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TECHNICAL REPORT SUMMARY

The objective of this project is to combine a number of recent
advances in finite element theory and computer technology for analyzing
cavities and structures in rock. This computer program applies to general
three-dimensional structures, considers nonlinear material properties includ-
ing homogeneous deformations and inhomogeneous deformations duc to joints,
anisotropic and time-dependent material propertoes, gravity loading, and

sequence of construction or excavation.

During the first half of this contract, work has been aimed at pro-
ducing a user-oriented computer program. The work of writing the program was

divided into three areas:

a. Input
b. Execution and output

c. Material properties

The Input Section automatically generates the continuum part of the finite
element mesh, including joint elements, allows the user to add other elements
(beam, shell, truss) to the mesh, plots the result, reduces the bandwidth and
reads loads, material properties, and other quantities necessary to the cal-
culation. The Execution Section forms the glotal stiffness matrix and solves
equations of equilibrium for displacements by an implicit method. The material
properties are represented by subroutines within the Execution Section, which
are written in a modular form so that if the general equations of nonlinear
elasticity, viscoelasticity, viscoplasticity, or plasticity do not suit a
particular problem they may be easily modified. This work is now complete
except for linkage among the various sections to be checked out and for the

efficiency of some operations to be improved.

il
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SECTION 1

INTRODUCTION

The purpose of this contract is to combine a number of recent
advances in finite element theory and computer technology into a computer
program for analyzing structures and cavities in rock. This computer program
applies to general three-dimensional structures, considers nonlinear material
properties including homogeneous deformation and inhomogeneous deformation due
to joints, anlsotropic and time-dependent material properties, gravity loading,
and sequence of construction or excavation. S$ince the program is intended for
practical analysls and design, great effort has been made to foresee diffi-
cultles In using it. For example, much tedious work, which formerly was done
by the user, has been eliminated by sophisticated mesh generators and a band-
width reducer. Also, since many prospective users may have access to small
or medium-sized computers but may still wish to solve large problems
(4000-6000 equations), the program uses up-to-date multibuffering techniques
for accessing peripheral storage units, thus dramatically reducing computer run
time for out-of-core problems. Finally, an attempt is made to lengthen the
useful life of the program by making it simple to add new elements and to
expand the material property description and by making the program efficient

for and compatible with a wide variety of computers.

The purpose of this report is to discuss what the computer program
now does and what it will do when the present contract is complete. Most of
the description is given from the standpoint of a prospective user. Mesh
generation, the types of elements available, the types of loading and construction
which may be done, and the material properties and joints which are available are
described. Assurance that the program is working properly is given by comparing
analytic solutions for one-, two-, and three-dimenslonal problems with the finite
element solutions to the same problems. The theory underlying the present finite
element formulation is also described. Also, the structure of the code is

indicated by logic diagrams.
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The work which will be done in the second half of the contract period
involves application of the code to actual mining situations. During this
phase, general features of the program such as the joint element and the
material property representations will be refined. Parameters will be
selected for specific field conditions and an attempt will be made to match

field data with calculations. The sites have not yet been selected.

To summarize, this report describes a finite element computer program
which incorporates a number of good features which are not all available in any
other program. By means of comparison with analytic solutions, evidence is given
that the program is consistent with the assumptions under which it was formu-
lated and written, and that It contains no programming errors. The task of
demonstrating that It accurately represents field conditions is left to the

secornd phase of the contract.
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SECTiON 2 B

PHYSiCAL ASPECTS OF ROCK AND SUPPORT SYSTEMS
WHiCH THIS PROGRAM REPRESENTS

This section describes the scope and specific goals of the bFEsént
computer program. These are representation of gravity and live Ioadlng;h
properties of homogeneous rock including anisotropic, inelastic and‘VJspdus
effects, properties of jointed rock, excavation and construction, a&h‘geometry
of cavities and support systems.

To illustrate the capability of the program three typical problems
are described below. These problems have not actually been solved with ithe
present program, but they could be solved at any time. The first is idius~
trated in Figure 2-1. A section of tunnel is to be excavated in a region '
containing a major joint. The properties of the joint are assumed to be known.
The rock adjacent to the joint is assumed to be homogeneous and to hav; viscous
properties which can be represented by a visco-plastic model. In Step 1, the
tunnel has not yet been excavated. Stress in the rock is computed by applying
static overburden to the edges of the finite element mesh. Then the tunnei is
excavated by removing appropriate elements. At each stagé of the excavation,
the tunnel roof is propped by truss and beam elements. Eventually, the
tunnel is fully open and the finai supports are installed. Each stage is
associated with an elapsed time, during which the rock flows in a visco-~
plastic manner. At each intermediate stage and at a stage the user defines

to be final, the stresses in the rock and in the support elements are printed.

The second problem is iiiustrated in Figure 2-2. A bank is to be
excavated in a rock such as shale'having nonlinear, anisotropic stress/strain
properties and an anisotropic fracture criterion. In Step |, the in situ states
of stress are computed by applying gravitational forces in a step-by-step
fashion throughout the grid. in subsequent steps, elements are removed in any
sequence the user desires. Between excavation steps the remaining rock will
be checked for fracture which would correspond to spall and sliding in an
actual field situation.
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TIP3 !‘ sTEF A
STEP §
FIGURE 2-1.

