (b) sandbags in nylon netting, (¢) nylon mats filled
with colcrete grout, and (d) mats studded with artificial seaweed. Costs,
installation techniques, and recommendations were discussed for the first three
techniques. It was concluded that the sandbags in nylon netting had the lowest
service life and efficiency rating, while the nylon bags filled with colcrete rated
the highest.

Sheppard, Niedoroda, and Karanumuni (1990) compiled all previously
researched scour phenomena and synthesized the data. These researchers
compiled 98 data sets from five investigations of steady flow around vertical
cylinders in cohesionless granular soil. They proposed an equation to predict the
erosion depth in a scour hole formed by a steady current passing a vertical
cylinder.

Scour induced during pipeline installation was addressed by Bijker et al.
(1991). Scour induced during cyclic lateral loading of piles was described by
Reese, Wang, and Long (1989).

The installation of scour protection consists of side- or fall-pipe dumping, or
individually placing selected fill material (rocks and gravel). The most common
offshore methods are side-dumping and fall-pipe placement, largely due to the
massive quantities of materials that are required around some of the platform
foundations (Figure 74) and for seafloor trenched pipelines. For precision
placement, the fall-pipe method is most frequently used.

Specialized vessels are available to
place offshore scour protection. For
example, Tideway BV (Dredging
International NV, Netherlands) has a
dynamically positioned (no tug
assistance needed) fall-pipe vessel
capable of placing 12,000 tons of rock
within a 1,644-ft (500-m) zone to a
| depth of 986 ft (300 m). Its survey
system includes a multibeam
echosounder and an ROV that is heave-
compensated to within 4 in. (10 cm)
vertical movement. Other large
offshore vessels with rock-dumping
capabilities are owned by HAM
(Hollandsche Beton Groep NV,
Netherlands), Ballast Needam NV
Figure 74. Offshore fall-pipe rock dumping (after  (Netherlands), and Boskalis Offshore

Tideway BV 1999) BV (Netherlands).

Precision-placement may also be accomplished by individual rock
placement. A specially adapted barge (pontoon) crane deposited rocks weighing
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more than 1 ton on the Oosterschelde project (shown in Figure 75). Basalt rocks
weighing 5 to 9 tons (6 to 10 metric tons) were placed as the top layer of scour
protection on the submerged pier sills. Rocks weighing less than 1 ton were
placed by side-dumping vessels (DOSBOUW 1987).

Corrosion. Corrosion is caused
by numerous environmental factors.
Its prevention is an important topic,
especially to the metallurgical
industry. Substantial research has
been conducted regarding marine
corrosion and fouling, and several
organizations, including the
National Association of Corrosion
Engineers, American Society of
Mechanical Engineers, and
American Concrete Institute, and
publications including Corrosion
and Materials Performance have
addressed these issues. Steel pilings
are especially susceptible to Figure 75. Precision rock placement (after DOSBOUW
corrosion. For example, the average 1987)
general corrosion rate of marine
structures in European countries is approximately 5 mils (0.125 mm) per year
(Van Damme and Vrelust 1999).

As illustrated in Figure 76, the corrosion and
biological fouling exposure zones on a typical pile
include the lower erosion zone, the biological

fouling zone, the splash zone, and the atmospheric
zone (Escalante and Iverson 1978). _j
Although each zone has a different corrosion

profile, the highest corrosion rate occurs in a
narrow band just below the splash zone and is

aggravated by fluctuating water levels : : = Erosion zone
(Van Damme and Vrelust 1999). mymfw Muo 7
777

Atmospheric zone

// Splash @—

1§ Fouling

Environmental factors influencing corrosion
include dissolved oxygen, temperature, salinity,
pH, currents, pressure, and biological fouling
(Thomason and Fischer 1991). Corrosion
prevention methods for steel piles include barrier

Embedded zone

type coatings, anodic coatings, cathodic protection, L
or combinations of these (Escalante and Iverson
1978). Figure 76. Exposure zones for piling
(after Escalante and lverson
Escalante et al. (1977) evaluated a variety of 1978)

coatings and cathodic protection systems on steel
piles located off the Atlantic coast over a 15-year period. Van Damme and
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Vrelust (1999) investigated the effects of a two-component coal tar and epoxy
coating system over a 15-year period.