4

AARS 70

TWO-DIMENS IONAL TUNNEL WITH EXCAVATION,
TEMPORARY BRACING AND JOINTS
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BEDDING PLANE
~ REGION TO BE EXCAVATED

| N

STEP 1. GRAVITY LOADING APPLIED TO ALL NODAL POINTS

) -
~

STEP 2. EXCAVATION

STEP 3. ENCAVATION

FIGURE 2-2, EXCAVATION OF BAIK

n
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The third example is an extension to three dimensions of the first
example. The final stage in the calculation, at which the section of tunnel
under consideration is fuliy excavated, is illustrated in Figure 2-3. Notice
that the piane of the joint is not parallei to the axis of the tunnel. This
probiem is one of the iargest and most difficuit which the code is intended to
handie.

Several important questions remain unanswered. First, how much do
such analyses cost in terms of computing time and engineering preparation and
interpretation? Second, are sufficient fieid data avaiiable for noniinear and
anisotropic properties of the rock and for the properties of the joints to be
accurately modeled? Part of the answer to the first question can be found in
Section 6 of the present report in which the computer times for soiving
simpie checkout problems are given. More information on costs wiii be forth-
coming at the end of this project. It appears at present that sufficient
fieid data are not availabie for accurate modeling. Hopefully, the deveiop-
ment of anaiytic tools such as the present program wiii stimulate the
necessary measurements.
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SECTION 3

APPLICATION OF FINITE ELEMENT THEORY

This section discusses the present formuiation of equations of
equilibrium. The provisions to extend this formulation to large deformations Is
also described. Then the types of elements, including truss, beam, plane strain
and axisymmetric, three-dimensional and thick sheli eiements are described. in
add!tion, a new eiement for representing slip and debonding along pianar joints
Is described.

3.1 SOLUTION OF NONLIIEAR EQUATIONS OF EQUILIBRIUM

The matrix equation of equilibrium for a structural system with
material nonlinearity Is:

K(u u = p (3-1)

where the Instantaneous stiffness matrix (K) 1Is a noniinear function of the
displacement vector (u). P Is the vector containing external loads. There
exist numerous methods of soiving the above system of nonlinear equations. In
general, these methods can be divided into two ciasses: I[terative methods and
Incremental methods.

Iterative methods apply the total load initially and approach the
solution by modifying the stiffness matrix and/or modifying the load vector.
Modification of the stiffness matrix in general accelerates the convergence
but is computationally costiy. The optimum may he achieved by occasional
stiffness reformulation:
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In incremental methods the loads are applied in several steps and an

incremental form of the Equation 3-1 is solved.

Ko 8% = 2B (3-2)
where
81 T Y T Yy
égn+l = En+| " In

It is important to note that the stiffness matrix Kn can only be formed based
on the displacement vector from the previous step Y, which creates some
step-wise error. in this simple incremental technique the step-wise errors

can accumulate and lead to considerable total error. To prevent this accumula=-
tion of the step-wise error, a modified form of the load vector is used.

Kn 8¥ne1 = EBner  Ep (3-3)
where
£n+l Total load vector at the end of the (n+|)th step
- = Vector of the internal resisting forces at the end of the
th

n" step

By using this method of load vector correction the equilibrium is satisfied at
the beginning of each incremental step and thereby the accumulation of the
step-wise error is prevented. Satisfaction of equilibrium is assured in spite
of errors or approximations in the stiffness matrix and, therefore, the reformu-
lation of the stiffness matrix is not required at every step. Hoviever, the
error in each step is directly dependent on the approximation of instantaneous
stiffness matrix.
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An alternative method is to apply the total force from the beginning,
in which case the ioad in Equation 3-3 wiil be

P = P

. total (n=i,...,N)

It should be noted that the appiication of the total loads makes this method
equivaient to an iterative scheme with ioad vector correction which was
previously discussed. However, the loads in generai have a specified history
dictated by the sequence of application, sequence of construction and excava-
tion, and the time phenomenon associated with the viscous materiai properties.
In most practical probiems, the specified history of ioading is a series of
step functions. This Is true in case of construction and excavation which can
be considered as a discontinuity in force-dispiacement reiation and an abrupt

change in the instantaneous stiffness matrix.

An efficient scheme is to apply the total of the step-wise loading
at each stage and then carry out several iterations with occassional stiffness
reformulation to accelerate the convergence. This scheme is summarized in the

following steps.
For each step:

a. Compute u =u

u_) oY (for first step; u_ = 0)

o]

b. Compute the strains (gn) or strain increments (Agn) using the
derivatives of the shape functions for each eiement which have
been Initially computed and stored

c. 1.  For time-independent materiais compute the stress (gn) and
the instantaneous stress-strain relations (Qn) (see section on

material properties)
2. For visco-elastic elements

i. Compute stresses g =C (¢ - 5:_1) where C Is
the elastic stress=-strain matrix, €n Is the total strain

and cc

€,-1 |s the total creep strain

10
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it. Using the stresses, compute gﬁ which is the total
creep strain at the end of the time step (see section on

material properties)

iii. Compute effective stress

d. Compute the internal resisting forces from the stresses (effec-
tive stresses for viscoelastic elements). If it is stiffness

update cycle, compute stiffness matrix.
e. Solve Equation 3-3 to obtain Ay ... Compute vy -|[Aun+|".

f. If a specified number of iteration has been reached or if
y <€ (e is aspecified quantity), go to Step g; otherwise,
go to Step a and repeat the iteration.

g. . Apply the next loading step and go to Step a.

3.2 EQUATIONS OF EQUILIBRIUM FOR LARGE DEFORMATIONS

The method of large deformation finite element analysis to be used in
the present computer program was initially introduced by Sharifi and Yates,

Reference 3-1.

The matrix equations of equilibrium (or motion) are derived from an
incremental virtual work expression and the original configuration of the finite
element system is taken as the reference configuration. This choice of the
reference state el iminates the need for updating of the coordinates of the
nodal points which is computationally a costly operation.

1"

-
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The incremental virtual work expression is

. j; (t, +at) S8U_dA -,A' 5, Sbe, v, = ./v' 5, 6aM; 4V,
. (o] i (o] (o]

+ _4' S, 8acij dvy A . (3-4)
o ki '
where

u, = Componenf of displacement veﬁtbr

Auk = |ncremental component of displacement vector

tk = .Compbnent of traction vector

o, = Incremental component of traction vector
.Slj ~ Component of Piola stress tensor |

ASlj = |ncremental component of Piola stress tensor

Ae‘j = Linear component df incremental strain tensor

An = Nonlinear component of incremental strain tensor

The stresses and traction are referred to the area and the coordinates
of the original conflguratloﬁ:

Ae,

T bu; .+ Auj.‘ + uk,lAuk,j +.uk'jAu£.' : (3-5a)

vJ

AH‘J - Auk"Auk'J ‘ (3'5'3)

The total and incremental displacements within each element can be
expressed in terms of the nodal point values of the displacements through

shape functions

12
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u = HU, - (3-6a)
bu; = H AT - (3-6t)

where H is the vector of the shape functions and gi and AU, are the

vectors of the total and inc.emental displacements of the element nodes.

Without loss of‘generality the.femaining part of this section will
be devoted to the derivation of the appropriate matrices for the two- |
dimensional quadrilateral element. {

Substituting the Equation 3-6 inéo EquationVB-SIWin result in
the following expressions for the strain increments in terms of.the nodal
point displacements: ' ' ‘

be, = H, BU 4 (H, W) (W, 8U) + (H, U) (H, 8U)

RX Y ® R ey
b, = H, AU + (H, U H, AU ) + (H,
Yy =’y ey (-’y U (M y -x) (8 y gv) (ﬁ’v EEY)
(3-7)
bey = Hy o &QY + ﬂ»y 8y, + (Hy u) (ﬁ-y ﬁgx) + (H-y Qy)

) (ﬁ.y ay.) + (l_i.Y AQY);

The above equations can be written as matrix form

bg = B (I+E) oy =

(3-8)

m e
>
1=

where I s the identity matrix and

13
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EXX
by
€ = € AU = X (3-9}
= Yy = AU
G =y
Xy
0
-'x -
U H, U, H,
g - o w, §=["" ""] (3-10)
Qx Hyy gy ﬂiy
Hox  Huy

B is the usual strain-displacement matrix for infinitesimal deforma-

tion and E is the large deformation contribution.

The linear and geometric stiffness matrices and the load correction

vector are

ke = [ BT cBay (3-11)
v
m
ke m fBTSde (3-12)
Kg @ ey
vm
-1
e [ FTsav (3-13)

where v is the area of each element in original configuration, and C s

the instantaneous stress-strain relation
58 = Coe (3-14)

Finally, the matrix equation of equilibrium is

(Ke + Kg) 84 = R -F (3-15)

14
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It is important to note that for the computation of the above matrices
only the derivatives of the shape functions H,x and H,y at original geometry
of each element is required. Therefore, these derivatives at integration
points, can be computed in the first part of the program.

3.3 STRUCTURAL FINITE ELEMENTS

A description of the structural elements incorporated in this computer
program are given here. The beam and thick shell elements have linear elastic

properties. All other elements are capable of represencing nonlinear properties.

3.3.1 THREE-DIMENSIONAL TRUSS ELEMENTS

The truss element is the conventional space truss member which can
resist compression or tension along its axis. It can also be used to model
bolts. The truss member is subject to three translations at each end of the
member as shown in Figure 3-la. The member stiffness matrix is of order
6 x 6. The material and geometrical properties are defined by the tangent
Young's modulus, and the cross-sectional area of the element.

3.3.2 THREE-DIMENSIONAL BEAM ELEMENTS

The three-dimensional beam element is subject to three translations
and three rotations at each end of the member. The generalized forces and the
generalized displacements associated with the six-degrees-of-freedom (DOF) at
each end are shown in Figure 3-1b.

The geometrical properties of the beam element are specified by an
axial and two shear areas and three principal moments of inertia, two associated
with bending and one with torsion. Young's modulus and Poisson's ratio are

required to define the material properties of the beam element.

The element stiffness matrix is of order 12 x 12 and is obtained

from the classical beam theory including the effects of the shear deformations.

15
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AJa2121

(a) THE THREC-DIMENSIONAL TRUSS ELEMENT

-

- b —— —— . e = Y
’///// AJR2122
]

(b) THC THREC-DINCNSIONAL BEAN ELEMENT.

FIGURE 3-1. TRUSS AND BEAM ELEMENT
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A provision for the member end boundary conditions accounts for

hinges and other reieases.

3.3.3 TWO-DIMENS!ONAL PLANE STRAIN AND AXiSYMMETRiIC ELEMENTS

Quadriiaterai isoparametric eiements wiii be used in the computer

program. For a gencral quadriiaterai element, as shown in Figure 3-2, the

locai and giobal coordinate systems are reiated by

4
X=Z5 h, x
= I |
4
y=ZI hyy
1,,11

(3-16)

where the interpoiation functions are given by

h] = 1/4 (1-s) (1-t)
h2 = 1/4 (14s) (1-t) ©(3-17)
h3 = 1/4 (14s) (1+4t)
hy = 174 (1-s) (1+t)

The same interpoiation functions are used in the dispiacement

approximation.

u, (s,t) =2 hyuy + he o) * g & | (3-18)

where
- _2
h5 (1=s%)
2
hs-(lt)
h5 and h6 are the incompatibie interpolation functions.