Cathodic protection is needed for long-term corrosion protection of subsea
components. The offshore industry has successfully used cathodic protection
measures over the last several decades, and reliable systems have been optimized
for water depths less than 986 ft (300 m). For example, North Sea experience has
shown that inducing a high current density (e.g., 320 mA/sq m) on steel piles
immediately upon immersion promotes rapid cathodic polarization and formation
of high-quality calcareous deposits. The calcareous deposits reduce the dissolved
oxygen diffusion rate and thus reduce the long-term current density requirements
for cathodic polarization (Thomason and Fischer 1991).

Combination cathodic protection and multicoat paint systems offer greater
corrosion resistance. Shell’s Gulf of Mexico Auger TLP pile template and piles
have a three-coat paint system in addition to cathodic protection with
aluminum/zinc/mercury-type anodes. The corrosion protection system was
designed in accordance with National Association of Corrosion Engineers
(NACE) RP-01-76 for a targeted fatigue life of 1,200 years (Ulbricht et al. 1994).

Foundation behavior monitoring

Long-term monitoring is required to detect changes in the structure’s
foundation that may affect the structure’s life cycle performance. Periodic
inspections and permanent instrumentation are needed to achieve monitoring
programs. Offshore regulations list permanent instrumentation requirements
when (a) the foundation depends on an active
operation such as drainage systems, (b) design
conditions are different or unusual, and
(c) foundation settlement, tilt, or penetration need
to be monitored (Tjelta 1993).

The skirted gravity-based foundations have a
special need for long-term monitoring due to
their reliance on active drainage inside the
Acceleration suction skirts. Filters placed on the inside walls
of the skirts allow pumping to reduce pore-water

Inclination
pressures. Pressure transducers, accelerometers,
Strain settlement gauges, inclinometers, and/or strain
. gauges are permanently mounted at various
e T locations on the foundations. Tjelta (1993) details
Soil/pore . . . .
pressure the long-term monitoring instrumentation
Setflement (typical) program for the North Sea’s Gullfaks platform,
Y /AC PO T A SO O I 7 shown in Figure 77.
o o o . J o o J

The foundation monitoring system of the

Figure 77. Foundation monitoring North Sea’s Hutton TLP includes unique
sensors on the Gullfaks C settlement monitoring gauges. Basically,
platform (after Tjelta 1993) manometer tubes were connected to both the
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piling structure and the adjacent seabed. It was reported by Stock, Jardine, and
Mclntosh (1993) that the tubes contained pressure transducers capable of
detecting differential displacements within an accuracy of 0.1 mm. The
transducer outputs were acoustically transmitted to the surface, where settlements
were recorded and integrated into the performance monitoring system.

Long-term monitoring of a pile foundation for a jacket platform was detailed
by Sharp and Kenley (1993). Strain gauges and accelerometers mounted on the
piles and pressure transducers placed beneath the mudmat were monitored
beginning with the installation of the platform. Loading variations were recorded
as a function of short-term events (such as high wave loading) and long-term
performance.
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6 Summary and Conclusions

This report provides a general overview and description of geotechnical
foundations constructed in the wet (underwater). Case histories of selected
(published) in-the-wet foundation projects were chosen. Since the largest
quantity of in-the-wet foundations have been constructed offshore, most of the
detailed information regarding foundation design and installation was taken from
published offshore industry sources.

Three generalized underwater foundation types are described (improved-site,
gravity-based, and pinned). Design, installation, and testing considerations are
discussed for each foundation type. Site assessment principles remain the same as
for onshore foundation sites, but the equipment technology for underwater site
investigations may be more innovative and unique. For example, remotely
controlled equipment is not commonly used for onshore site investigations.
Sampling techniques and equipment may also differ from those used onshore.

Focus is placed on two of the most common pinned foundation types (pipe
piles and drilled shafts) for design and installation considerations. The use of the
suction pile, which has not been used for onshore applications, is also discussed.
Foundation connections (interface between the foundation and structure) are not
discussed since they are highly structure-specific.

Installation equipment and procedures are discussed, and differences between
onshore and underwater foundation construction techniques are highlighted.
Inspection and testing procedures are similar to those onshore, with the exception
of pile load test frequency and configurations.

In conclusion, underwater foundations constructed in the wet may allow an
alternative to expensive in-the-dry cofferdam construction. Underwater
foundations have been used extensively offshore, since in-the-dry installations
are not an option in deeper water and, consequently, much of the offshore
expertise and technology developed over the last 50 years may be directly
applied to the Corps of Engineers shallow (in-the-wet) sites. As the Corps and its
contractors develop more experience regarding design and construction of in-the-
wet foundations (especially for navigation and flood control structures on inland
waterways), the innovative in-the-wet construction approach may offer a
significantly beneficial alternative to typical in-the-dry construction.
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