17
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a. GLOBAL SYSTEM

» <

b. LOCAL SYSTEM

FIGURE 3-2. TWO-DIMENSIONAL ISOPARAMETRIC ELEMENT

18
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For two-dimensional analysis the strain-dispiacement equations are

au

n X +
Exx " 3x " E Mgy Uy T M5k 01t gk %2
u
e =

yy " 7oy T T Pyy Uit hs,y 93 % Mgy

&y * 3y + T 7 hi Y U4 ¢ L h‘l,x uyi + HS,yal + h6,y°2 + hS,x°3 +

N6, x4
(3-19)
Or Equation 3-19 can be written in matrix form as
Hx 0 Ux
E = g l_j - (3'20)
0 H,y Uy
Hy  Hux

In this case the three strains are reiated to the eight nodal point displace~
ments and four coefficients of incompatibie displacement functions by a
3 x i2 matrix. The submatrices in Equation 3-20 are given by

ﬂ’x " [hl.x hZ,x h3,x h4.x- hS.x' hé,x]

. » h (3-21)
ﬂ’y [hl Y h2oy h3.y h‘,y S5,y’ h6,y]
The element stiffness matrix is given by the following equation:
k= LT coav (3-22)

19
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where C Is the stress-strain matrix. The above equation s integrated
numerically

ko X gl (3-23)

This stiffness matrix which Is 12 x 12 is reduced to 8 x 8 by elimination of
the four incompatible modes before assembling in the global stiffness matrix.

3.3.4 THREE-DIMENSIONAL ELEMENT

For an arbitrary eight-point brick element shown in Figure 3-3, the
appropriate displacement approximations are

8
ug * I Uit P % * Mo % ! hiy 9x3

8
Uy = 151 l.ly.l + hg uﬁ + h]O Gyz + hn “y3 (3-24)

8

up® I Uz *hgog * Moozt %z

20
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FIGURE 3-3.

-y

EIGHT-POINT THREE-DIMENSIONAL ELEMENT

21
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where

by =1/8 (146) (1 +n) (1 +7)
hy=1/8 (1-€) (1 +n) (1 +7)
hy=1/8 (1- ) (1-n) (1 +3)
hg=1/8 (1 +€) (1-n) (1 +2)
hg=1/8 (1 +£) (1 +n) (1 - ) (3-25)
hg = 1/8 (1 -€) (1 +n) (1 -¢)
hy=1/8(1-€) (1-n) (1-2¢)
hg=1/8 (14£) (1-n) (1 -7)

hg = (1 - &)
f)

+

ho=(1-n
h” - (] 'Cz)

The first eight are the standard compatible interpolation functions. The last
three are incompatible and are assoclated with linear shear and normal strains.
The nine incompatible modes are eliminated at the element stiffness level by
static condensation.

3.3.5 THICK SKELL ELEMENTS

The thick shell element described here was initially developed by
Wilson, et al., Reference 3-3.

This shell element is a 16-node curved solid element shown In
Figure 3=4. Each node has three unknown displacements. Therefore, if the
shell Is considered as a two-dimensional surface there are six unkiowns per
point. It is apparent that this type of formulation avoids the problems
associated with the sixth degree of freedom--the normal rotation is set to
2ero when certain finite elements are used in the idealization of shells.

22
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FIGURE 3-4. THREE-DIMENSIONAL THICK-SHELL ELEMENT
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The locations of the nodes are defined by the orthogonal, right-
handed coordinate system (x, y, z) which Is referred to as a global system.
Within the element a local coordinate system (£, n, {) has been chosen such
that £, n, ¢ vary from =1 to +1; (0, 0, 0) is located at the centroid of the

element.

The local and global coordinate systems are related through a set
of Interpolating functions:

16
X -11:] hi X;
16
y -1!:‘ hy ¥4 (3-26)

16 :
2=3 z
jmp 11

24
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where ,
hy =18 (1 +8) (1 +n) (1+g) (§+n-1)
by 21/8 (1 -8)(1+n) (N +g)(-£+n-1)
hy =1/8(1-8)(1-n) (1+E)(-E-n-1)
hg =1/8(1+8) (1-n) (1+8) (E-n=-1)
hg =1/8(1+6) (14n) (1-2) (E+n-1)
hg =1/8 (1 -8) (1 +n) (W -¢g)(-E+n-1)
(3-27)
hy =1/8 (-6 (1-n) (O -g)-€-n-1)
hg =18 (1 +&) (1-n)(1-¢)(6-n-1)
hg =178 (1 -6 (14n) (1+¢)
Mo * /40 -8)(1-nd) (143
=8 (-8 (1-n) (4
hyp = 178 (14 £) (1= n?) (1 +2)
3= 1740 =€) (1+n) (-2
hg=1/8 00 -8)0-nd)(1-3)
Ms= 1740 -E) (0 -n) (-0
hg=1/8(+5) (0 -nd) (1-0)
The displacements within the element are assumed to be of the follow-
ing form:

16
. L hy Ugg + Mg agy * Mg ayp + hygayg * hyg ayg * My ayg
16

w s L

Vo=l
16
ll’. E

i=]

hy Uyg + Pyz ayy * Mg ayy + Mgays + Rygayy + hy ays  (3-28)

hy Upg * hyg apy * hig ayy + Mg ayg + hyg gy + hyy g5

) i
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where

2
h'|7 . £ (1 = E )
hg =n (1 -n)
hig= (1-2%)
19 (3-29)
hzo = En (] - 52)

h21 =ng (1 - n?)

The motivation for addition of the interpolation functions hi7 to
h2| _Is to Increase the capability of the element in producing closer approxi-
mations to the exact displacements under simple loadings, thereby increasing
the convergence to exact solution. The incompatible Interpoiation functions
hi7 to h21 have zero values at the nodes and produce incompatibilities in
displacement field along the intereiement boundaries.

3.4 JOINT FINITE ELEMENT

The joint element is intended to represent the rock joints, faults,
interfaces and similar discontinuities in continuum systems. The joint
element has the capability of representing the main characteristics of the
deformation behavior of the rock joints such as deboﬁding and slip. The
term debonding means the ability of separation of the two blocks of continuum
adjacent to the joint surface which were initially in.contact. Subsequent
contact can also deveiop by the movement of the two blocks towards each other.
The term slip means the.relative motion along the joirt surface or fault when

the shearing force exceeds the shear strength of the joint.

Previous attempts have been made to develop discrete elements to
' represent the joint behavior. Goodman, Taylor and Brekke (Reference 3-2)
deveioped a simpie rectanguiar, two-dimensional eiement with =ight degrees
of freedom. This element has no thickness, and therefore the adjacent blocks

26
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of continuum elements can penetrate into each other. Zienkiewicz, et al.,
(Reference 3-4) advocate the use of continuum .isoparametric elements with a
simple nonlinear material property for shear and normal stresses, assuming
uniform strain in the thickness direction. MNumerical difficulties may arise
from ill conditioning of the stiffness matrix due to very large off-diagonal
terms or very small diagonal terms which are generated by these elements in

certain cases.

To avoid such numerical problems a new joint element is developed
below, which uses relative displacements as the independent dégrees of freedom.
The displacement degrees of freedom of one side of the slip.surface are
transformed into the relative displacements between the two sides of the slip

surface. The transformation relations are as follows:

T B

Ui T Yxi * Auxl
uT. = uB + Au .,
yi yl yi
uT. = uB + Au_ .,
XJ Xk X)
uT. = uB + Au
YJ yk yJ

The superscripts T and B refer to the top and bottom elements
with respect to the slip surface respectively. As shown in Figure 3-5, those
degrees of freedom of the upper element which are on the slip surface are
transformed but the degrees of freedom of the lower element are the original

displacement quantities.

27
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UPPER
CONTINUUM
ELEMENT

LOWER CONTINUUM
ELEMENT

¥

X
(GLOBAL COORDINATES)

T 3

ST MR
u;i = u:l * Auyl
"Ij -t Buyj
u;J = u:k + Al.lY-|

FIGURE 3-5. GEOMETRY OF JOINT ELEMENT
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The joint element is assumed to have the relative diSplacements‘as
the degrees of freedom. For example, in a two-dimensional problem the joint
element will have four degrees of freedom (Figure 3-6). The relative normal

and tangential displacements, Aun and Aus. are assumed to vary linearly along
the element as follows

Aun = hlAuni + thunj
(3-30)

Au_ = h.,Au_. + h,Au_.

s i si J s

where the hi and hj are the linear interpolation functions
1
he = 21 -g)

(3-31)

T

and Auni, Aunj, Ausi and Ausj are the nodal point values of the relative
displacements. The joint element is assumed to have only two strain com-
ponents; €, = normal strain, and e, = shear strain., These two strain

components are related to the relative displacements through the following
relations.

(3-32)

29
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FIGURE 3-6. COORDINATE SYSTEMS FOR JOINT ELEMENT
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The substitution of Equations 3-30 and 3-31 into Equation 3-32 results
in the strain-displacement relation for the element

Au

ni
€ (1 - ¢) 0 (1 +¢) 0 Au
IR o (3-33)
€ 0 (1 -¢) 0 (1 +¢) ﬁu"J
QU'J
e = By

The stresses and the strains are related through the following
material property matrix C.

n Can Cns|)n
= (3-34)
‘s Con Cssl®s

In general the above stress/strain relationship for rock joints is
nonlinear, the details of which are given in Section 4.

The stiffness matrix for the joint element is formed in n-s
coordinate system;

1 ;
ke = J 808 v (3-35)
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(A‘
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and transformed to the x-y coordinate system as follows

is the transformation matrix containing the direction cosines.

(3-36)
(A3 + 82)
(A, + 28.)
e (3-37)
2(/!\3 + 92)
2(A2 + 282)
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SECTION &

REPRESENTATiON OF PROPERTIES OF ROCK, INCLUDING ANISOTROPY,
INELASTICITY, RATE EFFECTS AND
PROPERTIES OF FAULTS OR JOINTS

The first part of this section describes homogeneous properties of
rock which are available in the AA computer program. As used here, ''homogennous'
refers to properties which can reasonably be averaged over several feet, which
is a typicai dimension of a finite element in applications to mining engineer-
ing. Inhomogeneous properties of rock masses, such as those caused by fauiting.

are treated by a separate procedure which is described in the second part.
The topics which are covered beiow include the following:
a. Inefasticity
1. Variable modulus
2. Variable modulus with perfect plasticity

3. Variable modulus with perfectly plastic fracture

criterion and strain hardening cap

b. ﬁpisotrogx

1. Variabie modulus with anisotropic fracture criterion

based on the hypothesis of Jaeger (plane geometry only)

2. Variable modulus with anisotropic yieid criterion based

on the hypothesis of Hilii

c. Rate Effects (lsotropic Oniy)

1. Creep (series of Keivin elements)

2. Viscoplasticity (based on work of Perzyna)
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TABLE 4-2. ADVANTAGES AND DiSADVANTAGES OF EACH MODEL

Advantages

A. Elastl

Disadvantages

c-ldeoll;ﬁ?lastlc

Simpie to fit to data

Approximates most features of data

G = Const. G = G(P_) and associated
flow rule theoretically correct

al v

May not fit all available data

Cannot match triaxial test

Other treatments of G can lead
to possibie paths of energy
generation

For nonassoclated flow rule no
general uniqueness theorem

arlable Modull

Best fit of data

Only model with repeated hysteresis
within failure envelope

ideal for finite element

Computationally simple

Refativeiy easy to fit

cl

Restricted to near-proportional
loading (in shear)

For nonproportional loading paths
no uniqueness theorem

Additional quantity must be stored
at each grid point

Cap Model

Satisfies all rigorous theoretical
requirements

Reasonably good fit of data

Effective control of dilatancy

Indirect approach needed to fit
data

Reiatively complicated

Additional quantity, the strain
hardening parameter, must be
stored at each grid point

Viscoelastlic

DI
Simple to fit to data
Approximates features
of data for some rocks
El

Requires sophisticated testing
to define viscous coefficients
for multi-axial loading.

Does not account for deterioration In
strength with time

Viscoplastic

Approximates some features of
data including shear strength,
stick-siip phenomenon

Requires sophisticated testing
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24
. — o= P
e AVN -
FAILURE ENVELOPE
HYDROSTAT
4
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FIGURE 4=1. TYPICAL LABORATORY DATA ON ROCK FROM WHICH CONSTITUTIVE
EQUAT IONS ARE OERIVED
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The programming of the material property subroutines Is arranged to
provide maximum flexibliity and ease in changing propertles. This |s done by
performing each separate function in the material properties description by a
separate subroutine. Thus “e,arate subroutines are provided for the following
purposes:

Computing variable moduli

Computing derivatives of the yield functions with respect
to its arguments.

Testing for yleiding or fracture
Adjusting stresses for viscoelastic relaxation.
Adjusting stresses for viscoplastic relaxation.

Transforming straln Increments to princlpal axes of orthotrophy
and transforming the matrix of stress/straln coefficlents to
the global axes.

There is considerable interdependence between the inelastic and anisotropic
capabilities. Vherever possibie this interdependence Is used to economlze on
programming. Logic diagrams for each subroutine In the homogeneous material
property package, are given in Appendix A.

b.1.1 JHELASTICITY FOR ISOTROPIC MATERIALS--VARIABLE MODULUS

Inelasticity In Isotropic materlais Is represented through variabie
bulk and sheacr moduli and throvgh plasticity theory. The buik modulus B
Is assumed to depend on the current value of elastic volumetric strain u and
its previous maximum vaiue Ymax*

FOR LOADING (0 > u 2 u..)

max
§ = (Bm - Go) exp (ﬁ%) (k=1)
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FOR UNLOADING OR RELOADING (0 < u < mg,,)

B = 8 + (8B - su)(ﬁ-;) (4-2)
where
B, + (8, - 8,) (u_mﬂé)

u
B

B = the lesser of
o

FOR LOADING OR UHLOADING/RELOADING IN TENSION (u < 0)
B = B ("-3)

Appiication of this modei to a granitic rock is iilustrated in
Figure 4-2., Speciflc parameters for this rock are

7.6 x 106 psi

1.205 x 106 psi

0.0275

=
—
"

0.05

The shear modulus G is also assumed to depend on u and Mnax

FOR LOADING (0 < — u)

-y
G = Gm - (Gm - (:o) exp -‘-"3-) (4-4)
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FOR UNLOADING/RELOADING (0 s u < w )

G = Maxinmum previous value of G (4=-5)
FOR LOADING OR' UNLOADING/RELOADING IN TENSION (u < 0)

B '4' B - o (4-6)

/

‘Application of this model to cracked and:uncracked granitic rocks’

is illustrated in Figure 4-3. Specific parameters for these rocks are:

h.35 x ]06 psi

G, =
G = 0
o .
= 0.00
M3 5
The incremental stress do is related to the increments: com-

L]
+ porient of elastic strain de?j by the following expression:

) L

_Reyume & e R
TR (B 3 s) dekk.aijv+ ZG(deij) (b47)

a
Q
]

where

i

0 if iFjy=1 if i=]j

[}

Theoretical guidance on the appropriate functions for B and G
is provided by Walsh (References 4-7, 4-8), who postulates that the effective
modulus differs from the intrinsic modulus due to cracks and pores. As these
are closed by increasing pressure, the effective modulus tends toward the '

consolidated value. Walsh's work contains parameters which are not retained

b1
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in the following empirical expressions for the effective bulk modulus. How-
ever, the basic concept is retained. Also, the present model for the effective
shear nodulus merely follows Walsh's concept. The idea of coupling the shear
stiffness fo volumetric strain is proposed in Reierence 4=9 and carries the
danger that energy might be extracted from the mcodel by hydrostatic com-
pression, followed by shearing, followed by releasing the pressure and finally
by releasing the shear. This danger is avoided by assuming that friction
prevents cracks from reopening during unloading so that the largest value of

G reached on loading is retained during subsequent unloading/reloading.

Under these conditions a material may dissipate energy in shear during

loading and unloading cycles but can never produce additional energy.

4.1.2 INELASTICITY FOR ISOTROPIC MATERIALS--VARIABLE MODULI! WITH PLASTICITY

The present adaptation of plasticity theory is based on work of

References 4-=9 through 4=13., The model consists of a yield criterion
f(cij, L) = 0 (4-8)

where L is a function of plastic strain,

and a plastic flow rule in which f s regarded as a potential function

deP, im0 A agf (4-9)

iJ

The ‘incremental stress is related to the elastic component of incremental

strain by Equation 4-7. Defining

e g - deP =
dsij deij deij (4-10)
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Substituting Equacions 4-9 and 4=10 into Equation 4-7 leads to

of
)

of
doij k(dckk A 3 ) 65] + ZG(dcij A ) (4-11)

where

2
A B 3 G

If the yield criterion is satisfied, the stress state must lie on the surface
defined by f in Equation 4-8. Tne mathematical statement of this constraint
is

of
do,; + =
acIj ij oL

dL = 0 (b-12)

Substituting Equation 4-11 into 4-12 permits solutions for A

x(dekk) fzﬂ + 26 de

 of
A = L) (4-13)
Afkkfzz + 2G fijfij + R

where R is a strain-hardening function to be defined below.

Substitution of Equation 4-13 into L-11 expresses the stress increment in

terms of the strain increment.

b






A

50-3) L
X'(L) =

The hardening parameter, L, is

—

n
o ]

-~

("]
—

[ =5
-—

-

G
N -
S—

-—
N O

a

~

where
2
[ Ji ]
g - u l T —
V2o f
2 2 V2
LG PY - P P
7 ) ) (g
The hardening parameter R is
£2 af af \2  [af.\2  [af,\2
R = 1 2 2 2 2
2 oL 90 e 90 ¥ a0
(fl - ,LI;) 1 2 3
where
9y» 9ps O3 are prircipal stresses
and

R = 0 if f = f’.

R=7215-2299

(4=19b)

(4-20)

(4-21)

(4-22)

(4-23)

The cap parameters and stress/strain relations produced by the cap

model are shown in Figures 4-4 through 4-6. Data on strength for granite

containing various degrees of cracking are shown in Figure 4-7, which illus-

trate the adequacy of the assumed fracture criteria.
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The incremental stress/strain equations are expressed in matrix form

as follows:
{do} = [C]{de) (4-24)
vhere dc is the total Increment of strain., The C matrix thus contains

general ized tangent moduli and can be used in forming the element stiffness

matrices. For the models descr’'bed above, the C matrix is as follows:
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The C matrix Is clearly composed of eiastic and Inelastic parts

c = c®-¢c° (4-26)

The €% and P matrices are computed separately. The reason for this is
efflciency in treating isotroplc and anisotroplc materlais with the same
Fortran statements.

In weakiy nonlinear probiems it is possible to avoid time-consuming
reformulation of the stiffness matrix by introducing nonlinearity through
the load vector. The method is an extension of the equiiibrium equations
given in Reference 4-29. In the foliowing equation, time is used as a
parameter. Number of load step couid be used Instead.

At time 1, ‘he total change in compiimentary strair energy is
equal to the change in compiimentary work done by nodai point forces.

Titf <e>  {do} dv = Et <w> {dP}_ (4-27)
=0 “vol ™0
where

<z>, Ido} = Eiement strain and stress Increment

<u>, {dP} = llodai displacement and force vector

v = Volume of finite element

T = Arbitrary instant of time

The strain/dlispiacement reiation Is
{e} = [B]{u}

& <> = <u(8]" (4-28)
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The stress increment in an elastic/plastic material may be expressed by
rewriting Equation 4-24 as follows.

{do} = [C]{de} - {dop} (4-29)

elastic correction

where now C = Ce

Substituting Equations 2-28 and 2-29 into Equation 2-27,

b I (817{1c1 (81 {du} _ - {do ) oy T . @p). (h-30)
<u> u - (4] = <u> -
=0 “vol T T P 1=0 T T

Noting that <w>_ may be eliminated from both sides and that

f ONGIOUEE G (4-31)
vol

where [K] s the elastic stiffness matrix, Equation 2-30 may be rewritten as

T=t=-At T
| A ([K]{du},r - J:ml (8] {dop}T dv

=0

T =t
+ [K{dul,, - J:o' Ol'ao} @ = T o)

where {du}, , {da } equal change in u and o_ during the interval
Ac Piat P
t - At to t.

Performing the indicated summation, assuming stress to be constant
throughout the element and defining

E. = }I_‘, [Kl{du}_ (4-33)

T =0

5k
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(Kltduly, - [81"pdo } v = P}, - (&3, + [81{o }

At

t-At
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v  (4-34)

For small increments of stress and time in a step-by-step integration, the

second term on the left hand side is neglected.

The expression which is used for {E} in the computer program is

derived as follows. The recoverable work done on an element is equated to

the elastic strain energy stored in the element by the following equation.

.% (B} = %-<e>[c]{s}v

or

(€} = [B'][C]{e}V

Thus Equation 4-34 may be rewritten
. T ;
[Kl{dul,, = (P}, - [B ]{[C]{e}t_ﬁt - {ap}t-ﬂt}v

Following Equation 4-29

o, af _af
daij = (ldakkaij + 2G deij) ( aokk 6ij_* 2G 33;;)&

or

§.. + 26 de., - dof,
1

daij = JU"'lekk ij ij

55
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where
of _ of
] o - " Adekk ga-;-;‘l‘ 2G di_j 30’i.
dof, = [A==——35,, + 26 - J if f=0
iJ Bokk ij 90, . of of af of
U7 A~ S5 8w %
kk “%ag ii %% (4-40)
= 0 if £<0

After each integration step, Aui is given; daij is found.

Based on ]Eij "and stress at previous time, f is checked
and dcij is calculated according to whether material is
elastic or plastic by adding contribution for elastic part

to contribution from plastic part.

Stiffness is always based on elastic, parameters, i.e., X, G.
Plasticity is introduced through updating of stress increment.

Hence, there is need to update stiffness matrix.

4,1.3 INELASTICITY FOR ANISOTROPIC MATERIALS--THEORY OF JAEGER

The fracture of anisotropic rocks is the subject of several failure
theories. The Walsh-Brace theory (Reference 4-14) assumes that failure is
tensile in nature and that it is influenced by the presence of preexisting
cracks. Some of the cracks are assumed to be small and randomly oriented
while others are long and have preferred directions. Extension of the cracks
is postulated to occur when the Griffith criterion (Reference 4-15), as
modified by McClintcck and Walsh (Reference 4-16) to account for friction on

the crack faces, is satisfied.

In contrast, Jaeger (Reference 4-17) assumes the material to fail in
shear either along a single plane of weakness or within the matrix material

according to a Mohr-Coulomb type of failure criterion of the form

T = a_ - oa (4-38)
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where

T Shear stress on plane of fracture

(o] Normal stress on plane of fracture

a»a = Cohesion, angle of friction

The theory is expressed in terms of principal stresses by an axis rotation
as follows

o <oy = —2 L (4-39)

Improved agreement with experiment is obtained if a, is assumed to vary

a, = a, - ajcos (2(5 - B)) (4-40)

o]

where

B = Counterclockwise angle from the direction of the major prin-
cipal stress (al) to the direction of the bedding planes

& = The orientation of B at which a is minimum. Usually
assumed to be equal to 30 deg

The angle B is shown in Figure 4-8 along with angles relating it to global
directions in the finite element formulation. MclLamore and Grey (Refer-
ence 4-18) have obtained satisfactory agreement between experimental

data on strengths of slates and shales using a modification of Equation 4~25
as follows:

a, = a,- a3[cos 2(6 - g)]" for 0<E<B

(4=41)

80 =p8; - as[cos 2(g - B8)1™ for B <& < 90°

Some of their results and those of Brace and Walsh are illustrated in
Figure 4-9.
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X =Y =2 = GLOBAL AXES
1 =2=-3 = PRINCIPAL STRESS AXES

FIGURE 4-8. ORIENTATION OF PLANES OF WEAKNESS DEFINING ANISOTROPIC BEHAVIOR
ACCORDING TO JAEGER
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The present application of the hypotheses in Reference 4-18 is
limited to plane geometry. It does not take into account the effect of the
intermediate principal stress which is shon in Reference 4-19 to play an
important role in fracture of some types of rocks. More work is needed to
remove these restrictions,

The first step is to determine the magnitude of the principal
stresses o,, 0, and their direction as specified by 6, the counter-
clockwise angle from the +X global axis.

0 3 -0 \2
0y, = XX VY 4 ~J(’"<_2Y.z) + °,2<y (4-42)
1 -Zox
0 = 5 Arctan (_:_!_ (4-43)
oy " Oy

Bilinear stress/strain relations are specified by the user in terms
of Young's moduli and Poisson's ratio in directions parallel and perpendicular
to the bedding planes (oriented at o relative to global axes). Thus,
experimental data is required from specimens cut orthogonal to bedding plane
and at angles other than 90°. The computer program transforms the various
E and v to the principal directions of stress and modifies them to account
for fracture. These parameters, E‘. Y120 Y130 Ez, Vays V3o etc., are
assembled into a matrix relating incremental stress and strain in principal
stress axes. The relationship between incremental stress and incremental
strain expressed in the principal axes of anisotropy (principal stress axes)
is shown in Equation 2-24 where C is given by Equation 4-44., The matrix is
then transformed through the angle 6 into global coordinates for inclusion
in the element stiffness matrix. An illustration of the bilinear Young's

modulus approach is superposed on data in Figure 4-10.
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Ey (1 = vy3v3)) BV vigvgp) By 4 vipvs0)

‘Ez(“zl + u23‘3]) Ez(l - u|3v3l) Ez(v23 + v2]v13)

Eg(vig + vgpvg)  Eglvgy + vgpvp0) Eg(1 = vigvy))

[c] = (4-Lk)

(=] B

12

D¢y

23

where
D= 1 = vogian T vigVar T Visvan T Vi2¥23Y3 T Vi3V2i Vs
b.1.4 INELASTICITY FOR ANISOTROPIC ROCK--THEORY OF HILL

Hill (Reference L=9) lias proposed a yield criterion for anisotropic
materials whose form is compatible with the isotropic plasticity theory
described above. |f the stress components are expressed in the principal

axes of anisotropy (not necessarily principal stress axes), the yield criterion
can be expressed by

f(yo7 v5) = o (4-15)

where
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in which it is assumed that the %, n, £ axis system coincldes with the princlpal
direction of anisotropy. f may be used as the potential function described
above. Adaptation of this theory to rock is described in Reference 4-20.

The elastic behavior of the material may be prescribed to be either
isotropic or anisotropi-. |If it is isotropic, the quantities B and G may
be used. If i+ is anisotropic, Young's moduli and Poisson ratios El’ Vigs
Vi3 etc. are specified in the principal directions of anisotropy. The C
matrix (Equation 4=24) which relates incremental stress to incremertal strain
is thus initially expressed in the principal axes of anisotropy and is sub-

sequently transformed to global directions of the finite element mesh.

4,1.5 RATE EFFECTS--VISCOPLASTICITY

This method of incorporating rate sensitivity equations is based on
Perzyna's elastic-viscoplastic mode]l (Reference 4-21) which is a generaliza-
tion of an earlier model proposed by Hohenemser and Prager (Reference 4-22).
An adaptation of the cap model described above for viscoplasticity is described

in Reference 4=23. The present model is taken from Reference 4-24.

A linear elastic, rate independent region is bounded by a static

yield criterion
FJ,, Jy)) < 0 (4-46)

within which Hooke's Law applies. |If the static yield criterion is satisfied
or exceeded
0 (4-47)

f(J,, J!

1° 2) 2

A viscoplastic strain rate is assumed to develop according to the following

flow rule.

&= ve(n) S

i a“.j (4-48)
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